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ABSTRACT 

 

 

A Structural Basis for Surface Discretization of Free Form Structures: 

Integration of Geometry, Materials and Fabrication 

 

 

This study focuses on free form surfaces and the challenges of construction due to the 

complex geometry. A unique approach is proposed that incorporates attributes of form, 

material selection and fabrication methods of free form surfaces into the early stage of design 

in aid of optimum mesh generation towards redesigning a practically constructible structure. 

 

Free form surfaces need to be discretized into panels with manageable sizes so that the 

surface can be fabricated in smaller pieces that are all assembled on site. Planarity has been a 

significant constraint for free form discretization because brittle materials, such as glass, can 

fail suddenly, without any warning. Triangulation has been a common pattern for free form 

surface discretization, where the panels are always planar. Due to node complexities of 

triangulated meshing, quadrilaterals are considered as an alternative pattern for free form 

surfaces. However, the biggest problem with quadrilaterals is that quadrilaterals do not 

always form planar faces. A method to generate and apply quadrilateral meshing on free 

form surfaces is introduced in this study where pre-deformed (non-planar) quadrilateral 

panels are proposed to be used at high curvature areas of the complex surface where planar 

meshing is not possible.  

 



 xiv 

In this study, structural tests and simulations are conducted on quadrilateral panels to find out 

the limits of surface curvature allowed for specific materials. The analyses demonstrate the 

behavior of quadrilateral panels under uniform wind load, pre-deformation load and finally a 

combined load case, which considers wind load on pre-deformed panels. The behavior of 

quadrilateral panels under pre-deformation is observed, and the relationship between this pre-

deformation amount and the related structural and geometric design parameters, such as 

panel size, thickness, and material properties is investigated. The limiting curvature value for 

any design then can be determined using these relationships. The results of the study also 

demonstrate that this pre-deformation acts as pre-tensioning that increases the capacity of the 

panels to carry more with less deflection.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Free form surfaces can be distinguished from other structures by their unique amorphous 

shapes, smooth flowing lines and complex geometries (Hambleton et al., 2009). In contrast to 

traditional structural systems with horizontal beams and vertical columns, most free form 

surfaces function as the main structural system. The integration of form and structural system 

results in an efficient design, where maximum strength can be obtained with minimum 

material. However, due to the complex geometries, free form surfaces experience difficulties 

in fabrication and construction. To improve fabrication process, free form surfaces are 

meshed into panels. This process is called discretization. The most popular discretization 

patterns for free form surfaces have been triangulation and quadrilaterals  

 

Discretization has been a challenging process because each panel needs to be fabricated 

separately and then they have to be assembled to form a continuous smooth free form 

surface. Material limitations and the complex geometry of free form surfaces also cause 

problems for the discretization process. The problem of discretization has been explored 

from multiple perspectives in this study where the advances in technology and the new tools 
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in digital design and manufacturing have been considered as tools to integrate form, materials 

and fabrication into the early stage of design. 

 

1.1 RESEARCH PROBLEM 

 

Free form surface structures have been popular in architecture, demanding new methods and 

technologies in order to overcome the problems and challenges they experience during their 

construction and fabrication (Liu et al., 2006). The necessary improvements for these 

construction and fabrication problems are dependent on numerous issues, such as surface 

geometry, discretization, functionality, material, statics, and cost that all affect the design 

process of free form surfaces (Pottmann et al., 2007b). In this study, existing free form 

surfaces and their construction methods are investigated in order to understand the 

problematic points.  Then, a suitable methodology is proposed that associates form, material 

and fabrication towards optimal design and construction solutions for the discretization of 

free form surfaces.  

 

A number of the existing cases of free form surfaces and their solutions to construction 

challenges are discussed below. 

 

1.1.1. Guggenheim Museum:  

A famous example of a continuous free form surface structure is the Guggenheim Museum1 

in Bilbao, Spain. As seen in Fig 1.1, the complex form of the museum building causes the 

surface texture not to be smooth and to have wrinkles. In addition, these creased surfaces are 

connected to each other with edges that are quite sharp, with no smooth flow. The structure 

loses its attractiveness when there are these kinks at the edges.  

 

 

                                                
1 Guggenheim Museum: Designed by Frank Gehry. Opened in 1997 in Bilbao, Spain.  
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Fig 1.1. Guggenheim Museum by Gehry 

 

Guggenheim Museum has an extraordinary free form surface that does not follow the 

conventional structural framing. Using the tools of digital design, NURBS surfaces are used 

for the generation of the building form. The structural elements have not been considered 

during the form finding process. His success comes from the use of digital tools for the 

design and manufacturing purposes that results with unconventional designs. His design 

concern is more about constructing the intended design than finding the most optimum form.  
 

1.1.2. Maison Folie 

Similar to Guggenheim Museum, another continuous free form surface that experiences 

fabrication challenges is Maison Folie2 at Lille, France (Fig 1.2). Although the surface has a 

smooth flow through the façade as strips, the seams between the strips and at the edges of the 

surface can be easily perceived. There occur kinks and wrinkles, which destroy the continuity 

of the form. 

                                                
2 Maison Folie: Designed by Lars Spuybroek. Renovated for an old factory in Lille, France to become a cultural 
center. Opened in 2004.  
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Fig 1.2. Maison Folie by Spuybroek 

 

1.1.3. Korean Presbyterian Church 

One other example demonstrating another problem of free form surfaces is the Korean 

Presbyterian Church3’s façade, where metal-clad shells are built for covering the exit stairs 

(Fig 1.3). Instead of a continuous surface that was originally planned, a faceted surface was 

constructed as a result of limitations of material selection (Weitz and Cartwright, 2012).  

 

                                                
3 Korean Presbyterian Church: Designed by Greg Lynn (1999). Located in Queens, NYC. 
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Fig 1.3. Korean Presbyterian Church by Lynn 

 

1.1.4. Smithsonian Museum 

Another discrete surface example is the Smithsonian rooftop in Washington DC. The surface 

is designed as the roof of a former open gallery. Covering a space that has been the museum 

atrium, the design is constrained with the borders of the existing buildings around the atrium 

(Fig 1.4a). The generated surface was divided into quadrilaterals that were glazed with glass. 

The way the planarity is obtained on this roof is using planar frames but not keeping the 

surface continuous. Gaps had to be formed between the panels, which causing a discontinuity 

in the surface (Fig 1.4b). This is an evidence of a lack of geometric harmony between the 

derived surface geometry and surface discretization. This discontinuity could have been 

avoided if a discretization optimization method had been carried out to achieve smooth 

surface without any gaps.  
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(a) general view of the atrium with the roof top         (b) the detail of the gap generated between the panels 

Fig 1.4. Smithsonian Museum roof 

 

These existing free form surface examples demonstrate some of the major fabrication 

problems. It can be seen that problems on free form surfaces are not only affected from one 

issue, but there are many challenges that are interconnected to each other. Integrated design 

processes are a preferred way to solve these problems to overcome some of the challenges. 

Beukers and Van Hinte (1999) proposed the trinity of form, material, and process as essential 

ingredients that need to be integrated to realize optimal efficiency in design and fabrication 

(Beukers and Van Hinte, 1999). They emphasized that lightness does not happen with the 

lightest material but with the material that carries the maximum load with the minimum 

weight on an appropriate form that can be fabricated.  As seen in the diagram (Fig 1.5), these 

three concepts -form, material and process- can all intersect at an optimal efficiency. This has 

been used as the basis of this research. It is important to think about the materialization of the 

surface designed and the nodes and joints for the discretized panels. By considering these 

multiple aspects as an integrated system, the outcome would be a feasible structure design 

that can be constructed and functioned. In this work, the form is analyzed from a geometric 

perspective that also needs to be considered for the discretization and fabrication of the 

surface. The challenges of fabrication are resolved by using the limits of material properties.  
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Fig 1.5. Trinity of design: Geometry, Materials, and Fabrication 

 

In practice, the surfaces are constructed by discrete panelizations that approximate the 

original continuous surface. For example, glass panels are used to transmit daylight into a 

building provides excellent daylight quality of appropriate size related to available 

fabrication methods. A common discretization method is triangulation, which has been the 

traditional method of discretization of complex surfaces (Fig 1.6 and 1.7).  

 

    
Fig 1.6. Z!ote Tarasy by Jerde Partnership                          Fig 1.7. British Museum Roof by Foster and Happold 
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However, there are issues with triangulations, such as the complexity of the nodes or 

singularity points where homogenous patterns cannot be formed (Fig 1.8). The complexity of 

fabrication can be understood by considering the fact that each node of triangulation has 6 

elements and on a free form surface, nodes do not appear to be same. Therefore, the meshing 

process is relatively manageable than the assembly and construction. 

 

   
(a)    general view                                               (b) detail of the mesh with a singularity 

Fig 1.8. Expo Shanghai by Knippershel  

 

As an alternative to triangulated discretization, other patterns, mostly quadrilaterals, have 

been considered which have less nodes and less number of members intersecting. On surface 

where the curvature is gentle, planar quadrilaterals may be used instead of triangles, but 

triangular meshes have been the only way to resolve the steep curvatures. As seen in Fig 1.9 

and 1.10, the surface is discretized into quadrilaterals where the surface is flat or relatively 

flat (points A and B), whereas when the curvature gets steep, then the quadrilaterals do not fit 

to the meshing and triangle panels are used (points C and D).  
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Fig 1.9. MyZeil by Fuksas                                     Fig 1.10. New Milan Trade Fair by Fuksas 

 

These examples of mixed patterns on free form surface discretization raise some questions on 

the limitations of quadrilateral meshes on these complex forms. Because of the brittleness of 

these materials, the planarity of the panels has been the significant constraint due to the 

sudden failure of brittle materials in deformation.  

 

This study focuses on the discretization problem of quadrilateral meshing on free form 

surfaces. Most of the discretization methods focus on planarity, which does not create the 

risk of failure on the materials, especially brittle ones. This research works on the limits of 

materials to be used as non-planar surfaces. By determining the limiting curvature of panels, 

non-planar quadrilaterals can be used for the discretization of free form surface.  
 

1.2 RESEARCH QUESTIONS  

 

The research questions investigated through out this work are: 

- What are the parameters that influence a discretization method for free form surfaces that 

integrate structure, materials and construction in the early design process.  

- To what extend can free form surfaces be mapped with planar quadrilateral meshes? 

- What are the limits to non-planarity or surface curvature and how do size, thickness, and 

material properties influence limits of non-planarity? 
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The focus of this work is to consider non-planar quadrilateral panels for the discretization of 

free form surfaces that relates the properties of the material, panel size or thickness to the 

relationship between limits of deformation and stress limits under a pre-loading deformation, 

the strength of the pre-deformed panels and then to compare to regular panels under imposed 

uniform load.  

 

1.3 RESEARCH OBJECTIVES  

 

The main objectives within this research study can be listed as: 

- To analyze existing methods of planar quadrilateral meshing and to identify the barriers 

that prevent suitable planar quadrilateral mesh creation on free form surfaces.  

- To identify the limits of surface curvature (non-planarity) for discrete quadrilateral panels 

as a function of size, thickness and material properties. 

- To enhance the scope of current discretization practice through the application of non-

planar quadrilateral principles.  

- To develop a design tool that can be used in the early stages of design that combines the 

behavior of materials with form and fabrication that will quantify the limits to non-planar 

surface discretization of free form surface structures. 

 

Chapter 1 is the introduction, where the problem is introduced and the research question is 

stated. Chapter 2 talks about the literature review, the difficulties and problems of free form 

surfaces throughout their history and how some of these problems are solved whereas others 

still remain. Chapter 3 is about discretization methods and the comparison of different 

methods with respect to the mesh generation and the performance of each method. This 

chapter also focuses on the fabrication and assembly of these panels and the affect of this 

process to the overall problem of construction.  Chapter 4 talks about the structural analyses 

of non-planar panels, limits of deformation with the context of design methods using 

different materials, size and thickness.  Chapter 5 covers examples of the proposed method 

on an existing structure. Chapter 6 summarizes the study, stating the importance of the work 

for the discipline, summarizing the results obtained and mentioning the future possible 

studies that can follow from this work. The outline of the research is also given in Fig 1.11. 
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Fig 1.11. The research outline 

 

 

 

 

 

 

 

 

 

Problem Difficulties of Free Form Surface Construction due to: complexity of the geometry 
            limitations on sizes 
            structural system requirements 
            materials: transparency + lightness 

Quadrilateral Meshing Mapping Method 

 Planarity Tests 

-  Isoparametric  
-  Principal Curvature  (Mathematica vs. Grasshopper) 
-  Evolute  

Background Review of Free Form Surfaces in history problems                                  form-finding 
solutions                   of             materials  
challenges                                fabrication: discretization 

-  Gaussian Curvature 
-  Radius Analysis 
-  Evolute 

-  Simple Bending 
-  Pre-deformation 
-  Uniform Loading 
-  Combined Loading 

Non-planarity 

Fabrication + Assembly -  Materials 
-  Sections 
-  Connections 

Simulations + Experiments 

The application on case studies -  British Museum Roof 

-  Thickness 
-  Edge Size and Aspect Ratio 
-  Materials 

 Application 

Structural 
Investigation 

-  Ruled 
-  Translational 
-  Rotational 
-  Free form 

Result 

Design Parameters 

-  Limits of curvature 



 
 

 12 

 

 

 

 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

This chapter is a survey of free form surface structures with the context of three processes; 

form finding methods, material selections and methods of fabrication, to set the background 

research context for this dissertation.  

 

2.1. FORM FINDING METHODS  

 

The first examples of free form surfaces date back to the 1920’s when thin concrete shells 

started to be used as roof structures (Chilton, 2000). Generating free form surface structures 

that possessed adequate structural strength, stability, and elegance of form was a challenge 

since limited tools and knowledge existed at that time. Since then, numerous methods of 

form generation have been developed. The most frequently used ones are geometry-based 

methods, physical models and digital methods (Williams, 2000).  

 

2.1.1. Geometry-based Forms 

Within the architectural free form surfaces structures, the surfaces that are generated or 

defined by known geometric shapes or simple mathematical definitions are called 
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mathematical surfaces (Burry and Burry, 2010). Surfaces that are generated by known 

geometrical shapes, such as cylinders, spheres, cones and hyperbolic surfaces, or any 

combination of these mentioned shapes generate mathematical surfaces (Williams, 2000) 

(Fig 2.1.).  

 

     
Fig 2.1. Mathematical Surface: The Oceanographic in Valencia by Candela (Garlock and Billington, 2008) 

 

A surface that is generated by the intersection curves of other mathematical surfaces also 

called as mathematical surface (Fig 2.2.) (Pottmann et al., 2007a). Because the generated 

form is a function of a simple geometry, it provides advantages in drawing, modeling, 

analyzing and constructing.  

 

     
Fig 2.2. Intersecting Surfaces (Pottmann et al., 2007a) 
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The major advantage of mathematical surfaces being defined by simple mathematical 

functions is that the surfaces can easily be generated, designed, manufactured and analyzed. 

This enables the subject of such surfaces to be explicitly defined since they are based on 

simple mathematical equations. 

 

Mathematical surfaces can be grouped according to their structural systems: continuous shell 

surfaces and discrete shell surfaces.  

 

2.1.1.1 Continuous Shell Surfaces 

Continuous shell surfaces mostly include thin shell structures, which are known for their 

structural efficiency because of the continuous geometry and low thickness to span ratio. In 

addition to being structurally efficient, these structures are visually pleasing.  

 

Felix Candela4 is well known for his designs and construction of thin shell structures that are 

based on mathematical functions. One of his famous thin shell structures is the Palmira 

Chapel in Cuernavaca  (Fig 2.3.). He used a hyperbolic paraboloid form as the starting 

surface based on specific defined edge constraints. This form enabled the formwork to be 

fabricated using straight wood planks. These straight lines generate hyperbolic parabolic 

forms. Concrete was poured into the fabricated formwork, generating a hyperbolic 

paraboliod thin concrete shell.  

 

` 
Fig 2.3. Palmira Chapel in Cuernavaca by Candela (Garlock and Billington, 2008) 

 

                                                
4 Felix Candela: (1910 – 1997). Spanish architect and structural engineer.  
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The advantage of these shells is that they can be made to be very thin, which makes these 

structures light compared to conventional structures.  Lightweight does not necessarily mean 

less material or low-density materials (Beukers and van Hinte, 1999). Lightness aims to use 

minimum material while making the maximum use of the strength of the material with 

minimum waste (Schlaich and Bergermann, 2003).  

 

Thin shell forms are generally the most efficient structures in terms of minimizing weight. 

However, complex geometry creates problems for fabrication. In order to construct these 

shell structures, scaffolding is used. Large expenses can be received because the temporary 

scaffoldings can be as expensive as the structure itself.  

 

Developable surfaces (Appendix A3.2) are used as one of the common resolutions for these 

fabrication problems. As developable surfaces can be unrolled as flat sheets without any 

distortion, the fabrication process becomes simpler where the surface can be divided into flat 

sheets that can be easily prefabricated (Fig 2.4.).  

 

 
Fig 2.4. A Developable Surface with the developments (Pottmann et al.,2007a) 

 

2.1.1.2 Discrete Shell Surfaces: 

Discrete shell surfaces, also called grid shells, are similar to continuous shell structures as 

they both use mathematical surfaces for form generation. However, discrete shells are 

comprised of grid systems made up of discrete structural members rather than continuous 

surfaces (Patterson, 2011). Similar to continuous shell surfaces, discrete shells are recognized 

for their structural efficiency. Grid shells are also lightweight and possess an additional 
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property of transparency since the discrete members allow light to pass through between the 

structural members (Douthe et al., 2006, Patterson, 2011, Schlaich and Bergermann, 2003). 

Different materials have been used, but steel and wood have been preferred for grid shells. 

Most grid shells are notable for their simplicity in construction and their ease of assembly 

(Nerdinger, 2001). One of the best examples of grid shells is the Multihalle in Mannheim, 

designed by Frei Otto5 (Nerdinger, 2001) (Fig 2.5.).  

 

The construction method for grid shells is different from conventional construction. Some 

grid systems can be constructed on the ground and then raised to predetermined points to 

generate the desired form. The intersection points of the members, i.e. nodes, adjust 

themselves to form the surface geometry (Fig 2.5.).  

 

    
Fig 2.5. Multihalle Gridshell in Mannheim, by F. Otto (Barnes and Dickson, 2000) 

 

These two groups of surfaces that are generated by mathematics, i.e. continuous and discrete 

surfaces, allow for great opportunities in free form surface design. The limitation coming 

with this method is all surfaces are limited with these defined shapes or a variation of them. 

Generating a free form surface with no mathematical definition is not possible by this 

method. For that purpose, other methods, such as physical model making and digital 

methods, have been used.  

 

                                                
5 Frei Otto: (1925- ) German architect and structural engineer, pioneer designer.  
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2.1.2. Physical Models 

Surfaces generated by special physical models where form is generated by the strain energy 

of the material, where the material finds its least energy condition within the given boundary. 

Since the material creates a form of optimum shape, the form generated ensures that only 

axial forces, either tension or compression without bending occur under certain load 

distributions. The resulting stresses within the thickness of the material create are called 

membrane stresses. As no bending occurs, these surfaces are efficient structures, as they 

require minimal material.  

 

2.1.2.1 Minimal Surfaces 

The creation of minimal surfaces is an optimization method that ensures that the smallest 

surface area is generated within a given closed boundary (Otto and Rasch, 1996). The 

mathematical definition of a minimal surface is very complicated. Therefore, the derivation 

of the mathematical definition is difficult to generate the form; hence it makes the 

mathematical methods less preferred for fabrication and construction of minimal surfaces 

(Mitchell, 2001). However, by physical models, minimal surfaces can be easily generated 

(Nordenson and Riley, 2008). For example, a soap film is a minimal surface that is generated 

by optimizing its minimum energy. It is one of the most common minimal surfaces that has 

been an used for free form surface generation (Mitchell, 2001) (Fig 2.6.).   

 

 
Fig 2.6. Minimal surfaces: soap film 

 

 



 
 

 18 

2.1.2.2 Hanging Models 

Surfaces formed from the distribution of their own weight, i.e. gravity, or under uniformly 

distributed loads, i.e. air pressure, are structurally efficient because they only carry 

membrane stresses and no bending (Bletzinger and Ramm, 2001).  

 

A catenary is the shape of a chain when it is supported from both ends and hangs under its 

own weight. When rotated around its x-axis, it generates a minimal surface, i.e. catenoid, 

(Burry and Burry, 2010). Although a catenary appears similar to a parabola, the mathematics 

is different. The most common use of the catenary form is the shape of the cables used on 

suspension bridges. Catenary models optimize the amount of material used in the design 

(Bletzinger and Ramm, 2001). 

 

Gaudi used catenary forms for his physical models using hanging chains in tension (Schodek, 

2004).  By using the shape of the chains and by reversing the model, pure tension was 

transformed into pure compression, resulting in a compression-only structural system. 

 

Heinz Isler6, one of the pioneers for lightweight concrete shells, worked with physical 

models to explore ways of generating efficient surfaces (Chilton, 2000). He generated his 

lightweight shells by using physical models of catenary forms (Fig 2.7.). 

 

 
Fig 2.7.  Catenary model by H. Isler (Chilton, 2000) 

                                                
6 Heinz Isler: (1926 – 2009).  Swiss Engineer. Famous with thin concrete shells.  
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Isler was interested in exploring the objects around him and understanding the form 

generation methods of some of the organic forms such as the shape of a hanging cloth or a 

stretched pillow cover. He worked on physical models and used a material’s own weight to 

generate the form that resulted in pure tension, with no bending, He used his findings from 

the observations, which led him to find new methods for free form surface construction. By 

obtaining efficient forms from hanging cloths, he used inverted shapes to generate a 

compression shell that can be used as a roof cover (Fig 2.8.). 

 

 
Fig 2.8. Hanging cloths by Isler 

 

Most of these shell surfaces generated by physical models were built with a formwork. 

However, after the 1970’s, due to labor-intensive construction process and high cost of 

formwork, continuous shell surfaces became non-economic and cable-net structures and 

tensile membranes became more practical and feasible to design and construct (Nordenson 

and Riley, 2008).  

 

Membranes and cable nets have been used more than shell structures because of the 

efficiency both in their form and fabrication (Chilton, 2000). Similar to grid shells, cable nets 

are formed by discrete members. Due to the bending-free behavior of these tensile structures, 

member sizes become smaller, resulting in lighter structures (Drew, 1976).  

 

Believing in extreme lightness with maximum strength, Otto gained reputation with his 

lightweight cable net and membrane structures. His designs have become examples of 

optimum use of materials (Otto and Rasch, 1996) (Fig 2.9.).  
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Fig 2.9. Olympic Park by Otto 

 

2.1.3. Digital Methods 

By the mid 1960’s, digital technology started to emerge in the production line of different 

fields, primarily automobile, aircraft, and marine industries (Abel, 2004). By the late 70’s, 

computer-aided design (CAD) and computer-aided manufacturing (CAM) were successfully 

integrated into the automotive production process (Abel, 2004).  

 

Initially, CAD has been used in architecture as a tool for representation of design. With the 

advancements in digital technologies, this role has widened in which computer drawings 

were no longer only drawings; they also became the model to be used for analyses, planning 

and fabrication. After digital technology became more prevalent, Nonuniform rational B-

Spline (NURBS) curves7 and NURBS surfaces8 were introduced into architecture. NURBS 

curves and surfaces allowed forms to be generated without the need for classical 

mathematical constraints or traditional fabrication methods.   

 

                                                
7 NURBS Curves: Curves generated by Non-uniform Rational B-Splines (Appendix A1.2) 
8 NURBS Surfaces: Surfaces generated by Non-uniform Rational B-Spline Curves (Appendix A1.2) 
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As the process of design and fabrication became computerized, it allowed for more flexibility 

in design. Digital technologies have transformed mass production practice to the possibilities 

of mass customization allowing for members to be custom designed with minimal cost 

penalty. Digital modeling not only expanded the design possibilities but also lessened the 

difficulty and the cost to generate and build these complex surface geometries (Kolarevic, 

2003).  

 

2.1.3.1 Sculptural Surfaces  

Digital technology allowed for freedom in the form of structures. An influential architect of 

the digital era is Frank Gehry9 who has created unconventional designs (Sebestyen, 2003) 

(Fig 2.10.). He does not utilize digital technology as a tool to generate or optimize form but 

as a tool for fabricating the design he has already determined. He makes physical models for 

his design and digitizes them, which are analyzed and remodeled digitally if necessary. His 

designs are printed as a 3D model and he makes changes on that model and transforms it 

back to the digital medium. By doing that, he has a clear image of his design before it is 

constructed at full scale.  

 

 
Fig 2.10. Gehry’s Free Form Structure  

 

                                                
9 Frank Gehry: (b. 1929) Canadian architect. Famous for his digital design and construction  
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The drawback of his method is that his designs mostly lack an integrated structural system. 

Therefore, these designs may require a separate structural system that supports the external 

surface with an overly complex structural skeleton (Schodek, 2004). A non-integrated 

structural system results in high structural construction costs compared to an integrated 

structural system. 

 

Another method to generate free form surfaces using digital technology is parametric design, 

which involves the generation of form through inter-related parameters. 

 

2.1.3.2 Parametric Design 

A parametric design is not only about the generated shape but the relationship between the 

parameters that generates the shape (Kolarevic, 2000). Changes in design can be easily 

adapted parametrically. It easily facilitates the optimization of complex shapes and custom-

made members.  

 

An example of parametric design is Norman Foster’s10 Sage Gateshead Concert Hall where 

the curves of the surfaces were obtained from tangent circles that were parametrically created 

and linked to each other (Fig 2.11.). During the design the circles are generated 

parametrically where one is changed the others need to change to adapt to the overall surface.  

 

   
(a) General view            (b) Tangent circles that generate the surface geometry 

Fig 2.11. Sage Gateshead Concert Hall  

                                                
10 Norman Foster:  (b. 1935). British Architect who is the founder and chairman of Foster+Partners 
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By using this method, design can be modified by changing only one parameter, which in 

turn, changes the overall form because all the parameters are interconnected with each other. 

Design becomes an iterative process where better alternatives can be easily investigated. 

Therefore, this method is used as a way to find the optimum solution for a design. 

 

From the early 1920’s till today, form-finding methods for free form surfaces have gone 

through many stages; each stage has offered different ways to address the emerging problems 

related to generating free form surfaces. Because of the complexity of these surfaces, it is not 

enough to focus just on the form finding methods. The historical experiences of form 

generation methods have demonstrated that form generation needs to be integrated with the 

other design parameters, such as material selection and fabrication method in order to reach 

the optimum design.  

 

2.2 MATERIAL SELECTION 

 

Materials are fundamental components of structural and architectural design. Selection of 

materials should consider not only aesthetics, but also functional and structural constraints. It 

is important to consider material characteristics and the influence of these materials on form 

and function of the structure. For free form surfaces, this is important due to the complexity 

of the surface. The selection of materials should also consider the construction processes.  

 

Common structural materials used for free form surfaces are typical building materials, such 

as concrete, wood and steel in addition to more exceptional materials such as structural glass 

and more recently, fiber composites. 

 

2.2.1 Reinforced Concrete 

Reinforced concrete is a well-known material, used especially in thin shell structures, 

because of its strength and workability (Fig 2.12.). The greatest advantage of reinforced 

concrete is that it can be poured into any shape of formwork (Schodek, 2004).  
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Fig 2.12. Concrete shell by Isler (Chilton, 2000) 

 

As discussed previously, concrete has been considered a common material for mathematical 

surfaces. However, when the supporting formwork of concrete shells proved to be too labor 

intensive and expensive. Concrete forms were later displaced by lightweight structures (cable 

net and membranes) to become an economical competitive structural form and by 

comparison solid surfaces, which were considered a heavy solution fall out of favor.  

 

With this decline in the economic feasibility and the popularity of concrete, new material 

ideas emerged that reduced the weight of the structure and improve the constructional 

techniques, such as prefabrication. Alternative reinforcement materials, such as steel meshes, 

have been used instead of steel bars to have lighter materials, such as ferrocement, which is 

pioneered by Pier Luigi Nervi11 who believed in the strong relationship between material 

selection and the efficiency of design (Huxtable, 1960; Tampone and Ruggieri, 2003) (Fig 

2.13.). Ferrocement blocks can be prefabricated and transported to the site, which eliminates 

additional formwork construction onsite. 

 

                                                
11 Pier Luigi Nervi: (1891-1979) Italian engineer, mostly known with his reinforced concrete structures. 
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Fig 2.13. Airplane Hanger in Italy by Nervi (Olmo and Chiorino, 2010). 

 

2.2.2 Wood 

Further lightweight construction was developed in wood as an alternative material to 

concrete with the creation of long span lightweight structural forms. Wood has mostly been 

used for grid shells, using discrete members. Wood grid shells, comprising discrete members 

with transparent or translucent surfaces, are lighter than concrete shells and yet sustain 

similar structural capacities. For example, the Weald and Downland Gridshell is a 

structurally efficient and aesthetically pleasing wooden grid shell (Fig 2.14.). The grid is 

designed as in flat orientation and after all the connections are made, the whole grid is raised 

to the pre-deformed shape. The joints were not fully fixed; hence they could adjust 

themselves for the right angle.  
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Fig 2.14. Weald and Downland Gridshell in UK, by B. Happold 

 

2.2.3. Steel 

Steel has been extensively used in architecture since the 19th century (LeCuyer, 2003). With 

its strength both in tension and compression, steel offered design alternatives for free form 

surfaces (Le Cuyer, 2003). The advantages of steel increased with the introduction of digital 

fabrication methods in architecture. Using digital methods, steel can be cut into thin flat 

sheets or in non-standard shapes. Gehry used a combination of titanium and stainless steel 

cladding combined with steel structures, creating various free form surface buildings (Fig 

2.15.). Steel surfaces are solid surfaces, which do not allow for daylight and makes the 

design appear heavy. 

 

 
Fig 2.15. Gehry’s Pavilion at the Olympic Park in Chicago  
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2.2.4 Glass 

Glass has been avoided as a structural member due to its brittle characteristics. However, its 

transparency has always been attractive to architects and engineers even though there is the 

higher risk of failure.  

 

Jorg Schlaich12 successfully used glass as a structural material in many of his designs. He 

designed most of his structures to be made up of flat glass plates with a grid shell and 

diagonal bracings. With surfaces with complex form, non-planar glass sheets are used 

(Holgate, 2007). For instance, on the spherical dome roof of the swimming arena in 

Neckarsulm, he used curved glass plates (Fig 2.16.).  

 

 
Fig 2.16. Neckersulm Swimming Arena by Schlaich (Nordensen, 2008) 

 

In the case of the German Historical Museum roof, the glass plates were manufactured flat 

and then bent and warped to obtain the continuous smooth roof system required (Fig 2.17.) 

(Nordenson and Riley, 2008). These examples demonstrated how using glass as non-planar 

plates was physically and structurally possible.  

                                                
12 Jorg Schlaich: (1934 - ) German structural engineer. 
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Fig 2.17. German Historical Museum by Schlaich  

 

Schlaich has also worked with non-conventional materials, such as glass reinforced concrete 

(GRC), which is a type of concrete, reinforced with glass fibers (Nordenson and Riley, 

2008). The strength of GRC is similar to regular steel bar reinforced concrete. However, the 

glass fibers in GRC are smaller and lighter than the steel bars, which makes GRC systems 

lightweight.  

 

Invention of new materials achieved a substantial difference in the overall weight or capacity 

of the structure. This demonstrates the fact that material selection is very significant in the 

design process and the decision of materials is not only about personal choices but the 

compatibility of the material to the form, structural requirements and fabrication constraints.  

 

2.3 METHODS OF FABRICATION: DISCRETIZATION  

 

Fabrication has always been challenging for free form surfaces. Digital modeling and form 

generation have improved with the utilization of digital tools. However, some of the 

challenges in fabrication and construction have remained due to the complex geometries. 

Some designs could not be built due to the constructability problems or financial limitations. 
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With increased surface complexity, the fabrication became more difficult. Developable 

surfaces (Appendix A3.2) have been used frequently because of the ease of fabrication of 

these surfaces with flat sheets.  

 

For continuous free form surfaces, the surfaces become too complicated; where the surface 

needs to be divided into manageable sized pieces. The process of dividing surfaces into 

meshes so that each surface can be fabricated and assembled is called discretization. The 

method and the result of discretization are significant for free form surface design.  

 

The major challenge of discretization is creating a consistent mesh without changing the 

original surface and obtaining a network with sub-surfaces that are planar in order to achieve 

optimal economy of construction. Otherwise surfaces may need to be curved, which increase 

the manufacturing cost. The constraints of free form surface fabrication include optimizing 

the sizes of meshes so that there is a homogenous distribution of meshes, having no gaps in 

between the panels, and generating panels as planar. Common methods of discretization for 

free form surfaces mostly result in triangulations and to a lesser extent quadrilateral meshing.  

 

2.3.1 Triangulation 

Triangular meshes generate a visually pleasing network that also generates a close fit to the 

original surface. Furthermore, triangulation always creates planar plates (Pottmann et al., 

2007a). A number of complex free form surfaces have been constructed using triangulations, 

such as the British Museum Roof or the Milan Trade Fair (Fig 2.18.).  

 

 

 



 
 

 30 

    
(a) British Museum roof               (b) Milan Trade Fair 

Fig 2.18. Triangulation  

 

Triangulations also have issues that cause construction challenges (Hambleton, 2009). With 

triangulation, nodes require six members to join together (valence of six). This complex 

system cannot be designed with standard, similar members. Each node may be different 

geometrically and this complexity of nodes fabrication increases the cost (Fig 2.19.) 

(Pottmann et al., 2007b). With the case of British Museum, the triangulated mesh is mapped 

out successfully and each node is different than the other one, increasing the labor and cost 

exceptionally.  

 

    
Fig 2.19. The Difference in between two joints of the British Museum Roof 
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2.3.2 Quadrilateral Meshing 

Quadrilaterals present a simpler alternative meshing method compared to triangulations. The 

node configurations for quadrilaterals are less complex than nodes of triangulation, having 

four members joining at each node instead of six (Hambleton et al., 2009). However, in 

contrast to triangulations, quadrilateral meshing does not always generate planar sub-

surfaces. Since planarity is important for these load-bearing panels mostly glazed with glass, 

methods to generate quadrilateral meshing with planar panels have been the subject of much 

research. Some of these studies consider generating a triangulation on the surface and remesh 

the surface to obtain the quadrilaterals (Alliez et al., 2003; Marinov and Kobbelt, 2004; Liu 

et al., 2011), whereas others look for methods to directly generate quadrilaterals (Alliez et al.; 

2003; Liu et al., 2006, Glymph et al.; 2004). 

 

2.3.2.1 Generation of Quadrilaterals by Remeshing  

One common method to have quadrilateral meshing is to subdivide the surface with 

triangular meshing first and then applying further remeshing algorithms (Alliez et al., 2003; 

Marinov and Kobbelt, 2004; Liu et al., 2011). These remeshing methods mostly manage to 

generate a quadrilateral mesh on the surface. However, the points of singularities13 on the 

surface may not be solved with these algorithms because of their complexity. Then, these 

areas of singularities are meshed with triangulations. Therefore, the final discretization 

consists of triangles mixed with quadrilaterals. 

 

Another study initiates meshing with triangulations and follows an iterative method to obtain 

planar faces (Cutler and Whiting, 2007). In this approach, planarity is successfully obtained, 

but the mesh consists of polygons with four and five sides as opposed to pure quadrilaterals. 

 

2.3.2.2 Generation of Quadrilaterals by Principal Curvature Lines 

Principal curvature lines14 have been used to generate planar quadrilateral meshing in many 

studies (Alliez et al.; 2003, Liu et al., 2006). Alliez et al. (2003) applied an algorithm based 

on lines of principal curvature and obtained a quadrilateral mesh of all planar faces, except 

                                                
13 Singularity (Umbilics): Points where principal curvature lines are equal to each other. (Appendix A2.2) 
14 Principal Curvature Lines: The maximum and minimum curvature lines on any point (Appendix A2.1) 
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for the singularities, which required triangulation. Liu et al. (2006) followed this work by 

employing conical meshes to define and identify planar quadrilaterals. Conical meshes were 

defined as the discrete equivalent of the principle curvature line network, which can generate 

quadrilateral meshes with approximately planar faces (Fig 2.20.).  

 

      
Fig 2.20.  Principal Curvature Lines (Pottmann et al, 2007a) 

 

The drawback of this method is the quadrilaterals having varying sizes of panels. With the 

change of surface curvature, the mesh sizes change, getting too large or too small. At the 

points of high curvature, principal curvature lines come closer to each other. Then the 

fabrication and assembly of these panels may become very difficult or impossible (Fig 2.21.). 

 

 
Fig 2.21. Problematic areas where principal curvature lines are very close. 
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For translational surfaces15, generating planar quadrilateral meshing by principal curvature 

lines is easily possible (Schlaich and Schober, 1996). Due to the geometrical properties of 

translational surfaces, principal curvature lines coincide with successive lines parallel to the 

edge surface in finite intervals (Glymph et al., 2004). This method has been used in many 

cases, such as in the design of the glass roof of Jerusalem Museum of Tolerance project (Fig 

2.22.).   

 

 
Fig 2.22. Jerusalem Museum of Tolerance Roof (Glymph et al., 2004) 

 

Despite numerous studies on discretization of free form surface, planar quadrilateral meshing 

methods are generally approximations that attempt to maximize the number of quadrilaterals 

that are planar. In order to work within the constraints of the surface geometry, planarity, and 

fabrication limitations, the method of fabrication must be addressed in the early stages of the 

design process. By doing so, a more successful PQ mesh can be generated. 

 

2.4 CONCLUSION 

 

Free form surfaces have always been challenging to design, fabricate and/or construct. Over 

time, the problems being focused on have changed. The problem of how to design a complex 

                                                
15 Translational surface: Surface generated by moving a profile curve along the directrix (Appendix A3.4). 

II. Modifying the control points for the generatrix
curve.

III. Modifying the control points for the law (scaling)
curve.

IV. Modifying the D and G distance parameter values.

We now have a constrained reconfigurable model of
the translation surface structure. By modifying indi-
vidual or combinations of the above control elements,
we can reconfigure the model to match the shape of the
original scanned shape (see Section 5.5). The generat-
ed surface is then trimmed to match the plan projection

of the original design shape (Fig. 28). Because of the
constraints of the translation surface, it is not possible
to perfectly match the original surface, but the combi-
nation of translation and scaling gets quite close.

Once the shape of the surface has been established,
the entire construction of the glass structure can be
placed on it. The generated geometry permits the
spatially correct placement of mullion elements on
the underlying wireframe (Fig. 29). Due to the asso-
ciative nature of the model, any changes made ‘‘late in
the game’’ to the shape of the surface for aesthetic,
structural, or other reasons will percolate through the

Fig. 23. Courtyard roof of the former Bosch Area, Stuttgart, Germany; grid dome as translational surface with planar mesh.

Fig. 24. Courtyard roof industriepalast, Leipzig, Germany.

J. Glymph et al. / Automation in Construction 13 (2004) 187–202198

generatrix 

directrices 

A translational surface, generated by 
sweeping the generatrix along two 
directrices 
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surface became a problem of how to make it lighter. When new materials were introduced to 

achieve lightness, digital tools became the focus. With these advancements, the problem of 

how to design became a problem of how to construct the designed form. 

 

The integration of materials, form and fabrication is a challenge for free form surfaces. The 

problems of these complex geometry surfaces cannot be solved unless these design aspects 

are considered in an integrated system. The examples over time have demonstrated that a 

solution to one problem becomes another problem that needs a new solution. Digital 

technology has provided methods and alternatives that resulted in more feasible designs. 

These new tools helped to improve the process but there have been some issues, such as 

fabrication and assembly that is dependent on material selection and geometric definition. 

 

This study focuses on the problem of fabrication from an integrated perspective and 

considers the interrelationship between material, form and fabrication. This study proposes 

an early design approach to assist in the discretization of planar quadrilateral free form 

surfaces. Material deformation capacities are explored to enable warped surfaces to be used 

in the limited curves of mesh optimization. Warping through pre-deformation will provide 

new opportunities for discretization methods where not all the panels are required to be 

planar. It will be demonstrated how non-planar limits can be defined and set, as a function of 

panel geometry and material properties. The algorithms for planar quadrilateral meshing are 

applied as before, and in areas where overall surface curvature becomes extreme, non-planar 

panels can be used in these specific areas. This approach will allow the designer to integrate 

form, materials and fabrication early in the design process and thus avoid problems of 

construction and fabrication that may occur later in the realization of free form surfaces. 
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CHAPTER 3 

 

 

DISCRETIZATION OF FREE FORM SURFACES:  

QUADRILATERAL MESHING 

 

 

 

The challenges in free form surface fabrication have been resolved by various discretization 

methods, which not only affect the fabrication process, but also influence the aesthetics, 

panel sizes, load distributions and structural member design (Pottmann et al., 2007a). 

Patterns such as triangulations, quadrilaterals, or hexagonals have been applied on free form 

surfaces, and each pattern has resulted in different strengths and limitations. Triangulations 

have been the common pattern because of their structurally stable members and aesthetically 

satisfying solutions (Pottmann et al., 2007a). Furthermore, a more significant characteristic 

of triangulations is that they always form planar panels. However, the limitations of 

triangulations, such as the complexity at the nodes where six members need to connect, drive 

a need to consider other discretization patterns, such as quadrilaterals. There have been 

studies that worked on hypar elements to generate free form surfaces and resulted in free 

form surfaces that were successfully constructed (Giles, 2005). 

 

This chapter focuses on quadrilateral meshing, including its strengths and weaknesses, 

methods of mesh generation, and the performance of these methods on different surface 
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types. Besides the methods of discretization, the materialization and fabrication of these 

quadrilateral panels are discussed and the ways in which these panels are rationalized and 

constructed are investigated in this chapter. Applying these on some case studies and 

observing the limitations and challenges of existing methods, a new method is proposed, 

which suggests use of non-planar quadrilaterals on free form surfaces in areas where surface 

curvature cannot easily be subdivided to achieve planar quadrilateral discretization, such as 

areas of high curvature.   

 

3.1 QUADRILATERAL MESHING 

  

Discretization is a method that has been applied to many free form surfaces because of its 

generation of lightweight and transparent structural system. Previously, large span surfaces 

were covered with continuous thin shell structures, which were heavier than a discretized 

surface and did not allow much daylight into the space. Instead of thin shell surfaces, 

transparent façade design with steel framing and glass glazing has become a common 

solution. However, due to the brittle characteristics of glass, the discretization has to be 

generated considering the planarity of each panel.  

 

Quadrilateral panels have become favorable over triangle panels because of less complex 

node assembly where four members meet instead of six. Quadrilateral discretization not only 

reduces the material used but also creates more visual access and more daylight. However, 

one significant drawback is that quadrilaterals do not always form planar surfaces. This 

drawback has brought about a need for an investigation of methods that results in planar 

quadrilateral (PQ) meshing.  

  

3.2. GENERATION METHODS OF QUADRILATERAL MESHING 

 

The primary constraints for quadrilateral mesh generation include surface fit, homogenous 

distribution of members over the surface, and size limitations for materials. In addition, the 

planarity of panels has been an important constraint for quadrilateral mesh generation as 

explained previously.  
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In this section, three mesh generation methods, i.e., isoparametric lines, principal curvature 

lines, and mesh optimization are reviewed, and the performances of each with respect to the 

constraints mentioned above are investigated.  

 

3.2.1. Isoparametric Lines (isocurves): 

Isoparametric lines, also referred to as “isocurves”, are contour lines on a surface in u- and v- 

directions that result in orthogonally mapped curve network on any surface, including 

NURBS16 surfaces (Kolarevic, 2003) (Fig 3.1.). Rhinoceros17 generates isoparametric lines 

on any surface automatically.  

 

 
Fig 3.1. Isoparametric lines on a surface 

 

Isoparametric lines are curves that are the projection of the x-y coordinates on the surface. As 

they are extracted directly from the surface; the surface-fit for this kind of quadrilateral mesh 

is guaranteed. The mesh sizes can be arranged so that they can be mapped in bigger spacing 

or smaller according to the surface. Isoparametric lines are distributed to form orthogonal 

pattern. Quadrilaterals generated by isocurves mostly do not result in planar panels. Only 

some specific surfaces allow isocurves generating planar panels, such as translational18, 

ruled19 or developable surfaces20. These different types of surfaces will be discussed in 

section 3.4.  

                                                
16 NURBS: Non Uniform Rational B-Spline (Appendix A1.2) 
17 Rhinoceros: 3D Modeling software 
18 Translational surface: Surface generated by moving a profile curve along the directrix (Appendix A3.4). 
19 Ruled surface: Surface generated by moving a straight line along another curve (Appendix A3.7). 
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3.2.2. Principal Curvatures Lines  

Principal curvature lines are the two curves that are tangent to the surface at a point and 

always in the direction of principal curvatures (Appendix A2.1). As principal curvature lines 

follow the form of the surface, these lines generate a unique mesh pattern instead of a 

conventional orthogonal network. Principal curvature lines intersect at right angles and the 

panels generated are mostly planar (Pottmann, 2007a). However, in contrast to orthogonal 

meshes where most of the sizes can be similar, the panel sizes generated by principal 

curvature lines do not have constant mesh size in but vary due to the changing surface 

curvature on the surface (Fig 3.2.).  

 

On some surfaces, there exist points at which the principal curvature lines are equal to each 

other or have zero curvature. These points are called umbilics or singularities (Appendix 

A2.2). At the umbilic, the surface is either flat or spherical. As seen in Fig 3.2., at an umbilic 

point, there can be more than two principal curvature lines and no unique maximum or 

minimum. Umbilics create difficulties in the generation of principal curvature lines during 

the discretization.  

 

 
Fig 3.2. Principal Curvature Lines generated on a surface 

                                                                                                                                                  
20 Developable surface: Surface that can be unrolled into a flat sheet without any distortion (Appendix A3.2) 
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A historical application of principal curvature lines and umbilics in architectural practice was 

proposed by Monge21 for the dome of the Legislative Palace for the government of French 

Revolution. The principal curvature lines were used as a guide to locate the stones for the 

construction of the dome (Fig 3.3.). Umbilics were used to hang the candle-lights and also 

being a reference point for locating the podiums for the speakers below (Sotomayor, 2004).  

 

   
Fig 3.3. Monge’s Ellipsoid (Sotomayor, 2004) 

 

The method for the generation of principal curvature lines is complicated. Therefore, 

algorithms are utilized to map these lines on any surface. Different studies have developed 

methods and algorithms to generate principal curvature lines in the most optimum way to 

obtain planar quadrilateral (PQ) meshes (Alliez et al., 2003; Liu et al., 2006; Marinov and 

Kobbelt, 2004). Throughout this chapter, two of these methods that generate principal 

curvature lines, mathematical routines and the parametric approach, are reviewed in depth.  

 

3.2.2.1. Mathematical Routines  

One method to generate principal curvature lines is using mathematical routines (Giles and 

Berk, 2011). By algorithms designed by mathematical software programs, such as 

Mathematica22, principal curvature vectors can be generated for any given group of points 

                                                
21 Gaspard Monge: (1746-1818): French mathematician and the inventor of descriptive geometry. 
22 Mathematica: A mathematical software 

MONGE’S ELLIPSOID 3

the principal configuration of the oriented surface. The Ellipsoid, endowed
with its principal configuration, will be called Monge’s Ellipsoid (see Fig.
2).

Figure 2. Monge’s Ellipsoid

The motivation found in Monge’s paper [22] is a complex interaction of
esthetic and practical considerations and of the explicit desire to apply the
results of his mathematical research to real world problems. The principal
configuration on the triaxial ellipsoid appears in Monge’s proposal for the
dome of the Legislative Palace for the government of the French Revolution,
to be built over an elliptical terrain. The lines of curvature are the guiding
curves for the workers to put the stones. The umbilic points, from which
were to hang the candle lights, would also be the reference points below
which to put the podiums for the speakers.

The ellipsoid depicted in Fig. 2 contains some of the typical features of
the qualitative theory of differential equations discussed briefly in a) to d)
below:

a) Singular Points and Separatrices. The umbilic points play the
role of singular points for the principal foliations, each of them has one
separatrix for each principal foliation. This separatrix produces a connection
with another umbilic point of the same type, for which it is also a separatrix,
in fact an umbilic separatrix connection.

b) Cycles. The configuration has principal cycles. In fact, all the prin-
cipal lines, except for the four umbilic connections, are periodic. The cycles
fill a cylinder or annulus, for each foliation. This pattern is common to all
classical examples, where no surface exhibiting an isolated cycle was known.
This fact seems to be derived from the symmetry of the surfaces consid-
ered, or from the integrability that is present in the application of Dupin’s
Theorem for triply orthogonal families of surfaces.

As was shown in [15], these configurations an exceptional; the generic
principal cycle for a smooth surface is a hyperbolic limit cycle (see below).
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(Wolfram Research, Inc. 2008) (Fig 3.4.). These vectors are then remapped as continuous 

lines on the surface, resulting in principal curvature lines.   

 

 

 
Fig.3.4. Principal curvature lines generated by Mathematica (Giles and Berk, 2011) 

 

The major limitation of mathematical routines occurs on surfaces that are not defined or 

generated by classical mathematical functions because the algorithm cannot be applied on 

these surfaces. Another limitation with this method is that algorithms generating principal 

curvature vectors are designed for mathematical purposes. Although these algorithms 

generate mathematically accurate lines, they are not always physically applicable, such as 

discontinuous lines. Then, some adjustments are needed on the mesh to obtain a more 

applicable discretization. However, the mesh may lose some of its properties and generate 

non-planar surfaces. Therefore, the use of mathematical routines is better if the surface is 

generated with a known parametric description that can be imported into the mathematical 

software. 

 

3.2.2.2. Parametric Approach  

The other method for the generation of principal curvature lines on free form surfaces is a 

parametric approach that was a numerical method of approximations.  

 

!

! !
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In this study, an algorithm created in Grasshopper, a plug-in for Rhinoceros, is used for 

generating principal curvature lines parametrically (Rutten, 2011, McNeel). The steps of the 

process are linked to each other and any change in one is transferred to the other successor 

commands (Fig 3.5.).  

 

 
Fig 3.5. Grasshopper script for generating principal curvature lines (Rutten, 2011) 

 

It is possible to change the density of the lines or the initial points, which the algorithm uses 

to generate the principal curvature lines. However, it is difficult to obtain a homogenous 

network distribution, because these lines occur with respect to the curvature of the surface 

and sizes of each mesh may vary due to changing surface curvature. 

 

3.2.3. Mesh Optimization 

The third method for the generation of quadrilateral meshing is the optimization method, 

which is based on many variables that can be selected. In this work, the optimization is based 

mostly on planarity. In this study, Evolute and Paneling Tools are explored, both of which 

are optimization tools for surface discretization (Evolute GmbH, 2012, McNeel). 

 

3.2.3.1 Evolute Tools  

EvoluteTools Pro23 is a licensed plug-in for Rhinoceros, which runs its own algorithm to 

optimize the mesh network on a given surface (Evolute GmbH, 2012). It comprises of 

                                                
23 EvoluteTools Pro : A licensed mesh optimization plug-in for Rhinoceros by Evolute GmbH. 
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numerous constraints for the mesh generation, such as planarity, surface closeness, curve 

closeness, and/or fairness of curvature, which can be weighted according to the importance in 

the optimization. It can generate either triangulated or quadrilateral panels. With respect to 

the selected constraints, the algorithm optimizes a mesh that fits on the given surface (Fig 

3.6.).  

 

 
Fig 3.6. Planar quadrilateral meshing on a surface generated by Evolute  

 

The advantage of Evolute for this study is the planarity constraint that focuses on planarity of 

the generated mesh but still keeps the quadrilaterals similar to each other. That means, it 

generates a homogeneously distributed quadrilaterals with the constraints of being planar and 

close to the original surface.  

 

Another useful feature of Evolute is that it has a function that quantitatively measures the 

planarity of meshes. The measurement is based on the off-set non-planar distance between 

the diagonals of a panel. If the distance is zero, then the panel has no curvature, i.e., planar. 

When the surface curvature increases, the distance between the diagonals also. The drawback 

for Evolute is that it does not allow setting a size or determining the number of the meshes 

generated. The only method of manipulation is to change the importance of variables in the 

mesh generation process.  

 

Evolute is created by a group who works on architectural geometry and is interested in PQ 

meshing and the optimization methods for the generation of planar quadrilateral meshing. 

The method and geometry of this plug-in has been submitted for a patent application in 2010.  
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3.2.3.2 Paneling Tools 

Paneling Tools is a plug-in developed for Rhinoceros, specifically designed for creating 

paneling systems on determined surfaces and grid systems (McNeel). The aim of the plug-in 

is to generate a parametric relationship for the discretization on a surface, based on creating 

regular panel arrangements (Fig 3.7.).  

 

 
Fig 3.7. Discretization by Paneling Tools 

 

Similar to Evolute, Paneling Tools consists of different variables, one of which is the 

planarity of the panels. However, this plug-in does not allow placing the nodes randomly on 

the surface; they have to be within an orthogonal grid system associated with the NURBS-

based isoparametric curves on the surface. Therefore, planarity cannot be fully achieved if 

the surface curvature is too steep.  

 

One other advantage of Paneling Tools is to allow for repetition of any pattern on the 

surfaces. That means, with this tool, the pattern does not have to be limited with simpler 

geometrical shapes but any pattern can be applied on the complex surface.  

 

3.2.4 Comparison of Quadrilateral Mesh Generation Methods 

The qualitative results obtained from each of these methods have different strengths and 

weaknesses. It is important to know the performance of these methods in advance and select 

the one that fits to the design and to the related constraints. Method selection for mesh 
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generation is dependent on the geometry of the surface, the precision of design, and the 

fabrication limitations.  

 

Isoparametric curvature lines generate planar meshing only on some types of surfaces; 

therefore, this method has a limited use and cannot be considered if the design is not set yet.  

 

The principal curvature lines generate a mesh that is not open to manipulations. Once the 

initial points of mapping are determined, the whole network is uniquely mapped.  Principal 

curvature lines result in a good percentage of planar panels, however, lines that are mapped 

very close to each other at the high curvature areas cause problems (Fig 3.2).  

 

For many surfaces, mesh optimization has been the best method for generating planar 

quadrilateral meshing compared to the other two methods. It provides a mesh that is 

satisfying the visual aesthetics, having similar size panels, and these panels being mostly 

planar.  

 

These methods and examples demonstrate that there is no unique method for generating 

successful planar quadrilateral meshing. To quantitatively compare these methods, few 

different methods exist to analyze the planarity of the quadrilateral meshing as discussed in 

the next section.  

 

3.3 PLANARITY ANALYSES OF QUADRILATERAL MESHING 

 

In order to analyze the planarity of these discretized surfaces, the methods have to be 

investigated to see their strengths and weaknesses. Planarity is the condition where the 

surface curvature is zero. Therefore the curvature and planarity is inversely proportional to 

each other. That means the less the curvature, the more planar a surface is. Many methods of 

surface analyses exist, three of which are reviewed in this study: Gaussian curvature analysis, 

surface radius analyses, and the measurement of distance between diagonals.  
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3.3.1. Gaussian Curvature Analysis 

Gaussian curvature (Appendix A2.3) is the product of the minimum and maximum principal 

curvatures (k1 and k2) at a point on a surface. Gaussian curvature analysis is a common 

method for surface curvature analysis, used in mathematics, but is also applied in engineering 

and architecture (Schodek et al., 2004, Giles, 2005). Gaussian curvature analyses 

demonstrate not only the planarity of the surface, but also can be used to characterize the 

surface, such as whether the curvature is anticlastic24 or synclastic25. For planarity analyses, 

Gaussian curvature is expected to be zero at any point on the surface. The larger the Gaussian 

curvature, the larger the surface curvature is.  

 

For example, a Gaussian curvature analysis has been applied on a random free form surface 

(Fig 3.8.). The green regions are the areas of zero curvature because the Gaussian curvature 

is zero, i.e., which flat surface. The middle part of the surface, where the blue region is 

observed, has negative Gaussian curvature, meaning that the surface is anticlastic in that 

region. The remaining parts of the surface (red, yellow) have positive Gaussian curvature, 

demonstrating that the surface is synclastic.  

 

         
Fig 3.8. Gaussian curvature analysis on a free form surface 

 

The quantitative results of Gaussian Analysis give the product of the maximum and 

minimum curvature of that point (Fig 3.9.). This indicates that the results from these analyses 
                                                
24 Anticlastic: Surfaces with opposite sign principal curvature lines. (Appendix A3.3) 
25 Synclastic: Surfaces with same sign principal curvatures. (Appendix A3.4) 

Zero curvature -  
 flat 

Negative curvature - 
 anticlastic  

Positive curvature - 
 synclastic  
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do not inform about the individual curvatures of the panels. It is important to check the 

individual curvatures to determine the critical panels.  

 

      
Fig 3.9. Gaussian Curvature Analysis 

 

3.3.2. Radius Analysis  

Gaussian curvature is typically used for detecting areas of curvature. However, for free form 

surface discretization, it is also important to determine two principal curvature lines at any 

point since this will potentially govern the limits of curvature. For this purpose, the radius 

analysis is the most appropriate analyses to apply on surfaces. 

 

Surface curvature is the inverse of radius (curvature = 1/radius). By using this relationship, 

the surface curvature can be calculated from the minimum or the maximum radius of the 

curvature at each point. Because curvature is inversely proportional to radius, the maximum 

curvature occurs at the minimum radius and maximum radius is the point of least curvature.  

 

In radius analyses, the flat areas (where the curvature is minimum, radius is maximum) have 

the highest values of radii (Fig 3.10. and 3.11.). It can be seen that the regions where both 

minimum radius and maximum radius have maximum values (labeled in red) are the areas 

that have zero Gaussian curvature in Fig 3.8.  
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Fig 3.10.. Minimum radius analysis. 

 

    
Fig 3.11. Maximum radius analysis 

 

For free form surface analyses; the critical values are the areas where the curvature is the 

maximum. That means the analyses’ results should focus on the areas where the radius 

analyses are the minimum, which occur at the positions of principle radii (Fig. 3.12).  

 

 

Maximum radius 
(min curvature) 

Minimum radius 
(max curvature) 

Maximum radius 
(min curvature) 
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(max curvature) 
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Fig 3.12. Minimum and Maximum Radius Analyses 

 

3.3.3. Distance between Diagonals 

Another method to measure the planarity of surfaces is the distance between the diagonals on 

a surface. This method differs from the others in that it evaluates the planarity of a surface by 

a quantitative value that is determine from the distance between two diagonals of the 

quadrilateral panel. When the panel is planar, the diagonals intersect and the distance 

between them is zero. However, if the panel is not planar, two diagonals do not intersect and 

there occurs a gap in between them. The distance between these two straight lines are used 

for determining the planarity of the panel. The larger the distance between the diagonals, the 

more the non-planarity is. In Fig 3.13., a discretized surface is analyzed instead of a whole 

surface as in Fig 3.10. and Fig 3.11., because, this analysis does not present the distribution 

of the curvature of a surface but calculates a value for each surface with respect to its 

diagonal distances. In Fig 3.13., a surface is discretized and red regions show the higher 

value of non-planarity, which indicates that the quadrilaterals that are less planar are the ones 

on the corners and the ones in the middle of the surface.  
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Fig 3.13. Evolute analysis for planarity 

 

In contrast to the other two methods, planarity analysis results are measurements of distances 

but do not give any information about specific surface curvature (Fig 3.14). This method 

determines whether the panels are planar or nor, but does not provide a quantitative value of 

non-planarity with respect to the surface curvature occurring. The analysis results may be 

converted into curvature analyses by other calculations if the curvature is necessary, however 

in the previous sections it is demonstrated how direct radius analysis may be deployed to 

determine an accurate value for minimum radius, as a means of comparing curvature limits to 

areas of critical minimum radius across an entire surface. 

 

          
Fig 3.14. Planarity Analysis 
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3.3.4 Results 

All three analyses (Gaussian analysis, radius analysis, and distance between diagonals) 

present workable results. The first two methods use mathematical fundamentals that provide 

results that can be interpreted easily using existing software algorithms. In the last method, 

i.e., distance between diagonals, the result of planarity is in units of length. The problem with 

these analyses is that it does not give any information about the surface but only gives an 

approximate assessment of planarity.  

 

For this study, although the planarity is the main aim for quadrilateral meshing, the limits of 

curvature are explored to see how much non-planarity may be possible within each of these 

quadrilateral meshes. Therefore, the ongoing assessment shown in the following chapters is 

based on minimum radius analyses, where the critical surface would be analyzed for its 

minimum radius, meaning the maximum curvature, i.e. along principal curvature lines.  

 

3.4 APPLICATION OF QUADRILATERAL MESHING ON CASE STUDIES 

 

To observe the performance of each discretization method on different surfaces and to see 

whether the surface characteristics affect the results, three methods of mesh generation 

(isoparametric lines, principal curvature lines, and mesh optimization) are applied to four 

different surface types that are commonly used in architectural design. These four types are 

ruled surfaces, translational surfaces, rotational surfaces and free form surfaces. 

 

3.4.1 Ruled Surfaces 

A ruled surface is created by a straight line that is translated along a profile curve (Appendix 

A3.7). For this example, the profile curve is selected as a sine curve with the function 

f(x)=sine(x) (Fig 3.15). Since a straight line is translated along a curve, the generated surface 

is also a translational surface.   
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Fig 3.15 Generation of a ruled surface  

 

Ruled surfaces have properties that the other surfaces do not have, because of its 

mathematical formation. Therefore, the meshing is simple and easy for these surfaces. As can 

be seen in Fig 3.16, all of the three methods generate very similar meshing on the surface 

with very homogenous mesh sizes. 

 

 
(a) isoparametric lines                       (b) principal curvature lines                     (c)optimized mesh 

 
Fig 3.16. Discretization methods on ruled surface 

 

The planarity analyses on these surfaces are conducted on each discretized panel. The 

purpose of these analyses is to observe the planarity of each quadrilateral and then to test the 

limit of curvature for the ones that are not planar.  

 

The Gaussian curvature on ruled surfaces is expected to be zero. When the Gaussian 

curvature analyses have been conducted on these three type of discretized surfaces it can be 

seen that all three type of discretization results with planar quadrilateral meshes (Fig 3.17).  
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   (a) Isoparametric lines           (b ) principal curvature lines      (c) optimized mesh 
 

Fig 3.17. Gaussian Analyses on ruled surface  
 

3.4.2 Translational Surfaces 

Translational surface is generated by translating a curve (generatrix) along another curve 

(directrix) (Appendix A3.4). The surface is generated by translated curves parallel to each 

other, therefore, generation of a quadrilateral mesh with planar panels is easier than many 

other surfaces(Fig 3.18.). 

 

 
Fig 3.18. Generation of a translational surface 

 

Because of the ease of generating planar quadrilaterals and resulting in an aesthetic mesh, 

translational surfaces have been used in various building designs and construction (Pottmann 

et al., 2007a). Because of the mathematical characteristics inherent in translational surfaces; 

discretization methods generate successful PQ meshes on translational surfaces (Fig 3.19.). 
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(a) Isoparametric lines                        (b ) principal curvature lines                   (c) optimized mesh  

 

Fig 3.19. Discretization methods on a translational surface  

 
 

Principal curvature lines generate less homogenous panels with respect to others due to 

complexities at the surface edges. At high curvature points on the surface, the isoparametric 

meshing results in unequal size plates. The optimization method results in quite planar 

meshes among these three discretized surfaces (Fig 3.20.). 

 

   
     (a) Isoparametric lines           (b ) principal curvature lines      (c) optimized mesh 
 

Fig 3.20. Gaussian Analyses on translational surface  
 

3.4.3. Rotational Surfaces 

A rotational surface is generated by rotating a curve around a linear axis. In this example, the 

curve is a sine curve with the function, f(x)=sine(x) (Fig 3.21). Rotational surfaces, similar to 

other special surfaces, have mathematical properties that are advantageous for PQ meshing.  
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Fig 3.21. Generation of a rotational surface 

 

When discretization methods are compared on rotational surfaces, the most problematic 

method is observed to be isoparametric meshing (Fig 3.22). Because edges of this free form 

surface in this example are not linear, isoparametric lines generate a mesh that follows the 

edge curve, therefore having a non-planar meshing. 

 

  
(a) Isoparametric lines           (b ) principal curvature lines      (c) optimized mesh 

 
Fig 3.22. Discretization methods on a rotational surface  

 

When a Gaussian curvature is conducted on these three discretized surfaces, it can be 

observed that the principal curvature lines and the optimized mesh method result in planar 

quadrilateral meshes (Fig 3.23.). However, the way isocurves are mapped does not result in a 

PQ mesh for surfaces with curved edges.  
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       (a) Isoparametric lines           (b ) principal curvature lines      (c) optimized mesh 
 

Fig 3.23. Gaussian Analyses on rotational surface  
 

3.4.4 Free Form Surfaces 

Free form surfaces can be described as surfaces that are randomly generated without any 

mathematical rule or definition. They are NURBS surfaces formed by four randomly 

generated edge curves (Fig 3.24.). No classic mathematical definition is known for this 

surface as it is generated digitally. This example shows the most general case of a free form 

surface, as it does not have any known properties nor generated with classic mathematical 

functions.   

 

 
Fig 3.24. Generation of a random NURBS surface  

 

The three methods of mesh generation are applied on this surface. The isoparametric lines, 

principal curvature lines, and the mesh optimization method are demonstrated in Figure 3.25.  
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(a) Isoparametric lines                   (b ) principal curvature lines                         (c) optimized mesh  

 
Fig 3.25. Discretization methods on a free form surface  

 
 

As can be seen in this figure (Fig 3.25.), principal curvature lines follow the flow of the 

surface, whereas the other two methods generate a network similar to an orthogonal system. 

Practically, it is better to have an orthogonal system where the joints and each panel can be 

manufactured and put together more easily. However, those two methods do not give as 

precise results as the principal curvature lines with respect to planarity. 

 

Gaussian analysis is conducted on these three surfaces; the results demonstrate the 

differences between each method. Isoparametric lines and the mesh optimization have 

panels, which are not planar, whereas for principal curvature line meshing, the surface is 

discretized with planar panels (Fig 3.26.). 

 

   
       a) Isoparametric lines        (b ) principal curvature lines      (c) optimized mesh  
 

Fig 3.26. Gaussian analyses on free form surface mapped 
 

The problem with principal curvature lines is how the mesh size becomes so irregular that 

fabrication becomes impossible. As can be seen in Fig 3.27., on the areas of steep curvature, 
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the lines nearly coincide with each other. Although principal curvature network provides a 

successful mesh with nearly all-planar surfaces, the application is limited.  

 

 
Fig 3.27. Problematic areas on principal curvature meshing 

 

3.4.5 Comparison and Conclusion 

The analyses have shown that the performance of planar quadrilateral (PQ) mesh generation 

depends on the surface properties. This suggests that the selection of the discretization 

method needs to consider the geometric properties of the surface.  

 

Isoparametric lines are not expected to generate planar quadrilateral meshing. However, on 

some types of surfaces, i.e., translational and ruled surfaces, isoparametric lines generate PQ 

meshes. As a rule, it can be said that, on a surface with edges almost linear and orthogonal to 

each other, the isoparametric lines generate a network that results in PQ meshing. Besides 

planarity, the mesh generated by isoparametric lines on these surfaces has equally spaced 

mesh sizes that is an advantage in the construction stage.  

 

The most important advantage of principal curvature lines is that they form planar meshes. 

However, planarity cannot be considered as the single constraint to find the optimum solution 

to discretization problems. Due to the changes of surface curvature, the mapping of principal 

curvature lines is highly irregular. On areas with greater curvature, unevenly sized meshes 

are generated. Mesh sizes get smaller and small panels are required which makes the 

construction difficult and even impossible.  
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The mesh optimization method works well for PQ meshing in most cases because its 

algorithm is designed to create the optimized meshing on any surface. At extreme curvatures, 

the algorithm struggles to find an optimal fit to the original surface.  

 

The performance of each method is different on different types of surfaces. It is possible to 

decrease the size of the mesh in order to generate a planar discretized surface. However, in 

that case, the materialization and fabrication becomes challenging. When the sizes of the 

panels are too small, they need either extra labor work or extra cost.  

 

The discretization process cannot be considered only from the perspective of optimal mesh 

generation. It is also important to consider the assembly and fabrication of these panels in 

advance. The material selected, the details of the nodes, or the cross-section for the panels 

can be considered during the design stage in order to determine a method that resolves the 

integration of form, material and fabrication.   

 

3.5 FABRICATION AND ASSEMBLY OF QUADRILATERAL MESHING 

 

The challenge for free form construction is not limited to the discretization process of the 

complex surface. Once the surface is digitally discretized, it is also challenging to select the 

appropriate material and decide on the fabrication process related to the selected material. At 

this stage, the digital discretization needs to be planned in 3-dimensions and the cross 

sectional details of the panels and the connections of these panels to each other need to be 

considered.  

 

3.5.1 Materials  

Material properties need to be considered in understanding the limits of non-planarity to 

make appropriate selections for the design and for the construction process. The earlier in the 

design process the materials are considered, the more efficient the results will be. Each 

material has its unique set of properties, strength and deformation limits that determine the 

performance and function of the material.  
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For free form surfaces, planarity is a critical constraint because of the characteristics of 

materials commonly used. In addition to the strength and stiffness of the material, which are 

the major structural responses against load and deformation, ductility is an important 

property and determines the appropriateness of the material to design. 

 

Ductility (or brittleness) is a property that affects the way materials fail. Ductile materials 

have a tolerance for deforming after the yield stress before eventual failure. However, for 

brittle materials, the failure happens suddenly, at the yield strength, which also becomes the 

ultimate strength. Because of the sudden nature of these failures, they cannot be predicted 

and this can be extremely dangerous.  

 

Glass has been used in many free form surfaces because of its transparency. With free form 

surfaces, steel-glass meshing has been commonly used. However, brittleness of glass is a 

weakness that restricts glass to be constructed as panelization for free form surface 

discretization. Recently, other materials have also been used more successfully, such as 

plastics, due to their plastic properties and ability to deform significantly before failure.  

 

3.5.1.1. Structural Glass  

Glass has been commonly used in the construction world. Being transparent and durable, 

glass has been preferred for overhead natural light roofs. Many examples of glass exist in 

architectural history, starting with Joseph Paxton’s Crystal Palace built in London in 1851 

(Kolarevic, 2003). 

 

With glass, stress concentration is critical due to the potential of sudden failure (Structural 

Use of Glass in Buildings, 1999). Most of the failures are observed at the points of 

concentrated stresses. Another problem with glass is the existence of surface “flaws”, which 

cause the material to fail in tension at strength well below its compression capacity.  
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The American Society of Testing and Materials (ASTM) has published numerous standards 

for the use of different types of glass for different purposes. The major standards used in this 

study are:  

 

- ASTM E1300-09: Standard Practice for Determining Load Resistance of Glass in 

Buildings, 

- ASTM C162-05: Standard Terminology of Glass and Glass Products,  

- ASTM C1036-11: Standard Specification for Flat Glass, 

- ASTM C1048-04: Standard Specification for Heat-Treated Flat Glass, and 

- ASTM C1172-09: Standard Specification for Laminated Architectural Flat Glass.  

 

These standards have been used as the guidelines for many designers and these standards 

require using glass as flat sheets. Because the pre-deformation has not been considered in the 

construction experience, no standards have been prepared.  

 

Different types of glass exist with respect to the cooling process during manufacturing. The 

method and speed of cooling affects the stresses created within the glass layers and result in 

different strengths. The most common types are annealed glass, fully tempered glass, and 

heat-strengthened glass.  

 

3.5.1.1.1. Annealed Glass 

Annealed glass is made by heating the float glass to 1500° C and then cool it slowly. It is 

finally put in the annealing oven to have controlled gradual cooling. Annealed glass behaves 

totally elastically until fracture and it does not creep. The strength of annealed glass is taken 

approximately as 5000 psi in tension and the compression strength is around 10 times of this 

tension strength. Because of its weakness in tension, pre-compression is a common method 

to apply to glass to generate more capacity for the material. The advantage of annealed glass 

is that when it fails, it breaks in big pieces. Sometimes, the panel does not separate as the 

forces find other patterns to follow on the surface (Structural Use of Glass in Buildings, 

1999).  
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3.5.1.1.2. Heat-treated Glass 

Fully tempered glass is heated and then subjected to a rapid cooling process. When the 

interior layer gets cooled, there occurs tension in the inner layers, which in turn induces 

compression on the surface. By this process, the surface stresses possess pre-compression 

stress compared to annealed glass. That provides a higher strength since the precompression 

stresses have to be overcome with tensile stresses first, providing a significant extra margin 

of safety against tensile stresses, generally induced by bending or flexural actions. The 

surface compression for fully tempered glass is generally quoted to be minimum 10,000 psi 

(ASTM C1048-85).  When fully tempered glass fails, it will fail in small pieces of cubes. 

However deflection generally governs the design and the safety margins against breaking are 

generally adequate for most practical applications. 

 

Heat-strengthened glass is another type of a glass, which is similar to fully tempered but with 

less strength. It is made similar to fully tempered glass, by heating and cooling, but the 

cooling process is not as quick as the fully tempering. Therefore, heat-strengthened glass has 

more strength than annealed glass but less than fully tempered glass. The residual 

compression stress for these types of glasses is around 3,500 psi. It is important to be very 

careful with using these heat-treated glass types. The related graph for the limiting capacities 

of these three types of glasses is shown in Fig 3.28. 
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Fig 3.28.The stress capacity of different types of glasses. 

 

In this study, fully tempered glass is used since the purpose is to pre-deform the glass to 

maximize surface curvature and take advantage of the high precompression stresses in 

tempered glass to offset the additional stresses that the panels will be subject to during pre-

deformation, which added to the normal additional stresses that will occur due to the 

application of live load during the life of a structure  

 

One important point is that this pre-deformation applied to glass panels is a long-term 

loading. Therefore, it has to be considered as a long-term load and not exceed the limit for 

that. This progression of induced stresses for short-term and long-term loading values related 

to the capacity of a fully tempered glass is shown in (Fig 3.29.). 
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Fig 3.29. The short and long term stress capacities of fully tempered glass 

 

It is very important to understand the behavior of glass, the limiting conditions and the 

loading cases. As seen in Fig 3.29., the long-term capacity of fully tempered glass is 5,000 

psi (ASTM 1300). That means that the gain in capacity from pre-compression cannot be fully 

used for the pre-deformation (pre-tensioning).  

 

3.5.1.2 Plastics 

Plastics have been frequently used as a structural member because of their low density and 

relatively high strength. However, their long term durability and fire hazard remains an issue. 

For large span openings, being a transparent and light material makes plastics attractive to 

use.  

 

Acrylic, which is formally known as Poly(methyl methacrylate) or PMMA, is one of the 

most common substitutes for glass because of its clarity as a transparent surface and its 

relatively high UV resistance.  Because of its lower stiffness, the deformation capability for 
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acrylic would be higher than for glass. However, the strength capacity is far lower than glass. 

Because of a lower strength and stiffness, plastics have to be used in thicker sizes or in 

deeper cross sections, such as laminated (sandwiched) panels, which is discussed in the 

following sections. It is important to evaluate the efficiency of a material not only based on 

its strength or stiffness or weight alone but rather on its stiffness/weight and strength/weight 

ratio. For example, the stiffness/weight ratio is bigger for glass, but the strength/weight ratio 

for plastic is greater than glass. 

 

3.5.2. Cross-section Types 

A traditional section for a sheet material is a solid section with a constant thickness. 

However, changing the cross section profile of the sheet material affects the behavior of the 

structural system. If the profile is not solid, but rather cellular, not only do the stress in the 

section decrease, but also the stiffness increases and the weight of the structure decreases. 

The primary types of cross sections that can be used in free form surfaces are solid, 

laminated and cellular sections. 

 

3.5.2.1 Solid Sections 

A solid section represents a full continuous volume section with no holes or gaps. The 

advantages of solid sections are the ease of manufacturing and construction and the 

homogeneous structural distribution over the surface. However, it weighs more than the other 

more efficient alternatives with deeper and more structurally efficient cross-sections. 

 

3.5.2.2 Laminated Sections  

Lamination requires gluing sheets of material in multiple layers to strengthen the section 

(Patterson, 2011). Glass is commonly used in laminated sections for safety reasons compared 

to the risk of sudden failure or fracture of a single glass sheet, which can otherwise collapse 

compared to laminated glass which holds itself together. By using laminated glass, the risk of 

sudden failure reduces; therefore the strength capacity of the material increases (Patterson, 

2011).  
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3.5.2.3 Cellular Sections 

Cellular sections are open-profiles that are continuously used throughout the surface. The 

hollow section of these cellular modules decreases the weight of the structure and achieves 

high stiffness. It is important to consider the directionality of these cellular sections, since 

some of them are unidirectional. Sometimes the gaps within the sections can be used for 

service facilities. 

 

It is important to think about these issues in the construction while designing and analyzing 

the surface generated. The cross sectional properties of the panels play an important role and 

different section types and their effects on free form surface construction can be worked out 

separately as a future study.  

 

3.6 CONCLUSION 

 

Discretization is the method used on free form surfaces to fabricate complex surfaces in the 

most efficient way. Of the different methods for the meshing, triangulation is the simplest 

one because it guarantees planarity. However, due to the complexities and non-economical 

aspects of triangulations, other alternatives such as quadrilateral meshing have been 

considered for free form meshing. With four intersecting members at each node, and simpler 

geometric distributions, quadrilaterals have been a good alternative; however, planarity has 

been a significant problem. The challenge for free form discretization has become the 

generation of planar quadrilateral meshing (PQ mesh). 

 

In this chapter, it has been observed that none of these discretization methods are completely 

successful in generating a mesh that can be fabricated with planar panels all throughout the 

surface. Regions with high curvatures do not allow planar panels to be generated. In addition, 

the assembly of these panels is another challenge to be considered with discretization 

process.  

 

This study proposes to consider using non-planar (pre-deformed) panels within the 

discretized mesh, when the surface becomes too challenging to be mapped with planar 
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panels. This challenge occurs when the surface curvature is large or where principal 

curvature lines cannot be mapped uniformly. Therefore, if panels can be deformed during 

assembly, this deformation could allow for a continuous surface to be formed without the 

need for triangulation. The non-planarity is limited by the failure capacity of the material, 

such that any pre-deformation, similar to pre-tensioning in concrete, could create internal 

stresses that make the structure sustain more load combined with the beneficial stiffening 

behavior of membrane action. 

 

The next chapter focuses on the structural analyses of pre-deformed panels towards achieving 

the aim of maximizing quadrilateral meshing of free form surfaces beyond the current limits 

of planarity as set by the properties of glass. The capacity of these panels under the pre-

deformation load is analyzed in addition to the combination of this pre-deformation with a 

uniform wind load. This study aims to find the limiting values for the pre-deformation for a 

specific case and investigate the effect of design parameters to this deformation limit.  
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CHAPTER 4 

 

 

STRUCTURAL INVESTIGATION OF 

NON-PLANAR QUADRILATERAL PLATES:  

 

 

 

The results of methods mentioned in the previous chapter show that there are limits to 

quadrilateral discretization methods in creating fully planar meshes. Panels either need to be 

small in order to achieve planarity or they need to be deformed to fit into the required form. 

Either way, the process causes extra labor and/or additional cost to the project. To overcome 

the problems of planar quadrilateral (PQ) mesh generation, an initial deformation to the 

panels, referred as pre-deformation, is considered during construction as a solution to achieve 

well distributed quadrilateral meshes on free form surfaces. The amount of this deformation 

is limited by the properties of the material being deformed. The pre-deformation is applied 

only to the panels that cannot be mapped as planar quadrilaterals due to the local high surface 

curvatures. Therefore, any free form surface is first mapped by one of the discretization 

methods mentioned in chapter 3, and planarity analysis is conducted on each panel generated. 

The panels with non-planarity are analyzed to see whether the existing surface curvature is 

within set limits for that size, thickness and material capacity.  
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To determine the limits of curvature on the panels for specific materials and sizes, structural 

analyses are conducted. Design parameters such as mesh size, thickness, or material selection 

are investigated to establish the relationship between these design parameters and the 

curvature of the panel. The pre-deformation of the panels need to be controlled in order not 

to exceed the critical limits of strength for the selected size and material (Fig 4.1).  

 

       
Fig 4.1. The deformed panel with the design parameters 

 

In this investigation, two materials are explored: acrylic and glass. The reason for the 

selection of these two materials is that they both provide transparency, which provides 

daylight into a building. However, the challenge for glass arises due to its brittleness. The 

structural analyses have been conducted to investigate how these materials behave under pre-

deformation load, applied on one corner of a typical mesh panel and to understand the 

differences due to material properties.  

 

The objectives of these structural investigations are: 

- To design a structural simulation that can be validated by the experimental work. 

- To validate the material properties of acrylic and glass with a simple bending test. 

- To establish the surface curvature limits of the panels under the pre-deformation. 

- To observe the behavioral differences of two materials, i.e., glass and acrylic.  

- To investigate the relationship between the deformation limit of the panel and the design 

parameters, such as size, thickness, and materials. 

- To explore the effects of membrane stresses on the behavior of the panels under pre-

deformation load.  
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4.1 DESIGN PARAMETERS 

 

On a mesh generated on a free form surface, limiting values of surface curvature are affected 

by the change of design parameters, such as the thickness, the size of the panels, its elastic 

properties and its strength limits. The intention is to correlate these parameters with respect 

to a limiting value of curvature on a surface when pre-deformed to overcome the restrictions 

of planarity in surface mesh generation and optimization 

 

4.1.1 Deformation  

The relation between the maximum deformation and the surface curvature can be determined 

by simple geometry. The calculations show that the relationship between deformation and 

curvature is linear (Fig 4.2). 

 

   

Fig 4.2. The relationship of curvature to deflection 

 

The relation between the maximum deformation and the surface curvature is also obtained by 

conducting a number of simulations. It has been observed that the deformation is linearly 

proportional to the surface curvature for different panel sizes noted (Fig 4.3.).  
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Fig 4.3. Deformation vs. Surface Curvature 

 

4.1.2. Thickness  

The analyses have been conducted to see the effect of thickness on the deformation limit of 

the panel. It has been observed from the analyses results (Fig 4.4.) that there is an inverse 

proportion between deformation and thickness.  

 

Roark’s formulae are used to derive an equation (Eqn 4.1) that determines the quantitative 

relationship between thickness and deformation (Young and Budynas, 1989) for a typical 

rectangular panels supported on 4 sides with a distributed load: 

 

 !!"#! !!!!!!
!!!!        where: a: shorter edge     (Eqn 4.1) 

     b: longer edge 

     q: load per unit area 

     E: Young’s modulus 

t: thickness of the sheet 

 

This equation shows that the relation between the maximum deformation and the thickness of 

the panel is inversely proportional to the degree of three: 
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Fig 4.4. Thickness vs. pre-deformation (for glass) 

 

4.1.3 Edge Size  

The quantitative correlation is found from Roark’s equations (Eqn 4.2) (Young and Budynas, 

1989): 

              where; a: shorter edge  (Eqn 4.2) 

       b: longer edge 

       P: total load  

       E: Young’s modulus 

  t: thickness of the sheet 

 

This equation suggests that the deformation is dependent on the third degree of the size 

change. Therefore, the correlation should be as follows: 

 

     " !!L3  
 

4.1.4. Parametric Equation 

In order to use these correlations in the design stage of a free form surface, an integrated 

equation is needed. This relationship will then be used for different sizes, thicknesses, and 
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deformations to adjust the values to that specific design. The main parameters that are most 

significant for the surface curvature are: 

 

Curvature = f (E, t, L) 

 

By putting the equations together, the parametric equation for this design case is as follows:  

 

Curvature ! !!! !!
!!!! 

 

By obtaining this correlation, the critical curvature of any design can be easily calculated and 

the surfaces can be analyzed with respect to that value to see whether the meshing is feasible 

to construct for that particular design.  

 

4.2 ANALYSES 

 

The analyses were conducted by testing 36” by 36” square sheets with varying thicknesses 

for each material; the glass sheet chosen is 0.118” (3mm) thick whereas, the acrylic is 0.236” 

(6mm) thick. 

 

The quadrilateral panels are modeled and simulated by Ansys26. The material properties of 

glass and acrylic used initially for the simulations have been tabulated in Appendix D 

(Granta, 2012). To name the points of critical stress and deformation values, the panel is 

labeled by letters, as can be seen in Fig 4.5. 

 

                                                
26 Ansys: Structural Analysis Software. 
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Fig 4.5. The letter labeling on the panels 

 

The results obtained from simulations need to be compared with experimental results to 

understand how realistic the model is generated in Ansys. It is important to model the 

geometric properties, the connections, material properties and structural conditions correctly 

in order to generate a realistic simulation model. 

 

A test table was manufactured for the experiments on quadrilateral panels, where the panels 

are supported either by two parallel edges (for simple bending tests) or on two adjacent edges 

with the other two edges free (for warping test). Dial gages are used to record the 

deformation values under the applied load. They are placed on the points where the 

maximum or critical displacement measurements are expected to occur (Fig 4.6.). Strain 

gages are used to record the strain values on the critical or limiting areas on the quadrilateral 

panel, which measures the directional strain on that point.  

 

 

A: Corner where the load is applied 
B: Corners where free edge intersects with fixed edge 
C: Corner of two fixed edge intersect 
D: The fixed edges on the frame 
E: The free edges on the frame 
F: The mid point 
G: The free edges on the glass 
H: The fixed edges on the glass 
J and K: Mid regions  
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Fig 4.6. The experimental set-up 

 

The first part of analyses is the simple bending test. This test aims to confirm the properties 

of materials, Young’s modulus (E), and the load-deformation diagram to compare the 

obtained results with the simulated values. This calibration demonstrates the differences 

between materials. The results are also compared with the simulation results that confirm the 

simulation assumptions and end results quantitatively.  

 

The second part of the analyses focuses on the behavior of a quadrilateral panel under the 

pre-deformation load applied on one of the corners. The material properties obtained in the 

first part are used in the subsequent calculations. The results of simulations and experiments 

are compared to each other and to the calculations, and the behavior of a quadrilateral panel 

under diagonal loading is explored. Some of the significant variables, such as the panel size, 

material properties and thickness, are investigated to find the influence of them on the pre-

deformation limiting values.  

 

Dial gages 

Deformation 
load 

Free edges 
(not supported) 

Supported 
edges 

Quadrilateral panel 
(glass or acrylic) 
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The third part of the analyses is the uniform pressure load, i.e. wind or snow. This part of the 

study aims to confirm the assembly behavior under the general uniform load due to wind and 

snow. Then, the behavior of the panel under a combined uniform imposed load with the 

addition of pre-deformation can be analyzed. The simulation results for the uniform loading 

are compared with the standards to check the reliability of the model (ASTM 1300).  

 

The final part of the study combines the two load cases, i.e., i. Pre-deformation and ii. wind 

load, and observes the combined behavior. By combining these two cases, a design may be 

established that both allows sufficient pre-deformation capability as well as sufficient reserve 

strength capacity to withstand live load and at the same time achieve acceptable live load 

deflection limits. 

 

In these structural investigations, due to large deformations relative to the panel size, the 

analyses are conducted using non-linear large deflection analysis methods, in order to 

accurately quantify the actual behavior.  
 

4.2.1. Large Deflection Analyses: Membrane Stresses 

In conventional structural analyses, the behavior of materials is assumed to be linear. 

However, when the deformation exceeds half of the thickness of the panel, the stress-strain 

relationship does not occur linearly (Structural Use of Glass in Buildings, 1999). In this 

study, as the deflections exceed limitations during the warping, non-linear analyses are 

conducted. To see the difference between linear and non-linear analyses, a sample case is 

generated and tested. As seen in Fig 4.7., with small stresses generated the deflections 

increase linearly with an increase of stress. The linear behavior can be seen by the slope of 

the curve (Fig 4.7b). However, the deflection does not increase linearly after exceeding some 

deflection limit – i.e. when the deformation exceeds half of the thickness of the panel, then 

the behavior changes from a linear stress diagram to a non-linear distribution.  
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Fig 4.7. Comparison of linear & nonlinear analyses (a) surface labeling (b) Linear behavior for all types when 

deflection is small  

 

The reason of this change from linear to nonlinear behavior is due to the addition of 

membrane stiffening due to the edge restraints. This generates additional membrane stresses 

that need to be accounted for in the analysis. The membrane stresses can be either in tension 

or compression, depending on the type of constraint on the edges supports. When membrane 

stresses occur, the total stress on a section must be calculated as the sum of bending stress 

and membrane stress.  

 

 
 

When the case with the pre-deformed panels are considered in this study, the edge conditions 

that keep the panel supported on two edges generates a constant compression membrane 

force within the panel. In other words, the pre-deformation of the panel generates a pre-

generated compression force. Fig 4.8. shows how membrane stresses affect the total stress on 

the top and bottom surface of the panel. 
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(a) pre-deformation of the panel                    (b)the combined stresses 

Fig 4.8. Membrane stresses generated due to the warping  

 

Membrane stresses act in one direction throughout the panel, therefore while increasing the 

stress at some points, there are also regions that it lowers the stress values. In this case of pre-

deformation, with the compression stresses generated by the membrane effect, the tension 

stresses reduces which Allows more live load to be sustained, compared to a planar panel. 

 

A pre-deformation analysis of an acrylic sheet, demonstrates that absolute values of stress on 

opposite sides of an acrylic panel are very similar, which implies that membrane stresses are 

low in the case of the acrylic sheets (Fig 4.9.).  

 

 
(a)                                          (b) 

Fig 4.9. Membrane Stress analyses for acrylic at (a) point K and (b) point J  
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4.2.2 Simple Bending Analysis 

Simple bending test is a set-up to observe the basic behavior of the panels under three-point 

loading and to calibrate the system and calculate the material properties for the materials. For 

this test, 36” by 36” panels are supported by knife-edge supports on opposite ends. Load is 

applied in the mid span of two supported as an effective concentrate load in the span, equally 

distributed across the width of the panel (Fig 4.10.).  

 

   
Fig 4.10. Simple Bending Test: Two-sided point-supported quadrilateral panel 

 

For the simply supported bending test, one dial gage located at the mid point to record the 

maximum displacement. Three strain gages are also added and glued to the panels to measure 

data from the mid span gauge at location F. It is oriented in the maximum principal direction 

of the stresses.  

 

The deflection equation for a simply supported beam under point load of P is as follows:  

    

!! !!!
!"!"   (eqn 4.3) 

 

If the self-weight is considered in the calculations, then the equation for a point load of P and 

a distributed self-weight of w is: 
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!! !!!
!

!" !
!!!!
!"# !

!
!"   (eqn 4.4) 

 

where ": The mid deflection of the panel   L: span (inch) 

P: total applied point load (lbs)   E: Young’s Modulus (psi) 

w: distributed self weight (lbs/inch)   I: moment of inertia (inch4) 

 

4.2.2.1 Acrylic: 

For acrylic sheet, the self-weight is included into the calculations and analyses because it is 

observed that, there is a considerable amount of deformation just under the self-weight of the 

sheet. The properties of the square sheet of acrylic are: 

 

L = 33.5”(because of the supports, the span is decreased to 33.5”) 

b = 36” 

t = 0.236” 

E = 4.35 x 105 psi (this value is used as the initial value for the simulations) 

d = 0.04335 lbs./inch3  

w = (33.5 x 33.5 x 0.236) x (0.04335) = 11.48 lbs. 

 

Standard linear structural analysis was carried out for 18 lbs. of load in addition to the self-

weight of the sheet to arrive at deformation values and maximum stresses, in order to inform 

the layouts and the measuring points for the experiments.  
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Secondly, more detailed simulations were conducted on the acrylic sheet, under the same 

constraints, same constants (E =4.35 x 105 psi) and same loading (P = self-weight +18 lbs). It 

was found that the deformation is calculated as 1.12”, which is close to the calculations and 

the maximum stress is 693 psi that is also consistent with the calculations (Fig 4.11.) 

 

  
Fig 4.11. The maximum deformation and stress of acrylic sheet under 18lbs 

 

To see if these results are realistic and whether the material behaves as expected an 

experiment is conducted. An acrylic sheet is located on two knife-edge supports (Fig 4.12.). 

The strain gages are all set to zero. Then the loading is conducted by placing loads of 1lb 

increment each time. The maximum deflection and the strain values are recorded with respect 

to the loading pattern. 

Calculations (acrylic) 

I = 1
12
bt3 = 1

12
!33.5! (0.236)3 = 0.036694inch4

! =
Mc
I
=
198.83! (1 / 8)
0.036694

= 677.32psi

M =
PL
4
+
wL2

8

M =
18!33.5

4
+
(0.04335!33.5!0.236)! (33.5)2

8
=198.83lb.inch

! = (PL
3

48
+
5wL4

384
) 1
EI

! = (18" (33.5)
3

48
+
5"11.46" (33.5)3

384
) 1
4.35"105 "0.036694

! = (14098.2656+ 5609.93486) =1.23"

!"#$%&"'()*+,+-.#/0+
12+-3-45+ Max prin. stress: 693 psi 

Load = 18 lbs + self weight 
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Fig 4.12. The loading of the acrylic sheet for the simple bending test 

 

The results of the test is as below, using a time history plot for when loads are applied and to 

control the rate of load application related to material creep: 

 

  
Fig 4.13. The time history plot for the simple bending test of acrylic sheet 
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It is observed that the maximum deformation values are consistent among the simulations 

and experiments. When the maximum stresses are compared, the value obtained from the 

experiment is less than the values of simulations. One of the reasons for this difference is the 

in-consistent property of materials. Another reason is the membrane stresses occurring due to 

restraints at the supports, not being a roller but a knife-edge, which may provide some 

horizontal constraint. To observe the correlation between the membrane stresses and the 

values of stresses occurring, a similar simulation is done with horizontal edge constraint. The 

results are as follows (Fig 4.14.) 

 

Experiment (acrylic) 

Under 18lbs + selfweight : !=1.267” 

! =1000!10"6 =1!10"3Strain gage results: 

! = E" = 4.26!105 !10"3 = 426psi

Eacrylic = (
18! (33.5)3

48
+
5! (0.04335!0.236!33.5)! (33.5)2

384
)( 1
1.267!0.036694

)

Eacrylic = 4.26!10
5 psi

Eacrylic = (
PL3

48
+
5wL4

384
) 1
!I

! =
PL3

48EI
+
5wL4

384EI



 
 

 83 

 
Fig 4.14. Analyses with free and restricted edge supports on acrylic 

 

It can be seen in Fig 4.14. that, with the x-constraint, the values decrease incrementally and 

the stresses on the top and bottom surface of the panel are not the same in absolute values. 

Similar to this, the membrane stresses can be observed from the experiments, by looking at 

the strain gage diagrams (Fig 4.13.). It can be seen that there is a difference in the absolute 

values of tension and compression stresses on the top and bottom of the panel.  

 

4.2.2.2. Glass 

For glass, the results are expected to be more reliable as glass is a material that has more 

consistent properties. The same simple bending analyses were conducted on a glass sheet 

with the properties as below: 

 

L = 33.25” 

b = 36” 

t = 0.118” (3mm) 

E = 1 x 107 psi 
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For glass, the self-weight is taken as negligible as the effect of self-weight on the 

deformation of the panel is very small. The calculations for the simple bending of a square 

sheet of glass with these given material properties are:  

 

 
 

The simulations for the same glass sheet with a load of 50 lbs results as (Fig 4.15.): 

 

   
Fig 4.15. The simulation results for the glass sheet under 50 lbs. 

 

It is seen that the values of simulations match with the calculations. These values inform 

about the capacity of the glass sheet and how much it can be loaded without any failure.  

 

A simple bending experiment is, finally, conducted by loading a fully tempered glass panel 

with 5lbs increments up to 50 lbs. The results are as below: 

 

Calculations (glass) 

I = 1
12
bt3 = 1

12
!33.25! (0.118)3 = 0.0045526inch4

! =
Mc
I
=
415.625! (1 /16)
0.0045526

= 5748.78psi

M =
PL
4
=
50!33.25

4
= 415.625lb.inch

! =
PL3

48EI
=

50" (33.25)3

48"1"107 "0.0045526
= 0.841"

Maximum Deflection : 0.81” 

Load: 50 lbs 

Max principal stress: 5800 psi on bottom 

Load: 50 lbs 
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Fig 4.16. The time history plot for the simple bending test of glass sheet 

 

 
 

The E value calculated from the results is found to be 50% more than the standard value. 

However, glass is a material with consistent properties. It is observed that membrane stresses 

act through the glass sheets, which generate a stress pattern that cannot be calculated using 

linear methods. In this case, the E value is taken as 1 x 107 psi for the rest of the analyses and 

calculations.  

 

The deformation and stress values for the glass sheet differ between the experiments and 

simulations. However, when the edge constraints are analyzed, it is observed that there has 

been a tremendous change with the change of edge conditions (Fig 4.17.). 
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Fig 4.17. Analyses with free and restricted edge supports on glass 

 

As a conclusion, it has been observed that glass is a material that does not vary as much as 

plastics, i.e. acrylic. However, the membrane stresses occurring in glass is more than the ones 

in acrylic, because of its stiffness.  

 

The E values to be used for the warping test and analyses are determined as:Eglass = 1 x 107 

psi and Eacrylic = 4.04 x 105 psi. 

 

4.2.3 Warping Analyses  

For pre-deformation tests, quadrilateral panels are supported on two adjacent edges, which 

happen to be perpendicular to each other, and the panels are pre-deformed by applying load 

on the one free corner (Fig 4.18). An edge frame was manufactured, similar to a frame 

system configuration for each mesh panel used on a continuous free form surface.  
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Fig 4.18. The pre-deformation analyses 

 

The edges are clamped using steel edges with a thickness of 0.118”. Neoprene rubber 

gaskets, with a thickness of 0.118”, are used in between the steel pieces and the sheets. To 

stiffen the edges, and to prevent the sheet to be curved on the edges, stiffening aluminum 

hollow tubes are used on all four edges (Fig 4.19.).  

 

 
Fig 4.19. Cross-section of the edge frame: Steel edge, aluminum tube, neoprene strips and quadrilateral panel  

 

aluminum 
tube, t=0.118” 

steel edge frame,  
t = 0.118” 

Quadrilateral panel 
(glass or acrylic) 

Bolts: connecting steel 
edge to aluminum tube 

Screws: connecting aluminum 
tube to the experiment table 

Neoprene rubber 
gasket, t = 0.118” 

!"#

$%&"#



 
 

 88 

In Ansys, the edge condition is simplified to a single stiffening edge, which keeps the edges 

in a straight line, not allowing bending. The size of the stiffening edges is determined by 

conducting some analyses on different edge conditions and adjusting according to those. The 

analysis is based on these two limiting edge conditions: edges with no stiffening, i.e. free 

edge (Fig 4.20a) and an edge with fixed displacement, i.e. equal incremental displacements 

applied along the edge (Fig 4.20b). 

 

   
(a) Free Edge          (b) Edge with fixed displacement          (c) Framed Edge 

Fig 4.20. Edge Frame Analysis  

 

A model for the framed edge condition is analyzed (Fig 4.20c). As expected, the behavior of 

this case lies in between the other two limiting condition (Fig 4.21.). With a neoprene rubber 

gasket in between the glass and steel edges, the concentrated stresses at the corners and 

connection points disappear. As seen from the graph, the curve of stress-deformation of the 

framed panels is in between the two critical cases. This graphs shows that the model 

generated for framed panels behave similar to the real case.  

 

   
Fig 4.21. Edge frame analysis with free, fixed and framed edges 

!"

!#$"

%"

%#$"

&"

&#$"

'"

(" %(((" '(((" )(((" *((("

!"
#$
%&

'(
$)

*+,
)-
./
*

0'1,&2&*3%,)-,4'5*67%"88*+48,/*

9:;"*#%'&"*')'5<8,8*=*4$,)78*>*'):*?*

+,-./"./0."

+1.."./0.""

+123./"425.6"



 
 

 89 

 

To calculate the limiting curvature of the quadrilateral panels, the maximum deformation has 

to be measured. The load to deflect the panel diagonally is hung from the corner of the 

quadrilateral panel (Fig 4.22.). During the calculation of the loading, the edge frame and the 

aluminum hollow tube have their self-weight carried by the quadrilateral sheet. When the 

total load is calculated, these values are added to the applied force.  

 

 
Fig 4.22. The load hung from one corner of the table 

 

The strain gages are glued on the points where the maximum and minimum stresses are 

expected to occur on the surface, based on the results of the initial simulations.. Two strain 

gages, one on the top quarter point on the surface and the other on the bottom of the same 

location are attached in the expected direction of the principal stresses (around 45°). The data 

is captured by a logger, which also captures the frequency of data sampling. The deformation 

values are recorded from the dial gages that are placed on the related points. Values are 

recorded throughout the loading so that the deformation can be coupled with the 

corresponding stress value.  
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4.2.3.1. Acrylic 

The first set of experiments for warping is conducted on acrylic sheet to learn about the 

behavior of this material under this kind of load with is end constraints. Because of the 

flexibility (low stiffness) of acrylic, the probability of failure is smaller than glass. Therefore, 

it has been more informative to start with acrylic.  

 

The sheet is clamped as mentioned before on four edges. The two edges are already fixed to 

the experiment table and the other two are hold in balance as the start point. Due to the 

weight of the sheet itself and the edge frames, a considerable amount of deformation occurs 

when these two edges are set free. The related data is recorded by strain gages. After the 

frame finds its own balance under the self-weight, loading starts with 1-pound increments 

(Fig 4.23.). These tests are done with a sheet with strain gages located at the critical points to 

record the values in order to calculate the stresses by using the Hooke’s law: # = $ x E.  

 

  
Fig 4.23. Acrylic sheet with strain gages loaded to maximum 

 

The strain gages recorded the data simultaneously with the deflection recordings are taken by 

the dial gages on the sheet. For this test, the significant strain gages are the ones on the 

quarter point as they are in the principal stress direction. There are also two dial gages 
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recording, one attached on the middle point of the surface, where the other is on the quarter 

point (Fig 4.24, Fig 4.25).  

 

 
Fig 4.24. The time history plot for the hypar test of acrylic sheet 

 

  
Fig 4.25. Simplified strain graph for the acrylic sheet 

 

The combined stresses on the top and bottom surface of the acrylic sheet is as bellow (Fig 

4.26):  
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Fig 4.26. Surface stresses on the deformed acrylic sheet 

 

After doing this test, the sheet is flipped 180° and also upside-down, where the strain gage 

that was on top becomes to be on the bottom and vice versa (Fig 4.27). This is done to see the 

consistency of the gages in different stresses and points.  

 

 
Fig 4.27. The time history plot for the hypar test on the flipped acrylic sheet 

 

When these two graphs are compared (Fig 4.24 and Fig 4.27), it can be seen that the values 

are consistent with each other and the pattern for the behavior is the same for both. These 

values also need to be compared with simulations to observe and understand the similarities 

and the reasons of differences if exist. 
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4.2.3.2 Glass 

It has already been observed in the previous section that glass is a material that is more stable 

with its characteristic properties in contrast to acrylic. Therefore the behaviors of the glass 

sheets are expected to behave more similar to the simulations than the acrylic sheets. This is 

also because glass has a higher stiffness and therefore the membrane stresses are acting more 

dominantly.  

 

For the tests, fully tempered glass sheets are used in 0.118” thick. The sheet is clamped 

between the steel edges, having the neoprene rubber gasket in between. The set-up is 

arranged to be leveled and be supported till the start of data recording. The self-weight of the 

sheet including the steel edge frames let the glass deflect for approximately 2 -1/4". Then the 

sheet is loaded with 1 pound load bags (Fig 4.28).  

 

 
Fig 4.28. The deflection test on the glass sheet 

 

It is observed that the strain gage reads tension on the bottom quarter point till to a value and 

then the membrane stresses start to occur and the tension stresses become smaller. In this 

specific case, the strain values, therefore the stresses, at the bottom quarter point become 

zero. On the other hand, the values of quarter top gages record compression values, 

increasing by the loading (Fig 4.29).  

 



 
 

 94 

  
Fig 4.29. The time history plot for the hypar test of glass sheet  

 

It can be observed from the simpler graph that the bottom surface acts in tension at the 

beginning of the deformation (Fig 4.30). However, with the increase in the displacement, the 

membrane stresses start to act and become more dominant which changes the total behavior 

of the surface. Not only the top surface but also the bottom surface works in compression. In 

this specific case, the loading does not go beyond to the point where the bottom is working in 

compression but it is expected to occur if the loading is continued. 
 

  
Fig 4.30. Simplified strain graph for the glass sheet 
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Fig 4.30 shows the surface stresses occurring at the end of the loading. The total (cumulative) 

surface stress values are calculated by using the strain values recorded multiplied by the 

Young’s Modulus (E = 1x107 psi). By knowing the final surface values, the bending stress 

and the membrane stresses can be calculated (Fig 4.31.).  

  

 
Fig 4.31. Surface stresses on the deformed glass sheet 

 

The same experiment is conducted after flipping the sheet 180° and turning it upside-down. 

The values are recorded while the sheet is loaded (Fig 4.32.) 

 

 
Fig 4.32. The time history plot for the hypar test on the flipped glass sheet 
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The experiments are conducted to find the limiting value for these two materials. Acrylic 

being too flexible didn’t fail in stress but the final deformation (7”) is a value that would 

become important as the deformation governs the design. For glass, because the experiments 

are done on fully tempered glass, the limits are much more than annealed glass. The loading 

is continued to be able to reach to the limits of the material. However, the limits of the 

experimental set-up did not allow the material to fail either in either of the tests.  These 

results demonstrate greater than expected capacity of both the glass and the acrylic to allow 

substantial preformation without reaching the strength limits of the material. 

 

4.2.4 Uniform Load Analyses 

The quadrilateral panels that are pre-deformed are required to carry a uniform load when they 

are assembled. The analyses for these type of uniform loading is carried out in Ansys. The 

simulation results are compared with the values given in the standards (ASTM 1300-09). 

From ASTM, the limiting uniform load that a 36” by 36” annealed glass with 1/8” thickness 

can carry is calculated as 0.34 psi (Appendix C2.1). The resulting deflection with this 

uniform load applied is found to be 0.48 inch (Appendix C2.2). The simulation results with 

the same uniform load of 0.34 psi give similar results where the maximum deflection is 

found to be 0.46 inch (Fig 4.33). The maximum stress created as the limiting case for ASTM 

is found to be around 5000 psi (34.5 MPa) for annealed glass (ASTM 1300-09).  
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Fig 4.33. Uniform wind load analyses 

 

The load of 0.34 psi is the limit for annealed glass calculated from ASTM. The uniform wind 

load is calculated as 0.18 psi from ASCE-07 (Appendix C1). For the future analyses, the 

average wind load is taken as 0.2 psi throughout this study.  

 

4.2.5 Combined Loading Analyses 

The curvature limits found by determining the maximum deformation of the panel are not 

valid for the application on free form surfaces, because the quadrilateral panels are required 

to carry uniform load while they are deformed. Therefore, the important analysis is to 

integrate the uniform load to the stresses created by the deformation. A compromise needs to 

be made, either changing the size of the mesh or the thickness of the panels. According to the 

flexibility of the design, the material properties also need to be considered.  

 

An example is worked through to find the maximum deformation a 36” by 36” glass sheet 

can have in addition to the wind load it needs to carry, which is calculated as 0.2 psi 

(Appendix D.1). A 1/8” thick glass can carry 0.2 psi uniform load. If the panel is required to 
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be pre-deformed, the thickness of the sheet can be increased. When the same uniform wind 

load is applied on the glass sheet with 1/4” thickness, there is the capacity of the panel to 

carry more loads. That additional load comes from the pre-deformation. The analyses show 

that if the thickness of the panel is doubled, then it can carry the uniform load in addition to 

the pre-deformation. It has been seen that the maximum deformation that the panel could 

resist has decreased from 3” to 2” when the wind load is applied on the thicker panel (Fig 

4.34.).  

 

 
Fig 4.34. The combination of wind load with the deformation on glass sheet 

 

Once the maximum deformation is determined for that panel, the limiting curvature is found 

by geometric calculation or a surface analysis that shows the curvature values all through the 

surface. It can be read from Figure 4.35. that with the limiting gaussian curvature for this 

panel is found to be 2.4 x 10-6 . 

 
Fig 4.35. Gaussian Analysis of a 36” by 36” panel with 2” deformation 
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36” by 36” Glass Panel w/ t = 1/8” 
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36” by 36” Glass Panel w/ t = 1/4" 
Pre-deformation = 2” 

36” by 36” Glass Panel w/ t = 1/4” 
Wind load = 0.2 psi 
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4.3 RESULTS AND CONCLUSION 

 

This chapter focuses on the structural analyses and simulations of quadrilateral panels with 

two different materials, i.e., glass and acrylic, to investigate the behavior of these panels 

under the deformation load that is applied asymmetrically on the corner of the panel. The 

results of the simulations are supported by the experiments. The load requirement for the 

panels is taken as the uniform wind load. Panels are loaded with wind load to compare the 

results with standards (ASTM) and check the consistency of the simulations. When the 

model is established, several tests are conducted through these simulations to learn about the 

behavior of the panels and the deformation limits for the panels under the deformation loads. 

The relationship between the parameters are derived so that, once a curvature limit is 

determined for a material and geometry, then any deformation limit can be calculated for the 

same material.  

 

During the analyses, it has been observed that the pre-deformation (warping) proposed as a 

solution to the problem of fabrication of free form surface discretization, has other 

advantages on the overall structural capacity. It has been observed that the anticlastic shape 

that a quadrilateral has after the pre-deformation creates internal membrane stresses, which 

act as a pre-compression. By generating these pre-compression stresses by warping, there 

exists an extra tension capacity the panel can carry. 

 

Another advantage of this pre-deformation is the way the applied loads deformations become 

progressively smaller under increasing load, because of the membrane effects. This leads to 

the possibility that thinner material can be used, Which will allow the pre-deformation to be 

easier to achieve. 

 

This process is proposed for design, while the mesh is being generated, taking into account 

the potential for pre-deformation , a more resolved meshing layout is postulated, that allows 

for a limiting degree of non-planarity to exist, that should allow more rational and economic 

surface discretization to be implemented with consequent savings in structural supports and 
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nodal connections that simpler to construct. The next chapter demonstrates an example of the 

application of this method on an existing structure, i.e. British Museum Roof. 
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CHAPTER 5 

 

 

A CASE STUDY 

 

 

 

Planarity has been a significant constraint for free form surface discretization. Therefore, this 

constraint can be assumed to be something to be analyzed during the design stage, similar to 

structural system. This study proposes the method of analysis and evaluation of planarity of 

discretized meshing generated. The common practice has been to check the panels whether 

they are planar or not. This study provides some flexibility to that limit of planarity.  

 

In the previous chapter, a simple example is worked out to show a brief application of the 

method proposed. In this chapter, an existing structure is selected: British Museum Roof. The 

reason of selecting this case is its popularity for discretization problems. Although it is 

constructed with triangulations, studies on different meshing proposal were still made.  

 

The proposed methods of quadrilateral meshing are applied on the British museum roof, 

followed by the planarity analyses. From the results, necessary calculations are done to see 

whether the non-planar panels are within the limits. If not, necessary modifications are 

suggested.  
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5.1 BRITISH MUSEUM GREAT COURT ROOF  

 

The challenge of generating the current roof for this court has been the smooth flow of 

surface between a rectangular and a circular building. However, a beautiful surface is 

generated for this location and it is made up of steel and glass. The discretization pattern was 

chosen as triangulations because it was easier to generate than producing flat quadrilaterals 

or curved glass panels (Burry and Burry, 2010). Because of the complex surface generation, 

the fabrication and construction have been very difficult. The whole discretization consists of 

4878 members, 1575 nodes and 3312 triangular glass panels (Qualter Hall).  

 

As can be seen in Figure 5.1., the dimensions of the original surface are around 100 x 70 m, 

with a asymmetric hole in the middle with 120’ diameter.  

 

   
Fig 5.1. British Museum Roof  

 

5.2 PRINCIPAL CURVATURE LINES 

 

The method of principal curvature lines results in an aesthetic meshing, seen in Figure 5.2. 

The locations of umbilic points are discovered by a few trial of mesh generation. The umbilic 
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is, then, taken as the starting point and the rest of the mesh is generated. Since the surface is 

assumed to be symmetric for this part of the work, the meshing is done only on one quarter 

and then mirrored to the other quarters. As can be seen in Figure 5.2, the principal lines are 

coming closer to each other when they are closer to the umbilic point, where the surface is 

spherical. 

 

       
Fig 5.2. Principal curvature lines on British Museum, and a close-up to an umbilic. 

 

The surface discretized by principal curvature lines is analyzed by Gaussian Curvature 

Analysis (Figure 5.3.). The panels in red demonstrate the planar panels. (The Gaussian 

Curvature value if too small, i.e. 5.16 x 10-35). 
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Fig 5.3. Gaussian curvature Analysis of PQ mesh 

 

The panels that are shown in other colors in Fig 5.4, are the non-planar surfaces that need to 

be analyzed with respect to the curvature limits of the material. The biggest panel is selected 

as the most critical panel (Fig 5.4).  

 

 
Fig 5.4. The non-planarity calculation for the maximum panel 
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By using the parametric equation derived in the last chapter (Eqn 4.6 in section 4.3.4): 

 

 
         

The necessary calculations are done to find the limiting curvature this maximum sized panel 

can hold. As the base sheet with the limitin Gaussian curvature 2.4x10-6 is a 36” by 36” glass 

sheet, then the ratio of the edge sizes is calculated: 

 

 
 

Considering the largest piece on the surface mesh, coefficient for curvature is (13.73)3 = 

2588.56, which means the coefficient for Gaussian Curvature is (2588.56)2 = 6.7 x 106. When 

this is multiplied by the limit, resulting with 16.08. This is the maximum Gaussian curvature 

this piece can have.   

 

Then this value is compared with the results obtained from the Gaussian Analysis of the 

surface mesh. As seen in the figure X, 6.6X10-6 is the maximum curvature obtained on the 

surface and that is smaller than the limit found by the dimensional manipulation. 

 

6.6X10-6  < 16.08 

 

This example demonstrates the fact that even though the meshing generated is not fully 

planar, with the limits of deformation, the panels can be fabricated and assembled with a 

thicker glass than if all the panels are planar.  

 

 

 

 

 

Limitingcurvature! L3

E " t3
(initialcurv.)

55.2!55.2!86.4!87.6
36x36!36!36

=13.73
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5.3. OPTIMIZATION BY EVOLUTE 

 

The British Museum Great Court Roof is discretized by the mesh optimization method 

(Section 3.2.3.1) and the result is analyzed with respect to the planarity of the meshes 

generated. The plug-in, Evolute, has its own algorithm to generate a mesh from a flat surface 

onto the projection surface. The advantage with this method is that it aims to generate 

quadrilaterals with similar pattern and size all through the surface. However, this mesh does 

not guarantee to have planar panels. When the surface is not too complex, i.e., the surface 

curvatures are not too steep; a successful mesh can be generated. With high curvatures, it 

could be challenging to generate a mesh with panels all planar while keeping the 

homogenous pattern.  

 

This method is applied on the British Museum roof (Fig 5.5). A generated mesh optimization 

is analyzed by the planarity method.  

 
Fig 5.5. The mesh generated by the optimization method  

 

As mentioned before, in planarity analyses, the results are in the units of length, which is the 

distance between two diagonals of a panel (Fig 5.6.). As an individual analysis, this method 
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and the results are more meaningful than Gaussian Analysis. However, for this case, the 

values obtained have to be converted onto surface curvature to see whether all panels are ok. 

 

    
Fig 5.6. Planarity analysis on the mesh generated by the optimization method  

 

The edge sizes of the panel with maximum curvature are measured as 37.32”, 53.83”, 37.01” 

and 52.63”. These values are used to calculate the ratio of the curvature of this panel to the 

limiting case using the parametric relationship:   

 

 
 

The ratio of change in the curvature is then:  

 

 
 

The ratio of the change of mesh sizes is calculated as 2.34. Then, the L3 = 12.81. Since the 

analyses are conducted as Gaussian curvature: 

 

Limitingcurvature! L3

E " t3
(initialcurv.)

37.32!53.83!37.01!52.63
36!36!36!36

= 2.34
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Therefore, the limiting Gaussian curvature for this panel that has the maximum curvature is: 

 

 
 

The relative maximum Gaussian curvature on that panel is 2.18x10-6. Therefore, the limiting 

being bigger than the existing curvature, this meshing is ok with the non-planar panels 

generated. 

 

5.4 CONCLUSION 

 

In this chapter, two different methods of discretization have been investigated to compare the 

results, with respect to the patterns of the mesh they generate and the planarity of the panels. 

It is expected to see that the principal curvature lines generate a meshing that has more of a 

pattern on the surface. However, the pattern causes problems for the fabrication of the panels. 

Non-planarity does not create a problem for this kind of a mesh, however, the non-

homogenous size of panels is not feasible. On the other hand, the mesh optimization method 

generates a mesh that is quite homogenous. Some problems arise at the edges of the surface 

because of the projection of a mesh on the complex surface. 

 

This is one of the applications of this method to be used in the design stage. It is also possible 

to use this limiting curvature value as a design constraint and start with panels that are non-

planar with a curvature of this limiting value. Then, any surface that is generated by these 

quadrilaterals can be used.  

 

Both of these methods can be used for free form surface discretization, considering the 

geometry of the form and the limits of curvature the material can carry. At the early design, 

deciding on these primary parameters, the discretization can be mapped on the surface and 

the results can be used for the future decision made in the design. 

LimitingG.curvature! (12.81)
2 =164.1

E " t3
(initialG.curv.)

164.1 x  2.4 x 10-6  = 3.94 x 10-4 
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CHAPTER 6 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

This chapter states the problem statement of this research, summarizes the work and methods 

considered, and presents the results with the related argument. The strengths and weaknesses 

of the project are stated, followed by the future work that can be done to improve and enrich 

this study.  

 

6.1 Problem Statement 

 

This study focuses on free form surface structures and their problems of construction. These 

problems are investigated from numerous perspectives, such as material selection, surface 

geometry and methods of form finding, relating these back to fabrication and their interaction 

between these issues. Starting from 1920’s, different types of free form surfaces have been 

designed and constructed, facing with challenges and difficulties. In this study, the proposed 

method suggests to look at design parameters together to solve a current practical problem 
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and to apply the solutions to the design process at the early stage. Then, the result can be 

structurally safe and physically constructible. 

 

The challenges of fabrication for free form surfaces have been explored and the problems and 

difficulties of discretization of these types of surfaces have been selected as one of the major 

problems that affect the overall design and construction. Triangulation has been the most 

common method used for many surface discretization patterns because they always create 

planar panels, which is an important consideration especially when the materials selected are 

brittle, such as glass. As an alternative to triangulation, quadrilaterals have also been used for 

discretization patterns. However, quadrilaterals pose challenges in the manufacturing in that 

they do not always form planar panels. There are special cases where all the panels can be 

generated planar but they create limitations in the design.  

 

In this work, the limits of non-planarity were considered for free form surface discretization. 

Deforming the panels during the assembly before loading generates a slight curvature and 

pre-stresses on the material. This study explores the behavior of these panels under the 

deformation load and the affect of other design parameters in this situation. Although most of 

the research focuses on better methods for planar meshing, this work is unique to consider 

non-planarity and the affect of materials in the design optimization.  

 

The limits of non-planarity are dependent on mesh sizing, the thickness of the panels and the 

material properties such as the strength and deformation limits. The selection of material in 

the early design can help to determine the meshing with respect to the flexibility of the 

material. By selecting the material, the fabrication methods can also be considered, as free 

form surfaces have been challenging to construct. Therefore, in order to generate an optimum 

and efficient design, it is important to consider the non-planarity within the context of 

different materials and sizes.  
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6.2 Research Method 

 

The problem of planar quadrilateral meshing has been of much interest to designers. Most of 

the research focuses on improving the current discretization methods while trying to generate 

a PQ mesh. This research focuses on the non-planarity of these quadrilateral patterns on free 

form surface discretization. The first iteration is to investigate the current methods of 

quadrilaterals and their performances with respect to planarity in order to establish the 

relative properties of areas of planar vs. non-planar meshes. It has been shown that not many 

of the methods could generate a successful PQ mesh unless the surface is relatively flat (low 

curvature). Since PQ meshing has its limitations, a hybrid solution is needed.  

 

The second step of this research is to analyze the system under uniform wind load in order to 

validate the analyses. The results of the simulations are compared to ASTM27. The outcomes 

of the simulation model are then used as the base for the pre-deformation analyses and 

testing. Alternative analyses with different cases and changing variables were also 

conducted.  

 

The third part of the investigation explores the limits of deformation, i.e. limits of curvature 

on the warped surface. In order to have a controlled system, the surface stresses are 

calculated from the data recorded by the strain gages. Having found the young’s modulus 

values for these materials in the previous task, the stresses can easily be calculated. 

 

Once the limiting deformation (curvature) is determined for a specific material and size 

(edges and thickness, this value becomes the base value for this type of material. Any 

different design made with that material could be calculated by the parametric equation 

derived. This derived equation uses some of the simulation results and theoretical formulae.   

 

The last part of the study is to combine two forces on one panel. In real applications, the pre-

deformed panels need to carry the standard wind and snow load. It is not enough to test the 

                                                
27 ASTM: American Society for Testing and Materials 
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deformation capacity of the material. It is important to analyze the panels under the regular 

uniform load, superposing onto the pre-deformation.  

 

6.3 Conclusion 

 

This study demonstrates the limits of curvature of a material and how this affects the 

behavior of the panel. Unlike to what is expected, a sheet that is deformed from one corner 

where the other two opposite edges are supported does not lose its load capacity. Moreover, 

the membrane stresses generated because of these two fixed edges benefit to the structural 

behavior.  

 

The analysis and simulations also demonstrate the effect of different materials on the design. 

As the material properties vary, the limiting curvature and the load capacity differs quite a 

lot. Some materials are stiffer that can carry more load, however they might be brittle. 

Therefore to load those panels with extreme loading is more dangerous than other less stiff 

materials. It is also important to observe from the analyses that, if a material is not too stiff, 

the membrane stresses do not act as effective as a supported or stiffened material. These are 

all properties of materials that can affect the discretization of any free form surfaces. 

 

The structural analyses have been run on large deflection analysis that results with non-linear 

behavior. This also gives strength to this study as the analyses are quite realistic. The results 

from experiments also prove that with materials like glass, which have very stable properties, 

the simulations can be easily supported by the experiments.  

 

This work also proved the strength gain of a tempered glass. The tests are conducted on a 

fully tempered glass and the sheet has exceeded the expected capacity, however it didn’t fail. 

Seeing a 7” deflection on a 36” by 36” glass sheet has been a successful and promising result 

that verifies the proposed method of pre-deformed panels used on free form surface 

discretization.  
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6.4 Limitations and Future Work 

 

This work shows that non-planar panels are possible for free form discretization. By the 

experiments and simulations, it has been demonstrated that both material could carry a 

considerable amount of load and deformed a lot but not fail. The repetition of the 

experiments could have give more stable results that would make the statement stronger.  

 

This work demonstrates the application of the proposed concept on an existing case study. 

The analyses and the calculations are conducted on that case to determine the limiting 

curvature value. For additional support, the parametric relationship derived can be validated 

by simulations and experiments. That would demonstrate the consistency of the theoretical 

relationships with the practical cases. In addition to glass and acrylic, this work can also be 

expanded to more materials to create a material database. Then, at the design stage, this 

database can be used for selecting materials with respect to their curvature limits.  

 

The node systems and a detailed comparison of triangles to quadrilaterals have not been 

studied in this work. However, it might be a valuable study to explore the nodes of a planar 

quadrilateral mesh and investigate the flexibility of these nodes to change without changing 

the surface curvature. 

 

The panels considered in this work are one-layer sheets. It would be an interesting to work on 

laminated or sandwich systems to see the difference of pre-deformation occurring. It is also 

important to rework on the parameterization equation for these laminated sections to see the 

differences.  

 

The ultimate goal for this project is to generate a designers’ manual for non-planar sheets, 

similar to standards, where these pre-deformation values can be found by tables or charts 

with respect to different design parameters. Creating a standard for non-planar sheets would 

improve the design process of free form surfaces. Ultimately, this method can be digitized, 

where planarity becomes another constraint that can be checked during the analyses of 

preliminary design.  
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In this study, the main application of this method has been looking at a surface that is 

generated and testing the planarity/non-planarity of the meshes to see whether it can be 

constructible. If the curvature on a mesh is over the limits, it is either change of size or 

thickness or change of material. However, there might be another way to use this non-

planarity, which is to start with these panels with limiting curvature and construct a surface 

out of these panels. Then it is a known fact that each discretized panel is ok with respect to 

their individual surface curvature. And adding these pre-deformed shapes to one another, the 

generated surface might have a high curvature as a one big surface. Therefore, it is 

worthwhile to consider the possibility of using the limiting values of curvature for design 

constraints for the free form surface meshing.  
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APPENDIX A: 

 

 

MATHEMATICAL DEFINITIONS 

 

 

 

A1. Curves 

 

A1.1. Classic Curves 

Classic curves can be expressed with mathematical equations or definitions such as 

polynomial equations. Most of the mathematical rules and properties are valid for the 

surfaces generated by the classic curves. Conic surfaces can be taken as one of the examples 

of these surfaces that are generated with classic curves.  

 

A1.2. Free Form Curves 

- Bezier Curves: Most common free form curves. They are defined with control polygons.  

- B-spline Curves: They are made up of combination of same-degree Bezier curves, knotted 

together at their endpoints. B-splines are a special case of Bezier curves.  

- Nonuniform rational B-Spline (NURBS) curves have further refinement on both Bezier 

curves and B-splines, such that they have an additional shaping parameter, so called 

weights for each control point (Table 1). Then, B-spline curves can also be stated as special 

NURBS curves wherein all weights are equal to each other (Pottmann et al., 2007a).  
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Table A.1. Free Form Curves 

 
 

A2. Surface Properties 

 

A2.1. Principal Curvature Lines 

 

At each point on a surface, there exists a unit normal vector. Containing this normal vector, 

infinite numbers of normal planes can be drawn, which all intersect the surface at a different 

plane curve. The curvature of each curve of these intersections varies. The maximum and 

minimum of these curvatures are called the principal curvatures. 

 

Principal curvature lines (also known as lines of principal curvature) are the curves on a 

surface that are always in the direction of principal curvatures (Fig A.1.). They are 

represented by k1 and k2. They always intersect each other in right angles.  

 

 
Fig A.1. Maximum and minimum lines of curvature at point A. 

 

        

Control point Degree  Weights 
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A2.2. Umbilic Points 

Principal directions are uniquely defined only if k1 and k2 are different. When the principal 

curvatures are same at a point (k1 = k2), that is a special point called an umbilic point (Fig 

A.2.) (Pottmann et al., 2007a). At those locations where k1 = k2, there are infinite curves that 

are equal and the mapping of principle curvatures can not be continuous due to this 

singularity.  On sphere and plane, all the points on the surface are umbilic points.  

 

       
Fig A.2. Umbilics where more than 4 lines intersect 

 

A2.3. Gaussian Curvature (K) 

The product of the two principal curvatures at any specific point on a surface (k1 X k2) is the 

Gaussian curvature of the surface at that point (Pottmann et al., 2007a). This curvature value 

informs about the distribution of the curvature along the surface. It is a tool to measure the 

amount of curvature on the surface. Gaussian curvature also suggests whether the surface is 

developable, ruled, synclastic or anticlastic, looking at the sign and absolute value of the 

result. Table 2 shows the Gaussian curvature results and the conclusion to be derived from 

them about the surface, where Gaussian curvature is K = k1 x k2. 

 

- When Gaussian curvature is less than zero at a point, i.e. k1 x k2 <0, the principal curvatures 

are in opposite directions, resulting in an anticlastic surface (A3.3) 

- When Gaussian curvature is bigger than zero at a point, i.e. k1 x k2 >0, the principal 

curvatures are in the same direction, resulting with a synclastic surface (A3.4). 
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- When Gaussian curvature is zero at a point, i.e. K=0, one or both of the principal 

curvatures at that point are zero. That means the surface is linear at that point in one or both 

directions. That indicates the surface is a ruled surface, of which plane is a special case.  

 
Table A.2. Gaussian curvatures and surface types 

 

 

A2.4. Mean Curvature 

Mean Curvature is the average of the two principal curvatures on a point. It is designated by 

H, which is equal to !!!!!! .  

 

When mean curvature is constant over a surface, it is called constant mean curvature surfaces 

(such as soap film surfaces). When this curvature is zero, the surface is a minimal surface 

(A3.1).  

 

A3. Surface Types 

 

A3.1. Minimal surfaces  

In the cases where the mean curvature equals to zero at any point on the surface, that surface 

is called a minimal surface. Minimal surfaces are always anticlastic surfaces, the only 

exception being a plane. There are analytical form finding methods using minimum energy, 

such as the force-density method and dynamic relation method (Stephan et al., 2004).  

Minimal surfaces generate optimum forms in architectural design and commonly used.  

 

 

K = !"#$#!%  !"#&#!% Surface Type Example 

0 One or both are zero Developable 
Surface Cylinder 

!"#" $%"&"$' have opposite signs or 
one of them is zero 

Ruled    
Surface Hyperboloid 

> 0 $%"&"$' have same sign Synclastic 
Surface Ellipsoid 

< 0 $%"&"$' have opposite sign Anticlastic 
Surface 

Hyperbolic 
Paraboloid 
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A3.2. Developable Surfaces 

Developable surfaces are defined as surfaces that can be unrolled into a flat sheet without any 

distortion (Schodek et al., 2004). They are a subset of ruled surfaces; thus, they always create 

single-curved surfaces (either k1 or k2 or both = zero). Since Gaussian curvature is the 

product of the two principal lines, developable surfaces always have a zero Gaussian 

curvature over their surface.  

 

Developable surfaces are mainly in three groups: cylinders, cones or tangent surfaces of 

space curves (Pottmann et al., 2007a). Developable surfaces can be mapped onto the plane by 

an isometric mapping and the isometric planar image is called its development (Pottmann et 

al., 2007a). An example of a developable Moebius band can be seen in Appendix B2. 

 

A3.3. Anticlastic Surfaces 

When the principal curvature lines are in opposite signs, the surface is called as an anticlastic 

surface. This means that Gaussian curvature (k1 x k2) is always negative for anticlastic 

surfaces (Fig A.3.). Some examples are hyperbolic paraboloids, hyperboloids of one sheet 

and saddle-shaped surfaces (Schodek et al.,2004). 

 

 
Fig A.3. Anticlastic Surface 
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A3.4. Synclastic Surfaces 

When the principal curvature lines have the same sign all over the surface, this makes that 

surface synclastic. The Gaussian curvature (k1 x k2) is always positive for this type of surface 

(Fig A.4.). Concave and convex surfaces have the properties of synclastic surfaces. These are 

not developable surfaces, which means that they cannot be rolled out as flat sheets without 

any distortion (Schodek et al.,2004).  

 

 
 

Fig A.4. Synclastic Surface 

 

A3.5. Rotational Surfaces 

Rotational surfaces (surfaces of rotation) are surfaces that are generated by rotating a planar 

or spatial curve about a central axis (Fig A.5).  Rotational surfaces have been commonly used 

in art, design and architecture for many years (Pottmann et al., 2007a, 289). 

 

 
Fig A.5. Rotational Surface 
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A3.6. Translational Surfaces 

Translational surfaces are generated by moving a profile curve (generatrix) along the 

directrix (Fig A.6.). Because of the way the translational surfaces are generated by sweeping 

one line along another one, the isoparametric lines on these curves generate a nice network of 

lines that are orthogonal and equally distributed. Some special translational surfaces are 

elliptic paraboloid and hyperbolic paraboloid. 

 

 
Fig A.6. Translational Surfaces 

 

A3.7. Ruled Surfaces 

Ruled Surfaces are surfaces generated by moving a straight line along one or two other 

curves (Fig A.7). Ruled surfaces carry a family of straight lines. They are used in concrete 

architecture and timber frame construction (Pottmann et al., 2007a, 287-311). 

 

 
Fig A.7. Ruled Surfaces 
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APPENDIX B:   

 

 

QUADRILATERAL MESHING OF MATHEMATICAL SURFACES 

 

 

This section is an addition work to help to understand the principal curvature lines and the 

quadrilateral panels generated from these mathematical curvature network.  

 

B1. Helicoid 

Helicoid is a surface that is ruled but not developable. It is a minimal surface. This means the 

Gaussian curvature on the surface is not always zero. 

 

 
Fig B.1. Helicoid surface: (a) 3D model drawing with isoparametric lines (b) the principal curvature lines 

mapped (c) quadrilateral panels are meshed on the surface. Principal Curvature Lines on a catenoid helicoid 

Isoparametric Lines on a catenoid helicoid 
Principal Curvature Lines 
on a catenoid helicoid 

Principal Curvature Lines on a catenoid helicoid 

Isoparametric Lines on a catenoid helicoid 
Principal Curvature Lines 
on a catenoid helicoid 

Circles drawn by using intersecting 
points of principal curvature lines 
on a catenoid helicoid 

Panels drawn by using intersecting 
points of principal curvature lines on 
a catenoid helicoid 

Principal Curvature Lines 
on a catenoid helicoid 
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Fig B.2. Gaussian analysis on the principal curvature meshing of a helicoid surface 

 

B2. Moebius Band 

 

Mobius band is a special band that has special properties, some of which are still not clarified 

fully. The way the surface is generated manually makes it simple, however when the same 

surface is generated manually or by digital tools, then the same surface cannot be obtained 

that easily.  

 

The significant part of Mobius band is that there are two main types of these surfaces; one of 

two is developable, whereas the other one is not. The purpose of this study is to generate a 

Mobius band that is also developable and map the principal curvature lines to see the 

planarity on this very complex curvature surface.  

Gaussian curvature analysis of panels drawn by using 
intersecting points of principal curvature lines on a catenoid 
helicoid 

Principal Curvature Lines 
on a catenoid helicoid 

Gaussian curvature analysis of panels drawn by using 
intersecting points of principal curvature lines on a catenoid 
helicoid 

Principal Curvature Lines 
on a catenoid helicoid 
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Fig B.3. Mobius band: (a) isoparametric lines mapped (b) principal curvature lines mapped 
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APPENDIX C:  

 

 

 LOAD CALCULATIONS 

 

 

 

C1. Uniform Wind Load Calculation 

 

For uniform wind load, the average wind pressure is calculated by the following equation 

(ASCE 07):  

 

qz = 0.00256 . Kz. Kzt. Kd. V2. I  (in psf)         

 

where; Kz: Velocity pressure exposure coefficient = 1.5 (120’ high building) 

   Kzt: Topographic factor = 1.0 (flat terrain) 

   Kd: Wind directionality Factor = 0.85 (Building Type) 

   I: Importance = 1.0 (Category II) 

   V: Basic wind speed (90 m/s) 

 

Then, !! ! !!!!"#$!!!!!!!!!!!!!!!!!!"!!! !" !!!!!!! = 26.44 psf = 0.18 psi.  
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C2. Load Resistance and maximum Deflection Calculation for Glass 

 

C2.1 Load Resistance for Glass 

 

According to ASTM 1300-0928: 

(LR) = (NFL) x (GTF) x (LS)   where: LR: Load Resistance 

      NFL: Non-Factored Load  

      GTF: Glass Type Factor  

      LS: Load Share (For 2 or more layered glass) 

  NFL = 2.25 kPa = 2.25 x 20.9 = 47.03 psf (Fig C.1)  

  GTF = 1 (Fig C.2)  

  LR = Load Resistance = 47.03 x 1 = 47.03 psf = 0.34 psi 

 

  

 
Fig C.1. Non-factored Load Chart (ASTM 1300 - Fig A1.3) 

 

                                                
28 ASTM E1300-09: Standard Practice for Determining Load Resistance of Glass in Buildings. 

FIG. A1.3 (upper chart) Non-Factored Load Chart for 3.0 mm (1⁄8 in.) Glass with Four Sides Simply Supported
(lower chart) Deflection Chart for 3.0 mm (1⁄8 in.) Glass with Four Sides Simply Supported
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Fig C.2. Table for Glass Type Factors (ASTM 1300 – Table1) 

 

C2.2 Maximum Deflection for Glass 

 

For the maximum deformation calculations: 

   LR: 47.03 psf 

   Load x Area2 = 47.025 x (3x3)2 =3.81 kip.ft2  

 

The maximum deflection with aspect ratio (AR) = 1 is found as 12mm = 0.48 inch from Fig 

C.3.  
 

 
Fig C.3. Deflection Chart (ASTM 1300 - Fig A1.3) 

 

3.2.4 Glass Thickness:
3.2.4.1 thickness designation for monolithic glass, n—a

term that defines a designated thickness for monolithic glass as
specified in Table 4 and Specification C 1036.

3.2.4.2 thickness designation for laminated glass (LG),
n—a term used to specify a LG construction based on the
combined thicknesses of component plies.

(1) Add the minimum thicknesses of the individual glass
plies and the interlayer thickness. If the sum of all interlayer
thicknesses is greater than 1.52 mm (0.060 in.) use 1.52 mm
(0.060 in.) in the calculation.

(2) Select the monolithic thickness designation in Table 4
having the closest minimum thickness that is equal to or less
than the value obtained in 3.2.4.2 (1).

(3) Exception: The construction of two 6-mm (1⁄4-n.) glass
plies plus 0.76-m (0.030-n.) interlayer shall be defined as 12
mm (1⁄2 in.).

3.2.5 Glass Types:
3.2.5.1 annealed (AN) glass, n—a flat, monolithic, glass lite

of uniform thickness where the residual surface stresses are
nearly zero as defined in Specification C 1036.

3.2.5.2 fully tempered (FT) glass, n—a flat, monolithic,
glass lite of uniform thickness that has been subjected to a
special heat treatment process where the residual surface
compression is not less than 69 MPa (10 000 psi) or the edge
compression not less than 67 MPa (9700 psi) as defined in
Specification C 1048.

3.2.5.3 heat strengthened (HS) glass, n—a flat, monolithic,
glass lite of uniform thickness that has been subjected to a
special heat treatment process where the residual surface
compression is not less than 24 MPa (3500 psi) or greater than
52 MPa (7500 psi) as defined in Specification C 1048.

3.2.5.4 insulating glass (IG) unit, n—any combination of
two glass lites that enclose a sealed space filled with air or
other gas.

3.2.5.5 laminated glass (LG), n—a flat lite of uniform
thickness consisting of two or more monolithic glass plies
bonded together with an interlayer material as defined in
Specification C 1172.

(1) Discussion—Many different interlayer materials are
used in LG. The information in this practice applies only to
polyvinyl butyral (PVB) interlayer or those interlayers that
demonstrate equivalency according to Appendix X10.

3.2.6 glass type factor (GTF), n—a multiplying factor for
adjusting the LR of different glass types, that is, AN, HS, or FT
in monolithic glass, LG, or IG constructions.

3.2.7 lateral, adj—perpendicular to the glass surface.
3.2.8 load, n—a uniformly distributed lateral pressure.
3.2.8.1 specified design load, n—the magnitude in kPa

(psf), type (for example, wind or snow) and duration of the
load given by the specifying authority.

3.2.8.2 load resistance (LR), n—the uniform lateral load
that a glass construction can sustain based upon a given
probability of breakage and load duration.

(1) Discussion—Multiplying the non-factored load (NFL)
from figures in Annex A1 by the relevant GTF and load share
(LS) factors gives the LR associated with a breakage probabil-
ity less than or equal to 8 lites per 1000.

3.2.8.3 long duration load, n—any load lasting approxi-
mately 30 days.

(1) Discussion—For loads having durations other than 3 s
or 30 days, refer to Table X6.1.

3.2.8.4 non-factored load (NFL), n—three second duration
uniform load associated with a probability of breakage less
than or equal to 8 lites per 1000 for monolithic AN glass as
determined from the figures in Annex A1.

3.2.8.5 glass weight load, n—the dead load component of
the glass weight.

3.2.8.6 short duration load, n—any load lasting 3 s or less.
3.2.9 load share (LS) factor, n—a multiplying factor de-

rived from the load sharing between the double glazing, of

TABLE 1 Glass Type Factors (GTF) for a Single Lite of
Monolithic or Laminated Glass (LG)

GTF

Glass Type Short Duration Load (3 s) Long Duration Load (30 days)

AN 1.0 0.43
HS 2.0 1.3
FT 4.0 3.0

TABLE 2 Glass Type Factors (GTF) for Double Glazed Insulating
Glass (IG), Short Duration Load

Lite No. 1
Monolithic Glass or

Laminated Glass Type

Lite No. 2
Monolithic Glass or Laminated Glass Type

AN HS FT

GTF1 GTF2 GTF1 GTF2 GTF1 GTF2

AN 0.9 0.9 1.0 1.9 1.0 3.8
HS 1.9 1.0 1.8 1.8 1.9 3.8
FT 3.8 1.0 3.8 1.9 3.6 3.6

TABLE 3 Glass Type Factors (GTF) for Double Glazed Insulating
Glass (IG), Long Duration Load (30 day)

Lite No. 1
Monolithic Glass or

Laminated Glass Type

Lite No. 2
Monolithic Glass or Laminated Glass Type

AN HS FT

GTF1 GTF2 GTF1 GTF2 GTF1 GTF2

AN 0.39 0.39 0.43 1.25 0.43 2.85
HS 1.25 0.43 1.25 1.25 1.25 2.85
FT 2.85 0.43 2.85 1.25 2.85 2.85

TABLE 4 Minimum Glass Thicknesses

Nominal
Thickness or
Designation,

mm (in.)

Minimum
Thickness,
mm (in.)

2.5 (3⁄32) 2.16 (0.085)
2.7 (lami) 2.59 (0.102)
3.0 (1⁄8) 2.92 ( 0.115)
4.0 (5⁄32) 3.78 ( 0.149)
5.0 (3⁄16) 4.57 (0.180)
6.0 (1⁄4) 5.56 (0.219)
8.0 (5⁄16) 7.42 (0.292)

10.0 (3⁄8) 9.02 (0.355)
12.0 (1⁄2) 11.91 (0.469)
16.0 (5⁄8) 15.09 (0.595)
19.0 (3⁄4) 18.26 (0.719)
22.0 (7⁄8) 21.44 (0.844)
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FIG. A1.3 (upper chart) Non-Factored Load Chart for 3.0 mm (1⁄8 in.) Glass with Four Sides Simply Supported
(lower chart) Deflection Chart for 3.0 mm (1⁄8 in.) Glass with Four Sides Simply Supported
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APPENDIX D:  

MATERIAL PROPERTIES 

 

 

D1. Glass 

The physical properties of glass is taken from EduPack Software as below: 

 

Density  : 2500 kg/m3 

Young’s Modulus : 7x1010 Pa = 10x106 psi 

Poisson’s Ratio : 0.23 

Yield Strength  : 4700 psi 

Tensile Strength : 4750 psi 

Compressive Strength : 56000 psi 

 

 

D2. Acrylic  

The physical properties of acrylic (PMMA) is taken from EduPack Software as below: 

 

Density  : 1200 kg/m3 

Young’s Modulus : 3x109 Pa = 4.4x105 psi 

Poisson’s Ratio : 0.39 

Yield Strength  : 9200 psi 

Tensile Strength : 9250 psi 

Compressive Strength : 15000 psi 
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