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CHAPTER I

Introduction

Population genetics is a field that interprets the empirical distribution of

genetic variation within and between populations of individuals and mathematically

models the underlying processes shaping this variation. Several processes influence

the distribution of genetic variation. Mutation introduces novel variants into a

population. Recombination re-assorts variation along otherwise physically linked

stretches of chromosome, allowing alternate genetic forms to be inherited in novel

combinations. Genetic drift stochastically changes variant frequencies, causing some

variants to disappear from a population and other variants to fix in it. Changes in

population size such as bottlenecks or population expansions can reduce or increase

diversity within a population, respectively, exacerbating or diminishing the effect of

drift. Individuals who migrate between populations introduce variation from one

population into others. Finally, natural selection acts to purge variants that are less

fit while bringing advantageous variants to high frequency. In humans, studies of

these processes have been of great importance in diverse fields such as medical and

clinical genetics (Burchard et al., 2003; Tishkoff and Kidd , 2004; Reiner et al., 2005;

Kumar et al., 2010; Rosenberg et al., 2010), forensics (Chakraborty and Kidd , 1991;

Jefferys et al., 1991; National Research Council of the USA, 1992, 1996; Evett and

Weir , 1998), and anthropology (Cavalli-Sforza and Feldman, 2003; Campbell and
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Tishkoff , 2010).

One interesting and important class of genetic variation is private genetic

variation. A variant is deemed private if it is found only in a single population

among a broader collection of sampled populations. Private genetic variation was

first utilized in human evolutionary genetics by Neel (1973) in the analysis of

electrophoretic protein motility polymorphisms across several native South American

populations. In this first study, Neel (1973) made several assumptions about the

nature of these private polymorphisms: that each was neutral and that each copy

of the polymorphism descended from the same mutation. Also assuming that only

one-third of these variants were electrophoretically detectable, he was able to use

theoretical results on the expected time to extinction of a neutral mutation (Kimura

and Ohta, 1969) to estimate a mutation rate for these variants. Thompson and Neel

(1978), Neel (1978), and Neel and Thompson (1978) later revisited these theoretical

results in the context of the native South American data and reached further refined

mutation rate estimates.

Private genetic variation is also an important indicator of gene flow. Slatkin (1985)

presented simulations of many demes under an island migration model and infinite

alleles model. In this study, he considered “conditional average frequencies,” which

are defined as the average frequency of all alleles found in exactly i demes. Whereas

he showed that these statistics are robust to varying selection strength and mutation

rate, he found that they are very sensitive to migration rate. In particular, he was able

to provide a quantitative estimate of the number of effective migrants per generation

(Nm) for the case of i = 1, corresponding to the average frequency of private alleles.

Barton and Slatkin (1986) extended this result theoretically to give a more accurate

estimate of Nm for private alleles sampled from populations of heterogeneous sample

size.

Analyses of private alleles can also be informative about migration patterns
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(Calafell et al., 1998; Schroeder et al., 2007; Szpiech et al., 2008). For example,

Zhivotovsky et al. (2003) identified a high-frequency microsatellite allele private to

the Americas in their analysis of 377 microsatellite loci across 52 HGDP-CEPH

populations. Subsequently, Schroeder et al. (2007) considered many possible

explanations for this observation, including selection and admixture. They came

to the conclusion that the most parsimonious explanation for this high-frequency

private allele is that all modern Native American populations descended from the

same founding population, in contrast to Greenberg et al. (1986) who proposed that

three separate migrations were responsible for the peopling of the Americas.

Analyses of private genetic variation have been important in fields beyond human

genetics as well. In molecular ecology and conservation genetics (e.g. Petit et al.,

1998; Parker et al., 1999; Fiumera et al., 2000; Neel and Cummings , 2003; Torres

et al., 2003; Kalinowski , 2004), private alleles are indicators of diversity and are

thought to represent potential novel evolutionary pathways. By selecting individuals

and populations for conservation on the basis of private allelic richness, conservation

geneticists seek to preserve overall diversity and the potential for future adaptation

and to decrease the risk of extinction.

In this dissertation I develop theoretical models and present empirical analyses of

private genetic variation with results relevant for the inference of migration (Chapter

II) and population divergence (Chapter III), and I further present an analysis of the

accumulation of deleterious variation in the human genome (Chapter IV). Although

the analyses in Chapters II and III are focused on human data, the theory is not

specific to any particular species.

In Chapter II (Szpiech et al., 2008), I introduce the concept of generalized

private alleles and a method to count them while correcting for the heterogeneity of

population sample sizes. The analysis of the distribution of alleles across populations

is a fundamental tool for examining population diversity and relationships, and I
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develop a generalized rarefaction approach for counting alleles private to combinations

of populations. These generalized private alleles are distinct alleles found in each of

a subset of populations and nowhere else, and my method evaluates the number of

alleles found for each subset of populations but absent in all remaining populations.

In order to make these calculations comparable with each other, the method considers

equal-sized subsamples from each subset of populations. Combinatorics allows these

computations to be made quickly. I apply this method to a human microsatellite

dataset comprised of individuals from the HGDP-CEPH panel (Rosenberg et al.,

2005) and then interpret the results with respect to theories of early human migration

out-of-Africa and into Oceania.

Next, I take a theoretical modeling approach to answer questions in the population

genetics of private variation. The basic theoretical model I use is the coalescent

(Kingman, 1982; Wakeley , 2009), a retrospective model of gene genealogies. The

coalescent offers a robust and elegant mathematical framework in which to study the

evolution of genetic lineages. Because it is a retrospective model, it only requires

one to keep track of the evolution of the current sample. This allows simulations to

be very efficient compared to forward-in-time models, which require one to track the

evolution of the entire population.

In Chapter III (Szpiech and Rosenberg , 2011) I use the coalescent to model how

population divergence and mutation rate affect the allele size distribution of private

microsatellite alleles. It has been observed that private microsatellite alleles tend to

be found in the tails rather than in the interior of the allele size distribution (Wang

et al., 2007). In order to explain this phenomenon, I investigate the size distribution

of private alleles in a coalescent model of two populations, assuming the symmetric

stepwise mutation model as the mode of microsatellite mutation. Under this model,

I calculate the probability that the private alleles occupy the two tails of the size

distribution. The model predicts that population divergence will greatly influence
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the probability that private alleles are on the edge of the size distribution, and I

test this prediction using the HGDP-CEPH microsatellite dataset (Rosenberg et al.,

2005).

In addition to studying the properties of private genetic variation, I also study the

distribution of deleterious variation in human individuals. The study of deleterious

variation has been of great importance to evolutionary genetics (Muller , 1950;Morton

et al., 1956; Kondrashov , 1995; Charlesworth and Charlesworth, 1998; Eyre-Walker

and Keightley , 1999; Fay et al., 2001; Sunyaev et al., 2001; Lohmueller et al., 2008;

Chun and Fay , 2011; Cooper and Shendure, 2011; Lohmueller et al., 2011; Necşulea

et al., 2011; Lesecque et al., 2012; Tennessen et al., 2012). Furthermore, although

much progress has been made in identifying disease risk variants (Rosenberg et al.,

2010), much of the heritability of disease risk remains “missing” (Lander , 2011).

The search for Mendelian disease genes has shifted to the discovery of rare variants,

which are increasingly likely to be private (Marth et al., 2011). This underscores the

importance of understanding patterns of deleterious genetic variation, which provide

a foundation on which we can build not only our understanding of genetic disease

risk but also of evolutionary genetics.

In Chapter IV, I analyze the exome sequences of 27 individuals from 6

HGDP-CEPH populations. As changes in coding regions of the genome are likely to

be disruptive, exome sequences provide a natural dataset to consider the distribution

of deleterious changes. Exome sequencing offers the potential to study the genomic

variables that underlie patterns of deleterious variants. Runs of homozygosity (ROH)

are one such interesting genomic variable. These ROH are regions of the genome

with long stretches of successive homozygous genotypes. ROH can be formed

by both population demographics (isolation or bottlenecks) and cultural practices

(consanguinity). These processes create different sizes of ROH, and in general ROH

can be classified into three broad categories. Short ROH represent homozygosity for
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ancient haplotypes (International HapMap Consortium, 2007); ROH of intermediate

length represent homozygosity arising from background relatedness in a population

(Lencz et al., 2007; Curtis et al., 2008; Jakkula et al., 2008; McQuillan et al., 2008);

and long ROH result from recent parental relatedness (Broman and Weber , 1999; Li

et al., 2006; Gibson et al., 2006; International HapMap Consortium, 2007; Lencz et al.,

2007; Curtis et al., 2008; Jakkula et al., 2008; McQuillan et al., 2008; Kirin et al.,

2010). Here, I consider how ROH of different size classes correlate with deleterious

variation.

This dissertation focuses on the theoretical modeling and empirical analysis of

private genetic and coding variation with a specific focus on humans. I build a

theoretical framework for analyzing the distribution of private genetic variation among

populations and develop methodological tools to understand patterns of human

demography. Furthermore, I analyze the distribution of deleterious genetic variation

in humans. These results will be useful for disentangling the demographic histories

of humans and non-humans alike and will provide results relevant to the study of

population-specific variation in the search for disease genes.
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CHAPTER II

ADZE: A rarefaction approach for counting alleles

private to combinations of populations

2.1 Introduction

The analysis of the distributions of alleles across populations is important

for elucidating genetic diversity and population relationships. Two fundamental

quantities for a population at a given locus are the number of distinct alleles in

the population and the number of alleles private to the population (that is, not found

in other populations). These quantities are especially informative when populations

are studied for highly variable multiallelic markers such as microsatellites.

The number of distinct alleles and the number of private alleles depend heavily

on sample size, and they can be difficult to interpret when sample sizes differ across

populations. The rarefaction approach has been an important strategy for producing

estimates that are comparable in different populations (Hurlbert , 1971; Petit et al.,

1998; Kalinowski , 2004, 2005). The idea of the rarefaction method is to trim unequal

samples to the same standardized sample size, a number less than or equal to the

smallest sample size across populations. For a standardized size g, populations

are compared by considering the estimates of “allelic richness” and “private allelic

richness” that would be obtained when averaging across all subsamples of size g.

7



In the rarefaction framework, the estimated allelic richness of a population is the

number of distinct alleles expected in a random subsample of size g drawn from the

population (Hurlbert , 1971; Petit et al., 1998). The estimated private allelic richness

is the number of private alleles expected in the population when random subsamples

of size g are taken from each of J populations under consideration (Kalinowski , 2004).

Combinatorial formulas make it possible to compute these statistics relatively quickly.

Often, as was noted by Kalinowski (2004), especially if several populations in a

sample are closely related, few alleles are private to individual populations. Instead,

alleles may be private to groups of populations—that is, alleles may be found in

each of several members of a larger set of populations. We therefore introduce

a generalization of the private allelic richness concept of Kalinowski (2004). We

compute a generalized private allelic richness statistic that uses a rarefaction approach

to measure the number of distinct alleles private to a group of populations and found

in all populations in the group. This statistic makes it possible to evaluate the

sample size-corrected number of distinct alleles private to any set of populations, and

it reduces to private allelic richness when the group of populations consists of only

a single population. We demonstrate the application of the new generalized private

allelic richness statistic using microsatellite genotypes from human populations. By

considering the sample size-corrected number of distinct alleles private to various

combinations of major geographic regions, this analysis produces evidence in support

of the hypothesis that an early human migration from Africa to Oceania did not have

an appreciable effect on genetic variation in modern populations of Asia. We have

implemented computations of allelic richness, private allelic richness, and our new

measure of generalized private allelic richness in a computer program ADZE—a tool

for “chopping” samples down to standardized sizes for data analysis.
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2.2 Theory

Consider a locus with I distinct alleles, and define Nij as the number of copies

of allele type i in a sample from population j. Nj =
∑I

i=1 Nij is the sample size of

population j at the locus. The probability of finding no copies of allele type i in a

subsample of size g alleles from population j is

Qijg =

(

Nj−Nij

g

)

(

Nj

g

) . (2.1)

Then the probability of finding at least one copy of allele type i in a sample of size g

alleles from population j is Pijg = 1−Qijg, and

α̂(j)
g =

I
∑

i=1

Pijg (2.2)

is the estimated allellic richness of a sample of size g from population j (Hurlbert ,

1971; Petit et al., 1998; Kalinowski , 2004). Equation 2.2 estimates the expected

number of distinct alleles that will be observed in population j in a sample of size g.

Using this notation, the estimated private allelic richness for a sample size g from

population j can be written as

π̂(j)
g =

I
∑

i=1






Pijg







J
∏

j′=1

j′6=j

Qij′g












, (2.3)

where J is the total number of populations (Kalinowski , 2004). This formula sums

over distinct allele types, i, the probability that a random subsample of size g from

population j contains allele type i and that subsamples of size g from the remaining

populations do not contain i.

Generalizing the concept of private allelic richness, we can consider the number

of distinct alleles private to some combination of k populations selected from
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{1, 2, . . . , J}. Consider a set of J populations labeled 1 to J , and let S = {1, 2, . . . , J}.

Let Ck be the set of all possible combinations of k elements from S. There are
(

J
k

)

possible combinations in Ck. We label these combinations by Ckm, where m ranges

from 1 to
(

J
k

)

. Using the following equation we can calculate π̂
(m)
gk —the estimated

number of distinct alleles private to the mth combination of k populations, when

samples of size g are drawn from each of the J populations:

π̂
(m)
gk =

I
∑

i=1





(

∏

j∈Ckm

Pijg

)(

∏

j′∈S\Ckm

Qij′g

)



 . (2.4)

S\Ckm denotes the set S excluding the elements of Ckm. For k = 1, π̂
(m)
gk reduces

to private allelic richness as in Equation 2.3. For k = J − 1, Equation 2.4 can be

considered a measure for “missing allelic richness”, and it reduces to

µ̂(j)
g =

I
∑

i=1






Qijg







J
∏

j′=1

j′6=j

Pij′g












. (2.5)

In this equation, µ̂
(j)
g gives a sample size-corrected measure of the number of distinct

alleles found in all populations other than population j.

We note that the “alleles private to a combination of populations” that we

define are different from the “regionally private alleles” described for hierarchical

sampling schemes by Kalinowski (2004). This latter framework provides an approach

for counting the number of alleles present in at least one of several “populations”

contained within a larger “region,” and not contained in all other “regions.” Thus,

the hierarchical method of Kalinowski (2004) obtains the number of regionally private

alleles by “rarefacting” over populations and samples, considering all possible sets of

samples from a region in which r populations within the region are represented, and

in which each population sample has size g. Related computations also appear in

Kalinowski (2005).
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In contrast to the methods of Kalinowski (2004, 2005), our approach instead

counts alleles required to be found in each of a set of populations, and required

to be absent in all other populations. By considering all possible combinations

of populations, this approach makes it sensible to use Equation 2.4 to obtain the

proportion of alleles present in a particular combination, while adjusting for unequal

sample sizes among populations. The resulting proportions can be viewed as a

partition of the full set of alleles into categories defined by the populations in which

they are found, whereas the hierarchical scheme of Kalinowski (2004, 2005) would

count some alleles more than once if viewed in this manner.

For a given value of the sample size g, we first compute Equation 2.4 for each of the

2J−1 nonempty combinations possible for a set of J populations. We then obtain the

proportion of alleles for combination m by dividing the value from Equation 2.4 for

this combination by the sum of all 2J−1 values. Because sample size is controlled, this

approach enables meaningful assessments of the proportions of alleles with particular

geographic distributions.

2.3 Example

Since private alleles have proven useful in investigating population structure and

migration patterns (e.g. Neel , 1978; Calafell et al., 1998; Schroeder et al., 2007), we

now provide a detailed example to illustrate various ways in which our generalized

private allelic richness approach can be used in data analysis.

2.3.1 Methods

We employ a dataset from human populations (Rosenberg et al., 2005) containing

genotypes of 1048 individuals—the H1048 collection of individuals (Rosenberg ,

2006)—at 783 microsatellite loci. We also consider the genotypes for the H952

subset of the full H1048 dataset—a group of 952 individuals that contains no known
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first or second degree relatives (Rosenberg , 2006). The individuals were classified

as belonging to one of five major geographic regions—sub-saharan Africa, Eurasia

(Europe, Central/South Asia, and the Middle East, including North Africa), East

Asia, Oceania, and the Americas. We treat each of these regions as a “population”

in the computations that follow.

We used Equations 2.2 and 2.3 to compute allelic richness and private allelic

richness for each of the five geographic regions, and we used Equation 2.4 to

compute generalized private allelic richness for various combinations of regions. The

computation was performed for individual loci for values of g from 2 up to the

maximum possible value for the dataset, and for each g the mean was taken across

loci. For a given locus, the smallest number of individuals in one of the population

groupings under consideration specifies the largest value of g possible to use for private

allelic richness and generalized private allelic richness computations at that locus.

Because missing data can reduce this maximal g, in our example we used the locus

filtering feature in the ADZE computer program to restrict our attention to 721 loci

for which each geographic region had a missing data rate less than or equal to 15%

(similar results are obtained when using all 783 loci, with a lower maximal g). With

this collection of loci in the H952 dataset, every locus had a sample size of at least 48

observations in each of the five geographic regions. The same collection of 721 loci

was used in analyes that employed the full collection of 1048 individuals.

There are 31 combinations of one or more of the five geographic regions, and we

computed generalized private allelic richness for each combination. For comparison,

we also partitioned alleles among the 31 possible geographic distributions without

correcting for sample size. Considering all loci, each distinct allele can be private

to a single region, present in two regions, present in three regions, present in four

regions, or present in all five regions. For each of the 31 geographic distributions, we

determined the fraction of alleles in the dataset that had the specified distribution.
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2.3.2 Simulation

We preformed a simulation study to assess the extent to which our estimates of

the proportions of alleles in various combinations of geographic regions reflect the true

proportions. First, for each of the 783 loci in our dataset we considered the sample

allele frequencies in each geographic region from the H952 subset of individuals as

the true allele frequencies. For each locus and each geographic region, we sampled

250 diploid individuals (with replacement) to create a simulated dataset. Repeating

this sampling, we produced 100 simulated datasets, each consisting of 250 diploid

individuals per region at each of the 783 loci. For each simulated dataset, each locus,

and each value of g from 10 to 500, we calculated the generalized private allelic

richness for each of the 31 combinations of one or more of the five regions. We then

divided each of the 31 values by their sum to determine the fraction of alleles present

in each of these 31 categories. Similarly, continuing to treat the sample frequencies in

the H952 dataset as true frequencies, we tallied the true number of distinct alleles in

each of the 31 combinations of regions in the H952 dataset and divided by the total

number of distinct alleles worldwide to obtain the true proportion of private alleles

for each of the 31 combinations of regions. We then calculated
∑31

i=1 (simi − truei)
2,

where simi and truei denote the simulated and true proportions of alleles private

to geographic combination i, respectively. The mean of this statistic was taken over

the 100 replicate simulated datasets, and the resulting quantity was then plotted in

Figure 2.1.

As the standardized sample size g increases, the distance between simulated and

true values decreases considerably, so that for large g, our generalized private allelic

richness measures provide a close approximation to the true values in the setting of the

simulation (Figure 2.1). Because this simulation is based on our human microsatellite

dataset, its results suggest that it is reasonable to make interpretations about allelic

distributions in human populations using our method applied to the data in our
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example.

2.3.3 Results

Figure 2.2 shows the generalized private allelic richness at g = 40 for each of

the 31 combinations of geographic regions, as a fraction of the sum of the 31 values.

Examining the percentages of alleles having a given geographic distribution at g = 40,

the average absolute difference across geographic distributions is 0.12% between the

computations including and excluding relatives. Because of the similarity in results

including and excluding relatives, our subsequent analyses use only one of the two

datasets (the H952 subset excluding relatives).

Figure 2.3 and Table 2.1 compare the fractions of alleles having each of the 31

geographic distributions, for four values of g (10, 20, 30, and 40) as well as uncorrected

for sample size. Notable in the figure and table is the emergence of alleles that were

found in various combinations of two, three, and four major regions when correcting

for sample size, but that did not appear in the uncorrected calculations. Additionally,

we see that the uncorrected analysis produces a rather different view of the allelic

distribution compared to the analyses that correct for sample size. For example,

considering the distribution of private alleles across the major geographic regions,

the uncorrected calculations indicate that Eurasia contains the most private alleles,

followed by Africa, East Asia, the Americas, and Oceania. However, when we correct

for sample size differences using g = 40, Africa has the largest number of private

alleles, followed by Eurasia, Oceania, East Asia, and the Americas. Similarly, in

the uncorrected calculations the region with the largest number of missing alleles

(alleles private to four of the five regions) is Oceania (AfEuEaAm) followed by the

Americas (AfEuEaOc); in the corrected calculations (standardized sample size of

g = 40) missing alleles are most numerous for the Americas (AfEuEaOc) followed by

Oceania (AfEuEaAm).
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For each geographic region, the mean number of distinct alleles per locus and

the mean number of private alleles per locus are shown in Figures 2.4A and 2.4B as

functions of standardized sample size g. From these plots we see that Africa has both

the highest number of distinct alleles and the highest number of private alleles, and

that the smallest values in both categories occur in the Americas.

The numbers of alleles private to combinations of regions are plotted in Figure

2.5. Figure 2.5A shows the mean number of alleles per locus private to pairs of major

regions, demonstrating that the combination of Africa and Eurasia has the largest

number of private alleles. The smallest number is observed in the combination of

Oceania and the Americas. The highest number of alleles private to three regions

is seen in the combination of Africa, Eurasia, and East Asia, followed closely by

the combination of Africa, Eurasia, and Oceania (Figure 2.5B). In the plot for the

number of missing alleles (Figure 2.5C), we see that the Americas have by far the

largest number, followed by Oceania and Africa. Figure 2.5D, which shows the mean

number of alleles simultaneously present in all regions, illustrates that the number of

alleles found in all regions considerably exceeds the number private to any one region

or any combination of two, three, or four regions.

2.3.4 Out of Africa and the Peopling of Oceania

We can interpret the patterns of private allelic richness in Figures 2.4 and 2.5

in relation to our expectations based on various perspectives about the history of

human migrations. The larger numbers of alleles and private alleles in Africa, and

the smaller numbers in the Americas, match the pattern expected for models of human

evolution that begin from an African origin and reach the Americas only after a series

of founder events (Ramachandran et al., 2005). The pair of regions with the largest

number of alleles is the combination of the geographically connected regions of Africa

and Eurasia; the group of three regions with the largest number is the combination
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of Africa, Eurasia, and East Asia; and the group of four regions with the largest

number is the combination of Africa, Eurasia, East Asia, and Oceania. These results

each fit the prediction of African-origin models that include serial founder effects

during outward migrations, as many alleles in the founding population would only

have migrated along part of the path outside of Africa.

One set of results that offers the potential to distinguish among competing

hypotheses about human migrations concerns alleles found in combinations of

geographic regions that include Oceania. The initial peopling of near Oceania

(which includes the islands of New Guinea and Bougainville, from where our samples

originate) involves the first demonstrable human sea-crossing (Derricourt , 2005).

Fossil evidence of the presence of anatomically modern humans in Sahul—the ancient

landmass of Australia and New Guinea separated by sea from Asia—dates to at least

42,000-45,000 years before the present (BP) (O’Connell and Allen, 2004; Gillespie,

2002), and earlier dates (∼60,000 BP) have also been proposed (O’Connell and Allen,

2004; Thorne et al., 1999). Several migration waves have entered Oceania since the

initial colonization, creating a complex mixture of ancestries in many parts of the

region (Matisoo-Smith, 2007; Friedlaender et al., 2008).

A theory of a single main migration out of Africa ultimately reaching Oceania

proposes a recent dispersal of modern humans from sub-Saharan Africa into Eurasia,

replacing earlier archaic humans. There are at least two plausible out-of-Africa

routes of dispersal towards eastern Asia—a northern inland route through the Middle

East and a southern coastal route via Arabia and India (Cavalli-Sforza et al.,

1994; Quintana-Murci et al., 1999; Bulbeck , 2007; Field et al., 2007). Because the

existence of multiple routes suggests the possibility that two or more major migrations

taking different paths may have occurred, it is of interest to examine whether an

additional main out-of-Africa event—distinct from the events responsible for most of

the peopling of Asia and Europe—might have been responsible for the peopling of
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Sahul.

To investigate the possibility of a separate migration wave from Africa to

Oceania, we can consider three simplified scenarios concerning human dispersal from

Africa to Oceania that have the potential to be distinguished based on multilocus

population-genetic data (Figure 2.6). The first scenario, Model 1, corresponds to a

single primary out-of-Africa migration through the Middle East and East Asia before

reaching Oceania. This hypothesis predicts that variation in Oceania is largely a

subset of East Asian variation. The second scenario, Model 2, postulates a peopling of

Oceania from Eurasia. In this model, following a migration out of Africa into western

Asia, the migration that carried human populations into Oceania was separate from

the migration into East Asia and left a negligible genetic trace along the path to

Oceania. Under this hypothesis, variation in Oceania would largely be a subset of

variation in Eurasia. Finally, the third scenario, Model 3, suggests an early peopling

of Oceania, perhaps by a southern route out of Africa via the Arabian peninsula, the

Indian sub-continent, and Southeast Asia. In this scenario, populations in Asia along

the migration path would have only a small or negligible fraction of ancestry from

the time of the initial colonization of Oceania, and would descend largely from later

out-of-Africa migrations. Variation in Oceania would then be a subset of variation in

Africa but not of variation in Eurasia or East Asia.

Comparisons of the numbers of alleles with various geographic distributions

can assist in distinguishing these alternative hypotheses (Table 2.2). Figure 2.7

displays the rarefaction curves for the four pairs of geographic regions that include

Oceania, a subset of the pairs shown in Figure 2.5A. The Africa/Oceania combination

has more private alleles than the other three pairs, and the East Asia/Oceania

and Eurasia/Oceania pairs have nearly equal numbers of private alleles. These

observations are compatible with Model 3, in which Oceania would retain many

ancestrally African alleles not found elsewhere. They are also compatible with Model
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1, as the relatively high number of alleles each non-African group shares with Africa

could be a consequence of the particularly high level of African variation. The similar

numbers of alleles private to Eurasia/Oceania and East Asia/Oceania would then

result from the opposing effects of a higher level of variation in Eurasia than in East

Asia and a higher degree of relationship with Oceania in East Asia than in Eurasia.

The observations, however, are not compatible with Model 2, which would have been

expected to produce an excess number of alleles private to the combination of Eurasia

and Oceania compared to the number private to the combination of East Asia and

Oceania.

Further support for Model 3 can be found in various additional comparisons

in Figure 2.5A. Under Model 1, Oceania and the Americas both derive

from East Asian ancestry, and therefore, the combinations Africa/Oceania and

Africa/America, Eurasia/Oceania and Eurasia/America, and East Asia/Oceania and

East Asia/America are directly comparable. In each of these three cases, the pair

including Oceania has more alleles than the pair including the Americas, consistent

with the higher allelic richness in Oceania compared to the Americas. However, the

amount by which the number of alleles private to the combination of Africa and

Oceania exceeds the number of alleles private to the combination of Africa and the

Americas is considerably greater than the corresponding excess for the other two

comparisons. Moreover, with the exception of Africa/Eurasia, the Africa/Oceania

combination has more alleles than any other pair of regions—including the

combination of Africa and East Asia. These observations, which are compatible with

Model 3, are more difficult to reconcile with Model 1.

Examination of combinations of three regions in Figure 2.5B produces similar

suggestive evidence of Model 3 to that obtained from combinations of two regions

in Figures 2.5A and 2.7. Except for the combination of Africa, Eurasia, and East

Asia, the combination of Africa, Eurasia, and Oceania has more private alleles than
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any other three-region combination. Although this observation could potentially

be explained by any of the three models, the amount by which the number of

private alleles for the Africa/Eurasia/Oceania combination exceeds that of other

combinations is least compatible with Model 1, which has several groups of three

regions that might have been expected to have numbers of private alleles close to

that of Africa/Eurasia/Oceania.

2.4 Discussion

Our analysis of human microsatellite data using rarefaction has yielded a variety

of insights into the effects on the analysis of allelic distributions across populations

of varying sizes among population samples. First, assessing alleles private to

combinations of populations can assist in dealing with sampling designs that are

uneven. It can also uncover additional information that analyses of populations one

at a time may be unable to identify. As observed in Figure 2.3, failing to correct for

sample size can produce results that are different from those obtained with a sample

size correction.

Our computer program ADZE (Allelic Diversity AnalyZEr) was used in our

analyses and is available for download at

http://rosenberglab.bioinformatics.med.umich.edu/adze.html. ADZE is capable of

performing computations on multilocus data sets with one or many populations and

arbitrarily many alleles per locus. As the number of combinations of populations

quickly grows large with the number of populations, ADZE offers the option of

calculating the number of private alleles only for combinations of a particular size.

ADZE also features a missing data filter that discards loci found to have at least one

population with a missing data percentage greater than or equal to a specified value.

The use of ADZE with microsatellite data from human populations has produced

an excess similarity of populations from Africa and Oceania, potentially suggestive
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of a migration of modern humans from Africa to Oceania separate from the primary

migrations responsible for human population ancestry in Europe and Asia. Of note,

other analyses of overlapping data have found greater genetic similarity between

Oceania and East Asia than between Oceania and Africa (Rosenberg et al., 2002;

Zhivotovsky et al., 2003). However, in previous work, genetic cluster analyses with

two or three clusters detected a greater signal of similarity between Africa and Oceania

than between Africa and East Asia (Rosenberg et al., 2002), likely reflecting the high

number of alleles private to the combination of Africa and Oceania that we have

observed here.

As the models of colonization that we have examined are highly simplified

idealizations of a complex process, some mixture of Models 1 and 3 likely provides an

explanation more compatible with the full collection of results with these data than

does Model 1 or Model 3 alone. Model 1 might potentially receive greater support

given more data from Southeast Asia, and the observed low level of private alleles for

the combination of Oceania and East Asia might have resulted from limited sampling

in these regions. Formal testing based on a more diverse sample from Oceania will be

important for assessing the relative importance of early migrations from Africa and

more recent interaction with populations from East Asia. In any case, the use of the

rarefaction approach to examine alleles private to combinations of populations can

produce novel observations that augment those obtained from other methods of data

analysis, and that can form the basis for hypothesis tests with increasingly complex

evolutionary models.
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Table 2.2: Comparisons of numbers of private alleles for pairs of geographic regions
that would support a given migration model if observed. Geographic
regions are abbreviated: Af – Africa; Eu – Eurasia; Ea – East Asia; Oc –
Oceania; Am – Americas.

Model 1 Model 2 Model 3
AfEa > AfOc EuOc > EaOc AfOc > EuOc

AfOc > EaOc
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CHAPTER III

On the size distribution of private microsatellite

alleles

3.1 Introduction

Private alleles are alleles that are found only in a single population among a

broader collection of populations. These alleles have proven to be informative for

diverse types of population-genetic studies, in such areas as molecular ecology and

conservation genetics (e.g. Petit et al., 1998; Parker et al., 1999; Fiumera et al.,

2000; Neel and Cummings , 2003; Torres et al., 2003; Kalinowski , 2004) and human

evolutionary genetics (e.g. Neel , 1973, 1978; Neel and Thompson, 1978; Calafell et al.,

1998; Schroeder et al., 2007; Szpiech et al., 2008).

Some of the first investigations of private alleles trace to studies of private

electrophoretic variants in Native American groups from South America (Neel , 1973,

1978; Neel and Thompson, 1978). Using private alleles, Neel and colleagues obtained

estimates of mutation rates in these populations. Slatkin (1985) and Barton and

Slatkin (1986) showed that private alleles can contribute to indicators of gene flow,

finding in theoretical models of population structure that the occurrence of private

alleles was related to with the mean number of migrants exchanged per generation

between populations. Private alleles have also been used in empirical studies of human
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migrations. Calafell et al. (1998) noted that in human populations, the mean number

of private alleles is greater in Africa, providing support to models of human migration

out of Africa. Schroeder et al. (2007) argued on the basis of a private allele ubiquitous

in the Americas that all modern Native American populations are descended from

the same founding population.

One recent study, which investigated 678 microsatellite markers in 29 Native

American populations from North, Central, and South America (Wang et al., 2007),

identified a peculiar property of private alleles. Wang et al. (2007) characterized the

distribution of private alleles across four subregions in the Americas, observing that

private microsatellite alleles were found in the tails rather than in the interior of

the allele size distribution more often than was expected by chance. In other words,

private alleles at a locus frequently had very long or very short repeat lengths with

respect to the other alleles at the locus.

Here we take a modeling approach to examine the reasons underlying the frequent

occurrence of private alleles on the edges of the allele size distribution. Using a simple

coalescent model, we assess the properties of microsatellite private alleles, thereby

helping to explain patterns that exist in the relationship between privacy and allele

size across human populations.

3.2 Theory

Let {x1x2/x3x4} denote four sampled microsatellite alleles in two populations,

where xi indicates the allele size for sampled allele i, and the forward slash separates

alleles from different populations. We restrict our attention to cases with four alleles;

a scenario with two alleles each in two populations gives the smallest sample size

useful for examining the phenomenon of interest, as we will explain below. Because

the 4-allele case involves a tractable number of calculations, it is possible in this case

to mathematically investigate the position of private alleles in the size distribution.
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We map sets of four allele sizes in two populations to one of seven possible

configurations of identity and nonidentity, using the letters A, B, C, and D to denote

distinct allele sizes. Thus, if two sampled alleles are identical by state (IBS), we

indicate this identity by assigning the alleles the same letter. For example, if all

four sampled alleles are IBS, we represent the allele configuration by {AA/AA}. If

one allele in population 1 is IBS to an allele in population 2 and the other allele in

population 1 is IBS to the other allele in population 2 (and no alleles are IBS within

populations), then we represent the allele configuration by {AB/AB}. We label the

seven possible configurations by Ci for i ∈ {1, . . . , 7}, and we list them in Table 3.1.

We are interested in comparing private and shared alleles on the basis of size. In

particular, we wish to examine whether alleles lie on the edges of the size distribution,

that is, whether they have the longest or shortest lengths. To have a sensible definition

of the “edges” and interior of the allele size distribution, we must have at least three

distinct alleles among the four sampled alleles that we consider. Furthermore, because

we are concerned with the location of private alleles with respect to shared alleles,

we must have at least one shared allele and one private allele. The only one of the

seven configurations of four alleles that satisfies both of these requirements—and that

therefore enables a computation of the probability that private alleles lie on the edges

of the allele size distribution—is C6 (configuration {AB/AC}). This configuration,

with sample size four, provides the smallest scenario that contains both private alleles

and shared alleles and that contains both edges and an interior of the allele size

distribution. We aim to compute the probability that B and C, the two private alleles

in configuration {AB/AC}, both lie on the edges of the size distribution, conditional

on this configuration being produced.
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3.2.1 A näıve argument

If we disregard the genealogical relatedness of the alleles in our two-population

four-allele model, what do we expect for the probability that the private alleles lie

on the edges? There are six possible orderings of the three allele sizes A, B, and

C (A < B < C, A < C < B, etc.), and, if no relationship exists between the size

of an allele and its status as shared or private, we expect the six orderings to be

equiprobable. Two of the six orderings place the private alleles B and C on the edges

of the size distribution. Under this simple argument, we would expect the probability

that both private alleles lie on the edges to be 1/3.

This argument gives an initial sense of what might be predicted for the probability

that the private alleles lie on the edges of the size distribution. However, it disregards

the fact that the alleles are related through a common ancestor. We now turn to a

genealogical argument that more directly models this relationship.

3.2.2 The probability of microsatellite configurations

To account for the genealogical relatedness of the four alleles in obtaining a

prediction of the probability that private alleles lie on the edges of the allele size

distribution, we use the coalescent with symmetric stepwise mutation. Initially, we

consider the two populations to have instantaneously diverged zero coalescent time

units in the past (td = 0). Later, we will consider arbitrary values of the divergence

time td.

To calculate the desired probability, we first condition on the {AB/AC} allele

configuration (configuration C6), the mutation rate, and the coalescence times of the

genealogy. By considering the probability of a net change by d mutational steps along

a genealogical branch, we construct the joint probability of an allele configuration and

a particular labeled history for the four alleles, where the allele configuration refers to

one of the seven scenarios in Table 3.1 and the labeled history refers to the sequence
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of coalescences (Figure 3.1). We then calculate the total probability that the private

alleles lie on the edges of the allele size distribution, summing across all labeled

histories, and integrating over coalescence times to arrive at the desired probability,

conditional only on a mutation rate θ.

Consider the events E1: size(B) < size(A) < size(C), and E2: size(C) < size(A)

< size(B). These events are equiprobable, and we aim to calculate the probability

P[E1 ∪ E2|C6, θ] =
2P[E1, C6|θ]

P[C6|θ]
. (3.1)

Under the symmetric single stepwise mutation model, a microsatellite allele can

mutate by only one step at a time in either a positive or negative direction, and

the probability of mutating +1 step is equal to the probability of mutating −1 step,

independent of the size of the allele. We work with coalescent time units (units of 2Ne

generations, where Ne is the effective size of each population, treated as containing

diploid individuals) and with the population-scaled mutation rate θ = 4Neµ, where

µ is the per-locus per-generation mutation rate.

3.2.3 Mutations on a genealogical branch

The probability that a marker evolving according to the symmetric stepwise

mutation model with population-scaled mutation rate θ has net change d units along

a branch of length t coalescent time units is (Wehrhahn, 1975; Wilson and Balding ,

1998)

f(|d|; t, θ) = e−tθ/2I|d|(tθ/2), (3.2)

where

I|d|(x) =
∞
∑

k=0

(x/2)(2k+|d|)

k!(k + |d|)!

is the modified Bessel function of the first kind (Gradshteyn and Ryzhik , 2000).

Because positive and negative mutations are equally likely, we write f as a function
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of |d| rather than d, which can be positive, negative or zero.

3.2.4 Probability of the set of allele sizes on a genealogical tree

We can use Equation 3.2 to calculate the probability that changes along a

coalescent tree ultimately give rise to a specified set of allele sizes. Considering

that each branch evolves independently of the others, we calculate the probabilities

of changes along individual branches and then multiply probabilities across branches

to get the joint probability of all changes on the tree. There are two unlabeled

topologies that we need to consider: an asymmetric topology (Figure 3.2A) and a

symmetric topology (Figure 3.2B). Each topology is parameterized by a vector of

allele sizes, (n2, n3, x1, x2, x3, x4), and a vector of coalescence times, (t2, t3, t4). The

x variables represent the sizes of alleles at the leaf nodes, and ni represents the size

of the allele at the interior node located at the reduction of the number of distinct

lineages to i. The coalescence time ti represents the length of time during which there

exist i distinct lineages. Initially, we treat the coalescence times as fixed, and later

we will integrate the probabilities against the density of coalescence times to obtain

a probability unconditional on t2, t3, and t4. Because we assume that mutation

probabilities do not depend on allele size, we can set the allele size of the most

recent common ancestor of the four-allele sample (the root node) to 0 without loss

of generality. However, following a choice similar to that of Pritchard and Feldman

(1996) and Zhang and Rosenberg (2007), we instead choose to set n2 = 0 rather than

setting the root node to 0, and we treat the two branches that descend from the

root as one branch with length equal to the sum of the lengths of its two constituent

branches. This choice makes it possible to consider coalescent trees with five rather

than six separate branches, thereby simplifying the computation.

Considering the asymmetric caterpillar topology (Figure 3.2A), we obtain the joint

probability of (n2, n3, x1, x2, x3, x4) given (t2, t3, t4) by calculating the probability of

37



changing from n2 to x4 repeats along a branch of length 2t2 + t3 + t4, from n2 to

x3 repeats along a branch of length t3 + t4, from n2 to n3 repeats along a branch of

length t3, from n3 to x2 repeats along a branch of length t4, and from n3 to x1 repeats

along a branch of length t4. Assuming n2 = 0 and multiplying these five probabilities

together gives

V cat(x1, x2, x3, x4, n3,Ψ) =f(|x4|; 2t2 + t3 + t4, θ)× f(|x3|; t3 + t4, θ)×

f(|n3|; t3, θ)× f(|n3 − x2|; t4, θ)× f(|n3 − x1|; t4, θ),

where Ψ = (τ, θ) is a vector of parameters and τ = (t2, t3, t4) is the vector of

coalescence times. Similarly, for the symmetric topology, we calculate the probability

of the set of allele sizes in Figure 3.2B to get

V sym(x1, x2, x3, x4, n3,Ψ) =f(|n3|; 2t2 + t3, θ)× f(|n3 − x4|; t4, θ)×

f(|n3 − x3|; t4, θ)× f(|x2|; t3 + t4, θ)× f(|x1|; t3 + t4, θ).

3.2.5 Assigning alleles the roles of A, B, and C

There are 18 labeled histories for the alleles {x1, x2, x3, x4}, which we denote by

Ti for i ∈ {1, . . . , 18} (Figure 3.1). We can then calculate P[C6|Ti,Ψ] by considering

all possible ways to get configuration C6 with labeled history Ti. Because we have

defined {x1, x2} to be in population 1 and {x3, x4} to be in population 2, we need

to consider four cases for each history, reflecting the four possible assignments of the

allele sizes x1, x2, x3, and x4 to the roles of distinct alleles A, B, and C. These four

cases are shown in Table 3.2.

If we represent the size of the shared allele (allele A) by nA and the sizes of the

two private alleles (B and C) by nB and nC , respectively, then we can calculate

P[C6|Ti,Ψ] by summing the individual probabilities of each of the four cases in Table
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3.2. For example, consider T1:

P[C6|T1,Ψ] =
∞
∑

n3=−∞

∞
∑

nA=−∞

∞
∑

nB=−∞

∞
∑

nC=−∞

V cat(nA, nB, nA, nC , n3,Ψ)+

V cat(nA, nB, nC , nA, n3,Ψ)+

V cat(nB, nA, nA, nC , n3,Ψ)+

V cat(nB, nA, nC , nA, n3,Ψ). (3.3)

Here, without loss of generality, we treat the private allele in the first population as

the B allele and the private allele in the second population as the C allele. Similar

calculations can be performed for the 17 remaining labeled histories (Table 3.3).

3.2.6 Summing over labeled histories

In order to calculate P[E1, C6|Ψ], we proceed exactly as in Equation 3.3,

conditioning on each history Ti, but we restrict the bounds of summation on nB

and nC to −∞ < nB < nA and nA < nC < ∞, respectively.

We now have

P[C6|Ψ] =
18
∑

i=1

P[C6|Ti,Ψ]P[Ti|Ψ] (3.4)

and

P[E1, C6|Ψ] =
18
∑

i=1

P[E1, C6|Ti,Ψ]P[Ti|Ψ]. (3.5)

Here, P[Ti|Ψ] = 1/18 for all i because each labeled history of four lineages is equally

likely under the assumption of the coalescent process that lineages join randomly

going back in time. Note that symmetries exist in V cat and V sym as a result of

exchangeability of certain nodes in the topologies that they consider. For asymmetric

topologies,

V cat(W,X, Y, Z, n3,Ψ) = V cat(X,W, Y, Z, n3,Ψ).

39



For symmetric topologies,

V sym(W,X, Y, Z, n3,Ψ) = V sym(X,W, Y, Z, n3,Ψ) =

V sym(W,X,Z, Y, n3,Ψ) = V sym(X,W,Z, Y, n3,Ψ).

Using the list of probability contributions for each labeled history, as given in Table

3.3, we can exploit these symmetries and collect like terms across labeled histories to

write Equation 3.4 as

P[C6|Ψ] =
∞
∑

n3=−∞

∞
∑

nA=−∞

∞
∑

nB=−∞

∞
∑

nC=−∞

(

4V cat(nA, nA, nB, nC , n3,Ψ)+

4V cat(nA, nA, nC , nB, n3,Ψ) + 8V cat(nA, nB, nA, nC , n3,Ψ)+

8V cat(nA, nB, nC , nA, n3,Ψ) + 8V cat(nA, nC , nA, nB, n3,Ψ)+

8V cat(nA, nC , nB, nA, n3,Ψ) + 8V cat(nB, nC , nA, nA, n3,Ψ)+

8V sym(nA, nB, nA, nC , n3,Ψ) + 8V sym(nA, nC , nA, nB, n3,Ψ)+

4V sym(nA, nA, nB, nC , n3,Ψ) + 4V sym(nB, nC , nA, nA, n3,Ψ)

)

×

P[Ti|Ψ] (3.6)
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and Equation 3.5 as

P[E1, C6|Ψ] =
∞
∑

n3=−∞

∞
∑

nA=−∞

nA−1
∑

nB=−∞

∞
∑

nC=nA+1

(

4V cat(nA, nA, nB, nC , n3,Ψ)+

4V cat(nA, nA, nC , nB, n3,Ψ) + 8V cat(nA, nB, nA, nC , n3,Ψ)+

8V cat(nA, nB, nC , nA, n3,Ψ) + 8V cat(nA, nC , nA, nB, n3,Ψ)+

8V cat(nA, nC , nB, nA, n3,Ψ) + 8V cat(nB, nC , nA, nA, n3,Ψ)+

8V sym(nA, nB, nA, nC , n3,Ψ) + 8V sym(nA, nC , nA, nB, n3,Ψ)+

4V sym(nA, nA, nB, nC , n3,Ψ) + 4V sym(nB, nC , nA, nA, n3,Ψ)

)

×

P[Ti|Ψ]. (3.7)

3.2.7 Integrating out the coalescence times

Finally, we integrate over the density of coalescence times under the standard

coalescent model. Under this model, the time in coalescent time units (units of 2Ne

generations) for i lineages to coalesce to i − 1 lineages is exponentially distributed

with rate
(

i
2

)

(Wakeley , 2009). Separate coalescence times are independent, and

we can write their joint distribution in the four-taxon case as ρ(t2, t3, t4) =
(

2
2

)

e−(
2

2
)t2(3

2

)

e−(
3

2
)t3(4

2

)

e−(
4

2
)t4 = 18e−t2−3t3−6t4 . Using this density, we integrate to get

P[C6|θ] =

∞
∫

0

∞
∫

0

∞
∫

0

P[C6|Ψ]ρ(t2, t3, t4) dt2 dt3 dt4 (3.8)

and

P[E1, C6|θ] =

∞
∫

0

∞
∫

0

∞
∫

0

P[E1, C6|Ψ]ρ(t2, t3, t4) dt2 dt3 dt4. (3.9)
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3.2.8 Implementing the computation

To calculate P[E1 ∪ E2|C6, θ] (Equation 3.1) in practice, we use two approaches,

a numerical method and a simulation-based method.

3.2.8.1 Numerical computation

First, we employ Gaussian quadrature to numerically estimate the numerator

(2P[E1, C6|θ], Equation 3.9) and denominator (P[C6|θ], Equation 3.8) of P[E1 ∪

E2|C6, θ]. In order to compute the integrals in finite time, we estimate

the expression e−tθ/2I|d|(tθ/2) using the GNU Scientific Library (GSL) function

gsl sf bessel In scaled(|d|,tθ/2). Additionally, we truncate the bounds of the

infinite sums embedded in 2P[E1, C6|θ] and P[C6|θ] to ±10 instead of ±∞. These

limits provide bounds on the size that an allele can have at any particular node. We

additionally integrate all time parameters from 0 to 10 rather than from 0 to ∞.

For small values of θ, these approximations are very accurate, as it is unlikely that

an allele will mutate more than a few steps away from its initial number of repeats.

However, for large θ, the approximation will become less accurate, as large numbers of

mutations are likely to occur. These mutations ultimately cause alleles to shift further

from the initial base size and beyond the arbitrary truncation in our approximation,

so that the calculation fails to account for a non-trivial portion of probability mass.

3.2.8.2 Simulation-based computation

In order to calculate P[E1 ∪ E2|C6, θ] accurately for large θ, we obtain the ratio

in Equation 3.1 directly by simulating the coalescent and mutation processes and

tabulating the outcomes of interest. The simulation proceeds as follows.

1. Beginning with k = 4 alleles, arbitrarily define two alleles to be in one

population and the other two alleles to be in the other population.
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2. Generate a random time to coalescence from an exponential(
(

k
2

)

) distribution.

3. Randomly choose two alleles to coalesce; set k = k − 1.

4. If k 6= 1, go to 2.

5. For each branch of the genealogy, generate a random number of mutation events,

x, from a Poisson distribution with rate θt/2, where t is the branch length.

6. Assign each mutation a value of +1 or −1 by sampling the number of +1

mutations from a binomial(x,1/2) distribution. Those mutations not chosen to

be +1 are assigned a value of −1.

7. Determine the allele size of each of the four sampled alleles by summing the net

value of mutations from the root (allele size 0) down to the leaves.

8. Classify the collection of four alleles into one of the seven allele configurations

(Table 3.1).

9. If the alleles are in the C6 configuration, accept the simulation and determine

if the sizes of the private alleles (B and C) are on the ends of the distribution

(nB < nA < nC or nC < nA < nB). If yes, count a success.

By repeating this algorithm until the number of accepted simulations reaches some

pre-specified number (we choose 1, 000, 000), we can estimate the probability that the

private alleles lie on the edges of the size distribution by simply dividing the number

of successes by the number of accepted simulations.

Note that the proportion of simulations that have configuration C6 provides an

estimate of P[C6|θ]. Through a separate application of 106 iterations of steps 1 to

8, we estimate the probabilities of all seven configurations as functions of θ. These

estimates appear in Figure 3.3. At small values of θ, we see that most simulations

produce configuration C1 ({AA/AA}), a sensible result because mutations are unlikely
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to happen for small θ. As θ grows larger, more mutations occur, and we see that

configurations with two or more distinct alleles begin to rise in frequency. For

large values of θ, mutations happen so often that most trees have configuration C7

({AB/CD}).

Figure 3.4 shows, as a function of θ, the probability of interest, P[E1 ∪ E2|C6, θ],

calculated both by simulation and numerically. Because we must truncate the internal

sums for the numerical computation, we plot several numerical calculations at varying

truncation values. Most of the numerical computations are quite accurate at small θ:

we expect few mutations in this case, and the approximation made by truncating the

sums will reasonably cover most of the probability mass. We see that as θ becomes

large, the numerical results differ from the simulation-based result; at large θ many

mutations occur and the numerical approximation is poorer.

We note that the probability of interest appears to level off well above the näıve

calculation of 1/3 as the mutation rate grows large. Furthermore, as θ tends toward

zero, we see that the probability remains above 1/3 and appears to tend toward

1/2. We can prove this small-θ limiting result by considering a parsimony-style

approximation for our probability near θ = 0.

3.2.9 Small-θ approximation

We can make some simplifications to approximate our calculation of P[E1 ∪

E2|C6, θ] (Equation 3.1) in the limit as θ becomes small. For small θ, we expect

fewer superfluous mutations to occur along a branch with a change of d steps—that

is, we expect fewer mutations in one direction to be canceled by mutations in the other

direction. Therefore, for very small θ, we can approximate the probability of changing

d steps along a branch length t by setting k = 0 in Equation 3.2 so that no extra

mutations occur. Denoting the small-θ approximation to f(|d|, t, θ) by fs(|d|, t, θ), we
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then obtain

fs(|d|; t, θ) = e−tθ/2 (tθ/4)
|d|

|d|!
.

Furthermore, for small θ, we also expect fewer mutations in total to occur on

the whole genealogy. The minimum number of mutations needed to provide our

pattern of interest, C6, is two (one mutation on each of two branches). Therefore, for

sufficiently small θ, we expect to find no more than two mutations on the entire tree.

The probability f(|d|; t, θ) in Equation 3.2 will take one of three forms:

fs(|0|; t, θ) = e−tθ/2 (3.10)

or

fs(| − 1|; t, θ) = fs(|1|; t, θ) = e−tθ/2 tθ

4
. (3.11)

This situation is analogous to a problem in phylogenetics. When rates of change

are low, likelihood calculations on trees that consider all possible changes among

allelic states converge to calculations of a parsimony score, as only changes of a

single unit along a branch have nontrivial likelihood (Felsenstein, 2004). Similarly,

our calculation of the probability that the private alleles lie on the edges of the size

distribution, considering all possible states for allele sizes, is reduced in the small-θ

case to a parsimony-style approximation by replacing f(|d|; t, θ) with fs(|0|; t, θ) and

fs(|1|; t, θ). This parsimony approximation further eliminates the sums over n3, nA,

nB, and nC , making P[E1∪E2|C6, θ] (Equation 3.1) tractable to analytically compute.

Examining all the ways of placing two mutations on one of the 18 topologies such

that the {AB/AC} configuration is produced, each placement will contribute some

probability to either the denominator in Equation 3.1 or to both the denominator

and numerator in Equation 3.1. As an example, consider history 8 from Figure 3.1.

We first examine the four ways of getting configuration C6 by assignment of the roles

of A, B, and C to the alleles x1, x2, x3, and x4. We then find all placements of two
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mutations on the tree that are consistent with this configuration. Each placement

will either place the private alleles on both ends of the size distribution, or the shared

allele will be on one end. If the private alleles are on both ends, then the term

contributes to both the numerator and the denominator. If the shared allele is on an

end, then the term contributes to the denominator only. Figure 3.5 illustrates this

approach for the case of x1 = x4.

We can substitute fs for f in our definitions of V cat and V sym to get the following

small-θ versions of the probability of an arbitrary set of allele sizes.

V cat
s (x1, x2, x3, x4, n3,Ψ) =fs(|x4|; 2t2 + t3 + t4, θ)×

fs(|x3|; t3 + t4, θ)× fs(|n3|; t3, θ)×

fs(|n3 − x2|; t4, θ)× fs(|n3 − x1|; t4, θ)

V sym
s (x1, x2, x3, x4, n3,Ψ) =fs(|n3|; 2t2 + t3, θ)×

fs(|n3 − x4|; t4, θ)× fs(|n3 − x3|; t4, θ)×

fs(|x2|; t3 + t4, θ)× fs(|x1|; t3 + t4, θ).

Each possible placement of two mutations on one of the 18 labeled histories has a

probability that falls into one of 12 equivalence classes as a result of symmetries in

V cat
s and V sym

s . We denote these classes by σi (i ∈ {1, ..., 12}), as defined in Table

3.4.

By tabulating in Table 3.5 the contributions from each class to the numerator

and denominator of the probability for each of the 18 labeled histories, we can now
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compute the numerator, 2P[E1, C6|θ], in Equation 3.1 as

∞
∫

0

∞
∫

0

∞
∫

0

ρ(t2, t3, t4)
1

18

(

32σ1(t2, t3, t4, θ) + 32σ2(t2, t3, t4, θ)+

16σ3(t2, t3, t4, θ) + 16σ6(t2, t3, t4, θ)+

32σ8(t2, t3, t4, θ) + 8σ9(t2, t3, t4, θ)+

8σ11(t2, t3, t4, θ)

)

dt2 dt3 dt4, (3.12)

which evaluates to

θ2(648 + 990θ + 489θ2 + 79θ3)

18(1 + θ)2(2 + θ)3(3 + θ)3
. (3.13)

The denominator, P[C6|θ], of Equation 3.1 is

∞
∫

0

∞
∫

0

∞
∫

0

ρ(t2, t3, t4)
1

18

(

32σ1(t2, t3, t4, θ) + 32σ2(t2, t3, t4, θ)+

16σ3(t2, t3, t4, θ) + 16σ4(t2, t3, t4, θ)+

16σ5(t2, t3, t4, θ) + 16σ6(t2, t3, t4, θ)+

32σ7(t2, t3, t4, θ) + 32σ8(t2, t3, t4, θ)+

8σ9(t2, t3, t4, θ) + 16σ10(t2, t3, t4, θ)+

8σ11(t2, t3, t4, θ) + 16σ12(t2, t3, t4, θ)

)

dt2 dt3 dt4, (3.14)

which evaluates to

θ2(432 + 630θ + 295θ2 + 45θ3)

6(1 + θ)2(2 + θ)3(3 + θ)3
. (3.15)

Taking the ratio of expressions 3.13 and 3.15 and evaluating the limit as θ tends to 0

gives us

lim
θ→0

P[E1 ∪ E2|C6, θ] = lim
θ→0

(648 + 990θ + 489θ2 + 79θ3)

3(432 + 630θ + 295θ2 + 45θ3)
=

1

2
. (3.16)
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This result shows that, for low mutation rates, we expect the private alleles in an

{AB/AC} sample of size four to be on the ends of the size distribution approximately

1/2 of the time. This is substantially more often than the value of 1/3 predicted when

the relatedness of the alleles was not taken into account.

3.3 Arbitrary divergence time

Extending our two-population model, we now consider two populations separated

by arbitrary divergence time td (Figure 3.6). Note that as shown in Figure 3.6, the

definitions of t2, t3, and t4 differ slightly from those used in the calculations for the

td = 0 case in Figure 3.2. We can formulate Equation 3.1 for arbitrary divergence

time td and compute

P[E1 ∪ E2|C6, θ, td] =
2P[E1, C6|θ, td]

P[C6|θ, td]
. (3.17)

Detailed derivations appear in Appendix A. We calculate Equation 3.17 numerically

by Gaussian quadrature and by simulation using methods similar to those used for

the td = 0 case (Appendix B).

Figure 3.7 shows, as a function of θ and td, the probability that the private alleles

lie on the edges of the size distribution, as obtained using the simulation in Appendix

B. We see that throughout the parameter space, the probability always exceeds the

näıve expectation of 1/3. For all values of θ, we observe that increasing the divergence

time between the populations increases the probability of finding the private alleles

on the edges of the size distribution. Furthermore, we see that for small θ, the

probability that private alleles in a sample of size four are found on the edges of

the size distribution quickly tends toward 1 as td increases. By applying the small-θ

approximation of Equations 3.10 and 3.11, we can show that this probability does

indeed converge to 1 as td tends to infinity.
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Conditioning on each of the four possible scenarios depicted in Figure 3.6, we

follow an approach similar to the td = 0 small-θ derivation to obtain a small-θ

approximation for the case of arbitrary divergence time (Appendix C). The resulting

limiting expression for this approximation as θ tends to 0 is

lim
θ→0

P[E1 ∪ E2|C6, θsmall, td] =
3e2td − 2td − 2

3e2td − 1
. (3.18)

Equation 3.18 is sensible in that it agrees with the small-θ result of 1/2

at td = 0 (Equation 3.16), and it approaches the conditional result P[E1 ∪

E2|C6, θsmall, td, E11] = 1 as td increases without bound (Equation C.6). In Figure 3.8,

we plot the function of td in Equation 3.18 along with simulated results at increasingly

small θ. We see that for each θ, the probability that the private alleles lie on the edges

of the size distribution increases monotonically as a function of the divergence time,

and that the simulated probability approaches the limiting expression as θ approaches

0.

3.4 Properties of the probability that private alleles lie on

the edges

In order to investigate the probability that private alleles lie on the edges of the

size distribution, we started with a näıve argument that suggests that this should

happen 1/3 of the time in a sample of four alleles, two from each of two populations.

However, this näıve argument ignored the relatedness of the four alleles. We have

presented a calculation of the desired probability using a coalescent framework for

gene relatedness, together with the symmetric stepwise mutation model. When fixing

td, we see a monotonic decrease in the probability that the private alleles lie on

the edges as θ grows, but for every collection of parameter values evaluated (scaled

mutation rate θ and divergence time td between the two populations), the probability
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remains greater than 1/3.

Furthermore, the probability appears to stay well above 1/3 even for very large

θ. For large θ, we might expect so many mutations to occur on the tree that the

allele sizes would not be correlated, effectively “erasing” the genealogical relatedness.

In this case, we would expect the näıve prediction of 1/3 to hold. However, in order

to observe a C6 configuration, two alleles must be identical by state. Thus, when

conditioning on configuration C6, the distribution of branch lengths is biased toward

shorter branches compared to the unconditional distribution, and even for large θ, the

number of mutations tends to be small enough that genealogical relatedness remains

important.

Holding td fixed at 0, Figure 3.9 plots (t̄C6

i − t̄i)/t̄i versus θ, where t̄i is the

unconditional expectation of ti under the coalescent and t̄C6

i is the conditional

expectation given configuration C6, as obtained in 106 simulations that produced

this configuration. We see that as θ increases, the relative difference between the

conditional mean coalescence times given configuration C6 and the unconditional

mean coalescence times becomes increasingly negative. Most notably, t4 becomes

particularly short, reflecting the observation that for large θ, scenarios with

configuration C6 often have a “cherry” with short external branches of length t4

on which no mutations occur.

In the small-θ case, we find that for td = 0, the probability that the private alleles

lie on the edges in a sample of size four approaches 1/2 as θ tends to zero. By

letting the divergence time between the two populations exceed zero (td > 0), we see

a monotonic increase in this probability. In fact, in the small-θ limit, the probability

that the private alleles lie on the edges in a sample of size four tends to 1 as td tends

to infinity.

These results show that the genealogical history of a set of microsatellite alleles

is an important factor in determining the prevalence of private alleles in the ends
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of the allele size distribution, even under circumstances in which we might expect

the genealogy to be relatively unimportant. Our calculations also predict that the

probability that private alleles lie on the edges of the allele size distribution grows as

the divergence time between populations increases.

3.5 Application to data

To test the prediction that the probability that private alleles lie on the edges

of the allele size distribution grows as the divergence time between populations

grows, we analyzed data on microsatellites at 783 loci covering 1048 individuals in 53

worldwide populations from the Human Genome Diversity Panel (Rosenberg et al.,

2005). Computations with these microsatellites have established a general increase

of genetic differentiation (and hence, divergence time) with increasing geographical

distance between a pair of populations (Ramachandran et al., 2005). Thus, although

a strict divergence model is only an approximation to the population histories, we

can consider the pairwise comparisons of populations that are geographically near

each other to represent populations that diverged recently. Similarly, we can consider

the pairwise comparisons of populations that are geographically distant from each

other to represent populations that diverged relatively farther in the past. Pairwise

comparisons of a population with itself can be interpreted as the case in which a

population divergence happened at time td = 0 in the past. Based on the theory

we have developed, we expect that pairs of geographically separated populations will

produce a higher probability that the private alleles will lie on the edges of the size

distribution. Similarly, we expect smaller probabilities for pairs of geographically

proximate populations and the smallest probabilities for comparisons of populations

with themselves. We further expect that measures of genetic differentiation such as

FST will correlate with this probability as well, since these measures can be taken as

a loose proxy for the divergence time between two populations.
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To estimate the empirical frequency that the private alleles in a sample of size four

lie on the edges of the size distribution, we perform the following analysis. For each

population at each locus, we estimate the allele frequency distribution by counting

the total number of observations of each distinct allele size and dividing by the total

number of observations in the population. For a pair of populations, we then draw

two alleles from the empirical allele frequency distribution in each population. If the

set of four alleles has an {AB/AC} configuration, we accept the draw and determine

if the private alleles lie on the edges of the size distribution. If so, then the draw

is counted as a success. We repeatedly draw sets of four alleles until 100, 000 draws

are accepted. Finally, we calculate the empirical frequency that the private alleles lie

on the edges of the size distribution for a locus by dividing the number of successes

by the number of acceptances, and we calculate the mean of this empirical frequency

across loci. By performing this analysis, we get an estimate for the mean frequency

that private alleles lie on the edges of the size distribution.

The results of this analysis are plotted in Figure 3.10, and we find that real

populations do indeed follow the expected theoretical trend. The probabilities that

private alleles lie on the edges range from 0.3759 to 0.4595. African populations paired

with each other have lower probabilities, and a trend towards higher probabilities

occurs as African populations are paired with other populations that are more

geographically distant. The pairings of African populations with Native American

populations (representing the most genetically distant pairs) have the highest

probabilities. Furthermore, pairings close to the diagonal in Figure 3.10 tend to be

more closely related than pairings farther away from the diagonal, and for these pairs,

we see mostly low probabilities. Finally, the main diagonal represents the analysis

of a population paired with itself; this is interpreted as comparing two populations

with a divergence time of td = 0. We find that probabilities along the diagonal are

the lowest among all pairs considered.
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Because we also expect the frequency of private alleles on the edges to

correlate with measures of genetic differentiation, we calculate pairwise FST between

populations using Equation 5.3 from Weir (1996). In Figure 3.11, FST values are

plotted against the frequency with which private alleles occur on the edges of the

size distribution, and we find a very tight correlation (r = 0.9333). Thus, our

empirical calculations show that our model for explaining the size distribution of

private microsatellite alleles is able to predict phenomena observed in real data.

3.6 Discussion

We have modeled the phenomenon of private microsatellite alleles lying on the

edges of the allele size distribution in order to explain an observation by Wang et al.

(2007) that they occupy these locations more often than is expected by chance.

Using a simple two-population model with sample size four, we have provided a

näıve argument, in which we expect the probability that private microsatellite alleles

lie on the edges of the size distribution to be 1/3. Using a coalescent model with

symmetric stepwise mutation to explicitly calculate this probability as a function of

two parameters (mutation rate θ and divergence time td), we find that this probability

appears to always exceed 1/3. Furthermore, the model predicts that the probability

that private alleles lie on the edges of the size distribution grows larger as the

divergence time between populations increases. We have found that this prediction

holds in an analysis of worldwide microsatellite data in humans.

Intuitively, we can understand why P[E1 ∪ E2|C6, θ, td] might be expected to

exceed the näıve expectation by considering the process by which private alleles are

generated. When an ancestral population splits into two groups, all allele sizes present

in the population become shared alleles in the descendant populations, and these

shared alleles define the center of the allele size distribution. As allele sizes diffuse

away from the center in the separate descendant populations, mutations in either
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population toward the edges of the size distribution are likely to generate alleles that

are novel and therefore private. Conversely, mutations that push alleles toward the

center of the size distribution are likely to produce sizes that already exist in both

populations, as a result of the shared descent of central allele sizes. Furthermore, to

produce shared alleles on an edge of the size distribution, unless the edge allele size is

inherited by descent from the ancestral population in both descendant groups, alleles

from each population must separately mutate to the same size on the edge. Because

more mutations in total are required for producing such a shared allele on the edge

compared to the number required in one population to produce a private allele on the

edge, we expect private alleles to lie on the edges of the size distribution more often

than is predicted under the assumption that there is no relationship between privacy

and allele size.

This work augments the coalescent theory of microsatellite markers by providing

predictions about the properties of private alleles in a simple model with sample size

four. Previous work has examined additional quantities in the case of a four-allele

sample. For example, Kimmel and Chakraborty (1996) and Pritchard and Feldman

(1996) studied the expectation E[(Xi − Xk)
2(Xj − Xℓ)

2] for random allele sizes Xi,

Xj, Xk, and Xℓ in a stepwise mutation model. Zhang and Rosenberg (2007) studied

the genealogies of duplicated microsatellites in a model with four sampled alleles, two

each for two paralogous microsatellite loci. Together with these other efforts, our work

demonstrates that analytical formulas can sometimes be obtained in coalescent-based

microsatellite models of non-trivial size.

While our main goal has been to explore the properties of our simple model, the

model may potentially enable the inference of θ and td. For each of a collection of

loci whose mutational characteristics are assumed to be identical, the probability that

private alleles lie on the edges of the size distribution could be estimated from data

by repeatedly sampling alleles from the observed allele frequency distributions for
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pairs of populations. Using this empirical estimate, a likelihood surface could then be

constructed to jointly estimate θ and td. This approach might not produce identifiable

estimates; however, if θ has already been estimated by another method or if additional

summary statistics are combined with a private allele statistic, a potentially viable

method for estimating td might be constructed, considering the dramatic effect that

this parameter has on the probability that private alleles lie on the edges of the size

distribution.

We conclude with a discussion of model limitations. Because of the complexity

of the probability calculations, we have restricted our attention to a sample of size

four. We have assumed a simple demographic model of two populations, in which

population sizes are equal and no migration occurs after the populations diverge.

The simple stepwise mutation model assumes symmetry in the direction of mutation

and independence of the mutation rate with allele size, and both the demographic

model and the mutation model likely reflect conditions that are not strictly met in the

human population example that we consider. Indeed, more complex mutation models,

allowing for directional bias, multistep mutations, length-dependent mutation rates,

or a combination of these factors could potentially be considered (e.g. Calabrese and

Durrett , 2003; Whittaker et al., 2003; Watkins , 2007). In general, however, we did

not need a more complex model to explain the core observation that private alleles

frequently lie on the edges of the size distribution. While the true demographic and

mutational phenomena are undoubtedly more complicated than our model captures,

we are still able to observe that as predicted, the probability that private microsatellite

alleles lie on the edges of the size distribution in a sample of four alleles correlates

with the genetic differentiation between pairs of populations.
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Figure 3.10: The empirical probability that private alleles lie on the edges of the
size distribution in a sample of size four from a pair of populations.
Plotted are pairwise calculations of this frequency for all 53 worldwide
populations from the Human Genome Diversity Panel, arranged in major
geographic regions. African, Middle Eastern, European, Central/South
Asian, East Asian, Oceanian, and American populations are arranged by
color in the labels. Blue represents a lower probability, and red represents
a higher probability.
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Table 3.1: The seven possible configurations of four alleles in two populations and the
counts of shared, private, and total distinct alleles for each configuration.

Event Configuration
Number of Number of Total number of

shared alleles private alleles distinct alleles
C1 {AA/AA} 1 0 1
C2 {AA/AB} 1 1 2
C3 {AA/BB} 0 2 2
C4 {AB/AB} 2 0 2
C5 {AA/BC} 0 3 3
C6 {AB/AC} 1 2 3
C7 {AB/CD} 0 4 4

Table 3.2: The four allele size relationships possible for the {AB/AC} allele
configuration.

Case Allele size relationship
Allele roles in
{AB/AC}

x1 x2 x3 x4

1 x1 = x3 x2 6= x4 x1 6= x2 x1 6= x4 A B A C
2 x1 = x4 x2 6= x3 x1 6= x2 x1 6= x3 A B C A
3 x2 = x3 x1 6= x4 x2 6= x1 x2 6= x4 B A A C
4 x2 = x4 x1 6= x3 x2 6= x1 x2 6= x3 B A C A
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Table 3.4: Definitions for the 12 classes of probability in the small-θ “parsimony”
approximation.

Class Defined probability
1 σ1(Ψ) = V cat

s (1, 0, 0, 0, 1,Ψ)
2 σ2(Ψ) = V cat

s (1, 0, 0, 1, 0,Ψ)
3 σ3(Ψ) = V cat

s (0, 0, 0, 1, 1,Ψ)
4 σ4(Ψ) = V cat

s (0, 0, 1, 1, 0,Ψ)
5 σ5(Ψ) = V cat

s (0, 0, 1, 0, 1,Ψ)
6 σ6(Ψ) = V cat

s (1, 1, 0, 0, 0,Ψ)
7 σ7(Ψ) = V cat

s (1, 0, 1, 0, 0,Ψ)
8 σ8(Ψ) = V sym

s (1, 0, 0, 1, 0,Ψ)
9 σ9(Ψ) = V sym

s (0, 0, 0, 1, 1,Ψ)
10 σ10(Ψ) = V sym

s (0, 0, 1, 1, 0,Ψ)
11 σ11(Ψ) = V sym

s (1, 1, 0, 0, 0,Ψ)
12 σ12(Ψ) = V sym

s (1, 0, 1, 0, 0,Ψ)
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CHAPTER IV

Long runs of homozygosity are enriched for

deleterious variation

4.1 Introduction

The study of deleterious variation in the genome has been of fundamental

importance to evolutionary genetics (Muller , 1950; Morton et al., 1956; Kondrashov ,

1995; Charlesworth and Charlesworth, 1998; Eyre-Walker and Keightley , 1999; Fay

et al., 2001; Sunyaev et al., 2001; Lohmueller et al., 2008; Chun and Fay , 2011; Cooper

and Shendure, 2011; Lohmueller et al., 2011; Necşulea et al., 2011; Lesecque et al.,

2012; Tennessen et al., 2012). An individual human genome may contain from tens

to hundreds of variants that would be lethal in homozygous form (Morton et al.,

1956; Kondrashov , 1995) and may also contain hundreds to thousands of mildly

deleterious variants (Fay et al., 2001; Sunyaev et al., 2001; Lohmueller et al., 2008;

Tennessen et al., 2012). Crow (1997) suggested that the accumulation of many

deleterious variants could have long-term health consequences, while Charlesworth

and Charlesworth (1998) have even hypothesized that the evolution of the Y

chromosome could be the result of the accumulation of deleterious variation. In order

to gain insights into human adaptation, evolution, and genetic disease, It is therefore

of critical importance to understand the distribution of this variation within and
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between individuals and populations, as well as to understand the effect that natural

selection and other genomic variables have on shaping patterns of diversity.

Early empirical studies have used data on a limited number of genes to make

inferences about the distribution, accumulation, and effects of deleterious variation.

Eyre-Walker and Keightley (1999) used GenBank sequences of human, chimpanzee,

and the closest available primate species to estimate the deleterious mutation rate in

humans. Fay et al. (2001) used single nucleotide polymorphism and divergence data

from ∼ 180 genes to estimate that 80% of amino acid mutations are deleterious and

that there are approximately 300 deleterious variants per diploid genome.

With the widespread availability of next-generation sequencing technology, exome

sequencing allows for the targeted study of all known protein-coding regions. As

mutations within protein-coding regions are particularly likely to be disruptive—by

altering the encoded amino acid sequence—relative to non-coding regions, exome

sequencing offers natural data sets with which to study the genomic distribution

of potentially deleterious variation. Furthermore, when an encoded amino acid

is changed, the functional impact can be predicted reasonably accurately (Cooper

and Shendure, 2011). Lohmueller et al. (2008) studied the exomes of 20 European

Americans and 15 African Americans and found an excess of homozygous deleterious

variation in the European American samples. Similarly, Tennessen et al. (2012)

showed though deep exome sequencing that a large fraction of coding variation is

recent, rare, and deleterious.

Examining the patterns of deleterious variation with respect to various genomic

variables is of particular interest, allowing the further characterization of fundamental

processes that shape genetic variation across the genome. Using whole-genome

sequences, Lohmueller et al. (2011) investigated how natural selection on non-neutral

variants affects patterns of neutral variation, finding that the correlation between

neutral diversity and recombination rate is the result of negative selection acting on
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large numbers of weakly deleterious variants.

Runs of homozygosity (ROH) are another interesting genomic variable to study

with respect to the distribution of deleterious alleles. ROH are long stretches of

consecutive homozygous genotypes that can occur in the genome as the result of

several processes: population demographics, cultural practices, and natural selection.

Bottlenecks or isolation can lead to a small effective population size and ultimately

reduce diversity across the whole population, creating an increased pairing of common

haplotypes, thereby generating ROH. Endogamy and consanguineous marriage can

also generate ROH by increasing the likelihood of pairing identical-by-descent

stretches of chromosome. Finally, natural selection can reduce genetic diversity

around a non-neutral part of the genome, leading to a higher likelihood of pairing for

identical-by-state haplotypes and thus generating ROH.

ROH regions have been the central focus of homozygosity mapping studies of

inbred individuals (Lander and Botstein, 1987; Broman and Weber , 1999). By

searching for long stretches of identical-by-descent regions, many efforts to identify

recessive Mendelian disease genes have been successful (Botstein and Risch, 2003).

These efforts, however, have focused primarily on affected inbred individuals, although

efforts are being made to extend these methods to non-inbred individuals (Gibbs

and Singleton, 2006; Hildebrandt et al., 2009; Collin et al., 2011; Hagiwara et al.,

2011; Schuurs-Hoeijmakers et al., 2011). Because of this transition toward the use

of homozygosity mapping methods in outbred populations, there has been interest

in characterizing the worldwide patterns of ROH to better understand how these

regions are distributed within individuals and across populations (Kirin et al., 2010;

Leutenegger et al., 2011; Pemberton et al., 2012). In light of the importance of

ROH regions for disease-gene studies and the multitude of processes that create these

regions, we aim to provide a characterization of the patterns of deleterious variation

occurring inside and outside ROH regions.
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We form two possible alternative hypotheses for how deleterious variants might

correlate with ROH. First, consider that many deleterious variants act recessively

and therefore only reduce an individual’s fitness when occurring as homozygotes. A

genome with an ROH region containing many deleterious variants would carry these

variants as homozygotes, and especially if the variants interact synergistically, the

individual would then have reduced fitness. As a result of this reduction in fitness,

this genome would be less likely to be viable as compared to a genome with fewer

ROH regions carrying fewer deleterious homozygotes. Thus, we form hypothesis

1: if we take the genome-wide frequency of neutral homozygotes across ROH and

non-ROH regions as a baseline, we should expect to observe a smaller fraction of

all genome-wide deleterious homozygotes to occur in ROH regions as compared to

the fraction of neutral homozygotes occurring in ROH regions. While deleterious

homozygotes occurring outside of ROH regions will also incur a fitness cost, under

this hypothesis we expect that selection would more effectively purge long homozygous

regions with many deleterious genotypes.

On the other hand, low-frequency variants are more likely to be deleterious than

are common variants (Marth et al., 2011), and inbred regions of the genome can

present low-frequency variants in homozygous form at a higher rate then non-inbred

regions. For example, consider a variant that has allele frequency p. If this variant

is in a non-inbred region, then it would occur in homozygous form with probability

p2. If instead it occurred in an inbred region, because of the identity-by-descent of

an individual’s two haplotypes, it would be homozygous with the greater probability

p. Because of this higher probability, when the homozygous deleterious variants are

not lethal and inbreeding is recent, we might then expect that selection has not had

enough time to eliminate deleterious variants in these regions. Therefore we form

hypothesis 2: taking the genome-wide frequency of neutral homozygotes across ROH

and non-ROH regions as a baseline, we should expect to observe a larger fraction of
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all genome-wide deleterious homozygotes to occur in ROH regions as compared to the

fraction of neutral homozygotes occurring in ROH regions. We further expect that

longer (newer) ROH might have a higher fraction of deleterious homozygotes than

shorter (older) ROH.

To test these alternative hypotheses, we perform whole-exome sequencing and

computational prediction of deleterious alleles and analyze these data in conjunction

with the worldwide atlas of genomic patterns of ROH from Pemberton et al. (2012).

We select 27 individuals from Pemberton et al. (2012) across 6 populations, including

San (n = 2), Biaka Pygmy (n = 5), Mozabite (n = 3), Maya (n = 5), Surui (n = 6),

Karitiana (n = 6). We choose these individuals to represent the extreme ends of

the distribution of ROH across the genome (4%-46%, Figure 4.1, Pemberton et al.

(2012)). To predict whether a variant allele is deleterious, we use the PolyPhen2

program (Adzhubei et al., 2010). As a surrogate for neutral variation, we consider

both synonymous sites and missense sites predicted to be benign. Next, using the

coordinates of the called ROH regions from Pemberton et al. (2012), we assess the

number of predicted deleterious variants in each individual’s runs of homozygosity.

Finally, we determine whether deleterious homozygotes occur within ROH more

frequently than expected from the pattern of occurrence of neutral homozygotes,

and whether this pattern differs for different classes of ROH that are believed to

result from different population-genetic processes.

4.2 Methods

4.2.1 Raw read processing and variant calling

Figure 4.2 parts A and B give an overview of the workflow for processing the

raw sequencing reads and variant calls. We sequenced the 27 individuals using

Nimblegen SeqCap EZ v1 (Roche Nimblegen, Madison, WI) exome capture followed
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by sequencing using the Illumina Hiseq2000 system. We aligned raw reads to the

HG18 reference sequence with BWA (Li and Durbin, 2009). So that variants would be

called with unbiased read counts, duplicate reads were marked with Picard (Picard ,

2011). We used the Genome Analysis Tool Kit (GATK) (McKenna et al., 2010)

for lane-level local realignment around known and possible indels and for lane-level

recalibration of base quality scores. Finally, we called variants using all samples

jointly with the UnifiedGenotyper module of GATK with a minimum phred-scaled

confidence score of 30, which gives us a set of raw variant sites. In these analyses we

considered only single nucleotide variant sites and excluded any insertion-deletions

and multi-allelic sites.

4.2.2 Site-level quality control

The raw set of variant sites is expected to be very sensitive to true positive variant

sites but also to contain many false positives as a result of machine artifacts. We

further filtered the initial set of variant calls to reduce false positives (outlined in

Figure 4.2 part C). First, we removed variant sites that fell outside the targeted

regions. To separate the true positives from the false positives, we utilized the variant

quality score recalibrator module of GATK (DePristo et al., 2011) to build an adaptive

error model using known variant sites and their various quality score annotations

(i.e. RMS Mapping Quality, Fisher’s exact test for strand bias, etc.). This utilized

variant site quality measure from the joint variant calling step above and allowed us

to estimate the probability that a variant is a true genetic variant versus a machine

artifact.

The variant quality score recalibrator requires a set of likely true variant sites

to train its error model. Here we consider two sets of likely true variant sites,

jointly: called exome variant sites that have been previously identified as HapMap

3.3 variant sites are taken to be true with a phred-scaled prior of 15 (96.84%) and
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called exome variant sites that have previously identified as Omni 2.5M variant sites

are taken to be true with a phred-scaled prior of 12 (93.69%), as recommended by

DePristo et al. (2011). Given this set of likely true variant sites, we trained the error

model with the HaplotypeScore, HRun, MQRankSum, MQ, and FS quality score

annotations. Other quality score annotations were not informative for distinguishing

true versus false positives. HaplotypeScore measures the consistency of the site with

exactly two segregating haplotypes, and higher scores are indicative of bad alignments.

HRun gives the largest contiguous homopolymer run of the variant allele in either

direction on the reference sequence. MQRankSum is the phred-scaled p-value from a

Mann-Whitney rank sum test for mapping qualities. MQ is the root mean square of

the mapping quality of the reads across all samples. FS is the phred-scaled p-value

from a Fisher’s exact test to detect strand bias. These choices were also informed by

DePristo et al. (2011).

After training the error model, all called variant sites in the original data site were

annotated with the variant quality score log-of-odds (VQSLOD), which represents the

log odds of a site being a true variant versus a false positive. Rather than choosing

an arbitrary VQSLOD cut-off, we considered the distribution of VQSLOD scores for

called variant sites also found in HapMap 3.3 and chose a cut-off that returns 99% of

these sites, as recommended by DePristo et al. (2011). After filtering sites below this

cutoff, 96, 797 remained. Using dbSNP build 132 (minus sites added after build 129)

53, 285 were known (Ti/Tv = 3.1017), and 43, 511 were novel (Ti/Tv = 2.8356).

4.2.3 Variant classification by predicted functional impact

Some of our variant sites may not be in the coding regions of the targeted genes

because the NimbleGen platform pads the capture target by 100 bps on each side,

so we annotate the genomic location of each called variable site using the MapSNPs

algorithm provided with the PolyPhen2 (Adzhubei et al., 2010) program. MapSNPs
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determined the genomic location of each site with respect to the Consensus CDS

(CCDS) set of high-quality coding regions (Pruitt et al., 2009) and successfully

annotated 91, 770 sites (Figure 4.3). There were 701 sites that mapped to two CCDS

regions. Any site that had a mutation classified as missense and something else (i.e.

missense in one CCDS and synonymous in another CCDS) was considered only as a

missense mutation for downstream analyses. Furthermore, if a site had a mutation

classified as synonymous in one CCDS and nonsense or UTR mutation in another

CCDS, it was removed. If a site had a mutation classified as missense in more than

one CCDS, it was retained for further classification by PolyPhen2 (Adzhubei et al.,

2010). If a missense mutation was classified by PolyPhen2 with respect to more than

one CCDS, it was retained if the classifications were identical, and it was removed

if the classifications differed. After reconciling these double hits, we were left with

26776 missense sites and 29914 synonymous sites.

Since we are interested in potentially deleterious variants in these data, we utilized

the PolyPhen2 program to classify the non-reference alleles that are missense changes.

Given a set of missense mutations, PolyPhen2 predicts the potential disruption that

the non-reference allele has on the encoded protein by incorporating knowledge of

amino acid biochemistry, folded structure (if known), and conservation score. Using a

näıve Bayes classifier, PolyPhen2 puts missense mutations into “probably damaging,”

“possibly damaging,” and “benign” categories based on the estimated false discovery

rate. The final set of missense mutations successfully classified by PolyPhen2 is given

in Figure 4.4, and since we are interested in both deleterious and non-deleterious

variation, the final dataset of coding variation used in downstream analyses consists

of these PolyPhen2-classified missense sites and the synonymous sites.
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4.2.4 Genotype-level quality control

While the site-level quality control above generates a set of sites that are very likely

to be truly variant in our sample, there may be specific genotypes at individuals that

are of poor quality. Therefore, we performed a final round of quality control per

individual genotype on the remaining 29914 synonymous and 26776 missense sites.

We assessed concordance with known genotypes by comparing the called genotypes

with those found on the Illumina HumanHap 650Y chip. All of the 27 individuals

have been genotyped with this chip by Li et al. (2008). There are 6, 180 variant

sites that overlapped between the called variant sites and the genotyped SNP sites.

There is an overall genotype concordance (percentage of called exome genotypes that

agree with the Illumina genotypes) of 99.2%. This can be broken down by genotype,

where we find 99.3% concordance for called non-reference homozygotes and 98.7%

concordance for called heterozygotes. A breakdown of genotype concordance per

individual is given in Table 4.1 Considering these concordance levels, we choose a

filter for homozygous genotypes of DP < 3, where DP is the read depth for the

sample at that site. Applying this filter gives a new concordance rate of 99.6%

for non-reference homozygous genotypes, while removing 42.6% of mismatches and

only 1.1% of matches. We now seek to filter heterozygous genotypes to achieve a

similar rate of concordance. In order to do this, we consider the distribution of called

heterozygotes as a function of both DP and non-reference allele frequency (Figure

4.5). Here we choose, by hand, a progressive filter based on non-reference allele

frequency as a function of DP. The cut-off is more permissive at lower DP and more

restrictive at higher DP (denoted by red dotted line in Figure 4.5). Applying this filter

gives a new concordance rate of 99.6% for heterozygous genotypes, while removing

71.7% of mismatches and 0.5% of matches. After filtering, 64 former variant sites did

not have variant calls for any individual, and 1288 were monomorphic in the sample.

These were removed from the dataset. After genotype filtering, the data set consists
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of 54, 359 sites (Figure 4.6). This data set has, for each individual, mean coverage

between 38x and 81x, and the percentage of sites with ≥ 20x coverage ranges between

62% and 90% across individuals (Table 4.2).

4.2.5 Final data set for downstream analysis

The final data set for further downstream analysis consists of 54, 359 sites (Figure

4.6) across the 27 individuals. The mean per-individual missing data rate is 3.3% with

a maximum individual missing data rate of 10.6%. In some downstream analyses,

we combine the synonymous sites with the benign sites into a super-class denoted

“non-damaging” and combine the possibly damaging and probably damaging sites

into a super-class denoted “damaging” for the sake of simplicity. While there may

be truly damaging variants in the non-damaging class and vice versa, we create

these super-classes to represent sets of sites enriched for damaging and non-damaging

variants. In aggregate, these super-classes will be useful to observe genome-wide

trends in deleterious variation. Note that while MapSNPs and PolyPhen2 classify

individual mutations, we refer to a site as “synonymous,” “probably damaging,”

“possibly damaging,” or “benign,” if the alternate allele at that site has been classified

the same. It is important to note, then, that reference alleles at “damaging” loci are

not expected to be damaging.

4.2.6 ROH data analysis

Pemberton et al. (2012) have characterized worldwide patterns of runs of

homozygosity in 1839 human individuals across 64 populations using an autozygosity

based LOD score method. They further classified these ROH into three broad

categories: short ROH (denoted class A ROH) tens of kb in size, medium ROH

(denoted class B ROH) hundreds of kb to a few Mb in size, and long ROH (denoted

class C ROH) several Mb in size. For the 27 individuals in our exome sequencing data
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set, we took the coordinates defining the ROH regions as well as the ROH size class

boundary values so that we could identify a given ROH segment as of a particular

size class. Using this information, we calculate

Ri =
total length of all ROH regions in individual i

total length of the genome
. (4.1)

This represents the total fraction of the genome of individual i covered by an ROH

region.

With this information, we map each variant site from Figure 4.6 to a specific ROH

segment for each individual. An individual at a given site will be either homozygous

for the reference allele (0/0), heterozygous (0/1), or homozygous for the alternate

allele (1/1). Since it is the alternate allele that has been classified as damaging or

non-damaging, it is useful to make counts of specific genotypes, and we calculate gn,ki ,

gd,ki , gn,ki,j and gd,ki,j . g
n,k
i and gd,ki represent the number of genotypes with k ∈ {0, 1, 2}

alternate alleles in individual i at non-damaging and damaging sites, respectively.

gn,ki,j and gd,ki,j represent the number of genotypes with k ∈ {0, 1, 2} alternate alleles

in individual i falling in ROH class j ∈ {A,B,C} at non-damaging and damaging

sites, respectively. This means that the number of genotypes in individual i with

k ∈ {0, 1, 2} alternate alleles that fall into a non-ROH region is given by

gn,ki −
∑

j∈{A,B,C}

gn,ki,j (4.2)

for non-damaging sites and

gd,ki −
∑

j∈{A,B,C}

gd,ki,j (4.3)

for damaging sites. These genotype counts are summarized for damaging sites in

Table 4.3 and for non-damaging sites in Table 4.4.

84



4.3 Results

4.3.1 Heterozygous genotypes and ROH size classes

The short, medium, and long ROH size classes that Pemberton et al. (2012)

identified correspond to ROH lengths previously described. Short ROH (denoted

class A ROH) are tens of kb in size and thought to reflect the homozygosity of old

haplotypes (International HapMap Consortium, 2007). Medium ROH (denoted class

B ROH) are hundreds of kb to a few Mb in size and thought to arise from background

relatedness (Lencz et al., 2007; Curtis et al., 2008; Jakkula et al., 2008; McQuillan

et al., 2008). Finally, long ROH (denoted class C ROH) are several Mb in size and

likely result from recent parental relatedness (Broman and Weber , 1999; Li et al.,

2006; Gibson et al., 2006; International HapMap Consortium, 2007; Lencz et al.,

2007; Curtis et al., 2008; Jakkula et al., 2008; McQuillan et al., 2008; Kirin et al.,

2010). If this is truly the case with the Pemberton et al. (2012) ROH regions, then

we should see a substantially lower fraction of all an individual’s genotypes that are

heterozygotes occurring in ROH regions. In particular, we should expect the lowest

fraction of all an individual’s genotypes that are heterozygotes in their long class

C ROH with a slightly higher fraction in medium class B and short class A ROH.

We should further see an enrichment of heterozygotes relative to the genome-wide

fraction in non-ROH regions. We calculate the genome-wide fraction of genotypes

that are heterozygotes in individual i as

gd,1i + gn,1i
∑2

k=0(g
d,k
i + gn,ki )

, (4.4)

and the results are in Table 4.5 column 3. Similarly, we calculate:

gd,1i −
∑

j∈{A,B,C} g
d,1
i,j + gn,1i −

∑

j∈{A,B,C} g
n,1
i,j

∑2
k=0(g

d,k
i + gn,ki )

, (4.5)
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representing the fraction of all genome-wide genotypes that are heterozygotes in

individual i that do not occur in an ROH region (Table 4.5 column 4);

∑

j∈{A,B,C} g
d,1
i,j +

∑

j∈{A,B,C} g
n,1
i,j

∑2
k=0(g

d,k
i + gn,ki )

(4.6)

representing the fraction of all genome-wide genotypes that are heterozygotes in

individual i that occur in any ROH region (Table 4.5 column 5);

gd,1i,A + gn,1i,A
∑2

k=0(g
d,k
i + gn,ki )

(4.7)

representing the fraction of all genome-wide genotypes that are heterozygotes in

individual i that occur in class A ROH region (Table 4.5 column 6);

gd,1i,B + gn,1i,B
∑2

k=0(g
d,k
i + gn,ki )

(4.8)

representing the fraction of all genome-wide genotypes that are heterozygotes in

individual i that occur in class B ROH region (Table 4.5 column 7); and

gd,1i,C + gn,1i,C
∑2

k=0(g
d,k
i + gn,ki )

(4.9)

representing the fraction of all genome-wide genotypes that are heterozygotes in

individual i that occur in class C ROH region (Table 4.5 column 8).

We observe, as expected, that the percentage of heterozygotes in any ROH region

is substantially lower than in the genome-wide and non-ROH regions. We also note

that as we move from small to long ROH the percentage of heterozygotes in these

regions drops off dramatically. This is consistent with the view that short class A

ROH are older (and therefore have accumulated more mutations) and long class C

ROH are younger (and therefore have not accumulated many mutations). However it
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is also possible that some of this pattern is the result of small ROH being called with

less confidence and long ROH being called with greater confidence, so there may be

more false positives in the smaller ROH calls. It is important to note that the set

of sites that we consider in these analyses are only sites that are polymorphic in our

sample of 27 individuals, and so the percentage of all genotypes that are heterozygotes

does not include homozygous reference allele genotypes at sites that are fixed in our

sample.

4.3.2 The number of deleterious homozygous genotypes occurring in

ROH

Table 4.3 tabulates the counts for each reference homozygote (0/0), heterozygote

(0/1), and non-reference homozygote (1/1) at damaging sites that fall into ROH

regions and non-ROH regions (all gn,ki,j and gd,ki,j ). These results underscore the

substantial mutational burden many individuals are carrying, particularly the

individuals with a very high genomic ROH content. For instance individual 837 of the

Surui has the highest ROH coverage (46.4% of the genome) and carries a total of 357

predicted damaging (189 probably damaging and 168 possibly damaging) variants in

homozygous form. This contrasts strongly with individual 459 of the Biaka who has

the lowest ROH coverage (4.0% of the genome) and has 212 predicted damaging (109

probably damaging and 103 possibly damaging) variants in homozygous form.

Next, we compare the distribution of variants of different predicted function.

Figure 4.7 shows the total number of damaging non-reference homozygotes (1/1)

per individual as a function of total fraction of the genome covered in ROH

(Ri). The colored points represent damaging homozygotes that occur within ROH

(
∑

j∈{A,B,C} g
d,2
i,j ) while the black points represent the damaging homozygotes that

occur outside of ROH (gd,2i −
∑

j∈{A,B,C} g
d,2
i,j ). As the genome is covered in more

and longer ROH (high values of Ri), we naturally expect a greater raw number
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of homozygotes (damaging or not) to fall within ROH, and we see a strong linear

correlation between the number of damaging homozygotes and genomic ROH fraction

(Pearson ρ = 0.9897, slope = 584.3, intercept = −9.2). Similarly, the raw number

of homozygotes occurring outside ROH should decrease with genomic ROH fraction,

as there are simply fewer ROH-free regions (Pearson ρ = −0.8378, slope = −139.0,

intercept = 181.3). We note in Figure 4.7 that the decreasing slope of the homozygotes

in non-ROH regions (slope = −139.0) is shallower than the increasing slope of the

homozygotes in ROH regions (slope = 584.3), indicating that the rise in damaging

homozygotes in ROH regions outpaces the decline of damaging homozygotes in

non-ROH regions. The fitted lines predict that an average non-inbred individual

carries approximately 181 damaging variants in homozygous form. With every 10%

increase in genomic ROH coverage, non-ROH regions decrease by 10%, and there is

a loss of 18 damaging homozygotes. However, the increase in ROH regions increases

the number of damaging homozygotes by 58, for a net gain of 40.

4.3.3 Damaging versus non-damaging variation in any size ROH

Next, we turn to testing the two alternative hypotheses proposed above. Recall

that our hypothetical expectations are centered around comparing the numbers

of damaging homozygotes inside and outside of ROH regions to the numbers of

non-damaging homozygotes inside and outside of ROH regions. In particular under

hypothesis 1, damaging homozygotes occur more often in non-ROH regions relative to

the proportion of genome-wide non-damaging homozygotes occurring in these regions.

Under hypothesis 2, damaging homozygotes will occur more often in ROH regions

relative to the proportion of genome-wide non-damaging homozygotes occurring in

ROH regions. Additionally, hypothesis 2 posits that there should be a differential

effect based on the size class of ROH, with long ROH having the largest number of

damaging homozygotes.
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To test these hypotheses, we compute

fn
i =

∑

j∈{A,B,C} g
n,2
i,j

gn,2i

, (4.10)

where fn
i is the genome-wide fraction of non-damaging 1/1 homozygotes in individual

i that fall in either class A, B or C ROH. These numbers represent the neutral baseline

with which we compare the distribution of damaging homozygotes. Similarly, we

compute

fd
i =

∑

j∈{A,B,C} g
d,2
i,j

gd,2i

, (4.11)

where fd
i is the genome-wide fraction of damaging 1/1 homozygotes in individual i

that fall in either class A, B or C ROH. If hypothesis 1 is correct, then we should

expect to see fn
i systematically higher than fd

i .

Figure 4.8A plots fd
i (solid symbols) and fn

i (open symbols) versus total genomic

ROH coverage (Ri). We find that both the genome-wide fraction of non-damaging

(presumed neutral) and the genome-wide fraction of damaging (presumed deleterious)

homozygous genotypes are positively correlated with total genomic ROH coverage

(non-damaging Pearson ρ = 0.9983 and damaging Pearson ρ = 0.9938). A linear

correlation is expected in general, given that we expect a larger fraction of homozygous

genotypes to occur in ROH as ROH comprise increasingly more of the genome.

However, we further observe that the fraction of genome-wide damaging homozygotes

fd
i consistently exceeds the fraction of genome-wide non-damaging homozygotes fn

i .

To assess the statistical significance of the two linear regressions for the damaging

and non-damaging genotypes, we create the following linear model:

f
{n,d}
i = β0 + β1Ri + β2Di + β3RiDi + ǫ, (4.12)

where f
{n,d}
i is a vector across individuals containing the fraction of genome-wide
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damaging homozygotes in ROH regions and the fraction of genome-wide

non-damaging homozygotes in ROH regions. Ri is the fraction of the genome covered

by any size ROH for individual i, and Di is an indicator variable for individual

i, taking a value of 1 if the observed response is of damaging homozygotes and

taking a value of 0 if the observed response is of non-damaging homozygotes. In

this framework, a statistically significant β2 indicates a difference in the intercepts

of the two regressions, and a statistically significant β3 indicates a difference in

the slopes of the two regressions. We find β2 = 0.5340 (p = 8.59 × 10−6)

and β3 = 0.0965 (p = 0.00839), indicating a significantly different intercept and

slope between the two regressions plotted in Figure 4.8A. These results show that

damaging homozygotes are biased toward occurring in ROH relative to the baseline

of non-damaging homozygotes. These results are not compatible with hypothesis 1

but are consistent with hypothesis 2. If hypothesis 2 is correct, we should further

be able to observe an excess of damaging homozygotes specifically in class C ROH

regions versus non-damaging homozygotes in class C ROH regions, and furthermore

an excess of damaging homozygotes in class C ROH versus damaging homozygotes

in class A ROH.

4.3.4 Damaging versus non-damaging variation in small, medium, or long

ROH

To further refine our support for hypothesis 2, we separately consider the data for

each ROH size. For homozygous genotypes falling in either small class A, medium

class B, or long class C ROH, we calculate

fd
i,j =

gd,2i,j

gd,2i

(4.13)
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and

fn
i,j =

gn,2i,j

gn,2i

(4.14)

for damaging and non-damaging 1/1 homozygotes, respectively, where j ∈ A,B,C

denotes the ROH class. Figure 4.8B plots fd
i,A (solid symbols) and fn

i,A (open

symbols) versus total genomic coverage by class A ROH. We find that both the

genome-wide fraction of non-damaging (presumed neutral) and the genome-wide

fraction of damaging (presumed deleterious) homozygous genotypes are positively

correlated with total genomic coverage by class A ROH (non-damaging Pearson

ρ = 0.9829 and damaging Pearson ρ = 0.9365). However, when we repeat the

significance test of the differences in the two regressions, we find no significant

difference in either the intercept (p = 0.303) or slope (p = 0.647). Figure 4.8C

plots fd
i,B (solid symbols) and fn

i,B (open symbols) versus total genomic coverage by

class B ROH and the two linear regressions for non-damaging (Pearson ρ = 0.9892)

and damaging (Pearson ρ = 0.9629) homozygotes. Again, we find no significant

difference in either the intercept (p = 0.131) or slope (p = 0.142). Figure 4.8D plots

fd
i,C (solid symbols) and fn

i,C (open symbols) versus total genomic coverage by class

C ROH and the two linear regressions for non-damaging (Pearson ρ = 0.9921) and

damaging (Pearson ρ = 0.9727) homozygotes. However, we now find a significant

difference in both the intercept (p = 0.0368) and slope (p = 0.0186). These results

are consistent with hypothesis 2, suggesting that inbreeding is driving the differences

in the proportion of damaging homozygotes in ROH regions versus non-damaging

homozygotes in ROH regions.

Finally, under hypothesis 2, we should expect damaging homozygotes to occur

more frequently in class C ROH versus class A ROH. We compare the fraction of

damaging homozygotes falling in class C ROH (fd
i,C) to the fraction of damaging

homozygotes falling in class A ROH (fd
i,A, Figure 4.9). While we find that the

intercepts of the regressions are not significantly different (p = 0.7278), the slope
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differences are significantly different (p = 0.0139). This suggests that the increase in

fraction of damaging homozygotes is higher per unit increase in ROH coverage for

class C ROH versus class A ROH. Indeed, we can see in Figure 4.9 that the high ROH

coverage individuals have a substantially higher fraction of genome-wide damaging

homozygotes occurring in class C versus class A, consistent with hypothesis 2.

Since class C ROH are thought to be the result of recent inbreeding and since

inbred regions of the genome will present low-frequency variants as homozygotes at

a higher rate than will non-inbred regions, we might expect the large divergence in

slopes to be caused by a proportional excess of damaging variants in the American

populations versus the African populations. Indeed, in a study of African American

and European American individuals Lohmueller et al. (2008) have observed that the

proportion of variants private to African Americans that are non-synonymous (47.0%)

was significantly lower than the proportion of variants private to European Americans

that are non-synonymous (55.4%). We calculate for each of our populations the

proportion of all private alleles that are of a particular functional class by computing

Fp,c =
Np,c

Np

, (4.15)

where Fp,c is the fraction of private alleles in population p that have predicted

functional class c ∈ {synonymous, benign, probably damaging, possibly damaging},

Np,c is the number of private alleles in population p with predicted functional class

c, and Np is the total number of private alleles in population p. In agreement with

Lohmueller et al. (2008), we find that (Figure 4.10) the proportion of private variants

that are non-synonymous is lowest in African populations (< 50% non-synonymous,

∼ 20% predicted damaging) and highest in the American populations (∼ 60%

non-synonymous, >30% predicted damaging).
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4.4 Discussion

Through sequencing-based variant discovery efforts it has been widely recognized

that each human carries numerous deleterious variants (Lohmueller et al., 2008;

MacArthur et al., 2012; Tennessen et al., 2012). Our data set extends this observation

by directly showing that many individuals carry at least 212 and upwards to 357 of

such damaging variants in homozygous form. The fact that the combined presence of

this many homozygous variants is compatible with life supports the view that most

observed deleterious variants must have relatively small fitness effects.

Our analysis of deleterious variation with respect to ROH was framed by two

alternative hypotheses. Under hypothesis 1, we might have expected the fraction of

genome-wide damaging homozygotes occurring in ROH to be less than the fraction of

genome-wide non-damaging homozygotes because of more effective selection against

deleterious variants. In this case, the result would have been driven by the expectation

that selection would purge these homozygote-rich regions of damaging genotypes. On

the other hand, under hypothesis 2, we might have expected inbreeding to present

an excess of low-frequency (and likely damaging) variants in homozygous form, with

selection not having had sufficient time to eliminate them. In this case, ROH would

contain a higher fraction of all genome-wide damaging homozygotes with respect to

the fraction of all genome-wide non-damaging homozygotes. In particular, class C

ROH would potentially drive this difference, as they are expected to be both recent

and the result of recent inbreeding.

As we see in Figure 4.8A, the genome-wide fraction of damaging homozygotes

is significantly higher in ROH regions than would be predicted for non-damaging

homozygotes based on the total fraction of ROH in the genome. This result

disagrees with hypothesis 1 and lends support to hypothesis 2. We are able to

further refine support for hypothesis 2 by examining the genome-wide fraction of

damaging homozygotes in ROH regions separately for each size class of ROH (Figures
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4.8B-4.8D), finding that only for class C ROH is there a significant difference between

the fraction of damaging homozygotes and the fraction non-damaging homozygotes.

Finally, we are able to show that the fraction of genome-wide damaging homozygotes

occurring in class C ROH is greater than the fraction of genome-wide damaging

homozygotes occurring in class A ROH (Figure 4.9). This suggests that inbreeding

is largely responsible for the accumulation of damaging homozygous genotypes in

individual genomes.

These results are consistent with the notion that the human genome contains a

spectrum of variants with a rich gradation of functional impact. As a consequence of

negative selection, truly lethal variants are rare and most of the observed variants are

either neutral or mildly deleterious, even though many of these could be predicted

to impact molecular function. However, our results suggest that inbreeding amplifies

deleterious homozygotes in genomes, with potentially important health consequences.

Indeed, inbreeding has long been known to be deleterious to the health of offspring

(Darwin, 1876; Garrod , 1902; Morton et al., 1956; Bittles and Neel , 1994; Bittles ,

2001; Jorde, 2001). If a variant in a population is homozygous lethal, inbreeding will

greatly increase the chance of generating a genome with this lethal genotype. When

the deleterious variants have less dramatic effects, however, they have the opportunity

to accumulate in the genome as homozygotes, where they can be brought to high

frequency.
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Figure 4.3: A breakdown of variant sites by genomic location as determined by the
MapSNPs program included with PolyPhen2.
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Figure 4.4: A breakdown of variant sites by PolyPhen2 classification.
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Figure 4.5: Alternate allele frequency versus read depth (DP) for heterozygous
genotypes. Red points represent called exome heterozygotes that are
homozygotes in the Illumina genotype data. Blue points represent called
exome heterozygotes that are heterozygotes in the Illumina genotype
data. Black points represent called exome heterozygotes that do not occur
in the Illumina genotype data. Dotted red lines represent the quality
control cutoff for heterozygous genotypes. Any heterozygotes that fall in
between the two red dotted lines are retained. Others are removed from
the dataset.
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Figure 4.6: A breakdown of the final data set by PolyPhen2 classification and genome
location after all filtering.
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Figure 4.7: The number of damaging homozygotes versus the fraction of the genome
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Table 4.2: Mean coverage and percentage of sites with ≥20x coverage for the 96797
quality-controlled sites (Section 4.2.2) for each individual.

Population Individual ID
Mean coverage Percentage of sites

(number of copies) with ≥ 20x coverage

San
991 44 75
992 38 70

Biaka

454 70 81
457 58 82
458 56 75
459 42 75
460 49 70

Mozabite
1264 36 81
1267 38 84
1274 44 90

Maya

854 62 79
855 68 82
856 72 83
860 55 72
868 48 71

Karitiana

999 57 77
1012 74 83
1014 66 78
1015 53 73
1018 75 84
1019 60 76

Surui

837 47 62
838 81 79
843 66 69
845 83 78
846 64 72
849 74 79

106



T
ab

le
4.
3:

G
en
ot
y
p
e
co
u
n
ts

p
er

in
d
iv
id
u
al

fo
r
si
te
s
cl
as
si
fi
ed

as
d
am

ag
in
g.

P
op

u
la
ti
on

In
d
iv
id
u
al

ID
cl
as
s
A

R
O
H

cl
as
s
B

R
O
H

cl
as
s
C

R
O
H

n
ot
-R

O
H

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

S
an

99
1

12
12

19
4

21
13

23
1

15
1

13
6

18
5

12
37

71
37

99
2

12
8

17
9

16
3

13
9

26
2

26
6

17
5

11
68

71
89

B
ia
ka

45
4

10
4

12
4

9
9

11
8

5
1

68
16
9

12
25

73
84

45
7

2
4

83
10

1
14
3

16
2

10
7

16
8

12
24

73
96

45
8

12
5

14
4

8
1

89
17

1
23
0

17
8

11
00

72
16

45
9

7
5

12
9

10
1

14
2

12
0

11
9

18
3

11
71

73
79

46
0

8
10

13
4

2
4

68
3

1
97

13
4

10
32

71
27

M
oz
ab

it
e

12
64

18
8

37
3

22
8

28
0

10
2

20
6

17
6

92
3

72
11

12
67

12
13

26
0

14
9

35
5

18
8

30
9

17
2

94
6

71
28

12
74

9
19

29
9

12
5

33
1

9
0

16
9

15
6

10
05

72
46

M
ay
a

85
4

58
30

93
5

78
33

11
37

7
4

15
9

14
6

71
5

58
53

85
5

69
31

10
49

58
27

12
68

20
7

37
4

14
2

67
8

54
15

85
6

61
23

96
5

57
32

10
21

16
9

24
2

17
1

69
0

58
85

86
0

43
30

67
4

31
20

68
8

10
5

11
8

15
0

74
6

61
56

86
8

52
26

87
6

56
37

10
40

6
3

76
15
1

67
6

60
18

K
ar
it
ia
n
a

99
9

84
40

10
96

80
30

12
49

42
4

69
2

14
3

58
3

51
11

10
12

67
34

93
8

81
50

13
58

11
0

4
11
66

13
0

54
9

46
87

10
14

70
46

10
67

77
28

14
12

98
6

12
02

14
4

49
5

44
62

10
15

64
36

10
79

82
40

11
80

73
4

10
00

13
7

54
7

48
42

10
18

61
36

95
5

79
33

12
19

10
0

9
12
98

14
4

56
8

46
71

10
19

68
28

10
43

84
25

11
61

11
7

3
16
65

11
4

48
0

42
72

S
u
ru
i

83
7

53
29

78
9

91
35

13
65

12
2

5
17
82

91
46
1

38
73

83
8

59
44

10
72

92
40

13
58

72
7

10
28

11
6

51
8

45
28

84
3

55
30

91
0

86
18

12
54

95
6

11
80

10
4

49
3

42
47

84
5

55
27

91
2

77
41

13
08

12
2

18
14
92

10
8

45
2

42
99

84
6

51
36

93
2

92
29

12
38

93
5

13
60

10
6

52
1

44
53

84
9

57
34

94
4

92
29

13
91

94
12

13
64

12
0

49
2

42
64

107



T
ab

le
4.
4:

G
en
ot
y
p
e
co
u
n
ts

p
er

in
d
iv
id
u
al

fo
r
si
te
s
cl
as
si
fi
ed

as
n
on

-d
am

ag
in
g.

P
op

u
la
ti
on

In
d
iv
id
u
al

ID
cl
as
s
A

R
O
H

cl
as
s
B

R
O
H

cl
as
s
C

R
O
H

n
on

-R
O
H

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

1/
1

0/
1

0/
0

S
an

99
1

18
1

74
87
6

24
0

64
10
56

17
4

5
67
4

41
49

81
10

28
98
6

99
2

17
9

59
72
0

13
9

24
63
1

26
8

5
12
03

41
34

80
25

28
99
7

B
ia
ka

45
4

11
4

27
54
7

10
4

12
53
3

58
0

30
6

38
31

82
12

30
25
3

45
7

65
25

34
8

11
9

19
46
6

98
12

38
9

40
08

83
44

30
41
6

45
8

12
7

39
60
0

11
3

11
43
3

15
6

1
81
6

37
39

78
77

29
49
4

45
9

11
5

25
59
2

98
7

44
9

92
0

40
3

40
09

83
59

30
17
2

46
0

89
42

63
5

39
27

26
9

63
5

43
0

31
51

76
33

28
67
8

M
oz
ab

it
e

12
64

21
4

49
15
36

19
9

45
12
82

15
1

15
99
3

29
27

68
12

30
44
7

12
67

20
1

59
12
28

25
1

37
13
92

20
7

7
12
62

29
52

68
63

30
35
5

12
74

18
4

40
11
89

24
7

45
13
57

10
0

1
55
5

31
42

73
44

30
73
9

M
ay
a

85
4

67
6

13
3

42
11

71
3

15
6

50
33

85
4

54
9

25
22

50
09

25
09
1

85
5

76
6

16
0

48
43

81
5

12
6

51
77

21
4

14
13
32

24
61

47
01

23
54
9

85
6

74
7

15
4

41
90

67
0

88
45
89

13
0

13
86
8

25
91

49
56

25
27
9

86
0

49
9

11
7

29
63

47
0

73
29
51

59
8

48
9

24
35

54
08

26
10
6

86
8

67
1

13
4

38
77

68
2

11
4

45
23

56
4

32
6

24
38

52
64

25
25
9

K
ar
it
ia
n
a

99
9

81
4

17
2

48
67

96
0

15
1

55
10

56
3

14
28
99

21
92

42
69

21
75
7

10
12

73
0

15
0

44
88

91
4

17
5

59
89

93
7

21
53
67

20
77

38
77

19
65
6

10
14

78
1

15
9

46
45

98
0

16
2

60
65

97
2

20
51
86

19
93

37
72

19
20
1

10
15

77
6

13
8

46
46

91
8

13
3

53
86

77
2

22
41
82

21
12

40
68

20
70
4

10
18

74
0

13
0

43
88

84
4

12
6

54
88

96
2

36
51
83

21
05

39
60

20
39
8

10
19

78
9

15
9

44
45

83
9

11
1

51
34

12
11

25
74
17

19
29

34
17

18
19
7

S
u
ru
i

83
7

65
4

12
9

38
95

88
5

13
5

54
23

12
60

23
73
96

16
90

33
85

16
83
1

83
8

65
4

19
5

45
37

94
8

15
7

57
79

76
8

38
42
90

19
45

39
78

19
70
7

84
3

69
1

15
2

40
00

90
0

10
6

51
84

86
3

36
50
74

17
05

33
71

18
23
5

84
5

64
9

16
1

40
35

86
9

14
4

56
09

11
63

51
64
37

17
74

35
98

18
24
2

84
6

73
2

17
0

43
22

84
7

13
9

53
64

10
49

30
60
72

18
05

37
92

18
42
4

84
9

67
3

14
8

43
58

90
1

11
9

56
64

10
22

33
59
09

18
96

36
81

18
35
8

108



T
ab

le
4.
5:

P
er
ce
n
ta
ge

of
al
lg
en
ot
y
p
es

th
at

ar
e
h
et
er
oz
y
go
u
s
in

a
gi
ve
n
re
gi
on

of
an

in
d
iv
id
u
al
’s
ge
n
om

e
(g
en
om

e-
w
id
e,
n
on

-R
O
H
,

an
y
R
O
H
,
cl
as
s
A

R
O
H
,
cl
as
s
B

R
O
H
,
an

d
cl
as
s
C

R
O
H
).

P
op

u
la
ti
on

In
d
iv
id
u
al

ID
G
en
om

e-
w
id
e
(%

)
n
on

-R
O
H

(%
)

an
y
R
O
H

(%
)

cl
as
s
A

(%
)

cl
as
s
B

(%
)

cl
as
s
C

(%
)

S
an

99
1

17
.7

18
.8

4.
2

6.
4

4.
7

0.
6

99
2

17
.4

18
.5

2.
6

5.
8

2.
8

0.
4

B
ia
ka

45
4

17
.9

18
.5

2.
6

3.
8

2.
7

0.
2

45
7

18
.0

18
.6

3.
3

5.
5

2.
6

2.
2

45
8

17
.2

18
.1

2.
1

4.
7

1.
8

0.
2

45
9

17
.9

18
.6

1.
7

3.
4

1.
1

0.
0

46
0

17
.6

18
.1

4.
6

5.
7

7.
6

1.
0

M
oz
ab

it
e

12
64

14
.6

15
.9

2.
3

2.
6

2.
9

1.
2

12
67

14
.7

16
.1

2.
4

4.
1

2.
2

0.
8

12
74

15
.6

16
.8

2.
4

3.
4

2.
5

0.
1

M
ay
a

85
4

11
.4

14
.6

2.
6

2.
7

2.
6

1.
0

85
5

10
.8

14
.6

2.
2

2.
8

2.
0

1.
1

85
6

11
.2

14
.3

2.
3

2.
9

1.
9

1.
7

86
0

12
.8

15
.0

2.
7

3.
4

2.
2

1.
9

86
8

12
.0

14
.9

2.
5

2.
8

2.
3

1.
5

K
ar
it
ia
n
a

99
9

9.
1

14
.3

1.
9

2.
9

2.
3

0.
4

10
12

8.
8

14
.2

1.
8

3.
0

2.
6

0.
3

10
14

9.
4

14
.2

1.
8

2.
6

2.
2

0.
3

10
15

9.
1

14
.2

1.
7

2.
6

2.
2

0.
4

10
18

8.
1

13
.7

1.
4

2.
9

2.
0

0.
6

10
19

9.
9

14
.2

2.
1

3.
0

1.
8

0.
3

S
u
ru
i

83
7

8.
3

14
.6

1.
5

2.
8

2.
1

0.
3

83
8

9.
6

14
.6

2.
3

3.
6

2.
4

0.
7

84
3

8.
6

13
.7

1.
7

3.
1

1.
6

0.
6

84
5

8.
7

14
.2

1.
9

3.
2

2.
3

0.
7

84
6

9.
1

14
.8

1.
8

3.
3

2.
2

0.
4

84
9

8.
8

14
.5

1.
6

2.
9

1.
8

0.
5

109



CHAPTER V

Conclusion

In this dissertation I have presented theoretical and empirical analyses of

two important classes of genetic variation important in evolutionary genetics:

private variants and coding variants. I have developed theoretical and empirical

population-genetic techniques to analyze genomic data from diverse worldwide human

populations. The analyses involving population-specific genetic variation have

provided valuable information on the evolutionary relationships between populations,

while my analyses of coding variation have provided insights into the distribution of

deleterious variation with respect to an important genomic variable. I have shown

that stretches of homozygous genotypes in the genome that are the result of recent

inbreeding are enriched for deleterious variants and that individual genomes carry a

large number of these variants in homozygous form. These results help to clarify the

allelic architecture of human diseases and provide parameter boundaries for modeling

evolutionary processes.

In Chapter II, I have developed the concept of generalized private alleles and

introduced a method to analyze their distribution across populations while correcting

for heterogeneity in population sample sizes. I have applied this method to a

dataset of 1048 human individuals from 52 human HGDP-CEPH populations typed

at 783 microsatellite markers. I observed an excess number of alleles private to the
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combination of African and Oceanian populations, as compared to the number of

alleles private to all other combinations including Oceania. This result supports

the theory of a migration out of Africa into Oceania separate from the migrations

responsible for the majority of the ancestry of the modern populations of Eurasia and

East Asia (Quintana-Murci et al., 1999; Bulbeck , 2007).

In Chapter III, I have taken a theoretical approach to modeling a peculiar

population-genetic phenomenon. Using the coalescent model of gene genealogies and

the symmetric stepwise mutation model, I investigated the observation that private

microsatellite alleles often lie in the extreme tails of the allele size distribution. For

the case in which four alleles are sampled, two from each population, I conditioned

on the configuration in which three distinct allele sizes are present, one of which

is common to both populations, one of which is private to one population, and

the third of which is private to the other population. I calculated the probability

that the private alleles in this scenario occur on the edges of the size distribution

as a function of two population-genetic variables, mutation rate and population

divergence. This probability, which increases as a function of mutation rate and

divergence time between the two populations, is seen to be greater than the value

that would be predicted if there was no relationship between privacy and location

in the allele size distribution. I further found that, based on this model, increased

population divergence is positively correlated with the probability that private alleles

lie on the edge of the size distribution.

To test the prediction that population divergence has a strong influence on the

occurrence of private microsatellite alleles on the edge of the size distribution, I

empirically estimated the frequency that private alleles occur in the edge of the size

distribution for all pairs among the 52 HGDP-CEPH populations. In accordance with

the prediction of the model, the frequency with which private microsatellite alleles

occur in the tails of the allele size distribution increases as a function of genetic
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differentiation between populations. I concluded that the model accurately describes

patterns of private microsatellites in diverged populations, and that the frequency of

occurrence of private microsatellite alleles on the edge of the size distribution could

potentially be used to make inferences about population divergence times.

Finally in Chapter IV, I turned to the analysis of coding variation. In the

analysis of the exome sequences of 27 individuals across 6 HGDP-CEPH populations,

I collected a set of predicted deleterious variants and examined the patterns of

deleterious variation with respect to runs of homozygosity (ROH). ROH are generated

by numerous processes, including changes in population demography, consanguinity,

and natural selection. Because of the range of causes for ROH in the genome, I

formulated two hypotheses for how deleterious variants could correlate with ROH.

First, because many deleterious variants act recessively, they might be more effectively

purged by selection in ROH-rich regions than in non-ROH regions. Thus, ROH

could contain a lower fraction of all genome-wide damaging homozygotes relative

to the fraction of all genome-wide non-damaging homozygotes. On the other hand,

inbreeding can present low-frequency variants in homozygous form, and many of

these variants are more likely to be deleterious than are common variants. When the

homozygous deleterious variants are not lethal, one might expect ROH to contain a

higher fraction of genome-wide deleterious homozygotes compared to the fraction of

all genome-wide neutral homozygotes, and longer (newer) ROH might have a higher

fraction than shorter (older) ROH.

I found that, for individual genomes, long ROH are enriched for deleterious

variation. Specifically, the fraction of all genome-wide homozygotes lying in ROH

is positively correlated with the total length of ROH in the genome. Damaging

homozygotes show a significantly higher fraction falling into any size ROH than

non-damaging homozygotes. This trend is also significant for long ROH but

not for intermediate or short ROH. Furthermore, damaging homozygotes show a
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significantly higher fraction falling into long ROH than short ROH. In this study, I

provided a demonstration that long ROH harbor disproportionately more deleterious

homozygotes than would be predicted solely by the ROH coverage of the genome.

I further showed that human individuals can carry a large number of deleterious

homozygotes, consistent with other studies (Lohmueller et al., 2008) and with the idea

that the human genome contains many mildly deleterious variants. This knowledge

will be useful for understanding the basis of human diseases.

In this thesis, I have described and explained patterns of private genetic variation

and the evolutionary processes that influence them, thus further expanding our

knowledge of human history and evolution. I have also analyzed the distribution

of deleterious variation with respect to runs of homozygosity, an important genomic

variable associated with population-genetic processes such as natural selection

and cultural practices such as consanguineous marriage. This work builds on

existing theoretical and empirical results and advances our understanding of human

population and evolutionary genetics.
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APPENDIX A

Derivation for arbitrary divergence time

The expresion that must be calculated in order to obtain the probability that

the private alleles lie on the edges of the size distribution for arbitrary td appears

in Equation 3.17. To perform the calculation in Equation 3.17, we must utilize the

probability that two lineages reduce to one lineage during time td as well as the

probability that two lineages survive until td. Under the coalescent (Wakeley , 2009),

these probabilities are g21(td) = 1− e−td and g22(td) = e−td , where gij(td) denotes the

probability under the coalescent that i lineages reduce to j lineages during time td.

We can partition our probability calculation into four pieces corresponding to the

four coalescent scenarios possible by time td (Figure 3.6). First, in each population,

the two lineages could coalesce more recently than td (event E11). Second, the two

lineages in population 1 could coalesce more recently than td, and the two lineages in

population 2 could survive to td (event E12). Third, the two lineages in population 1

could survive to td, and the two lineages in population 2 could coalesce more recently

than td (event E21). Finally, in each population, the two lineages could survive to td

(event E22). These four events happen with the following probabilities:

P[E11|td] = (g21(td))
2 = (1− e−td)2, (A.1)
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P[E12|td] = g21(td)g22(td) = (1− e−td)e−td , (A.2)

P[E21|td] = g22(td)g21(td) = e−td(1− e−td), (A.3)

P[E22|td] = (g22(td))
2 = e−2td . (A.4)

We then calculate P[E1 ∪ E2|C6, θ, td] by separately conditioning on E11, E12, E21,

and E22 to get

P[E1 ∪ E2|C6, θ, td] =
2
∑2

i=1

∑2
j=1 P[E1, C6|θ, td, Eij ]P[Eij|θ, td]

∑2
i=1

∑2
j=1 P[C6|θ, td, Eij ]P[Eij|θ, td]

, (A.5)

in which

P[E1, C6|θ, td, Eij ] =

∞
∫

0

∞
∫

0

∞
∫

0

P[E1, C6|t2, t3, t4, θ, td, Eij]ρij(t2, t3, t4)dt2 dt3 dt4, (A.6)

P[C6|θ, td, Eij ] =

∞
∫

0

∞
∫

0

∞
∫

0

P[C6|t2, t3, t4, θ, td, Eij ]ρij(t2, t3, t4)dt2 dt3 dt4, (A.7)

P[E1, C6|t2, t3, t4, θ, td, Eij ] =
∞
∑

n3=−∞

∞
∑

nA=−∞

nA−1
∑

nB=−∞

∞
∑

nC=nA+1

VEij
(nA, nB, nC , n3,Ψ),

(A.8)

and

P[C6|t2, t3, t4, θ, td, Eij ] =
∞
∑

n3=−∞

∞
∑

nA=−∞

∞
∑

nB=−∞

∞
∑

nC=−∞

VEij
(nA, nB, nC , n3,Ψ). (A.9)
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We can determine the values of the conditional probability VEij
of the node

allele sizes and the conditional coalescence time density ρij by examining which

labeled histories are possible for each Eij. For example, for event E11 both pairs

of lineages coalesce more recently than time td, and only symmetric histories are

possible. Furthermore, x1 will always coalesce with x2 and x3 will always coalesce

with x4 in this scenario, leaving only two possible equiprobable histories (histories 13

and 18 in Figure 3.1). Therefore, we only sum over the V sym terms that are associated

with these histories.

In addition, for each event, compared to the case of td = 0, we must reparameterize

the branch lengths of the histories to account for changes due to forced survival of

lineages to time td. For event E11, we reparameterize by setting Ψ = (τ, θ) with

τ = (t2 + (td − max(t3, t4)),max(t3, t4) − min(t3, t4),min(t3, t4)), as illustrated in

Figure 3.6 and tabulated in Table A.1. By conditioning on one of the four events

E11, E12, E21, or E22, the density of coalescence times differs from the corresponding

density ρ(t2, t3, t4) defined in the td = 0 case.

For event E11, the distribution of coalescence times is ρ11(t2, t3, t4) =

ρ11t2(t2)ρ11t3(t3)ρ11t4(t4), where ρ11t2(t) = e−t and ρ11t3(t) = ρ11t4(t) = 1t<tde
−t/(1 −

e−td). We can then write

VE11
=

1

2

(

V sym(nA, nB, nA, nC , n3,Ψ) + V sym(nA, nB, nC , nA, n3,Ψ)+

V sym(nB, nA, nA, nC , n3,Ψ) + V sym(nB, nA, nC , nA, n3,Ψ)+

V sym(nA, nA, nB, nC , n3,Ψ) + V sym(nA, nC , nB, nA, n3,Ψ)+

V sym(nB, nA, nA, nC , n3,Ψ) + V sym(nB, nC , nA, nA, n3,Ψ)
)

. (A.10)

We proceed with similar arguments for events E12, E21, and E22. The corresponding

values for Ψ are tabulated in Table A.1, and the values for VEij
and ρij are tabulated

in Table A.2.
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Table A.1: The reparameterizations of Ψ for the events Eij.
Event Ψ = (τ, θ)
E11 τ = (t2 + td −max(t3, t4),max(t3, t4)−min(t3, t4),min(t3, t4))
E12 τ = (t2, t3 + td − t4, t4)
E21 τ = (t2, t3 + td − t4, t4)
E22 τ = (t2, t3, t4 + td)
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APPENDIX B

Implementing the computation for arbitrary

divergence time

To implement the calculation of P[E1 ∪ E2|C6, θ, td] (Equation 3.17) derived in

Appendix A, we use Gaussian quadrature and a simulation-based approach. These

approaches are analogous to the approaches that we used in the case of td = 0.

As in the td = 0 case, we use Gaussian quadrature to numerically evaluate

P[E1, C6|θ, td, Eij ] (Equation A.6) and P[C6|θ, td, Eij ] (Equation A.7), once again

estimating the expression e−tθ/2I|d|(tθ/2) using the GNU Scientific Library (GSL)

function gsl sf bessel In scaled(|d|,tθ/2). We use the same value as in the td = 0

case (±10) to truncate the infinite sums in Equations A.8 and A.9. Additionally, we

again integrate all time dimensions in Equations A.6 and A.7 from 0 to 10 rather

than from 0 to ∞. As in the case of td = 0, these calculations are very accurate for

small values of θ and less accurate for large values of θ (not shown).

As in the td = 0 case, we are able to accurately estimate the quantity P[E1 ∪

E2|C6, θ, td] (Equation 3.17), directly obtaining the ratio 2P[E1, C6|θ, td]/P[C6|θ, td]

by simulating the coalescent and mutation processes and counting the outcomes of

interest. The simulation proceeds as follows.
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1. Beginning with k = 4 alleles, arbitrarily define two alleles to be in one

population and the other two alleles to be in the other population.

2. Randomly choose an event E11, E12, E21, or E22 based on their relative

probabilities conditional on td (Equations A.1-A.4).

3. If event E11 is chosen:

(a) Generate a random time to coalescence from an exponential(
(

2
2

)

)

distribution conditional on being less than td.

(b) Coalesce the pair of lineages in population 1; set k = k − 1.

(c) Generate a random time to coalescence from an exponential(
(

2
2

)

)

distribution conditional on being less than td.

(d) Coalesce the pair of lineages in population 2; set k = k − 1.

4. If event E12 or E21 is chosen:

(a) Generate a random time to coalescence from an exponential(
(

2
2

)

)

distribution conditional on being less than td.

(b) Coalesce a pair of lineages in population 1 (if event E12) or population 2

(if event E21); set k = k − 1.

5. Extend all remaining lineages up to td.

6. Generate a random time to coalescence from an exponential(
(

k
2

)

) distribution.

7. Randomly choose two lineages to coalesce; set k = k − 1.

8. If k 6= 1, go to 6.

9. For each branch of the genealogy, generate a random number of mutation events,

x, from a Poisson distribution with rate θt/2, where t is the branch length.
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10. Assign each mutation a value of +1 or −1 by sampling the number of +1

mutations from a binomial(x,1/2) distribution. Those mutations not chosen to

be +1 are assigned a value of −1.

11. Determine the allele size of each of the four sampled alleles by summing the net

value of mutations from the root (allele size 0) down to the leaves.

12. Classify the collection of four alleles into one of the seven allele configurations

(Table 3.1).

13. If the alleles are in the C6 configuration, accept the simulation and determine

if the sizes of the private alleles (B and C) are on the ends of the distribution

(nC < nA < nB or nB < nA < nC). If yes, count a success.

As in the td = 0 case, after the number of accepted simulations reaches some

pre-specified number (we choose 1, 000, 000), we estimate the probability of the private

alleles occurring on the edges of the size distribution by dividing the number of

successes by the number of accepted simulations.
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APPENDIX C

Small-θ approximation for arbitrary divergence

time

With td > 0, we can consider a small-θ approximation to the probability that the

private alleles lie on the edges in a similar way to the corresponding calculation

with td = 0. By considering a fixed td, we proceed as before, counting the

contributions of each labeled history to the numerator and denominator in Equation

3.17. The probability distribution of labeled histories depends on td, and the 18

histories are no longer equiprobable when td > 0. Conditional on one of the events

{E11, E12, E21, E22}, however, we can determine the possible histories and weight the

probability contributions of these histories to the numerator and denominator as

before.

Thus, following Equation A.5 for the small-θ case, we wish to calculate

P[E1 ∪ E2|C6, θsmall, td] =

∑2
i=1

∑2
j=1 P[E1 ∪ E2, C6|θsmall, td, Eij ]P[Eij|θsmall, td]

∑2
i=1

∑2
j=1 P[C6|θsmall, td, Eij ]P[Eij|θsmall, td]

.

(C.1)

Note that although E1 and E2 have the same probability, in this calculation it is

convenient to calculate E1 ∪ E2 directly. We do this by tabulating contributions

to the numerator and denominator conditional on each event Eij (Table 3.5),
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reparameterizing Ψ to augment certain branch lengths by amounts dependent on

td (Table A.1).

First, consider event E11. If both pairs of lineages coalesce more recently than the

population divergence time, then the only possible histories are 13 and 18, and the

conditional contribution to the denominator of Equation C.1 is

P[C6|θsmall, td, E11] =

∞
∫

0

∞
∫

0

∞
∫

0

1

2
16σ8(t2 + td − tmax, tmax − tmin, tmin, θ)×

ρE11
(t2, t3, t4, td)dt2 dt3 dt4, (C.2)

where tmax = max(t3, t4) and tmin = min(t3, t4). Here, we obtain the coefficients for

each σi by referencing histories 13 and 18 in Table 3.5, and we use the conditional

density of coalescence times ρE11
(t2, t3, t4, td) from Table A.2. Equation C.2 also

provides the P[E1 ∪E2, C6|θsmall, td, E11] term in the numerator, because for histories

13 and 18, at small θ, the private alleles always lie on the edges of the size distribution.

Next, consider event Eij (i 6= j). If the two lineages in one population coalesce

more recently than the divergence time, and the two lineages in the other population

survive to the divergence time, then the only possible histories are 1, 2, and 18 for

E12 or 11, 12, and 13 for E21. Because E12 and E21 differ only in which population

contains the coalescence more recent than the population divergence, they have the

same probability. The conditional contribution to the denominator for either event

is then

P[C6|θsmall, td, Eij] =

∞
∫

0

∞
∫

0

∞
∫

0

1

3

(

8σ1(t2, t3 + td − t4, t4, θ) + 8σ2(t2, t3 + td − t4, t4, θ)+

8σ8(t2, t3 + td − t4, t4, θ)
)

ρEij
(t2, t3, t4, td)dt2 dt3 dt4,

(C.3)

where the σi coefficients are taken from Table 3.5 using either set of histories (1, 2,
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and 18 for E12 or 11, 12, and 13 for E21) and ρEij
(t2, t3, t4, td) is taken from Table A.2.

Equation C.3 is also equal to the P[E1 ∪E2, C6|θsmall, td, Eij ] term in the numerator,

because for either set of histories, at small θ, the private alleles always lie on the edges

of the size distribution.

For event E22, if in both populations the two lineages survive to the divergence

time, then all 18 histories are possible. The conditional contribution to the

denominator is

P[C6|θsmall, td, E22] =

∞
∫

0

∞
∫

0

∞
∫

0

1

18

(

32σ1(t2, t3, t4 + td, θ) + 32σ2(t2, t3, t4 + td, θ)+

16σ3(t2, t3, t4 + td, θ) + 16σ4(t2, t3, t4 + td, θ)+

16σ5(t2, t3, t4 + td, θ) + 16σ6(t2, t3, t4 + td, θ)+

32σ7(t2, t3, t4 + td, θ) + 32σ8(t2, t3, t4 + td, θ)+

8σ9(t2, t3, t4 + td, θ) + 16σ10(t2, t3, t4 + td, θ)+

8σ11(t2, t3, t4 + td, θ) + 16σ12(t2, t3, t4 + td, θ)
)

×

ρE22
(t2, t3, t4)dt2 dt3 dt4 (C.4)
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and the conditional contribution to the numerator is

P[E1 ∪ E2, C6|θsmall, td, E22] =

∞
∫

0

∞
∫

0

∞
∫

0

1

18

(

32σ1(t2, t3, t4 + td, θ)+

32σ2(t2, t3, t4 + td, θ)+

16σ3(t2, t3, t4 + td, θ)+

16σ6(t2, t3, t4 + td, θ)+

32σ8(t2, t3, t4 + td, θ)+

8σ9(t2, t3, t4 + td, θ)+

8σ11(t2, t3, t4 + td, θ)
)

×

ρE22
(t2, t3, t4)dt2 dt3 dt4, (C.5)

where the σi coefficients are from Table 3.5 and ρE22
(t2, t3, t4) is from Table A.2.

We can understand how Equation C.1 will behave for large values of td by

considering the behavior of P[Eij|td] (Equations A.1-A.4) as td tends toward ∞.

Independently of the value of θ, when the divergence time between populations grows

very large, we expect each pair of lineages to always coalesce before the population

divergence (event E11). Taking the limits of Equations A.1-A.4, limtd→∞ P[E11|td] = 1

and limtd→∞ P[E12|td] = limtd→∞ P[E21|td] = limtd→∞ P[E22|td] = 0. Thus as td tends

to ∞, Equation C.1 reduces to

P[E1 ∪ E2|C6, θsmall, td] =
P[E1 ∪ E2, C6|θsmall, td, E11]

P[C6|θsmall, td, E11]
= 1. (C.6)

Therefore, for large td, we intuitively expect the small-θ probability that the private

alleles lie on the edges of the size distribution to tend to unity.

Note that Equations C.4 and C.5 differ from Equations 3.14 and 3.12 only in

the definitions of the time parameters and densities of coalescence times. Using the
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conditional contributions in Equations C.2-C.5 together with P[Eij|td] in Equations

A.1-A.4, we can calculate Equation C.1. The resulting expression is unwieldy (not

shown), but taking its limit as θ tends to 0, we obtain Equation 3.18.
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