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Abstract 

 

Bacterial nitric oxide reductase (NorBC) is responsible for NO 

reduction in denitrifying bacteria. This enzyme contains a dinuclear 

heme/non-heme iron active site in which the heme and non-heme iron 

centers are separated by only 3-4 Å. The mechanism of NO reduction 

in NorBC is of current interest and several possible mechanisms have 

been proposed for this enzyme. This work is focused on elucidating 

the mechanism of NorBC through the interaction of heme and non-heme 

iron nitrosyl model complexes. A six-coordinate heme nitrosyl model 

for the heme b3 center of NorBC has been synthesized. Through the 

use of a covalently tethered imidazole moiety, this species is able 

to maintain a six-coordinate ferrous heme nitrosyl in solution 

without the need for excess base. Additionally, the non-heme iron 

site of NorBC has been modeled using ferrous complexes of 

substituted tris(2-pyridalmethyl)amine or di-2-picolyl amine 

derivatives. Covalent linkage of the heme and non-heme components 

yields a system which is structurally very similar to the NorBC 

active site. Reactivity studies between separate heme and non-heme 

iron nitrosyls as well as within the covalently linked complex are 

presented in an effort to elucidate the mechanism of NO reduction by 

NorBC. In particular, our results point away from a radical-based N-

N coupling strategy as previously proposed but rather suggest a 

redox driven process. Finally, as enzymatic intermediates have yet 

to be isolated, the hyponitrite-bridged complex [(OEP)Fe]2(μ-N2O2) 

has been examined as a model for bound N2O2
2- within the dinuclear 

NorBC active site. 
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Chapter 1 

Introduction 

Historically, nitric oxide (NO) was often thought of as an environmental 

pollutant, due to its toxic and corrosive properties. NO is generated by the 

burning of fossil fuels and is a major component of automotive exhaust. 

Together with its homolog nitrogen dioxide (NO2), it is one of the main 

contributors to smog and ozone depletion. NO is poisonous to humans at very 

low concentrations of only 100 ppm in air. Prior to the 1980s, NO was mostly 

used as a ‘spin-label probe’ to study the interactions of ferrous heme centers 

with O2 in a variety of proteins. However, in the early 1980s it was 

discovered that the human body is capable of NO biosynthesis for the purpose 

of immune defense and signaling.1-7 In 1992, NO was selected as the molecule of 

the year by the magazine Science.8 Six years later, the Nobel Prize in 

Medicine was awarded to Furchgott, Ignarro and Murad for the discovery that 

nitric oxide is a signaling molecule in the cardiovascular system.9-11  

 

1.1. Nitric Oxide Signaling and Biosynthesis 

The biosynthesis of nitric oxide (NO) within humans and other mammals is 

facilitated by nitric oxide synthase (NOS) isozymes, which belong to the 

cytochrome P450 superfamily.12  These enzymes are found throughout the human 

body and occur as three distinct classes which can be defined by their 

particular location and function.4, 13 Each isozyme contains a similar heme 

active site which is responsible for the oxidation/hydroxylation of the 

substrate through heme-bound O2-derived oxidants. Of the three isozymes, 

neuronal (n-) and endothelial (e-) NOS are found within neuronal cells in the 

brain and endothelial cells of inner artery walls, respectively, and are 

involved in signaling. Both of these NOS isozymes are sometimes referred to as 

‘constitutive’ NOS (cNOS).14 Constitutive NOS are constantly present in cells 

and are strictly regulated by the calcium ion concentration via calmodulin. 

Neuronal and endothelial NOS both produce NO as a signaling agent, which is 

responsible for nerve signal transduction, in the case of n-NOS, and blood 
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pressure control, in the case of e-NOS. For these applications, NO 

concentrations in the nanomolar range are used in order to avoid undesired 

toxic effects. Aside from signaling, NO is also a very effective immune 

defense agent. For example, it has been shown that NO exposure kills > 99% of 

Mycobacterium tuberculosis cells at concentrations of < 100 ppm.15 In order to 

take advantage of this efficient antibacterial property, inducible (i-) NOS is 

used by macrophages to generate NO in micromolar concentrations as a means of 

immune defense. In contrast to the constitutive NOS enzymes discussed above, 

i-NOS is only expressed in response to bacterial infections, and is de facto 

not regulated by calmodulin. The use of NO in immune defense, however, can 

also lead to negative health effects: excessive NO production, for example in 

the case of severe or chronic bacterial infections, can lead to nitrosative 

stress, which, just like oxidative stress, has been related to many health 

problems16 including the initiation of cancer,17 cell damage and death (for 

example in stroke), atherogenesis, insulin-dependent diabetes mellitus,18-20 

septic shock,21-23 sporadic Parkinson’s disease,24-27 and possibly multiple 

sclerosis.28   

1.2. Detoxification of NO in Biological Systems 

Due to its toxicity at high (μM) concentrations, NO production is tightly 

regulated in mammalian species. This is done primarily through control of the 

NOS isozymes. However, unlike bacteria and fungi, mammals lack an efficient 

means of NO detoxification. The primary means of NO detoxification in mammals 

is through NO dioxygenation (NOD), in which oxygenated Hb or Mb react with 

free NO to give nitrate and metHb/Mb.
29-30

 However, this process is only viable 

under healthy O2 levels. Excessively high concentrations of NO will deplete 

dioxygen through the formation of nitrate, rendering the NOD mechanism 

useless. Additionally, NO can be scavenged by ferrous deoxyHb/Mb.
31
 Due to the 

extremely high binding constant of NO to ferrous heme centers, deoxygenated Hb 

and Mb make excellent NO scavengers.32 Unfortunately, as with NOD, elevated NO 

concentration leads to an abundance of Hb/Mb-NO and inhibits NO scavenging. 

 

1.3. Bacterial Nitric Oxide Reductase (NorBC) 

Soil dwelling bacteria responsible for the breakdown of nitrogen oxides 

play a vital role in the greater nitrogen cycle. Such bacteria exist in mainly 

anaerobic conditions and thus must possess a method of respiration that does 
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not require the presence of dioxygen. To this end, denitrifying bacteria such 

as Pseudomonas stutzeri, Paracoccus halodenitrificans, and Paracoccus 

denitrificans contain a series of enzymes responsible for the stepwise 

reduction of nitrate to dinitrogen following the overall equation:33-34   

2NO3
- + 10e- + 12H+ � N2 + 6H2O    (3) 

The stepwise equation for bacterial denitrification is then: 

2NO3
- 
� 2NO2

- � 2NO � N2O � N2    (4) 

wherein each step is catalyzed by different classes of enzymes. Through this 

systematic reduction of nitrate, these bacteria not only generate the proton 

gradient necessary for respiration, but also recycle plant waste and excess 

fertilizer into dinitrogen, completing the nitrogen cycle. Of particular 

interest is the detoxification of nitric oxide by bacterial NOR to yield less 

toxic nitrous oxide.35 The overall reaction requires two equivalents of NO and 

corresponds to a net two-electron reduction: 

2NO + 2e- + 2H+ � N2O + H2O    (5)   

There are three distinct classes of bacterial NORs that are defined by 

their electron source. Of these species, those which derive their electrons 

from cytochrome c (cNORs) are most commonly encountered.33, 36 Other types, qNOR 

and qCuANOR, derive their electrons from quinones such as ubihydroquinone or 

menahydroquinone.37-38 These so called alternative NORs will be discussed 

Figure 1.1. Crystal structure of NorBC in the ferric oxo-bridged resting 

state. The NorC and NorB subunits are shown in green and red, respectively. 

Heme cofactors are shown in blue. Generated using pymol from PDB 3O0R. 
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separately at the end of this section as most of what is known about bacterial 

NORs has been derived from the two-subunit cNOR enzyme, NorBC. Commonly 

purified from P. denitrificans, NorBC is generally representative of 

denitrifying bacterial NORs as all three varieties contain the same basic 

active site.33, 39 Structurally, NorBC is a heterodimer (αβ) composed of a NorB 

and a NorC component as the name suggests (see Figure 1.1). The NorC subunit 

is a small 17 kDa protein which is primarily responsible for electron 

transfer. This component contains a single low-spin heme c redox center and 

shuttles electrons to NorB where the active site is located. The NorB subunit 

is a 56 kDa protein containing a redox active low-spin heme b which functions 

as the electron transfer center to the actual active site. The catalytically 

active di-iron site is also contained within NorB and is comprised of a 

second, high-spin heme b, termed heme b3 due to its similarity to heme a3 from 

cytochrome c oxidase, and an adjacent non-heme iron center, termed FeB (vide 

infra).34 

NorBC Active Site Structure 

In the crystal structure of the oxidized, resting form of the protein, the 

Figure 1.2. Crystallographically determined active site structure of NorBC. The non-

heme FeB (top) is coordinated by three His residues and a single Glu. The heme b3 

(bottom) contains an axial His residue and is bridged to the FeB center through an oxo-

bridge in the ferric resting state. Generated using pymol from PDB 3O0R. 
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non-heme FeB site is coordinated by three histidine residues, a glutamic acid, 

and an oxo bridge connecting it to the heme b3 center in the di-ferric state 

of the active site (see Figure 1.2).40 Several mechanisms have been proposed 

for NO reduction by NorBC. These include either a trans-type mechanism in 

which NO binds to both the heme b3 and the non-heme FeB sites prior to 

formation of N2O or a cis-type reaction where reduction takes place at a 

single iron center (see Scheme 1.1, below).41-43 The details of this mechanism 

are currently being heavily investigated.44-49 

Interestingly, detailed analyses of the amino acid sequences of NorBCs 

from different organisms50-53 along with spectroscopic investigations54-56 have 

shown that these enzymes are closely related to the respiratory heme-copper 

oxidases (HCOs) like cytochrome c oxidases (CcOs).57 Divergent evolution of 

these two enzyme classes from a common NOR ancestor is the generally accepted 

explanation for these genetic, structural, and chemical similarities.58-59 Due 

to this similarity, CcO was used as a blueprint for NorBC prior to its 

crystallographic identification in 2010.40 A manifestation of this similarity 

is seen in the fact that HCOs are able to perform NOR chemistry and NorBC is 

able to perform HCO chemistry, albeit at significantly diminished capacity 

(see Table 1.1). 

Table 1.1. Comparison of the catalytic activity for NOR and HCO enzymes. 

Enzyme Organism 
NO reduction rate 

(mol NO/ mol min) 

O2 reduction 

rate (mol O2/ 

mol min) 

Reference 

Cba3O T. thermophilus 3.0 ± 0.7 (20 ºC)  60 

Caa3O T. thermophilus 

Bovine midochondria 

32 ± 8 (20 ºC) 

3870 (37 ºC) 

60-61, 62 

Cbb3O P. stutzeri 100 ± 9 (20 ºC)  63 

CboO E. coli  4545 (35 ºC) 62 

CbdO E. coli  3660 (35 ºC) 62 

     

NorBC P. stutzeri 2200 (30 ºC)  64 

NorBC P. denitrificans 4020 (20 ºC) 600 (20 ºC) 65 

 

Mechanism of NO Reduction by NorBC 

The extremely low midpoint potential (60 mV vs. SHE) of heme b3 has been 

proposed to act as a barrier against the formation of a stable (catalytically 

inactive) ferrous heme-nitrosyl complex.57, 66 On the other hand, EPR spectra 

recorded for the fully reduced enzyme from Pseudomonas aeruginosa in single 

turnover studies show the presence of a ferrous heme-nitrosyl species upon 
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addition of NO gas, indicating that a ferrous heme-nitrosyl is indeed involved 

in NorBC catalysis.67 In general, EPR spectroscopy is a powerful technique for 

the identification of iron nitrosyl complexes in biology. The EPR spectra of 

heme-nitrosyls show characteristic hyperfine splittings, due to the inherent 

nuclear spin of either 14N or 15N (I = 1 and I = ½, respectively) of the bound 

NO.68 EPR-spectral features of reduced NorBC in the presence of NO were 

observed at g values of 2.08 and 2.012, the latter showing a well-resolved 

three-line hyperfine pattern (A = 45.1 MHz) of 14NO. These results indicate the 

presence of a five-coordinate ferrous heme b3 nitrosyl complex, where the 

ferrous iron is bound to NO, but the bond to the proximal histidine is 

broken.67, 69 

While it has been suggested that obtaining a fully reduced enzyme is not 

biologically feasible due to the low reduction potential of heme b3 as 

mentioned above,57, 66 it is likely that such a state is accessible in the 

presence of NO, in agreement with the spectroscopic results described above. 

Here, the energetically favorable formation of the Fe(II)-NO species may 

result in an effective reduction potential greater than what is observed in 

the absence of NO.70 To further complicate the matter, recent reports by 

Watmough and coworkers indicate that the redox potential of the non-heme FeB 

may actually be quite similar to that of heme b3.
39, 71 

EPR spectroscopic investigations under turn-over conditions further reveal 

the formation of a ‘high-spin’ non-heme ferrous nitrosyl with S = 3/2 ground 

state.55 In agreement with this, addition of NO to NorBC from Pseudomonas 

aeruginosa results in the growth of a g = 4 signal in the EPR spectra, which 

is consistent with an S = 3/2 complex.67 These signals are characteristic of 

ferrous non-heme iron nitrosyls in which the iron center transfers one 

electron to NO. The result of this is a high-spin ferric iron center (S = 

5/2), antiferromagnetically coupled to the bound NO- (S = 1) ligand, which 

gives a total spin of S = 3/2 for the complex.72 In addition to the g = 4 

signal described in this study, the characteristic g = 2 signal of a 5C 

ferrous heme-nitrosyl complex was observed in the EPR spectra of the P. 

aeruginosa enzyme as mentioned above.67 However, as the diiron active site of 

NorBC is likely magnetically coupled, formation of a dinitrosyl adduct during 

turnover would be expected to result in an EPR-silent intermediate. It is 

therefore possible that the observed heme and non-heme iron nitrosyls are 

formed non-productively and do not represent true intermediates in the 

catalytically active enzyme. In terms of vibrational spectroscopy, resonance 
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Raman73 and FT-IR74 data of NorBC further indicate binding of a second molecule 

of NO to the ferrous heme center, in agreement with the extremely large 

association constants of ferrous hemes for NO.32 In summary, these NO binding 

studies point toward the formation of both ferrous heme-nitrosyls and ferrous 

non-heme iron-NO complexes during turnover of NorBC. However, it is yet 

unclear whether the observed species are relevant intermediates in the 

catalytic cycle.   

The molecular mechanism of NO reduction by NorBC is generally not well 

understood. In order to generate N2O, two NO molecules must interact in such a 

way as to facilitate N-N bond formation. Subsequent scission of one of the N-O 

bonds then yields N2O and a remaining oxygen atom, which is either protonated 

to form a hydroxy/water species or remains unprotonated as a µ-oxo bridge 

between the two catalytic iron centers.75 The question is therefore how the two 

NO molecules initially bind to the diferrous active site of the enzyme, and 

subsequently react to form the necessary N-N bond. Currently, there are two 

Scheme 1.1. General scheme of proposed cis and trans mechanisms for NO reduction by 

NorBC. The diferric oxo-bridged species (right) has been crystallographically 

characterized. 
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major theories on this matter, which are commonly described as the cis and 

trans mechanism as shown in Scheme 1.1.   

In the case of the trans mechanism in Scheme 1.1, top,76 two molecules of 

NO are bound to the diferrous active site, and then a radical type N-N bond 

formation is postulated. After release of N2O, the two ferric iron centers are 

bridged by an oxo group.54, 75-77 However, the detailed enzymatic mechanism 

involves many steps, and due to the lack of detailed kinetic studies, the rate 

limiting step is not well defined.34, 76 In particular, no intermediate of this 

mechanism has ever been observed, which renders its central part, the N-N 

coupling, speculative. From DFT calculations78 and in analogy to the proposed 

mechanism for the reduction of NO by HCOs,79-81 a bridging hyponitrite complex 

is proposed as the intermediate. Interestingly, a corresponding model complex 

where hyponitrite bridges two hemes has recently been structurally 

characterized (see Chapter 5).82 Alternative cis mechanisms have also been 

proposed, where, for example, only one of the two metal sites (heme or non-

heme) reacts directly with NO, whereas the other metal only serves as an 

electron reservoir.34, 83-85 Another important question, the coordination number 

of the heme-nitrosyl, is an additional issue: since ferrous heme-nitrosyls are 

notoriously stable and unreactive,86 the proximal His ligand could help 

activate bound NO for catalysis. Due to the ‘sharing’ of the dz2 orbital of 

iron(II) between the proximal His (imidazole) ligand and NO, this His ligand 

has the potential to regulate the electronic structure of NO bound in trans 

position to the ferrous heme.56, 87-89  

Importantly, the observation of both ferrous heme b3 and non-heme FeB 

nitrosyls during enzyme turnover as described above provides strong evidence 

in favor of the trans mechanism.67, 75 However, due to spin coupling between the 

ferrous heme and non-heme iron nitrosyl complexes, EPR cannot observe 

intermediates in which the two bound NO molecules begin to interact. Here, 

antiferromagnetic coupling between the S = 1/2 heme b3 nitrosyl and the S = 

3/2 FeB(II)-NO complex leads to an EPR-silent S = 1 species. It is therefore 

unclear whether the observed 5C ferrous heme-nitrosyl (S = 1/2) and ferrous 

non-heme nitrosyl (S = 3/2) complexes are in fact part of the catalytic 

mechanism of NorBC, or whether they reflect catalytically non-productive 

binding modes of NO. Because the two iron centers within the active site 

pocket of NorBC are only about 3.5 Å apart (in the diferric µ-oxo complex),34 

N-N coupling would certainly be feasible with each NO bound to a different 

iron center. 
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In the cis mechanism shown in Scheme 1.1, both equivalents of NO interact 

at the same iron center, either heme b3 or FeB. Support for both of the 

possible cis mechanisms comes mostly from mechanistic insight obtained for 

other NO reducing enzymes. Fungal NO reductase (P450nor) contains a single 

heme active site without the presence of a neighboring non-heme iron center. 

As a result, both equivalents of NO interact at the single heme site to 

generate the reduced product N2O.
90-91 The possibility of a cis heme b3 mechanism 

was also postulated based on UV-Visible absorption measurements on the 

interaction of fully reduced NorBC with NO.92 The proposal of two NO molecules 

binding and reacting at the FeB site takes root from cytochrome bo3 studies, 

which proposed NO reductase activity of this enzyme as a result of reductive 

NO coupling at the CuB site of the enzyme.
84 Due to the striking similarity 

between the active site structures of NorBC and cytochrome bo3 (vide supra), 

the cis FeB mechanism appeared plausible. Casting doubt on the cis mechanisms, 

however, is the fact that both heme b3 and FeB ferrous nitrosyl species have 

been observed during NorBC turnover using EPR spectroscopy, as described 

above.55, 69,67, 75 Additionally, the formation of two equivalents of nitroxyl 

(NO-) at the non-heme FeB site via two consecutive electron transfer steps from 

the heme b3 is unlikely. As the enzyme has been shown to function from the 

fully reduced FeII/FeII state and reach a diferric oxo-bridged resting state, 

the stepwise formation of two equivalents of NO- would thus represent a four-

electron process. Such a scenario is inconsistent with experimental evidence. 

One other intriguing possibility is that the non-heme iron site 

transiently binds NO en route to formation of the observed heme-nitrosyl.92 

Evidence for this idea comes from flow-flash experiments utilizing CO-bound 

fully reduced NorBC coupled to optical absorbtion spectroscopy.  The results 

indicate that NO binding to the heme b3 is not dependent on bulk NO 

concentration. This observation points to the possibility of NO binding to 

other sites within the protein prior to coordinating to the active site heme. 

It could be envisioned that upon flash removal of CO, NO is already bound in 

the active site pocket, and thus, heme-nitrosyl formation is not dependent on 

the bulk NO concentration. A likely location for NO binding in this sense 

would be the non-heme FeB center. Here, a ferrous non-heme iron-nitrosyl would 

not be experimentally visible in the obtained optical spectra, which are 

dominated by the intense absorption bands of the heme b3. While these data 

suggest binding of NO to both the heme and the non-heme iron center of the 

active site, this does not necessarily point towards a trans-type mechanism. 
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In fact, such a scenario opens the possibility of FeB acting as an NO holding 

site, which simply supplies NO to the active heme b3 where NO is then reduced 

in accordance with the cis heme b3 mechanism.
92 

Also in accordance with the reduction of NO via a cis heme b3 mechanism 

are DFT studies performed by Siegbahn and coworkers.78, 93  In an earlier 2006 

study, the preferred coordination environment of the non-heme FeB center was 

investigated along with the mechanism by which NO reduction occurs based on 

calculated free energy profiles. Comparison of octahedral versus tetrahedral 

FeB complexes reveals an undesirable stabilization of key reaction 

intermediates in the tetrahedral model. This initial study favors an 

octahedral coordination of FeB and a cis heme b3 reaction pathway. A more 

recent publication has re-examined the mechanism of NO reduction by NorBC 

using hybrid DFT calculations and an active site model based on the recently 

published crystal structure of NorBC.40 Here, a comparison of trans versus cis 

heme b3 mechanisms again favors the cis pathway. More specifically, the 

hyponitrite intermediate formed from the cis heme b3 mechanism leads to a much 

more stable dianionic cis bound N2O2
2- as compared to trans-bound hyponitrite 

intermediate which is disfavored by 16.9 kcal/mol over the diferric oxo-

bridged resting state. 

1.4.  Scope of Thesis 

This thesis is focused on the interaction of nitric oxide with ferrous 

iron complexes with the goal of modeling and elucidating the mechanism of NO 

reduction in bacterial nitric oxide reductase. Chapter 2 focuses on our 

efforts to model the heme b3 center of NorBC using synthetic porphyrin model 

complexes. Here, a tetraphenylporphyrin macrocycle is modified to contain a 

covalently bound imidazole tether at one of the phenyl positions in order to 

mimic the histidine residue found in NorBC. The corresponding six-coordinate 

synthetic heme nitrosyl adduct is then characterized in detail using a variety 

of spectroscopic techniques. The work presented in Chapter 2 was performed in 

conjunction with Dr. V. K. K. Praneeth who developed the initial synthesis of 

the porphyrin ligands and corresponding nitrosyl complexes along with 

preliminary spectroscopic characterization. Fitting of the EPR spectra was 

performed by L. E. Goodrich. Chapter 2 is adapted with permission from Berto, 

T. C.; Praneeth, V. K. K.; Goodrich, L. E.; Lehnert, N. J. Am. Chem. Soc. 

2009, 131, 17116-17126. 
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Chapter 3 focuses on model complexes based on the non-heme iron (FeB) 

center found in the active site of NorBC. This chapter is divided into two 

sections. Section 1 employs iron nitrosyl adducts of the BMPA-Pr ligand, first 

synthesized in our laboratory by Y. Murata and M. B. Hoffman, with counter 

ions of OTf-, Cl-, and ClO4
-. Here, crystal structures and detailed 

spectroscopic analysis are presented (X-ray crystallographic analysis 

performed by K. B. Landenberger). The results indicate that NorBC may be able 

to modulate the degree of NO- character at the FeB center through hydrogen 

bonding or other effects that moderate the effective nuclear charge of iron. 

Section 1 of chapter 3 is adapted with permission from Berto, T. C., Hoffman, 

M. B.; Murata, Y.; Landenberger, K. B.; Alp, E. E.; Zhao, J.; Lehnert, N. J. 

Am. Chem. Soc. 2011, 133, 16714-16717. Section 2 of chapter 3 focuses on 

alternative non-heme systems with ligands such as BEPA-Pr and BMPA-PhO. The 

corresponding ferrous non-heme iron nitrosyl complexes are again analyzed 

spectroscopically in an attempt to obtain information about the mechanism of 

NO reduction by NorBC. 

Chapter 4 focuses on the interaction of the heme and non-heme iron 

nitrosyls discussed in chapters 2 and 3. Section 1 of this chapter also 

contains reactivity studies between various heme and non-heme iron nitrosyls 

as well as the reaction of these complexes with radical species. Section 2 

contains preliminary results obtained for a covalently linked heme/non-heme 

diiron complex which represents a full synthetic model for the diiron active 

site of NorBC. 

Chapter 5 focuses on the model complex Fe2OEP2(N2O2) which represents a 

model for the proposed hyponitrite intermediate formed during NO reduction by 

NorBC. In section 1 the complex is introduced and its spectroscopic properties 

are presented. Section 2 focuses on its decomposition pathways which have been 

investigated using DFT, UV-Visible absorption, and EPR techniques. Analysis of 

the decomposition pathway sheds light on the opposing mechanism proposed for 

NorBC where hyponitrite is formed by the coupling of two NO molecules. The 

work presented in chapter 5 represents a collaboration with Dr. George 

Richter-Addo at the University of Oklahoma. The compound [(OEP)Fe]2(μ-N2O2) 

studied in this chapter was synthesized by N. Xu in the Richter-Addo 

laboratory. Our role was then the detailed characterization and investigation 

of the reactivity of [(OEP)Fe]2(μ-N2O2). A manuscript is currently in 

preparation for this work. 
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Chapter 6 focuses on a tangent DFT study which was preformed to elucidate 

the potential role of Hb/Mb-NO2 in hypoxic signaling. Here, the interaction of 

NO with a simulated model of Hb/Mb-NO2 shows that N2O3 formation is 

energetically feasible provided that nitrite is coordinated through one of its 

O-atoms to the heme center. Chapter 6 is adapted with permission from Berto, 

T. C.; Lehnert, N. Inorg. Chem. 2011, 50, 7361-7363. 
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Chapter 2 

Synthetic Models for the Heme b3 Site of NorBC 

Membrane-bound proteins such as NorBC are notoriously difficult to 

isolate. Additionally, high enzymatic turnover rates and the inability to 

control proton donation make it a significant challenge to identify and 

characterize reaction intermediates for proton-dependent reactions. As a 

result, synthetic model complexes which are stable in organic solvents and 

amicable to a wide variety of spectroscopic analyses are ideally suited to the 

study of the mechanism of NO reduction by NorBC. In this chapter, a series of 

substituted tetraphenylporphyrin type macrocycles (TMP or To-F2PP) with 

covalently attached N-donor ligands (pyridine or imidazole linker) are 

reported.  Linkers with varying chain lengths and designs have been applied to 

systematically investigate the effect of chain length and rigidity on the 

binding affinity of the linker to the corresponding Fe(II)-NO heme complexes.  

The binding of the linker is monitored in solution using a variety of 

spectroscopic methods including UV-Vis absorption, EPR, and IR spectroscopy.  

Both the N-O stretching frequency and the imidazole 14N hyperfine coupling 

constants show a good correlation with the Fe-N-donor bond strength in these 

systems.  The complexes with covalently attached pyridyl and alkyl imidazole 

ligands only exhibit weak interactions of the linker with iron(II).  However, 

the stable six-coordinate complex [Fe(To-F2PP-BzIM)(NO)] (4) is obtained when 

a rigid benzyl linker is applied.  This complex exhibits typical properties of 

six-coordinate ferrous heme-nitrosyls in which an N-donor ligand is bound 

trans to NO, including the Soret band at 427 nm and the typical nine line 14N 

hyperfine splitting in the EPR spectrum.  A crystal structure has been 

obtained for the corresponding zinc complex.  This work represents the first 

systematic study on the requirements for the formation of stable six-

coordinate ferrous heme nitrosyl complexes in solution at room temperature in 

the absence of excess axial N-donor ligand. Adapted with permission from 

Berto, T. C.; Praneeth, V. K. K.; Goodrich, L. E.; Lehnert, N. J. Am. Chem. 

Soc. 2009, 131, 17116-17126. 



 19 

2.1. Six-Coordinate Ferrous Heme Nitrosyls 

Introduction 

Heme proteins are involved in many important biological processes, 

including electron transfer, catalysis, and signaling. Many of these functions 

involve the interaction of ferrous hemes with diatomics, in particular O2, NO, 

and CO.1 Because of the exceptional significance of heme diatomic 

interactions, much research has been devoted to the synthesis of model 

complexes for the corresponding heme proteins. In many cases, a proximal 

histidine is present as the trans ligand to the diatomic bound at the distal 

site.  Prominent examples of this structural motif are found in the O2 

transport and storage proteins hemoglobin (Hb) and myoglobin (Mb), the NO 

sensor soluble guanylate cyclase (sGC), and peroxidases.2  A similar active 

site with a copper center in close proximity is also found in cytochrome c 

oxidase (CcO).  Here, the heme-copper center binds and reduces dioxygen, and 

thus facilitates respiration within living organisms.  Finally, the active 

site of bacterial nitric oxide reductase (NorBC) contains a heme with axial 

histidine coordination, which has been proposed to influence the binding and 

reactivity of NO bound at the distal site.3 Because of this, many synthetic 

model complexes, for example those of Mb, Hb, CcO, and NorBC, have been 

equipped with pyridine (Py) or imidazole (IM) type ligands that are covalently 

tethered to the porphyrin core in order to model this proximal histidine.4   

Model systems of biological hemes that include the proximal histidine 

usually consist of a modified synthetic porphyrin with a covalently tethered 

N-donor ligand.4 Original work in this field, carried out by Traylor and 

coworkers, led to the development of the so called “cyclophane” porphyrins5 in 

which alkyl imidazole or thiolate linked chains were anchored at the β-pyrrole 

positions of protoheme.4c, 6 These models served as mimics for the active sites 

of globins and peroxidases. In separate studies, tethers at the β-pyrrole 

positions of porphyrin ligands have also been used to covalently connect two 

separate hemes via peptide linkages.7 Work by Dolphin and coworkers focused on 

the investigation of the electronic structure of such dimeric porphyrin 

species as a function of the length of the (CH2)n tether (n = 0-8).
8 Later, 

Momenteau and coworkers were able to improve the solubility of imidazole-

tethered protohemes through the use of propionic acid side chains.6a, 9 While a 

considerable amount of insight has been gained from these β-pyrrole and 

propionic acid tethered model systems, they have been shown to exhibit 
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undesirable intermolecular binding through the tethered donor ligands.9 As an 

alternative, the use of tetraphenylporphyrin derivatives offers a convenient 

strategy for attaching such tethers by substituting the ortho positions of the 

meso-phenyl groups available in these systems. These models offer the distinct 

benefit that, due to the perpendicular orientation of the phenyl rings with 

respect to the porphyrin plane, ortho-phenyl substituents are conveniently 

directed towards the axial positions of the heme center and thus, 

intermolecular interactions are avoided. Collman and coworkers have shown the 

utility of such systems through their use of multi-tethered “picket fence 

porphyrins” which employ either ether or amide linkages.10 Walker and coworkers 

have also utilized such porphyrin model systems to elucidate the properties of 

cytochromes c, b, and a3 with respect to axial N-donor ligand geometry.
4d, 11 

Recently, model systems from the Collman, Karlin, and Naruta groups have 

continued to exploit the effectiveness of meso-phenyl tethered porphyrin 

systems in their models for the active site of cytochrome c oxidase.12 

Our particular interest is focused on bacterial nitric oxide reductase 

(NorBC) which is an enzyme found in soil dwelling bacteria that is responsible 

for the conversion of nitric oxide (NO) to nitrous oxide (N2O) via a two-

electron reduction:  

                         2NO + 2e- + 2H+ ���� N2O + H2O                        (1) 

This enzyme fulfills a vital role in the process of denitrification where 

nitrate is reduced in a stepwise fashion to dinitrogen.13 The site of catalytic 

NO reduction within the enzyme consists of a dinuclear iron center with both 

heme and non-heme type coordination. The non-heme iron site has three 

histidine ligands and has been proposed to also contain glutamate ligation.14 

Located 3.5 Å from the non-heme iron is a heme b site with additional proximal 

histidine ligation similar to that seen in the heme active sites of Hb and Mb. 

The bi-metallic heme/non-heme motif is catalytically active in the diferrous 

form.13 Detailed investigations into the properties and reactivity of the heme 

component of the active site of NorBC could, in principle, be based on the Mb 

and Hb model complexes described above. However, in the case of NorBC, the 

interaction of NO, rather than O2 or CO, with ferrous heme model complexes 

needs to be studied to arrive at a detailed structural and mechanistic 

understanding of this enzyme. This has important consequences for the design 

of model systems as the generation of six-coordinate (6C) ferrous heme 

nitrosyls constitutes a significant challenge.   
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The question of axial ligand binding is of direct relevance for the reac-

tivity of ferrous heme nitrosyls. It has been shown that the trans ligand 

modulates the amount of radical character on the NO, and hence, the chemical 

behavior of these complexes. This is evident from spectroscopic studies 

including EPR, MCD, vibrational spectroscopy (coupled to normal coordinate 

analysis), and DFT calculations on five- and six-coordinate ferrous heme 

nitrosyl model systems.15 In five-coordinate (5C) complexes a strong Fe-NO σ-

bond is present between the singly occupied π* orbital of NO and dz2 of 

Fe(II).15c, d Additional backbonding is observed between the dxz and dyz orbitals 

of iron and the remaining unoccupied π* orbital of NO. The strong σ-bond and 

substantial sharing of the unpaired electron via the dz2 orbital of iron gives 

rise to the strong σ-trans interaction between NO and the proximal N-donor 

ligand in the corresponding 6C complexes. This has two consequences: (a) the 

binding of axial ligands trans to NO is weak, and (b) upon coordination of an 

N-donor ligand trans to NO, the Fe-NO bond is weakened and the unpaired 

electron is pushed back from the iron(II) to the NO ligand resulting in an 

electronic structure with Fe(II)-NO(radical) character in the 6C case.15c, d In 

this way, the N-donor ligand could help to activate the bound NO for 

catalysis. This is particularly relevant for the activation of NO in NorBC 

since ferrous heme nitrosyls are intrinsically stable and unreactive.16  

To investigate this point further, 6C ferrous heme nitrosyl model 

complexes that are stable in solution at room temperature are needed. This is 

challenging because the binding constants of N-donor ligands trans to NO are 

generally very small (Keq ~ 1 to 30 M
-1) due to the σ-trans effect detailed 

above.15c, 17 This is very different compared to CO and O2 complexes where such a 

trans effect is lacking. Correspondingly, a recent report on Fe(II)-NO 

complexes of protoheme with covalently linked IM shows that these complexes 

are indeed only 5C in solution.18 In fact, only one model complex is known so 

far where the covalently tethered N-donor ligand seems to remain bound to 

iron(II) after coordination of NO without the formation of 5C species in 

solution.19 Systematic investigations to optimize axial ligand binding proper-

ties in tailed ferrous heme nitrosyl model systems are completely lacking. It 

is apparent from the literature that this issue has not been given enough 

consideration, in many cases, where it has been simply assumed that the 

tethering of an N-donor ligand will always lead to coordination with the 

central metal ion. In order to advance the general design of 6C Fe(II)-heme NO 
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model complexes without the undesirable necessity to add a large excess of the 

axial ligand (which is unfavorable for reactivity studies)15c, a detailed 

evaluation of various tailed porphyrin designs is required. This study 

represents the first step towards a much needed systematic investigation into 

the binding properties of tethered N-donor ligands in 6C ferrous heme 

nitrosyls in solution at room temperature. 

 

Results and Discussion 

In order to investigate the formation of a 6C ferrous heme nitrosyl in 

solution according to the equation:  

                   FeII(NO) + IM ���� Fe
II
(NO)(IM)   (IM = imidazole)          (2) 

it is most important to perform room temperature measurements. This is because 

the binding of axial ligands is entropically favored at low temperature, due 

to the temperature dependent component of the Gibbs-Helmholtz equation. 

Methods of assessing the strength of the N-donor coordination to the heme 

center which require low temperatures are thus not a definitive means of 

determining the room temperature behavior of these systems. They can, however, 

still provide a means by which to compare different systems. In this study, we 

use room temperature UV-Vis and IR spectroscopy, coupled to low temperature 

EPR spectroscopy, to access the binding properties of our tethered N-donor 

ligands. In the case of UV-Vis spectroscopy, the Soret band maximum shows a 

direct correlation with the coordination number of the iron center. 5C heme 

nitrosyls show Soret band positions of about 405 nm. With IM present, the 

Soret maximum shifts to 426 nm and the complex is 6C. A corresponding, direct 

correlation is also observed between the N-O stretching mode ν(N-O) and the 

coordination number: 5C complexes exhibit ν(N-O) around 1675 – 1700 cm-1, 

whereas in 6C species, ν(N-O) drops to ~1630 cm-1 in the presence of IM. 

Additionally, low temperature EPR spectroscopy can be an effective probe of N-

donor coordination to ferrous heme nitrosyls.1 Species which are 5C in 

solution show g values of 2.10, 2.06, and 2.01 as well as a three line 

hyperfine splitting on g(min). On the other hand, 6C ferrous heme nitrosyls 

with axial N-donor coordination will exhibit smaller g values around 2.08, 

2.00, and 1.97 as well as a distinctive nine line hyperfine splitting observed 

on g(mid).  Since EPR spectroscopy requires low (at least liquid nitrogen) 

temperatures, which, as discussed above, entropically favors the coordination 

of the axial N-donor ligand, it can be expected that N-donor binding at room 

temperature will generally be somewhat weaker than determined from EPR. 
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Finally, Raman spectroscopy could potentially be applied to ferrous heme 

nitrosyls to characterize the strength of the Fe-NO bond via measurement of 

the ν(Fe-NO) stretch. However, photo-decomposition is a serious problem in 

this case when these complexes are exposed to the laser radiation required for 

Raman measurements. 

In this study, ‘tailed’ porphyrins with covalently attached imidazole (IM) 

or pyridine (Py) ligands have been investigated with the specific aim of 

determining the requirements for the generation of truly 6C ferrous heme 

nitrosyl model complexes in solution at room temperature. These tailed 

porphyrins are preferred over the use of excess free IM, because they offer 

(a) control over the molar stoichiometry, (b) defined structures of the 

complexes, and (c) prevention of side reactions due to the presence of free 

axial ligand.20 The first consideration involved in designing a 6C ferrous heme 

nitrosyl complex is the choice of the axial N-donor ligand. We started this 

investigation with a model complex based on H2TMP (TMP = 
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N-donor ligands employed in this study. 
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tetramesitylporphyrin) with a covalently attached Py (ligand L1 in Figure 

2.1). Reaction of the ferric precursor with NO gas in the presence of a small 

amount of methanol generates the corresponding ferrous heme nitrosyl complex. 

 However, the compound obtained, [Fe(TMP-mPy)(NO)] (1), forms only a 5C 

complex in solution, i.e. the Py does not bind to the Fe(II)-NO center. This 

is evident from the low-temperature (LT) EPR data of 1, shown in Figure 2.3, 

where a characteristic 5C spectrum with g values of 2.10, 2.04, and 2.01 as 

well as a three line 14N hyperfine pattern on the smallest g value, g(min) is 

observed.1 The room temperature FT-IR spectrum of 1 exhibits ν(NO) at 1694 cm-

1, in agreement with values of other 5C complexes such as [Fe(TPP)NO] and 

[Fe(TMP)NO] at 1697 cm-1 and 1676 cm-1, respectively.21 Hence, the stereotype 

that simple attachment of an N-donor ligand to the porphyrin core should 

promote its coordination to the iron center is misleading. These results, 

however, agree with the very weak binding affinity of Py to Fe(II)-NO 

previously observed for different types of tetraphenylporphyrin ligands.15c, 17b 

In these studies it was found that binding constants of free pyridine are only 

in the range of 3 M-1 to 7 M-1 depending on the nature of the porphyrin ligand 

employed. During our axial ligation titration experiments reported in ref. 15c, 

we found that, in general, the binding constants for 1-methylimidazole (MI) 

are one order of magnitude larger (typically between 20-40 M-1) than those seen 

for Py. Therefore, Py is not a suitable axial ligand for 6C ferrous heme 

nitrosyls and IM-type ligands are preferred due to their larger binding 

constants. However, even in the case of IM-type N-donors, the equilibrium 

between the 5C Fe(II)-NO complex and the 6C (IM)N-Fe(II)-NO adduct shown in 

equation 2 disfavors the formation of the 6C species. This is because the 

presence of 1 equivalent of an N-donor ligand with a typical binding constant 

(Keq) < 50 M
-1 will not lead to the formation of significant amounts of the 6C 

species in solution due to the equilibrium strongly favoring the reactant 

side.22 In this case, the strong σ-trans effect of NO prevents binding of the 

axial ligand.15c, 23 The formation of 6C Fe(II)-NO complexes in the absence of 

excess N-donor ligands thus presents a significant challenge. 

Importantly, our previous studies have also shown that a further 

improvement of the axial ligand binding constant can be achieved by using the 

combination of a weakly electron-withdrawing tetra(ortho-difluorophenyl)-

porphyrin ligand (H2To-F2PP) and free imidazole. In this case, a dramatic 

increase of the IM binding constant to 2055 M-1 is observed.15c On the other 

hand, the application of the porphyrin H2To-F2PP hardly affects the properties 
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of the Fe(II)-NO subunit as indicated by the ν(N-O) stretching mode, which is 

only 6 cm-1 lower in [Fe(To-F2PP)(MI)(NO)] compared to [Fe(TPP)(MI)(NO)].
15c The 

binding constant of free MI to these fluorinated porphyrins therefore shows a 

nearly 300-fold increase over the pyridine derivative of the same system. In 

conclusion, the first requirements for the design of a truely 6C ferrous heme 

nitrosyl in solution are to (a) use IM as the N-donor ligand and (b) utilize 

ortho difluorophenyl substituted TPP or other slightly electron poor 

porphyrins. This provides a good basis in order to overcome the strong σ trans 

effect of NO and obtain a 6C complex in solution at room temperature in the 

presence of only one equivalent of the N-donor ligand. Based on these results, 

we decided to use IM ligands tethered to the fluorinated porphyrin To-F2PP for 

our further studies. In the next step, the linker arm which covalently links 

the N-donor ligand to the porphyrin core needs to be optimized. 
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Py = free pyridine).  Spectra were recorded in CH2Cl2 or toluene solution at room 

temperature. No spectral shifts are observed between these solvents. 
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In light of the above mentioned results, we synthesized ligand L2 in 

Figure 2.1 employing a C3 alkyl chain-linked IM attached to a fluoro-

substituted tetraphenylporphyrin. The UV-Vis spectrum of the obtained ferrous 

heme nitrosyl, [Fe(To-F2PP-C3IM)(NO)] (2), exhibits the Soret band maximum at 

417 nm as shown in Figure 2.2 (red curve). Interestingly, this is intermediate 

between the Soret position of the 5C complexes [Fe(TPP*)(NO)] (TPP* = 

tetraphenylporphyrin type ligand) at ~405 nm, and the IM coordinated (6C) spe-

cies [Fe(TPP*)(IM)(NO)] at ~425 nm (cf. Figure 2.2). To test whether the 417 

nm Soret band of 2 corresponds to weak binding of the axial ligand, we 

recorded the UV-Vis spectrum of the 6C Py complex [Fe(To-F2PP)(Py)(NO)] for 

comparison, because in this case, it is known that the Fe(II)-Py interaction 

is very weak.15c, 23 As shown in Figure 2.2 (purple curve), the spectra of 2 and 

[Fe(To-F2PP)(Py)(NO)] show good agreement. Importantly, the lack of a shoulder 

between 400 - 407 nm and around 470 nm for 2 confirms that no (or very little) 

5C species is present in solution. In addition to UV-Vis data, FT-IR 

spectroscopy can also be used to probe the coordination number of ferrous heme 

nitrosyls through the N-O stretching mode ν(N-O), as mentioned above. 

Interestingly, as elaborated below, the magnitude of the downshift of ν(N-O) 

is a direct function of the Fe-N(IM) bond strength, mediated by the trans 

interaction between the N-donor ligand and NO. The FT-IR spectrum of 2, taken 

at room temperature in a KBr disk, shows a broad intense band at 1686 cm-1,  
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which is assigned to the ν(N-O) stretch. This energy of ν(N-O) is not far off 

from values of known 5C complexes such as [Fe(TPP)NO] or [Fe(TMP)NO] (vide 

supra) and thus indicates a very weak covalent interaction between IM and the 

heme center.15c  

More insight is available from EPR spectroscopy. The EPR spectrum of 2 

(shown in Figure 2.3) clearly resemble the spectra of 6C complexes.1 Hyperfine 

splittings observed within these spectra can reveal a great deal of 

information about the coordination environment of the central iron in heme 

nitrosyls and has traditionally been used to distinguish between 5C and 6C 

complexes.1 This information manifests itself not only in the number of 

hyperfine lines observed, but also in the particular g value which exhibits 

the well-resolved hyperfine splittings. In the case of 5C ferrous heme 

nitrosyl complexes such as [Fe(TPP)(NO)], three g values are observed at 2.10, 

2.06, and 2.01. The smallest of these, g(min), shows clear three line 

hyperfine splittings due to the interaction of the nuclear spin (I=1) of 14N(O) 

with the unpaired electron of the Fe(II)-NO unit. The fact that the well-

resolved hyperfine splittings are seen on g(min) indicates that the principle 

axis of this g-value is aligned closest to the Fe-N(O) axis.1, 15d For 6C 

complexes with NO and IM in the axial positions, the g shifts are smaller with 

g values of about 2.07, 2.00, and 1.97.1 In addition, the three hyperfine 

lines are further split to give a nine line hyperfine pattern which is now 

observed on g(mid), due to a rotation of the g tensor.1, 15d The spectrum of 2 

at 77 K (shown in Figure 2.3) exhibits strong 14N hyperfine lines of NO on 

g(mid), and the g values are obtained at 2.09, 2.00, and 1.98. In the lq. 

helium spectrum additional, small, unresolved hyperfine splittings due to the 

axial IM ligand seem to be present on g(mid). The obtained g values and the 

presence of hyperfine splittings on g(mid) are generally indicative that 2 is 

a 6C complex in agreement with the UV-Vis result. However, the lack of clear 

nine-line hyperfine splittings of this signal indicates very weak binding of 

IM to iron as is also reflected by the large value of ν(N-O). This is further 

supported by the small hyperfine coupling constant of the IM nitrogen 

estimated at around 2.0 MHz for 2 compared to 16-19 MHz for N-donor ligands in 

known 6C complexes.24 EPR spectra are ideally suited for assessing the Fe-IM 

bond strength as the covalency of the Fe-IM bond directly correlates with the 

amount of spin density transfered from the Fe(II)-NO unit to the N-donor atom 

of IM.15c The spin density present on the IM nitrogen atom then correlates with 

the contact shift, and hence, the magnitude of the N(IM) hyperfine coupling 
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constant. In this sense, weak bonding results in minimal transfer of spin 

density between Fe and IM, resulting in almost no contact shift and a small 

hyperfine coupling constant, likely dominated by the dipolar contribution. A 

stronger Fe-IM bond will manifest itself in an increase in contact shift, 

leading to a larger hyperfine coupling constant, and thus a cleaner resolution 

of hyperfine lines on g(mid).   

The EPR spectrum of 2 in Figure 2.2 also shows a fourth g value which is 

typically observed for 6C ferrous heme nitrosyl complexes in both proteins and 

model systems.1 This signal is usually referred to as g? and is clearly 

identified in the case of both 2 and 3. Interestingly, this additional signal 

seems to be absent in 5C heme nitrosyls. The origin of g? has been a matter of 

extended discussion in the literature.25 It has been proposed that this signal 

arises from a second conformation of the complex where the relative 

orientation of NO, with respect to the IM plane, has shifted.1 This is 

consistent with the observation that crystal structures of 6C model complexes 

usually show disorder of the NO ligand, giving rise to two major 

conformations.15c, 23, 26 To rule out binding of the solvent DMSO in the case of 2 

and 3, the EPR spectrum of the 5C complex [Fe(TPP)(NO)] was recorded in a 

DMSO/toluene mixture (1:1). These data resemble more closely the typical 5C 

spectrum of this compound in pure toluene. Additionally, the UV-vis spectrum 

of [Fe(TPP)(NO)] in DMSO shows the Soret band at 409 nm, indicative of a 5C 

complex. Therefore, binding of DMSO to complex 2 can be ruled out in the EPR 

experiments. Based on all available spectroscopic results, it can be concluded 

that complex 2 is 6C in solution at room temperature, but that the interaction 

of the C3 imidazole arm with the Fe(II)-NO center is weak. 

There are two possible reasons for the weak binding of the C3 imidazole 

linker in ligand L2: (a) the alkyl chain of the ‘C3’ linker is too short to 

allow for a good interaction of IM with iron(II), or (b) the dynamic motion of 

the phenyl rings leads to a constant alkyl chain motion in solution, which 

prevents effective binding of the imidazole ligand to iron(II). In order to 

determine the influence of the alkyl chain length on the binding properties of 

the linked IM, we prepared a corresponding complex where the length of the 

alkyl chain is increased by one CH2 unit (ligand L3 in Figure 2.1). Impor-

tantly, the UV-Vis and EPR spectra of this complex, [Fe(To-F2PP-C4IM)(NO)] (3), 

again show weak binding of the IM linker to the iron(II) center with a Soret 

maximum at 415 nm and EPR spectra similar to that shown in Figure 2.3. In 

particular, the absorption spectrum in Figure 2.4 is indicative of the 
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presence of a small amount of 5C complex in solution at room temperature, as 

evidenced by a very pronounced shoulder at 405 nm. This counter intuitive 

result shows that an increase of the alkyl chain length from ‘C3’ to ‘C4’ 

actually has a negative effect, i.e. the increase in length or flexibility of 

the linker slightly decreases the binding constant of the tethered IM ligand 

to iron(II). This is most likely due to a loss of entropy of internal rotation 

as discussed before for tailed Zn-porphyrins.27 Here, entropy loss was observed 

for each additional CH2 unit added to the alkyl tethers within these systems. 

EPR spectra of complex 3 are in agreement with this conclusion and show g 

values at 2.07, 1.99, and 1.97, which are almost identical to those for 2, 

indicating that an increase in tether length does not increase the Fe-IM 

covalency, and hence, bond strength. No 5C species is observed in the EPR 

spectra of 3, but this is likely due to a slight increase in the IM binding 

constant at low temperature compared to the room temperature UV-Vis data (see 

Section A.1). 

Our systematic studies on IM binding to ferrous heme nitrosyls presented 

above therefore show that pyridyl donors and C3-IM or C4-IM tethers (L1 – L3) 

are poor designs for 6C ferrous heme nitrosyls in solution. Because of the 

poor binding seen for both 2 and 3, it can be inferred that the length of the 

tether is not as important as its other structural properties.  

Based on this result, we decided to explore whether a more rigid (less 

floppy) linker with a larger mass could change the dynamics of the linker 
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motion and facilitate a 6C complex. For this purpose, a benzyl group was 

incorporated into the linker, leading to ligand H2To-F2PP-BzIM (L4) in Figure 

2.1. From the literature, work of Collman and coworkers has presented evidence 

that a similar linker could indeed allow for the formation of a 6C species in 

solution, although the room temperature characterization of the corresponding 

complex was incomplete.19 Ligand L4 was prepared and crystallographically 

characterized as the corresponding Zn complex. The crystal structure of this 

compound is shown in Figure 2.5. Crystallographic data and important  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structural parameters are listed in Tables 2.1 and 2.2. The obtained bond 

distances and angles reveal very little strain within the tether. The only 

sizable perturbation from expected values is seen in the CNC angle of 129.1° 

for the amide linkage. This value is several degrees larger than expected for 

an idealized system but only slightly larger than amide CNC angles in other 

corresponding zinc porphyrin compounds. The zinc complex of α,α,α,α-Tetra-(2-

[3,4-dimethoxyphenyl]-acetamidophenyl)porphyrin, for example, exhibits an 

amide CNC angle of 128°.28 The zinc within the porphyrin center of the L4 

complex is clearly displaced towards the IM tether by about 0.5 Å from the 

porphyrin plane. The Zn-N(imidazole) bond distance is 2.079 Å. The average Zn-

N(porphyrin) bond distance is 2.077 Å, which is slightly longer than the 

average bond length of 2.050 Å observed in four-coordinate [Zn(TPP)].29 On the 

other hand, this value is in agreement with the 5C complexes [Zn(TPP)(3-APy)] 

(3-APy = 3-aminopyridine) and [Zn(OPP)(3-APy)] (OPP2- = octaphenylporphyrin) 

Figure 2.5. Molecular structure of [Zn(To-F2PP-BzIM)] showing IM bound to Zn(II) 

where the Zn ion is displaced form the porphyrin plane by 0.5 Å.  Two CH2Cl2 solvent 

molecules are present per unit cell and have been omitted, along with all hydrogen 

atoms, for clarity. 
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where average Zn-N(porphyrin) bond lengths of 2.080 Å and 2.075 Å have been 

determined, respectively.30 The structure is well ordered with the single 

exception of the phenyl ring located opposite to the tether position. Two 

possible orientations are seen in the crystal structure where the phenyl ring  

 

Empirical formula C56H33Cl2F6N7OZn 

Formula weight 

(g/mol) 

1070.16 

T (K) 85 

Space group Triclinic, P-1 

a (Å) 10.522 

b (Å) 13.206 

c (Å) 19.752 

α (deg.) 103.955 

β (deg.) 101.557 

γ (deg.) 100.116 

V (Å3) 2536.1 

Z 2 

μ (mm-1) 0.659 

λ (Å) 0.71073 

Collected reflns 54977 

Unique reflns 12597 

Rint 0.0460 

GOF 1.075 

R1 [I>2σ(I)] 0.0570 

wR2 (all data) 0.1770 

 

 

Zn1-N1 (porphyrin) 2.077 

Zn1-N2 (porphyrin) 2.095 

Zn1-N3 (porphyrin) 2.064 

Zn1-N4 (porphyrin) 2.073 

Zn1-N7 (axial IM) 2.079 

Zn1 (displacement) 0.5 

 

rotates slightly off the perpendicular geometry with respect to the porphyrin 

plane, in both possible directions. The porphyrin ligand itself shows very 

little distortion and appears only to be slightly domed towards the IM ligand. 

The UV-Vis adsorption data obtained for the complex [Zn(To-F2PP-BzIM)] show 

the Soret band at 427 nm. This is in agreement with know 5C Zn(II)-porphyrin 

complexes.31 The analogous complex [Zn(To-F2PP-BzBr)], where IM has been 

Table 2.1. Crystallographic data for compound [Zn(To-F2PP-BzIM)]. 

Table 2.2. Selected crystallographic features of [Zn(To-F2PP-BzIM)].  All values are 

given in Å. 
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replaced by a non-coordinating bromine, shows typical UV-Vis absorption 

features of four-coordinate (4C) Zn(II)-porphyrin complexes where the Soret 

band is observed at 416 nm (cf. Figure 2.6). Due to these characteristic 

absorption features, zinc metallated porphyrin species can be a useful tool to 

determine the coordination environment of tethered porphyrin systems, and in 

particular, to probe for the presence and binding properties of an attached 

linker.  

Next, the ferrous heme nitrosyl model complex 4 (shown in Scheme 2.1) was 

synthesized. Importantly, the iron(II)-NO complex exhibits the Soret band at 

427 nm as shown in Figure 2.7 (red curve), which is indicative of the 

formation of a stable 6C adduct in solution. The spectral features compare 

well with those of the 6C complex [Fe(To-F2PP)(MI)(NO)] (MI = free 1-

methylimidazole), obtained in the presence of an excess of MI. In particular, 
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Figure 2.6.  UV-Vis spectra of the zinc complexes [Zn(To-F2PP-BzIM)] (black) and 

[Zn(To-F2PP-BzBr)] (red).  Typical Soret and Q band features in 5C zinc 

tetraphenylporphyrin complexes are seen at 427 nm and 559 nm, respectively, as found 

for the IM-bound complex.  Upon replacement of IM with a non-coordinating bromine, the 

Soret and Q features shift to positions typically observed for 4C zinc complexes at 

416 nm and 543 nm, respectively.  This confirms the ability of the IM in ligands L4 to 

coordinate to the central metal ion. 
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the lack of a shoulder around 410 nm, which is indicative of 5C species in 

solution, confirms the absence of any 5C complex for the benzyl-linked 

compound. To further investigate the strength of the Fe-IM interaction in 4, 

the EPR spectrum of this compound was recorded as shown in Figure 2.8. Both 

the observed g values of 2.08, 2.01, and 1.98, as well as the clean nine line 

hyperfine pattern on g(mid) with an IM-nitrogen hyperfine coupling constant of 

19 MHz resemble those of well known 6C ferrous heme nitrosyls.1 These results 

confirm that 4 forms a stable 6C complex in solution where the interaction of 

the benzyl IM arm with the Fe(II)-NO center is strong. Neither the UV-Vis data 

in Figure 2.7 nor the EPR spectrum indicate the presence of any 5C species in 

solution. To further quantify the strength of the Fe-IM interaction, solution 

FT-IR spectra were recorded at room temperature, since the strength of the N-O 

bond, represented by the N-O stretching frequency, is very sensitive to the 

strength of the Fe-IM interaction.15 In 5C complexes of the type 

[Fe(porphyrin)(NO)], the N-O stretch ν(N-O) is observed at 1675 - 1700 cm-1 

(1697 cm-1 for [Fe(TPP)(NO)]). The addition of free Py derivatives to 

[Fe(TPP)(NO)] results in weak coordination of the Py ligand and thus a 

moderate shift in the ν(N-O) frequency. In the case of [Fe(TPP)(4-NMe2Py)(NO)] 

(4-NMe2Py = 4-(dimethylamino)pyridine) the ν(N-O) frequency shifts down to 

1653 cm-1 (recorded in the solid state).23 On the other hand, upon coordination 

of free MI a substantial shift in the ν(N-O) stretching frequency to 1630 cm-1 

(for [Fe(TPP)(MI)(NO)]) is observed. This indicates that binding of an N-donor 

ligand and donation into the dz2 orbital of iron weakens the Fe-NO σ-bond, and, 

due to the reduced donation from a π* orbital of NO, also weakens the N-O 

bond. Such an interpretation is in agreement with the experimentally observed  
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Scheme 2.1.  Molecular structure of the 6C complex [Fe(To-F2PP-BzIM)(NO)] (4). 
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Figure 2.7.  Electronic absorption spectra of [Fe(To-F2PP-BzIM)(NO)] (4, red), 5C 

[Fe(To-F2PP)(NO)] (black), and 6C [Fe(To-F2PP)(MI)(NO)]  (MI = free 1-methylimidazole, 
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Figure 2.8.  EPR spectrum of [Fe(To-F2PP-BzIM)(NO)] (4) in frozen DMSO at 77k (
14N 

hyperfine for g(mid) [MHz]: A(NO) = 62, A(IM) = 19).  The additional signal g? is 

typically observed for 6C ferrous heme nitrosyls in both proteins and model complexes.  

See text for a detailed explanation and relevant references.   
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direct correlation of the Fe-NO and N-O bond strengths and vibrational 

frequencies where binding of the axial N-donor ligand in fact weakens both of 

these bonds.15c, d, 23, 32 In this way, binding of an axial N-donor ligand lowers 

the N-O stretching frequency, giving rise to the observed inverse correlation 

between ν(N-O) and the Fe-N(N-donor) bond strength. In the case of complexes 

1-4 presented here, the energy of ν(N-O) can also be seen to vary 

significantly based on the tether employed and the specific N-donor ligand 

used. The IR results in Table 2.3 show the range of ν(N-O) energies observed  

based on ligand choice. Importantly, the ν(N-O) stretching frequency of 4 is 

observed at 1644 cm-1 in solution at room temperature as shown in Figure 2.9, 

which further confirms that 4 corresponds to a 6C species even in solution. 

Interestingly, this frequency is somewhat higher in energy compared to [Fe(To-

F2PP)(MI)(NO)] (1624 cm
-1) and [Fe(TPP)(MI)(NO)] (1630 cm-1) with bound free MI. 

Therefore, the IR studies show that the covalently attached benzyl-IM linker 

still cannot bind as strongly to the Fe(II)-NO unit as free 1-methylimidazole 

(MI), but that 4 forms a stable 6C complex in solution at room temperature 

without the requirement for the presence of excess axial ligand.  In this 

regard, the N-O stretching frequency also seems to be the most sensitive probe 

for the strength of the Fe-IM interaction. 

 

Complex Soret [nm] ν(N-O) [cm-1] a EPR g values b 

[Fe(TPP)(NO)]c        405         1697   2.102/2.064/2.010(*) 

[Fe(TPP)(MI)(NO)] c        425         1630   2.079/2.004(*)/1.972 

[Fe(To-F2PP)(NO)]
 c        403 not det.   not det. 

[Fe(To-F2PP)(MI)(NO)]
 c        425         1624   not det. 

[Fe(TMP-mPy)(NO)] d 406 1694   2.099/2.040/2.012(*) 

[Fe(To-F2PP-C3Im)(NO)] 
d 417 ~1686   2.087/2.002(*)/1.982 

[Fe(To-F2PP-C4Im)(NO)]
d 415 not det.   2.073/1.991(*)/1.971 

[Fe(To-F2PP-BzIm)(NO)] 
d 427  1644(s)   2.077/2.009(*)/1.978 

[Fe(TpivPP-IM)(NO)] f 415  1635(?)   2.072/2.002(*)/1.976 

 

 

 

    One problem that remains is whether 4 shows intramolecular binding of the 

tether as desired, or intermolecular coordination of the tether to a different 

complex, potentially forming dimers or large aggregates in solution. Such 

Table 2.3. Properties of 5C and 6C ferrous heme model complexes. 

a Measured at room temperature in a KBr disk.  Solution data are indicated by (s).  b Measured at 
lq. nitrogen temperature.  The asterisk indicates the g value that shows well resolved hyperfine 
lines in the spectrum.  c Reference 15c,d.  d This work.  f Reference 34.  The conditions for the 
IR measurements are not provided. 
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intermolecular coordination has been previously suggested by Momenteau for 

heme protein analogues in which tethers were attached to the β-pyrrole 

positions of the porphyrin.9 In this case, the linkers corresponded to floppy 

alkyl chains. Additionally, tethers at the β-pyrrole positions should be more 

susceptible to intermolecular coordination due to their orientation relative 

to the porphyrin plane. A tether employed at the ortho-phenyl position of a 

tetraphenylporphyrin derivative is oriented toward the heme center and thus is 

less likely to show intermolecular coordination due to the close proximity of 

the tethered N-donor ligand to the Fe center of the same complex. Increasing 

the rigidity of the tether will further hinder this undesirable coordination. 

The crystal structure of the zinc complex of L4 presented above provides 

further evidence that intermolecular coordination is most likely not occurring 

in complex 4. To further address this issue, UV-Vis dilution experiments were 

performed. The concentration of [Fe(To-F2PP-BzIM)(NO)] was systematically 

decreased until the spectra merged with the baseline, and the Soret position 

was determined for each concentration. As described above, the Soret band 

position is diagnostic for the coordination mode of the heme nitrosyl. In 

these experiments the Soret position remained constant. This result strongly 
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indicates that the tethered IM interacts with the iron center of the same 

complex. If intermolecular binding was occurring, lower concentrations should 

favor dissociation of the intermolecular complex and thus, a Soret shift would 

be observed upon concentration decrease.9  

Our results presented above are also in agreement with recent findings of 

Collman and coworkers where a similarly rigid benzyl linker was used for the 

preparation of CcO and NorBC models, although the coordination number of the 

heme nitrosyls was not explicitly addressed.12b, 19, 33 Nevertheless, room 

temperature UV-Vis data shown in their reports provide evidence that the 

similar benzyl linker, used in conjunction with a picket fence porphyrin, also 

generates a 6C ferrous heme nitrosyl complex in solution. Not suprisingly, low 

temperature data are also in agreement with this finding. While further room 

temperature characterization, in particular IR spectroscopy, of these 

compounds is lacking, the benzyl-linked complex does appear to fulfill all the 

necessary requirements to generate 6C ferrous heme nitrosyls in solution as 

defined in this work. Besides the presence of the benzyl-IM tether, the amide-

substituted TPP derivative employed in this work provides the necessary, 

weakly electron-poor porphyrin ligand needed to enhance IM binding to the Fe-

NO unit. Only one other example of a potentially 6C iron-porphyrin NO complex 

with a tethered axial IM ligand is known.34 In this case, the alkyl chain 

linker is attached to the β-pyrrole carbon of a picket fence porphyrin. How-

ever, whereas the EPR spectrum of this complex clearly shows binding of the 

IM-linker to iron(II) at low temperature, the room temperature UV-Vis data 

exhibit the Soret band at 415 nm, which is more in agreement with the weak 

binding observed for 2 and 3. A shoulder at 479 nm also indicates the presence 

of a distinct amount of 5C species at RT in solution. Finally, dilution 

experiments need to be performed in this case, since β-pyrrole tailed hemes 

tend to form intermolecular aggregates.9  

 

Conclusions 

As shown in this chapter, the design of a truly 6C ferrous heme nitrosyl 

complex in solution at room temperature depends on several factors. 

Application of a strongly binding ligand like IM, combined with a bulky benzyl 

linker, is crucial for the formation of these 6C complexes. In addition, a 

relatively electron poor porphyrin ligand seems to facilitate IM binding, and 

therefore, needs to be incorporated. This can be accomplished by the addition 

of either fluoro substituents or amide groups to the meso phenyl rings of a 
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tetraphenylporphyrin type ligand. These 6C model systems require a very 

specific design as compared to those employed for O2 and CO binding studies 

because these diatomics do not show the strong σ-trans effect that is observed 

for NO. In this study it is demonstrated that a truly 6C ferrous heme nitrosyl 

can be generated in solution at room temperature in the presence of only one 

equivalent of the N-donor ligand, if all requirements specified above are 

fulfilled. The need for excess IM for the generation of 6C species, which 

leads to undesired side reactions including denitrosylation,15c, 17a, 35 is now 

obsolete. Compound 4 is therefore ideally suited for reactivity studies on 6C 

Fe(II)-NO complexes which are currently in progress. In particular, the facile 

synthesis of 4 will be advantageous for application of this complex in NorBC 

model studies. Complex 4 is easy to prepare at relatively high total yields 

(2.5%) for a sophisticated porphyrin.  

Interestingly, the strength of the Fe-(N-donor) bond in the benzyl-linked 

complex 4 is still slightly weaker than that observed for [Fe(To-

F2PP)(MI)(NO)] with free MI, as evidenced by the higher ν(N-O) stretching 

frequency. Further studies should therefore be directed at forming even 

stronger Fe-(N-donor) bonds in 6C complexes as well as investigating other 

tethers which could potentially facilitate the formation of truly 6C ferrous 

heme nitrosyls in solution. This knowledge will allow for the improved 

synthesis of NorBC model complexes which can more effectively mimic the 

structure and function of the active site of this enzyme.  

 

Experimental 

In general, reactions were performed applying inert Schlenk techniques. 

Preparation and handling of air sensitive materials was carried out under an 

argon atmosphere in an MBraun glovebox equipped with a circulating purifier 

(O2, H2O < 0.1 ppm). Infrared spectra were obtained from KBr disks or in 

chloroform solution on a Perkin-Elmer BX spectrometer. Proton magnetic 

resonance spectra were recorded on a Varian Inova 400 MHz and a Varian Mercury 

300 MHz instrument. Electronic absorption spectra were measured using an 

Analytical Jena Specord 600 instrument. MALDI-TOF mass spectra were obtained 

on a Micromass TofSpec-2E mass spectrometer whereas LCT-ESI mass specta were 

obtained on Micromass LCT Time-of-Flight mass spectrometer. Electron 

paramagnetic resonance spectra were recorded on a Bruker X-band EMX 

spectrometer equipped with an Oxford Instruments liquid nitrogen or liquid 

helium cryostat. EPR spectra were typically obtained on frozen solutions using 
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~20 mW microwave power and 100 kHz field modulation with the amplitude set to 

1 G. Sample concentrations employed were ~1 mM. 

Crystal structure determination was carried out using a Bruker SMART APEX CCD-

based X-ray diffractometer equipped with a low temperature device and a fine 

focus Mo-target X-ray tube (wavelength = 0.71073 Å) operated at 1500 W power 

(50 kV, 30 mA). Measurements were taken at 85 K and the detector was placed 

5.055 cm from the crystal. The data was processed with SADABS and corrected 

for absorption. The structure was solved and refined with the Bruker SHELXTL 

(ver. 2008/3) software package (cf. Table 2.1).36  

Materials  

All solvents and reagents were purchased and used as supplied except as 

follows. Toluene was distilled from sodium under argon. Dried and air free THF 

and n-hexane were obtained after passing through an MBraun solvent 

purification system. 1-Methylimidazole was vacuum distilled from KOH and 

degassed via five freeze-pump-thaw cycles. Nitric oxide (Airgas, USA) was 

purified by first passing through an ascarite II column (NaOH on silica gel) 

and then through a cold trap at –80°C to exclude higher nitrogen oxide 

impurities. The free base porphyrin ligands H2TMP-mPy and H2To-F2PP-C3IM 

(ligands L1 and L2, respectively) were synthesized following reported 

procedures12e, 37 with some modifications as described in the following. The 

precursor porphyrins 5,10,15-Tris-(2,4,6-trimethyl-phenyl)-20-(2-amino-

phenyl)-porphyrin [H2(NH2)TMPP] and 5,10,15-Tris-(2,6-difluoro-phenyl)-20-(2-

amino-phenyl)-porphyrin [H2F6(NH2)TPP] were prepared using reported 

procedures.37a 

H2TMPm-Py (ligand L1). The aminoporphyrin H2(NH2)TMPP (0.25 g, 0.33 mmol) was 

dissolved in 6 mL of DMF. To this, 1 mL of N,N-diethylaniline was added, 

followed by the addition of a solution of 3-(3’-pyridyl)propionic acid 

chloride in 3mL of DMF [prepared in situ by reacting 0.2 g of 3-(3’-

pyridyl)propionic acid with 3 mL of SOCl2], and then stirred for 4 hours at 

room temperature. The excess SOCl2 and the solvent were removed under vacuum. 

The residue obtained was dissolved in CH2Cl2 and washed several times with 

deionized water. The solution was then dried with Na2SO4 and the solvent was 

removed using a rotary evaporator. The desired product was purified using 

column chromatography (silica, CH2Cl2/CH3OH = 99:1). Yield: 0.20 g, 68 % 

UV-Vis [nm] in CH2Cl2: 418, 514, 545, 590 and 646. 
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1H NMR (400MHz, CDCl3): 8.69-8.64 (m, 9H, β-pyrrole (8H) and aminophenyl(1H)); 

8.13 (m, 1H, pyridyl); 8.0-7.97 (m, 2H, pyridyl); 7.8 (m, 1H, aminophenyl); 

7.48 (m, 1H, pyridyl); 7.26 (s, 6H, mesitylphenyl); 6.9 (m, 1H, aminophenyl); 

6.85 (s, 1H, NH-C=O); 6.78 (m, 1H, aminophenyl); 2.61 (s, 6H, para –CH3); 2.47 

(t, 2H, -CH2-Pyridly); 1.84-1.80 (m, 18H, ortho –CH3); 1.61 (t, 2H, -CH2-CH2-

Pyridyl); -2.55 (s, 2H, NH pyrrole). MS (MALDI) for C61H56N6O: Calculated: 889, 

found: 889. 

Further control experiment: The column purified ligand L1 was reacted 

with Zn(OAc)2 · 2H2O to yield [Zn(TMP-mPy)] in CH2Cl2/CH3OH solution. After 

shaking with H2O to remove the unreacted Zn(OAc)2, the solvent was removed 

under reduced pressure and UV-Vis spectra were recorded. The UV-Vis spectrum 

of the product in CH2Cl2 shows the Soret band at 430 nm, which corresponds to a 

five-coordinate Zinc(II)-porphyrin complex.31 This further proves the presences 

of the pyridyl linker in ligand L1.  

[Fe(TMP-mPy)(Cl)]. 0.15 g (0.17 mmol) of H2TMP-mPy (L1) was stirred in 10 mL 

of dry and air free THF. Anhydrous FeCl2 (0.21 g, 1.7 mmol) was then added and 

the resulting reaction mixture was refluxed at 60 °C under an argon atmosphere 

for 1 hour. The reaction was then stopped and the solvent was removed under 

reduced pressure. The obtained residue was chromatographed on silica gel using 

0.5% methanol in CH2Cl2. The metallated porphyrin fraction was collected and 

the solvent was then removed using a rotary evaporator. The obtained product 

was dried; yield: 0.11 g, 66 %. UV-Vis [nm] in CH2Cl2: 376, 418, 509, 576, 655 

and 692. 1H NMR (CDCl3, 400 MHz): 80 (m, 8H, β-pyrrole).  

[Fe(TMP-mPy)(NO)] (1). 0.05 g (0.05 mmol) of [Fe(TMP-mPy)(Cl)] were placed in 

a 100 mL Schlenk flask and freshly distilled CHCl3 (8 mL) and CH3OH (0.5 mL) 

were added. NO gas was then passed through this solution, and the resulting 

solution was stirred for one hour. n- hexane (10 mL) was slowly added to the 

reaction mixture, which was then stored in a freezer (-22°C) for 3 days. The 

resulting precipitate was filtered off using a fine pore Schlenk filter 

funnel. The yield of the product obtain was very low, 11 mg (22 %), and 

contained some impurities. FT-IR [cm-1]: ν(NO) = 1694. 

H2To-F2PP-C3IM (ligand L2). 4-(N-imidazolyl)butyric acid hydrobromide
37a (0.18 

g, 0.4 mmol) was ground to a fine powder and stirred in 5 mL of dry and air 

free CH2Cl2. The solution was brought to reflux under argon and 35 mg (0.3 

mmol) SOCl2 was then added. The solution was stirred at reflux under an argon 

atmosphere. After 30 minutes, the excess SOCl2 and CH2Cl2 were removed under 

vacuum and a solution of H2F6(NH2)TPP (0.1 g, 0.135 mmol) in 5 mL of CH2Cl2 was 
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added and the resulting green solution was stirred for 1 hour under argon at 

room temperature. The reaction was then stopped by pouring the solution into 

20 mL of CH2Cl2 and successive washing with 2 x 20 mL of Na2CO3, and 3 x 20 mL 

of water, and then drying over Na2SO4. The solvent was removed under reduced 

pressure and the residue obtained was column purified on silica gel 

(CH2Cl2/CH3OH= 95:5) to give the desired C3 imidazole linked porphyrin ligand 

H2To-F2PP-C3IM. Yield: 0.045 g, 38 %.  
1H NMR (300 MHz, d-acetone): 9.15-8.80 (m, 8H, β-pyrrole); 8.55 (d, 1H, 

aminophenyl); 8.44 (s, 1H, amide); 8.11 (dd, 1H, aminophenyl); 8.05-7.95 (m, 

3H, para fluorophenyl); 7.86 (t, 1H, aminophenyl); 7.65-7.45 (m, 7H, meta 

fluorophenyl (6H) and aminophenyl (1H)); 7.02 (s, 1H, imidazole); 6.44 (s, 1H, 

imidazole); 6.42 (s, 1H, imidazole); 3.45 (t, 2H, C3H6 tether); 1.58 (t, 2H, 

C3H6 tether); 0.90 (m, 2H, C3H6 tether); -2.69 (s, 2H, pyrrole NH).  

UV-Vis [nm] in CH2Cl2: 415, 509, 543, 587, and 642. MS (LCT-ESI) for C51H33N7F6O: 

Calculated: 873.8, found: 874.  

 Further control experiment: the column purified ligand L2 was reacted with 

Zn(OAc)2 · 2H2O to yield [Zn(To-F2PP-C3IM)] in a CH2Cl2/CH3OH solution. After 

shaking with H2O to remove the unreacted Zn(OAc)2, the solvent was removed 

under reduced pressure and UV-Vis spectra were recorded. The UV-Vis spectrum 

of the product in CH2Cl2 shows the Soret band at 427 nm, which is in accordance 

with similar values observed for five-coordinate Zinc(II)-porphyrin complexes31 

(substituted tetraphenylporphyrins with electron withdrawing or donating 

groups attached to the phenyl rings). This further proves the presence of the 

imidazolyl linker in ligand L2. 

MS (LCT-ESI) for ZnC51H31N7F6O: Calculated: 935.1, found: 936.1. 
1H NMR spectra 

of the zinc metallated complex [Zn(To-F2PP-C3IM)] reveal a shift of the 

imidazole proton peaks into the porphyrin aromatic region. This is most likely 

due to an exposure of the imidazole unit to the aromatic porphyrin ring 

current upon binding to the zinc center. 

[Fe(To-F2PP-C3IM)(Cl)]. 0.03 g (0.034 mmol) of H2To-F2PP-C3Im were stirred in 8 

mL of dry and air free THF. Anhydrous FeCl2 (0.043g, 0.34 mmol) was then added 

and the resulting reaction mixture was refluxed under an argon atmosphere for 

1 hour. The reaction was then stopped and the solvent was removed under 

reduced pressure. The obtained residue was chromatographed on silica gel using 

3% methanol in CH2Cl2. The metallated porphyrin fraction was collected, and the 

solvent was then removed using a rotary evaporator. Yield: 0.023 g, 70 %. 
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UV-Vis [nm] in CH2Cl2: 350, 415, 510, 557, and 642. FT-IR in KBr [cm
-1]: νC=O = 

1700.  

[Fe(To-F2PP-C3IM)(NO)] (2). To a solution of [Fe(To-F2PP-C3IM)(Cl)] (0.02 g, 

0.02 mmol) in 10 mL of freshly distilled CHCl3 and 0.5 mL of CH3OH, excess 

nitric oxide was added and the resulting solution was stirred for one hour. n- 

hexane (15 mL) was slowly added to the reaction mixture, which was then stored 

in a freezer (-20°C) for 1 day. The resulting precipitate was filtered off and 

the obtained compound was stored inside a glove box. The IR spectrum shows the 

NO stretching band at 1686 cm-1, indicative of the formation of 2.  

Yield: 0.010 g, 52 %: FT-IR in KBr [cm-1]: ν(NO) = 1686. 

In order to test whether complex 2 is really a monomer, we performed dilution 

experiments where the concentration was lowered to an intensity of 0.2 

absorbance units. No shift of the Soret band was observed, indicating that the 

complex does not correspond to a dimer (oligomer) where two complexes (or 

more) share linkers.  

N-(3-methoxycarbonyl)benzylimidazole. Imidazole (3.8g, 55.8 mmol) and methyl 

3-bromomethyl-benzoate (3.1g, 13.5 mmol) were combined in 4 mL of DMF. The 

resulting faint yellow solution was stirred at room temperature for 20 hours. 

Upon completion, the reaction was diluted with 60 mL of water and extracted 3x 

with a total of 120 mL CH2Cl2. The organic layer was collected and extracted 3x 

with a total of 150 mL of a 10% HCl solution. The acidic solution was then 

alkalized with triethylamine to pH = 10, extracted 3x with a total of 210 mL 

ethyl acetate followed by drying over Na2SO4. Rotary evaporation of the solvent 

yielded a faint yellow oil in quantitative amounts. 1H NMR (300 MHz, CDCl3): 

7.99 (d, 1H), 7.88 (s, 1H), 7.56 (s, 1H), 7.41 (t, 1H), 7.32 (d, 1H), 7.01 (s, 

1H), 6.89 (s, 1H), 5.16 (s, 2H), 3.91 (s, 3H) 

α-imidazolyl-m-toluic acid hydrochloride. N-(3-methoxycarbonyl)benzylimidazole 

(3.0g, 13.9 mmol) was dissolved in 27 mL of conc. HCl and brought to reflux 

while stirring for 2 hours. The HCl was then removed on a vacuum line and the 

resulting off-white solid was dried under vacuum overnight. The next day, the 

product was washed with hot acetonitrile and filtered to remove a yellow 

colored impurity. The resulting white solid was again dried under vacuum. 

Yield: 2.0g, 61%. 1H NMR (300 MHz, CD3OD): 9.13 (s, 1H), 8.06 (s, 1H), 8.05 (s, 

1H), 7.66 (d, 1H), 7.60 (s, 1H), 7.57 (m, 2H), 5.56 (s, 2H) 

H2To-F2PP-BzIM (ligand L4) (Adapted from reference 
38). α-imidazolyl-m-toluic 

acid hydrochloride (0.1 g, 0.42 mmol) and an excess thionyl chloride (0.1 mL, 

freshly distilled under Ar) in methylene chloride (2 mL) were refluxed under 



 43 

an argon atmosphere. After 1 hour the solution became clear. The excess SOCl2 

and CH2Cl2 were removed in vacuo to yield crude -imidazolyl-m-toluic acid 

chloride as an off-white solid. In a separate flask, a solution of the 

porphyrin H2F6(NH2)TPP (0.088 g, 0.119 mmol) in 15 mL dry and air-free CH2Cl2 

was stirred. To this stirred solution a suspension of -imidazolyl-m-toluic 

acid chloride (from above) in CH2Cl2 (4 mL) was slowly added in small portions 

under an argon atmosphere at room temperature (color changed to green).  The 

reaction was monitored by TLC (silica, CH2Cl2) until the only visible porphyrin 

remained at the baseline. The solution was diluted with 100 mL CH2Cl2 and 

shaken with 40 mL saturated NaHCO3, washed 3x with 50 mL water, and dried with 

sodium sulfate. Rotary evaporation of the solvent yielded a purple solid. The 

product was purified on silica gel using column chromatography with 5% MeOH in 

CH2Cl2 as eluent. Yield: 100 mg, 92%.  

UV-Vis [nm] in CH2Cl2: 416, 509, 542, 586 and 640. 
1H NMR (300MHz, CD2Cl2): 9.0-

9.85 (m, 9H, -pyrrole (8H) and aminophenyl (1H)); 8.22 (dd, 1H, benzyl); 

7.95-7.80 (m, 4H, para fluorophenyl (3H) and aminopheyl (1H)); 7.65 (m, 1H, 

aminophenyl); 7.50-7.37 (m, 8H, meta fluorophenyl (6H) and benzyl (2H)); 6.78 

(s, 1H, NH-C=O); 6.47-6.38 (m, 2H, benzyl (1H) and aminophenyl (1H)); 6.33 (m, 

1H, imidazolyl); 6.19 (s, 1H, imidazolyl); 6.07 (d, 6H, imidazolyl); 3.88 (s, 

2H, -CH2-benzyl); -2.75 (s, 2H, NH pyrrole). MS (MALDI) for C54H34N7F6O; 

Calculated: 922, found: 922.   

[Fe(To-F2PP-BzIM)(Cl)]. 0.03 g of H2To-F2PP-BzIM were stirred in 10 mL of dry 

and air free THF. Anhydrous FeCl2 (0.039g) was then added, and the resulting 

reaction mixture was refluxed under an argon atmosphere for 1 hour. The 

reaction was then stopped and the solvent was removed under reduced pressure. 

The obtained residue was chromatographed on silica gel using 5% methanol in 

CH2Cl2. The metallated porphyrin fraction (slowest moving) was collected, and 

the solvent was removed using a rotary evaporator. The product obtained was 

finally dried. Yield: 27 mg, 82%. UV-Vis [nm] in CH2Cl2: 337, 413, 577, and 

650. FT-IR in KBr [cm-1]: νC=O = 1684. MS (LCT-ESI) calculated: 975 (M-Cl), 

found: 975. 

[Zn(To-F2PP-BzBr)]. The same procedure as for [Zn(To-F2PP-BzIM)] was used 

except that To-F2PP-BzBr was synthesized with an acid chloride made from SOCl2 

and methyl 3-bromomethyl-benzoate to yield To-F2PP-BzBr where the imidazole is 

lacking to prevent binding of the linker to zinc. UV-vis (nm) in CH2Cl2: 416, 

510, 543, 585 



 44 

[Zn(To-F2PP-BzIM)]. 0.026 g of H2To-F2PP-BzIM were stirred in 10 mL of dry and 

air free CH2Cl2. Zn(OAc)2 dihydrate (0.250 g) was then added along with 1 mL 

MeOH, and the resulting reaction mixture was stirred at room temperature for 

1.5 hours. The color of the solution changed from deep red to magenta. The 

reaction was washed 3x with water, and dried with sodium sulfate. Rotary 

evaporation of the solvent yielded a magenta colored solid. Purification on a 

silica column eluted with CH2Cl2 yielded a pure magenta solid (23.8 mg, 84%). 

UV-Vis (nm) in CH2Cl2: 427, 559, 598  

Further control for IM binding: The UV-Vis spectrum of the product in 

CH2Cl2 shows the Soret band at 427 nm, which is in accordance with similar 

values observed for five-coordinate Zinc(II)-porphyrin complexes.31 In 

comparison, the analogous complex [Zn(To-F2PP-BzBr)] which lacks the IM ligand 

shows the Soret band at 416 nm. See Section A.4. 

Crystalization of [Zn(To-F2PP-BzIM)]. [Zn(To-F2PP-BzIM)] (18mg) was disolved in 

2 mL of 10% chlorobenzene in CH2Cl2 in a Schlenk tube which was cooled to 4
oC. 

This tube was then connected via glass joints to a Schlenk flask with n-hexane 

stirred at 35oC. After four days in the dark, enough n-hexane had diffused 

over to obtain crystals suitable for crystallographic analysis. 

[Fe(To-F2PP-BzIM)(NO)] (4). To a solution of the iron(III)-porphyrin, [Fe(To-

F2PP-BzIM)(Cl)] (0.02 g, 0.02 mmol) in 10 mL of freshly distilled CHCl3 and 

CH3OH (0.5 mL), excess nitric oxide was added, and the resulting solution was 

stirred for one hour under an NO atmosphere. n- hexane (15 mL) was slowly 

added to the reaction mixture, which was then stored in a freezer (-20 °C) for 

1 day. The resulting precipitate was filtered off using a fine pore Schlenk 

filter funnel, and the obtained compound was stored inside a glove box. The IR 

spectrum shows the NO stretching band at 1644 cm-1, indicative of the formation 

of 4. Yield: 14 mg, 70 %.  

H2To-F2PP-C4IM (L3), [Fe(To-F2PP-C4IM)(Cl)], and [Fe(To-F2PP-C4IM)(NO)] (3). 

The preparation of H2To-F2PP-C4IM was performed by the same method as described 

for H2To-F2PP-BzIM, but using 5-bromopentanoic acid in place of -bromotoluic 

acid to build the alkyl chain. 1H NMR (300 MHz, d-acetone): 9.10-8.80 (m, 8H, 

β-pyrrole); 8.54 (d, 1H, aminophenyl); 8.41 (s, 1H, amide); 8.09 (dd, 1H, 

aminophenyl); 8.05-7.90 (m, 3H, para fluorophenyl); 7.86 (t, 1H, aminophenyl); 

7.65-7.45 (m, 7H, meta fluorophenyl (6H) and aminophenyl (1H)); 7.04 (s, 1H, 

imidazole); 6.52 (s, 1H, imidazole); 6.44 (s, 1H, imidazole); 3.30 (t, 2H, C4H8 

tether); 1.44 (t, 2H, C4H8 tether); 1.08 (m, 2H, C4H8 tether); 0.90 (m, 2H, C4H8 

tether); -2.72 (s, 2H, pyrrole NH). UV-Vis [nm] in CH2Cl2: 414, 510, 541, 586, 
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and 641. MS (LCT-ESI) for C52H35N7F6O: Calculated: 887.9, found: 888.  

Iron insertion into H2To-F2PP-C4IM and the synthesis of [Fe(To-F2PP-C4IM)(NO)] 

(3) also followed the same procedures as described for 4.  

[Fe(To-F2PP-C4IM)(Cl)]: UV-Vis [nm] in CH2Cl2: 342, 414, 503, 574, and 650.  

FT-IR in KBr [cm-1]: νC=O = 1719.  



 46 

References 

 
(1) Ghosh, A., The Smallest Biomolecules: Diatomics and their Interactions 

with Heme Proteins. Elsevier: Amsterdam, 2008. 
(2) (a) Garbers, D. L.; Lowe, D. G., J. Biol. Chem. 1996, 269; (b) Hersleth, 

H. P.; Varnier, A.; Harbitz, E.; Rohr, A. K.; Schmidt, P. P.; Sorlie, 
M.; Cederkvist, F. H.; Marchal, S.; Gorren, A. C. F.; Mayer, B.; Uchida, 
T.; Schunemann, V.; Kitagawa, T.; Trautwein, A. X.; Shimizu, T.; Lange, 
R.; Gorbitz, C. H.; Anderson, K. K., Inorg. Chim. Acta 2008, 361; (c) 
Riggs, A. F., Curr. Opin. Struct. Biol. 1991, 1; (d) Waldman, S. A.; 
Murad, F., Pharmacol. 1987, 39. 

(3) Moenne-Loccoz, P.; De Vries, S., J. Am. Chem. Soc. 1998, 120, 5147. 
(4) (a) Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L., Chem. Rev. 

2004, 104; (b) Kim, E.; Chufan, E. E.; Kamaraj, K.; Karlin, K. D., Chem. 
Rev. 2004, 104; (c) Traylor, T. G., Acc. Chem. Res. 1981, 14; (d) 
Walker, F. A.; Simonis, U., Iron Porphyrin Chemistry. In Encyclopedia of 
Inorganic Chemistry, Second Edition, King, R. B., Ed. John Wiley & Sons, 
Ltd.: Chichester, 2005; Vol. IV, p 2390. 

(5) Traylor, T. G.; Diekmann, H.; Chang, C. K., J. Am. Chem. Soc. 1971, 93. 
(6) (a) Chang, C. K.; Traylor, T. G., Proc. Natl. Acad. Sci. U.S.A. 1973, 

70; (b) Chang, C. K.; Traylor, T. G., J. Am. Chem. Soc. 1973, 95; (c) 
Traylor, T. G.; Chang, C. K.; Geibel, J.; Berzinis, A.; Mincey, T.; 
Cannon, J., J. Am. Chem. Soc. 1979, 101; (d) Traylor, T. G., Pure & 
Appl. Chem. 1991, 63. 

(7) Schwarz, F. P.; Gouternam, M.; Muljiani, Z.; Dolphin, D. H., Bioinorg. 
Chem. 1972, 2. 

(8) Paine III, J. B.; Dolphin, D. H., Can. J. Chem. 1978, 56. 
(9) Momenteau, M.; Rougee, M.; Loock, B., Eur. J. Biochem. 1976, 71. 
(10) (a) Collman, J. P.; Gagne, R. R.; Halbert, T. R.; Marchon, J. C.; Redd, 

C. A., J. Am. Chem. Soc. 1973, 95; (b) Collman, J. P.; Gagne, R. R.; 
Reed, C. A., J. Am. Chem. Soc. 1974, 96; (c) Gerothanassis, I. P.; 
Momenteau, M.; Barrie, P. J.; Kalodimos, C. G.; Hawkes, G. E., Inorg. 
Chem. 1996, 35. 

(11) (a) Safo, M. K.; Gupta, G. P.; Walker, F. A.; Scheidt, W. R., J. Am. 
Chem. Soc. 1991, 113; (b) Walker, F. A.; Reis, D.; Balke, V. L., J. Am. 
Chem. Soc. 1984, 106. 

(12) (a) Collman, J. P.; Devaraj, N. K.; Decreau, R. A.; Yang, Y.; Yan, Y.-
L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., Science 2007, 315; 
(b) Collman, J. P.; Dey, A.; Decreau, R. A.; Yang, Y.; Hosseini, A.; 
Solomon, E. I.; Eberspacher, T. A., Proc. Natl. Acad. Sci. U.S.A. 2008, 
105; (c) Collman, J. P.; Fu, L.; Herrmann, P. C.; Zhang, X., Science 
1997, 275; (d) Collman, J. P.; Ghosh, S.; Dey, A.; Decreau, R. A.; Yang, 
Y., J. Am. Chem. Soc. 2009, 131; (e) Kim, E.; Shearer, J.; Lu, S.; 
Moenne-Loccoz, P.; Helton, M. E.; Kaderli, S.; Zuberbhler, A. D.; 
Karlin, K. D., J. Am. Chem. Soc. 1004, 126; (f) Kopf, M. A.; Karlin, K. 
D., Inorg. Chem. 1999, 38; (g) Liu, J.-G.; Naruta, Y.; Tani, F., Angew. 
Chem. 2005, 117. 

(13) Zumft, W. G., J. Inorg. Biochem. 2005, 99, 194. 
(14) Butland, G.; Spiro, S.; Watmough, N. J.; Richardson, D. J., J. 

Bacteriol. 2001, 183. 
(15) (a) Lehnert, N.; Praneeth, V. K. K.; Paulat, F., J. Comp. Chem. 2006, 

27; (b) Praneeth, V. K. K.; Haupt, E.; Lehnert, N., Inorg. Chem. 2005, 
99; (c) Praneeth, V. K. K.; Näther, C.; Peters, G.; Lehnert, N., Inorg. 
Chem. 2006, 45; (d) Praneeth, V. K. K.; Neese, F.; Lehnert, N., Inorg. 
Chem. 2005, 44, 2570. 



 47 

(16) Lim, M. D.; Lorkovic, I. M.; Ford, P. C., J. Inorg. Biochem. 2005, 99. 
(17) (a) Bohle, D. S.; Hung, C.-H., J. Am. Chem. Soc. 1995, 117; (b) Choi, 

I.-K.; Ryan, M. D., Inorg. Chim. Acta 1988, 153; (c) Liu, Y.; DeSilva, 
C.; Ryan, M. D., Inorg. Chim. Acta 1997, 258. 

(18) Cullotti, M.; Santagostini, L.; Monzani, E.; Casella, L., Inorg. Chem. 
2007, 46. 

(19) Collman, J. P.; Yang, Y.; Dey, A.; Decreau, R. A.; Ghosh, S.; Ohta, T.; 
Solomon, E. I., Proc. Natl. Acad. Sci. U.S.A. 2008, 105. 

(20) Wasser, I. M.; Huang, H.; Moenne-Loccoz, P.; Karlin, K. D., J. Am. Chem. 
Soc. 2005, 127. 

(21) Scheidt, W. R.; Ellison, M. K., Acc. Chem. Res. 1999, 32. 
(22) (a) Hoshino, M.; Ozawa, K.; Seki, H.; Ford, P. C., J. Am. Chem. Soc. 

1993, 115; (b) Traylor, T. G.; Sharma, V. S., Biochemistry 1992, 31. 
(23) Wyllie, G. R. A.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 2003, 42. 
(24) (a) Kon, H.; Kataoka, N., Biochemistry 1969, 8; (b) Wayland, B. B.; 

Olson, L. W., J. Am. Chem. Soc. 1974, 96. 
(25) (a) Huttermann, J.; Burgand, C.; Kappl, R., J. Chem. Soc. Faraday Trans. 

1994, 90; (b) Morse, R. H.; Chan, S. I., J. Biol. Chem. 1980, 255; (c) 
Tyryshkin, A. M.; Dikanov, S. A.; Reijerse, E. J.; Burgard, C.; 
Huttermann, J., J. Am. Chem. Soc. 1999, 121. 

(26) (a) Silvernail, N. J.; Barabanschikov, A.; Sage, J. T.; Noll, B. C.; 
Scheidt, W. R., J. Am. Chem. Soc. 2009, 131; (b) Silvernail, N. J.; 
Pavlik, J. W.; Noll, B. C.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 
2008, 47. 

(27) Walker, F. A.; Benson, M., J. Am. Chem. Soc. 1980, 102. 
(28) Cormode, D. P.; Drew, M. G. B.; Jagessar, R.; Beer, P. D., Dalton Trans. 

2008, 47. 
(29) Terazono, Y.; Patrick, B. O.; Dolphin, D. H., Inorg. Chem. 2002, 41. 
(30) Kojima, T.; Nakanishi, T.; Honda, T.; Harada, R.; Shiro, M.; Fukuzumi, 

S., Eur. J. Inorg. Chem. 2009. 
(31) Lin, C.-L.; Fang, M.-Y.; Cheng, S.-H., J. Electroanal. Chem. 2002, 531. 
(32) Paulat, F.; Berto, T. C.; DeBeer George, S.; Goodrich, L. E.; Praneeth, 

V. K. K.; Sulok, C. D.; Lehnert, N., Inorg. Chem. 2008, 47. 
(33) Collman, J. P.; Dey, A.; Yang, Y.; Decreau, R. A.; Ohta, T.; Solomon, E. 

I., J. Am. Chem. Soc. 2008, 130. 
(34) Komatsu, T.; Matsukawa, Y.; Tsuchida, E., Chem. Letts. 2000. 
(35) Lancuon, D.; Kadish, K. M., J. Am. Chem. Soc. 1983, 105. 
(36) (a)  Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, 

Madison, WI, 2008.  (b) Sheldrick, G.M. SADABS, v. 2008/1. Program for 
Empirical Absorption Correction of Area Detector Data, University of 
Gottingen: Gottingen, Germany, 2008.  (c) Saint Plus, v. 7.53a, Bruker 
Analytical X-ray, Madison, WI, 2008. 

(37) (a) Collman, J. P.; Brauman, J. I.; Doxee, K. M.; Halbert, T. R.; 
Bunnenberg, E.; Linder, R. E.; LaMar, G. N.; Gaudio, J. D.; Lang, G.; 
Spartalin, K., J. Am. Chem. Soc. 1980, 102; (b) Collman, J. P.; Zhong, 
M.; Wang, Z.; Rapta, M., Org. Lett. 1999, 1. 

(38) Young, R.; Chang, C. K., J. Am. Chem. Soc. 1985, 107 (898-909). 

 

 



 48 

 

 

 

Chapter 3 

Synthetic Models for the Non-Heme FeB Site of NorBC 

  A clear mechanistic picture of how the heme/non-heme active site of NorBC 

activates NO is lacking, mostly due to insufficient knowledge about the 

properties of the non-heme iron(II)-NO adduct. Here, the first biomimetic 

model complexes for this species that closely resemble the coordination 

environment found in the protein are presented; using the ligands BMPA-Pr and 

TPA. The systematic investigation of these compounds allows for key insights 

into the geometric and electronic-structural properties of high-spin non-heme 

iron(II)-NO adducts. In particular, it is shown that small changes in the 

ligand environment of iron could be used by NorBC to greatly modulate the 

properties, and hence, reactivity of this species. Section 3.1 is adapted  

with permission from Berto, T. C., Hoffman, M. B.; Murata, Y.; Landenberger, 

K. B.; Alp, E. E.; Zhao, J.; Lehnert, N. J. Am. Chem. Soc. 2011, 133, 16714-

16717. 

  In addition to the [Fe(BMPA-Pr)(NO)]X non-heme iron nitrosyl model 

complexes detailed above, several alternative models have also been 

synthesized based on derivatives of the BMPA-Pr ligand. Here, the ligands N-

propanoate-N,N-bis-(2-pyridylethyl)amine (BEPA-Pr), N-(2-methyl-(2-

chloromethyl-6-methylphenolate)-N,N-bis-(2-pyridylmethyl)amine (BMPA-PhO), and 

2,6-di-(ortho-N-pyridyl-amine)pyridine (TPDA) are used to generate the 

corresponding non-heme iron complexes [Fe(BEPA-Pr)]+, [Fe(BMPA-PhO)]+, and 

[Fe(TPDA)]2+. The interaction of these complexes with nitric oxide is also 

investigated. 

 

 

3.1. [Fe(BMPA)(NO)]X Non-Heme Iron Nitrosyls 

As discussed in Chapter 1, nitric oxide (NO) is an important biomolecule 

that serves as a signaling and immune defense agent in the human body, and an 

intermediate in denitrification. Importantly, since NO is acutely toxic to 

cells,1 efficient mechanisms for detoxification of NO must be in place to 
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avoid cellular damage. One viable pathway is the reduction of NO to less toxic 

N2O, as observed in denitrifying bacteria.2-3 To elucidate the biological 

pathways of controlling NO levels in cells, much research has been aimed at 

understanding one key enzyme, bacterial NO reductase (NorBC).4-8 This protein 

contains a dinuclear active site with both a heme and a non-heme (FeB) center 

in close proximity. In the first step of catalysis, each ferrous iron center 

binds one molecule of NO,2 but the following steps remain elusive. The basic 

properties of the ferrous heme-nitrosyl component of the active site are now 

well understood.9-19 To advance our knowledge of the mechanism of NorBC, it is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Structural comparison of the FeB site within NorBC (left) and the model 
complex 1-Cl (right).  

 

 

300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

A
b
s
. 
In

te
n

s
it
y

Wavelength [nm]

 [Fe(BMPA-Pr)(Cl)]

 1-Cl

440
395354

283

260

300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
b

s
. 
In

te
n
s
it
y

Wavelength [nm]

 [Fe(BMPA-Pr)]ClO
4

 1-ClO
4

255

350

354 430

300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
b
s
. 
In

te
n

s
it
y

Wavelength [nm]

 [Fe(BMPA-Pr)]OTf

 1-OTf

258

354
380 430

300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

A
b
s
. 
In

te
n

s
it
y

Wavelength [nm]

 [Fe(TPA)(CH
3
CN)

2
](ClO

4
)

2

 2

324

364
397

366

A B 

D C 

Figure 3.1. UV-Visible absorption spectra of 1 and 2 along with their corresponding 

ferrous precursor complexes. 



 50 

of critical importance to develop a better understanding of the properties of 

the FeB(II)-NO adduct. A recent crystal structure of NorBC clarifies the 

coordination environment of the FeB site (Scheme 3.1) and provides the basis 

for moving forward in this direction.20 Here, we report the first close 

spectroscopic and structural model complexes for the FeB(II)-NO center of 

NorBC, and systematically elucidate the factors that control the electronic 

structure, and hence, reactivity of this species. 

Model complexes aimed at non-heme iron enzymes frequently employ 

derivatives of the ligand tris(2-pyridylmethyl)amine (TPA).21-22 This ligand, 

however, does not accurately model the coordination environment of the FeB 

center of NorBC. We therefore substituted one of the methylpyridyl arms of TPA 

for a carboxylate group, yielding the biomimetic ligand BMPA-Pr. As shown in 

the following, non-heme iron(II)-NO complexes with BMPA-Pr and TPA show an 

amazing versatility in both complex geometry and the properties of the bound 

NO unit as a function of small alterations in the counter-ion and co-ligand. 

Synthesis of the ligand N-propanoate-N,N-bis-(2-pyridylmethyl)amine (BMPA-Pr) 

was carried out via previously published procedures.23 Metal insertion by 

reaction with ferrous salts gave yellow-orange complexes [Fe(BMPA-Pr)]X (X = 

Cl-, ClO4
-, I-, or CF3SO3

- = OTf-) with characteristic absorption bands in the 300 

– 450 nm region (see Figure 3.1). The isolated iron complexes are EPR silent 

in accordance with their Fe(II) oxidation states. Upon addition of NO gas, 

brown [Fe(BMPA-Pr)(NO)]X (1-X) complexes are generated and show EPR activity 

(S=3/2). [Fe(TPA)(CH3CN)2](ClO4)2 was synthesized similarly to published 

procedures,24 and exposure to NO gas then yielded [Fe(TPA)(CH3CN)(NO)](ClO4)2 

(2). Interestingly, the ferrous BMPA-Pr precursor complexes show  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. Relevant redox potentialsa for [Fe(BMPA-Pr)]X and select nitrosyls (vs. SHE). 

a As the oxidation of 1-OTf and 1-ClO4 are non-reversible, only the oxidation peak is shown. 
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Figure 3.2. (left) Crystal structure of 1-Cl showing a ligand arrangement very 

close to that seen in the FeB-NO adduct of NorBC. (right) Crystal structure of 1-

ClO4 showing an unexpected metallacrown hexamer. All solvent molecules and H atoms 

have been omitted for clarity. 

 

Fe(II)/Fe(III) redox potentials of about 200 – 250 mV vs. SHE in CH3CN, which 

is very close to the value of 320 mV reported for the FeB center of NorBC.
3 In 

contrast, the redox potential of the ferrous TPA complex is 860 mV in CH3CN,
24 

indicating that the carboxylate of BMPA-Pr is able to greatly influence the 

properties of the resulting ferrous complexes. When measured in aqueous media, 

the Fe(II)/Fe(III) couple for [Fe(BMPA-Pr)]X complexes shifts to potentials 

around 500 mV vs. SHE (see Table 3.1). Besides the general effect of the 

solvent dielectric, we believe that this shift is also related to hydrogen 

bonding interactions of water with the carboxylate group, which result in a 

less anionic BMPA-Pr ligand and thus a more cationic Fe center (shifting the 

potential closer to that seen for Fe(TPA) derivatives). The nitrosyl complexes 

1-OTf and 1-ClO4 show clear semi-reversible Fe-NO reductions and a non-

reversible oxidation peak. Data obtained for 1-Cl and 2 show multiple non-

reversible redox processes in both acetonitrile and water. As such these 

complexes require further study and may not be suitable for reduction to the 

corresponding nitroxyl species, as discussed further in Chapter 4. 

Elucidation of the exact coordination environment of the 1-X complexes (X 

= Cl-, OTf-, and ClO4
-) was carried out by X-ray crystallography. Excitingly, 

the refined structure of 1-Cl reveals a geometry which is very similar to that 

of the non-heme FeB center of NorBC
20 (Scheme 3.1, left), in the case of which 

the three histidine ligands makeup a trigonal face and a carboxylate residue 

occupies a position trans to one of the histidine rings. The model 1-Cl shows  
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a nearly identical coordination environment with pyridine ligands in the place 

of histidine. NO and chloride ligands then complete an octahedral geometry 

(Figure 3.2, left). Complex 1-Cl shows a bent Fe-N-O unit with an angle of 

152o, and Fe-NO and N-O distances of 1.783 and 1.154 Å, respectively. The 

strongly coordinating Cl- counter-ion remains bound upon NO addition, and 

prevents coordination of solvent to the iron center.  

In comparison, crystals of both 1-ClO4 and 1-OTf show a surprising 

propensity for the formation of unique metallacrown25 hexamers (Figure 3.2, 

right) similar to the “ferric wheel” synthesized by Lippard and coworkers. 

Here, the open coordination site left by the non-coordinating counter-ion is 

not occupied by a solvent molecule. Rather, the carboxylate group of each unit 

bridges between two adjacent iron centers, giving ring structures where all 

six NO moieties point toward the center of the ring. The oxygen atoms of the 

six NO ligands form an empty octahedron (volume ~ 20 Å3). The geometries of 

the individual {Fe(BMPA-Pr)(NO)} units also differ from that seen in 1-Cl. 

Whereas 1-Cl shows a trigonal-facial arrangement of the N-donor groups of 

BMPA-Pr, 1-OTf and 1-ClO4 show the alternative meridional binding mode (cf. 

Figure 3.2). From DFT calculations on the facial and meridional isomers of 1-

Cl, the difference in total energy between these structures is only about 3 

kcal/mol, indicating that the BMPA-Pr ligand easily reorients its binding 

mode. The hexameric metallacrowns 1-ClO4 and 1-OTf show average Fe-NO and N-O 

bond distances of 1.72 (1.76) Å and 1.18 (1.17) Å, respectively, and an 

average Fe-N-O angle of 152o (149o) (1-OTf values in parentheses). 
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Figure 3.3. Solution IR spectra of 1-OTf in CH2Cl2, CH3OH, and D2O. The shift 

observed in the presence of D2O indicates a loss of the hexameric structure. 
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Interestingly, the bridging carboxylate groups in the hexameric structures 

show equivalent Fe-O distances of ~2.07 Å to both iron centers, which is 

slightly longer than the 2.02 Å Fe-O bond observed for 1-Cl. This strong Fe-

OCO-Fe linkage causes the hexameric structures to be quite robust. Our current 

data indicate that the metallacrown is even maintained in solution based on 

solution IR and EPR spectra recorded in a variety of solvents (see Figures 3.3 

and 3.4). Spectra recorded in H2O/D2O show features consistent with breakdown 

of the hexameric structure into separate H2O-bound monomers. This claim is 

addressed further in regards to the effect on redox potential in Chapter 4.  

EPR spectra were recorded for all nitrosyls 1-X and 2. Both 1-Cl and 2 show 

typical S = 3/2 signals at liquid He temperatures with effective g values of 

approximately 4 and 2. These data are in accordance with the well established 

electronic structure of non-heme ferrous nitrosyls which show Fe(III)-NO- 

electronic structures where the high-spin (hs) Fe(III) and NO- (S=1) are 

antiferromagnetically coupled.26 Interestingly, the hexameric complexes 1-OTf 

and 1-ClO4 show solution EPR spectra indicative of weak electronic coupling 

between the {Fe(BMPA-Pr)(NO)} units (see Figure 3.4). These data provide 

further indication that these hexamers remain intact in solution.  

 

 

 

 

 

 

 

 

Figure 3.4. EPR spectrum of 1-OTf showing coupling of the iron centers in CH2Cl2, 

indicating a hexameric structure. In H2O, a typical monomeric S = 3/2 signal is seen. 
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A more detailed picture of the optical transitions of 1-OTf and 1-Cl was 

obtained with MCD spectroscopy. Here, the different selection rules which 

apply to MCD as compared to UV-visible absorption spectroscopy result in 

significantly more intense d-d and LMCT transitions. More specifically, the 

large spin-orbit coupling constants associated with metal-based d-d 

transitions lead to increased intensity for these transitions in the MCD 

spectra. For 1-OTf and 1-Cl samples were prepared as thin polystyrene films 

embedded with the corresponding non-heme iron nitrosyl and measured under 

variable temperature and magnetic field. The resulting data, shown in Figure 

3.5, have been fit to individual Gaussian transitions which correspond to 

transitions within the Fe-NO unit. Here, the data for 1-OTf have also been 

overlaid with the corresponding UV-visible absorption spectrum. Variable 

temperature, variable field (VTVH) magnetic saturation plots generated for the 

individual Gaussian features results in characteristic splitting patterns 

based on the polarizations of the individual transition. The VTVH curves 

display nearly identical splitting patterns across the measurement window (250 

to 800 nm), indicating that the transitions are similarly polarized within the 

molecule (i.e. along the Fe-NO axis). This assignment is based on previously 

reported literature on synthetic and enzymatic non-heme iron nitrosyl 

complexes.27 Figure 3.6 shows VTVH curves generated for the individual 1-OTf 

transitions located at 20790 and 29070 cm-1.  
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Vibrational spectroscopy was used to further characterize the nature of 

the Fe-N-O unit in 1-X and 2. Importantly, IR spectra of the 1-X complexes 

show N-O stretching frequencies which are significantly effected by small 

changes in the coordination sphere. 1-Cl has the lowest energy N-O stretch, 

ν(N-O), at 1726 cm-1 (in the single crystal). Exchange of chloride for iodide 

shifts ν(N-O) to 1769 cm-1. Non-coordinating counter-ions such as ClO4
- and OTf- 

further shift ν(N-O) to 1777 and 1784 cm-1, respectively. The N-O stretch of 1-

I is somewhat intermediate, which could either be due to iodide being a weaker 

donor than chloride, or the formation of a metallacrown structure. Finally, 

replacing the carboxylate in 1-X with another pyridine, as in 2, leads to an  
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N-O stretching frequency of 1810 cm-1. An important hallmark of ferrous non-

heme nitrosyls is therefore the dramatic tunability of the N-O bond 

strength,an impressive 84 cm-1 difference in ν(N-O) between 2 (1810 cm-1) and 

1-Cl (1726 cm-1) is observed here.28 Consequently, the carboxylate ligand 

present in the FeB site of NorBC seems to play an important role in tuning the 

reactivity of the FeB-NO complex, and not simply provide a stable coordination 

sphere for iron as previously proposed.8 Determination of the Fe-NO stretching 

modes is challenging as these vibrations are IR silent and the complexes show 

decomposition upon laser irradiation. To probe the iron-centered vibrations, 

Nuclear Resonance Vibrational Spectroscopy (NRVS) was therefore employed.29 

NRVS is ideally suited for this purpose, as the spectral intensity of a 

vibration is proportional to its amount of 57Fe motion in this technique. Using 
15N18O isotope labeling, the 57Fe-NO stretching vibrations in 1-Cl, 1-OTf, and 2 

were identified at 484, 495, and 496 cm-1, respectively. While analysis of the  
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NRVS data for both 57
1-Cl and 57

1-OTf is straightforward, 57
2 shows a split 

feature in the 57Fe-NO stretching region at 496 and 457 cm-1. However, isotope 

substitution is only sensitive to the 496 cm-1 feature, clarifying this as the 

true 57Fe-NO strech. Figure 3.7 shows a correlation plot of ν(Fe-NO) versus 

ν(N-O) for all these complexes along with [57Fe(TPA)(NO)](Cl)2. Importantly, 

the observed correlation between ν(Fe-NO) and ν(N-O) is not inverse, as would 

be expected for a change in Fe-NO backbonding along this series. In fact, a 

clear direct correlation is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To better understand the nature of the Fe-NO bond and the observed trends 

in Fe-NO and N-O bond strengths (frequencies), DFT calculations were employed. 

The BP86/TZVP optimized structure of 1-Cl shows excellent agreement with 

experiment; for example, the Fe-NO distance and Fe-N-O angle are obtained at 

 [Fe(BMPA-Pr)(NO)(Cl)] [Fe(BMPA-Pr)(NO)]OTf  

[Fe(TPA)(NO)(CH3CN)]
2+ [Fe(BMPA-Pr)(NO)(Cl)] 

meridional coordination 

Figure 3.9. DFT optimized structures of 1-Cl, a simplified model of 1-OTf, and 2. 

All structures were optimized at the BP86/TZVP level and show structural properties 

in agreement with experiment. See text for a more detailed description. 

 



 58 

1.74 Å and 153o, respectively. The calculated N-O stretching frequency at 1733 

cm-1 is close to the experimental value of 1726 cm-1. The Fe-NO stretch is 

overestimated at 522 cm-1 compared to experiment (484 cm-1), which is not 

unusual as gradient-corrected functionals commonly overestimate metal-ligand 

covalencies, and hence, bond strengths.30 For the hexameric complexes 1-OTf and 

1-ClO4, a single {Fe(BMPA-Pr)(NO)} unit was constructed by terminating the 

carboxylate bridges with Li+ ions. This model again reproduces the 

experimental geometry well and produces ν(Fe-NO) and ν(N-O) values of 530 and 

1788 cm-1, respectively. Finally, the vibrational properties of 

[Fe(TPA)(CH3CN)(NO)]
2+ were calculated, predicting ν(Fe-NO) and ν(N-O) at 537 

and 1791 cm-1, respectively. Thus, the DFT results replicate the experimental 

vibrational frequencies of 1-X and 2 well, and in particular, reproduce the 

direct correlation between ν(Fe-NO) and ν(N-O) (see Figure 3.7).  

Because of the close agreement between experiment and DFT, the 

computational results based on in silico  models (see Figure 3.9) can be used 

to gain insight into the electronic-structural reasons for the observed 

vibrational correlation. Analysis of the MO diagram of 1-Cl reveals an 

electronic structure description that is in agreement with the hs Fe(III)-NO- 

bonding scheme previously proposed.26 Correspondingly, in the α-MO diagram, all 

iron d-orbitals are found singly occupied. In the applied coordinate system 

(Fe-NO vector corresponds to the z axis), the dxz and dyz orbitals form 

backbonds with the two unoccupied α-π* orbitals of NO, π*v and π*h. This 

interaction is quite weak, as evident from the corresponding antibonding MO’s, 

α102 (72% π*v), α103 (33% π*h), and α104 (48% π*h), which only have small iron 

d-orbital contributions (see Figure 3.10). Note that the bending of the Fe-N-O 

unit also allows for weak backbonding of π*h with dz2, as can be seen from the 

occupied MO α100 (41% dz2, 19% π*h). In the β-spin MO diagram, all iron d-

orbitals are empty, whereas the β-π* orbitals of NO are now occupied, in 

accordance with the NO- (S=1) description of the NO ligand. The occupied β-π* 

orbitals of NO are ideally suited to donate into the empty β-spin dxz and dyz 

orbitals of iron. The strength of this interaction is again estimated best 

from the corresponding antibonding combinations, β100 (58% dyz/z2, 30% π*h) and 

β102 (30% dxz, 24% π*v), which show significant iron d-orbital and NO π* char-

acter (see Figure 3.10). As a result, the π donation from NO- into the iron β-

dxz and β-dyz orbitals is significant. In summary, NO
-
 acts as a weak π-acceptor 

(α-spin) and a strong π-donor (β-spin) ligand in these complexes. The 

calculated spin density distribution is in agreement with this description,  

Figure 3.10. Isodensity surface plots of selected α-spin and β-spin MO’s showing the 
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delivering values of +3.19 and -0.64 for Fe and NO, respectively. These values 

reflect the strong donation of negative (β) spin density from NO to iron, and 

the weak backdonation of positive (α) spin density from iron to NO. 

Importantly, the direct correlation between the Fe-NO and N-O bond strengths 

and vibrational frequencies can therefore be explained by variations in the 

amount of π-donation from the NO- ligand to the iron center. Since this 

donation originates from N-O antibonding (π*) orbitals, a strengthening of 

this interaction (i.e. an increase in donation) results in the strengthening 

of both the Fe-NO and N-O bonds simultaneously, and hence, an increase in both 

ν(Fe-NO) and ν(N-O). Interestingly, the observed trend in Figure 3.7 

correlates with the number of anionic ligands bound to the  iron center; which 

is two for 1-Cl, one (on average) for 1-OTf,31 and none for 2. Hence, this 

effect seems to correlate with the effective nuclear charge of iron, where a 
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Figure 3.10. Isodensity surface plots of selected α-spin and β-spin MO’s showing the 

interaction of FeIII and NO- in [Fe(BMPA-Pr)(NO)]Cl. In particular, β96 and β97 represent the 

π-donation of NO- into the dxz and dyz orbitals of iron. Calculated at the BP86/TZVP theory 

level. 
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more negative iron center is less likely to accept electron donation from 

bound NO-. Consequently, TPA complexes should exhibit the highest N-O 

stretching frequencies due to the lack of an anionic donor. The data support 

this trend as 2 shows ν(N-O) at 1810 cm-1, and the related benzoylformate (BF, 

a delocalized weak anionic ligand) complex [Fe(TPA)(BF)(NO)]ClO4 shows ν(N-O) 

at 1794 cm-1.32 

To conclude, structural, spectroscopic, and theoretical data on the first 

biomimetic model complexes for the non-heme FeB(II)-NO adduct of NorBC have 

been presented. The results have uncovered a surprising tunability of the 

properties of the Fe-NO bond in these systems based on the number of anionic 

donors bound to the iron center.28 This tunability is synthetically easy to 

access as simple changes in co-ligand and counter ion lead to dramatic effects 

on the Fe-NO unit, as evidenced by a shift of 84 cm-1 in ν(N-O) between 1-Cl 

and 2. Note that the observed shift does not relate to the difference in BMPA-

Pr binding mode. Further vibrational studies show that this tunability in the 

Fe-NO bond manifests itself as a direct correlation between Fe-NO and N-O bond 

strengths (frequencies). Specifically, changes in π-donation from the bound 

NO- (S=1) ligand to hs Fe(III) are responsible for the observed correlation. 

These results have important consequences for NorBC catalysis, as our data 

suggest that the protein has the ability to control the properties of the 

FeB(II)-NO center in a similar fashion; i.e. by adjusting the number and donor 

strengths (via hydrogen bonding) of anionic ligands bound to the FeB center. 

Unfortunately, ν(N-O) of the FeB-NO complex is not known, so comparison with 

our model systems cannot be made. Considering redox potentials, the FeB center 

is only slightly more oxidizing than our BMPA-Pr model systems (in CH3CN), 

which indicates (a) that glutamate remains bound to the FeB center upon 

reduction to the ferrous form, and (b) that hydrogen bonds to the bound 

glutamate are likely present, responsible for the increase in redox potential. 

Considering this scenario, we predict that the FeB-NO complex of NorBC has 

similar properties as the Fe-NO units in 1-OTf and 1-ClO4. This aspect 

requires further study.  

Initial reactivity studies with five-coordinate [Fe(Porph)(NO)] (Porph2- = 

TPP2-, To-F2PP
2-) and six-coordinate [Fe(To-F2PP-BzIM)(NO)] complexes

4 show no 

reactivity upon simple mixing of the heme- and non-heme iron-nitrosyls in 

organic solvents. Considering that these complexes by themselves are also 

unreactive towards additional NO gas, the frequently cited radical type N-N 

coupling mechanism of NorBC is unlikely (compare. ref. 30). Current studies 
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focus on adjusting redox potentials in the heme- and non-heme iron-nitrosyl 

complexes to investigate the possibility of (proton-assisted) reductive 

coupling between the two NO ligands. This work is detailed in Chapter 4. 

 

3.2 Alternative Non-Heme Iron Nitrosyl Models 

Alternative non-heme ligand scaffolds offer the opportunity to design more 

accurate structural models of the non-heme FeB site of NorBC. In particular, 

(BMPA-PhO) have been investigated with the aim of limiting the coordination 

the ligands N-methylpropionate-N,N-bis-(2-pyridylethyl)amine (BEPA-Pr) and N- 

(2-methyl-(2-chloromethyl-6-methylphenolate)-N,N-bis-(2-pyridylmethyl)amine  

 

 

 

 

 

 

 

number of iron and preventing the formation of bridging metallacrowns, 

respectively. Additionally, the rigid tripyridyl-diamine ligand 2,6-di-(ortho-

N-pyridylamine)pyridine (TPDA) has been employed.  

Compared to BMPA-Pr, the ligand BEPA-Pr contains an extra methylene carbon 

in the pyridylalkyl units. In the corresponding iron complex [Fe(BEPA-Pr)]+, 

this added length can be envisioned to wrap more completely around the iron 

center and thus sterically hinder formation of a six-coordinate species. In 

order to investigate this possibility the BEPA-Pr ligand was synthesized in a 

manner similar to that of BMPA-Pr employing N,N-bis-pyridylethylamine in the 

place of di-(2-picolyl)amine. Reaction with the desired ferrous salt (FeX2) 

under anaerobic conditions then yields [Fe(BEPA-Pr)]X (X = ClO4
- or I). These 

complexes show typical Fe(II) to pyridine charge transfer transitions at ~365 

nm in the UV-visible absorbance spectrum along with a C=O stretching vibration 

at ~1600 cm-1 in the infrared spectrum. 

Several attempts were made to crystallize [Fe(BEPA-Pr)]X with various 

counter-ions in order to determine the coordination number of the iron center. 

However, these trials only yield an oil product. It is therefore likely that 

the complex is not monomeric, but that the longer pyridylethyl arms allow for 

intermolecular coordination leading to the formation of oligimers. Similar 

results have been observed for copper adducts of the BEPA-Pr ligand.33 

Scheme 3.2. Schematic representation of alternative non-heme ligands discussed in 

this chapter. 
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Interaction of these complexes with NO gas results in an immediate color 

change to yellow/brown, presumably indicating formation of a ferrous nitrosyl 

complex. However, precipitation of the resulting compound followed by FT-IR 

analysis shows no ν(N-O) vibration (see Figure 3.11). This result points to 

two possible scenarios; 1) the Fe-NO bond is highly labile and NO is lost upon 

precipitation of the complex, or 2) the [Fe(BEPA-Pr)]X complex reacts with NO 

to generate some NOx product.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to investigate the mechanism of NO loss, FT-IR gas headspace 

analysis was performed to analyze for N2O (formed as a product of NO 

reduction). Here, N2O formation is plausible as the color change to 
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Figure 3.12. Absorption spectra of [Fe(BMPA-PhO)]OTf and the corresponding oxidation 

product. 
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Figure 3.11. FT-IR spectra of [Fe(BEPA-Pr)]ClO4 and [Fe(BEPA-Pr)(NO)]ClO4 (right) 

along with [Fe(BEPA-Pr)(NO)]ClO4 and the corresponding 15N18O derivative (left). 

Despite addition of NO gas, no observable shifts are seen in the infrared spectra. 
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yellow/brown upon NO addition indicates oxidation of the Fe(II) center, 

concomitant with NO reduction. Unfortunately, these attempts did not show N2O 

in the reaction headspace. Nevertheless, the observed color change indicates 

reaction with NO leading to a new [Fe(BEPA-Pr)]-based product. The identity of 

this species has yet to be identified. One potential outcome is that the 

coordination of NO leads to a reorganization of the BEPA-Pr coordination-

geometry, resulting in new iron to ligand optical transitions which give rise 

to the observed change in color. 

Another potential route to accessing low coordination number non-heme iron 

complexes, similar to that observed in NorBC, is to prevent oligimerization 

through bridging ligand moieties. As seen in Section 3.1, the complexes 

[Fe(BMPA-Pr)(NO)]OTf and [Fe(BMPA-Pr)(NO)]ClO4 are capable of forming 

hexameric metallacrown species through bridging of the carboxylate 

functionality on the BMPA-Pr ligand. The introduction of a phenolate moiety in 

place of this carboxylate yields the ligand BMPA-PhO which is less likely to 

oligimerize in solution. The BMPA-PhO ligand is obtained by the condensation 

of di-(2-picolyl)amine with one equivalent of 4-methyl-2,6-dichloromethyl 

phenol. This is followed by metallation with Fe(OTf)2 to give [Fe(BMPA-

PhO)](OTf) as a yellow solid. UV-visible absorption spectroscopy shows charge 

transfer transitions at 360 nm, consistent with the formation of a ferrous 

coordination complex. Due to the limited coordination environment, [Fe(BMPA-

PhO)](OTf) is highly sensitive to oxidation, resulting in the formation of the 

corresponding blue ferric species which shows more intense Fe(III)-based 

transitions at ~340 nm along with a characteristic broad feature at 670 nm 

which is responsible for the observed blue color (see Figure 3.12). 

Excitingly, addition of NO gas to [Fe(BMPA-PhO)](OTf) forms the nitrosyl 

complex [Fe(BMPA-PhO)(NO)](OTf) which is stable in the absence of dioxygen 

(see Figure 3.13). This material displays a ν(N-O) stretching vibration at 

1785 cm-1 and a 57Fe-N(O) vibration at 498 cm-1 as determined by FT-IR and NRVS 

spectroscopy, respectively. The correlation between these two vibrational 

properties lies to the right of the trend predicted in Figure 3.7, likely due 

to 3 being a five-coordinate species. 

Alternatively, preliminary work has been completed using the rigid 

tripyridyl-diamine ligand TPDA. Here, metallation with iron(II) acetate yields 

[Fe(TPDA)](OAc)2 as an orange solid. Absorption measurements recorded on this 

material show a prominent feature at 335 nm along with a broad shoulder at 

~430 nm. More importantly, introduction of NO gas to a stirred methanol  
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Figure 3.13. Infrared spectra of [Fe(BMPA-PhO)]OTf and the corresponding nitrosyl 

adduct. Oxidation of [Fe(BMPA-PhO)(NO)]OTf leads to loss of NO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution of [Fe(TPDA)](OAc)2 results in the immediate formation of a nitrosyl 

complex which is accompanied by a color change to dark orange. Upon NO 

addition, the absorption features associated with the NO-free ferrous precursor 

change only slightly with the loss of the 430 nm shoulder and a slight shift 

in the 335 nm feature to 332 nm. This change is fully reversible upon argon 

purge, indicating reversible NO binding (see Figure 3.14). Additionally, 

infrared spectroscopy reveals two potential ν(N-O) stretching features at 1777 

and 1709 cm-1. Both the absorbance and infrared data suggest an atypical non- 
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Figure 3.14. Absorbance spectra of [Fe(TPDA)](OAc)2 and the corresponding nitrosyl 

adduct. An argon flush of the solution returns absorbance features in accordance 

with the starting complex [Fe(TPDA)](OAc)2. 
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heme iron nitrosyl complex due to the relative lack of absorbance features and 

multitude of vibrational features present in the typical ν(N-O) region of the 

infrared spectrum. The observed spitting pattern in the IR spectra is also in 

line with formation of a dinitrosyl iron complex (DNIC) with an {Fe(NO)2}
9 

electronic structure;34 using the classic Enemark and Feltham notation.35 

However, the EPR spectrum recorded at 4 K, as shown in Figure 3.15, indicates 

at least two non-integer spin species. The ratio of the peak at approximately 

g = 4 compared to that at g = 2 is too low to be a single S = 3/2 species. 

This data most likely corresponds to a mixture of both an S = 3/2 and S = 1/2 

species in solution. At least two potential scenarios may lead to the observed 

data: 1) partial DNIC formation along with formation of a high-spin non-heme 

iron nitrosyl, or 2) formation of both low-spin and high-spin non-heme iron 

nitrosyls; either as separate species or as a spin-admixture. However, based 

on the sharp g = 2 feature in the EPR spectrum along with the additional g = 4 

signal, DNIC formation is unlikely. A more likely scenario is simply the 

formation of two separate non-heme iron nitrosyl complexes leading to the 

observed split spectroscopic features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an effort to generate a ligand which is more biomimetic and does not 

suffer from the tendency to form multiple iron nitrosyl derivatives, attempts 

have been made to covalently link a carboxylate moiety to the TPDA ligand 

framework. These trials include deprotonation of the TPDA ligand in dry DMSO 

with 1 equivalent of KOH and excess DIEA followed by the introduction of t-

butyl chloroacetate with KI. Twenty four hour reflux afforded an impure oil 

Figure 3.15. EPR spectrum of the nitrosyl product of [Fe(TPDA)](OAc)2 taken at 4 K 

in a frozen methanol solution (right). IR spectra of [Fe(TPDA)](OAc)2 and the 

corresponding NO adduct (left). 
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product which contains some fraction of the desired product (LCT-MS: m/z = 

322, mass – t-butyl). Further trials included the replacement of NaH for KOH 

and the use of methyl 3-bromomethyl propionate in place of t-butyl 

chloroacetate without any noticeable success. 

Finally, the model complex [Fe(TlEt4iPrlP)(OTf)(THF)(NO)]OTf (3) (shown in 

Figure 3.16) has been examined in collaboration with Dr. Ferman Chavez of 

Oakland University. Synthetic efforts and crystallographic analysis was 

carried out in Dr. Chavez’s laboratory while spectroscopic analysis was 

performed in our laboratory. Infrared spectroscopy shows the ν(N-O) stretching 

frequency at 1831 cm-1 when 3 is ground in a KBr disc. This frequency shifts to 

1842 cm-1 in CH2Cl2 solution. Importantly, no change in the ν(N-O) feature is  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. X-Ray crystal structure of [Fe(TlEt4iPrlP)(OTf)(THF)(NO)]OTf. 

Determined by Dr. Chavez and coworkers at Oakland University. 
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Figure 3.17. IR spectra of 3 recorded in KBr disc (top) and CH2Cl2 (bottom). 
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seen after 20 minutes in solution, indicating solution stability of the 1842 

cm-1 species over this timeframe (see Figure 3.17). Interestingly, it is not 

yet clear if 3 maintains the same conformation in solution and in a KBr 

matrix. The 11 cm-1 shift observed upon dissolving 3 in CH2Cl2 may be 

indicative of structural rearrangement in solution; this issue is further 

discussed below. 

In an effort to identify the Fe-NO stretching frequency, FT-raman 

spectroscopy was employed. As shown in Figure 3.18, these data show two 

potential Fe-NO features at 439 and 575 cm-1. Due to the inconclusive nature of 

the FT-raman data, NRVS spectroscopy was performed. Here, 57Fe-doped 3 shows a 

potential Fe-NO stretching feature at 447 cm-1 (see Figure 3.19). However, this 

feature does not display isotope sensitivity upon 15NO labeling. Confident 

assignment of the Fe-NO stretch in 3 therefore remains inconclusive.  
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Figure 3.18. FT-raman spectra of 3 showing potential Fe-NO stretching features 

at 439 and 575 cm-1. 
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 Absorbance spectroscopy was used to further characterize 3. MCD 

measurements were performed at low temperature between 0 – 7 T (see Figure 

3.20). These data show typical high-spin non-heme iron nitrosyl features 

similar to those reported for 1-X in section 3.1 of this chapter. 

Interestingly, UV-visible absorbance spectroscopy has been used to 

characterize the reactivity of 3 and the ferrous heme nitrosyl [Fe(To- 
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Figure 3.19. NRVS spectra of 3 showing potential Fe-NO stretch at 447 cm-1. 

Interestingly, this feature does not appear to be isotope sensitive. 
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Figure 3.20. MCD spectra of 3 recorded at 2 K between 1 – 7 T. These features are 

consistent with reported high-spin non-heme iron nitrosyls. 



 69 

F2PP)(NO)] under acidic conditions. Figure 3.21 shows the observed shift in  

the absorbance spectra upon addition of an acidic solution of [Fe(To-

F2PP)(NO)] to solid 3. These features are indicative of formation of ferric 

[Fe(To-F2PP)]Cl, indicating a reaction involving the nitrosyl unit. Somewhat  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unexpectedly, this same reactivity is not observed when 3 is dissolved in 

solution prior to addition of the heme nitrosyl. This observation points to 

the potential isomerization of 3 in solution; leading to a less-reactive 

conformation. Headspace analysis using gas IR spectroscopy did not indicate 

N2O formation during any of the reactivity experiments between 3 and [Fe(To-

F2PP)(NO)]. 

 

Experimental 

In general, reactions were performed applying inert gas (Schlenk) 

techniques. Preparation and handling of air sensitive materials was carried 

out under an argon atmosphere in an MBraun glovebox equipped with a 

circulating purifier (O2, H2O < 0.1 ppm). Infrared spectra were obtained from 

KBr disks on a Perkin-Elmer BX spectrometer. Proton magnetic resonance spectra 

were recorded on a Varian Inova 400 MHz and a Varian Mercury 300 MHz 

instrument. Electronic absorption spectra were measured using an Analytical 

Jena Specord 600 instrument. Electron paramagnetic resonance spectra were 

recorded on a Bruker X-band EMX spectrometer equipped with an Oxford 
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Figure 3.21. Absorbance spectra showing the reaction of 3 with [Fe(To-F2PP)(NO)] 

under acidic conditions. The resulting product (blue) displays features consistent 

with [Fe(To-F2PP)]Cl. 
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Instruments liquid nitrogen or liquid helium cryostat. EPR spectra were 

typically obtained on frozen solutions using ~20 mW microwave power and 100 

kHz field modulation with the amplitude set to 1 G. Sample concentrations 

employed were ~1 mM.  

CAUTION: Although no hazards were observed in this study, perchlorate salts 

are potentially explosive and should be handled with care. 

Electrochemical studies were carried out with a CH instruments CHI660C 

electrochemical workstation. Cyclic voltammograms (CVs) were obtained using a 

three-component system, consisting of a platinum working electrode, a platinum 

auxiliary electrode, and a silver/silver chloride reference electrode. Spectra 

were recorded in either 0.1 M tetrabutylammonium perchlorate in CH3CN or 0.1 M 

KCl in H2O. Potentials were corrected to the SHE standard and the CH3CN 

measurements were also corrected by measuring the ferrocenium/ferrocene couple 

under the same conditions (+624 mV vs. SHE). 

Crystal structure determination was carried out using a Bruker SMART APEX CCD-

based X-ray diffractometer equipped with a low temperature device and a fine 

focus Mo-target X-ray tube (wavelength: 0.71073 Å) operated at 1500 W power 

(50 kV, 30 mA). Measurements were taken at 85 K and the detector was placed ~5 

cm from the crystal. The data were processed with SADABS and corrected for 

absorption. The structures were solved and refined with the Bruker SHELXTL 

(ver. 2008/3) software package.36 

N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine. Prepared via the method of 

Carvalho et. al.23 A solution containing 30 ml of methanol, 4.2 g (0.021 mol) 

of di-(2-picolyl)amine, and 5.7 ml (0.063 mol) of methylacrylate was allowed 

to stir for one week at room temperature. Upon completion of the reaction the 

crude material was concentrated by rotary evaporation of the solvent.  

Purification was carried out via column chromatography using silica and 

methanol as eluant. Yield: 5.0 grams (90%).  1H NMR (300 MHz, CD3OD): 8.4 (d, 

2H), 7.6 (d, 2H), 7.3 (t, 2H), 7.2 (t, 2H), 3.8 (s, 4H), 3.6 (s, 3H), 3.0 (t, 

2H), 2.6 (t, 2H). 

N-propanoate-N,N-bis-(2-pyridylmethyl)amine sodium salt (Na[BMPA-Pr]). The 

sodium salt of N-propanoate-N,N-bis-(2-pyridylmethyl)amine was prepared by 

dissolving 0.525 g (1.84 mmol) of N-methylpropanoate-N,N-bis-(2-

pyridylmethyl)amine in 5 ml of THF. A solution of 0.073 g (1.84 mmol) NaOH in 
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2 ml H2O was then added to the THF solution and the biphasic mixture was 

allowed to stir at reflux for 7 hours, after which the aqueous layer was 

collected and the solvent removed by rotary evaporation. The obtained product 

was used without further purification. Yield: 500 mg (93 %).  1H NMR (300 MHz, 

CD3OD): 8.43 (d, 2H), 7.75 (t, 2H), 7.58 (d, 2H), 7.24 (t, 2H), 3.78 (s, 4H), 

2.85 (t, 2H), 2.43 (t, 2H).  

 

 

 

 

 

 

 

 

 

 

 

 

 

[Fe(BMPA-Pr)](X). A representative procedure for the metallation of the BMPA-

Pr ligand is as follows. The ferrous salt can be exchanged for the desired 

counter ion without other modifications to the procedure.  In the case of 

[Fe(BMPA-Pr)](Cl) the desired complex can be purified away from NaCl via 

Soxhlet extraction using CHCl3. However, due to a strong tendency to trap 

solvents, complete drying of the product is not practical.  

A small round bottom flask containing 0.33 g (1.13 mmol) of Na[BMPA-Pr] was 

purged of oxygen and placed under an argon atmosphere. To this, 3 ml of dry 

and air-free methanol (acetonitrile is used for the ClO4
- analog) was added via 

syringe. Once the ligand was completely dissolved, a solution of 0.40 g (1.13 

mmol) iron(II) triflate in 7 ml dry and air-free THF was added via syringe to 

the stirred ligand solution. The reaction solution immediately became 

yellow/orange in color and was allowed to stir for one hour before 

diethylether was added to precipitate the desired iron complex as a yellow 

solid. The material was dried under vacuum. Yield: 375 mg (70%) [Fe(BMPA-

Pr)]Cl. Anal calcd for C15H16N3O2ClFe • CH3OH • C4H10O • 0.95CHCl3: C, 43.30; H, 

5.37; N, 7.23. Found: C, 43.16; H, 5.35; N, 7.47. [Fe(BMPA-Pr)]ClO4. Anal 
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Figure 3.22. 1H-NMR spectrum of Na[BMPA-Pr] taken in CD3OD. 
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calcd for C15H16N3O6ClFe • 0.25CH3CN • 0.2 C4H10O: C, 43.44; H, 4.19; N, 10.10. 

Found: C, 43.32; H, 4.22; N, 10.10. [Fe(BMPA-Pr)]OTf. Anal calcd for 

C16H16N3O5F3SFe: C, 40.44; H, 3.39; N, 8.84. Found: C, 40.06; H, 3.49; N, 8.86.  

[Fe(BMPA-Pr)(NO)](X). A representative procedure for the nitrosylation of 

[Fe(BMPA-Pr)](X) is as follows.  

A Schlenk flask was filled with 250 mg of [Fe(BMPA-Pr)](OTf) dissolved in 12 

ml of dry and air-free CH2Cl2 (acetonitrile is used for the Cl- and ClO4
- 

analogs). The resulting yellow solution was exposed to NO gas while stirring 

for 10 minutes. Upon exposure to NO the solution becomes brown/black in color.  

Approximately 25 ml of pentane was added and the reaction was allowed to 

precipitate under a static NO atmosphere at -35oC overnight. Filtration 

yielded 270 mg of the desired nitrosylated complex in a near-quantitative 

yield. IR: 1-Cl, ν(N-O) 1726 cm-1; 1-ClO4, ν(N-O) 1777 cm
-1; 1-OTf, ν(N-O) 1784 

cm-1; Anal calcd for C16H16N4O6F3SFe • 0.4CH2Cl2: C, 36.53; H, 3.14; N, 10.39. 

Found: C, 36.76; H, 3.14; N, 10.27. 1-I, ν(N-O) 1769 cm-1. 

Preparation of 
57
FeCl2 for NRVS samples. A round bottom flask containing 507 mg 

of 57Fe powder was fitted with a condenser and set under an argon atmosphere. 

To this flask was added 5 ml of concentrated HCl which had been freeze-pump-

thawed to remove any O2. The solution was allowed to stir at reflux overnight 
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Figure 3.23. 
1H-NMR spectrum of [Fe(BMPA-Pr)]Cl taken in dmso-D6 prior to Soxhlet 

extraction (see Materials and Methods). The proton shifts are in agreement with a 

high-spin ferrous complex with seven unique H positions. 
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until no more H2 gas was evolved and all of the 57Fe had dissolved. The 

resulting yellow/green solution was heated under vacuum to remove excess HCl 

and water. This resulted in 1.41 g of an off-white solid (125% Yield). This 

material is mostly 57FeCl2 dihydrate (hence the > 100% yield). To obtain 

anhydrous material the solid was heated under vacuum to 240oC in the presence 

of P2O5 and CaCl2 for 3 hours to yield a quantitative amount of 57FeCl2. 

CAUTION: continued heating at these temperatures will result in loss of 

chloride and yield iron metal. 

Preparation of 
57
Fe(OTf)2 for NRVS samples. To a flask containing 191 mg of 

57FeCl2 dihydrate dissolved  in 5 ml dry/ air-free THF was added a solution of 

598 mg AgOTf (2 equivalents) in 3 ml of dry/ air-free THF. Immediate 

precipitation of AgCl occurred and the reaction was allowed to stir under 

argon for 30 minutes. The AgCl was then filtered off and the resulting 
57Fe(OTf)2 solution was used without further purification. 

Crystallization of 1-X species. The desired [Fe(BMPA-Pr)(NO)](X) complex was 

dissolved in CH3CN at a concentration of approximately 10 mg/ml. This solution 

was chilled to 10 oC and connected via glass adaptors to a flask of 

diethylether left at room temperature. After slow diffusion for 3-14 days 

crystals suitable for X-ray analysis were collected. 

[Fe(TPA)(CH3CN)(NO)](ClO4)2. Prepared via a modified procedure of Chiou et. 

al.32 150 mg of [Fe(TPA)(CH3CN)2](ClO4)2 was dissolved in 8 ml of dry and air-

free CH3CN. NO gas was then passed over the stirred solution for 20 minutes. 

The desired compound was precipitated as a brown solid with diethylether. 

Yield: 86%. As reported for analogous compounds in ref. 32, the facile loss of 

NO upon drying prevented the acquisition of an acceptable elemental analysis. 

IR: ν(N-O) 1810 cm-1. 

[Fe(TPA)(NO)](Cl)2. Prepared analogously to [Fe(TPA)(CH3CN)(NO)](ClO4)2 using 

FeCl2 in place of Fe(ClO4)2 (hydrate) to generate the corresponding [Fe(TPA)]
2+ 

chloride salt (Yield: 55%). Addition of NO gas to a CH3OH solution of 

[Fe(TPA)](Cl)2 followed by diethylether precipitation yields a brown solid. 

Yield: 30%. IR: ν(N-O) = 1740 cm-1. 

bis-(2-pyridylethyl)amine. In a round bottom flask, 25.4 ml of 2-vinyl-

pyridine was combined with 24.6 g of ammonium chloride and dissolved in 70 ml 

H2O along with 10 ml CH3OH. The reaction mixture was brought to reflux for 24 
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hours. After reflux, the reaction was cooled slowly to 0 °C in an ice bath. 60 

ml of 30% NaOH was added and the solution took on an orange color. The product 

was extracted with six 20 ml portions of CH3Cl and the organic layer was dried 

with Na2SO4, filtered, and evaporated under reduced pressure to yield a brown 

oil. Vacuum distillation at 60 mtorr yielded 2-pyridylethylamine at 120 °C 

followed by the desired product at 150 °C as a yellow oil. Yield: 22%. 1H NMR 

(400 MHz, CDCl3): 8.43 (d, 2H); 7.52 (t, 2H); 7.09 (d, 2H); 7.06 (t, 2H); 2.99 

(t, 4H); 2.92 (t, 4H); 1.94 (s, 1H). 

N-methylpropionic acid-N,N-bis-(2-pyridylethyl)amine. In a round bottom flask, 

1.5 ml of bis-(2-pyridylethyl)amine was combined with 1.95 ml of methyl 

acrylate and dissolved in 6 ml CH3OH. The reaction was stirred at room 

temperature for 1 week. Purification was achieved by loading the reaction 

solution directly onto a 25 x 3.5 cm silica column loaded and eluted with 

CH3OH. Product obtained as a yellow oil. Yield: 90%. 
1H NMR (400 MHz, CD3OD): 

8.41 (d, 2H); 7.68 (t, 2H); 7.21 (m, 4H); 3.58 (s, 3H); 2.86 (m, 8H); 2.81 (t, 

2H); 2.41 (t, 2H). LCT-MS: m/z = 314 (mass + H). 

N-methylpropionate-N,N-bis-(2-pyridylethyl)amine. A suspension of 1.83 g N-

methylpropionic acid-N,N-bis-(2-pyridylethyl)amine and 140 mg NaOH in 12 ml 

H2O was brought to reflux for one hour. Over this time the solution became 

clear. Solvent was removed under reduced pressure and the resulting product 

was dried under vacuum to yield a tacky orange solid in quantitative yield. 1H 

NMR (400 MHz, D2O): 8.18 (d, 2H); 7.60 (t, 2H); 7.16 (d, 2H); 7.10 (t, 2H); 

2.97 (m, 10H); 2.32 (t, 2H).   
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Figure 3.24. 1H-NMR spectrum of Na[BEPA-Pr] recorded in D2O. 
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[Fe(BEPA-Pr)]X. The ferrous BEPA-Pr complexes were prepared in an analogous 

procedure to [Fe(BMPA-Pr)](X) as detailed above. The BEPA-Pr ligand was used 

in place of BMPA-Pr. 

N-(2-methyl-(2-chloromethyl-6-methylphenolate)-N,N-bis-(2-pyridylmethyl)amine. 

To a stirred solution to 150 mg 4-methyl-2,6-dichloromethyl phenol in 8 ml 

CH3OH was slowly added 150 mg of di-(2-picolyl)amine in 2 ml CH3OH. The 

resulting yellow solution was allowed to stir overnight. A yellow oil was 

obtained by removal of the solvent under reduced pressure and this oil was 

purified by silica column chromatography using 10% CH3OH in CH2Cl2 as eluant 

collecting the first yellow band. Yield: 23%. LCT-MS: m/z = 371 (mass + 3). 1H 

NMR (400 MHz, CDCl3): 8.55 (d, 2H); 7.60 (t, 2H); 7.30 (d, 2H); 7.13 (t, 2H); 

7.05 (s, 1H); 6.78 (s, 1H); 4.55 (s, 2H); 3.83 (s, 4H); 3.74 (s, 2H); 2.21 (s, 

3H).  

[Fe(BMPA-PhO)]OTf. To a suspension of 64 mg N-(2-methyl-(2-chloromethyl-6-

methylphenolate)-N,N-bis-(2-pyridylmethyl)amine in 5 ml dry/air-free CH3OH was 

added 12 mg KOMe. The solution was briefly stirred and 68 mg of iron(II) 

triflate was added as a solution in 2 ml CH3OH. The resulting red/orange 

solution was allowed to stir for 5 minutes before 18 ml diethyl ether was 

added in an attempt to precipitate the product. As no precipitation was 

observed after 19 hours, the solvent was removed under reduced pressure and 

the resulting red/brown product was used without further purification. 
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Figure 3.25. 1H-NMR spectrum of the BMPA-PhO ligand recorded in CDCl3. 
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[Fe(BMPA-PhO)(NO)]OTf. Under inert atmosphere, 10 mg [Fe(BMPA-PhO)]OTf was 

dissolved in 1 ml CH2Cl2 and exposed to excess NO gas. The solution became 

immediately brown in color and after 5 minutes 10 ml of hexane was added to 

precipitate the product complex. Once precipitation was complete, excess NO 

was removed via argon flush and the solution was filtered under inert 

atmosphere to give a brown solid. Yield: <10 mg. IR: ν(NO) = 1785 cm-1.  

NOTE: product is extremely air-sensitive yielding a deep blue solid upon 

oxidation. 

2,6-di-(ortho-N-pyridylamine)pyridine. Under an argon atmosphere, 2.18 g of 

2,6-diaminopyridine was dissolved in 30 ml of dry/air-free THF. A suspension 

of 1.51 g NaH in 30 ml THF was added and the resulting opaque solution was 

allowed to stir for 30 minutes at room temperature. At this time 5.85 g of 2-

bromopyridine in 60 ml THF was added and the reaction was brought to reflux 

under an argon atmosphere. The reaction was allowed to reflux for 36 hours 

during which time the color became red/brown. After the reflux the solution 

was allowed to cool to room temperature before filtration and removal of the 

solvent under reduced pressure. The residue was then washed aqueous ammonium 

chloride followed by CH2Cl2 to yield a light brown product. The material was 

then brought to reflux in ~20 ml propanol and subsequently allowed to stand at 

room temperature overnight before filtration to yield a light tan solid which 

was dried under vacuum. Yield: 42 %. 1H NMR (300 MHz, (CD3)2SO): 8.19 (sbroad, 

2H); 7.80 (d, 2H); 7.60 (t, 2H); 7.48 (t, 1H); 7.13 (d, 2H); 6.82 (t, 2H). 

LCT-MS: m/z = 264 (mass + H).  
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Figure 3.26. 1H-NMR spectrum of the aromatic proton response for the TPDA 

ligand recorded in dmso-D6. 
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[Fe(TPDA)](OAc)2. Under an inert atmosphere 18 mg 2,6-di-(ortho-N-

pyridylamine)pyridine was combined with a suspension of 18 mg Fe(OAc)2 in 1 ml 

of CH3OH. The mixture was stirred until all solid had dissolved. The desired 

product was precipitated with 4 ml diethylether. Yield: 22 mg. 
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Chapter 4 

Reactivity of Heme and Non-Heme Iron Nitrosyls 

The reactivity between heme and non-heme iron nitrosyls can be tested 

under a variety of conditions. In theory, highly reactive components can 

simply be mixed in homogeneous solution which relies on molecular collisions 

to bring the desired nitrosyl moieties into close proximity.1 However, 

alternative research in our lab on non-heme diiron dinitrosyl complexes has 

shown NOR activity only when the two Fe-NO moieties are covalently linked. 

Functional diiron heme/non-heme model complexes present in the literature also 

exhibit covalently linked structures.2 The mononuclear heme and non-heme iron 

nitrosyls presented in this thesis have been tested for NOR activity as 

independent molecules and preliminary steps towards the development of 

covalently linked heme/non-heme diiron constructs have been completed. 

 

4.1. Reactivity and Mechanistic Insight 

  As discussed in Chapter 1, the reduction of NO by NorBC requires a new N-N 

bond to be formed between two NO molecules.3 This process is likely 

facilitated by the formation of both a heme and non-heme iron nitrosyl species 

within the NorBC active site.4-5 Here, we have employed synthetic heme and non-

heme iron nitrosyl complexes along with a series of radical species to mimic 

the proposed reductive N-N coupling of bacterial NORs. The key questions to be 

addressed are 1) What is the mechanism of N-N bond formation? and 2) What is 

the electronic structure of the heme and non-heme iron sites that allows for 

this coupling?  

 

Reactivity of Ferrous Heme Nitrosyls with Soluble Radical Species 

  One proposed mechanism of N-N bond formation is through a radical-radical 

coupling of two coordinated NO· species.4 Here, the unpaired electrons which 

are localized on the N-atoms of two nitric oxide molecules can combine to 

generate a new N-N bond. Six-coordinate ferrous heme nitrosyls as models for 

the heme b3 site of NorBC should be ideally suited to probe this reaction due 
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to their Fe(II)-NO· electronic structure. However, radical-based N-N coupling 

is suspect as ferrous heme nitrosyls do not react with either free NO or 

intermolecularly in homogenous solution; potentially due to the strength of 

the Fe-NO bond. If a radical coupling mechanism were feasible, these types of 

complexes with a high degree of radical character on NO would be expected to 

facilitate such a reaction. In order to better gauge the reactivity of these 

nitrosyl complexes, [Fe(To-F2PP)(NO)] was exposed to a variety of radicals 

such as superoxide (O2
2-), (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO), 

solublized nitric oxide, and other Fe(II)-NO· species. 

  Of the above listed radical species, only superoxide shows reactivity with 

the ferrous heme nitrosyl [Fe(To-F2PP)(NO)]. It is not that surprising that 

TEMPO fails to react due to its relatively stable nature. However, if a 

radical-based NO/NO coupling mechanism is plausible, it would be expected that 

high radical character nitrosyl species perform this coupling. It is now well 

known that ferrous heme nitrosyls retain a substantial amount of radical 

character on the bound NO molecule.6 As an example, DFT calculations at the 

B3LYP/LANL2DZ* theory level predict the five-coordinate ferrous heme nitrosyl 

[Fe(P)(NO)] (P = porphine) to have a spin density of 0.50 on NO compared to 

0.49 on iron. Due to a sharing of the dz2 orbital on iron, six-coordinate 

ferrous heme nitrosyls display an even larger radical character on NO in the 

presence of an axial donor ligand trans to NO.7-9 With this in mind, the fact 

that even six-coordinate ferrous heme nitrosyls are unreactive towards 

themselves and excess NO gas provides strong evidence that factors other than 

radical character contribute to the NO/NO coupling mechanism performed by 

NorBC (see Chapter 5). In fact, this evidence substantiates a case against a 

radical-based trans mechanism even being possible for NorBC. 

 

 

 

 

 

 

  

 

  Unlike the data presented above, superoxide displays rapid reactivity with 

0.1 equivalents of [Fe(TPP)(NO)] to generate a new product. As observed by UV-

visible absorption spectroscopy, this new species displays absorption features 

Scheme 4.1. Proposed mechanistic schemes for the reaction of superoxide 

with [Fe(TPP)(NO)] in DMSO. Pathway A) shows free NO attack on excess O2
- 

while B) shows NO attack on bound peroxide O2
2-. 
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at 428, 545, 571, and 625 nm in DMSO solution (see Figure 4.1). The observed 

reaction proceeds via a short-lived intermediate which shows a distinct Soret 

absorption at 437 nm. Based on previously reported [Fe(TPP)] reactivity with 

superoxide, this 437 nm intermediate has been characterized as [FeIII(TPP)(O2
2-

)].10 As the observed intermediate generated from the reaction of superoxide 

with [Fe(TPP)(NO)] is identical to that observed when [Fe(TPP)] is substituted 

for the analogous nitrosyl, it is most likely that the initial reaction of 

simple ferrous heme nitrosyls with superoxide involves the displacement of NO 

by O2
-. The reactivity observed is therefore not between bound NO and O2

-, but 

rather between O2
- and the iron center of [Fe(TPP)(NO)]. Upon NO displacement, 

binding of O2
- results in oxidation of [Fe(TPP)] leading to a formally Fe(III)-

O2
2- complex (blue trace in Figure 4.1). 

  Once free NO has been released into solution, two potential mechanistic 

pathways exist; the rapid reaction (~1010 M-1 s-1) between NO and free O2
- or 

attack of NO on the intermediate [FeIII(TPP)(O2
2-)].11-12 This results in the 

transient formation of peroxynitrite which rapidly isomerizes to nitrate. This 

scenario will either lead to [FeII(TPP)(DMSO)(NO3)]
- in the case of NO attack 

on [FeIII(TPP)(O2
2-)], or result in free nitrate in solution with [FeIII(TPP)(O2

2-

)]. It is important to note that the formation of free NO3
- requires the 

presence of excess superoxide to facilitate peroxynitrite, and ultimately 

nitrate, formation away from the heme center. The final 428 nm product which 
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Figure 4.1. Absorbance spectra showing the reaction of [Fe(TPP)(NO)] with 

superoxide in DMSO. 
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is observed is thus likely due to an interaction of NO with [FeIII(TPP)(O2
2-)] 

to form [FeII(TPP)(DMSO)(NO3)]
- as proposed in Scheme 4.1.13 Comparison to 

literature values strongly favors formation of a ferrous heme as the ferric 

variety displays a notably different Soret position in the presence of 

nitrate.12 

  

Reactivity between Uncoupled Heme and Non-Heme Iron Nitrosyls 

  Non-heme iron nitrosyls [Fe(BMPA-Pr)(NO)]X have been exposed to separate 

heme and non-heme nitrosyl complexes such as [Fe(BzIM)(NO)] and [Fe(To-

F2PP)(NO)] under neutral and acidic conditions in an effort to induce NOR 

activity. In theory, the two electrons necessary for NO reduction can be 

supplied by oxidation of both iron centers to yield the di-ferric product and 

N2O. Additionally, the presence of a proton source can supply additional 

thermodynamic driving force through the formation of H2O. Several common 

adaptations of this general mechanistic picture are shown in Scheme 1.1 in 

Chapter 1. 

  Unfortunately, as with the radical reactivity above, no reactivity is 

observed between [Fe(BMPA-Pr)(NO)]X or [Fe(TPA)(NO)(CH3CN)](ClO4)2 with a 
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Figure 4.2. Absorbance spectra recorded during the interaction of [Fe(To-

F2PP)(NO)] and [Fe(BMPA-Pr)(NO)]X in the presence of HBF4. The decomposition 

of the non-heme unit leads to non-productive reactivity with [Fe(To-

F2PP)(NO)] to generate the observed product. 
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variety of five- and six-coordinate heme nitrosyls; including [Fe(TPP)(NO)], 

[Fe(To-F2PP)(NO)], and [Fe(BzIM)(NO)]. Under weakly acidic conditions there 

remains no reactivity. However, under strongly acidic conditions, such as in 

the presence of HBF4, a new heme species is generated in solution (see Figure 

4.2). Further analysis has revealed that this reactivity is a result of 

decomposition of the non-heme species under acidic conditions. The BMPA-Pr 

ligand is susceptible to protonation at both the carboxylate and pyridine 

positions, resulting in either the release of free iron or the formation of a 

reactive low-coordinate iron center. Additionally, headspace gas analysis does 

not indicate N2O formation, ruling out NO reduction even under highly acidic 

conditions. All attempts to isolate the new heme product have been 

unsuccessful. 

  In light of these results, it is likely that the electronic structure of 

ferrous heme nitrosyls and S = 3/2 high-spin non-heme iron nitrosyls are not 

conducive to NO/NO coupling. Even though the ground state electronic structure 

of S = 3/2 non-heme iron nitrosyls is best described as high-spin Fe(III) 

antiferromagnetically coupled to triplet NO-,14-15 strong π-donation from NO- 

back to the non-heme iron leads to depletion of spin-density on the NO ligand; 

resulting in vibrational properties more similar to Fe(II)-NO●. This is also 

evidenced by our results which show that the Fe(III)-NO- electronic structure 

of high-spin non-heme iron nitrosyls still does not promote NO reduction under 

the conditions detailed within this chapter. This is true at least in the case 

of non-covalently linked heme/non-heme iron nitrosyls in solution. 

  One intriguing mechanistic possibility involves the formation of a reduced 

{FeNO}8 non-heme iron nitrosyl, which potentially gains an extra electron from 

the low redox potential heme b3 within the active site of NorBC.
16 The classic 

Enemark-Feltham notation {FeNO}n is used here to denoted the electron 

occupancy of the Fe-NO unit where n = the total number of iron d and NO π* 

electrons.17 Generation of a reduced non-heme center means that both electrons 

needed for the reduction of two equivalents of NO to N2O are contained at the 

non-heme FeB site. The heme site would then act as an electron transfer center 

and may potentially still bind NO leading to a trans-type mechanism in which 

non-heme Fe(II)-NO- and heme Fe(III)-NO undergo redox-type coupling. In an 

alternative scenario, an {FeNO}8 non-heme iron nitrosyl could be envisioned as 

an intermediate in a cis FeB-type mechanism. Here, the heme b3 center acts only 

as an electron transfer site facilitating formation of a non-heme Fe(II)-NO- 

complex. This non-heme nitroxyl intermediate then interacts directly with a 
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second equivalent of NO forming a transient hyponitrite species which 

decomposes to yield N2O and the di-ferric oxo-bridged resting state of the 

enzyme. Initial work on the exploration of these scenarios through the use of 

model complexes is presented below. 

 

Reduction of Non-Heme Iron Nitrosyls in an Effort to Produce N2O 

  Based on the observations outlined above, it seems unlikely that NorBC 

achieves NO reduction through the coupling of {FeNO}7 heme and non-heme iron 

nitrosyls. Therefore, initial attempts have been made to determine the 

reactivity of one electron reduced {FeNO}8 non-heme iron nitroxyls. These 

reduced non-heme iron nitrosyls may play an important role in the conversion 

of NO into N2O by NorBC. Here, formation of a {Fe-NO}
8 species (formally FeII-

NO-), which is primed with both electrons necessary for the two electron 

reduction of NO, could be mediated by reduction of a proposed FeB-NO 

intermediate. The formation of such a non-heme FeB nitroxyl intermediate could 

be facilitated by electron transfer from the nearby ferrous heme b3 center 

within the NorBC active site. It is possible that the heme site could 

facilitate electron transfer to a catalytically active FeB center as the redox 

potential of the heme b3 center has been proposed to be ~ 250 mV below that of 

the FeB site.
16 Recent EPR studies on NorBC purified from Pseudomonas nautica 

also indicate that the heme b3 center may in fact be low-spin in both the 

ferric and ferrous states, and thus promote binding of the initial NO molecule 

at the non-heme FeB site.
18 Upon generation of a non-heme {FeB-NO}

8 species, a 

second molecule of NO is required to form the necessary N-N bond for the 

production of N2O, leaving behind a diferric oxo-bridged active site after N2O 

release. This second NO molecule could be supplied as free NO entering the 

catalytic cycle in a cis-type mechanism or in the form of a ferric heme b3 

nitrosyl in accordance with a modified trans mechanism. Formation of a non-

heme {Fe-NO}8 species is therefore consistent with both the cis and trans 

mechanisms proposed for NorBC. As the basic properties and reactivity of high-

spin {Fe-NO}8 non-heme iron nitroxyls have not yet been established in the 

literature, these potentially important complexes garner further 

investigation.19 

   In order to probe the potential stability of the product of one-electron 

reduction of 1-X, cyclic voltammograms were recorded on the [Fe(BMPA-Pr)(NO)]X 

series of complexes. These data show limited reversibility when X = Cl or ClO4 

for one-electron reduction. However, [Fe(BMPA-Pr)(NO)]OTf (1-OTf) displays a 



 86 

quasi-reversible cyclic voltammogram which indicates potential stability of 

the {FeNO}8 analog (see Figure 4.3). The lack of reversible features when X = 

Cl or ClO4 likely indicates instability of the reduced form, resulting in 

rapid decomposition. All CV measurements were taken in organic and aqueous 

media. Table 3.1 (in Chapter 3) shows the relevant redox processes observed. 

Most notably, 1-OTf and 1-ClO4 reduce at -290 and -296 mV in CH3CN compared to 

-565 and -585 mV in H2O, respectively versus SHE.  However, only 1-OTf 

displays quasi-reversible redox properties.   

  It is of interest to note that dissolving [Fe(BMPA-Pr)(NO)]X in water 

likely results in the same [Fe(BMPA-Pr)(NO)(H2O)]
+ species regardless of the 

counter ion. Solution IR and CV data indicate nearly identical spectroscopic 

features for these compounds which is indicative of H2O binding in place of 

the counter ion when X = Cl. For the hexameric complexes where X = ClO4 or 

OTf, hydrogen bonding between water molecules and the carboxylate moiety of 

BMPA-Pr likely disrupts bridging of this moiety resulting in monomeric water-

bound species in solution. As shown in Figure 4.4, a common 1781 cm-1 ν(N-O) 

stretching frequency is observed for 1-X in D2O solution. EPR data presented 

in Chapter 3 also show disruption of intramolecular coupling effects related 

to the metallacrown hexamers 1-OTf and 1-ClO4 in aqueous solution; indicative 

of a monomeric {FeNO}7 species.  
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Figure 4.3. CV of 1-OTf recorded in CH3CN. A quasi-reversible feature is 

observed near -500 mV vs. Ag/AgCl and potentially represents formation of a 

{FeNO}8 non-heme iron nitrosyl. 
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  The one electron reduced form of 1-OTf has been studied by both absorption 

and infrared spectroscopy. Chemical reduction with KC8 results in majority 

conversion to a new species showing a predominant 395 nm feature in the 

absorption spectrum (see Figure 4.5). The spectral changes are not consistent 

with known low-spin {FeNO}8 complexes which typically show new absorbance 

features between 450 – 650 nm.20-21 Comparison to high-spin non-heme {Fe-NO}8 

cannot be made as characterization of these species is currently lacking in 

the literature. More insight can be gained from infrared spectroscopy where 

reduction of 1-OTf with KC8 leads to the appearance of two ν(N-O) stretching 

features. Spectra recorded for both chemical (KC8) and electrochemical reduced 

products show similar features with 15N18O-sensitive bands at 1693 and 1636 cm-1 

(see Figure 4.6). These vibrational properties argue again what is predicted 

for a non-heme {Fe-NO}8 species. Here, DFT calculations (BP86/TZVP) predict an 

iron-centered reduction leading to a relatively high ν(N-O) frequency for the 

DFT model [Fe(BMPA-Pr)(NO)(Cl)]- at 1599 cm-1 (vide infra). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Interestingly, the observed spectroscopic data can be rationalized by 

formation of a {Fe(NO)2}
10 dinitrosyliron complex (DNIC) rather than the 

desired {FeNO}8 mononitrosyl adduct.22-23 Similar {Fe(NO)2}
10 complexes with 

overall neutral charge have been reported in the literature and typically  
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Figure 4.4. Solution IR spectra of 1-Cl and 1-OTf taken in D2O. In aqueous media all 

1-X species show identical ν(N-O) stretching features, indicating formation of a 

common monomeric water-bound complex. 
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Figure 4.5. Absorbance overlay of 1-OTf and its reduction product taken in 

CH2Cl2. Similar features are observed upon electrochemical reduction. 

Figure 4.6. Spectroelectrochemical reduction of [Fe(BMPA-Pr)(NO)]OTf in CH2Cl2 

monitored by IR spectroscopy (top). The reduction of [Fe(BMPA-Pr)(NO)]OTf 

with KC8 is shown for comparison (bottom). 
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display split ν(N-O) bands at 1673-1724 and 1616-1678  cm-1.23 The anionic 

{Fe(NO)2}
10 complex [Fe(NO)2(Ar-nacnac)]

- reported by Lippard and coworkers 

displays lower ν(N-O) features at 1627 and 1569 cm-1.24 Therefore, reduction of 

1-OTf leads to formation of a DNIC with properties more similar to neutral 

{Fe(NO)2}
10 complexes. This correlation can potentially be rationalized by 

dissociation of the carboxylate moiety in BMPA-Pr, leading to a neutral Fe-

(NO)2 unit. Such a scenario is also consistent with the propensity of 

dinitrosyliron complexes to adopt a (pseudo)tetrahedral geometry about the 

iron center.23-25 Further spectroscopic analysis is needed to confirm this 

possibility.  

  Re-oxidation of the obtained {Fe(NO)2}
10 species at 0 V results in a shift 

of the two isotope-sensitive bands to 1791 and 1717 cm-1, indicating oxidation 

of the DNIC species to {Fe(NO)2}
9. The observed ν(N-O) frequencies fit well 

with reported vibrational properties of both cationic and neutral {Fe(NO)2}
9 

complexes which typically display ν(N-O) at 1734-1786 and 1695-1746 cm-1.23-24 As 

a final confirmation, NRVS spectroscopy was performed on the reduced 57Fe-

enriched analog of 1-OTf. Here, two separate Fe-NO stretching vibrations are 

visible at 561 and 515 cm-1, which is again consistent with DNIC formation 

based on comparison to vibrational parameters reported in the literature.26 

Additionally, EPR spectra recorded upon KC8 reduction of 1-OTf show a loss of 

the broad S = 3/2 signals at approximately g = 4 concomitant with partial 
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formation of a new g = 2 signal. This is consistent with the formation of an 

{Fe(NO)2}
9 DNIC species which can be generated from the oxidation of EPR-silent 

{Fe(NO)2}
10 analogs by atmospheric dioxygen.23, 27 

   Spectroelectrochemical absorption spectroscopy in which a solution 1-OTf 

was reduced at -1 V was also employed. Here, reduction results in the 

appearance of a 410 nm feature which is stable during applied potential (see 

Figure 4.7). Importantly, reoxidation at 0 V does not return 1-OTf but rather 

results in spectral features similar to that observed during KC8 reduction. It 

is likely that the final KC8-reduced product observed by UV-visible absorbance 

spectroscopy is a result of oxidation of an initially reduced (410 nm) 

species. Due to the low concentrations used in absorbance measurements, the 

presence of very small amounts of dioxygen can result in undesired oxidation. 

This is supported by our IR results (see above) where solutions of higher 

concentration do not suffer from oxidation by extraneous O2, vide infra. 

 Interestingly, no N2O is detected upon reduction in the presence of an 

acid source. The mechanism of DNIC formation thus cannot involve loss of HNO 

during binding of the second NO equivalent, as has been proposed for 

biological systems in aqueous environments.27 It is therefore likely that these 

complexes form via disproportionation of a transiently formed {FeNO}8 species; 

resulting in an {Fe(NO)2}
10 dinitrosyl and denitrosylated Fe(II) side product 

as shown in Scheme 4.2. A similar reaction has been reported using β-

diketiminate ligated non-heme iron nitrosyls.24 As an alternative mechanistic 

pathway, {Fe-NO}8 can react with remaining {Fe-NO}7 to generate a transient 

{Fe(NO)2}
9 species along with an Fe(II) side product. Further reduction of this 

DNIC then yields the observed {Fe(NO)2}
10 species. This scenario, however, is 

unlikely as reduction of 1-OTf with low-equivalents of KC8 yields vibrational 

features of the afore mentioned {Fe(NO)2}
10 product (see Figure 4.6) and 

signals consistent with {Fe(NO)2}
9 are only seen upon re-oxidation. In terms of 

NO reduction, the results detailed above point to the need for a more 

sterically hindered non-heme iron nitrosyl in order to stabilize the {FeNO}8 

Scheme 4.2. Mechanistic scheme for the formation of a dinitrosyliron complex upon 

reduction of 1-X. 



 91 

state and prevent disproportionation, leading to DNIC formation. Sterically 

bulky ligands which inhibit binding of a second NO molecule could thus be 

envisioned to limit NO- transfer which is a requirement for DNIC formation.  

 

DFT Analysis of the Non-Heme {FeNO}
8
 Electronic Structure 

  Despite the fact that our non-heme iron nitrosyl model complexes tend 

towards DNIC formation following the reduction to the corresponding {FeNO}8 

species, DFT calculations still allow for the prediction of experimental 

properties of high-spin {FeNO}8 non-heme iron nitrosyls. Here, in silico 

addition of a single electron to [Fe(BMPA-Pr)(NO)(Cl)] (1-Cl) resulting in 

[Fe(BMPA-Pr)(NO)(Cl)]- (2-Cl) has been probed using DFT calculations at the 

BP86/TZVP theory level. Comparison of the fully optimized geometries shows a 

shorter Fe-N(O) bond length and a slightly smaller Fe-N-O angle in 2-Cl as 

compared to 1-Cl. Table 4.1 lists all relevant bond lengths and angles for 1-

Cl and 2-Cl. Frequency calculations performed on these model systems predict 

the ν(N-O) stretch at 1733 and 1599 cm-1 for 1-Cl and 2-Cl, respectively. 

 

 1-Cl 2-Cl 
DFT Predicted Parameters [Å, °] 

Fe-N(O) 1.74 1.72 
Fe-N(pyridine)1 2.28 2.23 
Fe-N(pyridine)2 2.30 2.08 
Fe-N(amine) 2.33 2.33 
Fe-O 1.98 2.14 
Fe-Cl 2.32 2.48 
Fe-N-O 153 149 

 

  The electronic structure of 1-Cl, and high-spin non-heme iron nitrosyls in 

general, is best described as high-spin iron(III) antiferromagnetically 

coupled to NO- (see Chapter 3). As a result, the one-electron reduction to 

give 2-Cl would be expected to be iron-centered. Interestingly, DFT predicts a 

ν(N-O) stretching frequency which is intermediate between NO● and NO-. In the 

case of 1-Cl, it is known that strong π-donation from the singly-occupied π* 

orbitals of NO- back to iron results in ν(N-O) features which more closely 

resemble NO● than NO-. It is possible that a similar effect remains in the 

case of 2-Cl. However, due to the increased electron density on iron, π* 

donation is reduced in 2-Cl which results in an increase of electron density 

in the π* orbitals of NO, and correspondingly, a weaker N-O bond, and thus 

lower ν(N-O) frequency. Analysis of isodensity surface plots obtained from 

BP86/TZVP frequency calculations on 2-Cl are in agreement with this 

Table 4.1. DFT predicted geometric properties for 1-Cl and 2-Cl. 
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hypothesis. Firstly, the extra electron present in 2-Cl occupies the dxy 

orbital of iron, which now shows significant α and β electron density (see 

Figure 4.8, MO’s α94 and β99). The decreased effective nuclear charge of iron 

in 2-Cl limits β-spin donation from NO-, as seen in a comparison of MO’s β96 

and β97 for 1-Cl versus 2-Cl (see Figure 4.8). For 2-Cl both β96 and β97 

display a comparatively higher percentage of NO π* character than iron d 

character. This results in increased occupation of the antibonding π* orbitals 

of NO, leading to a lower ν(N-O) frequency despite the fact that the reduction 

is in fact iron-centered. 

Figure 4.8. Isodensity surface plots of selected α-spin and β-spin MO’s showing the 

interaction of Fe and NO- in 1-Cl and 2-Cl (top). The α and β components of the 

doubly occupied iron dxy orbital are shown (bottom). Calculated at the BP86/TZVP 

theory level. 

 

β96 
31% Fe 
38% NO 

β97 
20%Fe 
18%NO 

β96 
27% Fe 
40% NO 

β97 
23% Fe 
41% NO 

α94 

dxy 39% Fe 

β99 

dxy 51% Fe 

1-Cl                       2-Cl 

2-Cl: doubly occupied dxy orbital  

OCCUPIED OCCUPIED 



 93 

4.2. Covalently Linked Heme/Non-Heme Models 

  The synthesis of a single covalently linked dinuclear iron complex which 

encompasses both heme and non-heme centers would represent a truly biomimetic 

framework for which to study the mechanism of NO reduction by NorBC. This 

strategy has been successfully employed in the case of cytochrome c oxidase 

(CcO) model complexes which contain both heme and copper coordination sites.28-

31 Additionally, a small number of complexes have also been synthesized as 

models for the NorBC active site.2, 32-34 First and foremost, Collman and 

coworkers have developed a functional model complex, LFeII/FeII, based on CcO 

model complexes in which the copper site has been substituted with iron.34 As 

such, the coordination environment of the non-heme site contains only neutral 

N-donor ligands; where it is now known that the FeB site in NorBC is in fact 

ligated by a glutamate.35 Although no crystal structure is available, 

spectroscopic analysis of this model system supports a trans-type mechanism in 

that NO appears to bind at both the heme and non-heme iron centers before 

reduction to N2O.
36 While this represents a significant achievement, it is 

difficult to draw substantial mechanistic conclusions from these model studies 

as no crystal structure of this complex is available and the overall very low 

yield of the complex limits the ability to perform mechanistic studies. 

Interestingly, other synthetic heme/non-heme diiron models, such as the non-

heme carboxylate containing models from Collman and coworkers as well as other 

diiron models from Karlin and coworkers, show no reactivity with respect to 

the reduction of NO gas.32, 37-38 It is therefore our intention to develop a 

high-yield synthesis for a functional covalently-linked diiron heme/non-heme 

model complex which closely mimics the coordination environment of NorBC in 

order to probe the mechanism of NO reduction. Presented herein are the 

preliminary synthetic efforts directed at this aim. 

  The porphyrin moiety employed in all of the proposed heme/non-heme 

complexes is the hexafluorinated tri-(2,6-difluorophenyl)-(ortho-X-

phenyl)porphyrin, where X represents the site of non-heme attachment. Two 

potential methods of non-heme attachment have been explored. The first 

strategy focuses on formation of an amide linkage off the meta position of one 

of the pyridine rings present in BMPA-Pr (see Chapter 3). This strategy is 

analogous to that employed for the imidazole-tethered complex BzIM, presented 

in Chapter 2.9 An alternative, and more robust, approach utilizes an ether 

linkage in place of the amide presented above. Here, coupling of a 

hydroxylated BMPA-Pr ligand with an ortho-brominated phenyl ring of the 
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porphyrin ligand via the method of Williamson et. al. yields a highly stable 

ether linkage.39 These general approaches could be applied to a variety of 

substituted heme ligands and numerous other pyridine-containing non-heme 

scaffolds. One enticing possibility is the covalent linkage of a non-heme 

moiety to an imidazole-tethered heme ligand, such as BzIM, to generate a 

biomimetic heme/non-heme complex which also incorporates the axial histidine 

found in NorBC. 

 

Amide-Coupled Heme/Non-Heme Model Complexes 

  A general strategy for the synthesis of amide-coupled heme/non-heme 

complexes is outlined in Scheme 4.3. Current work in our laboratory has 

focused on the attachment of the carboxylate-containing non-heme ligand BMPA-

Pr to a hexafluorinated porphyrin moiety, as shown in Scheme 4.3. Synthesis of 

the base porphyrin tri-(2,6-difluorophenyl)-(2-aminophenyl)porphyrin (6) has 

been previously reported.40  

  Beginning with the commercially available starting material pyridine-2,5-

dicarboxylic acid (1), the chlorinated pyridine derivative (2-chloromethyl-5-

carboxylic acid chloride)pyridine (5) can be synthesized in four steps. 

Esterification of 1 via p-toluenesulfonic acid yields the dimethylester  

dimethyl-pyridine-2,5-carboxylate (2) in 70% yield. The para methyl ester of 2 

is susceptible to selective reduction by NaBH4 at 0 °C to give the primary 

alcohol methyl-2-hydroxymethyl nicotinamide (3) in 70% yield. Installation of 

a halide in place of the alcohol can be accomplished via bromination (with 

PBr3 or CBr4) or chlorination (with SOCl2) to yield methyl-2-halomethyl 

nicotinamide. However, these compounds suffer from lack of stability and 

readily convert to a bright red decomposition product. A more stable 

alternative route proceeds via NaOH de-esterification of the methyl ester to 

yield 6-hydroxymethyl nicotinic acid (4) in near quantitative yield. This 

species can then be efficiently di-chlorinated via reflux in SOCl2 under inert 

atmosphere to give 5. While 5 remains susceptible to decomposition, the 

installation of an acyl chloride moiety allows for rapid reaction with the 

amino-porphyrin 6. Under anhydrous conditions, 6 readily couples with the acyl 

chloride on 5 to produce the 2-chloromethyl pyridine-substituted porphyrin 7 

along with one equivalent of HCl. Due to protonation of the porphyrin core, no  

additional base is required for this reaction and the amide bond remains 

intact.
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Scheme 4.3. Synthetic scheme for the synthesis of the amide-tethered heme/non-

heme diiron complex 11. 

1. FeCl 2

2. air
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  The remainder of the non-heme binding site is synthesized separately by 

the reductive amination of 2-pyridine carboxaldehyde with the hydrochloride 

salt of 3-amino propionic acid methyl ester. Under basic conditions the 

hydrochloride salt of 3-amino propionic acid methyl ester is deprotonated, 

leaving the primary amine able to couple with 2-pyridine carboxaldehyde to 

give the corresponding imine intermediate. Subsequent reduction with NaBH4 

then yields the desired product 2-aminomethyl-(N-methylpropionate)pyridine 

(8). Coupling of 8 with 7 is achieved by simple SN
2 nucleophilic substitution 

in DMF resulting in the formation of F6(BMPA-OMe)TPPH2 (9) where BMPA-OMe 

represents the methyl ester of BMPA-Pr. Unfortunately, however, deprotection 

of the methyl ester is non-trivial. A 10% solution of 2M KOH in methanol and 

90% dichloromethane is able to efficiently cleave the ester at room 

temperature over 24 hours. However, this method also results in significant 

decomposition of the amide bond which links the heme and non-heme component. 

As a result, typical yields for the formation of the linked heme/non-heme 

ligand F6(BMPA-Pr)TPPH2 (10) are in the range of 20-30%. Alternative conditions 

were also tried. However, these methods were either too weak to deprotect the 

methyl ester or resulted in decomposition of the product. 

  With the covalently linked heme/non-heme ligand 10 in hand, preliminary 

studies have been performed in regards to iron metallation, reduction, and NO 

binding. Metallation of 10 with FeCl2, followed by exposure to atmosphere 

dioxygen results in the transient formation of the corresponding ferric 

chloride complex as a red/brown material. Addition of NaOH or prolonged 

exposure to atmospheric water vapor yields the orange diiron μ-oxo species 

[Fe(F6[Fe(BMPA-Pr)]TPP)]O (11), as evidenced by mass spectroscopy (m/z = 

1159). Such a result is encouraging as the formation of an oxo bridge 

indicates the two iron centers are held within close proximity of one another. 

In fact, the resting state of NorBC contains a similar μ-oxo bridged heme/non-

heme structure in the enzyme active site.35 

  Absorbance measurements were used to monitor the reduction of 11 to what 

is presumed to be the corresponding di-ferrous state (see Figure 4.9). Here, 

both KC8 and Na2S2O4 have been shown to produce spectral changes consistent 

with the reduction of 11 generating a new product which is distinctly more red 

in color. Both methods result in a shift of the Soret band from 413 nm for the 

μ-oxo bridge to 435 nm. This reduction is also fully reversible upon exposure 

to atmospheric dioxygen resulting in the return to the diferric complex 11. 

Most interesting is the ability of the reduced material to bind NO gas. Upon 
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addition of NO, the Soret band shifts immediately to 403 nm consistent with 

the formation of a ferrous heme nitrosyl. Due to the lack of sufficient 

material, no further tests were conducted and it is yet unclear whether the 

non-heme iron site is able to bind NO under these conditions. 

 

Ether-Linked Heme/Non-Heme Model Complexes 

  Due to the synthetic complications encountered when using a base-sensitive 

amide tether, an alternative synthetic route was developed. The introduction 

of a covalent ether linkage between the heme and the non-heme iron 

coordination sites represents a far more robust chemical tether. Here, tri-

(2,6-difluorophenyl)-(ortho-X-phenyl)porphyrin where X = OH or Br will provide 

the base porphyrin ligand onto which the non-heme ligand will be attached. A 

synthetic scheme is presented for the attachment to the ortho pyridine 

position of the non-heme BMPA-Pr ligand (see Scheme 4.4). 

  Commercially available 2,6-dihydroxymethylpyridine (12) can be converted 

to the mono- and di-brominated products 2-hydroxymethyl-6-bromomethylpyridine 

(13) and 2,6-dibromomethylpyridine, respectively. While brominating reagents 

such as PBr3 and CBr4 almost exclusively favor formation of the di-bromo 

product, short reflux in 48% HBr affords 13 in ~ 30% yield. Nucleophilic 
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substitution of 13 with the secondary amine 8 then yields ortho-

hydroxymethyl(BMPA-OMe) (14). 

 

  The corresponding heme component, tri-(2,6-difluorophenyl)-(ortho-bromo-

phenyl)porphyrin, has been designed to couple with the hydroxymethyl 

functionality on 14. Preliminary results indicate the successful synthesis of 

this porphyrin. However, the major side product of this reaction, tetra-(2,6-

diflurophenyl)porphyrin, is practically difficult to separate from the desired 

brominated porphyrin. As a result, it is proposed that bromination of 14 to 

yield ortho-bromomethyl(BMPA-OMe) followed by coupling to the hydroxylated 

porphhyin, tri-(2,6-difluorophenyl)-(ortho-hydroxy-phenyl)porphyrin, 

represents a more efficient strategy going forward.  

 

Experimental 

In general, reactions were performed applying inert gas (Schlenk) 

techniques. Preparation and handling of air sensitive materials was carried 

out under an argon atmosphere in an MBraun glovebox equipped with a 

circulating purifier (O2, H2O < 0.1 ppm). Compounds 1 and 12 were purchased 

from commercial suppliers and used without further purification. Infrared 

spectra were obtained from KBr disks on a Perkin-Elmer BX spectrometer. Proton 

magnetic resonance spectra were recorded on a Varian Inova 400 MHz and a 

Varian Mercury 300 MHz instrument. Electrochemical studies were carried out 

with a CH instruments CHI660C electrochemical workstation. 

Spectroelectrochemical measurements were obtained using a three-component 

system, consisting of a platinum mesh working electrode, a carbon felt 

auxiliary electrode, and a platinum wire reference electrode. Spectra were 

recorded in either 0.1 M tetrabutylammonium perchlorate in CH3CN or 0.1 M KCl 

Scheme 4.4. Synthetic scheme for the synthesis of the hydroxylated non-heme  

ligand 14. 
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in H2O. Potentials were corrected to the SHE standard and the CH3CN 

measurements were also corrected by measuring the ferrocenium/ferrocene couple 

under the same conditions (+624 mV vs. SHE).  

Dimethyl-pyridine-2,5-carboxylate (2). In a 250 ml round-bottom flask, 10 g 

pyridine-2,5-dicarboxylic acid was combined with 13.7 g p-toluenesulfonic acid 

monohydrate in 120 methanol. The solution was brought to reflux for 48 hrs. 

Upon cooling to room temperature the resulting off-white precipitate is 

collected and washed with sat. Na2CO3. The resulting slurry was extracted with 

200 ml CHCl3 and the organic layer was dried with Na2SO4, filtered, and 

evaporated under reduced pressure to yield a white powder. Yield: 7.92 g (68 

%). 1H-NMR (400 MHz, CDCl3): 9.29 (s, 1H), 8.43 (d, 1H), 8.19 (d, 1H), 4.02 (s, 

3H), 3.97 (s, 3H). 

Methyl-2-hydroxymethyl nicotinamide (3). In a dry round-bottom flask under 

inert atmosphere, 1 g dimethyl pyridine-2,5-dicarboxylate was combined with 

2.27 g CaCl2 in a mixture of 11 ml anhydrous THF and 12 ml anhydrous ethanol. 

After stirring for 30 minutes the reaction was cooled to 0 °C in an ice bath 

and 486 mg of NaBH4 was slowly added in several portions. The reaction was 

then allowed to stir at 0 °C for 4 hours under inert atmosphere. The reaction 

was warmed to room temperature taking care to vent the buildup of H2 gas. 

Extraction with CH2Cl2 followed by subsequent drying with Na2SO4 and 

evaporation of the solvent yields a faint yellow solid. Yield: 610 mg (70 %). 
1H-NMR (400 MHz, CDCl3): 9.14 (s, 1H), 8.27 (d, 1H), 7.33 (d, 1H), 4.81 (d, 

2H), 3.93 (s, 3H). 

6-hydroxymethyl nicotinic acid (4). In a round-bottom flask, 600 mg of methyl-

2-hydroxymethyl nicotinamide was dissolved in 5 ml THF. A separate solution 

containing 430 mg NaOH in 5 ml H2O was added and the two-phase solution was 

stirred at reflux for 2 hrs. At this point the aqueous layer was collected, 

acidified to pH = 3 with HCl, extracted with CH2Cl2, neutralized to pH = 7 with 

Na2CO3, and evaporated under reduced pressure to give an off white solid. The 

solid material was washed with DMF and dried thoroughly under vacuum to give 

1.6 g of a white solid (mix of 1 g NaCl with 600 mg 4). The material was used 

without further purification. 1H-NMR (400 MHz, D2O): 8.73 (s, 1H), 8.01 (d, 

1H), 7.41 (d, 1H). 
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(2-chloromethyl-5-carboxylic acid chloride)pyridine (5). In a dry round-bottom 

flask under inert atmosphere, 100 mg 6-hydroxymethyl nicotinic acid was 

combined with 3 ml anhydrous/ air-free CH2Cl2 and the resulting suspension was 

brought to reflux under inert atmosphere. 0.2 ml of freshly distilled SOCl2 

was added via syringe and the reaction was allowed to stir at reflux for 1 hr. 

At this point the material takes on a red color and the solvent/SOCl2 is 

removed under reduced pressure. The dark red product is used immediately in 

the synthesis of 7 to avoid further decomposition. 

Tri-(2,6-difluorophenyl)-(2-aminophenyl)porphyrin (6). Prepared via previously 

published procedures.29 

(7). Under inert/anhydrous conditions, 38 mg of 6 was dissolved in 7 ml of 

dry/air-free CH2Cl2. The freshly prepared 5 was dissolved in 3 ml dry/air-free 

CH2Cl2 and added slowly via syringe to the solution of 6. Upon addition the 

solution turns slowly from purple to green and is allowed to stir for 1 -24 

hrs. until TLC (silica, CH2Cl2) shows no remaining 6. The reaction is then 

diluted with 15 ml CH2Cl2, washed with sat. NaHCO3, washed with H2O, dried with 

Na2SO4, filtered, and evaporated under reduced pressure to yield a purple 

solid. Purified by column chromatography (silica) eluted with CH2Cl2 followed 

by addition of 2% methanol to elute the desired product. Yield: 30 mg (66 %). 
1H-NMR (400 MHz, CD2Cl2): 8.83 (m, 8H), 8.19 (s, 1H), 8.12 (d, 1H), 7.86 (t, 

1H), 7.75 (m, 3H), 7.59 (m, 2H), 7.38 (m, 6H), 6.40 (d, 1H), 6.23 (d, 1H), 

4.10 (s, 2H), -2.74 (s, 2H) LCT-MS: m/z = 891 (mass + H). 

 2-aminomethyl-(N-methylpropionate)pyridine (8). A mixture of 3.1 g 3-amino 

propionic acid methyl ester hydrochloride with 6.2 ml triethylamine in 17 ml 

methanol was slowly added via addition funnel (15-20 min.) to 2.38 g 2-

pyridine carboxaldehyde in 40 ml methanol. The resulting orange solution was 

allowed to stir at room temperature for 8 hrs. At this point the reaction was 

set on ice and 1.7 g of NaBH4 was added very slowly in several portions. The 

resulting cloudy solution was allowed to stir for 1 hr. before filtration to 

remove the undesired precipitate. The remaining solution was evaporated under 

reduced pressure and the residue was extracted with 80 ml CH2Cl2. Rotary 

evaporation of the organic extract gave 8 as a thick orange gel. Accurate mass 

could not be determined due to presence of solvent in the gel. 1H-NMR (400 

MHz, CDCl3): 8.51 (d, 1H), 7.60 (t, 1H), 7.27 (d, 1H), 7.11 (t, 1H), 3.88 (s, 

2H), 3.65 (s, 3H), 2.90 (t, 2H), 2.53 (t, 2H). 
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9 8 7 6 5 4 3 -2.5 -3.0
ppm

*

Figure 4.10. 1H-NMR spectrum of 7 showing attachment of chloromethylpyridine 

moiety. Exact peak positions are given above in the experimental. 

9 8 7 6 5 4 3 -2.5 -3.0
ppm

Figure 4.11. 1H-NMR spectrum of 9 showing attachment of the BMPA-OMe non-

heme binding site. New features can be seen between 6.5 and 7 ppm 

corresponding to the new pyridine ring, as well as new methylene proton 

features between 3 and 3.5 ppm. 
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(9). In a small round-bottom flask, 20 mg 7 was dissolved in 3 ml DMF. A large 

excess (65 mg) of 8 was then added and the reaction was allowed to stir at 

room temperature for 4 days. The solvent was removed under reduced pressure. 

Purified via column chromatography (silica) eluted with 3 % methanol in CH2Cl2. 

Yield: ~90 %. 1H-NMR (400 MHz, CDCl3): 8.88 (m, 8H), 8.18 (s, 1H), 8.12 (t, 

1H), 7.89 (t, 1H), 7.78 (m, 3H), 7.58 (m, 2H), 7.36 (m, 6H), 6.96 (t, 1H), 

6.79 (d, 1H), 6.72 (t, 1H), 6.42 (d, 1H), 6.18 (d, 1H), 3.34 (s, 2H), 3.27 (s, 

2H), 3.05 (s, 3H), 2.46 (t, 2H), 2.11 (t, 2H), -2.70 (s, 2H) LCT-MS: m/z = 

1049 (mass  + H) and 1071 (mass + Na). 

(10). A solution of 20 mg KOH in 0.2 ml methanol was diluted to 2 ml with 

CH2Cl2 and used to dissolve the material obtained from 9. The resulting 

solution was stirred at room temperature for 24 hrs. before dilution with 

CH2Cl2, washing with H2O, washing with dilute HCl, washing again with H2O, 

drying with Na2SO4, and rotary evaporation. The obtained crude purple solid was 

purified via column chromatography (silica) eluting with CH2Cl2 followed by 

increments of 5 % and 10 % methanol. With 10 % methanol a broad streaky band 

is eluted which is the desired product 10. Elution at 5 % give a decomposition 

product in which the amide tether has been cleaved. 

(11). A small ~3 mg sample of 10 was dissolved in 1.5 ml of dry/air-free 

methanol under inert atmosphere. 10 mg anhydrous FeCl2 was added and the 

reaction was brought to reflux under inert atmosphere for 3 hrs. After this 

point the reaction was exposed to air and the methanol was allowed to 

evaporate. The residue was dissolved in CH2Cl2 and filtered to remove any 

insoluble material. The organic layer was then washed with H2O to remove 

excess FeCl2. Following drying with Na2SO4, rotary evaporation of the solvent 

left a deep red/orange solid. Material can be crystallized slowly from 

CH2Cl2/pentane however no x-ray quality crystals have been obtained. LCT-MS: 

m/z = 1159. UV-vis: Soret = 413 nm, Qv = 564 nm.  

2-hydroxymethyl-6-bromomethylpyridine (13). To a round-bottom flask containing 

1.02 g 2,6 dihydroxymethyl pyridine was added 10 ml of 48 % HBr. The solution 

was brought to reflux for 1 hr. After this time the reaction was cooled to 0 

°C in an ice bath and taken to a basic pH with 10 ml of 30 % NaOH. The 

solution was extracted twice with CH2Cl2, dried with Na2SO4, filtered, and 

evaporated under reduced pressure to yield an orange oil. Purification by 

column chromatography (silica) eluted with CH2Cl2 to remove 2,6-dibromopyridine 
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(Rf = 0.45) followed by diethylether to elute 13 (Rf = 0.53). Rotary 

evaporation yields a white solid. Yield: 390 mg (26 %). 1H-NMR (400 MHz, 

CDCl3): 7.71 (t, 1H), 7.37 (d, 1H), 7.18 (d, 1H), 4.78 (d, 2H), 4.56 (s, 2H), 

3.74 (t, 1H). 

Ortho-hydroxymethyl(BMPA-Ome) (14). In a round-bottom flask, 200 mg 8 was 

dissolved in 2 ml DMF and combined with 0.35 ml disopropylethylamine. The 

resulting solution was stirred to combine and 200 mg 13 was added. The 

reaction was brought to 50 °C overnight. The reaction was diluted with H2O, 

extracted with CH2Cl2. Elution through silica with CH2Cl2 followed by methanol 

yields 14 as a red oil with a DMF. 1H-NMR (400 MHz, CDCl3): 8.50 (d, 1H), 7.63 

(m, 2H), 7.46 (d, 1H), 7.33 (d, 1H), 7.13 (t, 1H), 7.06 (d, 1H), 4.70 (s, 2H), 

3.81 (s, 4H), 3.61 (s, 3H), 2.91 (t, 2H), 2.55 (t, 2H), 1.76 (sbroad, 1H). 

 

  

9 8 7 6 5 4 3 2 1

DMF

ppm

*

DMF

Figure 4.12. 1H-NMR spectrum of ortho-hyrdoxymethyl(BMPA-OMe). Residual DMF is 

present in the crude product (red oil). See experimental text for assignment. 
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Chapter 5 

Modeling the N2O2 Intermediate of NorBC 

The mechanism of NO reduction within the diiron heme/non-heme active site 

of NorBC is currently debated within the literature (see Chapter 1).1-4 One 

likely intermediate is a bridging hyponitrite complex where N2O2
2- is bound 

between the two ferric iron centers within the enzyme.1-2, 5-6 This species is 

proposed to form via radical-type N-N bond formation. In order to study the 

properties of such an intermediate, the model complex [Fe(OEP)]2(μ-N2O2) has 

been synthesized by Richter-Addo and coworkers where two ferric 

octaethylporphyrin (OEP) units are bridged by the hyponitrite dianion.7 This 

complex currently represents the only structurally-characterized di-ferric 

hyponitrite complex as a model for the key N-N bound intermediate in NorBC. 

Previous studies have proposed the formation of metal hyponitrite 

intermediates for both iron and copper complexes in the presence of excess 

NO.8-9 However, these species are transient and have thus not been 

characterized. A bidentate hyponitrite Pt complex has also been crystallized.10 

However, such a complex does not serve as a biomimetic model. The hyponitrite 

dimer [Fe(OEP)]2(μ-N2O2) thus offers a truly unique opportunity to study the 

properties of iron hyponitrite complexes and gain insight into their 

biological significance. 

Due to the strong trans effect of NO, as discussed in Chapter 2, a radical-

based N-N coupling mechanism would favor the formation of a six-coordinate 

(6C) ferrous heme nitrosyl; resulting in a additional radical character on NO 

which would facilitate formation of the corresponding hyponitrite 

intermediate. However, even 6C ferrous heme nitrosyls have been shown to be 

unreactive with respect to N-N coupling. Furthermore, these systems do not 

react with free NO; which has even greater radical character than ferrous heme 

nitrosyl complexes. Analysis of the electronic structure and reactivity of 

complexes which model the key hyponitrite intermediate proposed for NorBC 

offer an opportunity to gain insight into the mechanism of N-N coupling. 



 107 

As previously reported by Richter-Addo and coworkers, the hyponitrite dimer 

rapidly decomposes in the presence of HCl to generate N2O and H2O along with 

[Fe(OEP)(Cl)].7 New reactivity observed in our laboratory shows that 

[Fe(OEP)]2(μ-N2O2) also undergoes thermal decomposition yield two equivalents 

of [Fe(OEP)(NO)], the reverse reaction to the proposed N-N bond formation step 

in NO reduction by NorBC. Given this interesting reactivity, a detailed 

characterization of the electronic structure and reactivity is warranted. 

Within this chapter is presented the characterization of [Fe(OEP)]2(μ-N2O2) 

using a combination of magnetic circular dichroism (MCD), Nuclear Resonance 

Vibrational Spectroscopy (NRVS), SQUID magnetic measurements, DFT 

calculations, and kinetic studies. 

5.1. Characterization of {[Fe(OEP)]2(N2O2)} 

In order to gain insight into the mechanism of NorBC from the model complex 

[Fe(OEP)]2(μ-N2O2) it is first necessary to develop a clear understanding of 

the electronic structural properties of [Fe(OEP)]2(μ-N2O2). In a previous 

publication, Richter-Addo and coworkers have already detailed the crystal 

structure of [Fe(OEP)]2(μ-N2O2) and performed a cursory vibrational 

characterization along with preliminary DFT calculations on a S = 5 high-spin 

computational model of the complex.7 Here, the DFT calculated atomic charges 

reveal a high degree of anionic character on the O-atom of hyponitrite. This 

is in agreement with observed reactivity in the presence of HCl where 

protonation of the hyponitrite O-atom leads to N2O formation with generation 
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Figure 5.1. EPR spectrum of [(OEP)Fe]2(μ-N2O2) versus the S = 5/2 spin standard 

[Fe(F8TPP)(Cl)] recorded at 4 K.(left) Spin quantification of the EPR data.(right) 
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of [Fe(OEP)]Cl and H2O. Interestingly, EPR spectra recorded at 77 K show g-

values of 5.74 and 2.03; consistent with an S = 5/2 high-spin ferric heme. 

This is surprising as the two iron centers within [Fe(OEP)]2(μ-N2O2) would be 

expected to be magnetically coupled; thus yielding an EPR-silent complex.  

In an effort to more thoroughly probe the electronic structure and spin 

state of [Fe(OEP)]2(μ-N2O2), liquid He (4 K) EPR spectroscopy has been 

employed. As previously reported, the EPR spectrum of a frozen CH2Cl2 solution 

of [Fe(OEP)]2(μ-N2O2), shown in Figure 5.1, does indeed show signals consistent 

with an S = 5/2 high-spin complex. However, spin quantification against known 

S = 5/2 standards shows the response to be only a minor component of the 

[Fe(OEP)]2(μ-N2O2) sample (~20 % impurity). It is therefore more accurate to 

assign [Fe(OEP)]2(μ-N2O2) as EPR-silent; displaying either strongly 

ferromagnetic (integer spin) or antiferromagnetic (zero spin) coupling across 

the hyponitrite bridge. The observed impurity is consistent across multiple 

preparations of [Fe(OEP)]2(μ-N2O2) and therefore most likely represents a 

[Fe(OEP)(X)] side product inherent to the synthesis of this complex. EPR 

spectra obtained on solid samples of [Fe(OEP)]2(μ-N2O2) show highly distorted 

signals indicative of intermolecular spin coupling in the solid state.11 This 

data is shown in Figure 5.2.  

As [Fe(OEP)]2(μ-N2O2) is EPR-silent, SQUID susceptibility measurements were 

employed in an effort to determine the molecular spin state. These data are 
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shown in Figure 5.3 and indicate an effective magnetic moment (μeff) of 7.7 μBM 

at 250 K. Surprisingly, this is consistent with an intermediate S = 3 total 

spin, likely resulting from ferromagnetic coupling of two S = 3/2 intermediate 

spin Fe(III) centers. The ferromagnetic coupling is maintained between 1.8 and 

250 K, indicating a strong nuclear dipolar coupling (J). Several other ferric 

OEP complexes have been reported in the literature to be intermediate spin; 

such as [Fe(OEP)]ClO4, [Fe(OEP)(3-ClPy)]ClO4 (3-ClPy = 3-chloropyridine), and 

[Fe(OEP)(ONNMe2)]ClO4.
12-14 In addition to these, [Fe(OEP)]2(μ-N2O2) represents 

another rare example of a synthetic intermediate-spin ferric heme complex with 

axial anionic oxygen donors. 

 

 

 

 

 

 

 

 

0 10000 20000 30000 40000 50000 60000

0.5

1.0

1.5

2.0

2.5

3.0

M
M
/N

A
g

β

gβB/kT

Figure 5.3. SQUID susceptibility data for [(OEP)Fe]2(μ-N2O2). (left) Data recorded 

from 1.8 – 10 K at each field between 1 – 7 T, (right) data collected at 0.5 T. 

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
o

la
r 

M
a
g

n
e

ti
za

ti
o

n

T (K)

Figure 5.4. MCD spectra of [(OEP)Fe]2(μ-N2O2) recorded in polystyrene matrix at 2 K 

(left). Magnetization plots calculated for the Soret band show a large degrees of 

anisotropy as evident from the nesting behavior (right). 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
25060 cm

-1
 (Soret band)

%
 m

a
g

n
e

ti
z
a

ti
o

n

ββββB/2kT

2K

8K

12K

15000 20000 25000 30000 35000 40000
-100

0

100

200

300

20K

10K

5K

4K

R
e

l.
 M

C
D

 I
n

te
n

s
it

y
 (

m
d

e
g

)

wavenumber (cm
-1
)

2K



 110 

In support of the observed S = 3 total spin, low-temperature (< 50 K) VTVH 

MCD spectra on [Fe(OEP)]2(μ-N2O2) embedded in a polystyrene matrix show both 

temperature- and field-dependent saturation. This observation is in accordance 

with MCD C-term intensity resulting from ferromagnetic coupling between the 

two iron centers. The alternative antiferromagnetically coupled spin state 

would be expected to lead to a diamagnetic ground-state, and hence, lack of C-

term intensity. Therefore, MCD intensity would not show field saturation. The 

average MCD spectra of [Fe(OEP)]2(μ-N2O2) taken at 2 K between 1 – 7 T are 

shown in Figure 5.4. Magnetization plots generated from the [Fe(OEP)]2(μ-N2O2) 

MCD data show, as expected, a high degree of nesting. As a result, fitting of 

the MCD data to determine total spin is non-trivial and was not performed.  

Vibrational data was obtained using both FT-IR and NRVS15-16 spectroscopy to 

gain more insight into the nature of the hyponitrite bridge and expand on 

magnetic data presented above. Here, vibrational assignments are key as they 

provide insight into the bond strengths and energies within the hyponitrite 

unit. The antisymmetric N-O stretching feature of [Fe(OEP)]2(μ-N2O2) has been 

previously assigned at 982 cm-1 based on 15N and 18O labeling of the hyponitrite 

bridge.7 In addition, a weak isotope-sensitive band is also present at 436 cm-1 

in the infrared spectrum. This feature is sensitive to both 15N and 18O 

labeling and is therefore tentatively assigned as an Fe-O-N bending mode (see 

Figure 5.5). As the FT-IR features associated with the Fe-O-N-N-O-Fe unit are 
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relatively weak and difficult to identify, NRVS measurements were employed in 

an attempt to further elucidate the vibrational structure of [Fe(OEP)]2(μ-

N2O2). Unfortunately, as shown in Figure 5.6, only a single isotope-sensitive 

band is visible in the NRVS spectra which is located at 322 cm-1 and shifts to 

310 cm-1 upon 15N18O labeling. The lack of features in the NRVS spectra is 

surprising as NRVS intensity is directly correlated with 57Fe motion within a 

given vibrational mode. Additionally, the NRVS technique has been quite 

successful in regards to characterization of small molecule-bound heme 

complexes. It could therefore be inferred that the Fe-O-N-N-O-Fe unit in 

[Fe(OEP)]2(μ-N2O2) would likely be highly NRVS-active;
17-18 this is, however, not 

the case. 

 

 

   DFT calculations were employed in order to aid in the assignment of the 

vibrational features of [Fe(OEP)]2(μ-N2O2) and investigate the lack of intense 

NRVS features for this complex. Geometry optimizations were performed at the 

BP86/TZVP theory level followed by B3LYP/TZVP single point energy calculations 

on the porphine approximated model, [(P)Fe]2(μ-N2O2). Here, geometric 

parameters of both the S = 3 and S = 5 DFT models match the experimentally 

determined parameters well. The Fe-O bond is predicted at 1.94 and 1.90 Å for 

the S = 3 and S = 5 models, respectively, compared to 1.89 Å in the crystal 

structure. Furthermore, O-N distances and Fe-O-N angles were predicted at 1.34 

and 1.35 Å along with 123.7° and 124.6° for the S = 3 and S = 5 models, 

 
[(P)Fe]2(μ-N2O2) 

S = 3 
[(P)Fe]2(μ-N2O2) 

S = 5 
[Fe(OEP)]2(μ-N2O2) 

crytal structure 

Geometric properties [Å, °] 

Fe-O 1.94 1.90 1.89 
N-O  1.34 1.35 1.38 
N-N  1.28 1.27 1.25 
Fe---Fe  6.89 6.83 6.69 
heme-heme  7.16 7.60 7.26 
Fe displacement  0.25 0.47 0.40 
Fe-O-N  123.7 124.6 118.6 
O-N-N 109.8 109.4 108.5 
    

Vibrational properties [cm-1] 

ν(N-O)s 967 963 - 
ν(N-O)as 1025 1011 982 
ν(N-N) 1230 1279 - 
ν(Fe-O)as 509 526 436 
δ(Fe-O-N)as 338 342 322 
δ(O-N-N)s 702 742 - 
(O-N-N-O)rocking 293 295 - 
(O-N-N-O)twist 314/317 323 - 
Eu (porphyrin) 280 234 272(241) 

Table 5.1. Comparison of DFT predicted and experimentally determined geometric and 

vibrational properties for [Fe(OEP)]2(μ-N2O2). 



 112 

respectively, compared to 1.38 Å and 118.6° in the crystal structure. 

Additional geometric parameters are detailed in Table 5.1. 

Frequency calculations on this model at the BP86/TZVP theory level predict 

a total of eight vibrational modes with significant Fe-O-N-N-O-Fe character 

between ~300 – 1300 cm-1. Interestingly, the DFT-predicted vibrational modes 

show only minimal iron displacement, with most of the atomic motion located on 

the hyponitrite bridge. This curious result explains the observed lack of NRVS 

intensity as vibrational features with low iron motion will be extremely weak 

and difficult to resolve.15 Currently, only three of the predicted features can 

be assigned using a combination of FT-IR and NRVS spectroscopy. For the S = 3 

model, both the symmetric and antisymmetric N-O stretching features are 

predicted to be within 50 cm-1 of the experimentally observed 982 cm-1 feature 

at 967 and 1025 cm-1, respectively. As this mode is observed in the FT-IR 

spectrum it is most likely the antisymmetric stretch, as previously stated, 

due to the symmetry forbidden nature of the corresponding symmetric mode. 

Additionally, the afore mentioned 15N2
18O2 isotope-sensitive FT-IR feature at 

436 cm-1 is assigned as an antisymmetric Fe-O stretching vibration, predicted 

at 509 cm-1 for the S = 3 DFT model. This mode again has the appropriate 

symmetry to be IR-allowed. The final vibrational feature observed at 322 cm-1 

with 57Fe-enriched NRVS measurements is predicted to be an antisymmetric Fe-O-N 

bending mode which DFT estimates at 338 cm-1. Vibrational data was also 

predicted for the high-spin S = 5 [(P)Fe]2(μ-N2O2) model. As shown in Table 
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5.1, the intermediate-spin S = 3 model is in better agreement with 

experimentally determined vibrational data; the only exception being the 

proposed antisymmetric N-O stretch which is in closer agreement with a high-

spin model. 

 In addition to vibrational features associated specifically with the Fe-O-

N-N-O-Fe moiety, NRVS allows for accurate identification of the porphyrin in-

plane Fe-Npyrrole stretching mode of Eu symmetry in heme-containing samples. As 

shown in Table 5.1, this mode is predicted to be highly sensitive to the total 

spin in the truncated [(P)Fe]2(μ-N2O2) model. Here, the porphine Eu feature is 

predicted at 234 and 280 cm-1 for S = 5 and S = 3 [(P)Fe]2(μ-N2O2) models, 

respectively, as shown in Figure 5.7, top. Here the position of the Eu mode 

supports the S = 3/2 spin state of the [Fe(OEP)] centers. Inclusion of the 

complete OEP ligand in the DFT model maintains the observed separation between 

the S = 5 and S = 3 Eu band, however, due to the loss of symmetry in OEP 

compared to porphine, the predicted features are split into a major (higher 

energy) and minor (lower energy) component. The experimentally observed Eu 

feature is also split in agreement with the DFT results; showing signals at 

272(major) and 241(minor) cm-1, respectively, as shown in Figure 5.7. In this 

case, the experimental NRVS spectrum places the Eu vibrational mode 

intermediate between the predicted Eu vibrations in the S = 5 and S = 3 

models. In the DFT calculated spectra the S = 3 [Fe(OEP)]2(μ-N2O2) model 

predicts the Eu mode at 324 and 286 cm
-1 while the corresponding S = 5 model 
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places the feature at 248 and 221 cm-1. A plot of the predicted versus 

experimental NRVS data is shown in Figure 5.7.  

5.2.  Reactivity and Decomposition of [Fe(OEP)]2(μ-N2O2) 

The hyponitrite-bridged dimer [Fe(OEP)]2(μ-N2O2) displays interesting 

reactivity in the presence of both HCl and 1-methylimidazole (MI). Addition of 

HCl promotes NOR-type reactivity and results in the production of N2O as 

previously reported.7 In addition to N2O formation in the presence of acid, 

[Fe(OEP)]2(μ-N2O2) slowly decomposes in solution at room temperature to yield 

two equivalents of [Fe(OEP)(NO)] (see Scheme 5.1). This reaction is in essence 

the reverse of the proposed N-N radical-type coupling of two coordinated NO 

ligands in the active site of NorBC; where two Fe-NO units couple to yield a 

hyponitrite bridge:2, 4 

                      2[Fe(OEP)(NO)] ⇄ [Fe(OEP)]2(μ-N2O2)  

Obviously, ferrous heme nitrosyls are stable in solution and do not 

spontaneously dimerize. For this reason, [Fe(OEP)]2(μ-N2O2) can only be 

obtained from preformed N2O2
2-. This relates back to the extraordinary 

stability of the Fe-NO bond in ferrous heme nitrosyls. Importantly, the 

synthetic model complex [Fe(OEP)]2(μ-N2O2) offers the unique opportunity to 

study the reactivity and electronic structure of the diiron hyponitrite moiety 

outside of a reactive protein environment. In particular, elucidation of the 

mechanism of the dissociation of the complex can shed light on the 

corresponding reductive N-N coupling of nitrosyl moieties within NorBC.  

In order to experimentally probe the thermal decomposition of [Fe(OEP)]2(μ-

N2O2), UV-visible absorption and EPR spectroscopy have been employed. EPR  

Scheme 5.1. Potential decomposition pathways of [(OEP)Fe]2(μ-N2O2) in solution. 
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spectroscopy shows clear decomposition to [Fe(OEP)(NO)] as a final product. 

Spectra recorded on thermally annealed samples of [Fe(OEP)]2(μ-N2O2) in toluene 

slowly decompose to reveal an axial S = 1/2 species with clear three-line 

hyperfine splitting on gmin (see Figure 5.8). These data are consistent with 

formation of a ferrous heme nitrosyl where coupling of the nuclear spin (I = 

1) of 14N with the electron spin (S = ½) leads to a characteristic three-line 

splitting in the EPR spectrum.19 In addition, absorption measurements, shown in 

Figure 5.8, performed at 30 °C in CH2Cl2 show clean isosbestic conversion of 

the 620 nm Q-band of [Fe(OEP)]2(μ-N2O2) to a new species with broad absorption 

features between 565 and 595 nm; consistent with formation of [Fe(OEP)(NO)]. 

The observed rate constant for this transformation has been measured at 

6.4x10-5 s-1 under the given conditions. The slow rate constant is in agreement  

with DFT calculations which predict high-energy intermediates in the 

decomposition pathway. Both absorption and EPR spectroscopy are thus in 

agreement and clearly show formation of the five-coordinate ferrous heme 

nitrosyl [Fe(OEP)(NO)].  

In the presence of 1-methylimidazole (MI), as a model for histidine in 

proteins, a 1 mM toluene solution of [Fe(OEP)]2(μ-N2O2) decomposes to yield 

[Fe(OEP)(NO)] at noticeably faster rates than in the absence of an axial base. 

As monitored by 77 K EPR spectroscopy, full conversion to the nitrosyl product 

is achieved after only 80 minutes in the presence of a 13-fold molar excess of 

MI; compared to an estimated 6 hours for [Fe(OEP)]2(μ-N2O2) alone (see Figure 

5.9). This result was also confirmed by absorption spectroscopy at 30 °C in 
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the presence of varied MI equivalents. Figure 5.10 shows the rate dependence  

of [Fe(OEP)(NO)] formation on the MI concentration, giving a maximal rate of 

1.24x10-3 s-1 when MI is in >500 molar excess. Importantly, saturation behavior 

is observed as higher concentrations of MI are added; implying equilibrium 

effects upon MI addition. Based on these findings it is likely that 

decomposition occurs most rapidly via a bis-imidazole complex where MI binds 

axially across the N2O2-bridged complex (see Scheme 5.2). Here, equilibrium 

binding of MI prohibits complete formation of the unstable bis-imidazole 

adduct, only reaching complete formation at >500 molar excess of MI. At 

relatively high equivalents of MI (>100 eq.), NO is also displaced from the 

Figure 5.9. Kinetic plots of the thermal decomposition of [(OEP)Fe2](μ-N2O2) in the 

absence (left) and presence (right) of 1-methylimidazole. 
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product complex [Fe(OEP)(NO)]. Here, the large excess of MI readily displaces 

NO, yielding the corresponding six-coordinate bis-imidazole complex 

[Fe(OEP)(MI)2]. This reaction is observed in EPR experiments where the 

[Fe(OEP)(NO)] product can be seen to disappear in the presence > 100 

equivalents of MI. 

 

 

 

 

 

 

 

 

 

Given that the hyponitrite bridge is O-bound in [Fe(OEP)]2(μ-N2O2), there are 

several potential pathways leading to the observed nitrosyl product. The most 

likely of which are labeled as A and B in Scheme 5.1 and involve either 

preliminary breaking of the N-N bond of hyponitrite, leading to two O-bound 

[Fe(OEP)(ON)] complexes which rapidly isomerize to the energetically favored 

N-bound isomer; or isomerization of [Fe(OEP)]2(μ-N2O2) leading to an N-bound 

hyponitrite bridge which is followed by N-N bond cleavage to yield the 

observed [Fe(OEP)(NO)] product. In order to further elucidate the mechanism of 

N-N bond cleavage resulting in formation of [Fe(OEP)(NO)], DFT calculations 

were employed. Full optimization of [Fe(OEP)]2(μ-N2O2) was performed at the 

BP86/TZVP theory level for both the S = 3 and S =5 spin states. The 

experimentally observed S = 3 intermediate-spin state is predicted to be 18.5 

kcal/mol below the S = 5 high-spin state. Analogous calculations applied to 

the porphine-approximated complex [(P)Fe]2(μ-N2O2) after employing B3LYP/TZVP 

single point energies on the BP86/TZVP optimized structures raises the energy 

of the S = 3 ground state relative to the S = 5 state. Using this model, the S 

= 5 spin state is now favored by 5.3 kcal/mol. Comparatively, the two S = 1/2 

Figure 5.11. Relative energies of potential reaction intermediates calculated from 

BP86/TZVP optimized structures using B3LYP/LANL2DZ* single point energies. 
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[Fe(P)(NO)] product compounds are located 6.0 kcal/mol below the S = 3 

hyponitrite-bridged starting material. In light of the experimentally observed 

S = 3 spin, DFT analysis was performed on intermediate-spin porphine-

approximated models in order to assess the mechanism of [Fe(OEP)(NO)] 

formation and to determine why the reverse reaction is not observed. 

Interestingly, both likely decomposition pathways (see Scheme 5.1) proceed 

through either an N-bound hyponitrite-bridged isomer or a transient pair of O-

bound heme nitrosyls, respectively. Both of these intermediate states are 

predicted to be energetically unfavorable and exist between 12 and 25 kcal/mol 

above the S = 3 [(P)Fe]2(μ-N2O2) starting material (see Figure 5.11). It can 

thus be concluded that although there is a large thermodynamic driving force 

for [Fe(OEP)(NO)] formation, this reaction is kinetically hindered by high-

energy intermediates. 

Of the proposed decomposition mechanisms given in Scheme 5.1, pathway A, 

which involves initial N-N bond breaking followed by isomerization of the 

nitrosyl unit, does not require compression of the heme-heme distance. The 

Scheme 5.2. Schematic depiction of equilibrium binding of 1-MI. Decomposition via k3 

is observed to be slow in comparison to decomposition via k5. 
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required shortening of the Fe-Fe distance for the formation of an N-bound 

hyponitrite in pathway B is substantial. DFT calculations predict a heme-heme 

distance of 7.16 Å for the crystallographically observed O-bound hyponitrite 

isomer and 5.71 Å for the corresponding N-bound isomer. Importantly, the 

crystal structure of [Fe(OEP)]2(μ-N2O2) shows two disordered CH2Cl2 solvent 

molecules packed around the N2O2 core between the heme planes.7 Therefore, 

there exists an additional energetic barrier to compression of the heme-heme 

distance as these solvent molecules must be expelled from the core. This 

matter is further compounded by steric interactions of the ethyl substitutents 

on OEP2-. The porphine approximation used in the DFT calculations neglects 

these interactions, which represent an additional energetic barrier to 

formation of an N-bound [Fe(OEP)]2(μ-N2O2) isomer. For these reasons, we 

propose pathway B to be more similar in energy to that of pathway A, 

representing a barrier of ~20 – 25 kcal/mol.  

Both DFT and experimental results indicate a slow dissociation of 

[Fe(OEP)]2(μ-N2O2) into [Fe(OEP)(NO)]. The DFT predicted barrier of 20 – 25 

kcal/mol fits well with the observed decomposition rate of 6.41x10-5 s-1, which 

correlates with an activation energy of ~23 kcal/mol. Importantly, because 

[Fe(OEP)(NO)] is ~7 kcal/mol lower in energy than [Fe(OEP)]2(μ-N2O2), the 

dimerization of [Fe(OEP)(NO)] must overcome a barrier of ~32 kcal/mol. This 

large barrier results in a predicted rate of approximately 1x10-11 s-1 which is 

far too slow to ever generate an observable amount of [Fe(OEP)]2(μ-N2O2). For 

this reason, the dissociation of [Fe(OEP)]2(μ-N2O2) is slow and the 

dimerization of [Fe(OEP)(NO)] is kinetically forbidden.  

In summary, the model complex [Fe(OEP)]2(μ-N2O2) exhibits an intermediate S = 

3 total spin, due to ferromagnetic coupling of two S = 3/2 iron centers across 

a hyponitrite bridge. Interestingly, [Fe(OEP)]2(μ-N2O2) is able to dissociate 

across the central N-N bond, leading to the formation of [Fe(OEP)(NO)]. The 

dissociation rate is relatively slow in the absence of an axial base, 

indicative of a substantial kinetic barrier for this reaction. However, upon 

addition of MI, the dissociation rate constant increases until saturation at a 

rate of 1.24x10-3 s-1. These results provide further evidence that a radical-

type coupling within NorBC is unlikely. However, in the event that a radical 

coupling mechanism in fact possible, these results indicate that the presence 

of an axial N-donor, such as the proximal histidine (HIS) residue in NorBC, 

favors formation of a heme nitrosyl rather than a hyponitrite species. It is 
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therefore likely that during NorBC turnover the axial HIS ligand is displaced, 

leading to a five-coordinate hyponitrite intermediate. In this way, the back 

reaction to reform a ferrous heme nitrosyl is suppressed. Upon formation of a 

N2O2
2- bridge in the NorBC active site, displacement of the heme iron towards 

the proximal pocket may be responsible for dissociation of the proximal HIS 

ligand. A similar scenario has been proposed based on enzymatic studies where 

spectroscopic characterization of NorBC from Paracoccus denitrificans 

indicates lability of the heme b3 Fe-HIS bond.
4 

Experimental 

Preparation and handling of air sensitive materials was carried out under an 

argon atmosphere in an MBraun glovebox equipped with a circulating purifier 

(O2, H2O < 0.1 ppm). Infrared spectra were obtained from KBr disks on a 

Perkin-Elmer BX spectrometer. Electronic absorption spectra were measured 

using an Analytical Jena Specord 600 instrument. Electron paramagnetic 

resonance spectra were recorded on a Bruker X-band EMX spectrometer equipped 

with an Oxford Instruments liquid nitrogen cryostat. EPR spectra were 

typically obtained on frozen solutions using ~20 mW microwave power and 100 

kHz field modulation with the amplitude set to 1 G. SQUID susceptibility 

measurements were conducted on a Quantum Design MPMS-XL7 equipped with an 

Evercool Dewar. Samples were prepared as mixtures with either eicosane or 

silicon oil in a polycarbonate capsule. 

The complex [Fe(OEP)]2(μ-N2O2) was prepared by the Richter-Addo laboratory as 

previously reported and stored under inert gas at -34 °C until ready to use. 

All solvents were purified by distillation under and Ar atmosphere followed by 

three freeze-pump-thaw cycles prior to use. 1-methylimidazole was obtained 

from Sigma-Aldrich and was also purified by distillation under and Ar 

atmosphere followed by three freeze-pump-thaw cycles prior to use. 



 121 

References 

 
(1) Blomberg, M. R. A.; Sieghahn, P. E. M., Biochemistry 2012, 51, 5173. 
(2) Girsch, P.; de Vries, S., Biochim. Biophys. Acta 1997, 1318, 202. 
(3) Lehnert, N.; Berto, T. C.; Galinato, M. G. I.; Goodrich, L. E., In The 

Handbook of Porphyrin Science, Kadish, K. M.; Smith, K. M.; Guilard, R., 
Eds. World Scientific: Singapore, 2011; Vol. 14, pp 1-247. 

(4) Moenne-Loccoz, P., Nat. Prod. Rep. 2007, 24, 610. 
(5) Arikawa, Y.; Onishi, M., Coord. Chem. Rev. 2012, 256, 468. 
(6) Blomberg, L. M.; Blomberg, M. R. A.; Sieghahn, P. E. M., Biochim. 

Biophys. Acta 2006, 1757, 240. 
(7) Xu, N.; Campbell, A. L. O.; Powell, D. R.; Khandogin, J.; Richter-Addo, 

G. B., J. Am. Chem. Soc. 2009, 131, 2460. 
(8) Franz, K. J.; Lippard, S. J., J. Am. Chem. Soc. 1999, 121, 10504. 
(9) Schneider, J. L.; Carrier, S. M.; Ruggiero, C. E.; Young, V. G., Jr.; 

Tolman, W. B., J. Am. Chem. Soc. 1998, 120, 11408. 
(10) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Moore, R. C., Polyhedron 

2007, 26, 4737. 
(11) Safo, M. K.; Gupta, G. P.; Walker, F. A.; Scheidt, W. R., J. Am. Chem. 

Soc. 1991, 113, 5497. 
(12) Axe, F. U.; Flowers, C.; Loew, G. H.; Waleh, A., J. Am. Chem. Soc. 1989, 

111, 7333. 
(13) Dolphin, D. H.; Sams, J. R.; Tsin, T. B., Inorg. Chem. 1977, 16, 711. 
(14) Scheidt, W. R.; Geiger, D. K.; Hayes, R. G.; Lang, G., J. Am. Chem. Soc. 

1983, 105, 2625. 
(15) Scheidt, W. R.; Durbin, S. M.; Sage, J. T., J. Inorg. Biochem. 2005, 99, 

60. 
(16) Lehnert, N., Quantum Chemistry Centered Normal Coordinate Analysis (QCC-

NCA): Routine Application of Normal Coordinate Analysis for the 
Simulation of the Vibrational Spectra of Large Molecules. In 
Computational Inorganic and Bioinorganic Chemistry, Solomon, E. I.; 
King, R. B.; Scott, R. A., Eds. John Wiley & Sons: Chirchester, UK, 
2009; pp 123-140. 

(17) Rai, B. K.; Durbin, S. M.; Prohofsky, E. W.; Sage, J. T.; Wyllie, G. R. 
A.; Scheidt, W. R.; Sturhahn, W.; Alp, E. E., Biophys. J. 2002, 82, 
2951. 

(18) Lehnert, N.; Galinato, M. G. I.; Paulat, F.; Richter-Addo, G. B.; 
Sturhahn, W.; Xu, N.; Zhao, J., Inorg. Chem. 2010, 49, 4133. 

(19) Lehnert, N., Electron Paramagnetic Resonance and Low-Temperature 
Magnetic Circular Dichroism Spectroscopy of Ferrous Heme Nitrosyls. In 
The Smallest Biomolecules: Diatomics and their Interactions with Heme 

Proteins, Ghosh, A., Ed. Elseviere: Amsterdam, 2008; pp 147-171. 

 

 



 122 

 

 

 

Chapter 6 

Endothelial NO Export by Hb/Mb-NO2
- 

The role of NO and nitrite-bound methemoglobin (Hb(III)-NO2
-) in hypoxic 

signaling is highly controversial. One provoking possibility is that 

hemoglobin (Hb) functions as a nitrite anhydrase, producing N2O3 (from nitrite) 

as an NO carrier. The ability of Hb to generate N2O3 would provide an in-

triguing means of NO release from red blood cells. To investigate this 

process, models of the hemoglobin/myoglobin active site have been constructed. 

Our results show that the O-bound (nitrito) form of Hb/Mb(III)-NO2
- is 

essential for the formation of N2O3. This may explain why Hb/Mb adopt the 

nitrito binding geometry over the more common N-bound (nitro) form. The 

formation and release of N2O3 is shown to be energetically favorable by 1 - 3 

kcal/mol by the DFT calculations, opening up the anhydratase function of Hb/Mb 

as a biologically feasible process. 

 

6.1. DFT Assessment of N2O3 Formation by Hb/Mb-NO2
-
 and NO 

The role of nitrite in mammalian hypoxic vasodilation is currently a 

highly contested topic within the field of biological chemistry.1 In 

particular, hypoxia sensing is not well understood, although several theories 

have been proposed. One intriguing possibility, as investigated experimentally 

by Basu et al, is that an intermediate methemoglobin-nitrite species (Hb(III)-

NO2
-) is able to activate nitrite to produce the meta-stable species N2O3 in 

the presence of free NO.2a  Such a scenario would provide a convenient means of 

NO escape (via N2O3) from Hb-rich red blood cells (RBCs) under hypoxic 

conditions. As N2O3 possesses a half-life of ~1 ms and a diffusion coefficient 

of 1000 μm2 s-1, it is not unreasonable to expect that some fraction of N2O3 can 

diffuse out of the erythrocyte.2 Once released from the RBCs, the NO (obtained 

via decomposition of N2O3 in blood) would then induce vasodilation, and in this 

way, would direct blood flow to hypoxic tissue.1 The proposed physiological 

reactions are shown below in Equations 1-4. Deoxyhemoglobin, Hb(II) in 

Equation 1, is obtained by release of O2 from oxy-Hb in dioxygen-poor tissue. 
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  Hb(II) + NO2
- + H+ � Hb(III) + NO + OH-   (1) 

  Hb(III) + NO2
- � Hb(III)-NO2

-     (2) 

  Hb(III)-NO2
- + NO � Hb(III)-N2O3(-)    (3) 

  Hb(III)-N2O3(-) � Hb(II) + N2O3         (4) 

It is known that hemoglobin and myoglobin (Mb) can act as nitrite 

reductases,3 Equation 1. However, the feasibility of the nitrite anhydratase 

reaction, Equation 3, is unknown. Another important question with regard to 

this reaction is the binding mode of nitrite. It has been shown through a 

variety of methods (DFT, protein crystallography, model compounds) that 

nitrite can bind to ferric hemes in either an N-bound (nitro) or O-bound 

(nitrito) conformation.4 Most commonly, nitrite shows preference for the nitro 

binding mode. Interestingly, however, recent crystallographic results indicate 

that the unusual nitrito form is found in both Hb and Mb, and is therefore 

biologically relevant.5 The exact nature of the Fe(III)-nitrite bond can be 

expected to have direct implications for the reactivity of the bound molecule. 

This work seeks to clarify the geometric structure of the heme-nitrite complex 

within ferric Hb/Mb, and to elucidate the feasibility of Equations 3 and 4 as 

a function of the nitrite binding mode, using DFT calculations. 

 

 

 

 

 

 

 

 

 

To model the interaction of NO with nitrite-bound met-Hb/Mb, a structural 

model for the Hb/Mb active site was generated based on a high resolution 

crystal structure of oxy-Mb (PDB code: 1A6M).6 The model consists of heme b, 

stripped of its peripheral substituents, one axial (proximal) histidine 

ligand, and, fixed at the crystallographically determined distance from the 

iron center, the distal histidine residue, which is involved in hydrogen-

bonding interactions with heme-bound molecules. The distal histidine is only 

fixed at the terminal α-carbon atom, such that its orientation relative to 

bound substrates is free to optimize. The model system obtained this way 

 

Scheme 6.1. Potential Mb(III)-NO2
- structures and their relative energies 

(BP86/TZVP). All species show S = 1/2 ground states. 
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serves as a general model for both the Hb and Mb active sites (therefore 

referred to as Hb/Mb). 

 

 

 

 

 

 

 

 

 

In order to assess the preferred binding mode of nitrite, it was 

positioned within the distal pocket of our model system in several different 

orientations with respect to both coordination mode to heme and interaction 

with the distal histidine residue. These orientations include a nitro (N-

bound) and three distinct nitrito (O-bound) coordination modes which are shown 

in Scheme 1. All orientations were optimized at the BP86/TZVP theory level em-

ploying only the constraints indicated above. These structures are inspired by 

crystallographically observed binding modes of nitrite found in the 

literature,4,5 and also recent DFT calculations that explored nitrite binding 

geometries using a more restricted Mb active site model.2a Experimentally, 

structures 1 and 2a,b have been observed, where 2b is seen only in Mb 

mutants.5a The final structure, 2c, is obtained from 2a by rotation of nitrite, 

but this binding geometry has not been observed experimentally. Finally, a 

distorted Fe-ONO unit similar to 2b is observed in the β-subunit of Hb, but 

this tilted structure is not predicted by our DFT results. Overall, the N-

bound nitro configuration (1) is predicted to be the lowest energy 

conformation, which is not in agreement with the crystallographically observed 

structures of ferric Hb/Mb-nitrite adducts. This indicates that besides the 

hydrogen bond from the distal histidines, other interactions within the active 

sites of these proteins must contribute to the preference for O-bound nitrite 

in these cases. The lowest energy nitrito structure (2a), in which the 

remaining O atom of nitrite forms a hydrogen bond with the distal His, is 

located only 6.3 kcal/mol higher in energy than 1. The two other nitrito 

structures 2b and 2c are only slightly higher in energy than 2a. Our 

calculations follow the experimentally observed results and predict 1 and 2a 

to be energetically most favorable. In particular, 2a corresponds closely to 

 Fe-Onitrite 

[Å] 

Fe-NHis 

[Å] 
Onitrite−−−−NHis 

[Å] 

ON-NO2 

[Å] 
∠ONO 

[
o
] 

ref. 

Mb(III)-

NO2
− 

2.0 2.1 3.2terminal 

2.7internal 

- 114
 

19 

αHb(III)-

NO2
− 

2.0 2.0 3.3terminal 

2.9internal 

- 110
 

20 

2a 1.900 2.024 3.078terminal - 111
 

- 

2a-N2O3 1.959 1.976 3.005terminal 2.052 119
 

- 

Table 6.1. Comparison of relevant bond lengths and angles between DFT models and 

protein crystal structures (PDB: 3LR7 and 3D7O). 
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the experimentally observed structures of met-Mb/Hb nitrite adducts. Our 

computational models favor H-bonding between the terminal (not bound to Fe) O-

atom of NO2
- and the distal histidine residue, whereas experimentally, H-

bonding to the internal O-atom of nitrite is also observed. This finding is 

attributed to secondary protein effects not accounted for in our model. 

 

 

 

 

 

 

 

 

 

 

 

The interaction of NO with the two lowest energy nitrite-bound structures, 

1 and 2a, was then analyzed in order to assess the potential of each binding 

mode for N2O3 generation. To accomplish this, NO was introduced at a series of 

fixed distances from the nitrite ligand and each point was allowed to 

optimize. In this way, potential energy surfaces were generated for NO binding 

to Hb/Mb(III)-NO2
- in both 1 and 2a. Importantly, in the case of the N-bound 

nitrite complex 1, the N-atom of nitrite is involved in strong binding to the 

iron(III) center, and hence, cannot interact with NO. Any attempts to form an 

N-N bond between the incoming NO and the iron-bound nitrogen atom led to the 

movement of NO towards nitrite’s uncoordinated O atoms. This, however, does 

not allow for NO coupling to the coordinated NO2
- ligand either: as seen in 

Figure 6.1, left, NO addition to 1 leads to a very shallow energy minimum 

around 2.8 Å, corresponding to the formation of a very weakly associated [ONO-

NO]- adduct. Below ONO-NO distances of 2.8 Å, the nitrite-NO interaction is 

strongly dissociative. These results demonstrate that in the normally 

encountered nitro complex of ferric heme, nitrite is not reactive towards NO, 

and hence, Equation 3 is not feasible in this case. 

In the case of 2a, which is the experimentally observed binding mode in 

met-Hb, the NO2
- ligand is coordinated to ferric heme such that one O atom 

binds to the Fe(III) center, while the other O atom forms a hydrogen bond with 

the distal histidine (O-H distance: 2 Å; cf. Scheme 6.1). Importantly, the N  
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Figure 6.1. Binding curves for NO interacting at either the N atom (2a) or O atom 

(1) of ferric Hb/Mb-bound nitrite. The PES is associative (favorable) for formation 

of N2O3 only in the case of 2a. B3LYP/LanL2DZ and BP86/TZVP calculations were used 

to construct these energy surfaces. 



 126 

 

 

 

 

 

 

 

 

 

 

 

 

atom of nitrite is now accessible to react with free NO, and, indeed, is able 

to form the necessary N-N bond to generate N2O3. Figure 6.1, right shows the 

calculated potential energy surface for NO binding to Hb/Mb(III)-NO2
-. The 

calculated Fe(III)-N2O3(-) structure at the energy minimum predicts a long ON-

NO2
- distance of 2.05 Å and is stabilized by ~7 kcal/mol relative to the NO-

free precursor. The observed energy difference provides a significant driving 

force for NO addition to 2a. No energy barrier (intermediate) is observed for 

the formation of the N2O3(-) ligand. Further thermodynamic driving force will 

originate from the entropy gain upon formation of the N-N bond, which can in 

general be estimated to about -10 kcal/mol at room temperature for small 

molecule binding to transition metal complexes.7 Based on this estimate, the 

free energy for NO addition to the nitrito complex 2a is favorable by -15 to 

-20 kcal/mol at room temperature, and no energy barrier is observed for this 

process. 

Spin density analysis of 2a prior to NO association shows values of +0.84 

on NO and -0.86 on Fe(III) (see Figure 6.2, left).  These values are 

consistent with the radical nature of NO and the low-spin Fe(III) electronic 

structure of the Hb/Mb(III)-NO2
- complex. As NO approaches the bound nitrite, 

the spin density decreases in magnitude to +0.34 and -0.51 on NO and iron, 

respectively.  This observation is in agreement with the eventual reduction of 

iron from the ferric to the ferrous state upon dissociation of N2O3. The 

formally Hb/Mb(III)-N2O3(-) complex therefore represents an intermediate state 

at which N2O3 is bound to the low-spin iron center and the unpaired electron of 

NO is delocalized throughout the Fe-O2N-NO π system. The calculated structure 

of this N2O3-bound intermediate is shown in Figure 6.2, right. The calculated 

   

+0 .84

-0.04

-0.85

+0.3 4
+0.1 2

- 0.51

 

+0 .84

-0.04

-0.85

+0.3 4
+0.1 2

- 0.51

Figure 6.2. Intermediate N2O3-bound structure resulting from the reaction of the 

nitrito complex 2a with NO. Calculated spin density values for the NO-adduct of 2a 

(see on the right) indicate a delocalized radical throughout the Fe(III)-N2O3(-) 

unit. Spin density values are indicated in black. Calculated with BP86/TZVP. 
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spin density plot of the Mb(III)-N2O3(-) intermediate is shown in Figure 6.3, 

which further illustrates this observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on our calculations, NO attack on the bound nitrite of Hb/Mb(III)-

NO2
- is not likely to occur through a radical-radical coupling mechanism 

between NO2• (as a resonance structure of the ferric nitrite complex) and the 

incoming NO•, as has been previously proposed.2a Calculated spin densities on 

the NO2
- moiety consistently show values of < 0.05 during NO approach (see 

Figure 6.4). These data are consistent with a Fe(III)-NO2
- electronic 

structure. Additionally, the redox potential of the NO2
-/NO2• pair is 

relatively high at approximately +1 V.8 In comparison, the heme sites within 

Mb and Hb typically show redox potentials in the range of +50 - +200 mV and 

therefore, are not likely capable of forming a Hb/Mb(II)-NO2• species.9 In 

other words, the contribution of the Hb/Mb(II)-NO2• resonance structure to the 

ground state of ferric heme-nitrite complexes is expected to be negligible. 

Upon formation of the Hb/Mb(III)-N2O3(-) intermediate, N2O3 must be able to 

dissociate from the heme site in order to export NO out of the red blood cell. 

To model the dissociation process, N2O3 was step-wise dissociated from the low-

spin iron center of our Hb/Mb model to yield low-spin five-coordinate 

Hb/Mb(II) and free N2O3. The dissociation of N2O3 from the iron center is quite 

endothermic in the low-spin state with a dissociation energy of ~16 kcal/mol. 

Importantly, however, since five-coordinate ferrous Hb/Mb sites are high-spin, 

the spin crossover of the iron center upon dissociation of N2O3 also needs to 

be considered. Taking into account the high-spin five-coordinate Hb/Mb(II) 

product state, N2O3 dissociation becomes less endothermic: the final high-spin 

  

Figure 6.3. Calculated (BP86/TZVP) spin density plot of the Hb/Mb(III)-N2O3(-) 

intermediate. The results show low-spin Fe(III) bound to N2O3(-) with a delocalized 

radical in the π-system (green contour). 
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product is 4 - 6.5 kcal/mol higher in energy than the initial N2O3(-)-bound 

ferric heme complex (B3LYP/TZVP, depending on the heme structure).10,11 The 

predicted high-spin Hb/Mb(II) product state therefore makes the N2O3 

dissociation process energetically feasible. The spin crossover of the iron 

center is expected very early on the PES due to the fact that N2O3(-) is only a 

weak ligand to a ferric heme. Hence, due to this early spin crossover, the 

energy barrier for N2O3 dissociation should be very small.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, our calculations show that both the addition of NO to 

Hb/Mb(III)-NO2
- and the dissociation of N2O3 from the resulting Hb/Mb(III)-

N2O3(-) species are energetically feasible, resulting in a total energy for the 

complete process of -1 to -3 kcal/mol. The net entropy contribution is likely 

to be negligible as NO association followed by N2O3 dissociation can be 

expected to be close to entropically neutral. The free energy for N2O3 produc-

tion by met-Hb can therefore conservatively be estimated to be slightly 

exothermic, which indicates that the reaction is biologically feasible. One 

important restriction for this process is that this reaction is only possible 

in the ferric nitrito (O-bound) binding mode of nitrite; otherwise, this 

reaction is energetically very unfavorable. Through generation of the meta-

stable species N2O3, it would be possible for NO to escape inactivation (trap-

ping) within red blood cells as previously proposed.3b The calculations 

presented in this paper provide corroborative evidence that the nitrite 

anhydratase reaction of met-Hb is indeed energetically feasible, which 
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Figure 6.4. Spin density plots for NO, NO2
-, and Fe within 2a. As NO approaches the 

Fe(III)-ONO- moiety, spin density becomes delocalized across the whole Fe-ONO-NO(-) 

π system. Calculated with BP86/TZVP. 
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provides support for the idea of nitrite-dependent signaling in the 

cardiovascular system, as previously proposed by Basu et al.2a While this 

manuscript was under revision, Hopmann et al. published DFT results that also 

show the feasibility of the nitrite anhydrase reaction.12 Importantly, the 

incorporation of the distal histidine residue in our Hb/Mb active site model 

(in contrast to ref.12) significantly lowers the predicted free energy of this 

process and further supports the possibility of N2O3-mediated hypoxic 

signaling. 
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Experimental  

All structures were optimized using the BP86 functional13 and TZVP basis 

set14 unless otherwise stated. The applied model system for the calculations is 

described in the text. The distal histidine is fixed at the terminal α-carbon 

at a biologically accurate distance for Hb/Mb of 8.8 Å from the Fe center (see 

Figure 6.5). Structures 1, 2a, 2b, and 2c were optimized with only the Fe 

center and the terminal carbon (C-54, the anchor atom) of the distal histidine 

fixed in space (to maintain an accurately sized distal pocket). When assessing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interaction of NO with our Hb/Mb(III)-NO2
- model, the porphine ring was 

fixed in space instead of the Fe center, and the NO2-NO distance was varied in 

a stepwise manner. All other coordinates (except of the anchor atom of the 

distal histidine) were optimized. A similar approach was used for calculating 

structures along the N2O3 dissociation coordinate. The applicability of this 

approximation, i.e. fixing the porphine ring in space, was tested for the Fe-

N2O3(-) distances of 2.1 Å and infinity (completely dissociated complex) by 

using the obtained structures, and allowing the porphine ring to optimize in a 

Figure 6.5. Structure of the Hb/Mb(III)-NO2
- model used in our calculations, 

indicating the Fe center and the terminal C atom (the ‘anchor’ atom) of the 

distal histidine, which were fixed in space for the geometry optimizations. 

Structure 1 is shown as an example. 
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following calculation (see below). In both cases, the obtained change in 

relative energy caused by optimizing the porphine ring was less than 7%. The 

interaction of NO with 1 was investigated using the B3LYP functional15 and the 

LANL2DZ basis set16 for the geometry optimizations. Since this process did not 

lead to the formation of a stable product, the PES was not recalculated with 

BP86/TZVP in this case. The dissociation of N2O3 from 2a was treated in an 

identical manner as the association of NO, using BP86/TZVP to calculate the 

relevant geometries. However, since the dissociation process of N2O3 is 

associated with a transition of the heme from low-spin to high-spin, final 

energies were calculated using B3LYP/TZVP single points on the BP86/TZVP 

structures in this case, delivering a N2O3 dissociation energy of +6.5 

kcal/mol. We also attempted to optimize the starting and ending structures for 

the N2O3 dissociation reaction with B3LYP/TZVP. In this case, a N2O3 

dissociation energy of about +3 kcal/mol was obtained, but the ferric N2O3(-) 

complex has somewhat diminished spin densities, which makes this number less 

reliable. Application of B3LYP is necessary here because it is known from the 

literature that gradient-corrected functionals like BP86 are not able to 

reproduce the relative energies of different spin-states of a transition metal 

complex accurately. In contrary, these methods generally favor low-spin ground 

states even for five-coordinate ferrous heme centers,17 which experimentally 

are known to be high-spin. Because of this, the spin crossover observed during 

N2O3 dissociation also requires that in this case, B3LYP energies have to be 

considered. The energies of the final high-spin and low-spin N2O3-dissociated 

products were determined by separately optimizing our five-coordinate 

Hb/Mb(II) model systems and N2O3 at the BP86/TZVP theory level, followed by 

B3LYP/TZVP single point energy calculations. In order to accurately model the 

Fe displacement from the porphyrin ring in five-coordinate hemes, these 

structures were first optimized with only the porphine ring and the anchor 

atom of the distal histidine fixed in space (see above). This allowed Fe to 

move out of the heme plane, and resulted in a longer distance between Fe and 

the terminal C-atom (anchor atom) of the distal histidine. The structures were 

then further optimized by fixing the Fe center and now allowing the porphine 

ring to optimize (still keeping the anchor atom of the distal histidine 

fixed). All geometry optimizations and single point energy calculations were 

preformed with the program package Gaussian 03.18 Orbitals were visualized 

using GaussView. 
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Chapter 7 

Concluding Remarks
 

Since the discovery of nitric oxide (NO) as an essential biological 

signaling agent, research into the biological role of NO and metal nitrosyls 

has become a diverse and varied field.
1
 In particular, the mechanism of NO 

reduction by denitrifying bacteria continues to garner the attention of the 

scientific community.
2-4
 These bacteria contain the enzyme bacterial nitric 

oxide reductase (NorBC), which is known to facilitate NO reduction via a 

diiron heme/non-heme active site. Currently, the exact mechanism of reduction 

continues to be a point of controversy in the literature.
3
 This thesis has 

been aimed at the use of synthetic model complexes of the NorBC active site to 

help elucidate the mechanism of NO reduction. 

Firstly, sophisticated heme nitrosyl model complexes which employ 

covalently bound N-donor ligands were employed in order to develop true six-

coordinate heme nitrosyls in solution. Here, the ligand To-F2PP-BzIM, which 

contains a tethered imidazole moiety bound to the ortho-phenyl position of a 

fluorinated TPP derivative, has been shown to promote imidazole coordination 

to the corresponding ferrous heme nitrosyl in solution. Detailed spectroscopic 

information was collected on [Fe(To-F2PP-BzIM)(NO)] and reveals a clean nine-

line hyperfine splitting in the EPR spectrum. Additionally, infrared 

spectroscopy shows a ν(N-O) stretching feature at 1644 cm
-1
. Interestingly, the 

strength of the Fe-(N-donor) bond in the benzyl-linked complex [Fe(To-F2PP-

BzIM)(NO)] is still slightly weaker than that observed for [Fe(To-

F2PP)(MI)(NO)] with free MI, as evidenced by the higher ν(N-O) stretching 

frequency. However, [Fe(To-F2PP-BzIM)(NO)] represents the first truly six-

coordinate ferrous heme-nitrosyl which is stable in solution without the need 

for excess N-donor base. This complex provides a structurally accurate model 

for the proposed heme b3 nitrosyl adduct in NorBC. 

Second, biomimetic non-heme iron nitrosyls were developed in order to 

compliment the heme models presented in Chapter 2. Here, non-heme iron 

nitrosyls of the BMPA-Pr ligand provide accurate structural models for the 
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non-heme FeB site of NorBC. The [Fe(BMPA-Pr)(NO)]X series of compounds 

displays a remarkable range of ν(N-O) stretching frequencies based on the 

nature of the counter ion, X. DFT calculations coupled with detailed 

spectroscopic analysis has revealed the nature of NO in high-spin non-heme 

iron nitrosyls to be a strong π-donor ligand. As a result, the effective 

nuclear charge of iron can modulate this donation and thus dictate the 

strength of the N-O bond. Alternative non-heme iron nitrosyl complexes have 

also been investigated. Here, replacement of the carboxylate moiety in BMPA-Pr 

with a phenol functionality appears to result in a five-coordinate non-heme 

iron nitrosyl complex. 

Next, the reactivity between synthetic heme and non-heme iron nitrosyl 

complexes has been investigated in an attempt to elucidate the mechanism of NO 

reduction by NorBC. A radical-based N-N coupling mechanism appears unlikely 

based on the observed lack of reactivity between a variety of iron nitrosyl 

complexes. As an alternative, non-heme iron nitrosyl complexes were chemically 

and electrochemically reduced in an attempt to probe an alternative redox-type 

couple involving a non-heme {FeNO}
8
 complex. However, reduction of [Fe(BMPA-

Pr)(NO)]X results only in formation of a structurally uncharacterized 

dinitrosyliron complex (DNIC). A more sterically hindered nitrosyl moiety is 

likely required to prevent DNIC formation and favor reduction to the desired 

{FeNO}
8
 complex. In addition to assaying the reactivity of separate heme and 

non-heme iron nitrosyl complexes, the synthesis of a covalently linked 

heme/non-heme construct has been developed. Preliminary synthetic efforts show 

the formation of a stable di-ferric oxo-bridged species which is susceptible 

to reduction and subsequent NO binding. 

In addition, the hyponitrite-bridged complex [(OEP)Fe]2(μ-N2O2) has been 

investigated in collaboration with Dr. George B. Richter-Addo and coworkers at 

the University of Oklahoma.
5
 This complex offers a unique opportunity to probe 

the reactivity and electronic structure of the proposed hyponitrite 

intermediate formed during NO reduction by NorBC. SQUID susceptibility shows 

an overall S = 3 spin which likely results from the ferromagnetic coupling of 

two intermediate S = 3/2 spin [Fe(OEP)] units. The vibrational properties of 

[(OEP)Fe]2(μ-N2O2) have also been clarified using IR and NRVS spectroscopy 

coupled with DFT calculations. Interestingly, [(OEP)Fe]2(μ-N2O2) has been shown 

to thermally decompose over several hours to yield [Fe(OEP)(NO)] at a rate of 

6.4x10
-5
 s

-1
. Addition of an axial base such as 1-methylimidazole drastically 

increases the rate of this decomposition to a maximal value of 1.24x10
-3
 s

-1
. 
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Finally, DFT calculations have been employed to examine the likelihood of 

N2O3 formation as a result of NO attack on in silico models of nitrite-bound 

hemoglobin (Hb) and myoglobin (Mb). The calculations show that both the 

addition of NO to Hb/Mb(III)-NO2
-
 and the dissociation of N2O3 from the 

resulting Hb/Mb(III)-N2O3(-) species are energetically feasible, resulting in a 

total energy for the complete process of -1 to -3 kcal/mol. One important 

restriction for this process is that this reaction is only possible in the 

ferric nitrito (O-bound) binding mode of nitrite; otherwise, this reaction is 

energetically very unfavorable. Additionally, the incorporation of a distal 

histidine residue in the Hb/Mb active site model significantly lowers the 

predicted free energy of this process in comparison to model systems lacking 

this residue;
6
 further supporting the possibility of N2O3-mediated hypoxic 

signaling. 

Future work on this project should focus on probing alternative heme and 

non-heme iron nitrosyl/nitroxyl reaction pathways. Based on the work presented 

in this thesis, a radical based coupling mechanism in unlikely. However, 

reduction of the non-heme iron nitrosyl to the corresponding {FeNO}
8
 species, 

via electron transfer from heme b3, may result in a reactive FeB(II)-NO
-

/Feb3(II)-NO
+
 pair. The reactivity of such a species can be probed with model 

complexes via synthesis of ferric heme nitrosyl complexes (which have been 

reported previously) and reduced high-spin {FeNO}
8
 non-heme iron nitroxyl 

complexes (which are currently being investigated in the Lehnert laboratory). 

Reactivity studies using these two synthetic complexes will provide valuable 

insight into the mechanism of NO reduction by NorBC. 
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