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ABSTRACT

Statistical Methods on Emerging Medical Studies

by

Youna Hu

Co-Chair: Gonçalo R. Abecasis, Peter X.K. Song

Many areas of medical research can benefit from the application of new statistical

methods. In this dissertation, we demonstrate the possibilities in some emerging

medical studies.

In chapter 2, we describe the design of longitudinal trials with dichotomized

outcomes. Longitudinal studies are often analyzed using Generalized Estimating

Equations (GEE) or Quadratic Inference Functions (QIF). We explore QIF-based

analysis for study design: (i) we derive and compared sample size and power for

QIF and GEE; (ii) we propose an optimal scheme of sample size determination

to overcome the difficulty of unknown true correlation matrix; and (iii) we show

that QIF based analysis become more efficient as the number of follow-up visits

increases. We illustrate that without sacrificing power, the QIF design leads to

sample size an study cost savings than the GEE analysis.

In chapter 3, we focus on the analysis of exome sequencing studies. These

studies focus sequencing resources on the exome but often yield many reads outside

xiv



the targeted regions. These reads are almost always discarded but we propose our

method SEQMIX to incorporate genotype likelihoods of off-targeted reads and

show that it can decipher the local ancestry with resolution similar to that obtained

with modern genome-wide association studies (GWAS) arrays. Our estimates are

useful for analysis of human population history and disease gene mapping studies

with exome and targeted sequence data.

In chapter 4, we develop a general framework to explore benefits of incorporat-

ing genetic risk into prevention trial designs. We consider screening, recruitment

and follow-up costs and current genetic findings in diseases. We consider type 1

diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI) and age-related

macular degeneration (AMD) as examples as they have distinct genetic architec-

ture: many small effect markers are associated with T2D and MI; whilst loci with

large effect size have been identified for T1D and AMD. We quantify the benefits

by illustrating settings where reduction of trial cost or duration is up to 70% and

settings where savings are modest. The benefits depend on the disease genetic

architecture, but we also project that benefits will increase.
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CHAPTER I

Introduction

Many areas of medical research can benefit from the advancement of new sta-

tistical methods. In this dissertation, we focus statistical applications on clinical

trials design and analysis of whole exome sequencing studies. Here, we give an

overview of efficient clinical trials, whole exome sequencing studies and local an-

cestry inference for admixed individuals. We also briefly explain the connections

between genetic studies and clinical trials.

1.1 Efficient clinical trials

Clinical trials are an important approach undertaken in medical research and

drug development. A typical trial often recruits a large number of participants,

spans a long period of time and requires extensive resources. Typically, the par-

ticipants are randomized into two or more treatment arms and followed for 5 –

10 years. Various biological measurements are obtained at baseline as well as

throughout the trial. In the end, the efficacy and safety of the treatments are

determined by statistical analysis of the collected measurements from the trials.
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Clinical trials date back as far as 1750 and since then have become the norm of

modern evidence-based medicine. The National Institute of Health (NIH) (www.

clinicaltrials.gov) categorizes trials into these six different types: Prevention

trials, screening trials, diagnostic trials, treatment trials, quality of life trials and

compassionate use trials. In addition, clinical trials are composed of various phases:

Pre-clinical studies, phase 0 and phase I to phase IV. Clinical trials also include

many stages: design, recruitment, randomization, interim analysis, termination of

trial, final data analysis and result summary and report.

Statistical methods play important roles in various stages of the clinical trial,

from design, data analysis, to the interpretation of the results. At the design

stage, to reduce the variability of its implementation, a protocol is prepared to

describe the sample size, statistical analysis method, hypothesis as well as other

procedures. An efficient clinical trial should be planned as early as this stage. Such

a trial requires a smaller sample size without losing the statistical power, demands

a shorter amount of time for following up participants and ultimately, can lead to

savings in cost and resources. An efficient clinical trial, from an ethical point of

view, exposes fewer participants to the risk of new drugs or the relative inefficiency

of the comparative treatment, speeds up the mass production and application of

effective drugs and hence can reduce suffering of the patients. Efficient clinical

trial can be achieved by incorporating new statistical methods into the trial.

In this dissertation, we develop statistical methods to improve the efficiency of

a treatment trial and prevention trial.
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1.2 Whole exome sequencing studies

Whole exome sequencing is the “sweet spot” before whole genome sequencing

(Teer and Mullikin, 2010) as it only targets the 1% of the whole genome which is

responsible for protein coding and harbors a majority (85% by Choi et al. 2009)

of the mutations with large effects on various diseases.

Exome sequencing is an effective tool for Mendelian disease gene discovery

(Bamshad et al. 2011). The first few successful examples include Freeman-Sheldon

Syndrome (Ng et al. 2009 ), Miller syndrome (Ng et al. 2010b) and Kabuki syn-

drome (Ng et al. 2010a). Since then, an emerging number of exome sequencing

studies are being undertaken for various rare Mendelian traits (ASHG 2011 ab-

stracts).

Exome sequencing has also been shown to assist in accurate medical diagno-

sis. Choi et al. (2009) illustrated a clinical story in changing the initial misdi-

agnosis of Bartter syndrome, a renal salt-wasting disease, into the diagnosis of

congenital cholride diarrhea. This correction was based on the exome sequencing

finding of a homozygous missense D652N mutation at a position in SLC26A3

and was later confirmed in further clinical diagnosis. Moreover, Worthey et al.

(2011) provided another example of using exome sequencing to diagnose a child

with intractable inflammatory bowel disease. Other examples include diagnosis

of cases in Charcot-Marie-Tooth neuropathy (Lupski et al., 2011), severer brain

malformations (Bilguvar et al., 2011) and so on.

Exome sequencing has a potential for complex disease gene mapping to find

rare variants (minor allele frequency less than 5%) that were previously missed

by genome-wide association studies (GWAS). Although many common variants
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have been identified for many highly heritable diseases, these significant loci only

explain a small portion of the heritability (Maher 2008). A well accepted idea is

that rare variants contribute to a big portion of the missing heritability (Manolio

et al. 2009). The study of rare variants from exome sequencing shows promise in

understanding the missing heritability (Cirulli and Goldstein 2010).

Whole exome sequencing focuses on the protein-coding regions and the remain-

ing 99% of the genome falls out of scope. Consequently, it looks like that exome

sequencing experiments cannot answer scientific questions that requires data be-

yond coding regions. However, Pasaniuc et al. (2012) showed that extremely low

coverage off target reads can be used for genome-wide genotype imputation. In

this dissertation, we propose a method to use off target reads to infer local ancestry

across the entire genome.

1.3 Local ancestry inference for admixed individuals

An admixed individual is one whose genome is a mosaic of genomes from sep-

arated populations. Initially, two parents from population 1 and 2 come together

and produce the first-generation admixed offspring. This generation inherits one

chromosome from each parent and their ancestry is uniform across either chromo-

some. Starting from the second generation, the uniformity is broken down and the

admixed genome is composed by alternating parental genomes along the genome.

The ancestry for the genomic pieces are what we refer to as local ancestry.

Deciphering the ancestry of genomic pieces in admixed individuals is impor-

tant for studies of human evolutionary history (Xu et al. 2008; Gravel 2012). By

understanding the size of the ancestry blocks, we can infer how many years ago
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that the ancestral populations were mixed and in what ratio. Local ancestry es-

timates are also important in disease gene mapping studies (Shriner et al. 2011).

They could be used for controlling population stratification in associating disease

with genotypes from admixed populations. Because admixed individuals do not

necessary have the same proportion of ancestry from each parental population, the

allele frequency, linkage disequilibrium and population diversity at each locus are

different than the parent populations. Population stratification is an important

question to address in disease mapping studies of such populations.

Previously, this ancestry deconvolution relied on the availability of genome-

wide genotypes, such as from high-density GWAS arrays. On such data, one

could use methods that requires a step to prepare for ancestry informative markers

(AIMs) (Patterson 2004); one could divide whole genome into many windows and

then model each window as a unit (Sankararaman et al. 2008; Bryc et al. 2010a);

one could use methods that model local linkage equilibrium (Tang et al. 2006);

or even, one could apply haplotype based methods such as HAPMIX (Price et al.

2009), HAPAA (Sundquist et al. 2008). These methods have been applied for

admixed populations such as Afrian American (Bryc et al. 2010a), Latinos (Bryc

et al. 2010b) and Uyghur (Xu et al. 2008) in China.

In this thesis, we focus on local ancestry inference for exome sequenced samples

for whom we do not have genome-wide high density genotype data. We show

that inferred ancestry using our methods is very similar to that derived using the

genotype array data.
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1.4 Genetics in clinical trials

At first appearance, genetic studies and clinical trials answer distinct scien-

tific questions, but in fact they are connected in various ways. Genetic studies

have led to many novel discoveries in modern medical research. Some of these

discoveries are so important that they have quickly become adopted into clinical

trials. For example, there has been exploration of BRCA1 and BRCA2 variants in

breast cancer studies (King et al. 2001) and untilisation of ApoE/e4 variants for

Alzheimer’s disease (Cummings et al. 2007). Recently, researchers have proposed

to incorporate genetic information into clinical trials (Simon 2008).

Genetic information is critical in pharmacogenomics/pharmacogenetics studies

which are conducted to understand the impact of genetic variations to differences

in drug (or treatment) response and adverse effect. Since genetic component is an

important part in metabolic pathways, patients of different genetic variants react

differently to the type or the dose of drugs. Understanding the relation between

metabolic function and genetics makes it possible to understand the drug response

in different populations of distinct genetic makeup. One example of such finding

is the mechanism of how the enzyme thiopurine methyltransferance (TPMT) re-

sponds to drugs in childhood leukemia and autoimmune diseases. Another break-

through is the discovery of genetic polymorphisms near the human IL28B gene

that affects the effectiveness of a type of Hepatitis C treatment.

In this dissertation, we describe a statistical method that provides a unified

framework in using genetic information in clinical trial designs. We provide a sys-

tematic and quantitative approach to incorporate genetic findings in the prevention

trials of diseases.
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1.5 Outline of dissertation

In this dissertation, we describe statistical methods for efficient clinical trials

and accurate inference of local ancestry for exome sequenced individuals. This

dissertation is organized as follows. In Chapter 1, we give an overview of ef-

ficient clinical trials, next-generation whole exome sequencing studies and local

ancestry inference for admixed individuals. Chapter 2 describes the sample size

determination for quandratic inference functions (QIF) in longitudinal design with

dichotomous outcomes and recommends QIF to be considered at the clinical trial

design stage. Chapter 3 focuses on using off target reads from exome sequence

data to accurately infer the local ancestry for admixed individuals at the whole

genome level. Chapter 4 combines these two distinct areas of research to illustrate

how genetic findings may improve current clinical trial designs.
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CHAPTER II

Sample Size Determination for Quadratic

Inference Functions in Longitudinal Design with

Dichotomous Outcomes

2.1 Introduction

Longitudinal clinical studies are undertaken extensively in biomedical sciences.

In a longitudinal clinical study, repeated measurements are recorded at pre-scheduled

time points during a study period. One primary objective of a clinical study is to

compare effects of test treatments with those of controlled treatments.

When outcome variables of interest are binary, the marginal logistic model is

popular for assessing the population-average effect of a test treatment. For the

details regarding marginal generalized linear models for longitudinal data, refer

to Diggle et al. (2002) and Song (2007). The method of generalized estimating

equations (GEE), proposed by Liang and Zeger (1986), has been widely applied

to estimate and infer treatment effects in the marginal logistic model. Accord-

ingly, sample size determination in the GEE-based design has been studied in

8



the literature; for example Diggle et al. (2002) (chapter 2), Pan (2001a), Jung

and Ahn (2003) and Rochon (1998), among others. It is worth pointing out that

Diggle et al. (2002), Pan (2001a) and Rochon (1998) considered a very simple

longitudinal model that contains only a single treatment covariate; neither time

covariate nor treatment-time interaction covariate is included in the design. Jung

and Ahn (2003) considered all these covariates but they treated the working cor-

relation structure as independent. Although these existing tools have addressed

basic needs in the longitudinal study design, sample size and power calculation un-

der more general scenarios, say, longitudinal models with both covariates of time

and treatment-time interaction with various working correlations considered, are

clearly of great importance in clinical research.

One objective of this paper is to establish a new scheme of sample size and

power calculation based on the quadratic inference functions (QIF) approach (Qu

et al., 2000). QIF is a powerful alternative method of estimation and inference to

the popular GEE. It has been shown in the literature that QIF is superior to the

GEE with respect to efficiency gain and robustness against outliers (Song et al.,

2009). Our sample size and power calculation will be based on the Wald test

in marginal logistic models. In the literature, the Wald test based design in the

logistic model for cross-sectional data has been investigated by Demidenko (2006)

and Hsieh et al. (1998), among others. Unfortunately, these existing formulas

cannot be easily modified to suit longitudinal studies due to the presence of within

subject correlation. In addition, we compare QIF and GEE in terms of their sample

size and power. We also examine how the sample size is affected by varying the

cluster size (i.e. the number of repeated measurements or follow-up visits per

subject). As shown in our numerical examples, the GEE sample size may escalate

9



substantially with an increased number of follow-up visits, whereas the QIF sample

size remains nearly unchanged.

In the longitudinal design, a fundamental obstacle is the lack of knowledge

about the true correlation matrix. Although in practice one correlation structure

(e.g. compound symmetry) can be used to determine the sample size, the result

is then subject to risk of either over- or under-estimation of the needed sample

size. In particular, once the data are collected, the true correlation structure can

be obtained, which is very likely to be different from the one used initially in the

design. To overcome this difficulty, we propose an optimal strategy of sample size

determination from a perspective of minimal average risk. We postulate that the

true correlation matrix is an element of a class of correlation matrices that are

governed by a certain prior Wishart distribution. The hyper-parameter in the

prior distribution may be a correlation matrix specified according to previously

acquired knowledge from a pilot study, from similar studies in the literature or

simply from an assumption of non-informative independent correlation. Then, we

obtain the optimal sample size that is derived by minimizing the average risk under

such prior distribution.

This article is organized as follows. Section 2 presents a brief introduction to

the QIF method. Section 3 is devoted to the sample size determination for the

Wald test in the marginal logistic model in both QIF- and GEE-based designs,

in which we present an optimal strategy of sample size determination. Section

4 investigates, analytically and numerically, the relationship between sample size

and cluster size (i.e., the number of follow-up visits). Section 5 contains some

concluding remarks. Technical details and information regarding the R package

QIFSAMS are included in the appendices.
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2.2 Quadratic Inference Functions

In a balanced longitudinal clinical trial, yij denotes the outcome of subject i at time

point tj. There are n subjects in the study, and m repeated measurements planned

to be collected from each of the n subjects. Thus the total number of observations

is N = n × m. We further assume that the observations from different subjects

are independent and those of the same subject are correlated. Both GEE and QIF

methods postulate that the marginal mean, µij, of the outcome yij, is a function

of some covariates through a link function g, namely g(µij) = x′ijβ, where β is

the regression coefficient. Here x′ denotes the transpose of matrix x. The variance

of yij is a function of the mean var(yij) = φV (µij), where φ is the dispersion

parameter. Vectors yi and µi, with elements yij and µij respectively, denote the

longitudinal measurements and their mean for subject i. To obtain an estimate of

β, the GEE method solves

n∑
i=1

µ̇i
′V−1

i (yi − µi) = 0, (2.1)

where µ̇i = ∂µi/∂β is an n×p matrix, and Vi = A
1/2
i Ri(ρ)A

1/2
i with Ai being the

diagonal matrix of the marginal variances, var(yij), and Ri(ρ) being the working

correlation matrix.

The QIF method, proposed by Qu et al. (2000), is derived from the fact that

the inverse of the working correlation matrix R(ρ) can be approximated by a linear

combination of several basis matrices:

R(ρ)−1 ≈
k∑
l=0

al(ρ)Ml, (2.2)
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where M0 = I is the identity matrix, M1, . . . ,Mk are known basis matrices with

entries 0 or 1 and a0(ρ), . . . , ak(ρ) are unknown coefficients depending on the

parameter ρ. Expression (2.2) holds exactly for some commonly used working

correlation structures. For example, the compound symmetry (CS) correlation

structure corresponds to R(ρ)−1 = a0(ρ)I + a1(ρ)Mcs
1 , where the entries of M1

are 0 along the diagonal and 1 elsewhere. And the AR-1 correlation structure

can be written as R(ρ)−1 = a0(ρ)I + a1(ρ)Mar1
1 + a2(ρ)Mar1

2 , where M1 has 1

on the two main off-diagonals and 0 elsewhere and M2 has 1 on the two corner

components of the diagonal.

Plugging expression (2.2) into (2.1) leads to a linear combination of the ele-

ments of an extended score vector

gn(β) =
1

n

n∑
i=1

gi(β) ≈ 1

n


∑n

i=1 µ̇i
′A−1

i (yi − µi)
...∑n

i=1 µ̇i
′A
−1/2
i MkA

−1/2
i (yi − µi)

 . (2.3)

Then, the GEE (2.1) is expressed as na′(ρ)gn(β) where a(ρ) = (a0(ρ), a1(ρ), . . . , ak(ρ))′

is the vector of the coefficients in expansion (2.2). Since there are more equations

than unknown parameters in (2.3), the generalized method of moments proposed

by Hansen (1982) is then applied to minimize the following quadratic inference

function:

Qn(β) = ng′n(β)C−1
n (β)gn(β), (2.4)

where Cn(β) = n−1
∑n

i=1 gi(β)g′i(β) is the sample covariance matrix of ḡn. It

is noted that the objective function given in (2.4) only contains β, and only the

basis matrices from the working correlation structure are used to formulate this

12



function. This implies that the QIF estimator, β̂ = arg minβ Qn(β), is obtained

without estimating the nuisance parameter ρ. This property delivers substantial

ease in the design setting since the QIF sample size determination does not require

knowledge of parameter ρ.

According to Qu et al. (2000), the QIF estimator β̂ has the usual large sam-

ple properties; for example, it is
√
n-consistent and asymptotically normal. The

asymptotic variance is given by the inverse of the Godambe information ma-

trix (or the sandwich estimator) with consistent estimate Jn(β̂)−1, with Jn(β̂) =

ġn(β̂)′C−1
n (β̂)ġn(β̂). The asymptotic normality allows us to establish the Wald

test for the hypothesis with respect to the regression coefficients. Again, we note

that this asymptotic covariance matrix Jn is not dependent on the parameter ρ.

Similarly, the Wald test also applies to the GEE method, in which the asymp-

totic covariance matrix actually depends on the correlation parameter ρ explicitly.

Therefore, our following derivation and comparison of sample size and power will

focus on the Wald test that is available in both QIF and GEE.

This QIF method has been coded both in SAS and R language. Both packages

can be download at http://www-personal.umich.edu/~pxsong/.

2.3 Sample size determination

In this section, we derive sample size n under a fixed m. We begin by describing

our model, and then present steps related to the derivation of sample size in both

QIF and GEE. Two examples of designs based on the CS and AR-1 working

correlation structures are discussed in detail.
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2.3.1 Longitudinal logistic model

We consider the following logistic model with longitudinal dichotomous outcomes:

logit(µij) = β0 + β1di + β2tj + β3ditj, (2.5)

where µij = P (yij = 1|di, tj) is the probability of a favorable clinical outcome

(yij = 1) at visit time tj for subject i, covariate di is the indicator of treatment

group, defined as

di =

 1, if subject i is in test treatment (Rx) group,

0, if subject i is in controlled treatment group,

and covariate tj is the time of the j-th visit for subject i. It follows from model

(2.5) that the design matrix is Xi = (1, di1, t, dit)′, where 1 is an m-element

vector of all ones, t = (t1, t2, · · · , tm)′, and the vector of regression coefficients is

β = (β0, β1, β2, β3)′. Also, in the logistic model, the variance function is Vij =

V(µij) = µij(1 − µij), and the dispersion parameter φ = 1. Note that under

the balanced design with homogeneous visit times, there are only two versions

of design matrices, and so are their induced matrices, corresponding to the two

respective treatment arms. In all the subsequent expressions below, a sub-index 1

(or 0) denotes terms from the test (or controlled) treatment arm. For example, the

design matrix for the test drug arm is X1 and the counterpart for the controlled

drug arm is X0.

We are interested in testing for one of these three hypotheses: total effect,

H0 : β1 = β2 = β3 = 0; main Rx effect, H0 : β1 = 0; and joint Rx effect,

14



H0 : β1 = β3 = 0. In general, we may express the three scenarios in a unified

form as H0 : Hβ = 0 versus H1 : Hβ = h0 6= 0, where H is a suitable matrix

determined by the null hypothesis.

Let Jn(β) be the asymptotic covariance matrix of either the QIF estimator

or the GEE estimator and let λn be the non-centrality parameter given by λn =

h′0{HJn(β̂)−1H′}−1h0. Then, the Wald test statistic is (Hβ̂)′{HJn(β̂)−1H′}−1(Hβ̂),

and the power is given by 1−η =
∫∞
χ2

rk(H)
(1−α)

f(x, rk(H), λ)dx, where α is the type

I error, η is the type II error, and f(x, rk(H), λn) is the non-central chi-square

density function with degrees of freedom rk(H). Ultimately, we need to find the

smallest n such that 1 − η ≤
∫∞
χ2

rk(H)
(1−α)

f(x, rk(H), λn)dx. Numerically, it is ob-

tained by the forward search algorithm. Notably, the sample size calculation we

provided is based on asymptotic properties of the two methods. Teerenstra et al.

Teerenstra et al. (2010) have considered a small sample setting for GEE sample

size. Similar setting for QIF needs separate investigation.

2.3.2 QIF sample size under unknown true correlation

Let us begin with an ideal scenario where the true correlation structure is

known. This rather idealized condition will be removed in the next section. We

focus on two important cases of designs, respectively under the CS and AR-1

working correlation structures, which are widely used in practice. For both working

correlations, we present the details of calculating the asymptotic covariance matrix

Jn for the QIF method, and leave the calculation of this matrix for the GEE to

Appendix B.

Design under CS Working Correlation. As shown in section 2.2, the CS

structure leads to two basis matrices. Under model (2.5), we explicitly derive the
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elements of the extended score vector in (2.3) to be

gi = (1′, di1
′, t′i, dit

′
i,ω

′
iA
− 1

2
i , diω

′
iA
− 1

2
i , ω̃i

′A
− 1

2
i , diω̃i

′A
− 1

2
i )′ei

def
= Biei, (2.6)

where ei = (yi1 − µi1, yi2 − µi2, · · · , yim − µim)′, Ai = diag(Vi1, · · · , Vim) and

ω′i =
m∑
j=1

V(µij)
1
2 1′ − [V(µi1)

1
2 , · · · ,V(µim)

1
2 ],

ω̃′i =
m∑
j=1

tjV(µij)
1
2 1′ − [t1V(µi1)

1
2 , · · · , tmV(µim)

1
2 ].

Note that there are only two versions of Ai’s, ωi’s, ω̃i’s as explained in section

2.3.1. Now denote d̄ as the proportion of subjects assigned to the test treatment

arm. Then, there are d̄n =
∑n

i=1 di and (1− d̄)n subjects in the test and controlled

treatment arms, respectively. Denoting the true correlation matrix as RT , we

obtain

Cn(β) = d̄B1A
1
2
1 RTA

1
2
1 B1 + (1− d̄)B0A

1
2
0 RTA

1
2
0 B0, (2.7)

ġn = −
{
d̄B1A1X

′
1 + (1− d̄)B0A0X

′
0

}
, (2.8)

which are then used to calculate Godambe information matrix

Jn(β) = nġ
′
n(β)C−1

n (β)ġn(β).

Design under AR-1 Working Correlation. For the AR-1 structure there are

three basis matrices, as stated in section 2.2. According to Qu et al. (2000), the

third matrix M2 makes little contribution to the QIF, and hence is omitted in the
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formulation of QIF for convenience. Consequently, we obtain

g̃i = (1, di1, ti, diti,XiA
1
2
i M1A

− 1
2

i )′ei
def
= B̃iei. (2.9)

The Godambe information matrix is obtained in the same manner as in the first

case of CS correlation, in which Bi is replaced by B̃i in (2.7) and (2.8).

In both cases above, we also derived the sensitivity matrix Sn(β) and the

variability matrix Wn(β) in the GEE context, and hence the Godambe information

matrix of the GEE estimator is given by Jn(β) = Sn(β)′Wn(β)−1Sn(β). See

Appendix B for details regarding the Sn and Wn matrices.

It is worth pointing out that for model (2.5) with either CS or AR-1 correlation

structure, the weight matrix Cn in the QIF method is singular. Hence, we delete

linearly dependent elements in the extended score vector. Since such elements do

not present new information, it is sensible to not use them. In fact, when model

(2.5) only includes the treatment effect and the working correlation is CS, QIF

degenerates to QIF, exactly as obtained by reducing these dependent elements,

the QIF method reduces to GEE. Related details can be found in Appendix A.

Also, we again emphasize in QIF the working correlation structure contributes the

two basis matrices, not the value of parameter ρ, to the calculation of matrix Jn.

This is not the case for the GEE, where the matrix Jn depends on the entire RW

matrix, including the actual value of ρ.

2.3.3 Optimal sample size with unknown true correlation

Let RT denote the true correlation matrix. So, the actual sample size would

be n(RT ) if the RT were known. To overcome the difficulty of an unknown true
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correlation structure in the sample size determination, we propose to vary the

underlying correlation matrix among a class of possible candidates according to a

Wishart prior distribution, instead of fixing it to be a pre-chosen single correlation

matrix. This will allow us to reduce the subjectivity related to the choice of

the true correlation matrix in the design. To be precise, let correlation matrix

R ∼Wishart(·|R0), where R0 is a pre-specified correlation matrix. Then, for each

sampled correlation matrix R, the sample size n = n(R) is obtained by the sample

size determination procedure in section 3.2. We aim to choose an optimal sample

size that minimizes the following average risk:

E{n(R)− n(RT )}2 =

∫
R∈R

{n(R)− n(RT )}2g(R)dR,

where g(R) is the density of Wishart distribution and R is the space of correla-

tion matrices. It is easy to see that the optimal sample size is n∗ = ERn(R) =∫
R∈R n(R)g(R)dR. Practically, this integral can be evaluated by the Monte Carlo

simulation method. In effect, the Monte Carlo simulation will bring in variation of

correlation matrices, and as a result, we can obtain not only the mean sample size

n∗, but also a sample size distribution which in practice, may be more valuable

as it provides more options to practitioners. Moreover, this procedure gives us a

venue where we can conduct a fair comparison between QIF and GEE analysis,

because in this case the comparison will not depend on specific choices of true

correlation structures.
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2.3.4 Numerical illustration

In this section, we provide three examples to illustrate the proposed QIF and

GEE sample size formulas and the comparison of these two methods, based on

known and unknown true correlation structures, respectively.

Example 1: Consider several different combinations of true (RT ) and working

(RW ) correlation structures, as listed in Table 1, where we set effect size β =

(β0, β1, β2, β3) as (1, 0.5, 0.4, 0.1), ρ = 0.5, type I error rate at 0.05, and visit

times at 0, 2, 4, 6. Under a design of complete randomization, we choose a 50:50

assignment of subjects into two treatment arms. In Figure 2.1, we see that the

sample size increases as power increases and QIF sample size is smaller than (or

equal to) GEE’s when the working correlation is the same as (or different than)

the true one.

Table 2.1: A comparison of the sample size requirements by GEE and QIF analysis
with QIF-calculated sample size and percentage of reduction in the
parenthesis.

Working correlation
True Null CS AR-1
Independent β1 = 0 665(642, 3.5%) 690(642, 7.0%)

β1 = β3 = 0 321(281, 12.5%) 285(281, 1.4%)
CS β1 = 0 634(634,0%) 702(635, 9.5%)

β1 = β3 = 0 643(643,0%) 682(644, 5.6%)
AR-1 β1 = 0 811(739, 8.9%) 736(736,0%)

β1 = β3 = 0 603(565, 6.3%) 565(565,0%)
1-dep β1 = 0 899(773, 14.0%) 757(749, 1.1%)

β1 = β3 = 0 557(479, 14.0%) 483(479, 0.8%)
UN β1 = 0 605(600, 0.8%) 693(616, 11.1%))

β1 = β3 = 0 527(520, 1.3%) 601(535, 11.0%)

Example 2: We fix the power to be 80% and use the following matrix true
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Figure 2.1: Sample size comparison for testing joint treatment effect between QIF
and GEE by power. Effect size: (1, 0.5, 0.4, 0.1), correlation: 0.5, type
I error rate: 0.05, time points: 0, 2, 4, 6.
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unstructured (UN) correlation matrix:

RT =



1 0.4 0.3 0.2

1 0.5 0.4

1 0.6

1


. (2.10)

When the correlation matrix is correctly specified (RT = RW ), the GEE and

QIF analysis require the same sample size, as indicated by the bolded numbers in

Table 1. The 1-dependence structure means that only the measurements at two

nearby time points are correlated. Mathematically, it is characterized by a width-3-

banded matrix - with elements 1’s along the main diagonal and ρ at the first upper

and lower diagonals. This table also clearly indicates the sample size saving of the

QIF analysis in all cases with misspecified correlation structures, and the amount

of saving by the QIF varies from 1.9% to 10.1%, depending on how severely the

working correlation matrix deviates from the true correlation structure. Clearly,

the QIF-based design is advantageous over the GEE-based design in term of study

cost saving, when the working correlation structure used in the design is different

from the true one. Misspecification is indeed the case in practice.

Example 3: Arguably, knowing the true correlation matrix of the data that are

not yet collected is not possible. Figure 2.2 displays several examples in which

the minimal average risk strategy is applied to the optimal sample size. All the

panels on the left column are the sample size distributions when the working CS

structure is used in the design, while those on the right column are based on the

use of the working AR-1 structure in the design. As seen, in all the cases the mean
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sample size from the QIF study design appears consistently smaller than that of the

GEE study design. The top two panels are the sample size distributions when the

matrix prameter R0 in the Wishart distribution is specified as the chosen working

correlation. The middle and bottom panels are based on unstructured R0 given in

(2.10) and 1-dependence, respectively. Clearly, at the same type I error and power

level, the QIF sample size is on average smaller than the GEE sample size, even if

the correlation matrices are sampled from a Wishart distribution centered at the

working correlation matrix (as in the top panels). When the correlation matrix is

simulated from a Wishart distribution with the R0 being a 1-dependence matrix,

the percentage of QIF sample size saving relative to the GEE is about 6%. When

the prior correlation matrix R0 is unstructured, the two designs require very similar

sample sizes.

To demonstrate the relation of n and m, in Figure 2.3, we set power as 0.8,

type I error as 0.05 and ρ = 0.5. When m = 2, it is easy to show that the

sample size for the two designs is effectively the same. An analytic explanation

for this equivalency can be found in Appendix A. Again, as shown by the top

two panels, the QIF sample size requirement is identical to that of GEE when no

misspecification is present. With misspecification, all the other four panels indicate

in Figure 2.3 that QIF requires smaller sample sizes. To be specific, the percent

of sample size saving by QIF is up to 47.6%, 54.2%, 42.7% and 3.9% respectively.

Also, under misspecification, the GEE analysis tends to require a larger sample

size with a greater m. As illustrated in section 2.4, this is probably due to the fact

that the degree of misspecification increases as m grows and thus more subjects

are needed to fight against the difference between working and true correlation

matrices. This phenomenon is also obvious in Figure 2.4, where we test for the
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Figure 2.2: Distributions of the sample size required by the GEE and QIF analysis.
R0 denotes the prior correlation structure in the Wishart distribution.
The top two panels correspond to using the working correlation as the
matrix parameter for the Wishart distribution.
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total and main Rx effect. We should notice that this trend is substantially reduced

for the QIF method, possibly because QIF uses only basis matrices and hence is

more robust to misspecification.

As requested by a reviewer, we have used the setting of Example 1 to perform a

sanity check on our sample size formulas. For simplicity, we considered m = 3 (i.e.

visits at 0, 2, 4) and simulated 1000 sets of correlated binary outcomes under β1 = 0

and 0.5. Based on model (2.5), we calculated empirical type I error (β1 = 0) and

power (β = 0.5) in the scenarios with and without correlation misspecification. We

summarize the results for two cases of no correlation misspecification as following:

(i) the true and working correlation are both CS, the power for both GEE and

QIF is 0.8 and both type I error rates are 0.048; and (ii) the true and working

correlation are AR-1, both power maintains as 0.8 and both type I errors are 0.052.

Moreover, we summarize the results for the two cases of misspecified correlation

as: (i) under a case of the true as CS and the working as AR-1, the power is 0.81

for both methods and the type I errors are 0.052 and 0.054, respectively, for GEE

and QIF; and (ii) when the true is AR-1 and the working is CS, the power is 0.8

for GEE and 0.83 for QIF, while the corresponding type I errors are 0.058 for GEE

and 0.053 for QIF. All these cases have confirmed the desirable control of type I

error and power using the given sample sizes obtained from our formulas.

2.4 Relation to number of repeated measurements

A special operating characteristic of a longitudinal study is the number of

repeated measurements (m). Under the ideal and simple scenarios (Diggle et al.,

2002; Pan, 2001a), increasing m results in smaller n. Many clinical practitioners
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Figure 2.3: Sample size comparison between QIF and GEE for testing joint treat-
ment effect with varying number of repeated measurements for each
individual when misspecification occurs. The top panels consider cases
with no misspecification; the middle panels use CS working correlation
and the bottom panels take AR-1 working correlation for both designs.
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take this property for granted, and use it as an effective remedy to the insufficiency

in n for their studies. In fact, the relationship between n and m is far more complex

than the monotonic inverse proportionality in the simple GEE settings.

When there is no misspecification, increasing m inherently produces more data,

which is equivalent to increasing sample size. This means that if we can elongate

the study period, we can recruit less patients. The top panels in Figure 2.2 verifies

this statement. However, if there is misspecification and we are using a working

correlation to approximate the true one, we then are introducing error in our mod-

eling process. As demonstrated in Overall and Tonidandel (2004), the degree of

misspecification would affect the power of GEE analysis. If the gained information

from increasing m is not sufficient to account for the error, we certainly will need

to increase our sample size to maintain the power of the study.

To facilitate the discussion, let us first look at some numerical evidence shown

in Figure 2.3 where the null hypothesis is H0 : β1 = β3 = 0 (joint treatment effect).

Using the setup of Example 1 in section 3.4, we take a snapshot fixed at power 0.8,

type I error 0.05 and ρ = 0.5. It is easy to visualize that (i) when m = 2, the sample

size for the two designs is the same; (ii) when the working correlation is specified

the same as the true correlation, as indicated by the plots in the top two panels,

the QIF sample size requirement is identical to that of GEE and the sample size

decreases as the number of follow-up visits increases; (iii) three of the remaining

plots in the middle and bottom panels, corresponding to the mismatched working

correlation structures to the true ones, clearly indicate opposite behaviors: not

only does the QIF method require smaller sample sizes but it also appears rather

robust to the increased number of follow-up visits. However, the GEE design is

sensitive to varying numbers of follow-up visits. Figure 3 confirms the evidence
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drawn from Figure 2 under the other two null hypotheses: H0 : β1 = β2 = β3

(total effect) and H0 : β1 = 0 (main treatment effect).

We have attempted to provide some analytic insights as how the sample size n

and the cluster size m would behave. However, it is difficult to provide a general

theory. In section 4.1, we can analytically prove that when the RW used in the

design is the same as the true RT , the monotonic inverse proportionality between

n and m still holds. For the case of misspecification, in section 4.2 we provide

analytic arguments in an example to disprove the relationship.

2.4.1 Correctly specified correlation structure

When there is no correlation misspecification, the sensitivity matrix Sn(β) is

the same as the variability matrix Wn(β) for GEE. Hence, the Godambe informa-

tion matrix reduces to the sensitivity matrix Sn(β), given by (2.14) in Appendix B.

Further, we partition two treatment-arm specific sensitivity matrices, S1,n(β) and

S0,n(β), into 4×4 matrices, with elements denoted as Q
(1)
ij and Q

(0)
ij , i, j = 1, . . . , 4.

In the following we focus on two cases where the CS and AR-1 structures are

used in the design. We show that at a given power, the monotonicity relationship

between n and m remains. Our argument shows that as m increases, all of Q
(1)
11 ,

Q
(1)
33 , Q

(0)
11 and Q

(0)
33 increase, and hence the resulting standard errors decrease,

which leads to smaller sample sizes.

It is easy to show that for the CS working correlation,

Q
(1)
11 = − (m− 2)ρ+ 1

(ρ− 1)[(m− 1)ρ+ 1]

∑
j

V1j +
ρ

(ρ− 1)[(m− 1)ρ+ 1]

∑
j 6=k

V
1
2

0jV
1
2

1k.
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When
∑

j 6=k V
1
2

0jV
1
2

1k = O(m)1, we have

Q
(1)
11 =

ρ

1− ρ

m∑
j=1

V1j + o(1), as m→∞.

Since V1j > 0, then
∑m

j=1 V1j increases as m increases.

Similarly, for the case of AR-1 correlation, we have

Q
(1)
11 (m) =

1 + ρ2

1− ρ2

m∑
j=1

V1j −
2ρ

1− ρ2

m−1∑
j=1

V
1
2

1jV
1
2

1,j+1 −
ρ2

1− ρ2
V11 −

ρ2

1− ρ2
V1m

which leads to the observation

Q
(1)
11 (m+ 1)−Q(1)

11 (m) =
1

1− ρ2
(V

1
2

1,m+1 − ρV
1
2

1m)2 ≥ 0,

indicating that Q
(1)
11 (m) increases as m increases.

2.4.2 Misspecified correlation structure

When the correlation structure is misspecified, the inverse monotonicity re-

lationship between m and n no longer holds. It is interesting to note that the

magnitude of deviation between variability matrix W(β) and sensitivity matrix

S(β) affects the properties of this relationship. Similar to the measurement of

goodness of fit by Pan (2001b) and White (1980), we adopt the following notation

dR to quantify the deviation:

dR = ‖R−1
W RTW−1

S −R−1
W ‖2 = ‖R−1

W (RT −RW )R−1
W ‖2, (2.11)

1o(x) means increase in a smaller rate than x.
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with ‖A‖2 denoting the L2-norm ‖A‖2 = maxi
√∑

j a
2
ij.

The discrepancy measure dR in (2.11) does not have a closed analytical form

except in some simple cases, but can be easily obtained numerically. In Figure

2.3, we have seen in the middle left panel that the sample size required by GEE

increases as m increases. This panel corresponds to the combination of CS as

working and AR-1 as true correlation. We find similar distortion for testing total

effect and the main treatment effect in Figure 2.4. To further explore this panel

in terms of the relationship of sample size to the deviation dR, we provide four

additional plots in Figure 2.5 with ρ = 0.1 and ρ = 0.9, respectively. This figure

indicates clearly that the inverse monotonicity relationship between n and m is

distorted in the GEE analysis, but interestingly the QIF analysis is barely affected.

What is also striking is that the severity of such distortion worsens for larger dR

(and ρ). We have tried other pairs of RT and RW scenarios, and found very similar

properties. One possible explanation is that the GEE sample size is critically

dependent on the chosen working correlation matrix and how severely it deviates

from the true correlation matrix.

2.5 Concluding remarks

In this paper, we have developed the sample size and power calculation for both

QIF and GEE analysis for dichotomous outcomes, and made detailed comparisons

between these two designs. We showed that the QIF approach enjoys a sample

size saving over the GEE approach; on some occasions, the saving is substantial.

We anticipate that such a benefit of sample size saving remains in other types of

outcome variables when correlation structure is misspecified.
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Figure 2.4: Sample size comparison between QIF and GEE for testing total effect
and main Rx effect with varying number of repeated measurements for
each individual when RT is CS.
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Figure 2.5: A demonstration of the trend of GEE requiring more sample sizes as
the number of repeated measurements and the deviation of true and
working correlation matrices increase.
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We proposed an optimal sample size determination in terms of minimal average

risk in the scenario where the true correlation structure is unknown. Our strategy

is to vary the sample size among possible correlation structures simulated from a

prior Wishart distribution, and then take the averaged sample size to be used in

an actual design. We argue this strategy is optimal in terms of minimal average

risk.

In addition, we demonstrate the robust behavior of the QIF sample size in

response to an increased number of follow-up visits, in contrast to GEE, which

requires more subjects in order to follow patients over more visits. We regard this

as an important property and a clear advantage of the QIF analysis over the GEE

analysis as it can reduces the burden of subject recruitment and hence cost of

study.

We detail an R package used to determine GEE and QIF sample sizes is detailed

in appendix D and make it available from http://www-personal.umich.edu/

~pxsong.

2.6 Appendix

In appendix A we provide the details concerning the Cn(β) matrix. Appendix

B presents the detail of the GEE sample size calculation for the logistic model

(2.5), and appendix C includes some examples of the R package QIFSAMS.

A. Cn MATRIX IN QIF

It is easy to see that exchanges between rows or column on gn will not change

the matrix Cn(β). We use symbol X̆ to denote the post-exchange variable X and

32



hence have

ğ′i = (1′, t′i,ω
′
iA
− 1

2
i , ω̃′iA

− 1
2

i , di1, dit
′
i, diω

′
iA
− 1

2
i , diω̃

′
iA
− 1

2
i )′ei

def
= (Zi, diZi)

′ei
def
= B̆iei,

(2.12)

where Zi = (1′, t′i,ω
′
iA
− 1

2
i , ω̃′iA

− 1
2

i )′. We then have

C̆(β) = d̄B̆1A
1
2
1 RTA

1
2
1 B̆1 + (1− d̄)B̆0A

1
2
0 RTA

1
2
0 B̆0

=

G F

F F

 ,

where

G = d̄Z1A
1
2
1 RTA

1
2
1 Z′1 + (1− d̄)Z0A

1
2
0 RTA

1
2
0 Z′0,

F = d̄Z1A
1
2
1 RTA

1
2
1 Z′1.

For m ≥ 2, matrix F is singular since the 4-th row in Zi is a linear combination

of the other three. This leads to the singularity of matrix C̆n(β), which can be

overcome by removing the 4-th row. Then an inference function is given by

ĝi = (1′ei, t
′
iei,ω

′
iA
− 1

2
i ei, di1ei, dit

′
iei, diω

′
iA
− 1

2
i ei)

′,

which was used throughout this paper under the CS correlation when m ≥ 3.

We also removed ω′iA
− 1

2
i when m = 2. It should be aware that for this case

the inference functions of QIF and GEE are the same and hence their calculated

sample sizes are the same.

The same procedure was taken for the case of AR-1 working correlation.
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B. GODAMBE INFORMATION MATRIX FOR GEE

To obtain the GEE Godambe information matrix for the logistic model (2.5),

we find that the sensitivity matrix is

Sn(β) = −
n∑
i=1

D′iAiΣ
−1
i AiDi (2.13)

= −d̄nX1A
1
2
1 R−1

W A
1
2
1 X′1 − (1− d̄)nX0A

1
2
0 R−1

W A
1
2
0 X′0. (2.14)

The variability matrix is

Wn(β) =
n∑
i=1

D′iAiΣ
−1
i V ar(ri)Σ

−1
i AiDi

= d̄nX1A
1
2
1 R−1

W RTR−1
W A

1
2
1 X′1 + (1− d̄)nX0A

1
2
0 R−1

W RTR−1
W A

1
2
0 X′0.

Then, the Godambe information matrix is calculated by Jn(β) = Sn(β)′Wn(β)−1Sn(β).

The above sensitivity can be partitioned in the following fashion. When there is

no model misspecification, denoting R−1
W = (Rjk)mm, we find

S1,n(β) =



Q
(1)
11 Q

(1)
11 Q

(1)
13 Q

(1)
13

Q
(1)
11 Q

(1)
11 Q

(1)
13 Q

(1)
13

Q
(1)
13 Q

(1)
13 Q

(1)
33 Q

(1)
33

Q
(1)
13 Q

(1)
13 Q

(1)
33 Q

(1)
33


, S0,n(β) =



Q
(0)
11 0 Q

(0)
13 0

0 0 0 0

Q
(0)
13 0 0 0

0 0 0 Q
(0)
33


,
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where

Q
(1)
11 =

∑
j,k

RjkV
1
2

1jV
1
2

1k, Q
(0)
11 =

∑
j,k

RjkV
1
2

0jV
1
2

0k

Q
(1)
13 =

∑
j,k

RjktkV
1
2

1jV
1
2

1k, Q
(0)
13 =

∑
j,k

RjktkV
1
2

0jV
1
2

0k

Q
(1)
33 =

∑
j,k

RjktjV
1
2

1j tkV
1
2

1k, Q
(0)
33 =

∑
j,k

RjktjV
1
2

0j tkV
1
2

0k.

C. R Package: QIFSAMS

The R package QIFSAMS includes two functions that calculate sample size for

the QIF and GEE analysis, respectively. This package and the user’s manual can

be downloaded from wepage: http://www.umich.edu/∼pxsong.

To obtain the sample size, the user needs to specify effect sizes and correlation

matrices. QIFSAMS takes effect sizes of zero time and/or interaction effect as well.

QIFSAMS requires m ≥ 2 to reflect a longitudinal study design. For example, the

following commands were used to produce Table 1.

GEE.n <- GEE_Size(typeIerror = 0.05, power = 0.8, coeff = c(1,0.5,0.4,0.1),

num_repeated = 4, ratioTRT = 0.5,timeUnit = 2, visits = c(0,2,4),

corr_T = 0.5, corr_W = 0.5, R_wk_ID = 1, R_true_ID = 1,R_un =

corr.matrix.un, test.ID = 1)

QIF.n <- QIF_Size(typeIerror = 0.05, power = 0.8, coeff = c(1,0.5,0.4,0.1),

num_repeated = 4, ratioTRT = 0.5,timeUnit = 2, visits = c(0,2,4),

corr = 0.5 ,R_wk_ID = 1, R_true_ID = 1, R_un = corr.matrix.un, test.ID = 1).

Arguments Type I error, power, effect size, number of repeated measurements,

proportion of subjects in the test treatment group, time points, correlation pa-

rameters need to be specified in the functions. Note that in GEE, we need to
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specify both true and working correlation parameters but in QIF we only need the

true correlation parameters. For example, when both true and working correlation

are CS, as shown above, we set both R wk ID and R true ID to be 1 and obtain

the corresponding two sample sizes. For other cases in Table 1, we vary these two

parameters.

Both functions combines R true ID = 4 and R un to specify a UN correlation,

which can be sampled from a Wischart distribution. In Figure 2.2, we generated

1000 such samples, choose a working correlation and then obtain the sample size

distributions.

More details can be found from the help file from the package.
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CHAPTER III

Accurate Local Ancestry Inference in Exome

Sequenced Samples

3.1 Abstract

Estimates of the ancestry of specific chromosomal regions in admixed indi-

viduals are useful for studies of human evolutionary history and in disease gene

mapping. Previously, this ancestry deconvolution relied on genome-wide geno-

types from high-density GWAS arrays, which are not always available in exome

sequenced samples. We show that even a relatively small number of off-target

reads generated during exome sequencing experiments can be used to accurately

estimate the ancestry of admixed individuals. To reconstruct local ancestry, our

SEQMIX method models sequence data directly, without requiring intermediate

genotype calls. We evaluate the accuracy of our method through simulations and

the analysis of sequenced samples in the 1, 000 Genomes Project and the Women’s

Health Initiative. In African-Americans, we show local ancestry estimates derived

using our method are extremely similar to those derived using Illumina’s Omni

2.5M genotyping array (concordance between the two estimates ∼ 0.97); and are
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much improved compared to estimates that use only exome genotypes and ignore

off-target sequencing reads. SEQMIX should be useful to anyone undertaking ex-

ome or targeted sequencing of admixed populations, both for analysis of human

population history and for disease gene mapping studies.

3.2 Introduction

The genomes of admixed individuals can be described as mosaics with alter-

nating segments of different ancestries. The pattern of each mosaic such as the

origin and the length of individual segments, reflects the admixture history of each

individual. Although the precise boundaries and ancestry of these segments are

usually unknown, they can be reconstructed using statistical methods that exam-

ine the distribution of genetic markers along the chromosome. These methods take

advantage of the differences in allele and haplotype frequencies between distinct

ancestral populations.

Reconstructions of local ancestry have many uses in population genetics and in

human disease gene mapping. For example, reconstructions of local ancestry have

been used to investigate the genetic relationship between the admixed populations

and putative ancestral groups in studies of the history of Latinos and Hispanics in

North America (Bryc et al. 2010b) and of the Uyghur in China (Xu et al. 2008).

Local ancestry estimates are also useful in human disease gene mapping, where

they have been used to study multiple sclerosis (Reich et al. 2005), hypertension

(Zhu et al. 2005), prostate cancer (Freedman et al. 2006), among many other dis-

eases (see review Winkler et al. (2010)). In exome sequencing studies, admixture

mapping can be used to improve the matching of case and control data (for exam-
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ple, by stratifying comparisons between case and control chromosomes according

to local ancestry).

The first applications of ancestry deconvolution relied on ancestry informative

markers (AIMs) (Smith et al. 2004), which are carefully selected markers that show

large differences in allele frequency between populations. Statistical methods used

in these early applications typically use Hidden Markov Models (HMM) (Rabiner ,

1986) and assume accurate genotypes for every marker (Patterson 2004). More

recent methods typically do not rely on availability of AIMs but, instead, use the

large amounts of data generated by GWAS arrays (where each marker provides a

modest amount of information about ancestry, on average), to model local ancestry.

These newer methods can still rely on Hidden Markov Models, often enhanced to

model haplotype differences in addition to allele frequency differences between

populations (Price et al. 2009,Sundquist et al. (2008),Tang et al. (2006)), but also

use other statistical techniques (see review (Seldin et al. 2011)) such as clustering

algorithms (Sankararaman et al. 2008) and principal component analyses (Bryc

et al. 2010a).

Instead of GWAS arrays, the next phase of data generation for genetic studies

is likely to rely on short read sequencing technologies. Targeted sequencing ap-

proaches, such as exome sequencing (Ng et al. 2009), are becoming increasingly

popular for disease gene mapping (Bamshad et al. 2011) and clinical diagnosis

(Choi et al. 2009). In exome-sequenced samples, genotypes for AIMs or GWAS

SNP panels are typically not available and confident calls from targeted sequencing

cover only a small portion of the genome. This poses the challenge for accurate

ancestry inference.

In this paper, we show that even a relatively small number of off-target reads,
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generated as a by-product of targeted sequencing experiments, can be used to

accurately reconstruct the ancestry mosaic of admixed individuals. Using our

method SEQMIX on simulated data, we show that – for African Americans -

> 98% accurate ancestry calls can be generated with as little as 0.3-fold average

off target read coverage. We also validate our approach empirically, by comparing

our results with those obtained with HAPMIX in two sets of African American

samples for which both GWAS array genotypes and exome sequence data are

available. For both datasets with off target mean coverage at < 2x, we witness

that 97% of the SEQMIX called ancestries are the same as those from running

HAPMIX on genotype array genotypes for the same individuals.

SEQMIX should be useful to anyone undertaking exome or targeted sequencing

of admixed populations, both for analysis of human population history and for

disease gene mapping studies.

3.3 Material and Methods

3.3.1 Hidden Markov Model for Sequence Data at Unlinked Sites

Our method SEQMIX is a Hidden Markov Model (HMM) that uses exome

data to infer local ancestry. Figure 1 demonstrates the three layers of the model.

At each site, the bottom layer is the hidden ancestry state, the middle layer is

the unknown genotype and the top layer is the observed set of sequence reads. At

the middle layer, the genotype is useful in relating sequence reads and ancestry.

For simplicity, we assume that all variants are biallelic and that there are two

possible ancestry states. Our model can be naturally extended to accommodate

multi-allelic markers or additional ancestry states.

40



A1	
   A2	
   A3	
   Am-­‐3	
   Am-­‐2	
   Am-­‐1	
   Am	
  

g2	
  

o1	
   o2	
  

g1	
   g3	
   	
  

o2	
   	
  

gm-3 gm-2 gm-1 gm 

om-3 om-2 om-1 om 

Figure 3.1: Graphic illustration of the hidden Markov model of ancestry decon-
volution, assuming linkage disequilibrium bwteen markers. There are
three layers of information: the square boxes (A) represent the hidden
ancestry at each site, the circles (g) represent hidden genotypes and
the hexagons (o) represent observed base in the sequence reads.

A Hidden Markov models has two important components: the transition ma-

trix and emission probability. The transition probabilities for this HMM describe

the probability of changes in ancestry along the chromosome. We denote the unob-

served ancestry state qs as (As1, As2), where As1 indicates the ancestry of the first

chromosome at site s and As2 denotes the ancestry of the other chromosome. We

let γs,s+1 denote the recombination rate between site s and s+ 1 and let T denote

the timing of the first admixture event (measured in generations from the present).

The transition matrix summarizing the probability of changes in ancestry between

sites s to s+ 1 along a chromosome is then:

ps,s+1 =

pE,Es,s+1 pE,As,s+1

pA,Es,s+1 pA,As,s+1

 =

1− (1− e−γs,s+1T )πA (1− e−γs,s+1T )πA

(1− e−γs,s+1T )πE 1− (1− e−γs,s+1T )πE

 (3.1)

where πA and πE denote the prior probabilities of being an African or European

ancestral allele respectively (in our analysis, πA = 0.8 and πE = 0.2 (Price et al.
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2009; Bryc et al. 2010a)).

For a diploid individual, the transition probability must model changes along

two chromosomes, and becomes Ps,s+1 ⊗ Ps,s+1 , the Kronecker product of single

chromosome transition matrices. Each element of this 4 by 4 matrix is defined

as t
(i1,j1),(i2,j2)
s,s+1 = pi1,i2s,s+1p

j1,j2
s,s+1, where pi1,i2s,s+1 describes the probability of changes in

ancestry from state i1 at site s to i2 at site s+ 1 along one chromosome and pj1,j2s,s+1

describes the probability of changes in ancestry from state j1 at site s to state j2

from s+ 1.

Assuming Hardy-Weinberg Equilibrium, emission probabilities P (os|qs), which

describe the probability of observing sequence reads os given an underlying ances-

try state qs, can be calculated as

P(os|qs = (As1, As2))

=
∑
gs

P(os|gs = (gs1, gs2))f gs1

As1
(1− fAs1)

1−gs1fAs2

gs2(1− fAs2)
1−gs2 ,

where gsi is an indicator variable, which takes value 1 when the reference allele

is observed in the ith chromosome, and 0 otherwise. fAsi
is the reference allele

frequency at site s with ancestry Asi. The genotype likelihood p(os|gs) describes

the probability of the observed set of reads given the underlying genotypes gs =

gs1 + gs2 and is the data product of next-generation sequencing technology (Li

2011).

3.3.2 Linkage Disequilibrium Pruning Algorithm

The HMM described in Figure 3.1 assumes that the marker positions are in

linkage equilibrium, and the observed set of sequence reads are independent given
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the underlying ancestry information. But often this assumption does not hold

and directly applying this model could lead to inference of many false ancestry

switches. This is also a known problem for analyzing high-density genotype data

(Tang et al. 2006).

To resolve the issue, we propose a LD pruning algorithm that attempts to

balance the goals of using as much sequence information as possible and avoiding

markers in linkage disequilibrium with each other. We first estimate the squared

correlation ρ2 between marker pairs within each ancestral population; for each

marker pair we then record the maximum ρ2 value observed across all populations.

Then, for each individual, we list all sites with non-zero sequence coverage. For

every pair of markers where ρ2 exceeds a cutoff (we typically use 0.1), we exclude

the site with lower coverage from consideration. The process continues until no

marker pairs in linkage disequilibrium remain in the list of sites with non-zero

coverage. Note that this pruning algorithm must be applied to each sequenced

sample independently.

3.3.3 Simulation

We first evaluated our method in the analysis of simulated African American

individuals. We simulated each genome using two pairs of 1, 000 Genomes Project

African and European ancestry haplotypes as templates (The 1000 Genome Project

Consortium 2010). At the beginning of each chromosome, we sampled European

ancestry with probability πE and African ancestry with probability πA. Next, we

sampled the a series of distances to the next potential ancestry switches from an

exponential distribution with mean 1
Tθ

, where T = 6 is the number of generations

since the first admixture event (Price et al. 2009) and θ = 10−8 (Sankararaman
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et al. 2008) is the average recombination rate per base-pair per generation. At

each switch point, we again sampled ancestry with probabilities πE and πA.The

process continued until all chromosomes had been sampled for each individual.

Conditional on these simulated haplotypes we proceeded to generate simulated

sequence data and genotype likelihoods. First, we annotate each site s as either on-

target or off-target using the consensus exome capture definition from the 1, 000

Genomes Project (http://www.1000genomes.org/data). For on-targeted sites,

we sampled the coverage Cs from a Poisson distribution with mean µon = 60;

for off target sites, we sampled the coverage from a Zero-inflated Poisson (ZIP)

distribution (Lambert 2010), which is a mixture of distribution with point mass

at 0 (with probability 1 − poff) and a Poisson distribution with mean µoff. In our

simulations, we use µoff = 3 , which is estimated from real data. We let poff vary

between 0 and 0.8, so the off-targeted mean coverage varies between 0 and 2.4.

With the simulated coverage Cs and genotype gs at site s and the assumption

of a uniform sequence error rate e = 0.01 across all sites (Bentley et al. 2008), we

simulated Ms(≤ Cs) reads identical to reference allele using the following distri-

bution

Ms|gs =


Binomial (Cs, 1− e) if gs = 0

Binomial (Cs, 0.5) if gs = 1

Binomial (Cs, e) if gs = 2

. (3.2)

The genotype gs = 0, 1, or 2 is the number of copies of alternative alleles at

site s. Then, we calculated the genotype likelihood at site s from the following

equation

L(gs) =
1

2Cs
[(2− gs)e+ gs(1− e)]Ms [(2− gs)(1− e) + gse]

Cs−Ms . (3.3)
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Finally, we ran SEQMIX on the simulated sequence data and compared the

inferred ancestry to the truth. Notably, in the LD pruning step of SEQMIX, we

have varied the ρ2 cutoffs from 0.01 to 0.2 and used the physical distance times

10−8 to estimate the genetic distance in running SEQMIX.

3.3.4 Analysis of 49 American South West (ASW) Samples

We analyzed 49 African American samples from the 1, 000 Genomes project.

We ran UMAKE (Hyun M. Kang and Goo Jun in preparation) on the exome bams

to obtain the genotype likelihood. We downloaded the precomputed recombination

map from the IMPUTE website (Marchini et al. 2007) and linearly interpolated

the recombination rate for sites that are not included in the map. We used ρ2 = 0.1

as a cutoff for LD pruning. At last, we ran SEQMIX on the genotype likelihoods

for the local ancestry results.

In addition, we ran HAPMIX on the Illumina’s Omni 2.5M genotype data for

these samples to infer ancestry. We used the phased European (GBR, CEU, TSI,

FIN, IBS) and African (YRI, LWK) Omni genotype data as reference haplotypes

and used the genetic distance map from IMPUTE. We linearly interpolated for

the ancestry result at the markers in the sequence data.

Furthermore, we used both SEQMIX and HAPMIX called ancestry blocks to

evaluate patterns of coding variation in proportion of the genome with recent

European and African ancestry. There are three categories of ancestries at each

site: both alleles are of European ancestry, both are of African ancestry and one

of each kind. In each category, we calculated the heterozygosity per kilobase, and

at the heterozygous sites, we counted the number of nonsynonymous sites and the

number of loss-of-function sites per megabase.
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3.3.5 Analysis of 79 African American Samples from Women’s Health

Initiative (WHI)

WHI is one of the largest studies of African American women that were under-

taken in the United States. Previous description for this cohort can be found in

(The Women’s Health Initiative Study Group, 1998). We obtained exome sequence

data and the GWAS genotype data for 79 samples. We calculated the genotype

likelihood using UMAKE and ran SEQMIX to infer the local ancestry. Further-

more, we ran HAPMIX using the GWAS data of the 79 African American WHI

samples as input and the 1, 000 Genomes Project European and African haplo-

types as references. We then compared these two sets of results to evaluate the

performance of SEQMIX.

3.3.6 Measuring the Performance of SEQMIX

Let Ais = Ais1 + Ais2 denote the true diploid ancestry for individual i at site s,

Ais is equal to 0 when both copies are of European ancestry and is equal to 2 when

both copies are African and is equal to 1 when the diploid ancestry is one of each

kind. Let X i
s denote the estimate of Ais by SEQMIX.

SEQMIX uses the forward-backward algorithm to estimate the distribution of

Ais, i.e. P (Ais = j) = pjs, j = 0, 1, 2. We use this value at each site along the

autosomal genome to estimate the percent of whole genome European ancestry.

In simulations, we compared this value calculated by the true and inferred local

ancestries. For real data analysis, we compared this value calculated from results

by SEQMIX and HAPMIX.

Moreover, at each variant site, we used the inferred probability pjs to calculate

46



the expected number of European copies at site s as 2p0
s +p1

s. If the number is less

than 0.5, we set X i
s = 0; if it is greater than 1.5, we set X i

s as 2; otherwise, X i
s = 1.

To quantify the performance of SEQMIX, we calculated squared correlation as

well as the concordance rate, which, for each individual, is the percent of the total

m sites that have the same ancestry, calculated as ri =
Pm

i=1 I(X
i
s=Ai

s)

m
. We report

the average concordance rate r across all samples. Both statistics, in analysis of

the simulated data, are calculated to compare inferred and true ancestry; and in

the analysis of real data, are calculated from SEQMIX and HAPMIX result.

3.4 Results

3.4.1 Simulation of Exome Sequence Data

We simulated 10 African American individuals with an average of 80% African

ancestry and 20% European ancestry. We assumed the first admixture event hap-

pened 6 generations ago and used 1, 000 Genomes Project haplotypes of recent

European (EUR) and African (AFR) ancestry as templates. Then we simulated

the sequence reads covering each site and calculated genotype likelihoods (see Ma-

terials and Methods). Using the simulated sequence data, we ran SEQMIX to infer

the local ancestry and compare the inferred result to the underlying truth.

In addition, we also investigated the impact of the ρ2 cutoff used for prun-

ing markers in LD with each other. In principle, low values for this cutoff might

discard too many informative sites, whereas large values might result in false an-

cestry switches. We varied the ρ2 cutoffs from 0.01 to 0.2 and found that for this

range, there were no significant differences in terms of the concordance. Hence, we

adopted 0.1 as the ρ2 cutoff throughout this paper.
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When simulating sequence coverage at each site, we sample the coverage for the

on-target site from a Poisson distribution with mean 60. For the off-target sites,

we sampled the coverage from a ZIP distribution with a mean varying between 0

and 2.4. Figure 3.2 illustrates accuracy of our method as a function of off-target

coverage: the top panel displays the simulated true ancestry path and other panels

shows the ancestry path estimated by SEQMIX with mean off-target coverage at

0, 0.003, 0.006, 0.3, 0.6, 1.2 and 2.4. As we can see from the top panel, there

are 9 ancestry switches along the chromosome. When there is no off-target reads

generated, 4 of the switches are missed - corresponding to the shortest ancestry

tracts of length 2.1 and 4.3 Mb, respectively (second panel). If the off-target

coverage is very low - for example, if only 3 sites in every thousand are covered

(third panel) - the missing tracts are still not captured. But, as off target coverage

increases, the missing switches are quickly recovered. When off-target mean depth

reaches 0.3, all ancestry tracts and switches are detected. As off target coverage

increases further, placement of the ancestry switches improves and the concordance

rate approaches 1.

To better understand the effect of sequencing depth on ancestry estimates,

we simulated another 100 sets of sequence data, again varying off-target coverage

between 0 and 2.4. The results are summarized in Table (3.1), where we can see

that the 2.1Mb European ancestry block is missed for very low off target coverage

(< 0.01x) but progressively better captured as coverage increases. When coverage

reaches 0.6x, this ancestry block is captured 75% of the time and the success rate

reaches 93% and 95% when the coverage is 1.2x and 2.4x, respectively. For the

4.3Mb European ancestry block, 0.15x off target coverage is sufficient to achieve

a 100% capture rate. The exact performance of ancestry estimation will depend
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not only on block length and sequencing depth, but also on the amount of LD in

a region and the fraction of each region selected for deep, targeted re-sequencing.

Table 3.2 summarizes the concordance rate across the simulated 10 samples.

We can see that the average concordance and squared correlation between true and

estimated ancestry increases with off-target coverage. When there are no off-target

reads, the squared correlation between inferred ancestries and true ancestry is only

0.70 and ancestry estimates for 7.2% of sites are incorrect. When the off target

coverage increases to 0.3x, the squared correlation reaches 0.93 and the number of

sites with wrong ancestry calls drops to ∼ 2%. The statistics improve further as

the off target coverage increases to 2.4.

Table 3.1: Percent of time that the smallest ancestry blocks are captured in the
100 sets of simulations for on-target coverage between 0 to 2.4.

Percent of the time that
the ancestry block is captured

Mean off-target Block size 2.1 Mb Block size 4.3 Mb
0 0 47

0.003 0 62
0.006 0 76
0.009 0 81
0.15 39 100
0.3 69 100
0.6 75 100
1.2 93 100
2.4 95 100

3.4.2 Analysis of 49 ASW Samples

We applied SEQMIX on 49 ASW African American samples that were exome

sequenced by the 1, 000 Genomes Project. The average depth at on targeted sites
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Figure 3.2: The ancestry path along chromosome 1 of a simulated African Ameri-
cans with mean off target coverage varying between 0 to 2.4. For each
mean off-target depth, the concordance (r) is included in the left side
of each panel and the mean off-targets coverage is listed at the right
side of each panel.
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Table 3.2: Accuracy of SEQMIX inferred ancestry for 10 simulated admixed indi-
viduals and its relationship with the mean off targeted coverage.

Mean off-target Correlation square Concordance rate
coverage mean (sd) mean (sd)

0 0.697 (0.181) 0.928 (0.028)
0.003 0.735 (0.151) 0.937 (0.023)
0.006 0.744 (0.183) 0.944 (0.021)
0.009 0.781 (0.150) 0.950 (0.022)
0.012 0.785 (0.144) 0.950 (0.024)
0.015 0.796 (0.122) 0.951 (0.019)
0.03 0.840 (0.093) 0.962 (0.015)
0.15 0.890 (0.070) 0.977 (0.011)
0.3 0.931 (0.036) 0.983 (0.011)
0.6 0.944 (0.040) 0.987 (0.008)
1.2 0.949 (0.040) 0.989 (0.007)
1.8 0.949 (0.042) 0.989 (0.008)
2.4 0.952 (0.035) 0.990 (0.007)

is 80 and at off target sites is 1.9. We compared ancestry estimates generated

by SEQMIX (using exome sequence data as input) to estimates generated by

HAPMIX (using OMNI 2.5M genotypes as input).

Among the 49 samples, one individual was estimated to have 99.2% European

genome by SEQMIX, and 96.0% European ancestry by HAPMIX. Excluding this

outlier, the remaining 48 samples were estimated by SEMIX to have 2.0% to 57.1%

European ancestry; and by HAPMIX have 2.6% to 55.8% European ancestry. The

estimates for the percent of European ancestry for coding regions are similar to

those for the whole genome. The genome-wide estimates of European ancestry

fraction generated by both methods are extremely similar, with squared Pearson

correlation > 99.9%.

Furthermore, we calculated the concordance rate and squared correlation for
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the local ancestry estimates. In the top panel of Figure 3.3, we show that for the

49 samples, on average, 97% of the whole genome ancestry calls from SEQMIX

and HAPMIX are the same. The concordance rate for all samples varies between

0.94 and 0.98. For the outlier whose percent European genome was reported by

SEQMIX to be 99.2% but by HAPMIX to be 96.0%, the correlation square between

the HAPMIX and SEQMIX called ancestries has a median of 0.89, a mean of 0.88

and standard error 0.08. The first and third quartiles for the correlation squares

are 0.87 and 0.92 respectively. These numbers indicate that SEQMIX can use

off target reads to infer similar results to that from using high density genotype

arrays.

Another strategy to evaluate the performance of SEQMIX is to compare the

estimates of some population genetic parameters using ancestry call results from

SEQMIX and HAPMIX (Table 3.3). For chromosomal segments that are called

both of European ancestry by SEQMIX, we calculated the heterozygosity to be

0.42 per kb with a standard error 0.09. This number is 0.43 based on HAPMIX-

called-European chromosomal regions. For SEQMIX European ancestry stretches,

there are 191 nonsynonymous heterozygous sites per Mb and 2.2 loss-of-function

heterozygous sites per Mb. The corresponding estimates are 191 and 2.1 for HAP-

MIX European ancestry stretches. The equivalence of these population parameter

estimates also supports that SEQMIX can effective use off-target sequence data

for accurate ancestry inference.

3.4.3 Analysis of 79 WHI Samples

In addition to the 49 African American individuals, we also ran SEQMIX on a

set of 79 African Americans from WHI cohort. The exome sequence data for these
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Figure 3.3: Distribution of concordance between SEQMIX and HAPMIX ancestry
call results for two datasets: The top is from the 49 African American
samples from the 1, 000 Genome Project; the bottom is from the 79
African American samples from the Women’s Health Initiative cohort.
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Table 3.3: Pattern of coding variation in regions with diploid ancestry calls given
by both SEQMIX and HAPMIX in the three ancestry categories: both
haploids are of European ancestry; both are of African ancestry and one
of each kind. Heterozygosity per kilobase, number of nonsynonymous
sites per megabase and number of loss-of-function sites (annotated as
stop or splice) per megabase are calculated for the 49 ASW samples.

Exome size Heterozygosity
(Mb) (per kb)

Ancestry SEQMIX HAPMIX SEQMIX HAPMIX
E/E 1.24 1.16 0.42 0.43
E/A 10.06 10.26 0.55 0.55
A/A 16.76 16.65 0.53 0.53

# of nonsynonymous # of loss-of-function
heterozygous sites heterozygous sites

(per Mb) (per Mb)
Ancestry SEQMIX HAPMIX SEQMIX HAPMIX

E/E 190.78 189.61 1.88 1.74
E/A 246.81 248.23 2.13 2.15
A/A 239.24 237.33 2.01 2.22
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sample has a mean on coverage 87 and an off target mean coverage 1.2. To run

HAPMIX, we used the GWAS genotype data for these 79 samples as input, the

1, 000 Genomes Project European and African data as reference haplotypes and

the interpolated genetic distance from IMPUTE as recombination rates.

These set of individuals have fractions of whole genome European ancestry

varying between 2.1% to 53.5% based on result from SEQMIX. The corresponding

numbers are 2.5% and 53.2% from HAPMIX results. Again, the two estimates are

highly similar, with the squared Pearson correlation > 99.7%.

Moreover, we present the whole genome concordance rate in the bottom panel

of Figure 3.3. We see that the concordance rate varies between 0.91 and 0.99, with

a mean 0.97. The squared correlation between the ancestries called by HAPMIX

and SEQMIX has a median of 0.88, a mean of 0.85 and standard error 0.09 with

the first quartile at 0.83 and third quartile at 0.91. These numbers indicate that

the ancestry call from using off targeted reads using SEQMIX is again very similar

to that from applying HAPMIX on the GWAS genotype arrays.

3.5 Discussion

We have described our method SEQMIX that uses off-target sequence reads

from exome sequencing experiments to accurately infer whole genome ancestry in

admixed samples. Simulations and real data analyses have shown that SEQMIX

gives accurate local ancestry decompositions when the off target coverage is as low

as 0.5x. SEQMIX should be useful for studies with exome or targeted sequence

data of admixed populations, either for population history analysis or disease gene

mapping.
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Recent technology advancements have led to the emergence of sequence data

and its successful application in understanding population genetics and disease

gene mapping (Bamshad et al. 2011). Recent work has also shown that ultra low

coverage sequencing can effectively replace genotyping technology for much re-

duced cost (Pasaniuc et al. 2012). Our method, at this crucial time, demonstrates

that low coverage sequence data is effective at determining the local ancestries for

admixed individuals.

While our method SEQMIX can provide very accurate local ancestry estimates

with extremely low coverage sequence data, it also has some disadvantages. For

examples, it requires allele frequencies and LD information from the reference pop-

ulations. Future work would be to eliminate these requirements by incorporating

the clustering algorithm in LAMP (Sankararaman et al. 2008) or relying on an

initial PCA step (Bryc et al. 2010a). However, in applying these methods, we

should take into consideration that there are many sites with no sequence reads.

Moreover, in simulations, we have shown that ancestry blocks on the order of

several megabases could be correctly estimated at ∼ 0.5x off target mean cover-

age. Such blocks are typical for African American since the admixture event for

this population happened very recently. For populations that were admixed in

ancient history such as the Uyghur population in China, more work is needed to

understand whether the typical current off target coverage (∼ 0.5x) is sufficient.

In developing SEQMIX, we focused our effort on decomposing ancestry for two-

way admixture. In fact, our framework could be naturally extended to multi-way

admixture. SEQMIX essentially models unlinked markers by incorporating a LD

pruning data processing step. Future work can be done to extend our framework

to model haplotypes to describe ancestry better. Another possible extension of SE-
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QMIX includes integrating both GWAS array data and off target sequence data

for more accurate ancestry modeling.
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CHAPTER IV

The Benefits of Using Genetic Information to

Design Prevention Trials

4.1 Abstract

Clinical trials for preventative interventions are complex and costly endeavors

focused on identifying individuals likely to develop disease in a short timeframe,

randomizing these individuals to different treatment groups, and then following

them over time to capture disease onset events. In these prevention trials, sta-

tistical power is governed by the rate of disease events in each group and cost is

dominated by randomization, treatment and follow-up. Strategies that increase

the rate of disease events by enrolling individuals with high disease risk can sig-

nificantly reduce study size, duration and cost.

Comprehensive study of common, complex diseases has resulted in a growing

list of robustly associated genetic markers. Here, we evaluate the utility - in terms

of trial size, duration and cost - of enriching prevention trial samples by combining

clinical information with genetic risk scores to identify individuals at greater risk

of disease. We also describe a framework for utilizing genetic risk scores in these

58



trials and evaluating the associated cost and time savings.

Using type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI)

and advanced age-related macular degeneration (AMD) as examples, we illustrate

the potential and limitations of using genetic data for prevention trial design.

These diseases differ in their genetic architecture: many markers are robustly

associated with T2D and MI but all have relatively small effects; loci with large

effect sizes have been identified for T1D and AMD. Our results illustrate settings

where incorporating genetic information could reduce trial cost or duration up

to 70%, as well as other settings were potential savings are modest. Results are

strongly dependent on the genetic architecture of the disease, but we also show

these benefits should increase as the list of robustly associated markers for each

disease grows.

4.2 Author summary

Large-scale genetic association studies have identified many markers that are

robustly associated with a variety of complex traits, such as diabetes and cardio-

vascular disease. Together, these markers may help identify individuals at high

risk of disease and help design shorter and more cost-effective trials of new in-

terventions to prevent disease. We quantify the potential benefits - in terms of

prevention trial size, duration and cost - of using genetic risk factors to help iden-

tify individuals at greater risk of developing type 1 and type 2 diabetes, AMD and

myocardial infarction.
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4.3 Introduction

Designing a randomized clinical trial for disease prevention is a complex and

costly endeavor (Dickson and Gagnon (2004)). A key step is to identify individuals

likely to develop the disease during the study. The cost of a prevention trial

strongly depends on the rate of disease onset among participants: low rates of

disease onset require large sample sizes or long trial duration to achieve adequate

statistical power. Most primary prevention trials thus apply ’enrichment’ strategies

to recruit individuals at high risk of disease onset (Cummings et al. (2007); Florez

et al. (2006); Ridker et al. (2008)). Such trial design strategies also have ethical

benefits because only at-risk subjects are exposed to potential side effects of a

novel intervention. Enrichment designs can also be used in other types of clinical

trials, including treatment clinical trials contexts (see Simon (2008) for examples).

Now genetic markers have been robustly associated with many complex dis-

eases, it is timely to explore how genetic information, in conjunction with clini-

cal information, can be used in the design of prevention trials (Burke and Psaty

(2007)). This question can be decomposed into two more specific questions: first,

how can we accurately predict disease risk from genetic data; and second, how

can we use predicted genetic risks to design more efficient prevention trials? The

question of predicting genetic risk of complex diseases has recently been explored

in various contexts (Pharoah et al. (2008); Yang et al. (2010); Sanna et al. (2009)).

Original attempts to utilize genetic information in trial design proposed using

a small number of risk genotypes as discrete inclusion criteria. Examples include

using BRCA1 and BRCA2 genotypes in breast cancer prevention trials (King et al.

(2001)), APOE/e4 genotypes in Alzheimer’s Disease prevention trials (Cummings
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et al. (2007)), and, more generally, key markers identified by genomewide associ-

ation studies (GWAS) (Schork and Topol (2010)). Here, we explore an extension

of this concept that can incorporate hundreds or thousands of robustly associated

genetic markers, using a quantitative ’genetic risk score’ aggregated across markers

(Lin et al. (2009)). The cost and duration of a prevention trial will depend on

the prediction accuracy of the risk score and the threshold used to select eligible

subjects.

To evaluate the benefits and limitations of using genetic risk prediction mod-

els, we compare the cost and duration of prevention trials in various scenarios,

including trials using only clinical information and trials also using genetic infor-

mation to identify high-risk subjects. To illustrate the issues, we consider current

risk prediction models for four diseases: type 1 diabetes (T1D), type 2 diabetes

(T2D), myocardial infarction (MI) and age-related macular degeneration (AMD).

Through simulation, we show that aggregate risk scores are expected to help reduce

cost of clinical trials, sometimes modestly (T2D, MI) and sometimes substantially

(T1D, AMD). Re-analyzing existing experimental data, we further evaluate our

model in the context of T2D and AMD. Finally, we evaluate the utility of biobanks

where a large number of genotyped individuals make enrichment based on genetic

information particularly cost effective.

4.4 Materials and methods

4.4.1 Framework of genetic enrichment trial for disease prevention

We consider a standard design framework for prevention trials as ’conventional

prevention trials’. Eligibility criteria are assessed in potential trial participants
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after they provide informed consent. Typically, this involves selecting individuals

likely to develop the disease based on clinical risk factors, such as glucose levels for

T2D (Florez et al. (2006)) and low-density lipoprotein (LDL) or C-reactive protein

(CRP) levels for MI (Ridker et al. (2008)). Additional risk variables such as age,

gender, or smoking history may also be incorporated into the criteria (Table 4.1).

Eligible participants are randomized to different treatment arms and followed for

a trial period as illustrated in Figure 4.1A. The treatment effect will be evaluated

by comparing the frequency of disease onset between arms. The inclusion criteria

capitalize on prognostic factors that ’enrich’ disease onset among the trial subjects.

Studying these individuals increases the number of disease onset events and thus

reduces the sample size and the trial cost.

In genetic enrichment trials, the inclusion criteria further incorporate genetic

information in a quantitative manner (Figure 4.1B). In such trials, a larger number

of potential participants are screened to obtain a small fraction of individuals at

higher disease risk. Consequently, the targeted participants will be at higher risk

than those in conventional trials, and they will also be more likely to develop the

disease during the trial period.

Examining the tradeoff between resources used in the screening stage and the

trial stage is essential to optimize the efficiency of the trial. If the eligible criteria

are too stringent, the number of potential participants to recruit and screen will

be orders of magnitude larger than that of conventional trials, and the associated

costs of screening will become a substantial portion of the total trial cost. On the

other hand, too liberal criteria will fail to enrich the disease onset among the trial

participants, diminishing the benefits of genetic screening.

Another type of possible enrichment trial builds upon a pool of potential
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Figure 4.1: Frameworks of conventional and genetically enriched prevention trials.
(A) Conventional prevention trial not utilizing genetic information, (B)
Standard genetic enrichment trial only following up individuals at high
genetic risk after genetic screening, and (C) Biobank-based enrichment
trial where DNA information is available a priori and used for inviting
individuals at the beginning of trial.
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participants with genetic information readily available. Several large-scale DNA

biobanks are currently being established with sample sizes up to hundreds of thou-

sands patients (Jayasinghe et al. (2009)) with consent for genetic prescreening.

Individuals found to be at high risk based on genetic risk factors determined from

their banked genetic information would be prioritized for recruitment. Given a

sufficiently large number of samples in the DNA biobank, this strategy makes it

possible to identify an extremely small fraction of individuals at much higher risk

than others without additional screening cost (Figure 4.1C).

4.4.2 Genetic risk model from known genetic risk variants

We consider a model of individual genetic risk based on markers known to

be associated with disease traits with genome-wide significance. Typically an

individual genetic risk score is calculated as a weighted sum of risk alleles (Evans

et al. (2006))

γ(x) =
∑
i

γi(xi) =
∑
i

xilog(ORi)

where xi is 0, 1, or 2 copies of i-th risk alleles and ORi denotes the odds ratio of

i-th risk allele estimated from previous data.

The rate of disease onset in the prevention trial participants can be modeled as

a logistic function of γ(x), assuming that the effect size from risk variants remains

the same in the trial population

Pr(d|x, z) =
1

1 + exp(−µ− γ(x)− δz)
(4.1)

where d denotes disease onset event during the trial period, µ is the intercept, and

z is the binary indicator of randomization of treatment assignment with treatment
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effect size of σ. µ and δ are iteratively adjusted so that E[d|z = 0] and E[d|z = 1]

are equal to the rate of disease onset in the control and treatment arm, respectively.

The receiver operating characteristics (ROC) of this genetic risk score can be

obtained given the risk allele frequency and disease prevalence.

4.4.3 Simulation of genetic risk scores

We evaluated the performance of genetic enrichment trial designs using simu-

lated genetic and phenotype data for four diseases. To simulate the genetic risk

score using known genetic risk variants, we simulated genotypes of a million indi-

viduals based on risk allele frequencies reported from published results. For each

simulated individual, a genetic risk score is evaluated using the published effect

size of each risk variant and the simulated genotypes. The likelihoods of the in-

dividual having disease were evaluated using equation (4.1). To account for the

variability in the estimates of odds ratios, we calculate individual risk scores by

sampling odds ratios from reported confidence intervals 100 times and then re-

peated the simulation procedure described above using each set of sampled risk

scores. The very optimistic and very pessimistic estimates of ROC in Figure 4.1

use the upper and lower bound of 95% confidence intervals of odd ratio for each

of the risk variant, respectively.

4.4.4 Risk model from known AUC values

More generally, individual disease risk can be estimated from genetic and clini-

cal information independently or collectively. In particular, we consider combined

genetic and clinical risk from cohort studies of AMD and T2D (Seddon et al.

(2009); Talmud et al. (2010)). In these studies, an alternative measurement - the
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area under the ROC curve (AUC) (Hanley and McNeil (1982)) - are reported. In

fact, for each set of AUC value and disease prevalence, there is a unique normal

risk γ(x) as in equation (4.1).

In the analysis of empirical data in AMD, the published AUC values were

adjusted for inclusion criteria of baseline grade 3 or greater using the following

equation

AUCadj =
AUCorg − f2

1− f2

where AUCorg and AUCadj denotes original and adjusted AUC values, respectively,

and f2 is the proportion of individual with baseline grade 2 or less. We have

assumed no individual with grade 2 developed the disease during the trial period,

which is a reasonable approximation given that only 8 out of 454 (2%) individuals

with baseline grade 2 developed advanced AMD throughout the trial. For the

analysis of T2D empirical data, the AUCs were calculated using the real data.

In addition to the analysis of empirical data, AUC-based methods were also

used in two hypothetical simulation settings where 25% and 50% of the known

heritability in liability scale (Wray et al. (2010)) can be explained by known genetic

variants. This can prospectively project the degree of enrichment using genetic

factors that will be discovered in the future.
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4.4.5 Estimation of sample size, trial cost, and trial duration

Given a threshold t for the genetic risk score, the expected fraction of individ-

uals with disease onset events during the trial can be modeled as

πC(t) = E[d = 1|γ(x) ≥ t, z = 0]

πT (t) = E[d = 1|γ(x) ≥ t, z = 1]

where πC(t) and πT (t) are the rates of disease onset in the control and treatment

arms, respectively. Given a false positive rate α (= 0.05) and power 1−β (= 0.8),

the required per-treatment group sample size follows Lachine (1981)

n(t) =
4π̄(t)(1− π̄(t))(Z1−β + Zα/2)

(πC(t)− πT (t))2

π̄(t) =
πC(t) + πT (t)

2

Given per-sample clinical screening cost Cs, follow-up cost Cf , and proportion of

eligible participants fe, the cost of a conventional prevention trial is determined as

(
Cs
fe

+ Cf )n(−∞) (4.2)

where n(−∞) represents sample size of conventional trial (see Figure 4.1A).

For a genetic enrichment trial (see Figure 4.1B) with additional genetic screen-

ing cost Cg, assuming that clinical and genetic screening is performed simultane-

ously with clinical screening, the overall cost becomes

(
Cs + Cg

fePr(γ(X) ≥ t)
+ Cf )n(−∞) (4.3)
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The reduction in years of trial at fixed sample size is iteratively estimated by

modeling the disease progression rate as a function of trial duration, under the

simplifying assumption that the rate of disease onset is constant over the course

of trial period.

4.5 Result

We consider the three types of randomized two-arm primary prevention tri-

als illustrated in Figure 4.1: (1) conventional prevention trials that screen

potential participants using eligibility criteria based on a set of clinical variables,

(2) genetic enrichment prevention trials that screen participants using clini-

cal variables and genetic risk factors, and (3) biobank enrichment prevention

trials that identify potential participants with high genetic risk scores prior to

clinical screening. While we first evaluate the benefits of using genetic information

using simulations, we later use empirical data from previous studies, such as the

Age-Related Eye Disease (ARED) (Seddon et al. (2009)) and Whitehall II (Talmud

et al. (2010)) studies, to account for potential overlap between clinical and genetic

risk factors.

4.5.1 Effect of known risk variants on disease liability

We first evaluated the potential ability of GWAS variants to identify at risk

individuals using simulations. We considered risk variants identified by large-

scale meta-analyses for T1D (Barrett et al. (2009)), T2D (Voight et al. (2010)),

MI (Myocardial Infarction Genetics Consortium (2009)) and AMD (Chen et al.

(2010)) as robust genetic associations (see Table 4.1). Using published risk allele
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frequencies and effect sizes, individual genetic risk scores were simulated assuming

an additive model (See Methods for details). Figure 4.2 illustrates the distribution

of the genetic risk score for individuals with and without disease for each trait.

The distributions of the genetic risk scores in individuals with and without disease

are very similar for T2D and MI but quite different for AMD and T1D, where

a number of loci with large effect sizes have been described. These genetic risk

profiles depend on current knowledge of the genetic architecture of each disease

and can also be summarized as Receiver Operating Characteristics (ROC) curves

that describe our ability to distinguish individuals with and without disease using

genotypes. In addition to predictions based on published effect size estimates, ROC

summarized in Figure 4.3 also include predictions that account for uncertainty in

published effect sizes (Figure 4.3).

We next used simulations to predict the relative prevalence of disease in in-

dividuals with high and low genetic risk scores (Table 4.2). For AMD and T1D,

we estimate that selecting individuals with genetic risks in the top decile would

result in a ∼ 3 − 5 fold increase in disease prevalence. Selecting individuals with

genetic risks in the top percentile would result in a ∼ 5- to ∼ 13-fold increase in

prevalence. For T2D and MI, ∼ 1.5 − 2 fold increases in disease prevalence were

expected among individuals with in the top decile, whereas ∼ 2− 3 fold increases

in risk were expected among individuals with risks in the top percentile of genetic

risk.
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Table 4.1: A summary of genetic and treatment information for four disease traits.
The references we used for estimates of population prevalence are T2D:
(Das and Elbein (2006)), AMD: (Seddon et al. (2005)), T1D: (Hyttinen
et al. (2003)) and MI: (Nora et al. (1980)). The references we used for
GWAS or the meta analysis results are listed as T2D: (Voight et al.
(2010)), AMD (Chen et al. (2010)), T1D (Barrett et al. (2009)), and
MI (Myocardial Infarction Genetics Consortium (2009))
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Figure 4.2: Distribution of genetic risk scores from currently known risk variants
for four disease traits. The x-axis represent the genetic risk score with
respect to the individuals with the lowest risk genotypes. The y-axis
represents the fraction of individuals with disease based on their risk
score. The 95% confidence intervals account for variations in the odds
ratio estimates.
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Figure 4.3: Receiver Operating Characteristics curve of the genetic risk score from
known risk variants. Expected AUC represent area under the ROC
curve using expected odds ratio. The sampled AUC is calculated from
100 sets of sampled odds ratios accounting for confidence intervals
(CIs). Very pessimistic and optimistic AUC is computed from lower
and upper bound of 95% CI of odds ratio from each SNP, respectively.
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Table 4.2: Disease liability explained by currently known risk variants.

4.5.2 Utility of known risk variants in efficient design of prevention

trials

Next, we estimated the utility of genetic risk scores for trial design. We con-

sidered prevention trials for T1D, T2D, MI and AMD. In each case, we modeled

treatment effect, trial cost, and durations according to previous studies (Table

4.1). These simulations made two important simplifying assumptions. First, since

genetic association studies typically report the impact of individual risk alleles on

prevalence (rather than incidence), we assumed that the impact of genetic vari-

ants on disease incidence rates and on prevalence would be the same. Second and

more importantly, we also assumed that genetic risk scores and clinical covariates

would be associated with disease risk independently. To the extent that clinical

variables mediate the impact of genetic variants on disease risk, this assumption

will lead to optimistic predictions of performance for trials that use both genetic

and clinical covariates for enrichment. Our analysis of prospective data generated

by the AREDS (on AMD) (Seddon et al. (2009)) and Whitehall (on T2D) (Talmud

et al. (2010)) studies overcomes these limitations.

In our simulations, as individuals with higher risk were targeted, the incidence
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Figure 4.4: Changes in disease progression rate by the threshold of genetic risk
score. The x-axis represents the targeted proportion of individuals at
high genetic risk, and the y-axis represents the proportion of individ-
uals with disease onset within 3 years of trial period in placebo (Ctrl)
and Treatment (Rx) group. Dashed lines represent treatment effect as
the differences between two progression rates.

74



of disease gradually increased in both treatment arms, whereas the treatment effect

size only slightly increases (Figure 4.4). This increase in the disease incidence

translates into reduced sample size requirements (Figure 4.5). At the same time,

large increases in on-trial disease incidence require progressively larger samples to

be screened for clinical and genetic risk factors, increasing screening costs. The

optimal trial cost is determined by balancing these two tradeoffs. As shown in

Table 4.3 and Figure 4.5, our simulation suggests cost savings up to 11% for

T2D, 40% for AMD, 67% for T1D, and 13% for MI are possible when genetic

enrichment is used to complement clinical risk factors. For a fixed sample size,

genetic enrichment can reduce trial duration by 24% for T2D and MI, and 40−62%

for AMD and T1D.

4.5.3 Evaluation with experimental data

To complement these simulations, we applied our enrichment trial framework

to longitudinal datasets documenting incidence of two specific diseases - AMD

and T2D as well as clinical and genetic risk factors. This evaluation removes the

simplifying assumptions required in our simulations.
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Figure 4.5: Sample size and total cost of genetically enriched prevention trials
using currently known risk variants. X-axis represents the targeted
proportion of individuals at high genetic risk, and the left y-axis, cor-
responding to solid lines, represents sample size for a conventional
trial (red), on-trial sample size for a genetic enrichment trial (blue),
and screening sample size for a genetic enrichment trial (green). The
right y-axis, corresponding to dashed lines, represents the total cost of
the genetic enrichment trial given targeted proportion.
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Table 4.3: Sample size, cost, and trial duration of enrichment trials, simulated from published GWAS risk variants.
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Because both clinical and genetic risk scores are available in this empirical set-

ting, to precisely evaluate the additional benefits of genetic information, here we

consider (1) conventional trials following up all eligible participants, (2) preven-

tion trials focusing on individuals with high clinical risk scores based on clinical,

demographic, and environmental variables, and (3) prevention trials focusing on

individuals with high combined risk scores, incorporating both genetic and clinical

risks.

Age-related macular degeneration

A published cohort study of 1,446 individuals at high risk of advanced AMD

allows us to investigate our framework for this setting (Seddon et al. (2009)). Par-

ticipants were assayed for known genetic risk variants in addition to demographic

and environmental risk variables - age, gender, education, smoking history, and

baseline AMD grade. In total, 19% (279) of the subjects developed advanced AMD

(including unilateral and bilateral, and dry and wet types of advanced AMD),

within 6.3 years of entering the study. The advantage of combining clinical and

genetic risk compared to clinical risk only is reflected in area under the ROC curve

(AUC) (Rosner and Glynn (2009)) statistics. A predictive model based on clin-

ical variables alone resulted in AUC statistic of 0.757, while a predictive model

using combined genetic and clinical variables resulted in an AUC statistic of 0.821.

Among all risk variables considered, the baseline AMD grade was the strongest

predictor of advanced AMD. Among the 454 individuals with a baseline low AMD

grade of 2, only 8 (2%) of them developed advanced AMD during the trial period;

in contrast, among 992 individuals with a baseline high AMD grade of > 2, 271

(27%) developed advanced AMD during the trial period. To mimic a realistic

scenario for an AMD prevention trial from the cohort study, we considered a pre-
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vention trial using baseline grade ≥ 3 as inclusion criteria. We estimate that in

this subset of individuals, the AUC would be 0.637 using only clinical predictors,

and 0.743 with genetic and clinical predictors.

Based on these adjusted AUCs and the reported rate of disease onset for each

of the treatment groups (Seddon et al. (2005)), we estimated the sample size re-

quirements, trial cost and duration for evaluating the efficacy of zinc + antioxidant

treatment (Table 4.4). Our results show that, compared to a conventional trial re-

lying only on baseline AMD grade ≥ 3 as the inclusion criterion, enrichment based

on clinical risk scores from the demographic and environmental risk variables could

reduce trial cost by up to 15%, either by reducing sample size requirements by 24%

or by reducing the trial duration by 24% at a fixed sample size. Enrichment using

both clinical and genetic factors, can reduce trial cost by up to 33%, either by

reducing sample size requirements by 44% or by reducing trial duration by 36%

- corresponding to a substantial efficiency gains beyond enrichment using only

clinical characteristics.
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Table 4.4: Sample size, cost, and trial duration of enrichment trials based on experimental results (Seddon et al.
(2009); Talmud et al. (2010)).
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While simulation-based estimates using GWAS-based effect size estimates and

assuming independence of clinical and genetic risk factors suggested a potential

40% savings in prevention trial cost, this empirical analysis suggests a savings of

33% in prevention trial cost when combining genetic and clinical variables as risk

predictors. In this case, both estimates are similar suggesting that the assumptions

above do not qualitatively affect the conclusions of our simulation based analysis.

Type 2 diabetes

To empirically evaluate the efficiency of T2D prevention trials we used data

from the Whitehall II prospective cohort study. This longitudinal study recruited

a cohort of civil servants, 25 to 55 years old in central London, from 1985− 1988

and followed them until 2003− 2004. The detailed design and data analysis were

reported previously (Talmud et al. (2010)). Among 5, 535 participants, we selected

1, 916 pre-diabetic subjects with either impaired glucose tolerance (IGT) (7.8−11.0

mmol/dL) or impaired fasting glucose (IFG) level (5.6−6.9 mmol/dL) in the initial

phase or clinical examination to resemble subjects typically recruited in a type 2

diabetes prevention trial (Florez et al. (2006)).

Using the Framingham offspring T2D risk scores calculated only from clinical

variables (Wilson et al. (2007)), genetic risk scores calculated using 20 robustly

associated variants (Voight et al. (2010)), and risk scores calculated using both

clinical and genetic factors, we evaluated different strategies for trial enrichment.

Consistent with the previous study (Talmud et al. (2010)), we find that the genetic

risk scores alone do not effectively predict onset of T2D in this cohort (AUC: 0.52).

The Framingham T2D risk scores from clinical variables (AUC: 0.75) or combined

risk scores (AUC: 0.76) were much more informative in predicting progression of

diabetes among at risk individuals.
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In this case, we estimate that clinical risk-score based enrichment trials can

reduce the trial cost by 35%, sample size by 46%, or the trial duration by 37%

(compared to conventional trials using only IFG/IGT status as eligibility criteria).

We also estimate that, in this case, using combined risk scores that also include

genetic information would result in negligible additional benefits (Table 4.4). This

finding reflects our limited knowledge of the genetic variants contributing to T2D

risk (mirrored in their low AUC contribution) and is more pessimistic that the

estimate of an 11% cost saving from our simulations.

4.5.4 Biobank-driven prevention trial designs

We also simulated biobank-driven enrichment trials, which rely on a very large

set of individuals for whom genetic information is stored in a DNA biobank and

who have consented to being invited to participate in clinical trails. Given planned

biobanking efforts targeting > 100, 000 individuals, this approach may allow iden-

tification of individuals with very rare and very high-risk genotypes for modest

screening cost. We estimated the sample size, trial cost, and possible reduction

in trial duration when biobanks that were 100x larger than the planned on trial

sample sizes. In this case, individuals in top percentile of genetic risk might be

targeted (Table 4.3) and, except for very simple predictors like age, traditional

clinical risk factors would be ignored.

We estimate that such biobank-driven enrichment strategies might reduce the

trial cost by 41% for T2D, 58% for AMD, 82% for T1D and 41% for MI, when

combined with screening for clinical risk factors. These estimates correspond to

a range of 20% to 37% in cost savings beyond those available in standard genetic

enrichment trials.

82



4.5.5 Prospect of improved genetic risk prediction

To assess the impact of future improvements in genetic risk predictions, we

simulated enrichment prevention trials using hypothetical sets of risk variants that

might explaining 25% or 50% of the heritability (Wray et al. (2010)) for the four

disease traits (Table 4.5). In these simulations, the genetic enrichment prevention

trials of T2D and MI are estimated to achieve cost and trial size savings similar

to those available for AMD and T1D. These results suggest that more complete

catalogs of disease risk alleles may substantially increase the potential utility of

genetic information for trial enrichment.

4.6 Discussion

With rapid advances in high-throughput biological screening strategies, there is

great hope that genetic information will enable the design of more efficient clinical

trials and that further gains in efficiency may be provided by other genomic predic-

tors of disease (such as transcript levels, epigenomic modifications and proteomic

profiles). Here, we evaluated the potential benefits of using genetic information

for designing prevention trials and derive a framework for estimating the potential

cost savings when genetic information is used to identify at risk individuals for

inclusion in a trial.

Our results demonstrate that focusing on individuals with high genetic risk

may allow for reduced trial cost and duration. Currently, large benefits from

genetic enrichment trials are likely to be limited to diseases, such as AMD or

T1D, where variants accounting for a large fraction of the heritability have been

identified. However, future advances in genetic knowledge (driven by sequencing
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studies and other studies of rare variation, for example) should extend the utility of

genetic enrichment trials to broader sets of complex diseases, including conditions

for which genetic enrichment is currently unlikely to succeed, such as T2D or MI.

It is important to note that the value of genetic information is dependent on

the clinical variables available and the populations and timescale of interest. Re-

cent studies on the AMD risk assessment from AREDs subjects reported that the

improvement in AUC due to addition of genetic factors is considerably lower when

additional clinical variables such as the presence of large drusen, advanced AMD

in one eye, and family history are considered (Seddon et al. (2011)). When these

additional covariates were included, they report that overall AUC was consider-

ably increased, from 0.73 to 0.88, and exclusion of genetic factors only marginally

reduces the AUC from 0.88 to 0.87. Most importantly, adjusting for the clinical

variables, the estimated hazard ratio for CFH and ARMS2 alleles was substan-

tially reduced from 1.97 to 1.28 and from 2.21 to 1.56, respectively. This suggests

that much of the genetic risk may be manifesting in the presence of strong clinical

predictors, and when these clinical predictors are included in models of short-term

risk, there is limited additional predictive value in including genetic risk factors.

Our observation that very large gains in efficiency are possible when DNA

biobanks with genetic information on 100,000s of potential trial participants is

available is particularly interesting. In this setting, trials can focus on individuals

who carry very rare combinations of many risk alleles. For example, by focusing

on individuals in the top 1% of the genetic risk of T1D, T2D, AMD or MI, we

predict cost savings of 82%, 40%, 58% and 41%. If basic clinical information is

also stored in the biobank, the potential efficiency gains will be even larger.
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Table 4.5: Sample size, cost, and trial duration of enrichment trials, simulated from hypothetical risk variants
explaining 25% and 50% of heritability.

85



Our cost models assume a fixed cost of screening and treatment. They do

not allow for cost savings that may be possible in very large screening efforts;

or, conversely, for cost increases that might result from the necessity of extending

screening to additional sites. They also assume that genetic risk factors do not im-

pact treatment efficiency although that may not always be the case. Interestingly,

we note that the ratio of screening, genotyping and on-trial costs has a noticeable

impact on the potential benefits of genetic information for trial design. Since ge-

netic information potentially allows for smaller numbers of on-trial individuals,

its benefits are particularly important when the on-trial costs are large. For our

hypothetical AMD enrichment trials, an increase in on trial cost per subject from

$3, 500 to $20, 000 would mean that an enrichment strategy combining genetic and

clinical variables could enable a savings of 42% in cost (versus 33%).

Our simulations required important assumptions - particularly, the assumption

that clinical and genetic risk factors are independent. For T2D and AMD, we

were able to overcome this limitation by extending our analysis to also consider

empirical samples that included information on disease incidence as well as clinical

and genetic risk factors. While similar empirical assessments remain to be done for

MI and T1D, we predict that the outcome for MI will be similar to that for T2D

(where we conclude currently available genetic markers will typically have limited

utility), we expect the situation for T1D might be more similar to that for AMD

(where currently available genetic markers can already enable large cost savings).

Future improvements in modeling will benefit from estimates of the performance

of combined genetic and clinical risk scores in prospective studies.

Here, we focused on evaluating the utility of genetic information for enriching

prevention trials. However, we expect that the combination of genetic information
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and clinical trials will be a fertile area of research - including not just advances

in trial design, but also opportunities to use genetic variants to understand the

biology of drug response and adverse events. In cases where screening for clinical

risk factors is laborious and expensive, genetic risk scores may be used as filter

that focuses the clinical screening on at-risk individuals (an example might be anti-

body test response screening used to identify individuals at risk of developing T1D

(Orban et al. (2009)). Finally, for common diseases where the genetic architecture

is poorly understood, a proxy for a high genetic risk score might be the presence

of an affected first degree relative, such as a parent or sibling.

Our model allows estimation of trial cost and duration in a variety of en-

richment scenarios, including eligibility-criteria based on clinical factors, genetic

factors or their combination. While we haven’t investigated multi-arm trial de-

signs, our work can model the utility of biobank-driven enrichment (where genetic

information may be available for 100,000s of individuals) or of advances in genetic

information. We will make the code enabling others to evaluate cost, sample size

and time requirements for different trial designs available from our website.
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CHAPTER V

Conclusions

5.1 Summary

Clinical trials and genetics are two seemly disconnected fields in biomedical

research. In this dissertation, we have described and implemented methods on

efficient clinical trial design and accurate ancestry inference for exome sequence

samples.

In Chapter 2, we derived the sample size formula for quadratic inference func-

tions (QIF) in longitudinal design with dichotomous outcomes. We first introduced

the method – QIF – which is an improvement of generalized estimating equations

(GEE). We then presented the longitudinal logistic model and the detailed steps

of sample size and power calculation for QIF and GEE for either known and un-

known true correlation. We illustrated that QIF-based design demands less sample

size than the GEE-based design. We further studied the property of both sample

size formulas in relation to the number of follow-up visits and found that QIF is

more robust than GEE. We recommend QIF as the choice of statistical method

for longitudinal study designs.
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In Chapter 3, we proposed our method SEQMIX that can use the off-target low

coverage reads to accurately infer the local ancestry of exome sequenced admixed

individuals. We simulated African American samples using European and African

genomic templates from the 1, 000 Genome project. By varying the off target mean

coverage in the simulated African American sequence data, we verify that current

exome sequence data with ∼1x off target mean coverage is sufficient in deciphering

the ancestry blocks for populations that were admixed in recent history. Using two

sets of real African Americans data, we further validate that using SEQMIX on

exome data can derive ancestry estimates that are very similar to those from using

high density genotype array data.

In Chapter 4, we connect the two research areas clinical trial and genetics

studies by quantifying the benefits of using genetic information to design preven-

tion trial. We evaluate the utility – in terms of trial size, duration and cost – of

enriching prevention trial samples by combining clinical information with genetic

risk score to identify individuals at greater risk of disease. We use type I diabetes

(T1D), type 2 diabetes (T2D), myocardial infarction (MI) and age related macu-

lar degeneration (AMD) as examples to illustrate the potential and limitations of

using genetic data for prevention trial designs. These are diseases with different

genetic architecture: many markers are robustly associated the T2D and MI but all

have relatively small effect sizes; markers with large effect sizes have been identi-

fied for T1D and AMD. Our results illustrate settings where incorporating genetic

information could reduce trial cost or duration considerably as well as scenarios

where potential savings are negligible. This work shows that the benefit of genetic

information on clinical trials is highly dependent on the genetic architecture. We

also project that the benefits should increase as the list of markers grows.
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5.2 Relevance and Future work

This dissertation covers statistical methods on two distinct areas: efficient

longitudinal clinical trial design and whole genome sequencing studies. Our sample

size calculation based on QIF produces a more efficient longitudinal trial than one

based on GEE. We have provided the software QIFSAMS for free download at

http://www-personal.umich.edu/~pxsong. This calculator will be helpful for

trial practitioners in seeking reduction of cost and resources for the trials. Our

method SEQMIX, which takes advantage of the extremely low coverage off target

reads for accurate local ancestry inference, will be useful for anyone undertaking

exome or targeted sequencing studies, either to understand population history,

or to conduct disease gene mapping. Our trial enrichment framework provides a

general framework that can be used to evaluate the benefit of using genetic scores

in the clinical trial designs. This model can also be effectively used to assess other

types of scores either from combining different biomarkers or being derived from

ROC curves.

Future extension includes applying QIF for genetic studies of families as it can

be potentially useful in analyzing correlated phenotypes collected in genetic stud-

ies. SEQMIX can be extended to incorporate high density genotype data for better

resolution of the ancestry estimates. SEQMIX currently requires allele frequencies

and LD estimates for the reference populations and we could further explore the

options of eliminating this external information. In terms of incorporating ge-

netic score for clinical trial design, we did not take the correlation between genetic

and clinical variables into account. This shall be implemented in the future by

modifying the logistic model to incorporate such correlations.
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