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CHAPTER I

Introduction

Magnetic resonance imaging (MRI) is imaging of the magnetization distribution

developed by nuclei in the imaged object. Typically, water is selected as the target

nucleus for imaging due to its abundance in the living organism. MRI has been

increasingly used for its capability to provide superior contrast of soft tissues in

high resolution compared with other popular imaging modalities such as computed

tomography (CT), positron emission tomography (PET), and ultrasound. Roughly

speaking, MRI is composed of two sequential procedures. The first procedure, excita-

tion, is preparing the magnetization in the target imaging volume to be measurable.

The second procedure, acquisition, is recording the Fourier transform samples of the

prepared magnetization. One of the most important technical developments in MRI

for last few decades is parallel imaging. In the conventional imaging, full k-space

(Fourier space) measurements are measured sequentially with a single receiver coil.

On the other hand, in parallel imaging, drastic reduction in the read-out period be-

came possible because undersampled measurements recorded in parallel with each

receiver coil could be combined together to reconstruct the image without aliasing

artifacts.

Parallel excitation, which is simultaneous transmission of multiple radio-frequency
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(RF) pulses through multiple independent RF transmission coils, has drawn great

attention in the MRI community for past several years since its invention inspired

by parallel imaging. The intuition behind the initial development for the parallel

excitation was very analogous to that of the parallel imaging : using multiple coils to

accelerate the excitation process, particularly multi-dimensional excitation. In early

research, the main focus was mostly on developing a generic pulse design algorithm

for uniform excitation. The advantage of parallel excitation over single coil excitation

was often claimed with regard to its capability for undersampling excitation k-space,

which is quite analogous to the claim used for parallel imaging. On the other hand,

recent research tends to focus more on specific applications rather than on general

pulse design methods. Fat-water selective excitation, signal loss correction in blood

oxygenation level dependent (BOLD) functional MRI (fMRI), banding artifact cor-

rection in balanced steady-state free precession (SSFP) are such examples, and in

those cases, the capability of parallel excitation to efficiently tailor excitation pattern

to local off-resonance was exploited.

As briefly mentioned above, many theoretical pulse design methods and their

experimental results were published, but we still have several unsolved issues that

are very critical in deploying parallel excitation in practical and clinical cases. Such

problems include fast computation, joint optimization of RF and gradient waveforms,

and constraining specific absorption rate (SAR) for subject safety.

An MRI scanning procedure can start only after the RF pulses are prepared, so

the online computation is quite an essential condition for a pulse design method to

be practical. Unfortunately, in parallel excitation, we have to compute RF pulses for

each transmission coil, which naturally increases the computational demand. There-

fore, it is obvious that benefits of parallel excitation would be severely compromised
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without developing a fast computation scheme.

Joint optimization of RF pulse and gradient waveforms is another challenge in

parallel excitation. In excitation procedure, RF pulse and grdient waveforms to-

gether determines the excitation accuracy. However, in most parallel RF excitation

pulse design algorithms including the pioneering investigations [1, 2], only RF pulse

waveforms were optimized, and little attention has been paid to designing optimal

gradient waveforms. Therefore, it is quite likely that we can further improve the exci-

tation accuracy by developing a joint optimization scheme for RF pulse and gradient

waveforms.

In all RF pulse design algorithms, the RF pulse should be constrained by the power

deposition into the subject for the safety of the subject. Unfortunately, considering

RF pulse power constraints in the RF pulse design algorithm poses a very difficult

issue especially to parallel excitation. To estimate the RF power deposition pattern

at one location, one needs to know the deposited RF pulse pattern and the subject

specific parameters such as permitivity and conductivity of that location. Both

the RF pulse and the subject parameters are spatially varying, so they can not be

predicted in advance. Therefore, for the accurate estimation of local pulse power

deposition, they first need to be measured, and then complex computer simulation

should be followed using the measurements to compute the actual power deposition.

This process can take a very long time, and incorporating it into an RF pulse design

algorithm to give a feedback to modify the RF pulse is even more difficult. Therefore

considering the local RF pulse power deposition in the pulse design has still remained

as a considerably challenging issue.

In this research, we worked on solving the first two issues mentioned above : fast

computation and joint optimization. Particularly, we focused on the pulse sequence
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where trains of weighted slice-selective RF pulses interleaved by in-plane gradient

blips are transmitted. In this pulse sequence, the number of unknown parameters

for the RF and gradient waveforms are reduced significantly compared to the con-

ventional pulse design methods that discretize the RF pulse and gradient waveforms

with a few micro seconds sampling time, yielding thousands of samples to compute.

Also, the size of the excitation pattern considered in the optimization decreases by a

large amount since the guaranteed slice-selectivity of the pulse sequence allows us to

consider only the selected volume, whereas in the conventional method, all volume

within the territory of the transmission coils should be considered. We introduce a

set of algorithms to jointly optimize the RF pulse and gradient waveforms for the

proposed pulse sequence, and demonstrate their effectiveness mainly by computer

simulation.

The chapters after this introduction are organized as following. In chapter II, the

background about general MRI and MRI parallel excitation is briefly described. In

chapter III, a basic application of parallel excitation for pseudo-continuous arterial

spin labeling (PCASL) is presented. In chapter IV and V, two applications of our

joint pulse design method in a small-tip angle domain are covered together with

simulation results and adaptations specific to each application. In chapter VI, a large

tip-angle RF pulse design method is proposed and simulation results for the uniform

excitation are presented. Finally chapter VII presents summary of our research and

a list of future work.



CHAPTER II

Background

2.1 MRI excitation overview

2.1.1 MRI in general

Magnetic Resonance Imaging(MRI) produces an image of magnetization devel-

oped by nuclear spins. Quite a few nuclei are capable of developing magnetization,

but only several nuclei are practical useful. The most typical target for MRI in the

clinical setting is the proton(1H) because of its abundance in the living organism in

the form of water(H2O). The net magnitude of magnetization in a unit volume is

proportional to the proton density in the volume, so contrast of an MRI magnitude

image depends on the proton density.

MRI scanning consists of two sequential procedures, which are excitation and ac-

quisition. In the acquisition step, Fourier transform samples of the transverse(xy

plane) magnetization in the target object are measured. However, the initial mag-

netization is relaxed along the main field aligned perpendicular to the transverse

plane, leaving no measurable portion of magnetization in the beginning. Therefore,

the magnetization in the imaging region of interest should be tipped down toward

the transverse plane prior to the acquisition step. This tipping process is called

excitation.

5
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2.1.2 MRI excitation

To tip the magnetization down on the transverse plane, we use the principle

that, in the presence of an external magnetic field, the component of magnetization

orthogonal to the direction of an applied magnetic field precesses around the magnetic

field. The quantitative description of this phenomenon is the Bloch equation [3]:

(2.1)
dM(x, y, z, t)

dt
= M(x, y, z, t)× γB(x, y, z, t),

where x,y,z are spatial coordinates and t is a time coordinate. M and B are

both 3D spatial vectors, so they have x,y,z directional components. For example,

M(x, y, z, t) = (Mx(x, y, z, t),My(x, y, z, t),Mz(x, y, z, t)). γ is the nuclei depen-

dent gyromagnetic ratio, and it is 42.58 MHz/T for the proton. The precession

frequency of the magnetization, ω, is also determined from the Bloch equation, which

is ω = −γB.

Figure 2.1: An example of tipping by magnetization precession around an external magnetic field,
B, aligned along x axis. Note that the tipping can be up or down depending on the
direction of both the magnetization and the B field.

In MRI, the net B field applied to the object consists of 3 different components:

B0 main field, linear gradient fields, and B1 field. The B0 main field is a very
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strong static magnetic field along the longitudinal axis that is used to align randomly

oriented initial magnetization along it. The linear gradient fields are also aligned

along the longitudinal axis, but its strength varies linearly along each spatial axis. For

example, x-directional gradient field, Gx, is modeled asGx(x, y, z, t) = (0, 0, xGx(t))

where x, y, z are spatial coordinates for x, y, z axis, Gx(t) is the x gradient waveform,

and t is a time coordinate. Unlike the other two magnetic fields, the B1 field is

magnetic field well approximated to have only x and y directional components, and

often called the RF field. In Figure 2.1, only B1 field is applied without B0 main field

or gradient fields for a simple demonstration. However, the net B field in most MRI

has both the longitudinal and transverse components as in Figure 2.2. For example,

the net B field at a spatial location (x, y, z) at time t is modeled as

(2.2) Bnet(x, y, z, t) = (Re(b(t)), Im(b(t)), B0 + xGx(t) + yGy(t) + zGz(t))

where b(t) is the RF field waveform(or RF pulse waveform), Gx(t), Gy(t), Gz(t) are x,

y, and z directional gradient waveforms. As soon as the magnetization comes to have

a transverse plane component from tipping by the RF pulse, it also starts to precess

around the longitudinal axis because of the B0 field. The precession frequency around

the B0 field is much higher than that around B1 field, for |B0| ≫ |B1|. If the RF

pulse remains static, the magnetization may oscillate between the first and the second

example in Figure 2.1 yielding virtually no tipping at all. This indicates that the

precession rate of the transverse magnetization around the B0 field and the RF pulse’s

phase change along with time are closely related regarding the tipping direction of

the magnetization. For example, to consistently tip down the magnetization in one

direction, the resonance frequency of the transverse magnetization and the frequency

of the RF pulse should be same.
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Figure 2.2: An example of no net tipping. I) The initial magnetizationM gets tipped down resulting
inM′. II) The transverse component ofM′ precesses around the main field B0 resulting
inM”. III)M” gets tipped up by theB1 field, yielding no net transverse magnetization.
The actual trajectory of the magnetization is more complex than what’s explained
above, because both B1 and B0 fields are continuously applied in time, .

2.1.3 MRI excitation pulse design problem

The excitation pulse design problem is defined as determining both the RF pulse

and linear gradient waveforms to create a desired magnetization pattern. Mathe-

matical formulation of the problem is as followings.

• Unknown input to determine

- RF pulse waveform : Complex valued b(t).

- Linear gradient waveforms : Real valued Gx(t), Gy(t), Gz(t).

t is a time coordinate ranging from 0 to T , and T is the length of RF pulse and

gradient waveforms. T may be a requirement from the problem specification but

often is a design choice though in most cases, a shorter T is preferred to reduce the

total imaging time.

• Desired output

Magnetization pattern at time T : M(x, y, z, T ).

• Input-output relationship
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Bloch equation

Initial condition of magnetization : M(x, y, z, 0)

• Constraints

RF pulse : maximum absolute amplitude and power is limited.

Linear gradients : maximum absolute amplitude and maximum absolute first order

derivative (so called slew rate) are limited.

For many excitation pulse design problems, the initial condition M(x, y, z, 0) is

(0, 0,M0(x, y, z)), and the desired output M(x, y, z, T ) is (M0(x, y, z) sin θ(x, y, z),

0, M0(x, y, z) cos θ(x, y, z)) where θ is called the tip angle(or flip angle), the angle

between the initial magnetization and the final tipped magnetization. In that case,

we seek to determine the RF pulse and gradient waveforms to make θ uniform in

the imaging region of the interest, and zero outside the imaging region of interest.

For example, θ(x, y, z) = θ0 if (x, y, z) ∈ R, and 0 otherwise where R is the set of

coordinates for the imaging region of interest. In a typical slice-selective 2D imaging,

R is defined to be
{
(x, y, z)|rect

(
z−z0

slice thickness

)
= 1

}
as in Figure 2.3. There are

also other MRI applications where the problem setting and the required output

are different from the above. For example, inversion pulse design, refocusing pulse

design, complex pattern excitation pulse design, and magnitude-optimized pattern

excitation pulse design are such cases.

2.2 Brief review on early MRI excitation pulse design methods

2.2.1 A naive analysis for the 1-D selective excitation problem

As we see in the Figure 2.2, it was the precession of transverse magnetization

that prevented magnetization from tipping consistently down toward the transverse

plane. A simple solution to this problem is to make the RF field precess around the
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Figure 2.3: A slice selective excitation for 2D imaging. z0 is the slice center

B0 field in the same rate with the transverse magnetization. The analysis of the

magnetization precession trajectory becomes much easier in the rotating frame of

reference. In the rotating frame, x and y coordinate axes are rotating around the

z axis at the same frequency with the transverse magnetization. This makes the

effective B0 field zero, for the transverse component is not precessing in the rotating

frame. If the RF pulse is also rotating at the same frequency, its phase remains the

same in the rotating frame. Because the phase of the RF field and the transverse

magnetization remain the same, the magnetization is consistently tipped down as

in the first example of Figure 2.1. If the precession frequency of the transverse

magnetization is very different from that of the RF pulse, then magnetization would

not be tipped down as in Figure 2.2.

Therefore, the frequency component of the RF pulse and the precession fre-

quency(or resonance frequency) of the transverse magnetization determines whether

tipping happens effectively or not. The resonance frequency of the transverse mag-

netization can be spatially controlled using linear gradients, and by matching the

frequency spectrum of the RF pulse to the resonance frequency range of the selected
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Figure 2.4: An example of rotating frame. The B1 field rotating around B0 field at the frequency
ω remains static in the rotating frame of the frequency ω

region, a simple one dimensional excitation can be achieved. For example, if a static

z-gradient, Gz, is on, the resonance frequency of the transverse magnetization is de-

termined as ω(z) = γB(z) = γ(B0 + zGz). If a slice ranging from −z0 to z0 is to

be excited, then the frequency spectrum of the RF pulse should be uniform range

from ω(−z0) to ω(z0), which implies that the resulting RF pulse envelope would be

in a sinc shape. Though this is a very rough qualitative analysis because the Bloch

equation is not linear with respect to the RF pulse, it works surprisingly well in most

practical cases. In fact, to achieve 1-D slice selective excitation, most clinical MRI

scanners typically use an RF pulse of fixed bandwidth and the desired slice thickness

is achieved by matching the resonance frequency range of the selected slice to that

of the RF pulse.

2.2.2 Non-iterative pulse design methods in a small tip angle domain

Jaynes [4] and Hoult [5] independently showed that Bloch equation could be ap-

proximated as a linear equation with respect to the RF pulse when the initial mag-

netization is fully relaxed, and the tip angle is small enough that sin(θ) ≃ θ. Their

analyses were based on a so-called perturbation theory in physics. The linearized
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Figure 2.5: The spectrum of the RF pulse and the resonance frequency range of transverse magne-
tization in a simple 1D slice selective excitation

equation indicated that the Fourier transform of the RF pulse is the excited trans-

verse magnetization pattern as in the following equation.

(2.3) Mxy(z) = iM0e
−iγzGz(t)

∫ T

0

b(t)eiγzGz(t)dt

Mxy(z) is the transverse magnetization at z, b(t) is the RF pulse waveform, T is

the length of the RF pulse, and M0 is the fully relaxed initial magnetization. The RF

pulse to create a rectangular slice profile as in Figure 2.5 was determined to be the sinc

pulse according to Eq.2.3. However, these methods were limited to one dimensionally

selective excitation and were valid only in a small tip angle domain. Pauly [6] later

presented a k-space analysis of selective excitation by extending the linearization of

Bloch equation to describe multidimensional excitation. This method also inherited

the assumption of small-tip angle excitation, but provided a more generalized view in

designing both RF pulse and gradient waveforms. Pauly’s analysis showed that the

transverse magnetization pattern and the RF pulse had a multi-dimensional Fourier

transform relationship as following.
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First, a spatial frequency vector k(t) is defined as k(t) = −γ
∫ T

t
G(s)ds where

G(s) is a vector of linear gradient waveforms, and T is the length of the RF pulse

and the linear gradient waveforms. For example, G(t) = (Gx(t), Gy(t), Gz(t)). Then,

we have

(2.4) Mxy(r) = iγM0(r)

∫ T

0

b(t)eir·k(t)dt,

where Mxy(r) is a transverse magnetization at r, which is a vector containing spatial

coordinates. For example r = (x, y, z). In Eq.2.4, it is observed that k(t) forms a

sampling trajectory of the spatial frequency space, while the traversed spatial fre-

quency components are weighted by the samples of the RF pulse. One important

contribution of the above analysis is that it enabled a k-space(or Fourier space) in-

terpretation in the RF pulse and gradient waveform design. In other words, while

gradient waveforms form the sampling trajectory in the k-space, RF pulses deposit

the associated Fourier samples of the excitation pattern. Therefore an optimal k-

space trajectory should traverse the k-space regions where corresponding k-space

samples of the desired excitation pattern have large values to achieve high excita-

tion accuracy. The optimized k-space trajectory could be easily translated to linear

gradient waveforms later. Several multidimensional excitation pulse design methods

based on using this k-space analysis [7, 8] were proposed. In these methods, the

k-space trajectory was determined first, and the RF pulse waveform was computed

by sampling Fourier transform values along the k-space trajectory and weighting

them with the density compensation function. The density compensation was ap-

plied to correct for the non-uniform sampling density of the k-space trajectory as in

the conjugate phase method [9] for the image reconstruction.
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2.2.3 Iterative pulse design methods in a small tip angle domain

An iterative pulse design method based on the small tip angle excitation for-

mulation was proposed by Yip et al. [10], and it was applied to the signal loss

problem in functional MRI [11]. In the iterative method, the RF pulse waveform

was decomposed into sequential time samples using a train of Dirac impulses with

a sampling interval of ∆t seconds, and the desired excitation pattern was uniformly

sampled in the spatial domain. This procedure converted the continuous small tip

angle approximation equation in Eq. 2.4 into a discrete matrix-vector equation as

following.

(2.5) m ≃ Ab,

where m contains the samples of the excited transverse magnetization pattern over

a uniform Cartesian sampling grid, b is a vector containing time samples of the RF

pulse, and A is a system matrix encoding the Fourier kernels determined by the

k-space trajectory. For example, the elements of the matrix A, amn is defined as

(2.6) amn = iγ(rm)∆teirm·k(tn)

where tn is the n-th sample time point, and rm is the m-th spatial sample point. The

off-resonance frequency due to magnetic field inhomogeneity can be easily incorpo-

rated into the system matrix, and in that case, amn is modified as following.

(2.7) amn = iγM0(rm)∆teirm·k(tn)+i∆ω(rm)(tn−T )

where ∆ω(rm) is the off-resonance frequency at rm.
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Using this model, an optimization problem was formulated with a cost function

consisting of an excitation error term to enforce a small excitation error and a reg-

ularizer term to consider other constraints about the RF pulse. The cost function

was given as

(2.8) b̂ = argmin
b

{
∥Ab− d∥2W +R(b)

}
where d is a vector including the samples of the desired excitation pattern, and W is

a diagonal matrix indicating the excitation region of interest. R(b) is a regularizer

that can serve different purposes depending on the constraint of the problem. For

example, to reduce the total RF power deposition, R(b) = λ∥b∥2 can be used where

λ is a parameter that the designer should choose to balance the excitation accuracy

and the RF pulse power deposition.

In the iterative method, it becomes easier to employ a non-Cartesian k-space

trajectory such as a spiral trajectory than the previous k-space domain methods

[7, 8], for there is no need to explicitly compute the density compensation function.

Also, it is flexible enough to adopt various factors in the cost function. For example,

magnetic field inhomogeneity during excitation, spatial masking for the don’t-care

region in the excitation pattern, and net RF power deposition are easily included

by either modifying the elements of the system matrix or adding a regularization

term to the cost function as in Eq.2.8. It is very hard or impossible to compute the

optimal RF pulse considering these conditions if we use the non-iterative methods.

The iterative method applied in [11] depended upon inverse Fourier transform

of the desired pattern to determine the optimal k-space trajectory. However, one

can not use the inverse Fourier transform approach in case that the desired pattern

includes a don’t-care region. For example, in case of exciting a multidimensional
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pattern in a brain, the desired excitation pattern is well defined only inside of the

brain whereas the air space surrounding the brain has no magnetization and thus the

excitation pattern may have any value in that region. In this case, the inverse Fourier

transform can not be taken because the excitation pattern is not well determined

everywhere. To avoid the direct Fourier inversion, several methods were proposed.

Suwit et al. [12] modeled the excitation pattern with a quadratic function, and

designed the k-space trajectory based on that. Yip et al. [11] extrapolated the

excitation pattern to the don’t-care region with smoothness penalty and took the

inverse Fourier transform of it.

In the aforementioned methods, optimization was mainly performed to obtain an

effective RF pulse waveform, and less effort was invested in designing an optimal

k-space trajectory. In attempt to further improve the excitation accuracy, several

joint design methods for both RF pulse waveform and gradient waveforms have been

recently developed. Yip et al [13] presented an optimization scheme that alternates

minimization between the RF pulse and the parameterized k-space trajectory. In the

method, the k-space trajectory was decomposed with a set of basis function, so the

optimization of the k-space trajectory reduced to determining optimal parameters for

the bases. Then, it repeated optimization of the k-space trajectory and the RF pulse

until there is no significant improvement. At each iteration, the k-space trajectory

was first fixed and the RF pulse was optimized using conjugate gradient algorithm,

and then for the updated RF pulse, the parameters of the k-space trajectory was

optimized using gradient descent algorithm. The cost function was non-linear with

respect to the parameters of the k-space trajectory, so the gradient descent algorithm

was used instead of the CG algorithm. This method was applied to determine optimal

phase encoding locations of the EPI trajectory and showed improved performance,
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though it occasionally suffered from divergence of the solution. Recently, Zelinski et

el [14] recast the joint design problem as sparse approximation problem of the desired

excitation pattern with a discrete set of Fourier bases, and presented a solution

using basis pursuit algorithm [15]. They later extended the method to the parallel

excitation pulse design [16]. Their method is very closely related to our proposed

work, so the details would be covered in the Section 2.3.4.

All the pulse design methods introduced above are based on the small tip angle

approximation, so they are limited to the small tip angle RF pulse design case. Many

large tip angle excitation pulse design methods [17, 18, 19, 20] have been presented,

but they all use predetermined gradient waveforms and optimized only the RF pulse.

Because the k-space analysis is not valid in the large tip angle domain, the typical

small tip-angle domain approach that first designs the k-space trajectory and then

derives the gradient waveforms from it becomes much less insightful in the large tip

angle excitation. The direct optimization of the linear gradient waveforms for the

large tip angle excitation pulse design is still an open problem.

2.3 MRI parallel excitation

2.3.1 Motivation

In parallel excitation, multiple independent RF transmission coils are employed to

simultaneously transmit multiple RF pulses. Because most of commercially available

scanners are equipped with only a single coil RF transmission system, running par-

allel excitation definitely requires integration of additional hardware and RF pulse

design software. Though this overhead is not so trivial, there are some promising

applications that motivated the use of parallel excitation. One application is uni-

form excitation in high field MR imaging. In typical MRI scanning, volume coils

such as a head coil array are assumed to have uniform sensitivity over the subject
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such that uniform excitation can be performed with a single coil transmission sys-

tem. However in high field greater than 3T, there have been many reports showing

severe B1 field inhomogeneity of single RF transmission system. The inhomogeneity

of transmission coil’s sensitivity originates from various factors. One source is dielec-

tric resonances due to shorter RF wavelength in high B0 field [21]. RF attenuation

by tissue conductivity [22, 23] is another reason for the B1 field inhomogeneity in

high field MR imaging. The absence of a single coil with uniform sensitivity in high

field naturally gave rise to the idea of combining multiple transmission coils together

to synthesize a uniform RF field, which can be done by parallel excitation. An-

other application is non-uniform, localized excitation. This application exploits the

fact that the transmission coils adopted in parallel excitation usually have localized

sensitivity. Therefore, it becomes much easier with parallel excitation to obtain a

localized variation in the excitation pattern compared to the single coil transmission

that depends entirely upon the linear gradients to create such a spatial variation.

Applications with this type of intuition are mostly related with off-resonance cor-

rection. For example, water selective excitation in body imaging suffers from local

off-resonance shifting the resonance frequency of the fat to that of water or vice

versa, resulting unwanted excitation of fat. With parallel excitation [24, 25], each

transmission coil can transmit an RF pulse whose carrier frequency is adjusted to

compensate the off-resonance frequency within its sensitivity territory can more ef-

fectively solve the issue than a single coil transmission case. There are also other

applications with parallel excitation about off-resonance correction [26, 27, 28, 29].

2.3.2 Pioneering parallel excitation RF pulse design methods

Parallel excitation was first proposed by Katscher [1] and Zhu [2] inspired by paral-

lel imaging [30, 31, 32], which accelerates image acquisition by using multiple receive



19

coils with spatially localized sensitivity. In parallel imaging, combining undersam-

pled k-space data from each receive coil allowed reconstructing the image without

an aliasing artifact. Because the image acquisition speed was largely bounded by

the time taken in traversing the readout k-space trajectory, parallel imaging was

a breakthrough in attempt to reduce the image acquisition time. Since the multi-

dimensional excitation in a small tip angle domain was also governed by Fourier

transform as image reconstruction, the excitation pulse and gradient waveform length

was also determined by the time taken in traversing the excitation k-space trajectory.

Katscher [1] and Zhu [2] demonstrated that by using multiple RF transmission coils

with localized sensitivity, an undersampled k-space trajectory can be used to excite

a multidimensional pattern. In [2], it was also shown that the increased degree of

freedom due to the increased number of pulses could be exploited to decrease RF

power deposition in the imaging object.

Later, an iterative parallel excitation pulse design method [33], which is a gener-

alized version of [10] for parallel excitation was proposed to improve the pulse design

process. The small tip angle approximation in Eq.2.4 was modified to reflect that the

net RF field reaching at a spatial location r is superposition of RF pulses transmitted

from each coil. For example, bnet(r, t) =
L∑
l=1

Sl(r)bl(t) where bnet(r, t) is the net RF

field at a spatial location r at time t, Sl(r) is the l-th transmission coil’s sensitivity,

bl(t) is the RF pulse waveform of the l-th coil, and L is the total number of coils By

replacing b(t) in Eq.2.4 with bnet(r, t), we obtain the small tip angle approximation

equation for the parallel excitation as following.

(2.9) Mxy(r) = iγM0(r)
L∑
l=1

Sl(r)

∫ T

0

bl(t)e
ir·k(t)dt

The discrete approximation of the above equation in a matrix-vector form can be
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acquired in a similar manner as in [10], and the resulting equation is presented in

Eq.2.10.

(2.10) m ≃
L∑
l=1

SlAbl = Afullbfull

Afull is horizontal concatenation of matrices, SlA, and bfull is a vertical concate-

nation of vectors, bl. Sl is a diagonal matrix containing samples of the l-th coil’s

sensitivity, and bl is a vector composed of the time samples of the pulse from the

l-th coil. A is the system matrix same as what is defined in Eq.2.5. The iterative

parallel RF excitation pulse design has several advantages over [1]. For example, as

in the single coil excitation, the iterative method automatically takes care of density

compensation for a non-Cartesian k-space trajectory. Also, additional factors like the

magnetic field inhomogeneity, power regulation, and spatial masking or weighting in

the region of interest are easily incorporated into the pulse optimization process. The

cost function for the optimization is defined by simply replacing A and b in Eq.2.8

with Afull and bfull respectively as following.

(2.11) b̂full = argmin
bfull

{
∥Afullbfull − d∥2W +R(bfull)

}
2.3.3 Practical issues

Even though parallel excitation showed great potential in applications where

multi-dimensional pulses are effective [11, 16, 24, 26, 27, 29, 34, 35] it faced a few

important issues to solve before being deployed in clinical settings. First, it is com-

putationally more demanding than the single coil excitation simply because there are

more parameters to compute. The MRI scanning procedure can not start until RF
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pulses are prepared, so a pulse design method becomes feasible only if the method

runs quickly. Unfortunately, the on-line computation requirement becomes harder

to meet for the parallel excitation. In most parallel excitation design methods, it is

assumed that the transmission coil sensitivities are known, which, in fact, need to

be measured by scanning the object. Therefore, for most MRI scans using parallel

excitation, a prescan step is required to acquire the sensitivity pattern, and then the

pulse computation gets started. Moreover, the parallel excitation pulse computation

may take longer than the single coil case because there are more pulses to compute.

It is obvious that the gains from parallel excitation would be severely compromised

as the sensitivity mapping and pulse computation takes longer.

Second, early parallel excitation pulse design methods [1, 2, 33] focused on opti-

mizing the pulses with a predetermined k-space trajectory, definitely leaving a room

for further improvement in excitation accuracy. They only showed that undersam-

pling k-space trajectory is possible but did not present a method to construct an

optimized k-space trajectory. The inverse Fourier transform approach for the single

coil excitation is not applicable to the parallel excitation because the final excitation

pattern is not a direct Fourier transform of of a single RF pulse as we see in Eq.2.10.

Recently, Zelinski et al. [16] proposed a method to determine the optimal k-space

trajectory. The method is based on sparse approximation theory, and a generalized

version of the previous method for single coil excitation [14]. This method is closely

related to what we propose in this report, so the details would be covered in the next

section.

Third, controlling both global and local RF power deposition is still a problem of

large interest. Specific Absorption Rate(SAR) is the measure of how much energy is

absorbed in a unit volume of the target object when a radio frequency electromagnetic
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field is transmitted to it. There is a regulation on the maximum SAR allowed in MRI

scanning, so it is essential for the RF pulse design method to produce pulses meeting

the specified condition. [2] showed that extra degree of freedom given by the increased

number of RF pulses can be used in the pulse optimization to reduce the total power

deposited by the RF pulse. In [2], the average RF pulse power was modeled as

b′Fb, where b is a column vector containing time samples of RF pulses and F is a

matrix relating the RF pulse samples to the real electric field. It was reported that

the RF pulse power was decreased by 38% compared to the optimization without

power regularization. However, the method did not present a solution about how to

control local SAR, for which object dependent factors should be considered. Imaging

with high field MRI scanner that provides much improved SNR unfortunately suffers

more from SAR because the RF power deposition tends to increase as the main field

becomes stronger. To make the parallel excitation applicable in a more practical

setting, a few solutions have been proposed to analyze and solve the SAR issue, but

the problem still remains to be resolved.

In this thesis, our main focus is to solve the first and the second issue. Briefly

speaking, our goal is to develop a fast iterative method to jointly optimize both RF

pulse and linear gradient waveforms. To accelerate the RF pulse computation, we

adopted the basis pulse approach initiated by [34]. To optimize the excitation k-

space trajectory, we followed the sparse approximation theory with a discrete set of

bases proposed by [14]. Their methods would be briefly reviewed in the next section.

2.3.4 Parallel excitation pulse design with slice selective bases for the echo-volumar
trajectory

In the conventional iterative pulse design [10], the RF pulse waveform is decom-

posed into a train of time samples of a very short sampling interval, so it is not
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unusual that the number of RF pulse samples to compute is in the order of thou-

sands. For example, in GE 3T Signa Excite Scanner (GE Healthcare,Milwaukee, WI,

USA), the time sampling interval of the RF pulse waveform is 1-4 us while many

RF pulses may be longer than 5 ms. In [10], fast non-uniform FFT [36] was used

to efficiently handle a large sized matrix-vector multiplication performed during the

optimization, but the computation time still remained an issue in the parallel exci-

tation due to the increased number of pulse parameters [13]. Also, spatial sampling

of the desired excitation pattern increases the dimension of the problem particularly

in the multi dimensional excitation. For example, for 3D spatial excitation, the ex-

citation pattern should cover a broad range of the target object volume covered by

the sensitivity of RF transmission coils. It is very obvious that the reduction of the

problem dimension could decrease the complexity of the problem and the computa-

tion time would definitely benefit from it. Zhang et al. [34] proposed a solution to

this problem by decomposing the RF pulse into a set of slice-selective basis pulses in

conjunction with using an Echo-Volumar(EV) k-space trajectory [12].

The echo-volumar trajectory is composed of several kz-lines sampling kx-ky plane

as in Figure 2.6. The sampling location of kx-ky plane is often called a phase en-

coding(PE) location or a spoke location. Fast oscillation along the kz axis allows

achieving a rapidly changing excitation pattern along the z-axis while sampling kx-

ky plane may produce a slowly varying pattern along the x-y plane. Therefore it is

suitable in the application where the desired excitation pattern is in a thin slice with

a smooth variation in the in-plane direction. The main idea in [34] was to deposit

a single slice-selective pulse along each kz line and to determine the complex weight

for each basis pulse. First of all, this approach reduced the problem dimension of

the RF pulse parameters by two to three orders of magnitude, because the RF pulse
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is now parameterized with a few complex weights instead of thousands of time sam-

ples. Also, a huge reduction in the dimension of the sampled excitation pattern was

achieved because the slice-selectiveness of the basis pulse guaranteed slice-selection

in the resulting excitation pattern, and thus spatial sampling outside the selected

volume can be omitted.

Figure 2.6: An example of Echo-Volumar k-space trajectory with slice-selective basis pulses. In the
sample trajectory 3 kz lines are used while along each kz line, slice-selective sinc pulses
are deposited to create a rectangular slice profile. Here a linear combination of shifted
basis pulses are transmitted, but in [34] only one sinc pulse is transmitted along each
kz line.

Suppose (kxn, kyn) is the n-th phase encoding location, and the EV trajectory

has N phase encoding locations. Under the framework of using the EV trajectory

and depositing a single slice selective basis pulse per each kz line, the small tip

approximation equation for a single coil transmission disregarding T1,T2 relaxation

and off-resonance can be rewritten as
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Mxy(r) = iγM0(r)

∫ T

0

b(t)eir·k(t)dt(2.12)

= iγM0(r)
N∑

n=1

∫ Tn+1

Tn

w(n)bn(t)e
ir·kn(t)dt(2.13)

= M0(r)
N∑

n=1

w(n)eixkxn+iykyn

(
iγ

∫ Tn+1

Tn

bn(t)e
izkzn(t)dt

)
(2.14)

= M0(r)
N∑

n=1

w(n)eixkxn+iykynp(z)

= M0(r)p(z)
N∑

n=1

w(n)eixkxn+iykyn .(2.15)

where Tn and Tn+1 are the starting and the ending time of the n-th kz line, bn(t)

is the basis pulse transmitted along the n-th kz line, w(n) is the complex weight

for bn(t), and p(z) is the slice profile determined by the basis pulse. Eq.2.12 is

decomposed into a sequential series of a time segment during which one kz line is

traversed, yielding Eq.2.13. For each segment, the in-plane frequency(or the phase

encoding location) is fixed, so they are pulled out of the integral and result in Eq.2.14.

In Eq.2.14, the integral is basically one-dimensional Fourier transform of the basis

pulse weighted by a scaler, w(n). The integral term, iγ
∫ Tn+1

Tn
bn(t)e

izkzn(t)dt, reduces

to p(z) regardless of n, and thus the common slice profile is pulled out and finally we

obtain Eq.2.15. Note that the summation is similar to 2D inverse Fourier transform.

If the selected slice is thin enough to ignore the through-plane variation of the coil

sensitivity, then the coil sensitivity S(x, y, z) can be approximated as S(x, y, z) ≃

S(x, y, z0) = S ′(x, y) where z0 is the slice center. Then we can extend Eq.2.15 to

the parallel excitation case as

(2.16) Mxy(x, y, z) = M0(x,y, z)p(z)
L∑
l=1

S ′
l(x, y)

N∑
n=1

wl(n)e
ixkxn+iykyn ,
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where S ′
l(x, y) is the l-th coil’s sensitivity and wl(n) is the weight of the n-th basis

RF pulse transmitted from the l-th coil. This method was proposed to solve the B1

field inhomogeneity problem where the desired excitation pattern is a uniform thin

slice. However, [34] did not provide a general strategy on how to optimize the phase

encoding locations for a desired pattern with an arbitrary in-plane variation.

The optimization of PE locations in the EV k-space trajectory with parallel ex-

citation was later presented by [16] based on the algorithm developed for the single

coil excitation [14]. Suppose the desired excitation pattern d is a 3D thin volume

expressed as p(z)din(x, y) where p(z) defines a slice profile along slice-select direc-

tion, and din(x, y) defines the in-plane excitation profile. For example, in typical

slice-selective excitation, p(z) is a rect function and din(x, y) is 1 in the Region Of

Interest(ROI) and don’t care outside the ROI as in Figure. 2.7

Figure 2.7: An example in-plane excitation pattern for a round-shaped object. There is no re-
quirement for the excitation pattern outside the object support(ROI), so it’s marked x
meaning ”Don’t Care”.

If the basis pulse is chosen to match the required slice profile, p(z), the joint
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optimization for both RF pulse weights and the PE locations can be formulated as

min
wl(n), kxn, kyn

∥d− p(z)
L∑
l=1

S ′
l(x, y)

N∑
n=1

wl(n)e
ixkxn+iykyn∥2

= min
wl(n), kxn, kyn

∥p(z)din(x, y)− p(z)
L∑
l=1

S ′
l(x, y)

N∑
n=1

wl(n)e
ixkxn+iykyn∥2

≡ min
wl(n), kxn, kyn

∥din(x, y)−
L∑
l=1

S ′
l(x, y)

N∑
n=1

wl(n)e
ixkxn+iykyn∥2(2.17)

Because the cost function is not linear with respect to the phase encoding lo-

cations, performing continuous optimization on the phase encoding locations is a

very tough problem as shown in [13]. One important conceptual contribution that

[14] has made is to discretize the kx-ky space to form a set of candidate PE lo-

cations. The maximum frequency that a PE location may have can be limited by

experimental results, so the number of candidates can be also limited accordingly.

This process converts the continuous optimization of PE locations into optimal se-

lection among a finite number of candidates. For example, in Eq.2.17, kxn and

kyn belong to a infinite continuous set, (−∞,∞), but in [14], (kxn, kyn) belong to

{(kx, ky)| kx ∈ {kx1, kx2, ..., kxM}, ky ∈ {ky1, ky2, .., kyM}} where M is the number

of candidates for kx and ky respectively.

In [14], they pointed out the length of the final RF pulse is dominated by the num-

ber of kz-lines, which is same as the number of phase encoding locations. Therefore,

in the optimization of PE locations, it is also desirable to use as few PE locations

as possible. In other words, N is a parameter to minimize in Eq.2.17 as well even

though it does not appear explicitly. To enforce this constraint to use a minimal N,

[14] proposed sparse selection of PE locations from the candidate PE locations as

following.
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Let’s consider the single coil transmission case for simplicity. Suppose we used all

the PE location candidates for Eq. 2.17 as following.

min
w(m,n), kxn, kyn

∥din(x, y)−
M∑

m=1

M∑
n=1

w(m,n)eixkxm+iykyn∥2(2.18)

In the minimization, we hope that the minimal number of phase encoding locations

are used to approximate din. In terms of the pulse weights, w(m,n), it means selected

PE locations have non-zero weights while unselected have zero weights. This suggests

that we can translate the condition whether one PE location is selected or not into

the condition whether the associated pulse weight is zero or not. Furthermore, if

the total number of PE location candidates, M2, is far greater than the unknown,

minimal number of phase encoding locations, enforcing sparsity on the w(m,n) in the

above minimization can be used to encourage the minimal selection of PE locations.

Therefore the joint optimization of the RF pulse and the k-space trajectory can be

recast into the optimization of the RF pulse with a sparsity constraint. Based on

Eq.2.17, the optimization can be represented in a matrix-vector form as

(2.19) min ∥w∥0 subject to ∥d− Fw∥2 < ϵ

where d is a vector composed of spatial samples of the in-plane excitation pattern

over a uniform sampling grid, w is a vector containing the complex pulse weights,

ϵ is an allowed maximum excitation error, and F is a 2D inverse Fourier transform

matrix where each column of F represents a candidate PE location, eixkx+iyky. The

l0 norm is used to measure the sparsity, the number of non-zero entries in the vector

containing the pulse weights, and the minimization was subject to the condition that

the excited pattern should accurately approximate the desired pattern. This type of
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optimization is so called a sparse approximation problem in mathematics because it

can be interpreted as approximating d with a sparse linear combination of columns

of A. Because A provides a collection of basis, it is often called a dictionary matrix.

Basis pursuit [15] is a well know numerical approach for solving sparse approxima-

tion by substituting l1 norm for l0 norm, and was applied in [14]. Particularly in

[14], the optimization with l1 norm was later rewritten as a Second Order Cone

Program(SOCP), which is a convex optimization for which many numerical solution

packages are available.

However, for the parallel excitation, the sparsity should be jointly enforced be-

tween the pulses transmitted at the same phase encoding location. For example, if

one phase encoding location is selected, it does not matter how many coils transmit

a pulse for that phase encoding location whereas for an unselected phase encoding

location, no coil can transmit a pulse for it. Therefore it was necessary to combine

the pulse weights associated with the same phase encoding location to jointly enforce

sparsity on them. For that purpose, [16] introduced a new vector, pi, composed of

pulse weights that are from different coils but are associated with a common phase

encoding location. For example, pi = [b1(i),b2(i),b3(i), ,bL(i)] where bk(i) indi-

cates the RF pulse weight from the k-th coil for the i-th candidate phase encoding

location, and L is the number of coils. Then the minimization in Eq.2.19 is extended

as following.

(2.20) min ∥Z∥0 subject to ∥d−
L∑
l=1

SlAwl∥2 < ϵ

where Z = [∥p1∥∞, ∥p2∥∞, , ∥pN∥∞], Sl is the l-th coil’s sensitivity matrix, N is the

number of candidate phase encoding locations, and wl is a vector containing the l-th

coil’s basis pulse weights. However, both l0 norm and l∞ norm is very hard to handle
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in numerical optimization, so they replaced l∞ norm with l2 norm and l0 norm with

l1 norm. After replacing norms, the problem was again recast as SOCP, and solved

using a numerical solution package, SeDuMi[http://sedumi.ie.lehigh.edu/].

Once phase-encoding locations are selected, the basis pulse weights were com-

puted with a cost function modified to consider power regularization and B0 field

inhomogeneity as in Eq.2.11. Here, reformulation of optimizing PE locations into a

sparse approximation made a great conceptual improvement because it provided a

new framework to formulate the problem and guide the direction for the optimiza-

tion. However, this convex optimization using l1 norm to enforce sparsity suffered

from long computation time as many of optimizations using l1 norm, which is a

very critical disadvantage in the pulse design. We implemented their method, and

observed that for an 8 coil excitation, it took 48 minutes to finish the pulse com-

putation, which is obviously too long to be applied to practical scanning. Another

issue with this convex optimization method is that it can not include off-resonance

effects during excitation that distorts the linear phase induced by each PE location.

If off-resonance frequency is considerable, ignoring such phase distortion can signifi-

cantly downgrade the effectiveness of the chosen PE location, lowering the excitation

accuracy unexpectedly. We developed a new fast algorithm considering off-resonance

effects during PE location selection to choose more effective PE locations than the

convex optimization approach in much less computation time. We developed a greedy

algorithm based on Simultaneous Orthogonal Matching Pursuit [37] to accelerate the

optimal PE selection process, and their applications are presented in chapter IV and

V.



CHAPTER III

Spatially Selective PCASL with Parallel Excitation

This chapter is based on the abstract[38] presented in International Society for

Magnetic Resonance in Medicine 19th annual meeting in 2011.

3.1 Introduction

Arterial Spin Labeling(ASL) [39] has become a popular tool for MR perfusion

imaging by using blood water as a tracer, avoiding the administration of any ex-

ogenous contrast agents. While the original ASL technique consists of tagging all

the blood spins entering the brain, several vessel-selective ASL(VSASL) schemes

[40, 41, 42, 43] have been introduced to tag blood spins of selected vessels only.

Their goal is to map the perfusion territories of specific vessels in the brain to detect

abnormality in the vascular structure or to guide a surgical plan [44, 45, 46, 47, 48].

Recently, a few VSASL approaches [49, 50, 51, 52] based on Pseudo-Continuous

Arterial Spin Labeling (PCASL) [53] have been proposed. They inherit the advan-

tages of PCASL such as overcoming limitations imposed by magnetization transfer

and excessive power deposition. In [49, 50, 51], they aimed to invert spins only on the

selected vessels by inserting in-plane directional gradient pulses between individual

tagging pulses. For their tagging sequence, they aimed to design in-plane gradient

pulses such that the magnetization phase shift from the RF phase on the unselected

31
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vessels is alternating between 0 and π while the magnetization phase on the selected

vessels is coherent with the RF phase. Then, the blood spins on the unselected ves-

sels essentially experience a control sequence instead of a tagging sequence such that

their inversion is suppressed. On the other hand, the blood spins on the selected

vessels are inverted as a conventional PCASL tagging sequence.

However, the applicability of these methods for tagging multiple vessels is strongly

restricted by their geometry because of the dependence upon the linear gradient for

vessel selectivity. To achieve the desired selectivity, the gradient-induced phase of

the magnetization at the location of the selected vessels should be the same, while

the phase-gain at the unselected vessel locations should be close to π radians relative

to the selected vessels [49]. This can be easily achieved if the vessels are collinear

(e.g. at neck area) but not otherwise (e.g. the cerebral arteries above the circle

of Willis). In case of non- collinear vessel geometry, the tagging efficiency of these

methods can be severely damaged.

We propose a novel PCASL scheme that uses parallel excitation to tag selected

vessels. In parallel excitation, the pulses transmitted from each coil are weighted

by the transmission sensitivity of the associated coil, creating a spatially varying

RF field. We design RF pulses such that their superposition forms a train of pulses

that achieve pseudo-continuous inversion only at locations of selected vessels. Our

new technique maintains high inversion efficiency and superior spatial selectivity,

and is less restricted by the geometry of the vessels than the conventional methods.

At the time of this writing parallel excitation is not widely available, so our scope

is limited to providing computer simulation results illustrating the effectiveness of

parallel excitation for VSASL. Since the simulation was conducted for 3T, the change

of B1 field map by loading a real object should be modest, and our simulation can



33

represent a realistic case.

3.2 Methods

3.2.1 RF pulse design outline

Our goal is to compute the RF pulses for each coil such that the sum of RF fields

from all coils can produce a pseudo-continuous inversion [53] only at the selected

vessels while the net RF field on the unselected vessel is close to zero, inverting no

spins at both tagging and control sequence. In our pulse sequence, each coil transmits

a train of Hanning pulses, which we weight by an independently controlled complex

scalar. We optimize the scalar weight for each coil to have desired constructive or

destructive summation of RF pulses at the vessels of interest. Note that static tissue

locations can be ignored in the optimization, thus relaxing the problems constraints.

For the control pulses needed for ASL, we use the same weights, but we alternate

their signs between each pulse such that no inversion occurs, but the same amount

of magnetization transfer (MT) is introduced.

3.2.2 RF pulse computation

Consider a PCASL tagging pulse train of unit RF pulses transmitted by multiple

independent coils. The n-th unit pulse transmitted from the r-th coil can be described

as follows.

bnr (x, y, t) = wrsr(x, y)h(t)(3.1)

(x, y) indicates a 2D spatial coordinate, and bnr (x, y, t) is the n-th RF pulse trans-

mitted from the r-th coil observed at (x, y). sr(x, y) is the sensitivity of the r-th

transmission coil at (x, y). h(t) is the unit Hanning pulse in the pulse train as in

[53]. We need to design wr, the weight for the RF pulse transmitted from the r-th

coil.
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The net RF field observed at (x, y) consists of the superposition of all RF pulses

across R coils as follows.

bnnet(x, y, t) =
R∑

r=1

wrsr(x, y)h(t) = h(t)
R∑

r=1

wrsr(x, y)(3.2)

Our goal is to find a set of the pulse weights, wr that satisfy the following condition:

R∑
r=1

wrsr(x, y) =


eiθ(x,y) for (x,y) in the selected vessel locations

0 for (x,y) in the unselected vessel locations

don’t care otherwise

(3.3)

θ(x, y) indicates the phase of the net RF pulse at (x, y), and it is a free parameter

we may exploit to improve the optimality of the RF pulses. For example, relaxing the

desired RF phase pattern has been investigated to improve the excitation accuracy

[54]. In all of our simulation experiment, we observed smooth variation in θ(x, y)

usually yielded a reasonably good result. Therefore, we fixed θ(x, y) = 1 for all (x, y)

of interest throughout the experiments . Using the above conditions, we formed the

following minimization problem to determine our pulses.

min
wr

∑
(x,y)∈I

η(x,y)|d(x, y)−
R∑

r=1

wrsr(x, y)|2 +
R∑

r=1

λr|wr|2(3.4)

Here, d(x, y) is set as 1 or 0 according to Equation 3.3. η(x, y) and λr are design

parameters to balance the inversion efficiency and the pulse power deposition. For

example, η(x, y) helps suppress the excitation error at (x, y) described by the terms

in the first summation in Equation 3.4. λr penalizes a large pulse weight for the r-th

coil to control its peak RF pulse amplitude and the integrated pulse power [10]. I

is a set of spatial coordinates for vessels of interest. We designed an RF pulse and

measured its power as the norm of the pulse weight vector, namely,
√∑R

r=1 |wr|2. In
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RF pulse computation, we tried different λ values to determine the RF pulse which

achieves 99% accuracy with minimum power. For simplicity, all λr values were set

to be equal to each other.

3.2.3 Simulation outline

We used Bloch equations to simulate the MR signals produced by our method and

compared it to the conventional method [49] for multiple vessel selection. We con-

ducted computer simulation studies using Matlab (MathWorks, Natick, MA) with a

personal computer (Intel Q6600 CPU at 2.4 GHz and 4GB RAM). The sensitivity

patterns of an 8 channel active rung transmit array [55] were obtained by Finite-

Difference Time-Domain (FDTD) simulation at 3 Tesla [56]. In the FDTD simula-

tion, we assumed a phantom of a 22cm diameter lossy cylinder with σ = 0.3S/m and

εr = 80. FOV of 24cm x 24cm over 64x64 sampling grid was used to obtain the ini-

tial transmission sensitivity patterns. Then it was interpolated to acquire a 192x192

sensitivity map shown in Figure 1. For the PCASL sequence, we used a 500 usec long

Hanning pulse as a unit RF pulse denoted as h(t) in Equation 3.1. The neighboring

Hanning pulses were 1500 usec apart, and the amplitude of the slice-select gradient

was 0.6 G/cm. The blood flow velocity is assumed to be 30cm/sec.

3.2.4 Simulation experiment

In [49], a scheme to tag multiple vessels with a Hadamard encoding pattern was

proposed to improve SNR. However, the suggested encoding pattern is not always

achievable as reported in [49, 50, 51], since it requires a phase shift between the

selected vessels and unselected vessels with a linear gradient blip. To demonstrate

that our method is less restricted by the vessel geometry than [49], we ran our method

and [49] with a case where we have four non-collinear vessels. The experimented
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Figure 3.1: Magnitude(a) and phase(b) images of sensitivity patterns of 8 channel transmission
coils used in simulation experiments. The unit of the phase is in radian.

vessel geometry is similar to the one presented in [50], as illustrated in Figure 3.2,

and each vessel was set to occupy 3x3 voxels where each voxel size was 1.25mm x

1.25mm. We attempted to tag two vessels while not tagging the other two using

two different excitation patterns, as shown in Figure 3.2 : pattern A tags the two

vessels on the left side, and pattern B tags the two vessels on the top row. For the

conventional method [49], we designed the in-plane gradient waveforms such that the

π phase shift happens on the line which is parallel to the one connecting the selected

vessels and pass the middle of the unselected vessels. We measured the inversion
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efficiency for each vessel to evaluate our method compare it with [49].

Figure 3.2: Locations of the vessels of interest for multiple vessel selection. Four vessels are placed
in a geometry similar to the one experimented in [50]. Their geometry is not in a
perfect rectangular shape such that the tagging scheme proposed in [49] is not ideal.
Two experimented tagging patterns are shown above. In pattern A, we attempt to
select the vessels on the left side (marked by the green vertical line), while the spins
in other two vessels on the right are not inverted. In pattern B, we select the vessels
on the top (marked by the red horizontal line) and do not perturb the spins in the two
vessels on the bottom row.

3.3 Results

Figure 3.3 presents the average longitudinal magnetization (Mz) of spins in the

vessels as they pass the tagging plane centered at z=0 cm for each method in the

tagging sequence. The plot for the control sequence is not presented since the spin

inversion was successfully suppressed with both methods. The blue line describes

the trend of average Mz in the selected vessels whereas the red line does so for the
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unselected vessels. In both selection pattern A and B, our method achieved the

desired vessel selective tagging while effectively suppressing inversion for the control

sequence. For example, the average inversion efficiencies for the selected vessels and

the unselected vessels was about (83%, 0.5%) for the pattern A, and (83%, 4%) for

the pattern B. However, the conventional method failed to obtain the desired vessel

selectivity especially when the selected vessel was closely located to the unselected

vessel (pattern B). For example, the average inversion efficiencies for the selected

vessels and the unselected vessels was about (83%, 9%) for the pattern A, and (83%,

35%) for the pattern B. The inversion efficiency of the unselected vessels with the

conventional method was about 8.8 times higher than that of our method.

Although the tagging results of our method were similar between the two selection

patterns, the required powers were very different. We computed the normalized pulse

power of the RF pulse for each pattern,

√∑R
r=1 |wr|2√∑R

r=1 |w
ref
r |2

, where wref
r is the pulse weight

of a reference pulse tagging all the vessels. The reference pulse power here may

be regarded as the RF pulse power deposited by the conventional method using

parallel excitation. The normalized pulse power required for pattern A was 1.32. On

the other hand, the normalized pulse power for pattern B was 5.67. In pattern A,

the distance between the selected vessels and the unselected vessels is about 6 cm

whereas it is 1.13 cm for the pattern B. Therefore, the excitation pattern defined

in Equation 3.3 to implement pattern B required a rapid transition from 1 (selected

vessel) to 0 (unselected vessel) than pattern A. Since the sensitivity maps of each

RF transmission coil were smoother than the required excitation pattern, they had

to be amplified such that the resulting excitation pattern formed by their weighted

superposition could closely approximate the desired excitation profile.
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Figure 3.3: Tagging result for selecting vessels for the pattern A and the pattern B with different
methods : (A) : tagging result for the pattern A with the proposed method, (B) :
tagging result for the pattern A with the conventional method, (C) : tagging result for
the pattern B with the proposed method, (D) : tagging result for the pattern B with
the conventional method. The proposed method shows better vessel selectivity than
the conventional method in both tagging patterns.

3.4 Discussion

In this report, we have proposed a novel vessel selective PCASL method using

parallel excitation. Parallel excitation employs multiple RF transmission coils for

which we can design and transmit independent RF pulses. The superposition of RF

pulses weighted by the associated coils sensitivity forms the net RF field, which allows

us to create a desired spatially varying RF field. We computed the complex scalar

weight of the basis RF pulse in PCASL for each coil such that the resulting net RF
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field closely approximates the desired excitation profile that achieves vessel selective

tagging. In other words, we achieved the desired vessel selectivity by controlling the

magnitude and phase of RF pulse applied on vessels of interest. A similar vessel

selective tagging scheme was presented in [57] along with our own [38].

Previously developed methods achieved vessel selectivity by manipulating the

phase coherence between the excited spins and the RF pulse by inserting gradient

blips in the tagging pulse train. This limits the applicable geometry of the vessels

since the phase induced from the linear gradients may not create desired spin phase

patterns. For example, in the non-collinear vessel geometry introduced in Figure 3.2,

the conventional method failed to accurately achieve the desired Hadamard encoding

pattern. This suggests that when we separate the individual perfusion contribution

for each vessel later, we may expect increased SNR with our approach by more

accurate implementation of the Hadamard encoding pattern.

One potential drawback of our scheme may be the power deposition. If the desired

excitation pattern has a sharp transition either by phase or magnitude change, it

typically requires higher pulse amplitudes, aggravating the SAR issue. We may

remedy this problem by relaxing the suppression condition of the unselected vessels.

For example, it may be possible to allow a little excitation on the unselected vessels

but to prevent the spins from becoming fully inverted by randomizing the RF pulse

phases in the tagging sequence. In that case, we may relax the desired excitation

pattern to be smoother. Another potential problem is the MT effect for the multiple

vessel selection case. A different set of RF pulses are computed to obtain a different

vessel selection pattern, so there is a chance that they may have different MT effects.

In that case, there may not be a common control tagging sequence compensating the

MT effect for all tagging patterns. In the worst case, a common MT effect can not
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be assumed such that we need to run a separate control sequence for each selection

pattern. However, this problem is totally dependent upon the RF transmission coil

property and the hardware system setup. [43] presented a hardware configuration

that employs a surface coil for tagging, and another coil for imaging a brain. In that

case, localized sensitivity of the tagging coil caused no MT effect. Therefore, it may

be possible to remove the MT effect issues above with using a parallel excitation coil

with limited sensitivity only for the tagging purpose.

We note that in our simulations, we assumed that B0 field is homogeneous at the

tagging plane, but in practice, it may not be so. This results in unwanted phase

accumulation during the pseudo-continuous pulses and loss of efficiency, as reported

in [58]. Given that parallel excitation allows us to control the phase pattern within

the excitation plane, this method can be easily adapted to recover efficiency loss due

to local B0 field inhomogeneity.

3.5 Conclusion

In conclusion, we presented the theoretical foundation and simulations in support

of a novel approach using parallel excitation to perform spatially selective spin la-

beling. We demonstrated that our method can provide highly selective spin labeling

with a wider range of vessel geometry than conventional methods. At the time of

this writing, parallel excitation is not widely available, but there is great interest

among the MR community in the development of this technology. Vessel selective

ASL can thus provide one more exciting application motivating for the development

of parallel excitation hardware. In future work, as the hardware becomes available,

we plan to conduct in-vivo experiments to verify our method.



CHAPTER IV

Fast joint design method for parallel excitation RF pulse
and gradient waveforms considering off-resonance

This chapter is based on the journal paper published in magnetic resonance in

medicine [59].

4.1 Introduction

Trains of slice-selective pulses are useful for designing slice-selective parallel excita-

tion RF pulses [12, 34]. This approach has been successfully applied to B1 field inho-

mogeneity correction [14, 16, 60], signal recovery for BOLD fMRI [28, 29, 61], spatial-

spectral excitation [25], and large tip-angle multidimensional excitation [62, 63]. In

this framework, each RF coil transmits a train of weighted slice-selective pulses inter-

leaved by in-plane gradient blips to achieve a required in-plane excitation profile as

shown in Figure 4.1. Determining the RF pulse requires computing only one scalar

weight per slice-selective pulse for each transmission coil. Therefore, it significantly

reduces the number of unknown RF parameters compared to conventional tailored

RF pulse designs [10, 33] where the RF pulse is sampled finely in time (a few usec),

yielding thousands of RF pulse samples to compute.

In the above pulse design approach, one must jointly compute the best pulse

weights and in-plane gradient waveforms. The cost function for optimization often

42
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Figure 4.1: An example RF pulse sequence composed of trains of slice-selective RF pulses inter-
leaved by in-plane gradient blips (Gx, Gy). This sequence is capable of exciting a thin
slice with in-plane variation. In this chapter, we propose a fast joint design method to
optimize the RF pulse weights and in-plane gradient blips for this sequence.

employs the excitation k-space analysis for the small tip-angle domain [6], where

in-plane gradient waveform optimization becomes equivalent to optimizing Phase

Encoding (PE) locations (also denoted as spokes) of an Echo-Volumar (EV) trajec-

tory in excitation k-space [12]. Since the number of PE locations equals the number

of slice-selective pulses in the resulting pulse train, sparse selection is crucial to limit

the final RF pulse length. Recently, [14, 16] presented a convex optimization ap-

proach adopting an l1-norm based penalty to enforce sparsity of the selected PE

locations. However, this method can be slow, so other schemes have been devel-

oped to accelerate PE location selection. For example, iterative greedy approaches

[60, 64, 65] based on orthogonal matching pursuit [66] or sequential selection [67]

achieved excitation accuracy similar to the convex optimization scheme with much

less computation.

However, none of the aforementioned methods implemented PE location selection

and ordering process considering off-resonance effects. In [60], a model considering

off-resonance was suggested, but detailed implementation results were not provided.
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In this chapter, we show via computer simulation that considering off-resonance

when selecting PE locations can improve excitation accuracy. We demonstrate that

heuristics for ordering PE locations, such as shortest-path [16, 60] or spiral-in [11, 28],

can be quite suboptimal in some cases. We describe a novel greedy algorithm for

determining PE locations that considers B0 field inhomogeneity during PE location

selection. Our algorithm is a fast greedy selection process based on [65] that chooses

PE locations sequentially in a time-reversed order, which naturally yields an effective

ordering of the selected PE locations. In our PE location selection process, the basis

signal associated with each PE location is modulated by the off-resonance phase

accrual, allowing more accurate modeling than previous greedy methods [60, 64, 65].

Computer simulations show that our method achieves higher excitation accuracy

than conventional methods in significantly less computation time. At the time of

preparing this work, our parallel transmission hardware was not stable enough to

run our pulse design, so our scope is limited to providing simulation data. At 3T

where our simulation experiments are proposed, the shape of the B1 fields should

not vary by large amount with different coil loading, so we believe that our results

illustrate the potential benefits of our proposed algorithm.

4.2 Theory

4.2.1 Optimization formulation

We assume a small-tip angle RF pulse sequence where the RF pulse train is

composed of M slice-selective RF pulses from L transmission coils. The mth slice

selective pulse from the lth coil is a slice-selective basis pulse weighted by a complex

scalar, αl(m), that we determine through optimization. Using the excitation k-space

analysis for a small-tip angle domain [6], we approximate the final excitation pattern
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as follows:

d(x, y, z) ≈ b(z)
L∑
l=1

M∑
m=1

sl(x, y)αl(m)ei2π(xkx(m)+yky(m))ei2π∆ω(x,y)(tm−T )(4.1)

Here, the excited pattern has a separable form. The through-plane excitation

profile is b(z) from the slice-selective basis pulse and the in-plane profile is determined

by the terms in the double summation. ∆ω(x, y) is the B0 fieldmap, tm is the time

corresponding to the middle of the m-th slice-selective pulse, and T is the end time of

the RF pulse sequence. (kx(m), ky(m)) is the m-th PE location in the EV trajectory

obtained by running time-reversed integral of the in-plane gradient waveforms. For

optimization, we first design the PE locations and then derive corresponding gradient

waveforms considering the hardware limitations. We assumed that the slice-profile is

thin enough that the lth transmission coils sensitivity, sl(x, y), can be approximated

as a 2D pattern (disregarding its through-plane variation). Note that a similar model

was suggested in the Appendix of [60] without presenting implementation results.

The goal of our proposed RF pulse design algorithm is to jointly optimize RF

pulse weights and PE locations to achieve a desired in-plane excitation pattern,

θ(x, y). The cost function for our optimization problem is described as a following

matrix-vector form:

min
αl(m),fm

∥θ −
L∑
l=1

M∑
m=1

SlWmfmαl(m)∥22

≡ min
α,fm

∥θ −Aα∥22(4.2)

where A = [S1W1f1, ...,SLW1f1,S1W2f2, ...,SLWM fM ], and α = [α1(1), ..., αL(M)]T

θ is a column vector containing the spatial samples of θ(x, y), Sl is a diagonal

matrix of spatial samples of the lth coils sensitivity, sl(x, y), Wm is a diagonal matrix

of spatial samples of the off-resonance phase, ei2π∆ω(x,y)(tm−T ), and fm is a column
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vector of spatial samples of a 2D complex exponential, ei2π(xkx(m)+yky(m)). In this

minimization problem, we attempt to choose optimal PE locations from a set of

candidate PE locations formed by sampling 2D excitation k-space at Nyquist rate.

The number of PE locations, M, should be limited to yield a RF pulse of reasonable

length. For this purpose, we seek the minimum M having acceptable excitation

accuracy. Therefore, M is not a prefixed parameter for the optimization though it

does not explicitly appear in the optimization parameter set.

4.2.2 Optimization strategy

Our greedy algorithm is an iterative procedure where PE locations are selected

in a time-reversed order. During the mth iteration, we select the mth from the

last PE location. We use this order to determine the off-resonance phase accrual,

∆ω(x, y, z)(tm − T ), without pre-specifying the number of selected PE locations, M,

and the corresponding RF pulse train length, T. We increment the parameter M

after each iteration in the optimization, so its final value is known only after the

optimization is finished. However, the off-resonance phase accrual is well defined

when we compute it in the time-reversed order regardless of M because (tm − T )

becomes known instead. The reverse sequential selection also allows us to precisely

control the trade-off between the number of selected PE location and the excitation

accuracy.

Let E(N) denote the list of (ordered) PE locations, {(kx(1), ky(1)), (kx(2), ky(2)),

... , (kx(N), ky(N))}, determined after N iterations in our algorithm. In the next

iteration, we seek to choose from a discrete set of candidates the PE location that

most reduces the cost function when added to the list E(N). The new PE location

is added to the front of the list, yielding a new list E(N+1). For a given list of PE

locations, E(N), we minimize the cost function in Equation 4.2 by performing the
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orthogonal projection of the desired excitation pattern θ onto the basis generated by

the chosen PE locations, S1W1f1, ...,SNWN fN .

Whereas the method in [60] used orthogonal projection for every candidate, here

we investigated a simple greedy method that uses significantly fewer orthogonal pro-

jections. In Equation 4.2, the in-plane variation of the excited pattern is synthesized

linearly by the basis signals associated with the chosen PE locations. This implies

that an effective candidate PE location has associated basis signals that are highly

correlated with θ(x, y). With L transmission coils, selecting one frequency, f for the

mth PE location produces L basis signals, S1Wmf , ,SLWmf . Inspired by the sum

of correlations criterion presented in [37], we devised a cumulative correlation crite-

rion to estimate how much one candidate PE location contributes to spanning the

excitation pattern (or its projection residual after the first iteration). It is defined as

a simple sum of squares of correlation values between the individual basis and the

target pattern, r , as follows :

L∑
l=1

| < r,SlWmf > |2.(4.3)

We normalized each sensitivity pattern with respect to its l2 norm prior to com-

puting the correlation to avoid any bias toward sensitivity patterns of higher norm. In

using the cumulative correlation, we hope that the sensitivity patterns are reasonably

localized such that they do not overlap too much. Then, summing the correlation

with the basis signal for each coil can reasonably approximate the magnitude of the

target pattern projected onto the range space of the basis signals. In the summation,

we squared the absolute value of correlations, but other options may exist. For ex-

ample, instead of using a sum of squares, a simple sum of absolute correlation values

can be used. We experimented with different ways of summing, and the sum of the

squares seemed to work as good as other options in most cases [65]. We compute this
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cumulative correlation between each candidate and the projection residual from the

previous iteration to cull only a few effective candidates for which we run orthogonal

projections. The culling process greatly reduces the computation time spent in run-

ning orthogonal projections. To implement the orthogonal projection, we adopted

the fast numerical scheme proposed in [60].

The details of our algorithm are presented in Table 4.1. At each iteration of

our algorithm, the correlation test based on Equation 4.3 identifies p candidate PE

locations that are added to a set of effective candidates denoted as C in Table 4.1.

We select the design parameter p prior to the optimization; using a larger p may

achieve better excitation accuracy at the expense of computation time. Before this

addition, the set C already has p candidates retained from the previous iteration.

For each of these 2p candidates in C, we run the orthogonal projection test by

minimizing Equation 4.2. In other words, we compute the orthogonal projection

of the desired excitation pattern onto the basis signals specified by the candidate

and the previously established PE locations. We select the candidate PE location

that best spans the desired excitation pattern and added it to the list of chosen PE

locations. After that, we retain only the p candidates having the smallest projection

errors and remove the rest from C. Selecting multiple candidates in the correlation

test and passing some of them to the next iteration compensates for the imperfections

in using the cumulative correlation as a measure of the effectiveness of one candidate

for the subsequent orthogonal projection.

4.3 Methods

4.3.1 Test application description

We applied our algorithm to B1 field inhomogeneity correction [14, 16, 60]. The

goal of the RF pulse design here is to compute an effective RF pulse that excites a
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Problem Description
min
α,fm

∥r∥22 where r = θ −Aα, A = [S1W1f1, ...,SLWM fM ], and α = [α1(1), ..., αL(M)]T

Solution approach
No PE location is chosen initially. To try to minimize ∥r∥, the PE locations are chosen sequen-
tially in a time-reversed order from a set of candidate PE locations.

Variable notation
For an ordered list of PE location, E = (kx(1), ky(1)), (kx(2), ky(2)), ..., (kx(N), ky(N)), a ma-
trix AE is defined as AE = [S1W1f1, ...,SLWN fN ] where fn is a column vector of spatial
samples of a 2D complex exponential, ei2π(xkx(n)+yky(n)). S and W are matrices containing the
coil sensitivity and the off-resonance phase samples respectively as defined in Theory section.

Algorithm
Initialize the list of the chosen PE location, E, as an empty list.
Initialize the excitation residual, r = θ, as the target in-plane excitation pattern.
Generate the set of all candidate PE locations, F , by sampling 2D k-space at Nyquist rate.
fn vectors above will be instantiated from the candidate PE locations contained in F .
Initialize the set of culled candidate PE locations, C, as an empty set.
Initialize the reverse-order index of the PE location to select, m, as 1.

Loop until ∥r∥ is sufficiently small or the number of selected PE locations reaches a limit {
Step 1 : Cull effective PE locations from F , and add them to C.

Find p candidates in F having the highest correlation with r using Equation 4.3.
Add those p candidates to C.

Step 2 : Find the PE location in C that best reduces ∥r∥.
For each candidate in C, create a new list Ê by prepending it to E.
Compute the residual of orthogonal projection of θ onto AÊ , which is
θ −AÊ(A

h
Ê
AÊ)

−1Ah
Ê
θ

Find the candidate with the minimum residual.
Step 3 : Set the PE location found in Step 2 as the m-th from the last PE location.

Add the candidate found in Step 2 to the front of E.
Step 4 : Update other parameters.

Pulse weights : α = (Ah
EAE)

−1Ah
Eθ

r = θ −AE(A
h
EAE)

−1Ah
Eθ

m = m+1.
Discard PE locations in C except those with p smallest ∥r∥ values.

}
Our algorithm becomes equivalent to the modification of [60] if C is replaced with the set of
entire candidates, F in Step 2.

Table 4.1: The detailed procedures of the proposed algorithm
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uniform in-plane profile. The in-plane profile, θ, in Equation 4.2 is 1 in the excitation

region of interest. In human brain scans, the air space outside the head corresponds

to the dont care region, so the norm in Equation 4.2 is taken only within the head.

For comparison with our proposed method, we implemented three other methods:

the convex method [16], the greedy method [60], and the greedy method extended to

consider off-resonance during PE location selection briefly suggested in [60]. Since

the extension of [60] did not describe a specific ordering of the chosen PE locations,

we implemented it with our sequential selection in a time-reversed order.

4.3.2 Assessment criteria

To investigate how much ordering can affect the excitation accuracy in the pres-

ence of high off-resonance, we first tried every possible ordering of selected PE lo-

cations from the convex method [16] and the greedy method [60] that employs a

heuristic ordering scheme (shortest-path). We measured the Normalized Root Mean

Squared Error (NRMSE) of the achieved in-plane excitation pattern. We compared

these errors with those of our method and the aforementioned modification of [60].

Because the number of possible ordering is the factorial of the number of selected PE

locations, we focused on the case that 5 PE locations are chosen. Also, we recorded

the computation time of all methods to test whether they can satisfy practical on-line

computation requirements.

4.3.3 Experiment parameters

We conducted simulation studies to compare aforementioned algorithms. They

were implemented with Matlab (MathWorks, Natick, MA) on a computer with Intel

Q6600 CPU at 2.4 GHz and 4GB RAM. The sensitivity patterns of an 8 channel

active rung transmit array [55] were obtained by Finite-Difference Time-Domain
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Figure 4.2: Magnitude images of sensitivity patterns of 8 channel transmission coils used in simu-
lation experiments.

simulation [56] at 3 Tesla, where we assumed a phantom of a 22cm diameter lossy

cylinder with σ = 0.3 S/m and εr = 80. Figure 4.2 shows the simulated transmission

sensitivity patterns. The B0 fieldmap and the excitation ROI were acquired from

in-vivo human brain scans for 2 subjects. We chose two 5mm thick axial slices

of relatively high off-resonance for the RF pulse design. The excitation FOV was

24cm x 24cm with 64x64 uniform sampling grid specifying the desired excitation

pattern. The candidate PE locations were formed by sampling the continuous in-

plane frequency space at the Nyquist rate. For our proposed method, we used the

full set of 642 candidates but only 19x19 low frequency candidates were used for the

other methods as suggested in their original studies. The desired flip angle was 10

degree. A Hanning-windowed sinc pulse with one side lobe was used for the basis

pulse, which was 0.75ms long due to the current gradient hardware limitations where

the slew rate of the gradient was 150T/m/s and the maximum gradient amplitude

was 4g/cm.
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4.4 Results

4.4.1 Ordering of PE locations and excitation accuracy

Figure 4.3 illustrates the B0 fieldmaps and the excitation ROI of chosen brain

slices. The air cavity regions in the slices caused high off-resonance frequencies

ranging from -150Hz to 200Hz. Figure 4.4 plots the NRMSE of different PE location

orderings for the convex method and for the greedy method along the associated

EV trajectory length. The results from our method and the modification of [60]

are marked as well. Note that our method and the modification of [60] do not use

the same PE locations as the compared methods. Figure 4.4 demonstrates that our

method and the modification of [60] generally have lower excitation error than any

PE location ordering for the compared methods. There is no obvious relationship

between the k-space trajectory length and the resulting excitation error. Even within

the shortest orderings, there were considerable NRMSE variations in some cases.

Also, connecting the PE locations in a spiral-in manner for the convex and the

greedy method failed to achieve optimal excitation accuracy.

4.4.2 Uniformity of in-plane excitation profiles

To visually assess the uniformity of the excited in-plane profile, we ran the Bloch

simulation of RF pulses computed for the slice 2, and plotted the resulting in-plane

excitation patterns and the corresponding PE locations in Figure 4.5. To represent

multiple shortest-path PE location orderings of the convex method and the greedy

method, both the minimum NRMSE case and the maximum NRMSE case were

displayed. The transverse magnetization profiles at the center of the slice (z=0)

were simulated. To quantify the uniformity of the excitation profile, we calculated

the mean and the standard deviation σ of the transverse magnetization magnitude



53

Figure 4.3: Excitation ROI (a) and B0 fieldmap (b) of 2 axial slices acquired from human scans. In
the excitation ROI, the desired excitation pattern is set to be 1 in the white area, and
dont care in the black area. The units of the fieldmap are Hz. The B0 fieldmaps shows
very high off-resonance frequencies due to susceptibility difference around air cavity
regions such as ear canals and a frontal sinus.

for each pulse design. The in-plane excitation patterns in Figure 4 show that our

proposed method and the modification of [60] outperformed both the convex and

the greedy method with respect to the uniformity. For example, σ of the minimum

NRMSE case with convex method was the most uniform among the cases with the

convex and the greedy method, but it was still 1.6 times larger than that of our

method and the modification of [60]. The difference in the uniformity becomes even

more dramatic when our method is compared to the maximum NRMSE case of the

convex and the greedy method. In that case, their σs were 3 times and 2.6 times

larger than that of our method respectively.

4.4.3 Computation time

Table 2 summarizes the computation time taken by each method for selecting PE

locations. The convex optimization takes the longest time, as reported previously
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Figure 4.4: Scatter plots of NRMSE v.s. the length of EV k-space trajectory obtained with different
PE location orderings. (a) and (c) are different orderings of PE locations with the greedy
method applied for slice 1 and 2 respectively. (b) and (d) are with the convex method
for slice 1 and 2 respectively. A black square mark indicates a PE ordering from the
convex method or the greedy method. A Blue square mark is for the spiral-in ordering
of PE locations obtained from the convex method or the greedy method. Conventional
heuristic approaches to connect PE locations such as the shortest-path or the spiral-in
did not show obvious optimal excitation accuracy. Our method and the modification
of the greedy method consistently tend to show improved excitation accuracy than the
compared conventional methods.
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Figure 4.5: Uniformity of the in-plane excitation pattern simulated with different methods for slice
2. In-plane excitation profiles at z=0 and corresponding PE locations and their ordering.
a) The minimum NRMSE case of the shortest-path ordering with the convex method,
b) The maximum NRMSE case of the shortest-path ordering with the convex method,
c) our proposed method, d) the minimum NRMSE case of the shortest-path ordering
with the greedy method, e) the maximum NRMSE case of the shortest-path ordering
with the greedy method, f) modification of the greedy method. Our proposed method
and the modified greedy method show more uniform profiles than others.
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[60, 64, 65]. The greedy method runs reasonably fast, but the proposed algorithm

further accelerates the optimization by an order of magnitude. Note that we achieved

this result while using an even larger set of candidates than the greedy method. For

example, the set of candidates for our algorithm had 642 elements while the greedy

method had 192, which is about a factor of 11 times fewer.

Slice Convex method Greedy method Modified greedy method Proposed method
1 1434.0 sec 5.7 sec 7.9 sec 0.9 sec
2 1729.4 sec 5.4 sec 5.3 sec 0.3 sec

Table 4.2: Computation time of different pulse design methods for each slice. We used each method
to determine 5 PE locations to create a uniform excitation pattern for each slice. The
computation time varies between different slices because depending on the size of the
ROI, the number of spatial samples for the excitation pattern changes. Our method is
by far the fastest method whereas the convex method is the slowest. The greedy method
runs reasonably fast, but our method is still almost an order of magnitude faster.

Figure 4.6: Normalized excitation errors that our pulse design achieved with different values of p
for eight slices. Here, p indicates the number of candidates culled from the full set
of candidates with the proposed cumulative correlation test. As the value of p grows,
our method approaches to the greedy method sacrificing the computation time. The
plot here shows an approximate L curve shaped form, suggesting that there may be an
optimal point for p that has a good balance between computation time and excitation
accuracy.
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4.4.4 Speed vs. Accuracy tradeoff in our algorithm

The computation time of our algorithm depends on the choice of the parameter,

p, the number of the PE location candidates selected by the cumulative correlation

test. It determines the trade-off between the computation time and the excitation

accuracy. Setting p to its largest value makes our method identical to the modification

of the method by [60] and may yield higher excitation accuracy at the expense of

computation time. However, we observed from experiments that increasing p above

a certain threshold does not generally improve the excitation accuracy significantly.

NRMSEs versus p for eight slices are plotted in Figure 4.6. A smaller p would

reduce computation time but the curves show some oscillation for p < 8. We chose

p conservatively (p = 8) to avoid exaggerating the computation acceleration of our

method.

4.5 Discussion

In this chapter, we presented a fast greedy algorithm for parallel excitation RF

pulse design to determine PE locations considering B0 field inhomogeneity. The orig-

inal greedy method as implemented [60] and the convex optimization method [16]

disregarded off-resonance in the model used for the PE location selection process,

which raises two problems. First, it causes model mismatch, potentially selecting

ineffective PE locations. In other words, the basis signals associated with the chosen

PE locations may be less effective in approximating the desired excitation pattern

accurately. Furthermore, it may exaggerate the predicted excitation accuracy esti-

mated in the PE location selection stage, selecting too few PE locations. Secondly,

it requires a heuristic to order the selected PE locations, which may lower excitation

accuracy as illustrated in Figure 4.4. In contrast, our algorithm jointly determines
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PE locations and their order by modeling the off-resonance effects during PE location

selection, and achieved higher excitation accuracy than the conventional methods.

Our algorithm is also very computationally efficient. Both the greedy method

[60] and our proposed method ran much faster than the convex method [16], but

our method was almost an order of magnitude faster than the greedy method for

comparable excitation accuracy. Instead of running orthogonal projections for every

candidate PE location as in [60], we culled a few effective candidates with the cumu-

lative correlation test, and performed the projection only for these candidates. This

approach replaces numerous computationally demanding orthogonal projections with

cumulative correlation tests, which are far less demanding because they use efficient

operations such as FFT and diagonal matrix multiplications.

Our proposed algorithm is based on an iterative greedy selection procedure that

may find a local minimum. The convex method can have an advantage over such

greedy approaches from this perspective because it may have a wider search scope for

optimal PE location combination. But the condition for finding the optimal solution

is hard to meet and verify as pointed out in [60]. Also in the convex method, one

can not control the computation time with respect to the number of selected PE

locations because the termination of the optimization is not directly related to it.

On the other hand, in our approach, we can simply terminate the optimization after

the required number of PE locations is selected or the desired excitation accuracy is

achieved. The convex method also requires a pruning technique to cull the specified

number of PE locations from the solution. Typically, the locations with largest pulse

weights are selected, but in parallel excitation, multiple pulse weights are associated

with one PE location, therefore it is not so obvious how to sort them.

In Equation 4.1, the basis signal for the m-th PE location is modulated by the
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off-resonance phase, ei2π∆ω(x,y)(tm−T ). If the B0 fieldmap error is denoted as φ(x, y),

the actual phase modulation becomes ei2π(∆ω(x,y)+φ(x,y))(tm−T ), whose first order ap-

proximation is ei2π∆ω(x,y)(tm−T )(1+ i2πφ(x, y)(tm−T )). The term 2πφ(x, y)(tm−T )

gives the fractional error. For example, the error for the first PE location in a 5 msec

pulse for a 5 Hz error is about 16%. The error is larger for PE locations visited ear-

lier in the k-space. However, our greedy selection approach in a time-reversed order

is likely to assign smaller pulse weights for the PE locations selected later (visited

earlier in excitation k-space), and this may provide some robustness to B0 fieldmap

errors.

Our cost function for PE location selection did not include a regularizer to con-

trol the pulse amplitude, so the pulse weights found during the PE location selection

process may violate SAR constraints or the small-tip angle assumption. Our algo-

rithm has not yet been validated with parallel transmit hardware, so it may need

to be further limited by coupling between and changes to the B1 fields as well as

restrictions on the peak RF amplitude. A future research topic is to develop methods

considering these constraints in the PE location selection process. Also, we expect

that greedy algorithms can be further improved by developing methods to refine

previously selected PE locations, as suggested in [60] or [68].

4.6 Conclusion

We have introduced a fast greedy algorithm for determining effective PE locations

and their order in the presence of B0 field inhomogeneity. Our proposed method

achieved higher excitation accuracy and faster computation than previous methods.

In future work, we plan to extend our method to more complicated applications

such as signal recovery for BOLD fMRI [11, 28]. Also we will seek an efficient
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way to incorporate a pulse power regularizer to consider the SAR issue during our

optimization.



CHAPTER V

Signal Recovery for BOLD fMRI with Parallel Excitation

This chapter is based on the abstract [28] presented in International Society for

Magnetic Resonance in Medicine workshop on parallel MRI in 2009

5.1 Introduction

T2* weighted imaging has been a dominant imaging technique in brain functional

MRI for detecting functional activity. In T2* weighted imaging, the MR signal from

a tissue is weighted by e−
TE
T2∗ , where TE is the echo time, and T2* indicates the

signal decay rate of the tissue. In brain imaging, Ogawa et al [69] discovered that

the T2* of a tissue is proportional to the blood oxygenation level. They suggested an

application of T2* weighted imaging for tracking brain cell activity, for the activation

status change of a cell may cause a change in the oxygen consumption and blood

oxygenation level accordingly, leading to the contrast modulation in the T2* weighted

MR image. Since then, T2* weighted imaging became the dominant brain functional

MRI tool providing blood oxygenation level dependent (BOLD) contrast.

However, T2* weighted imaging has suffered from a serious signal loss problem

around air cavity regions such as the frontal sinus and ears where brain tissues inter-

face the air space. These two have a large magnetic susceptibility difference, causing

the development of a rapid variation in the off-resonance frequency. Together with

61
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a long echo time originally intended for building T2* based contrast, it gives rise

to severe phase incoherence for magnetization within a voxel. The signal from a

voxel is the sum of magnetization within the voxel, therefore the phase incoherence

of magnetization results in signal loss. In the MR image, the signal loss artifact

typically appears to be dark holes for the low signal amplitude as shown in Figure

5.1. Unfortunately, there are certain neuropsychiatric investigations that are con-

siderably limited in fMRI because they need to study the brain activity around the

regions suffering from this signal loss artifact. For example, obsessive compulsive dis-

order (OCD) and Tourette syndrome are mental disorders highly related with inferior

frontal regions, signals from which are often impossible to detect with conventional

T2* weighted imaging because of the extremely attenuated signal amplitude.

Figure 5.1: Signal loss in BOLD fMRI. The local through-plane gradient caused by air cavity brings
about dephasing among the magnetizations, so the net magnetization in the unit volume
decays quickly.

There have been many investigations attempting to solve the above signal loss

issue. Direct off-resonance compensation with additional shimming hardware [70, 71,

72] may have the potential to achieve the ideal off-resonance correction performance,
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but it required to place extra shimming hardware inside the subject’s mouth, which

was too uncomfortable for it to be practical. Various z-shimming approaches [73,

74, 75, 76] adopting z-shim gradient blips in EPI acquisition have been proposed

to compensate for the through-plane local gradient. But with a limited number of

z-gradient blips, they were not able to provide localized signal recovery, and often

required multiple image acquisitions at the expense of temporal resolution. Slice-

thickness reduction [77] may also provide reducing signal loss to some extent, but it

increases the number of slices to cover a given volume, and thus impairs temporal

resolution as well.

Signal loss correction with phase-precompensation using multi-dimensional RF

excitation [11, 78, 79, 80] has a few advantages over the aforementioned approaches.

This approach aims to excite the magnetization with a phase pattern that cancels

the off-resonance induced phase at the echo time such that the magnetization is in

phase along through-plane direction as shown in Figure 5.2. The idea of the phase-

precompensation with RF excitation was proposed by [78, 79], and later implemented

with a 3D tailored RF pulse design method with a stack of spiral k-space trajectory

[80]. The 3D tailored RF pulse design was further improved with a more sophisticated

spatial domain RF pulse design method adopting an echo volumar k-space trajectory

[11]. In the 3D tailored RF pulse design methods, the desired excitation pattern is

determined based on the measured B0 field map, so it can potentially achieve more

localized signal recovery than previous methods. Also, the overhead of adding a

multi-dimensional RF pulse to the pulse sequence is much less demanding than those

methods requiring additional shimming hardware or multiple image acquisitions.

However, the signal recovery performance of the 3D tailored RF pulse design with

a single coil transmission was not sufficient enough for whole brain imaging because
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it could not achieve the desired excitation pattern with high accuracy where off-

resonance frequency is very rapidly varying. Also, the RF pulse calculation with

the 3D tailored RF pulse design method was still computationally demanding, so it

needs to be accelerated for routine fMRI studies.

Figure 5.2: Signal recovery by exciting a pre-compensatory phase pattern. The phase of the excited
pattern is designed to be in phase at echo time. The phase design is based on the
measured fieldmap in a sub-voxel scale.

In this chapter, we introduce a novel, fast parallel excitation pulse design method

combining a B1 field inhomogeneity correction[59] and a signal loss correction with

time-shifted slice selective pulse design[29] to provide uniform signal recovery for

T2* weighted imaging in BOLD fMRI. To achieve the desired excitation pattern,

we transmit a linear combination of time-shifted(kz) slice-selective pulses together

with phase-encoding in-plane (kx,ky) gradient waveforms to achieve uniform signal

recovery over a specified region of interest. Adopting parallel excitation with multi-

ple transmission coils with localized sensitivity, our method can tailor the excitation

pattern more accurately to the off-resonance pattern than previous methods using

single coil transmission [11, 78, 79, 80] and can thus obtain a better signal recovery

performance. Also, our method provides a systematic scheme to compute the RF

pulse and gradient waveforms based on B0 fieldmap(off-resonance frequency map)

information , which can provide a more uniform signal recovery than [29] that needs

manual selection for pulse weights by trial and error. We conducted computer sim-

ulations for parallel excitation to illustrate its potential effectiveness, and an in-vivo
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experiment with a single coil transmission system to demonstrate the validity of our

pulse design.

5.2 Theory

We assume a small tip-angle pulse sequence where a linear combination of time

shifted slice-selective pulses forms a unit pulse segment of the pulse train, and in-

plane gradient waveforms are transmitted between the unit pulse segments as shown

in Fig 5.3. Such a sequence can create both in-plane and through-plane variations

in the excitation pattern.

Figure 5.3: A pulse sequence composed of trains of time-shifted slice-selective pulses interleaved
by in-plane gradient blips. This pulse sequence is capable of exciting a magnetization
pattern with both in-plane and through-plane variation

5.2.1 Optimization formulation

We use the k-space analysis for a small-tip angle domain [6] to form the input-

output relationship in our optimization as in Chapter IV. Now we consider a simple

case where we shift in time a slice-selective pulse with respect to the slice-select gra-

dient to develop a linear phase along the through-plane direction. We parameterize

this effect in terms of the through-plane frequencies (kz) and then later derive time-

shifts from them for convenience. We form a set of N frequencies, kz(1), kz(2), , kz(N)

by discretizing the continuous through-plane frequency space. If we deposit a linear
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combination of time-shifted slice-selective pulses, each of which creates one of the

above through-plane frequencies, then Equation 4.1 is modified as follows:

d(x, y, z) ≈ b(z)
L∑
l=1

M∑
m=1

N∑
n=1

sl(x, y)αl(m,n)ei2π(xkx(m)+yky(m)+zkz(n))ei2π∆ω(x,y,z)(tm−T )

(5.1)

In the above equation, each slice-selective pulse is weighted by a scalar, α(m,n),

to be determined through optimization, where m and n index the PE locations and

the through-plane frequencies. ∆ω(x, y, z), tm, T are the B0 fieldmap, the time cor-

responding to the middle of the m-th slice-selective pulse, and the end time of the

RF pulse sequence, respectively. b(z) is the through-plane profile of the basis pulse.

In our problem, the desired excitation pattern is a thin-slice with pre-compensatory

phase for off-resonance, which is modeled as b(z)ei2π(∆ω(x,y,z)TE−β(x,y)). β(x, y) is

a in-plane phase relaxation term to subtract out a common phase variation from

the desired phase pattern to smooth the in-plane phase of the desired pattern.

∆ω(x, y, z)TE typically shows a very rapid, local in-plane phase variation, which

may require deposition of many PE locations as reported in [11]. Subtracting a

common 2D phase pattern from each 2D subslice of ∆ω(x, y, z)TE does not change

the phase coherence at echo time along the through-plane direction. Therefore, we

can exploit it to smooth the in-plane variation of the desired excitation pattern in

attempt to approximate it with fewer PE locations. This, in fact, greatly reduces

the number of required PE locations, and we designed β(x, y) following the heuristic

suggested in [11]. For example, β(x, y) is set by weighting ∆ω(x, y, z)TE with b(z),

the magnitude of the slice profile, and averaging it along the through-plane direction

(z direction). The samples of b(z) was obtained by running a Bloch simulation of
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the basis slice-selective pulse.

Now, the cost function of our optimization can be set up as a following matrix-

vector form.

min
αl(m,n),fnm

∥Bθ −B
L∑
l=1

M∑
m=1

N∑
n=1

SlWmf
n
mαl(m,n)∥22.(5.2)

Here, B is a diagonal matrix containing the spatial samples of the slice profile, b(z).

B covers only the slice volume whose magnitude profile is above a certain threshold to

exclude unselected volumes and thus to reduce the size of the problem. θ is a column

vector containing the spatial samples of ei2π(∆ω(x,y,z)TE−β(x,y)), Sl is a diagonal matrix

of spatial samples of the l-th coils sensitivity, sl(x, y), Wm is a diagonal matrix of

spatial samples of the off-resonance phase, ei2π∆ω(x,y,z)(tm−T ), and fnm is a column

vector of spatial samples of a 3D complex exponential, ei2π(xkx(m)+yky(m)+zkz(n)).

5.2.2 Optimization strategy

As presented in the Equation 5.2, our goal is to jointly compute optimal pulse

weights and phase encoding locations. We extended our joint optimization algorithm

introduced in Chapter IV to solve this problem based on the following observation.

In Equation 5.2, the in-plane variation of Bθ for any given slice index z is controlled

by the basis signals associated with the chosen PE locations. In other words, if we

view Bθ as a stack of 2D subslices, θz(x, y), as illustrated in Figure 5.4, we must

linearly approximate all of them with the bases generated by a common set of PE

locations. This implies that an effective candidate PE location creates bases that

would be highly correlated with all 2D subslices, θz(x, y). With L transmission

coils, selecting one frequency, f for the m-th PE location would produce L bases,

BS1Wmf , ...,BSLWmf to be used for approximating each 2D subslice. We extended

sum of correlations in Equation 4.3 as following by adding a summation over this
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subslice dimension to estimate how much one candidate PE location contributes to

spanning all the subslices.

Nz∑
k=1

L∑
l=1

| < rk, b(k)SlW
k
mf > |2.(5.3)

Figure 5.4: The 3D desired pattern d′ can be viewed as a stack of 2D planes d′
1 to d′

N after spatial
sampling along the through-plane direction

Here k is the slice index, b(k) is the magnitude of the slice profile at k, Nz is

the number of subslices composing the 3D target pattern r, rk is the k-th slice in r,

and Wk
m is the k-th slice of Wm. By simply extending the definition of cumulative

correlation in Equation 4.3 to Equation 5.3, we could reuse the algorithm in Chapter

IV to determine the PE locations.

Pulse weight computation stage had to be changed to compensate for the off-

resonance effect because it became more complicated than the case introduced in

Chapter IV due to the modification in the pulse sequence. In our pulse sequence,

we found out that each time-shifted pulse would produce an excitation profile with

a significantly different phase pattern where off-resonance was relatively high. This

is because each time-shifted pulse tips magnetization at slightly different times such

that the transverse magnetization tipped by different pulses will have different free

precession time. Also, the fact that the basis pulses to create the same through-plane

frequency are shifted in the opposite direction in time depending on the polarity of
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the slice-select gradient made the off-resonance artifact more complicated, leading

to a worse model mismatch. Since exciting the magnetization with a desired phase

pattern is very critical in our solution approach, we could no longer ignore the off-

resonance effect during the period that each basis pulse is transmitted as in Equation

5.2. We attempted to compensate this artifact in pulse weight computation stage.

After we finished determining the PE locations, we computed the pulse weight for

each time-shifted pulse using a slice profile considering off-resonance. We also learned

empirically that the pulse weight should be explicitly regularized. We observed that

as the desired pattern shows more localized and complex variation, the pulse weights

tend to increase. This would definitely cause high power deposition into the object,

and violate the small-tip angle assumption, resulting in a much poorer result than

expected.

Considering the above two factors, we modified the Equation 5.2 as following to

include a Tikhonov norm of pulse weights for regularization, and the slice-profile

reflecting off-resonance.

min
αl(m,n),fnm

∥Bθ −
L∑
l=1

M∑
m=1

N∑
n=1

Bn
mSlWmf

n
mαl(m,n)∥22 + λ

L∑
l=1

∥al∥22.(5.4)

Bn
m is the slice profile of the basis pulse associated with the m-th PE location and

the n-th time shift. ar is a column vector composed of scalar pulse weights for the

r-th coil, αl(m,n) in Equation 5.4. We may include the pulse power regularization

during PE location selection as in [60], but that would require rerunning the entire

optimization of PE locations and pulse weights every time we modify the weight

for the Tikhonov norm to find an optimal trade-off point between the excitation

accuracy and RF power deposition. Therefore, in order to reduce computation time,

we chose to consider the pulse power deposition only in the pulse weight computation
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after the PE locations are established. For each pulse design, λ was searched in a

set 10, 20, 30, 40, .., 390, 400 and the minimum λ that does not tip magnetization

over 90 degree during the entire pulse train was chosen.

5.3 Methods

5.3.1 Computer simulation

We implemented our pulse design method and ran Bloch-simulation to estimate

the magnetization at the assumed echo time using the B0 fieldmap data we collected

from in-vivo scans. We chose one slice where severe signal loss artifacts were observed,

and computed RF pulses for 8 transmission coils with simulated sensitivities shown

in Figure 4.2. We also computed the RF pulse for a single transmission coil with

uniform sensitivity to verify the validity of our assumed pulse sequence and our RF

pulse design. The target slices were 5 mm thick and B0 fieldmap data was acquired

from 1mm-thick sub-slices. The excitation field of view was 24cm x 24cm x 7mm,

and a 64x64x7 (x-y-z dimension) uniform spatial sampling grid was applied to obtain

the samples of the desired excitation pattern. The candidates for the PE locations

are formed in the same manner as in the Chapter IV. The through-plane frequencies

were uniformly sampled from -2 cycle/cm to 2 cycle/cm and yielded 5 candidate

frequencies. Each kz-line in the EV trajectory was set to cover the through-plane

frequencies ranging from -6 cycle/cm to 6 cycle/cm. The sinc pulse with one side

lobe was employed for a basis slice-selective pulse. For each method, an RF pulse

was designed using 10 PE locations, which yield an RF pulse about 11.8ms long.

5.3.2 In-vivo experiment

At the time of writing this report, our parallel excitation hardware was not stable

enough to run and test our pulse design method, so we could not conduct in-vivo
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experiments to test our parallel excitation RF pulse design algorithm. Instead, we

applied our algorithm to compute an RF pulse for single coil transmission, and

performed a human brain scan with it. Though this is limited, we hope that this ex-

periment still demonstrate validity of the concept in our pulse design algorithm. We

ran a gradient recalled echo sequence with a spiral-in acquisition k-space trajectory.

TE = 30ms, TR = 1s, the image size was 64x64, and the nominal flip-angle was 30

degree. The image was reconstructed with an iterative method with off-resonance

correction [81]. The B0 fieldmap data was obtained with a spin-warp sequence with

two different echo time, 5ms and 7ms. The B0 fieldmap was later estimated us-

ing a regularized fieldmap estimation in image domain [82]. The RF pulse design

parameters were same as in section 5.3.1.

5.4 Results

5.4.1 Computer simulation

Figure 5.5 shows the excitation regions of interest, the B0 fieldmap of the center

subslice, and the through-plane gradient map computed using the top and the bottom

subslices. The selected slices are closely located to the air cavity regions of the human

head, and typically show multiple regions of severe signal loss in a T2* weighted image

due to the strong, localized through-plane gradient. The severity of signal loss can

be roughly estimated by the through-plane gradient map. The slice-thickness is thin

enough (5mm) to approximate through-plane gradient as a linear function, so we may

assume that the through-plane phase variation is linear as well. If we also suppose

the density is constant within a voxel, then the net magnetization over a voxel can

be modeled with a sinc function of the through-plane gradient. The through-plane

gradient map in Figure 5.5 shows high amplitude around regions close to air cavity

such as ears and a frontal sinus. For the through-plane gradient of ±0.016g/cm, a
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2π linear phase is created along the slice-select direction for a 5mm slice, leading to

almost complete signal loss.

Figure 5.5: Excitation region of interest, B0 fieldmap and through-plane phase gradient map of the
simulated slice for which we designed RF pulses. The B0 fieldmap is taken from the
subslice in the center, and the through-plane phase variation was computed from the
off-resonance frequency difference between the top and the bottom subslices. In 30ms
echo time, The through-plane gradient of 0.016g/cm creates a 2π linear phase for the
5mm thick slice, leading to a complete signal loss.

The signal recovery result with our pulse design using 8 transmission coils and a

single coil is displayed in Figure 5.6. The conventional single sinc pulse transmission

shows a serious signal loss around the ears and a frontal sinus, which is expected from

the through-plane gradient map. The results with our pulse design shows a large

reduction in the signal loss regions. The RF pulse with 8 transmission coils show

better signal recovery performance than the signal transmission case as expected.

The normalized excitation error of the RF pulse decreased from 42% to 29% when

we used 8 coil parallel transmission instead of a single coil transmission, which lead

to the improved signal recovery performance.

5.4.2 In-vivo experiment

Figure 5.7 displays the T2* weighted images of an axial slice of a human brain

acquired with our pulse design and a conventional sinc pulse. Both pulses are trans-

mitted using a single coil. In the conventional sinc pulse case, severe signal loss is
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Figure 5.6: Simulated transverse magnetization at echo time with different RF pulses. The magne-
tization with the conventional single sinc pulse shows typical signal loss pattern around
the ear and the frontal sinus, while the RF pulses with our pulse design show improved
signal recovery pattern. The RF pulse with 8 transmission coils achieved higher exci-
tation accuracy than the RF pulse with single transmission, and could obtain higher
signal amplitude over most of regions.

observed in the inferior frontal cortex region located right above the frontal sinus.

As we see from the B0 fieldmap in Figure 5.7, a very strong off-resonance frequency

is developed, leading to considerable signal loss in the conventional T2* weighted

imaging. On the other hand, the T2* weighted image with our pulse in Figure 5.7

illustrates that the most of dark holes observed in the conventional image are re-

moved, demonstrating that we could achieve desired signal recovery with our pulse

design.

Figure 5.7: B0 fieldmap of the subslice at the center and T2* weighted images acquired with a con-
ventional sinc pulse and our proposed pulse. Our pulse design shows a large reduction
of signal loss regions and overall improvement in the signal magnitude
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5.5 Discussion

In this chapter, we proposed a novel parallel excitation pulse design algorithm

for jointly designing the gradient waveforms and RF pulse waveforms to solve a

signal loss problem in BOLD fMRI. We demonstrated with computer simulation that

with parallel excitation, we could achieve better signal recovery performance than

single coil excitation. We also conducted an in-vivo experiment with our algorithm

applied to single coil transmission as a proof of concept. Both simulation and in-vivo

experiment results show that our algorithm can effectively correct for the signal loss

in T2* weighted imaging for brain fMRI.

Even though the parallel excitation does achieve better excitation accuracy than

the signal coil excitation, it did not make a sufficiently large difference in the signal

recovery performance in our experiments. One reason is that the required excitation

pattern is very complicated, and locally varying such that it may not be so accurately

approximated with a limited number of PE locations. In that case, the excitation

error may decrease slowly as we use more transmission coils or more PE locations.

Another reason is that the greedy algorithms tested above tend to choose PE lo-

cations that entail a very large pulse weight, which, after regularization, does not

achieve improved excitation accuracy as predicted initially in PE location selection.

For example, in our simulated case, the normalized excitation error predicted to be

20% without pulse power regularization, but after the regularization to avoid small-

tip angle violation, it creased to 29%. Therefore we may need to modify PE location

selection algorithm to suppress large pulse weights in order to observe the small-tip

angle assumption and to fully exploit the potential benefit of joint optimization for

gradient and RF waveforms. The current optimization scheme, in fact, separately
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optimize the PE locations and the pulse weights, so this may be another cause of

potential ineffectiveness.

One may question if our approach of decomposing the RF pulse with basis pulses

can achieve as high excitation accuracy as the approach discretizing the RF pulses

into fine time samples[33]. The latter approach definitely gives more freedom in

determining the RF pulses, which probably include the RF pulse computed with

our proposed method in its potential solutions. We may support our RF pulse

decomposition approach in the small tip-angle domain as following. Suppose the

desired excitation pattern is expressed as b(z)θ(x, y, z) where b(z) is the through-

plane slice profile indicating that the desired RF pulse should be slice-selective, and

θ(x, y, z) describes the desired magnetization pattern within the selected volume. In

our experiment θ(x, y, z) was the pre-phasing pattern compesating the off-resonance

phase accural at echo time. Since the support of θ(x, y, z) is limited by b(z) for

the through-plane dimension (z axis) and by the finite size of the excited object

for the in-plane dimension(x-y axis), we can create θ̂(x, y, z), a periodic repetition

of θ(x, y, z), and substitute it for θ(x, y, z) in the desired excitation pattern. For

example b(z)θ(x, y, z) ≡ b(z)θ̂(x, y, z). Now we take Fourier series of θ̂(x, y, z) to

represent it as a sum of weighted complex exponentials and represent the desired

pattern as following :

b(z)θ̂(x, y, z) = b(z)
∞∑

m=−∞

∞∑
n=−∞

∞∑
l=−∞

cm,n,le
i2π m

XFOVx
xe

i2π m
XFOVy

y
ei2π

m
XFOVz

z.

(5.5)

cm,n,l is the Fourier series coefficent for the complex exponential whose frequency

is indexed by (m,n, l). XFOVx, XFOVy, and XFOVz is the period of θ̂(x, y, z)
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along x, y, and z axis respectively, which is equivalent to the excitation field of view

(XFOV) size for each dimension. Equation 5.5 is very similar to Equation 5.1 that

describes the excited pattern from our pulse design if we reduce it to a single coil

transmission case. In fact, Equation 5.5 can approximate Equation 5.1 reasonably

well if θ̂(x, y, z) can be represented with a limited number of sinusoids with high

accuracy. Therefore, we may claim that the our pulse design approach adopting

basis pulse decomposition may be sufficient enough to compute RF pulses to excite

the desired excitation pattern.

For our future work, we will further evaluate our algorithm with fMRI studies to

find whether the signal recovery from our pulse design makes statistically significant

changes in detecting brain activations, especially on the brain regions suffering from

considerable signal loss. Implementing our algorithm with parallel excitation hard-

ware and comparing its performance with single coil excitation is another topic to

work on. For pulse design perspective, we plan to investigate an optimization scheme

to determine PE locations considering constraints for the pulse weight to observe the

small-tip angle domain assumption. Also, we will develop a fast optimization scheme

to jointly optimize the in-plane phase relaxation pattern with the gradient and RF

waveforms and evaluate its practicality.

5.6 Conclusion

We have introduced a parallel excitation RF pulse design method to compute RF

pulse and gradient waveforms to mitigate signal loss in BOLD fMRI. We designed

our RF pulse to excite the magnetization with pre-compensatory phase to cancel the

off-resonance phase along the through-plane direction at echo time. With computer

simulation and in-vivo experiment, we demonstrated effectiveness of our pulse design
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algorithm. In future work, we plan to conduct fMRI experiments to further verify

the signal recovery in terms of brain activation detection. Also, we will investigate an

efficient way to incorporate a pulse power regularization in our PE location selection

procedure.



CHAPTER VI

Joint design method for parallel excitation RF pulse and
gradient waveforms for large tip-angles

6.1 Introduction

Many RF pulse design methods have been proposed for parallel excitation since

its invention [1, 2], but most of them have focused on optimizing RF pulses for pre-

determined gradient waveforms. Typically, these predetermined gradient waveforms

were not chosen with any optimization criteria, so there can be a good chance for fur-

ther improving the excitation accuracy or reducing pulse power deposition by jointly

optimizing RF pulse and gradient waveforms. Recently, several joint optimization

methods have been proposed to improve excitation accuracy [16, 60, 59, 83], all of

which were limited in a small-tip angle domain. In a large tip-angle domain, many

parallel excitation RF pulse design algorithms were published [84, 85, 86, 87, 88, 89],

but none of them were considering joint optimization of RF pulse and gradient wave-

forms. The results from the joint optimization methods for a small tip-angle domain

[16, 60, 59, 83] showed that there exist certain cases that excitation accuracy can be

significantly improved with a joint optimization. These results definitely encourage

the development of joint design method for the RF pulse and gradient waveforms to

achieve arbitrary tip-angle excitation.

In this chapter, we present a preliminary work on the joint design of RF and

78
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gradient waveforms for parallel excitation in an arbitrary tip-angle domain. Our

method assumes the pulse sequence presented in Chapter IV, which is composed of

trains of weighted slice-selective pulses interleaved by in-plane gradient blips. Our

goal here is to determine the RF pulse weights and in-plane gradient blips to achieve

the desired excitation pattern with an arbitrary tip-angle. We used the excited

magnetization pattern at the slice-center to guide the optimization of pulse weights

and gradient waveforms for simplicity of optimization. In the optimization, we first

initialize the RF pulse weights and gradient waveforms with a greedy method, which

will be presented in detail later in Theory section. Then for each unit RF pulse

segment in the pulse train, we locally update the RF pulse weight and the gradient

waveforms. We sequentially update each pulse segment, and repeat the whole process

until there is no significant improvement. In the local update for the RF pulse weight,

we adopted the method proposed by [89], which linearizes the Bloch-equation for a

small RF pulse update. Our method still provides the slice-selectivity because each

basis pulse in the pulse train is slice-selective, but does not guarantee the ideal

through-plane slice profile because it is not explicitly considered in the optimization.

However, with computer simulation, our proposed pulse design demonstrates that

the computed RF pulse and gradient waveforms achieve a reasonable slice profile

and significantly improved excitation accuracy over a solution obtained by scaling

RF pulses computed with a small tip-angle domain method [59].

6.2 Theory

6.2.1 Optimization formulation

Our proposed pulse design uses the pulse sequence briefly illustrated in Fig 6.1.

Trains of slice-selective RF pulses each of which is weighted by a complex weight

are transmitted, and the unit RF pulses are interleaved by in-plane gradient blips.
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The benefits of this RF pulse sequence were explained in Chapter IV, which can be

summarized as guaranteed slice-selectivity and a large reduction of the number of

parameters to optimize. In our algorithm, we do not limit the desired tip-angle to

be in a small tip-angle domain [6], so there is no simple linear relationship between

the input RF and gradient waveforms and the output excitation pattern. Therefore,

we should directly use the original non-linear input-output relationship, the Bloch-

equation, for our optimization.

Figure 6.1: The target pulse sequence to optimize. The pulse sequence consists of trains of weighted
basis RF pulses interleaved by in-plane gradient blips. Because each basis RF pulse is
slice-selective, this pulse sequence provides inherent slice-selectivity.

In essence, the Bloch-equation describes that magnetization rotates around the

applied magnetic field. In general excitation process, the applied magnetic field is

sum of the gradient field and the RF field that can be time-varying, so this makes

the estimation of the resulting excitation pattern very complicated. However, if the

direction of the net magnetic field experiences only sign alternation, the effect of the

magnetic field can be modeled as a simple rotation where the axis of the rotation

is the direction of the magnetic field, and the rotation angle is determined from

the time-integral of the magnetic field. This observation can be used to simplify

the estimation of the magnetization change at z = 0 during each unit RF pulse.
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Because the slice-select gradient field (z-gradient field) becomes zero at z = 0, the

only effective field there is the RF field. In our assumed pulse sequence, the total RF

field at (x, y, z = 0) formed by the n-th RF pulse segment is b(t)
∑L

l=1 sl(x, y)wl(n),

where b(t) is the basis sinc pulse, l is the coil index, L is the number of coils, sl(x, y)

is the l-th coil’s sensitivity, and wl(n) is the pulse weight of the n-th basis pulse for

the l-th coil. The above model shows that the net RF field is still a sinc RF pulse

scaled by a weighted combination of the sensitivity patterns, which implies that the

rotation from the net RF field is determined from the term,
∑L

l=1 sl(x, y)wl(n). For

example, the direction of the rotation axis is determined as ∠(
∑L

l=1 sl(x, y)wl(n)),

and the rotation angle (following a left-hand rule) is θ|
∑L

l=1 sl(x, y)wl(n)|, where θ

is the tip-angle of the basis pulse. On the other hand, when each in-plane gradient

blip is transmitted, there is no RF field turned on, so it is the only magnetic field

determining the rotation of the magnetization. Its rotation effect is to simply add

a linear phase to the transverse magnetization. The spatial frequency of the linear

phase is determined from the integral of the gradient blip. In our optimization, we

first compute the spatial frequency for the n-th gradient blip, and then derive the

gradient waveform subject to the hardware capability constraints. Combining the

aforementioned rotation models for both RF pulse and gradient waveforms, we could

set up a cost function as following for the optimization of the RF pulse and gradient

waveforms.

min
∀wl(n),∀kx(n),∀ky(n)

∑
∀r

∥dr −Wr
NGr

NBr
N ...Wr

1Gr
1Br

1mr∥22(6.1)

r is a vector containing spatial coordinates. dr and mr are 3x1 column vectors

specifying the x, y, and z component of the desired magnetization and the initial mag-

netization at r respectively. Br
n is the 3x3 rotation matrix determined by the n-th
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Optimization procedure outline
Initialize the pulse weights, wl(n), and the 2D linear frequencies, (kx(n), ky(n)).
Loop until the cost function value in Equation 6.1 does not decrease significantly

for n = N : 1
Minimize Equation 6.1 w.r.t (kx(n), ky(n))
update (kx(n), ky(n)) with the minimizer found above
Minimize Equation 6.1 w.r.t wl(n) for l = 1, 2, ..., L
update wl(n) with the minimizer found above

end
end

Table 6.1: The outline of our optimization procedure

RF pulse, Gr
n is the 3x3 rotation matrix by the n-th gradient blip characterized by

the associated 2D spatial frequency, kx(n) and ky(n). Wr
n is the 3x3 rotation matrix

indicating off-resonance phase accrual to the transverse magnetization between n-th

and n+1-th pulse segment. Note that kx(n) and ky(n) are not the reverse time inte-

gral of the gradient waveforms as defined in [6]. Here they are kx(n) = γ
∫
gnx(t)dt,

ky(n) = γ
∫
gny (t)dt, where gnx(t) and gny (t) are the n-th x and y gradient blips re-

spectively. As described above, Br
n is a function of wl(n) and Gr

n is a function of

kx(n) and ky(n), and our purpose is to find optimal wl(n), kx(n), ky(n) such that the

resulting rotation operations can accurately map the initial magnetization mr onto

dr.

6.2.2 Optimization strategy

Our optimization strategy here is to sequentially update the pulse weights and

the gradient waveforms for each pulse segment by fixing every other pulse segment

but the one being updated. The update happens from the last pulse segment, and

after finishing updates of all pulse segments, then we repeat the whole cycle until

there is no significant improvement in the cost function. Table 6.1 summarizes our

optimization procedures.
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6.2.3 Initialization of RF pulse weights and gradient blips

We initialized the pulse weights and gradient blips by determining the pulse seg-

ment from the last in a greedy manner as in [59] presented in Chapter IV. In this case,

we can assume that whenever we add a new pulse segment, it always operates on the

fully relaxed initial magnetization, which has no transverse components. One advan-

tage of this approach is that we can treat the effect of the gradient field as the linear

RF phase variation such that we can merge the RF field and gradient field together.

For example, if the RF field is
∑L

l=1 sl(x, y)wl and the gradient field is creating a

linear phase of ei2π(xkx+yky), then the sequential application of these two to the initial

magnetization is equivalent to applying an RF filed,
∑L

l=1 sl(x, y)wle
i2π(xkx+yky). We

use this formula to determine optimal wl, kx, and ky that best fits the correspond-

ing RF field,
∑L

l=1 sl(x, y)wle
i2π(xkx+yky), into the ideal RF field rotating the initial

magnetization onto the desired magnetization.

Suppose we are adding the n-th from the last pulse segment. We first determine

new desired magnetization pattern for the n-th pulse segment by applying the in-

verse rotations of the pulse segments following the n-th pulse segment to the original

desired magnetization pattern. For example, the new desired magnetization pattern,

d̂r, is defined as
(
Wr

NGr
NBr

N ...Wr
n+1Gr

n+1Br
n+1

)−1
dr. Then, for each spatial

location, r, we compute an ideal RF field, br, that rotates the initial magnetization

mr onto the desired magnetization d̂r. The ideal RF field can be derived by com-

puting an axis of rotation and a rotation angle that is needed to rotate mr onto d̂r.

Finally we compute the wl(n), kx(n), ky(n) by minimizing the l2 distance between

the combined RF field describe above and the ideal RF field as following. We assume

here r = (x, y).
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min
wl(n),kx(n),ky(n)

∑
∀x,y

∥bx,y −
L∑
l=1

sl(x, y)wl(n)e
i2π(xkx(n)+yky(n))∥22(6.2)

This minimization is exactly same as what we solved in Chapter IV when the

number of PE location is one. Therefore, we can reuse our previous algorithm to

solve this problem. One difference here is that the distance measured in the cost

function is in the RF field domain, not in the magnetization domain as in Chapter IV.

Therefore, the minimizer may not be optimal for our final cost function in Equation

6.1 that measures the difference in the magnetization domain. However, we learned

from simulation experiments that the initial solution found with this approach has

a better result than a scaled version of a small tip-angle solution, which is a typical

initializer for most of large tip-angle RF pulse design methods.

6.2.4 Update of RF pulse weights

In updating RF pulse weights for the n-th pulse segment, w1(n), ..., wL(n), we fix

all other parameters and minimize the cost function in Equation 6.1 with respect to

them as following.

min
wl(n)

∑
∀r

∥dr −Wr
NGr

NBr
N ...Wr

nGr
nBr

n...Wr
1Gr

1Br
1mr∥22

≡ min
wl(n)

∑
∀r

∥
(
Wr

NGr
NBr

N ...Wr
nGr

n
)−1

dr −Br
n...Wr

1Gr
1Br

1mr∥22

≡ min
wl(n)

∑
∀r

∥d̂r −Br
nm̂r∥22,(6.3)

where d̂r =
(
Wr

NGr
NBr

N ...Wr
n+1Gr

n+1Br
n+1Wr

nGr
n
)−1

dr, and m̂r = Wr
n−1

Gr
n−1Br

n−1...Wr
1Gr

1Br
1mr. Note that the equivalence between the first and the

second line of Equation 6.3 is valid because rotation operations are norm-preserving

and composite rotations and inverse rotations are still rotations.
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The main difficulty in minimizing Equation 6.3 is that the mapping from the pulse

weights to the corresponding rotation matrix is non-linear and very complicated, so

it is not easy to find a simple relationship between the pulse weights and the rotated

magnetization. Instead of relating the rotated magnetization with the pulse weights

through the rotation matrix, Br
n, we use locally linearized Bloch-equation to find a

local linear relationship between small updates of RF pulse weights and the transverse

component of the rotated magnetization. This approach is inspired by the method

proposed by Zheng et al. [89]. The integral form of the Bloch equation to model the

transverse magnetization change for Br
nm̂r is as following :

Mtv(x, y, T ) = Mtv(x, y, 0) + iγ

∫ T

0

Mz(x, y, t)b(x, y, t)dt

Mtv(x, y, T ) = Mtv(x, y, 0) + iγ

∫ T

0

Mz(x, y, t)b(t)
L∑
l=1

sl(x, y)wl(n)dt

= Mtv(x, y, 0) +

{
iγ

∫ T

0

Mz(x, y, t)b(t)dt

} L∑
l=1

sl(x, y)wl(n)(6.4)

Mtv(x, y, t) is the transverse magnetization at a spatial coordinate (x,y) at time

t. Mz(x, y, t) is the longitudinal magnetization at (x,y,t). Without loss of generality,

we can set the time 0 as the beginning of the n-th RF pulse, and T as the end of

the RF pulse segment. In our pulse sequence, b(t) is the basis sinc pulse, but for the

sake of optimization, we can replace it with a simple hard pulse achieving a small

tip-angle since we only use the magnetization at z=0. In fact, we can replace the

basis sinc pulse with any pulse achieving the same tip-angle for our optimization,

but we chose the hard pulse because it is not time-varying and thus most simple.

Suppose we have a small update ∆wl(n) for each wl(n). Then the resulting

transverse magnetization M̂tv and the longitudinal magnetization M̂z can be modeled

using Equation 6.4 as following :
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M̂tv(x, y, T ) = Mtv(x, y, 0) +

{
iγ

∫ T

0

M̂z(x, y, t)b(t)

} L∑
l=1

sl(x, y)(wl(n) + ∆wl(n))dt.

(6.5)

If we assume M̂z(x, y, t) ≈ Mz(x, y, t) because ∆wl(n) is small, then we can further

approximate Equation 6.5 as following :

M̂tv(x, y, T ) ≈ Mtv(x, y, T ) +

{
iγ

∫ T

0

Mz(x, y, t)b(t)

} L∑
l=1

sl(x, y)∆wl(n)dt.

(6.6)

Equation 6.6 shows a linear relationship between the pulse update and the re-

sulting transverse magnetization. Using this, we compute the optimal pulse weight

update by minimizing l2 distance between the desired transverse magnetization,

d̂tv(x, y, T ), and the excited transverse magnetization, M̂tv(x, y, T ) as following :

min
∆w1(n),∆w2(n),...∆wL(n)

∑
∀x,y

∥d̂tv(x, y, T )− M̂tv(x, y, T )∥22

≡ min
∆w

∥dtv −mtv −A∆w∥22.(6.7)

r = (x, y), and M̂tv(x, y, T ) is a function of ∆wl(n) as shown in Equation 6.6.

The second line of Equation 6.7 is rewriting of the first line in a matrix vector

form. ∆w is a Lx1 column vector containing pulse weights for each coil, and its

l-th element is ∆wl(n). dtv and mtv are column vectors containing spatial sam-

ples of d̂tv(x, y, T ) and Mtv(x, y, T ). A is a matrix of L columns where the l-th

column has spatial samples of
{
iγ

∫ T

0
Mz(x, y, t)b(t)

}
sl(x, y). The minimizer of the

cost function in Equation 6.7 is
(
AhA

)−1
Ah (dtv −mtv). The pseudo-inverse of
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A,
(
AhA

)−1
is a LxL matrix where L is a number of transmission coils. The typ-

ical number of the coils is usually less than 8 in the current technology, so com-

puting the pseudo-inverse matrix can be done very quickly. In populating the A

matrix, one should know
{
iγ

∫ T

0
Mz(x, y, t)b(t)

}
, where figuring out Mz(x, y, t) may

require Bloch simulation of b(t), which can be very demanding computationally.

However, the integral does not have to be directly evaluated. Since we know ev-

ery terms in Equation 6.4 except the integral term, it can be simply computed as{
iγ

∫ T

0
Mz(x, y, t)b(t)

}
= Mtv(x,y,T )−Mtv(x,y,0)∑L

l=1 sl(x,y)wl(n)
. We keep updating the pulse weights

until there is no significant update. For the initial solution for the pulse weights

wl(n), we can use the pulse weights determined in the previous cycle or compute it

based on the ideal RF field fitting we used for initializing the whole pulse segment

in the beginning of the optimization. We computed both of them, and chose the one

with less cost function value.

6.2.5 Update of (kx(n), ky(n))

In computing (kx(n), ky(n)), we take the same approach with the pulse weight

update. We fix all other input parameters, and rewrite the initial cost function in

Equation 6.1 as we did to derive Equation 6.3. The result of rewriting is as following:

min
kx(n),ky(n)

∑
∀r

∥dr −Wr
NGr

NBr
N ...Wr

nGr
nBr

n...Wr
1Gr

1Br
1mr∥22

≡ min
kx(n),ky(n)

∑
∀r

∥
(
Wr

NGr
NBr

N ...Wr
n
)−1

dr −Gr
nBr

n...Wr
1Gr

1Br
1mr∥22

≡ min
kx(n),ky(n)

∑
∀r

∥d̂r −Gr
nm̂r∥22,(6.8)

d̂r is
(
Wr

NGr
NBr

N ...Wr
n
)−1

dr, and m̂r is Br
n...Wr

1Gr
1Br

1mr. Gr
n only add

phase to the transverse component of m̂r, so from now on, we will consider evaluating
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the cost function value only for the transverse component of m̂r and d̂r. Suppose

we sampled the transverse component of d̂r with a P X Q sampling grid to form a

P x Q matrix, d̂, and the same sampling grid was applied to m̂r to form a P x Q

matrix, m̂. Then, Equation 6.8 can be rewritten as following:

min
k̂x(n),k̂y(n)

P∑
p=1

Q∑
q=1

∥d̂(p, q)− m̂(p, q)ei2π(
pk̂x(n)

P
+

qk̂y(n)

Q
)∥22.(6.9)

Here k̂x(n) = XFOVx · kx(n) and k̂y(n) = XFOVy · ky(n). If we limit k̂x(n) and

k̂y(n) to be DFT frequencies, which are integers, then there exists an analytical

solution for the optimal k̂x(n) and k̂y(n) as following.

argmax
k̂x(n),k̂y(n)

Re
(
DFT2D

{
d̂(p, q). ∗ conj{m̂(p, q)}

})
(6.10)

Re{·} means taking the real part of the argument, and DFT2D{·} is the 2D DFT.

conj{·} is the operation taking the complex conjugate of the argument. In short, we

form a new 2D matrix by taking an element-wise product between d̂(p, q) and the

conjugated m̂(p, q) and take 2D DFT of it, and find the 2D DFT frequency with

the largest real 2D DFT value. Since DFT is a very fast operation, computing the

optimal 2D frequency can be performed very quickly.

6.3 Method

We implemented our pulse design method and tested it with Bloch-simulation

on a computer with Intel Q6600 CPU at 2.4 GHz and 4GB RAM. The simulation

was implemented with Matlab (MathWorks, Natick, MA). We designed two types

of large tip-angle RF pulses: a 90 degree excitation pulse, and 180 degree inversion

pulse for a 5mm-thin slice. For 90 degree excitation pulse design, the phase of the

desired excitation pattern was set to 0, attempting to perfectly uniform excitation.
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In testing our 90 degree excitation pulse, we measured the transverse magnetization

at z=-5mm, -4mm, ... 5mm to check the uniformity of the in-plane slice profile and

the through-plane slice profile. We ran the same test for our 180 degree inversion

pulse, but measured the longitudinal magnetization instead. Our pulse design was

compared with a scaled version of our small tip-angle RF pulse introduced in Chapter

IV. The small tip-angle pulse achieving 10 degree flip angle was designed and scaled

to match the new target tip-angle. For example, for the 90 degree tip-angle pulse, it

was scaled by 9, and for the 180 degree tip-angle pulse, it was scaled by 18.

The excitation region of interest and B0 fieldmap data for our RF pulse simulation

were obtained with in-vivo human scans. They were used to test our small-tip angle

RF pulse design method introduced in Chapter IV, and are displayed in Figure 6.2.

The dimension of the excitation field of view was 24cm x 24cm, and a 64x64 sampling

grid was applied to sample the desired excitation pattern. The dimension of the B0

fieldmap was same as that of the excitation field of view.

Figure 6.2: Region of interest and B0 fieldmap used in our RF pulse design.

8 transmission coils were used for the RF pulse design, and their sensitivity map

was acquired with the same simulation presented in Chapter IV. Their sensitivity
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map is shown in Figure 4.2. The target slice was 5 mm thick, and a sinc pulse with

one side lobe exciting 10 degree tip-angle was used as a basis slice-selective pulse.

The number of phase encoding locations in the simulation was set to be 5.

6.4 Results

6.4.1 90 degree tip-angle excitation

Figure 6.3 shows the magnitude of the transverse magnetization at different z-

locations by different pulse designs. Figure 6.4 displays the phase of the transverse

magnetization normalized by the phase at z=0 at different z-locations from two

pulses. In other words, the phase at each z location is subtracted by the phase

at z=0 to evaluate the through-plane phase variation, which can cause signal loss

in the reconstructed image if it is very rapid as we discussed in Chapter V. The

magnetization at |z| > 5mm was not plotted because its magnitude was negligible.

The scaled version of small tip angle pulse shows very irregular magnitude and phase

whereas the proposed large tip-angle pulse design shows much better uniformity in

both magnitude and phase of the excited transverse magnetization. The uniformity

of transverse magnetization becomes deteriorated as the subslice location becomes

farther from the slice center. For example, at the magnitude uniformity at z = ±2mm

is not as good as that at z = 0mm or ±1mm. However, considering our pulse design

does not explicitly regulate the through-plane slice profile, this result is surprisingly

better than what we expected. We experimented with other slices and found that

results from other slices have reasonably uniform through-plane magnitude and phase

profiles though they are not presented here.

Figure 6.5 and Figure 6.6 show the kx and ky locations and the RF pulse weights

before and after the proposed optimization. The normalized root mean squared

error (NRMSE) of the excited transverse magnetization pattern decreased from 19%
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Figure 6.3: Transverse magnetization magnitude along z axis by different RF pulses. Top row (A)
shows the transverse magnetization from the scaled version of a small tip-angle pulse,
and the bottom row (B) shows our proposed large tip-angle RF pulse design. The
large tip-angle design method shows significantly improved uniformity in the in-plane
excitation pattern at each sub-slice location.

Figure 6.4: Transverse magnetization phase along z axis by different RF pulses. Top row (A) shows
the transverse magnetization from the scaled version of a small tip-angle pulse, and
the bottom row (B) shows our proposed large tip-angle RF pulse design. The large
tip-angle design method shows much smaller phase variation, implying less signal loss
in the reconstructed image.

to 17%. There is not much update for both the kx and ky locations and the RF

pulse weights, explaining the small improvement in the excitation error. However,

note that the error is quite larger than expected from the in-plane excitation profile

displayed in Figure 6.3, because of the phase discrepancy between the excited pattern

and the desired pattern. The NRMSE in the magnitude domain is in fact about 3%,

suggesting that the excitation phase relaxation may help assessing the quality of the

excited pattern in a fairer manner.

6.4.2 180 degree tip-angle inversion

The longitudinal magnetization from different pulse designs are presented in Fig-

ure 6.7. Our proposed method shows a significantly better uniform inversion pattern
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Figure 6.5: kx(n) and ky(n) comparison between before (A) and after (B) optimization for 90 degree
excitation. In this case, kx and ky locations after the optimization did not change from
the initializer.

Figure 6.6: Magnitudes of RF pulse weights before (A) and after (B) the optimization. Only minor
updates occurred.

at different subslice locations than the scaled small tip-angle RF pulse design. How-

ever, compared with the 90 degree excitation pattern, the through-plane slice profile

of the longitudinal magnetization became thinner. The slice uniformity became no-

tably degraded around z = ±2mm for the 90 degree excitation, but we could identify

non-uniformity of the inverted magnetization started to become more visible from z

= ± 1mm with our inversion pulse design.

Figure 6.8 and Figure 6.9 show the kx and ky locations and the RF pulse weights
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Figure 6.7: Longitudinal magnetization phase along z axis by different inversion pulse designs. Top
row (A) displays the longitudinal magnetization from the scaled small tip-angle pulse,
and the bottom row (B) presents our proposed large tip-angle RF pulse design. Our
pulse design demonstrates a much more uniform longitudinal magnetization pattern.

before and after the proposed optimization for the inversion pulse design. The

NRMSE of the excited longitudinal magnetization pattern reduced from 11% to

3%, which is a larger change than that of the 90 degree excitation pulse. The RF

pulses show a larger update than kx and ky locations.

Figure 6.8: kx(n) and ky(n) comparison between before (A) and after (B) optimization for 180
degree excitation. In this case, only (kx(1), ky(1)) is updated.

6.5 Discussion

In this chapter, we introduced a joint design method for RF and gradient wave-

forms to obtain arbitrary tip-angle excitation with parallel excitation, and demon-

strated its preliminary simulation results. To our knowledge, there was no previous

journal article presenting a jointly optimization method for the RF and gradient
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Figure 6.9: Magnitudes of RF pulse weights before (A) and after (B) the optimization. Compared
to the case of the 90 degree excitation pulse design, a more major update occurred,
resulting a larger improvement in the final RF pulse accuracy

waveforms in parallel excitation using our assumed pulse sequence, which is com-

posed of trains of slice-selective RF pulses interleaved by in-plane gradient blips.

We attempted to compute optimal RF pulse weights and gradient blips by locally

refining an initial solution. In our optimization, we sequentially updated each basis

RF pulse segment by fixing other parameters, and minimized our cost function with

respect to the parameter chosen to be optimized. We repeated this process until

there is no considerable improvement in the cost function value. The comparison

with a scaled version of our previous small tip-angle design method shows that our

new large tip-angle design method can achieve much higher excitation accuracy in

both 90 degree excitation and 180 degree inversion RF pulse designs.

The minimizer found with our optimization algorithm converges to a local mini-

mum around the initial solution, so it might be quite advantageous if we can find a

good initializer. We have proposed a method to initialize the RF pulse weights and

gradient waveforms by fitting them to the ideal B field in a greedy fashion. Another

natural choice for the initializer may be the scaled version of the small tip-angle RF

pulse, which we used as a reference to compare our design with. However, with our
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experiments, the excitation error of the scaled small tip-angle RF pulse was much

higher than that of our proposed initializer. For example, the normalized root mean

squared error (NRMSE) of the excited pattern by the scaled small tip-angle RF pulse

for the 90 degree excitation was about 71%, while the normalized excitation error

by our proposed initializer was about 18%. The NRMSE of the small tip-angle RF

pulse initializer after the RF pulse and gradient waveform update was about 31%,

whereas that of our proposed initializer was about 12%. The reason for such high

excitation error by the scaled small-tip pulse was that the magnetization became

seriously overtipped in some regions. This may be avoided if we reduce the scaling

factor, but upto now, we could not find any obvious way to determine it in an better

way.

Experimentally, we learned that our RF pulse achieves a reasonable magnitude

slice profile at different subslice location as show in Figure 6.4. However, the phase

profile was harder to characterize than the magnitude profile. Figure 6.10 (A) il-

lustrates the through-plane phase difference between z = -2mm to +2mm. It shows

mostly moderate phase evolution, so it would not create serious signal loss. We can

confirm this by comparing Figure 6.10 (B) and (C) where the sum of magnitude

of transverse magnetization along z direction and the sum of complex transverse

magnetization are displayed respectively. The complex sum image in Figure 6.10

shows slightly reduced amplitude overall, but it does not have regions with severe

signal amplitude reduction. The signal loss from the through-plane phase variation

was relatively moderate. But unfortunately, it could not be corrected by modifying

the rephaser gradient at the end of the RF pulse sequence because the rate of the

through-plane variation and its sign were spatially varying.

In our future research, we will seek to refine our method to further control the
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Figure 6.10: Through-plane phase difference in excitation pattern and resulting signal loss. (A)
shows through-plane phase difference, and high phase difference is likely to cause
signal loss in the reconstructed image. (B) and (C) are sum of excited transverse
magnetization along through-plane direction to simulate how much signal loss is caused
from through-plane phase difference within the excited slice. (B) is the sum of absolute
magnetization and (C) is the sum of the complex magnetization. (B) and (C) are
compared to isolate the signal loss by phase incoherence from the non-uniformity in
the magnitude of the excited magnetization. (C) show a very slight shading around
the center, suggesting that the signal loss from through-plane phase incoherence is not
so severe.

through-plane slice profile. As briefly discussed above, our pulse design may yield im-

perfect through-plane slice profile in both magnitude and phase. In our experiment,

we observed that different RF pulse trains have different effective slice-thickness. So,

there may be a way to optimize the RF pulse weights considering not only mag-

netization at the slice center, but also magnetization at different slice locations to

explicitly regulate the through-plane slice profile. This may involve modifying the

pulse sequence to allow deposition of time-shifted basis pulse as presented in Chapter

V to control the magnetization variation within the selected slice volume.

Our pulse design may be directly applicable to excitation of a large volume where

no slice selection is necessary. Excitation of a whole brain is such an application.

Recently, a small tip RF pulse design using spiral non-selective RF pulses [90] was

proposed, but to our knowledge, no arbitrary tip-angle RF pulse design for parallel

transmission has been proposed yet. In non-selective RF pulse design, there is no
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need for the slice-select gradient. Therefore, we should first remove the slice-select

gradient in our assumed pulse sequence and replace the slice-selective basis pulse with

a hard pulse. Then we can apply our optimization algorithm to design a non-selective

RF pulse. In the optimization, the absence of the slice-select gradient allows us to

handle all the magnetization as if it is at the slice center, which makes the problem

easier to solve than slice-selective excitation. With a little extension of the dimension

of the desired excitation pattern, our current RF and gradient waveform optimization

scheme can be used to design the non-selective RF pulse without much difficulty.

6.6 Conclusion

We have presented a joint design optimization method for RF pulse and gradient

waveforms in parallel excitation to achieve an arbitrary tip-angle excitation. Our

joint optimization algorithm uses the excited magnetization at the slice center to

guide the optimization of the RF pulse and gradient waveform. In our preliminary

simulation experiments, we have demonstrated the potential of our method with

90 degree excitation and 180 degree inversion. For our future research, we plan to

investigate further improve our pulse design to explicitly control the through-plane

slice profile. Also developing a fast computational scheme for our joint design method

may be another interesting topic to pursue.



CHAPTER VII

Summary and Future Work

7.1 Summary

In this thesis, we have presented a fast joint optimization method for RF pulse

and gradient waveforms in parallel excitation. In our optimization, we assumed an

RF pulse sequence composed of trains of weighted slice-selective basis RF pulses

interleaved by in-plane gradient blips. Our main contribution is that we have de-

veloped a fast joint design algorithm for RF and gradient waveforms for general

slice-selective excitation with parallel transmission, which provides higher excitation

accuracy than previous algorithms. The actual benefits from our pulse design de-

pend on the applications. For example, in the application for the uniform excitation,

higher excitation accuracy of our RF pulse design method can lead to the better

image contrast because it is not compromised by unwanted shading or brightening

that can result from excitation with low accuracy. In the application for the signal

recovery for BOLD fMRI with multi-dimensional excitation, our pulse design could

provide the image without severe signal loss, yielding a better opportunity to study

the functional activation of brain regions that would have been otherwise impossible

to investigate.

In Chapter III, we introduced a simple algorithm for a very basic pulse sequence

98
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used to achieve the pseudo-continuous inversion for arterial spin labeling (PCASL).

We extended the conventional PCASL sequence by employing parallel excitation to

obtain spatial selectivity on the tagging plane. Our approach was applied to invert

the spins only on the selected vessel locations. The conventional method for the

vessel-selective PCASL used a single transmission coil and depended upon linear

gradient blips to achieve the desired selectivity. However, the dependence on the

linear gradient limited the applicability of the conventional method such that it is

effective only when the vessels form a rectlinear geometry. On the other hand, our

method acquired the selectivity by finding an optimal combination of transmission

coil’s sensitivity such that only selective vessels experience the normal PCASL RF

pulse sequence. With our simulation experiments, we demonstrated that our method

can achieve higher tagging efficiency than the conventional method for vessels with

non-rectlinear vessel geometry. The main purpose of vessel selective PCASL is to

obtain an accurate perfusion map of vessels, and the accuracy and robustness of the

estimated perfusion map critically depends on the tagging efficiency. Therefore, we

may expect that our method has high potential to provide a more accurate, robust

way to estimate the perfusion territory of individual vessels.

In Chapter IV, we presented a fast greedy algorithm to jointly design RF pulse

weights and gradient waveforms to mitigate B1 field inhomogeneity and thus obtain

a uniform excitation pattern. Our method chooses PE locations considering off-

resonance, and chooses the optimal PE location among a smaller set of candidate

PE locations than the conventional method by culling effective candidates with a

correlation test. In the simulation results, our method yielded an RF pulse with

higher excitation accuracy in much shorter time than the previous algorithms. The

improvement of excitation accuracy was achieved by considering the off-resonance
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effect during the phase encoding location optimization, which has not been accounted

for in previous methods. The accelerated computation of our method was due to

replacing a large number of computationally expensive orthogonal projections with

fast linear correlations implemented with FFT and diagonal matrix multiplications.

In Chapter V, we extended the pulse sequence introduced in Chapter IV to deposit

a linear combination of time-shifted basis pulses for each slice-select gradient. This

pulse sequence can create a local through-plane variation in the excited magnetization

pattern, and we applied it to excite magnetization with a prephasing pattern to

compensate for the off-resonance accrual along the through-plane direction in T2*

weighted imaging. Our algorithm in Chapter IV was slightly modified to reflect

the changes in the pulse sequence, and used to compute effective RF pulse and

gradient waveforms for this problem. Our computer simulation result suggested that

parallel excitation can help improving the excitation accuracy compared to the single

coil excitation. The in-vivo experiment with single coil excitation demonstrated the

potential of our RF pulse design approach to excite the desired magnetization pattern

and correct for the signal loss problem.

Finally in Chapter VI, we introduced preliminary results of our novel joint design

method for RF pulse and gradient waveforms to achieve excitation with an arbitrary

tip-angle. Our method assumes the same RF pulse sequence introduced in Chapter

IV and optimize the RF pulse weight and gradient waveforms based on the excited

magnetization at the slice center. We sequentially update the RF pulse weight and

gradient waveforms for each segment. In the update, we fix all other parameters

except the one being updated. For the RF pulse update, we used a locally linearized

Bloch-equation to find a simple linear relationship between the RF pulse update and

the resulting transverse magnetization. For the gradient waveform update, we could
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derive an analytical solution, which was easy to compute using FFT. The computer

simulation results show that RF pulse and gradient waveforms computed with our

method provides far higher excitation accuracy for 90 degree excitation and 180

degree inversion than the scaled version of our small tip-angle RF pulse design.

7.2 Future Work

Our proposed joint design methods are all based on a greedy approach, which

selects the PE location among the candidates that reduces the cost function the

most when added to the set of previously selected PE locations. Empirically, we

have observed that the excitation accuracy of our proposed greedy optimization is

comparable with or sometimes better than that of convex optimization methods [14,

16]. We claimed the benefits of our algorithm mostly by this relative comparison with

previous methods, but we do not yet know whether the set of selected PE locations is

globally optimal. A theoretical guarantee for the accuracy of our algorithm would be

very hard to obtain, since the conditions to claim such optimality for the underlying

greedy method is hard to verify in our setting, just as those of the convex approaches.

Therefore, the only possible way to evaluate the global optimality of our method

may be to conduct a exhaustive search for the optimal combination of PE locations

from the entire candidates to find the globally optimal set of PE locations and then

to compare it with our method. This would obviously take a very long time, but it

could be very useful to find out how much improvement one may have through a more

sophisticated PE location optimization. Especially for the signal recovery problem

introduced in Chapter IV where the excitation accuracy of our proposed method is

not so high enough, this evaluation may be very helpful to guide the direction of

optimization we should develop in future. For example, if the excitation accuracy
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of the globally optimal PE locations is not much higher than that of our method, it

may be more practically beneficial to consider other ways for improvement such as

a redesign of the RF pulse sequence.

For the signal recovery problem introduced in Chapter V, our proposed pulse

design method did not achieve as high excitation accuracy as it did for the uni-

form excitation, and the computation time also increased as the size of the problem

became bigger. There may be a few different approaches to further improve our

optimization approach. Revisiting the convex optimization approach may be one

option to improve the PE location selection procedure for higher excitation accu-

racy, since the convex optimization is in general known to have a better performance

than greedy methods in terms of accuracy. The major challenge here would be refor-

mulating the problem into a convex optimization problem considering off-resonance

effects. Our RF pulse design method may be extended to include non-linear gradi-

ents such as shimming gradients to further improve the excitation accuracy. The use

of non-linear gradients was first suggested in the signal acquisition side [91, 92], but

recently, it has been started to be adopted in the RF pulse design [93, 94]. It may

be an interesting opportunity to use non-linear shimming gradients to manipulate

the B0 fieldmap pattern to make a desired excitation pattern easier to implement.

The desired excitation pattern was a function of B0 fieldmap in a subslice-level res-

olution. Estimation of B0 fieldmap in such a high resolution for the entire brain

volume may cause substantial overhead, so it may be advantageous if there could be

any acceleration in either acquisition of the raw data for B0 fieldmap estimation or

the estimation of the B0 fieldmap from the raw data. The RF pulse computation

may be also accelerated by further reducing the number of parameters to optimize.

In our proposed method, we had to compute the RF pulse for each coil, for every



103

coil can independently transmit an RF pulse. In [95], it was reported that every coil

may not need to be driven with an independent amplifier to achieve high excitation

accuracy. In other words, there may be a fewer RF amplifiers, thus fewer RF pulses

than RF transmission coils. If this may be applicable to our signal recovery problem,

it is likely that it can contribute to reduce the computation time, for the number of

the RF pulses to compute can be reduced.

In any RF pulse design, both the RF pulse and gradient waveforms should be

computed subject to the hardware capability constraints. In all of our methods

presented in this thesis, gradient waveforms are determined satisfying the hardware

constraints because we first optimize the linear phases that the gradient waveforms

are supposed to create, and then derive the gradient waveforms from them using the

hardware limit. However, in RF pulse optimization, we did not consider explicitly

controlling the maximum RF pulse amplitude. This is in part due to that we do

not have working parallel excitation hardware available, so we could not assume a

realistic hardware specification. However, we should still need to consider an efficient

way to incorporate RF pulse amplitude regularization with an arbitrary hardware

constraint. Another important factor in RF pulse regularization is that we also

need to consider RF power deposition. This is indirectly related with controlling the

peak RF pulse amplitude, because a smaller RF pulse tends to deposit less power.

However, there may be a more direct way to control the RF pulse power deposition.

In parallel excitation, this becomes more complicated because the power deposition

pattern varies locally. It is a very challenging issue, but monitoring the local RF

pulse power deposition pattern, and use it to guide RF pulse optimization would be

very crucial for clinical applications.

Our joint optimization may be extended to adopt spectral selectivity in the de-
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sired excitation pattern. In our applications, we only focused on the excitation of

water. However, in many clinical imaging applications, either the water excitation

is preceded by fat-saturation or water-selective excitation is performed to suppress

the excitation of fat. Parallel excitation has been applied to uniform fat-saturation

in presence of severe off-resonance [96], but this method did not consider the joint

optimization of RF pulse and gradient waveforms, so it may be possible to further im-

prove the spectral selectivity with our joint design. One important factor to consider

here is that in this problem, it has been reported that the phase relaxation of the

excitation pattern can contribute to improving the excitation accuracy [25, 54, 83].

Therefore in modifying our joint design algorithm to these applications, we may need

to also consider the phase relaxation to maximize the excitation accuracy.

Another interesting topic to investigate is to develop a faster computation scheme

for the joint optimization of large tip-angle RF pulse and gradient waveforms. In

our proposed optimization, estimating the magnetization behavior took a relatively

longer time than the linear estimation used in a small tip-angle RF pulse design be-

cause it involved performing a 3D rotation for each voxel. SLR pulse design methods

[19, 20, 97] may be an interesting reference for solving this issue because it solved

the similar problem of processing a large number of 3D rotations by using a more

compact spinor-domain representation for the rotation. Grissom et al. [98] recently

proposed to extend the SLR pulse design for the multi-dimensional excitation pulse

design, so this may serve another intriguing reference in developing a new, fast com-

putation scheme for our joint design method for RF pulse and gradient waveforms

using parallel excitation.
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