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Abstract

Two-step feature selection and classifier fusion methods have been investigated

for coroning and ultrasonic welding processes.

First, an acoustic emission (AE) based feature selection is studied for monitoring

the coroning process. This involves significant data reduction since the AE signal

requires a high sampling rate in order to capture useful information. Features, which

are spectral components in the frequency domain, are processed using the class mean

scatter (CMS) criterion. The features that are selected in the first step are then

combined to reduce dimensions without averaging in the second step. With these

features, classification is then performed and the results compared with those obtained

using a conventional feature selection method.

Next, a classifier fusion method is developed to enhance the reliability and ro-

bustness in decision making. This is based on state performance weighting, which

incorporates information on performance of classifiers for each state. A penalty vot-

ing concept is also investigated to further enhance classifier performance. Using equal

weighting for each of the classifiers investigated, the overall classification rate achieved

is 87.7%, while with state performance weighting, the classification rate improves to

98.5%. Using penalty voting further enhances the performance to 99.7%.

The signal processing techniques developed is then further used to investigate the

feasibility of real time monitoring of ultrasonic weld quality using audible sound. A

two degree-of-freedom model of the system is developed to help provide better un-

derstanding of the process characteristics. A series of experiments is also conducted

to define the robust weld quality range for metal welding using the T-peel test. The

relationship between weld quality and sound signals generated is then analyzed, and

a strong correlation is obtained between the stiffness variation and spectral compo-

xi



nents of the audible sound. The results show that a good weld is dominated by one

frequency component in the audible sound range near 10 kHz, which is half the vi-

bration frequency of 20 kHz, for the condition used, while that for a cold weld is

characterized by two frequency components at 9 and 11 kHz. Over weld conditions

do not generate unique frequency components.

xii



Chapter I

Introduction

Modern manufacturing systems are highly automated and as such, require real

time systems for monitoring the machine condition to prevent possible damage to

parts and tool, and also ensure quality products. Depending on the type of manu-

facturing process, sensors need to be chosen carefully to obtain useful data about the

process, and the resulting signals, which are usually combined with background noise,

properly analyzed to extract useful information. The key is to extract the useful data

from the overwhelming signals and determine the machine health. Two processes are

the focus of this research, namely coroning and ultrasonic welding processes.

Coroning is a final gear finishing process before the gears are assembled into a

transmission system, and can result in gear profile error which affects gear quality.

It is believed to be the most accurate gear finishing process, resulting in a smooth

surface and small transmission error (TE). TE has been found to be a major source

of noise in automotive transmission system. Abbes et al. (2007) and Fuentes et al.

(2006) reported that transmission error causes vibration in the transmission housing

and eventually manifests itself as noise. Goto (2001) reported that dynamic stiffness

of gear teeth has strong correlation with transmission error, while Mitchell and Daws

(1982) and Krishnaswami et al. (2001) indicated that improvements in gear profile

can reduce gear noise by 5-10 dB. The coroning process can significantly influence the

TE, so it is important to monitor it, especially since tool wear associated with the

coroning process is related to the product quality. Coroning is a multiple direction

process (Schenk et al., 2003) and tool wear is a complex process. The signals of

interest often appear in the high frequency ranges. Thus an accelerometer is not

1
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adequate for tool wear monitoring. The major advantage of using acoustic emission

(AE) to monitor tool condition is that its frequency range is much higher than that

of machine vibrations and ambient noise (Li, 2002). Ravindra et al. (1997) also used

AE signals as effective features for tool condition monitoring in cutting. Iwata and

Moriwaki (1977) and Kim et al. (1999) reported that RMS AE voltages increase

with tool wear. Jayakumar et al. (2005) were able to detect die wear, cracking,

friction properties, etc. during grinding and forming processes such as drawing, punch

stretching, blanking, and forging. Thus AE has the potential for being used to monitor

the coroning process. Wear of the coroning tool was investigated and a monitoring

system developed using an AE sensor for a high volume production line.

Ultrasonic welding has been increasingly investigated for joining battery compo-

nents due to the clean environmental attractiveness and advantages of solid state

welding. Resistance spot welding (RSW) is used widely in the automotive body

industry (Tang et al., 2002; Cho et al., 2003a), but in general, highly conductive ma-

terials require higher current, shorter welding time, and more precise control of the

process (Cho et al., 2003a), which requires a more massive RSW system. And it is

extremely difficult to make a fusion weld between aluminum and copper, which are

the principal battery tab materials. Since it is a solid state process, ultrasonic weld-

ing makes a good bond between dissimilar materials. Laser welding is also attractive

since it is a non-contact process, but it is difficult to use on reflective materials. Ul-

trasonic welding is widely used for wire bonding (Tsujino et al., 1994; Shah et al.,

2009; Lv and Han, 2008; Krzanowski, 1990) in the electronic chip packaging industry,

metal sheets (Ueoka and Tsujino, 2002), thin foils (White, 2003), plastics (Grewell,

1999), glass (Wagner et al., 2003), and ceramics (Matsuoka, 1998). The mechanism

of ultrasonic welding is not fully understood, but the first key mechanism is that the

oxide layer breaks up by vibration (Kong et al., 2005; Siddiq and Ghassemieh, 2008;

2009) for enhancing the metal to metal bond. Thouless et al. (2006) and Cullen et al.

(2008) used T-peel strength for ultrasonic welding. There are three main parame-

ters that affect the weld strength, viz. amplitude, pressure, and welding time (Kong

et al., 2003; 2005; Thouless et al., 2006; Hetrick et al., 2009) and they are related to
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the weld strength by measuring the T-peel and lap shear loads. These parameters

have been related to the optimal weldability zone of ultrasonic welding as shown in

Fig. 1.1, (Joshi, 1971). In this research, a series of experiments was conducted to

find the optimal welding zone for the materials used. The T-peel strength and fail-

ure modes were used as a weld quality reference. Weld quality monitoring was then

applied using a microphone signal, focusing on the audible sound range since sound

signals are generated during the process.

Fig. 1.1. Effect of principal process parameters on weld quality (Joshi, 1971).

Appropriate sensor selection leads to good feature candidates and provides an

effective means to a successful manufacturing process monitoring. Two major ap-

proaches in feature selection are individual evaluation and subject evaluation. Individ-

ual evaluation, also known as feature weighting/ranking, assesses individual features

and assigns them weights according to their degrees of relevance. A subject evaluation

is often selected from the top of a ranking list, which approximates the set of relevant

features. This approach is efficient for high-dimensional data (Guyon and Elisseeff,
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2003; Blum and Langley, 1997; Hastie et al., 2001; Yu and Liu, 2004; Yu et al., 2008).

The class mean scatter (CMS) criterion, an individual evaluation method, chooses the

features which maximize the ratio of the scatter between classes to the scatter within

classes. Sun et al. (2002) used this separability criterion (CMS) in laser welding and

obtained a 100% classification. Wang (2008) also used this criterion for classification,

but pointed out the challenges of feature selection for non-linearly separable data sets

and noisy features. Along with feature selection, the number of features is also im-

portant. Fewer features result in faster computational time. By a ranking approach,

the features could be correlated among themselves (Ding and Peng, 2003). Excessive

features slow down the learning process and irrelevant or redundant features may

confuse the learning algorithm (Yu et al., 2008). Highly correlated features can be

grouped as one feature to compensate for the limitation of the averaging method to

reduce the sensitivity to frequency changes. The two-step feature selection process

will combine the features, giving it the same advantage as the averaging method.

In order to increase reliability and robustness, a fusion method that involves clas-

sifiers is also investigated. Sensor fusion has been used in various fields such as tool

wear estimation (Bhattacharyya and Sengupta, 2009), underwater vehicle naviga-

tion (Nicosevici et al., 2004), vehicle fault diagnostics (Muldoon et al., 2002), and in

optical implementation (Volfson, 2006). Luo and Kay (1990) introduced four differ-

ent levels of fusion as signal-level, pixel-level, feature-level, and symbol-level fusion.

Signal-level fusion means that the original signals are combined to create new in-

formation. Pixel-level is used in increasing image information by multiple images.

Feature-level fusion can be used to increase the likelihood of selected features using

multiple features and symbol-level fusion is the highest level of fusion that combines

multi sensory information and feature-level fusion. The main purpose of fusion is

to overcome the inaccuracy of single sensor reading and reduce sensitivity to noise.

It has been adopted in many fields on classification and identification as a strong

support method such as bagging and boosting (Bauer and Kohavi, 1999; Breiman,

1996). If this method is extended to classifier fusion, then decision will be more ro-

bust by giving more weight to the most reliable classifier. State performance weighted



5

classifier fusion and penalty voting are also studied and evaluated on coroning and

ultrasonic welding processes.

In short, this research investigates on-line condition monitoring of coroning and

ultrasonic welding processes, and involves the development of appropriate sensor se-

lection along with feature selection and classification methods that incorporate fusion

algorithms. Specifically, it focuses on acoustic emission (AE) and microphone signals,

and the outcomes are described in Chapters 2, 3, and 4.

Chapter 2 covers the two-step feature selection method, which enhances clas-

sification performance via increasing the separability of the selected feature. This

chapter has been accepted for publication in the ASME Journal of Manufacturing

Science and Engineering, and presented at the proceedings of the ASME 2012 Inter-

national Manufacturing Science and Engineering Conference, Notre Dame, Indiana,

MSEC2012-7380.

Chapter 3 deals with classifier fusion, specifically state weighted classifier fusion

and penalty voting. The proposed method is to increase reliability and robustness on

decision making. This chapter has been accepted for publication in the International

Journal of Advanced Manufacturing Technology.

Chapter 4 describes the feasibility of using audible sound features for real time

weld quality monitoring during ultrasonic welding. It develops a two degree-of-

freedom mechanical model that correlates audible sound generation with variation

in the system stiffness. This chapter is under preparation for submission to the IEEE

Sensors Journal.

Conclusions and future work are presented in Chapter 5.



Chapter II

A two-step feature selection method for monitoring tool
wear, and its application to the coroning process

2.1 Introduction

A gear box in an automotive transmission system plays an important role in

transmitting engine power to the driving wheels. The transmission gear box consists

of a complex profile of gears that provide smooth driving and fuel efficiency. Gear

fabrication normally involves hobbing, shaping, shaving, and honing. Among these

processes, honing is the final gear finishing process and thus determines the final gear

quality. Coroning was also developed as the final finishing process in gear fabrication.

It is similar to, but more accurate than gear honing (Davis, 2005) and a coroning tool

coated with diamond abrasive particles removes small amounts of material. Coroning

is a complex multi dimensional metal removal process in gear manufacturing. It has

a ring shape with teeth inside, which are coated with diamond that grinds hardened

gear. The tool is engaged with a gear and then rotates under pressure. The pressure

applied at the contact surface enables material to be removed and the gear geometry

corrected. The high accuracy of the coroning process results in a smooth surface and

small transmission error. Thus, it has been applied in volume production in gear

manufacturing.

A coroning tool is shown in Fig.2.1.

6
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Fig. 2.1. Coroning tool (Schenk et al., 2003)

However, tool wear still exists since it involves material removal. The wear mecha-

nism of a coroning tool is complex due to multi-directional motions and metal removal

of gear teeth. The tool wear can result in gear profile error which would be a major

source of noise in automotive transmission systems (Abbes et al., 2007; Fuentes et al.,

2006), causing vibration in the transmission housing and eventually manifesting itself

as noise. Thus, it is essential to monitor the condition of the coroning tool during

production.

In this paper, an acoustic emission sensor (AE) is used to capture information

on tool wear during gear finishing by the coroning process. AE has been widely

used for tool condition monitoring in machining processes. Researchers have applied

statistical features such as kurtosis, skew, and dominant frequencies from the AE

signal to analyze the signals. Kannatey-Asibu Jr and Dornfeld (1982) and Dornfeld

and Kannatey-Asibu (1980) obtained relationships between the cutting tool wear

and root mean square (RMS), skew, and kurtosis of the AE signal from machining.

Ravindra et al. (1997) also used AE signals as effective features for tool condition

monitoring in cutting. Iwata and Moriwaki (1977) and Kim et al. (1999) reported that

the RMS AE voltage increases with tool wear. However, those features may result in

loss of important information, especially since for tool wear, there is significant useful

information in the high frequency ranges. Since wear associated with the coroning

process is not extensive, those features may not show any significant changes as wear

progresses, unlike the observations of Kim et al. (1999). De Oliveira and Dornfeld

(2001) reported that there are several factors which might influence the AE RMS level

in a non predictable way in real production such as coolant flow, machine noise, and
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electrical noise, unlike laboratory environments. Webster et al. (1994) and Aguiar

et al. (2006) also indicated that the AE RMS might be insensitive due to the inherent

averaging operation. However, the major advantage of using AE to monitor tool

condition is that its frequency range is much higher than that of machine vibrations

and ambient noise (Li, 2002). Hence, it is necessary to extract features that contain

high frequencies to estimate the tool condition in the coroning process. In this paper,

all frequency components obtained through AE were considered as initial features

and then a feature selection algorithm was developed to remove redundant features

and find the best feature set.

Various feature selection methods have been investigated for condition monitoring

that involve mean and variance (Zhou et al., 2005; Jin, 2004; Zhou and Jin, 2005).

Among the feature selection methods is one that is based on separability enhance-

ment (Fukunaga, 1972). Using the separability criterion, the data is used to calculate

the scatter within each class and the scatter between the classes, and the ratio of the

two used to rank the features. Sun et al. (2002) used this separability criterion (class

mean scatter (CMS)) in laser welding and obtained 100% classification. Wang (2008)

also used this criterion for classification, but pointed out the challenges of feature

selection for non-linearly separable data sets and noisy features. Along with feature

selection, the number of features is also important. Fewer features result in faster

computational time. However, increasing the number of features often improves clas-

sification results. Guyon and Elisseeff (2003) introduced single and multiple features

for classification and reported that multiple features can improve the classification re-

sults when features are selected using the variable ranking method. Among selected

features, there exist relevant and redundant features. More features can improve the

classification performance, but excessive features may increase computation time and

confuse the learning algorithm, the so called ‘curse of dimensionality’ (Hastie et al.,

2001). Yu and Liu (2004) proposed relevance and redundancy analysis to eliminate

redundant features. However, eliminating features may result in loss of important

information. Rather than elimination, combinations of these features have the po-

tential to overcome the averaging effect. Therefore a two-step feature selection using
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CMS and modified relevance and redundant analysis is proposed for coroning tool

wear monitoring in this paper. The proposed two-step feature selection method en-

ables the best feature set to be selected by combining features, resulting in feature

dimension reduction without averaging, and improved system performance.

The rest of this paper is organized as follows. The second section explains exper-

imental setup which describes the sensor used, its attachment, and data collection.

The third section provides a description of the proposed feature selection method for

the coroning process. The fourth section gives descriptions of classifiers used. The

fifth section discusses the results of applying the proposed method with classifiers

described in the preceding section. The final section presents the conclusions.

2.2 Experiments

An AE sensor (Kistler AE 8152B22sp3) was used to monitor the coroning process

and data was collected at a 2 MHz sampling rate. The raw data was then converted

to the frequency domain for further analysis. Tool wear features were selected using

the CMS criterion and used for classification.

Fig. 2.2 shows a schematic of the overall experimental setup. The signal from the

AE sensor, which was attached to the coroning tool as shown in Fig. 2.3, was passed

through a band pass filter which was set from 100 kHz to 1 MHz to filter out signals

due to mechanical vibration. The signal was then further amplified with a gain of 10

(equivalent to 20 dB), and sampled at a rate of 2 MHz using the digitizer. A sample

AE signal in the time domain is shown in Fig. 2.4.
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Fig. 2.4. AE signal in time domain

To identify the relationship between a feature and profile error, indirect measure-

ment of the fabricated gear dimensions was also made for every 200th gear sample

fabricated during production.

2.3 Two-step feature selection

The proposed two-step feature selection method is described in this section, and

is based on CMS and modified relevance and redundancy analysis. The goal is to find

the best possible features for monitoring the process. The CMS method chooses the

features which maximize the ratio of the scatter between classes to the scatter within

classes. A brief background on this method is presented next (Kannatey-Asibu Jr.,

2009). Let the transformed data set be represented by x as shown in Fig. 2.5. The

feature mean for each class is then given by
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Fig. 2.5. Three classes in a two-feature space (Kannatey-Asibu Jr., 2009).

µi =
1

Mi

Mi∑
j=1

xji (2.1)

where Mi = the number of patterns in class Si

Si = 1, 2, . . . , N

xji is the jth pattern in class Si

N = number of classes.

The overall system mean is

µ̄ =
N∑
i=1

piµi (2.2)

where pi = a priori probability of class Si.

The scatter within each class is obtained by calculating the covariance matrix of

Φxi =
1

Mi

Mi∑
j=1

(xji − µi)(xji − µi)
′ (2.3)

which leads to an overall system covariance matrix as
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Φx =
N∑
i=1

piΦxi (2.4)

The scatter between classes is

Φxs =
N∑
i=1

pi(µi − µ̄)(µi − µ̄)′ (2.5)

Finally, the feature selection criterion is defined as

Q =
Φxs(i, i)

Φx(i, i)
(2.6)

where Φxs(i, i) and Φx(i, i) are the ith diagonal elements of the covariance matrices

Φxs and Φx, respectively. Thus, the higher values of Q indicate the stronger

candidate features.

Among selected dominant frequency features from the CMS criterion, usually in

the high frequency range for wear (Byington et al., 2003), there still exist redundant

features. Using a ranking approach, the features that are correlated can be identified

(Ding and Peng, 2003). A large number of features slows down the learning process

and irrelevant or redundant features may confuse the learning algorithm (Yu et al.,

2008).

Two major approaches in feature selection are individual evaluation and subject

evaluation. Individual evaluation, also known as feature weighting/ranking, assesses

individual features and assigns them weights according to their degrees of relevance. A

subject evaluation is often selected from the top of a ranking list, which approximates

the set of relevant features. This approach is efficient for high-dimensional data (Blum

and Langley, 1997). The CMS method is basically an individual evaluation. In this

paper, the subject evaluation is also applied by choosing top ranked CMS features

before going through the next step.

AE signal levels for a faulty process are generally higher than for a normal process

(Saravanan et al., 2006), which means that the energy level increases as the tool

wears. In monitoring the coroning process using AE, it is important to consider the

energy accumulation from different frequency ranges. Highly correlated features can
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be grouped as one feature to compensate for the limitation of the averaging method to

reduce the sensitivity to frequency changes (Yu et al., 2008). Unlike Yu and Liu (2004)

who eliminated redundant features, the two-step feature selection process combines

them, giving it the same advantage as the averaging method. Correlation coefficients

of ranked features from the CMS method are calculated. Features are then grouped

using the modified relevance and redundancy analysis as illustrated in Fig. 2.6 and

described below. Thus, the two-step feature selection method uses not only subject

evaluation but also modified relevance and redundancy feature selection to improve

classification.
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Fig. 2.6. Schematic illustration of new relevance and redundancy analysis feature selection process

To understand the proposed method, consider yt
i = {y(1) y(2) . . . y(t)} as a

frequency feature set consisting of amplitudes at select frequencies, i = 1,2,. . . ,m, for

n observations, t = 1, 2, . . . , n (Pandit and Wu, 1983) where m is the total number

of frequency components. Using the CMS criterion, the features are ranked as Y =

{yt
1 yt

2 . . .yt
m}. By calculating the correlation coefficient, C(yt

i,y
t
j), between CMS

ranked features yt
i and yt

j with standard deviation σ, subsets of ranked CMS features

are formed. C(yt
i,y

t
j) is given as:

C(yt
i ,y

t
j ) =

cov(yt
i,y

t
j)

σyt
i
σyt

j

, (2.7)

where cov(yt
i,y

t
j) is the covariance between yt

i and yt
j

i = 1, 2, . . . , m, j = 1, 2, . . . , m.
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Define a subset as:

G1 = {yt
1 yt

2 yt
4}, . . . ,GM = {yt

3 yt
5 yt

m} (2.8)

where Gk ∩Gl = Ø ∀k, l = 1, 2, . . . ,M and M < m

C(yt
i,y

t
j) > α

α is a threshold value

yt
1,y

t
2,y

t
4 are correlated, and

yt
3,y

t
5,y

t
m are also correlated.

The threshold value of α for the correlation coefficient, for this research, was set

at a high of 0.95. The final features are obtained as the sum of all the elements in a

subset:

Fk =
∑

yt
i∈Gk

yt
i (2.9)

This process continues until all ranked CMS features satisfying the threshold are

accounted for. The two-step feature selection framework is illustrated in Fig. 2.7.
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Fig. 2.7. Two-step feature selection method

To illustrate, consider six features that are randomly selected by ranking from the

CMS criterion,

Y = {yt
1 yt

2 yt
3 yt

4 yt
5 yt

6}. By calculating the correlation coefficients, C(yt
i,y

t
j),

the resulting correlation matrix is as shown in Table 2.1.
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Table 2.1. Correlation matrix obtained by calcualtion the correlation coefficients

yt
1 yt

2 yt
3 yt

4 yt
5 yt

6

yt
1 1 0.97 0.89 0.98 0.77 0.76

yt
2 0.97 1 0.86 0.96 0.88 0.94

yt
3 0.89 0.86 1 0.96 0.99 0.96

yt
4 0.98 0.96 0.96 1 0.41 0.46

yt
5 0.77 0.88 0.99 0.41 1 0.87

yt
6 0.76 0.94 0.96 0.46 0.87 1

Setting the threshold that defines redundancy as α > 0.95 correlation, the subsets

become

G1 = {yt
1,y

t
2,y

t
4} and G2 = {yt

3,y
t
5,y

t
6} satisfying the criterion Gk ∩Gl = Ø ∀k, l.

Then the final features become F1 = yt
1 + yt

2 + yt
4 and F2 = yt

3 + yt
5 + yt

6.

2.4 Classifiers

In order to verify the proposed feature selection algorithm, four classifiers, Hidden

Markov model, minimum error rate Bayesian, Gaussian mixture model, and K-mean

classifiers, are selected. In this section, these four classifiers are described and their

monitoring performances for coroning tool wear discussed in the next section.

2.4.1 Hidden Markov model

We represent the compact form of the complete set of the model as λ = (A, B,

π) with the following considerations:

• a finite set of N states, S = {S1,...,SN} and the state at time t as qt

• a state transition probability matrix

A = {aij}N×N , 1 ≤ i, j ≤ N

where aij = p(qt+1 = Sj | qt = Si)

1 ≤ i, j ≤ N , 1 ≤ t ≤ n− 1

• an observation symbol probability distribution,

B = {bj(xt)}
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where x is an observation sequence,

x = x1,x2, ...,xt

xt is an observation symbol at t,

bj(xt) = p(xt | qt = Sj), 1 ≤ j ≤ N , 1 ≤ t ≤ n.

• an initial state probability distribution, π = {πi}

where πi = P(q1 = Si), 1 ≤ i ≤ N

Rabiner (1989) gave examples of how to find the maximum likelihood state se-

quence, maximizing the probability of the observation sequence using the Baum-

Welch method or Expectation-Maximization algorithm.

2.4.2 Minimum error rate Bayesian classification

Using the minimum-error-rate Bayesian rule (Duda et al., 2006), classification is

based on the following condition:

Decide Si if p(x | Si)P (Si) > p(x | Sj)P (Sj) (2.10)

where Si the state of nature for class i

p(x | Si) = likelihood of x given Si

P (Si) = a priori probability of class i.

Assuming a multivariate normal distribution,

N(µi,Φxi), for the class conditional probability density function p(x | Si)P (Si), and

taking its logarithm, we obtain the discriminant function:

gi(x) = −1

2
(x− µi)

TΦ−1
xi (x− µi)−

d

2
ln 2π

−1

2
ln |Φxi|+ lnP (Si) (2.11)

where d = is the dimension of vector x

µi is the mean of class i

Φxi is the covariance matrix of class i.
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2.4.3 Gaussian mixture model

The Gaussian mixture model determines the Gaussian mixtures that maximize a

likelihood of n samples of N different classes (N < n), S = S1, S2, . . . , SN with initial

guess of mean K = {µ1, µ2, . . . , µN}, assuming a Gaussian distribution (Duda et al.,

2006). In a set of observations (x1,x2, . . . ,xt), xi is a d-dimensional real vector. By

calculating the likelihood:

p(x | Si) =
∑
i

p(x | Si, µ1, µ2, . . . , µN)P (Si) (2.12)

then, the likelihood function, L, becomes:

L = p(x1,x2, ...,xt | Si)

=
n∏

i=1

∑
i

p(x | Si, µ2, . . . , µN)P (Si) (2.13)

Now we maximize the likelihood function such that ∂L
∂µi

= 0 using the Expectation-

Maximization (EM) algorithm.

2.4.4 K-means

K-means (Duda et al., 2006) is a clustering method which involves assigning a set

of n samples to the closest mean vectors, µi, for a finite set of N classes. The initial

number of N states has to be chosen properly. In a set of observations (x1,x2, . . . ,xt),

K-means minimizes the sum of squares from points to the class mean:

argmin
S

N∑
i=1

∑
xj∈Si

∥xj − µi∥2 (2.14)

where µi is the mean of each class, Si
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2.5 Results and discussion

AE signals obtained during the coroning process were analyzed in the frequency

domain and the CMS method used to identify candidate features, which were then

ranked, Fig. 2.8. As an example, the variation of the 976 kHz spectral component

amplitude with time is shown in Fig. 2.9.
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Fig. 2.8. Top 15 ranked CMS candidate frequency features. 936a and 936b kHz are distinguished
using higher significant figures as 936015 and 936016 Hz respectively.



20

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8
x 10

−4

S
1
 (State 1) S

2
S

3

Number of parts produced

A
m

pl
itu

de
 o

f C
M

S
 fe

at
ur

e 
(9

75
98

7 
H

z)

Fig. 2.9. Variation of the CMS feature at 976 kHz with tool wear (number of parts produced)

The time domain features such as RMS, skew, and kurtosis were calculated as

shown in Fig. 2.10. Unlike previous research (Kim et al., 1999; De Oliveira and

Dornfeld, 2001), the time domain features of the AE signal measured during the

coroning process were observed to be stable during the cycle time. However, as

shown in 3.2, two frequencies at 936 kHz and 483 kHz gave an indication of tool wear

from indirect measure of part profile error.
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tool wear (number of gears produced)
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Fig. 2.11. Variation of measured profile error and the CMS features (normalized spectrum amplitude
at 936 and 483 kHz) with tool wear (number of gears produced)

The ideal monitoring system would track the continuous progress of tool wear.

Since wear of the cutting tool is a gradual process, doing so by classification would

ideally require an infinite number of classes. However, as an initial step, we group

the progress of tool wear into three states. State 1 represents the sharp tool, state

2 for a slightly worn tool, and state 3 for an extensively worn tool. Since state 2

shows rapid wear, this state is narrow in duration. Using fifteen features selected by

the CMS criterion, the classification rates for the three states are summarized in Ta-

ble 2.2 for different classifiers. The performance of the HMM and Bayesian classifiers

for state 2 were comparably lower than the other classifiers, while the performance

for states 1 and 3 were much higher than the GMM and K-mean classifiers. The over-

all performance among all classifiers was highest for the HMM and Bayesian methods.

Table 2.2. Classifier performance (%) using CMS-selected frequency features

HMM Bayesian GMM K-means

State 1 100.0 99.2 90.8 97.1

State 2 29.3 38.7 98.7 92.0

State 3 99.7 99.0 71.6 21.6

Overall 94.1 94.1 84.0 67.5
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Fig. 2.12. Tool wear classification rates for different window sizes using the minimum error rate
Bayesian method

As Table 2.2 shows, classification rates obtained using specific frequency features

selected by the CMS criterion were generally less than 95%. HMM and Bayesian

classifiers showed excellent capability of classifying states 1 and 3, but state 2 clas-

sification rate was low. Even though the overall classification rate reached 94.1%,

the single frequency features may have a risk of lower classification rate if the feature

frequency changes. To reduce the risk associated with using specific frequencies as

features, band averaging was investigated. This involved averaging a contiguous set

of frequency components. However, increasing the average window size resulted in a

decreased classification rate as shown in Fig. 2.12.

Thus, conventional band averaging does not necessarily improve performance.

Frequency band averaging also runs the risk of losing feature information. On the

other hand, two-step feature selection does not result in information loss and it also

has the potential of reducing frequency change effect on classification. Table 2.3 shows

the classifier performances based on CMS features after removing redundant features.

Other than the HMM classifier, the overall performances did not improve compared

to the results obtained before removing the redundant features. This implies that the

features removed may contain important tool wear information.
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Table 2.3. Classifier performance (%) after removing redundant features

HMM Bayesian GMM K-means

State 1 97.7 97.7 91.6 95.7

State 2 72.7 45.3 93.3 90.7

State 3 95.3 94.9 66.2 21.6

Overall 94.9 92.8 82.3 66.7

Using the two-step feature selection with modified relevance and redundancy anal-

ysis method resulted in a significant improvement in the overall performance, Ta-

ble 2.4. Also, the state performances that were low when CMS features were used

increased with the two- step feature selection method as can be seen by comparing

Tables 2.2-2.4.

Table 2.4. Classifier performance (%) using two-step feature selection with modified relevance and
redundancy analysis method

HMM Bayesian GMM K-means

State 1 98.2 98.5 92.6 92.5

State 2 91.3 68.7 97.3 88.0

State 3 99.7 98.1 73.4 95.9

Overall 98.3 96.2 85.5 93.5

Variation in features selected by the CMS and two-step feature selection methods

shows that two-step feature selection creates a more separable data distribution than

CMS, Fig. 2.13.
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Fig. 2.13. Scatter plot of principal features from (a) CMS (976 kHz) (b) two-step feature selection

The classifier performances are summarized in Fig. 2.14, and the proposed fea-

tures show significant improvement when compared with the other feature selection

techniques, for each of the four classification methods. Two-step features resulted

in the best performance for all the classifiers with a maximum classification rate of

98.3%.
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Fig. 2.14. Classification rate comparison between existing and proposed feature selection methods
evaluated with four classification methods

2.6 Conclusions

A new feature selection method developed under this study resulted in 98.3% clas-

sification rate for monitoring tool wear during the coroning process.

Using conventional window averaging resulted in a decrease in the classification rate.

The two-step feature selection method incorporates the advantage of window av-

eraging, thereby reducing the sensitivity of the classification results to frequency

changes. It improved classification significantly for the hidden Markov, minimum

error rate quadratic classification based on the Bayesian rule, the Gaussian mixure,

and K-means models. While the proposed feature selection method improves the

performances for all the classifiers investigated, it is interesting to note that different

classifiers have different performances.



Chapter III

Classifier fusion for acoustic emission based tool wear
monitoring

3.1 Introduction

Coroning is a complex multi-dimensional metal removal process that is used for

gear fabrication. Gears produced by polishing and finishing improve functional flank

topology and reduce gear noise (Schenk et al., 2003). A coroning tool and system

are shown in Fig.3.1. It has a ring shape with teeth inside, which are coated with

diamond. The tool is engaged with a gear and then rotates under pressure. In addition

to the tool rotation, there is also simultaneous grinding action parallel to the rotation

axis. Thus, the coroning process ensures final gear quality before its assembly in

a transmission box. It has been used for transmission manufacturing, especially in

volume production (Schenk et al., 2003; Yum et al., 2009). Such a mass production

process requires a real-time monitoring system to ensure quality and productivity.

However, tool condition monitoring (TCM) for the coroning process has not been

reported in the literature.

26
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Fig. 3.1. Coroning machine and AE sensor attachment.

In TCM, the continuously varying nature of the process makes it difficult to esti-

mate the tool condition. Thus, various classification methods have been investigated

for wear monitoring (Leem et al., 1995; Kanthababu et al., 2008), including maximum

likelihood, support vector machine (Donat et al., 2008; 2007), k-nearest neighbor (Li

et al., 2010), hidden Markov model (Rabiner, 1989), and artificial neural network (Al-

thoefer et al., 2005). However, no single classifier has been found to be suitable for

all applications. To address this problem, a number of papers have proposed the

use of multiple classifiers for improving monitoring performance (Chen et al., 2009a;

Kuncheva, 2002; Tolba et al., 2010; Ruta and Gabrys, 2000; Sewell, 2011). There

are selection and fusion methods for multiple classifiers. Similar to the class mean

scatter (CMS) criterion (Kannatey-Asibu Jr., 2009), which ranks candidate features

that describe the process, Roli et al. (2001) proposed a classifier selection method for

choosing the best among a number of classifiers by evaluating the individual perfor-

mances based on the so-called “overproduce and choose” concept. Ertunc and Loparo

(2001) developed a decision fusion center algorithm for TCM in drilling. Three in-

dividual methods were designed and their outputs were used as weighting factors to

calculate the global decision. Binsaeid et al. (2008) presented machine ensemble tech-
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niques such as majority vote and generalized stacking ensembles during end milling.

Yu (2011) proposed an artificial neural network (ANN) based tool wear prediction

model in drilling operations. Several ANNs are generated by using modified Bagging

method and then the best ANN selected. Fusion methods are applied not only in

engineering but also in other fields such as medicine. Lederman et al. (2011) reported

that the fusion method is more robust and consistent for identifying the risk of breast

cancer. Those decision algorithms are normally based on a voting system, such as

minimum, maximum, average, or majority voting (Kittler et al., 1998; Kittler and

Alkoot, 2003). If the classifiers agree on class decision, as Petrakos et al. (2000) re-

ported, then the fusion of classifiers will not achieve any better classification than

using a single classifier. If they do not agree, then voting plays an important role. A

voting method, however, still has challenges associated with ‘tie votes’. A weighted

voting is proposed in pattern recognition (Kahn Jr. et al., 2011; Hullermeier and

Vanderlooy, 2010) in order to increase classifier performance and reduce ‘tie votes’

at the same time. But the performance of each classifier is not the same throughout

the process due to the tool degradation and each classifier can perform differently at

each state.

In this paper, the concept of decision fusion is extended to classifiers with the

expectation that this will enhance the monitoring system performance by reducing

the error associated with individual classifiers. Thus, the multi-classification fusion

method is proposed here based on decision fusion. This is extended to incorpo-

rate state-performance weighting factors and penalty voting. As a first step, we

facilitate classification by categorizing the entire tool wear regime into three states:

sharp, slightly worn, and worn tools. An acoustic emission (AE) signal is measured

and transformed into the frequency domain. Then, the CMS criterion (Emel and

Kannatey-Asibu Jr., 1988) is applied to select the best features among all frequency

components. The selected features and the tool condition are used for training and

testing. The performances of individual classifiers and the performances at each state

are used as weighting factors in the classifier fusion algorithm, which is then evaluated.
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3.2 Experiments

The AE signal was used to monitor the coroning process and data was collected

at a 2 MHz sampling rate. A total of 2039 samples were collected, and approximately

half of them were used as a training set for the classifiers. The raw data was then

converted to the frequency domain and frequency components were extracted as fea-

tures. To identify a relationship between the tool condition and extracted features,

the profile error of the fabricated gear was obtained by measuring profiles of gears ref-

erence to its tolerance using a coordinate measuring machine (CMM). Fig.3.2 shows

variation of two select features, 976 kHz and 483 kHz, and the profile error with num-

ber of parts produced (every 200th gear sample produced by the coroning machine).

The two features are among the CMS ranked features, and they were selected out of

the lot to illustrate how the frequency components correlate with the profile error.
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Fig. 3.2. Profile error measured and its comparison to select features (normalized spectrum ampli-
tude at 976 and 483 kHz).

The tool condition was then categorized into three states using the profile error

and features as shown in Fig. 3.3. State 1 represents the sharp tool, state 2 for a

slightly worn tool, and state 3 for an extensively worn tool. Fig. 3.4 shows a two
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dimensional feature space of these three states for two frequency features. However,

finding the best features to improve the classifier performance is difficult. In this

study, the CMS criterion proposed in (Emel and Kannatey-Asibu Jr., 1988) was used

to select the best features. Among one million possible feature candidates, 15 features

were selected using the CMS criterion.
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Fig. 3.3. Variation of the amplitude spectrum of AE signal at 976 kHz with tool wear (number of
parts produced).
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Fig. 3.4. The state of the cutting tool as represented by two frequency components in the feature
space.

3.3 Classifiers

The proposed classifier fusion algorithm was based on four classifiers, Hidden

Markov model (HMM), minimum error rate Bayesian (Bayesian), Gaussian mixture

model (GMM), and K-means classifiers (K-means). In this section, these four clas-

sifiers are briefly described and their individual performances for coroning tool wear

are presented.

3.3.1 Hidden Markov model

We represent the compact form of the model as λ = (A, B, π) with the following

considerations:

(i) a finite set of N states, S = {S1,...,SN} and the state at time t as qt

(ii) a state transition probability matrix

A = {aij}N×N , 1 ≤ i, j ≤ N

where aij = p(qt+1 = Sj | qt = Si)
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1 ≤ i, j ≤ N , 1 ≤ t ≤ n− 1

(iii) an observation symbol probability distribution,

B = {bj(xt)}

where x is an observation sequence,

x = x1,x2, ...,xt

xt is an observation symbol at t,

bj(xt) = p(xt | qt = Sj), 1 ≤ j ≤ N , 1 ≤ t ≤ n.

(iv) an initial state probability distribution, π = {πi}

where πi = P(q1 = Si), 1 ≤ i ≤ N

Rabiner (1989) gave examples of how to find the maximum likelihood state se-

quence, maximizing the probability of the observation sequence using the Baum-

Welch method or Expectation-Maximization algorithm.

3.3.2 Minimum error rate Bayesian model

Using the minimum-error-rate Bayesian rule (Duda et al., 2006), classification is

based on the following condition:

Decide Si if p(x | Si)P (Si) > p(x | Sj)P (Sj) (3.1)

where Si is the state of nature for class i

p(x | Si) is the likelihood of x given Si

P (Si) is the priori probability of class i.

Assuming a multivariate normal distribution, N(µi,Σi), for the class conditional

probability density function p(x | Si)P (Si), and taking its logarithm, we obtain the

discriminant function:

gi(x) = −1

2
(x− µi)

TΣ−1
i (x− µi)−

d

2
ln 2π

−1

2
ln |Σi|+ lnP (Si) (3.2)
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where d is the dimension of vector x

µi is the mean of class i

Σi is the covariance matrix of class i.

3.3.3 Gaussian mixture model

The Gaussian mixture model determines the Gaussian mixtures that maximize a

likelihood of t samples of N different classes (N < t), S = S1, S2, . . . , SN with initial

guess of mean K = {µ1, µ2, . . . , µN}, assuming a Gaussian distribution (Duda et al.,

2006). In a set of observations (x1,x2, . . . ,xt), xt is a d-dimensional real vector. By

calculating the likelihood:

p(xt | Si) =
∑
i

p(xt | Si, µ1, µ2, . . . , µN)P (Si) (3.3)

then, the likelihood function, L, becomes:

L = p(x1,x2, ...,xt | Si)

=
t∏

j=1

∑
i

p(xj | Si, µ2, . . . , µN)P (Si) (3.4)

Now we maximize the likelihood function such that ∂L/∂µi = 0 using the Expectation-

Maximization (EM) algorithm.

3.3.4 K-means model

K-means (Duda et al., 2006) is a clustering method which involves assigning a set

of t samples to the closest mean vectors, µi, for a finite set of N classes, which has N

different means. The initial number of N states has to be chosen properly. In a set of

observations (x1,x2, . . . ,xt), K-means minimizes the sum of squares from points to

the class mean:

argmin
S

N∑
i=1

∑
xj∈Si

∥xj − µi∥2 (3.5)

where µi is the mean of each class, Si
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3.3.5 Individual classifier performance

The overall performance of individual classifiers for monitoring continuous tool

wear during the coroning process are shown in Fig. 3.5. The performances of the

four classifiers (HMM, Bayesian, GMM, and K-means), are 94.1%, 94.1%, 84.0%,

and 67.5%, respectively, Table 3.1. Most of the error for the HMM classifier came

from state 2 as shown in Fig. 3.6.

HMM Bayesian GMM K−means
0

20

40

60

80

100

C
la

ss
ifi

er
 p

er
fo

rm
an

ce
 [%

]

Fig. 3.5. Overall classification rates of individual classifiers for monitoring tool wear of the coroning
process

Table 3.1. Single classifier performance (%) at each state.

HMM Bayesian GMM K-means
State 1 100.0 99.2 90.8 97.1
State 2 29.3 38.7 98.7 92.0
State 3 99.7 99.0 71.6 21.6
Overall 94.1 94.1 84.0 67.5
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Fig. 3.6. HMM state estimation

3.4 Classifier Fusion

The classifier fusion procedure is shown schematically in Fig. 3.7, using the HMM,

Bayesian, GMM, and K-means models.
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1 2 3 M-2 M-1 M

M features
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Decision fusion 

Final 

decision

Fig. 3.7. Multi-classifier fusion

We first define a matrix D consisting of the class pattern (decision) associated

with individual classifiers:

D =



d1,1 d1,2 d1,3 . . . d1,m

d2,1 d2,2 d2,3 . . . d2,m
...

...
...

. . .
...

dn,1 dn,2 dn,3 . . . dn,m


, di,j ∈ {1, 2, 3, . . . , N} (3.6)

where di,j: the class decision of observation j for classifier i

m: the number of observations throughout the life of the tool

n: the number of classifiers

N : the number of classes or states.
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Now consider a weighting vector W that consists of individual classifier perfor-

mances, wi:

W = [w1 w2 w3 . . . wn] (3.7)

where wi is the performance vector of classifier i.

wi is calculated for m observations as follows:

wi =

m∑
j=1

δ(di,j, yj)

m
, i = 1, 2, . . . , n (3.8)

where yj is the true class of observation j,

j = 1, 2, 3, . . . , m,

δ(k, l) =

 1 if k = l

0 otherwise

Before the final decision takes place, let us define the voting matrix V

V =



v(d1,1) v(d1,2) v(d1,3) . . . v(d1,m)

v(d2,1) v(d2,2) v(d2,3) . . . v(d2,m)

...
...

...
. . .

...

v(dn,1) v(dn,2) v(dn,3) . . . v(dn,m)


(3.9)

Where v(i) is the ith row of the identity matrix, I, whose rank is determined by the

number of classes of interest. For example, for a 3-class system (N=3), di,j is then

an element of {1, 2, 3}, and we have a 3x3 matrix I. Elements of D, di,j, are used to

form the matrix V. For example, v(di,j) becomes [1 0 0] from the first row of identity

matrix, I, when d1,1 = 1. Likewise v(di,j) becomes [0 1 0] when d1,1 = 2 and [0 0 1]

when d1,1 = 3. Thus the voting matrix V is formed from the classifier, di,j. The final

decision equation is then the matrix multiplication of the weighting vector W and
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voting matrix V:

Final decision = FDj =
[
arg max

column
[WV(j)]

]
(3.10)

where V (j) is the jth column of the voting matrix, V

We now take an example to illustrate the influence of the weighting factor by

comparing non-weighted and weighted decisions. Let us assume we have 4 classifiers,

5 observations, and 3 different states, which correspond to n=4, m=5, and di,j ∈

{1, 2, 3} ∀i, j, with unity weight values and random class patterns. W and D then

become:

W = [w1 w2 w3 w4] = [1 1 1 1]

D =



d1,1 d1,2 d1,3 d1,4 d1,5

d2,1 d2,2 d2,3 d2,4 d2,5

d3,1 d3,2 d3,3 d3,4 d3,5

d4,1 d4,2 d4,3 d4,4 d4,5


=



2 1 2 3 3

1 1 2 2 3

1 1 1 3 2

1 2 2 3 2


That results in the following voting matrix, V:

V =





0 1 0

1 0 0

1 0 0

1 0 0





1 0 0

1 0 0

1 0 0

0 1 0





0 1 0

0 1 0

1 0 0

0 1 0





0 0 1

0 1 0

0 0 1

0 0 1





0 0 1

0 0 1

0 1 0

0 1 0




From Eqn. (3.10), WV(j) then becomes:

WV(j) =

[[
3 1 0

] [
3 1 0

] [
1 3 0

] [
0 1 3

] [
0 2 2

]]
Finally, the decision becomes:
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Final decision = [1 1 2 3 2or3]

In this particular example, there is a tie, as the final decision indicates. The

weighting factor plays an important role in eliminating such situations by placing more

emphasis on classifiers with higher weights. For example, the overall performances

of individual classifiers for continuous tool wear using recently obtained data, are

94.1%, 94.1%, 84.0%, and 67.5% for HMM, Bayesian, GMM, and K-means models,

respectively. These overall performances are now used as weighting factors as follows:

W = [w1 w2 w3 w4] = [0.941 0.941 0.840 0.675]

Then from Eqn. (3.10), WV(j) becomes:

WV(j) =



[
2.456 0.941 0.000

]
[
2.722 0.675 0.000

]
[
0.840 2.557 0.000

]
[
0.000 0.941 2.456

]
[
0.000 1.882 1.515

]



T

resulting in the following final decision:

Final decision = [1 1 2 3 2]

Thus there are no more tie votes. Since the individual classifier performances vary

with the states, the classifier fusion concept was further enhanced by updating the

weighting factors using the respective classifier performances for each state. Finally,

penalty accommodated weighting was used, giving a penalty on voting for classifier

fusion in order to increase reliability.
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3.5 Results and discussion

Table 3.1 summarizes the results for individual classifier performances. The HMM

and Bayesian classifiers show the best overall performance. However, in state 2, the

classification rate was only 29.3% and 38.7% for the HMM and Bayesian classifiers,

respectively. Table 3.2 shows the results from classifier fusion with different weighting

factors. No weights were used for the results in the first column. In the second column,

the overall performance of each classifier was used as its weight. Finally, in the third

column, the performance of each state for a classifier was used as its weight.

Table 3.2. Classifier fusion performance (%) at each state with different weighting factors

No weight Overall State

performance performance performance
State 1 99.2 99.2 99.2
State 2 88.0 51.3 91.3
State 3 71.6 99.0 99.0
Overall 87.7 95.6 98.5

By applying the classifier fusion algorithm, the state 2 performance increased to 88%

with no weight factor, but the overall performance decreased to 87.7% compared

to 94.1% without classifier fusion. Using the weighted classifier fusion, with overall

performance of individual classifiers as weighting factors, interestingly, the overall

performance increased to 95.6% while the state 2 performance decreased to 51.3%.

This is because the classifier performance is poor for the HMM and Bayesian classifiers

in state 2, as Fig. 3.8 shows, but the weight was drawn from the overall performance,

Fig. 3.5.
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Fig. 3.8. Classification rates of individual classifiers for monitoring the coroning process in state 2
(slightly worn tool)

Since the HMM and Bayesian classifiers had better overall performance, they were

overemphasized, leading to a wrong decision for state 2. Thus it is necessary to use

the performance in each state as the weighting factors. The results were significantly

improved with the state weighted factors, Table 3.2. The average classification rate

increased from 95.6% to 98.5%, which is also higher than the single classifier per-

formance of 94.1%. It is obvious from Fig. 3.9 and Table 3.3 that classifier fusion

increased the overall performance. However, the non-weighted classifier fusion de-

creased performance when compared to HMM and Bayesian single classifiers.
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Fig. 3.9. Classification results based on classifier fusion (state weighted majority vote)

Table 3.3. Single classifier vs. classifier fusion performance (%) with weighted majority vote

HMM Bayesian GMM K-means

Single classifier 94.1 94.1 84.0 67.5
No weight performance 87.7

Overall performance 95.6

State performance 98.5

State weighted classifier fusion increased overall performance, but it did not always

improve it in terms of state performances. Classifier fusion with weighting factors

enables more reliable decisions as a result of the high performance classifiers’ voting.

However, if three out of four classifiers have low performance, their combined effort

could outweigh that of the high performing classifier, resulting in possible wrong

decision. To minimize this possibility, a classifier fusion with weighted voting is

considered. A vote penalty is incorporated into the decision, resulting in the following

weighting factor:

wfi =

 wi if wi ≥ 95%

0 otherwise
(3.11)
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Substituting wfi for wi gives the results shown in Fig. 3.10. The penalty threshold

can be determined based on the manufacturer’s requirements. Table 3.4 shows the

improvement in classification using classifier fusion with 95% vote penalty based on

the classifier reliability.
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Fig. 3.10. Classifier fusion with state weighted vote penalty

Table 3.4. Classifier fusion compared to the state weighted classifier fusion

Classifier fusion Classifier fusion

(State weight) (State weight vote penalty)
State 1 99.2 99.8
State 2 91.3 98.7
State 3 99.0 99.7
Overall 98.5 99.7

3.6 Conclusions

A classifier fusion algorithm adapted from decision fusion significantly increased

performance compared to the non-fused algorithm in monitoring tool wear during

coroning. Even though the overall performance improved with the new technique,

the performance for some states improved at the expense of others. This trend was
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eliminated by applying a classifier fusion, where a vote penalty was introduced, pre-

venting multiple wrong votes, and this improved classification rate from 98.5% to

99.7%.

Even though the technique was demonstrated for acoustic emission monitoring of

the coroning process, it should also be applicable to any process of interest, using any

suitable sensors.



Chapter IV

Analysis of sound signals generated during ultrasonic
welding of battery cells

4.1 Introduction

Ultrasonic welding (UW) is a joining technology for similar and dissimilar materi-

als, where high frequency vibration induces friction to form a joint between materials.

Traditionally, laser (Shackleton and Rischall, 1964) and arc welding processes have

been widely applied to metal bonding. However, such fusion welding methods are

difficult for joining dissimilar metals due to metallurgical incompatibility (Sun and

Karppi, 1996; Montanarini and Steffen, 1976), and differences in melting tempera-

ture (Phanikumar et al., 2011) and physical properties. Dissimilar metal joining has

a broad range of applications, and thus researchers continue to investigate advanced

technologies. Govekar et al. (2009) introduced droplet joining in laser welding of

dissimilar materials, and Mai and Spowage (2004) reported a technique that con-

trols the melting ratio of dissimilar metals in laser welding. High reflectivity and

thermal conductivity metals, such as aluminum and copper, are especially difficult

to weld using a laser. UW is an alternative method that can overcome these chal-

lenges with rapid process time, process automation, and high throughput. It has the

main advantage of solid-state bonding (Joshi, 1971), and has been used in electronic

packaging (Tsujino et al., 2001; Cho et al., 2003b), medical devices (Devine, 1998),

and plastic welding for several decades (Tsujino et al., 2002; 1998; Khmelev et al.,

2008a;b). In particular, Electric Vehicle (EV) battery packs require the assembly of

45
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several hundreds of battery cells in order to provide the high capacity needed, where

the anode and cathode materials are commonly copper and aluminum respectively.

UW is an efficient method for joining dissimilar and multi-layer battery tabs in auto-

motive battery applications. The numerous battery cells must be connected to have

reliable mechanical strength and electrical conductivity. If any single joint fails, the

entire battery pack may lose the desired performance. Thus it is also important to

ensure weld quality during the process. Monitoring the product quality in real-time

during rapid manufacturing is essential to minimize cost and to control the process.

In order to facilitate an efficient real time monitoring system, sensors have to be

chosen properly. Appropriate sensor selection leads to good feature candidates and

provides an effective means to a successful manufacturing process monitoring. An

UW process has the following characteristics:

•Ultrasonic vibration: 20 kHz transverse movement introduced by the sonotrode

•Ultrasound radiation: sound energy transferred to the air

•Material deformation: property change of the work pieces.

In order to identify the welder and weld status, the laser vibrometer has been

introduced in UW (Gaul et al., 2010), but it has the disadvantage of high cost. Norgia

et al. (2010) reported an optical instrument for ultrasonic welder inspection and

control using laser vibrometer and optical triangulator. Xudong and Xiaochun (2007)

investigated heat generation in ultrasonic metal welding using micro sensor arrays.

It was reported that heat is necessary but not sufficient condition for a weld to form,

and there is no direct correlation between heat and weld quality. Due to the nature of

the ultrasonic welding process, radiated audible sound may contain useful information

for the state of welding or the change of states. Sound signal has been widely used

in monitoring manufacturing systems (Lu and Kannatey-Asibu, 2002; Chen et al.,
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2009b). Wang et al. (2009) reported that welding parameters have great influence on

the welding sound. And the radiated sound is an important quantity for detecting

arc stability as well as weld quality (Cudina et al., 2008; Manz, 1981; Matteson et al.,

1993; Pal and Pal, 2011; Sun et al., 1999). Masuzawa and Ohdaira (2000) reported

that the amplitude of radiated ultrasound is related to the change of welding state

during ultrasonic plastic welding. In many cases, sound signal is analyzed in the

frequency domain and features are then extracted (Bi et al., 2010; Pan et al., 2009).

However, there are very few papers that have been reported for the feasibility of the

sound signal to monitor weld quality for ultrasonic metal welding. Therefore, this

paper focuses on the radiated sound signals for characterizing and monitoring the

ultrasonic welding process for dissimilar metal joining. Time-frequency analysis is

conducted in order to identify the frequency change during the UW process. The

rationale for the frequency variation is investigated through a two degree of freedom

mechanical model, which involves stiffness coupling. Audible sound features are then

selected to assess the feasibility for a real time monitoring system.

The paper is organized as follows: (1) background of the ultrasonic metal welding

process and measurement system, (2) two degree-of-freedom modeling of the sound

signal; (3) results and discussion for audible sound signal analysis and its comparison

to weld quality; (4) classification performance; and (5) conclusions.

4.2 Background

4.2.1 Ultrasonic metal welding

Ultrasonic metal welding is a solid-state bonding process with high frequency fric-

tional vibration to form a bond between work-pieces clamped under pressure. Com-

pared to traditional fusion welding, it works for dissimilar, conductive materials such

as copper and aluminum. A typical ultrasonic metal welding system consists of four

subsystems: 1) a controller, 2) an ultrasonic transducer (or converter), 3) a booster,
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4) a horn (or sonotrode) and anvil as shown in Fig. 4.1.

Fig. 4.1. Ultrasonic set up with monitoring system.

An ultrasonic welding process is initiated by applying a static force to the work

pieces. A 20 kHz frequency electrical energy is then converted into mechanical en-

ergy by the transducer to vibrate the horn. The lateral frictional movement first

removes contaminants on the surface, and then generates a weld at an elevated tem-

perature (Lee et al., 2010). The major input parameters to the system are welding

time, sonotrode amplitude and pressure. Different inputs will result in different weld

quality. Not delivering enough energy to the interface between the workpieces may

result in a cold weld such that the bonding between metals is weak.

4.2.2 Signal and weld formation

During ultrasonic metal welding, vibration energy is transferred to the work-pieces

(thin metal layers) to create a joint, while partial energy is radiated as ambient noise.

Vibration energy induces friction, which sometimes generates sharp noise. In brake

systems in automotive wheels, this noise is known as squeal noise, and has been

studied to control system instability due to vibrations from squeal noise (Currier
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et al., 2011; Papinniemi et al., 2002; Shin et al., 2002; Spurr, 1961). With regard to

squeal noise, it involves a stick-slip phenomenon (Ruiten, 1988; Vatta, 1979), which

is strongly related to frictional force (Lehr et al., 2011). A similar phenomenon is

observed during the ultrasonic metal welding process, which radiates sound signals

during welding. Masuzawa and Ohdaira (2000) reported that radiated ultrasound

contains important information that tells the welding status of joining thin polymer

films. The radiated ultrasound can also be applied to ultrasonic metal welding. This

paper will further investigate sound energy and how it relates to the weld qualities

described in the following sections.

Fig. 4.2 illustrates five steps associated with the ultrasonic welding process. In the

first step, the workpieces are clamped under pressure, and a 20 kHz pre-burst then

applied to ensure a firm clamp. The pressure is held for a few milliseconds without

any vibration in the next stage. Step iii is where the horn is vibrated at 20 kHz to

form a bond between the workpieces, and this is followed by another hold step, iv.

Finally, the workpieces are released with an after-burst, step v.
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(b) Corresponding sound signal

Fig. 4.2. Ultrasonic welding process and corresponding sound signal.

Fig. 4.3(a) is an enlargement of stage iii, and illustrates a typical sound signal

generated during the weld growth and formation step. This signal was obtained for

an ultrasonic weld between pure copper and nickel coated copper sheets. The high

frequency frictional motion creates a bond between the workpieces. In Fig. 4.3(b),

stages a to d illustrate the nugget growth in time and how that corresponds to the

sound signal that was measured during the process.
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Fig. 4.3. Raw sound signal with corresponding weld nugget growth.

Weld formation is directly related to the weld quality since the bonded area be-

tween the workpieces determines the strength. Thus it should be possible to monitor

the weld quality by measuring and analyzing the sound signals generated during the

process. Progress in the welding process results in stiffness variation. Thus to under-

stand the characteristics of the sound signal generation, the process is modeled using

a two degree-of-freedom mechanical system in the next section.
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4.3 Two degree-of-freedom modeling of sound signal from
the process

This section studies the relationship between the audible sound signal and weld

quality during the process using state space modeling of a mass-spring-damper system.

The equation of motion is based on the mass-spring-damper system shown in Fig. 4.4,

wherem1 andm2 are masses for nickel coated copper and pure copper respectively. k1,

k2 and k3 represent the stiffness coefficients and c1, c2 and c3 are damping coefficients

for pure copper, interface bonding, and nickel coated copper respectively.

20 kHz

f(t)

x2

x1

A

B

C

Copper

Nickel-

copper

Sonotrode

(a) Actual process

m1 m2

f(t)
k3k2k1

c1 c2 c3

Interface AInterface BInterface C

x1 x2

(b) Corresponding model

Fig. 4.4. Two degree of freedom mass-spring-damper system.

The equation of motion for the system shown can be written as:
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m1ẍ1 + (c3 − 2c2 + c1)ẋ1 + (c2 − c3)ẋ2

+(k3 − 2k2 + k1)x1 + (k2 − k3)x2 = 0 (4.1)

m2ẍ2 + (2c3 − c2)ẋ2 + (c2 − c3)ẋ1

+(2k3 − k2)x2 + (k2 − k3)x1 = f(t) (4.2)

where f(t) is the frictional force that results from the static load applied to the work

piece, which vibrates at 20 kHz cycle. This can be expressed in state space form as

follows:
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ẋ1

ẋ2
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where x1 = x1, x2 = x2, x3 = ẋ1, and x4 = ẋ2.



54

Since m2 moves with the sonotrode, the output was based on its acceleration,

assuming m1 is fixed with the anvil. The acceleration is the output, equation 4.4.

In the next section, the experiments that were performed to evaluate the analysis are

discussed.

4.4 Experimental

A (Bruel & Kjaer 4190-L-001) microphone was used to measure signals from the

welding process to enhance our understanding of the process and monitor weld quality.

As Fig. 4.1 shows, the radiated sound signal was recorded during the entire process at

100 kHz sampling rate. The audible sound signal was then analyzed using the Fourier

Transform (frequency analysis) and Short Time Fourier Transform (time-frequency

decomposition) to assess the feasibility of monitoring and to help understand the

mechanisms of the process. The relationship between the input parameters to the

welding system and output signals from the sensors are compared. Time domain

signals are analyzed and transformed to the frequency domain for further analysis.

The workpieces used in this experiment were pure copper and nickel coated copper

with dimensions 45x25x0.2 mm.

Table 4.1 summarizes the welding conditions. 25 different conditions were used,

and each one was repeated ten times.

Table 4.1. Factors and levels of experimental system inputs.

Factor Factor name Levels
P Welding pressure (psi) 10, 25, 40, 55, 70

[kPa] 69, 172, 276, 379, 483
T Welding time (sec) 0.2, 0.35, 0.5, 0.65, 0.8

A T-peel test was used to assess the weld quality. A T-peel test, Fig. 4.5, measures

how much load is applied to break the welded workpieces while pulling the clamped

ends of the workpieces. The workpieces are T-shaped using a bending fixture to pro-
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vide a consistent clamping position. This determines the weld quality based on the

load-displacement curve and the failure mode after the T-peel test.

22.5 mm

30 mm

Fig. 4.5. T-peel machine and testing procedure (Kim et al., 2011).

4.5 Results and discussion

In this section, weld quality results from a mechanical test, mechanical model,

and sound signals are analyzed. This is followed by a discussion on the spectral

characteristics of the sound signal, in order to extract features. The audible sound

features selected are then used for classification.

4.5.1 Weld quality from T-peel test and failure mode

Three states of the weld were identified based on the experiments: cold weld, good

weld, and over weld. Figs. 4.6(a), 4.7(a), and 4.8(a) show signals associated with the

cold weld condition (25 psi (172 kPa) for 0.35 sec), good weld condition (55 psi (379

kPa) for 0.5 sec), and over weld condition (70 psi (483 kPa) for 0.8 sec) respectively.

Each weld involves five steps: pre-burst, hold, weld, hold, and after-burst. T-peel

test results for weld samples from those conditions are shown in Figs. 4.6(b), 4.7(b),
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and 4.8(b).
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Fig. 4.6. Sound signal generated during a cold weld condition (25 psi (172 kPa), 0.35 sec) and
associated load-displacement curve from a T-peel test with the failure mode.
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Fig. 4.7. Sound signal generated during a good weld condition (55 psi (379 kPa), 0.5 sec) and
associated load-displacement curve from a T-peel test with the failure mode.
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Fig. 4.8. Sound signal generated during an over weld condition (70 psi (483 kPa), 0.8 sec) and
associated load-displacement curve from a T-peel test with the failure mode.

From the time domain signal, one can observe that the duration of the sound

is directly related to the weld time while the amplitude is related to the pressure.

However, these by themselves cannot tell the status of the weld since some of the

welds show different strengths by a T-peel test for the same welding conditions. Thus,
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the frequency characteristics of ẍ2 as the system output, and time-frequency analyses

are further studied in the following sections to investigate possible feature candidates

that can describe the weld status during the welding process.

4.5.2 Effect of stiffness variation

Let us define k1, k2, and k3 as α1K,α2K, and α3K respectively, where α is a

constant of each stiffness coefficient. By setting the stiffness ratio as α1 : α2 : α3 =

1 : 2.86 × 10−5 : 1, and using a value of 2 grams for each of the masses m1 and m2,

the resulting acceleration was calculated and then transformed into the frequency

domain. Fig. 4.9 shows the variation of spectral components with change in stiffness

coefficients. The interfacial stiffness is assumed to be much smaller than the other

stiffness coefficients since it is initially sliding and starts to form a joint as process

evolves while the others are clamped by the sonotrode and anvil.
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Fig. 4.9. System frequency variation due to stiffness change.

At relatively low stiffness values, there exist two frequency spikes in the audible

sound range (0-20 kHz). However, the spectrum becomes dominated by one frequency
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component as the stiffness increases. This corresponds to growth of the weld, which

results in the joint becoming more rigid. Thus, one can conjecture that weld growth

affects the system dynamics due to stiffness change, which has strong correlation with

the weld quality.

4.5.3 Effect of mass variation

In this section, the variation of mass is studied. m1 and m2 are varied over a range

of five times the initial mass, in other words, a workpiece thickness variation from 0.2

mm to 1 mm. As the anvil side mass, m1, increases, the frequency components gradu-

ally shifts to the lower frequency range, Fig. 4.10 as expected. However, interestingly

enough, a second frequency peak also appears in the high frequency range.
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Fig. 4.10. System frequency variation due to mass change (m1).

This indicates that there may be other coupling effects at play. From the root

locus plots, Figs. 4.11- 4.13, it is realized that the single frequency peak results from

pole-zero cancelation in a two degree-of-freedom system.
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Fig. 4.11. Root locus and bode diagram for K = 7.07 x 106.
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Fig. 4.12. Root locus and bode diagram for K = 12.73 x 106.
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Fig. 4.13. Root locus and bode diagram for K = 34.13 x 106.

However, as m2 increases, Fig. 4.14, the single peak at higher stiffness values

gradually shifts to the lower frequency range.
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Fig. 4.14. System frequency variation due to mass change (m2).
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4.5.4 Time-frequency analysis

In this section, the sound signals from the microphone were converted to the

frequency domain for further analysis using the fast Fourier transform (FFT). In ad-

dition, time-frequency analysis was also conducted to determine how the frequency

components change as the weld progresses. Chu et al. (2004) studied the relation-

ship between the short-circuiting frequency and process stability using time-frequency

analysis in short-circuiting gas metal arc welding. This paper shows a strong corre-

lation between weld quality and radiated ultrasound.

Fig. 4.15 shows the time-frequency spectrum for a good weld. As Fig. 4.15(a)

clearly shows, the main welding frequency of 20 kHz dominates the spectrum. A

zoom-in section, Fig. 4.15(b), shows only the 10 kHz component as the dominant fre-

quency, with others being almost negligible. Fig. 4.16 shows similar plots for a cold

weld and here, the frequency components are spread throughout the entire spectrum,

unlike the good welding condition. Compared to Fig. 4.15(b), two other spectral com-

ponents are more dominant than the 10 kHz component, and these are near 9 and

11 kHz as shown in Fig. 4.16(b). The over weld case is also shown in Fig. 4.17, and

there, no major spikes are observed in the spectrum. The cold, good, and over weld

states are determined by a combination of pressure, time, and vibration frequency

and amplitude. Thus they have different stiffness characteristics and sound signatures.
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Fig. 4.15. Time-frequency sound signals for a good weld condition and zoom-in FFT.
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Fig. 4.16. Time-frequency sound signals for a cold weld condition and zoom-in FFT.
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Fig. 4.17. Time-frequency sound signals for an over weld condition and zoom-in FFT.

There is a clear distinction between good and cold welds in the frequency domain

as observed in the frequency spikes during the welding process. A spectral peak exists

for a good welding condition near 10 kHz, which is half the vibration frequency of 20

kHz. However, peaks near 9 kHz and 11 kHz are more significant in the cold weld
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condition. These results correlate with the frequency distribution results associated

with the stiffness coefficients variation from the sound signal modeling. For the over

weld condition, none of the frequency components are significant in the audible sound

range. This indicates the potential for using sound signals for detecting the weld

quality during ultrasonic welding. The sound signal is capable of identifying the

three states of ultrasonic welding, namely cold, good, and over weld conditions.

Frequency peaks near 9 kHz and 11 kHz were further correlated with weld quality

using a third-order polynomial regression model that relates the spectral amplitude

at that frequency to the welding pressure and time. Since data was only obtained

for specific conditions, a regression model was developed to capture the continuous

effect of time and pressure. The corresponding equations (4.5 and 4.6) are as follows,

where SA, P and T are spectrum amplitude, pressure and time respectively:

SA9kHz = −1.055× 10−4 + 1.297× 10−5P

+2.278× 10−4T − 1.074× 10−5P × T

−3.089× 10−7P 2 + 3.088× 10−4T 2 (4.5)

+2.419× 10−9P 3 + 2.140× 10−8P 2 × T

−7.274× 10−6P × T 2 − 4.918× 10−4T 3

SA11kHz = −6.127× 10−5 + 7.770× 10−6P

+7.536× 10−5T − 2.129× 10−6P × T

−1.963× 10−7P 2 − 2.027× 10−5T 2 (4.6)

+1.489× 10−9P 3 + 2.928× 10−8P 2 × T

−2.138× 10−6P × T 2 + 1.215× 10−4T 3
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Figs. 4.18 and 4.19 show the response surface of the frequency spectrum near 9

kHz and 11 kHz respectively, and indicate that lower pressures and longer times for

the process tend to produce sharp sound signals.
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Fig. 4.18. 9 kHz response surface.
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Fig. 4.20 shows the weld quality from a T-peel test. The higher intensity 9 and 11

kHz spectral components have similar trends with the mechanical T-peel tests. These
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indicate that the presence of sharp noise correlates with a poor quality weld joint.
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Fig. 4.20. Weld quality from T-peel test (Kim et al., 2011)

4.5.5 Classification

From the initial results (both analytical and experimental), four audible sound

features, which are based on spectral components, are used for classification of the

cold, good, and over weld conditions. These consist of the average frequency spec-

trum between: (1) 8 and 9 kHz, (2) 9.5 and 10.5 kHz, (3) 11 and 12 kHz, (4) 19.5

and 20.5 kHz. Four classifiers (Yum et al., 2012), namely Hidden Markov Model

(HMM), minimum error rate Bayesian (Bayesian), Gaussian Mixture Model (GMM),

and K-means, were evaluated to determine their ability to distinguish between the

three weld states. A training data size of 50 samples was used, and a total of 72

separate samples were used for classification. Fig. 4.21 shows the classification rate of

each classifier, 88.9, 86.1, 83.3, and 56.9 %, and these were for the HMM, Bayesian,

GMM, and K-means respectively.
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Fig. 4.21. Weld quality classification using audible sound features for cold, good, and over weld
conditions.

The HMM results in the best performance compared to the other classifiers. In

order to enhance the robustness and reliability of classification performance, as re-

ported by Yum et al. (2012), the classifier fusion method was implemented, Fig. 4.22.

Here, State 1, State 2, and State 3 represent cold, good, and over weld conditions,

respectively.
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Fig. 4.22. Results for classifier fusion using 4 classifiers and audible sound features.

the classifier fusion method resulted in an 86 % classification rate, which implies

that the audible sound signal has the potential of being used to detect the weld con-

dition.

The data in the frequency domain was further analyzed by band-averaging them

to investigate the effect of window averaging on classification. Fig. 4.23 shows the

classification performance when the frequency amplitudes were averaged to generate

a new feature.
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Fig. 4.23. Effect of window averaging on classification.

Averaging has the advantage of reducing computation time, and as the results

show, it did not have a significant effect on the final classification rate for three of the

classifiers. For the K-means classifier, the performance deteriorated with averaging.

4.6 Conclusions

The results of experiments done on the ultrasonic metal welding process show

that:

1) The spectrum for a good weld is dominated by one frequency component in the

audible sound range near 10 kHz, which is half the vibration frequency of 20 kHz,

for the conditions used, while that for a cold weld is characterized by two frequency

components at 9 and 11 kHz. Over weld conditions did not generate unique frequency

components.

2) Analysis of the process, based on a two degree of freedom mass-spring-damper

system, shows that stiffness variation that results from growth of the nugget during

the process correlates with variation in the audible sound frequency components.

3) With the characteristic spectral components as features, audible sound was suc-
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cessfully used to identify weld quality, distinguishing between cold, good, and over

weld conditions.



Chapter V

Conclusions and Future work

Two-step feature selection and classifier fusion methods are proposed and evalu-

ated for the coroning and ultrasonic welding processes. The ultrasonic welding process

is also modeled to relate the sound signal features to the process characteristics.

In Chapter 2, a two-step feature selection method was developed and evaluated

for the coroning process. During the first step, significant data reduction was done

using the CMS method. Then the modified redundancy analysis further reduced the

feature dimensions without loss of information, but rather increasing the separability

for each state. The two-step feature selection resulted in 98.3% correct estimation of

tool degradation compared to 94.9% for the CMS method only. The two-step feature

selection method increased the classification performance while conventional window

averaging decreased the classification rate, Fig. 2.12.

In Chapter 3, a classifier fusion algorithm was implemented using state perfor-

mance weighting factor and a penalty voting concept. It is often difficult for a single

classifier to achieve perfect classification during process monitoring. The classifier

fusion significantly increased performance compared to the non-fused algorithm in

coroning tool wear monitoring. Overall performance weighting resulted in 95.6%

performance, and the state performance weighting showed 98.5 % classification while

equal weighting for each classifier achieved 87.7%. The introduction of a vote penalty,

meant to prevent multiple wrong votes, further improved the classification rate to

99.7%.
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In Chapter 4, the feasibility of using audible sound for monitoring the quality of

ultrasonic metal welding is presented. Weld quality is strongly related to the spec-

tral components of audible sound. The results of experiments done on the ultrasonic

metal welding process show that:

1) The spectrum for a good weld is dominated by one frequency component in the

audible sound range near 10 kHz, which is half the vibration frequency of 20 kHz,

for the conditions used, while that for a cold weld is characterized by two frequency

components at 9 and 11 kHz. Over weld conditions did not generate unique frequency

components.

2) Analysis of the process, based on a two degree of freedom mass-spring-damper

system, shows that stiffness variation that results from growth of the nugget during

the process correlates with variation in the audible sound frequency components.

3) With the characteristic spectral components as features, audible sound was suc-

cessfully used to identify weld quality, distinguishing between cold, good, and over

weld conditions.

The results of this study indicate that the two-step feature selection and classi-

fier fusion methods improved classification in monitoring tool wear of the coroning

process. However, in reality, manufacturing processes are frequently faced with un-

certainties or disturbances. In other words, the process characteristics can change,

and thus the monitoring algorithm has to be capable of adapting to such changes.

This will ensure consistency of the algorithm and make the monitoring system more

robust.

In audible sound analysis, mechanical modeling showed the relationship between

spectral component of audible sound and coefficients of stiffness during nugget growth

in ultrasonic welding. However, the spectral components obtained experimentally
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were not identical with those predicted by the model. Thus a multi-degree of freedom

model will need to be investigated for more complete understanding of the mechanisms

of the ultrasonic welding process.
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