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ABSTRACT

Essays on Energy Assets Management: Operations, Valuation, and Financing

by

Dadi Wang

Management of energy assets is a critical part of many business processes and has received

significant attentions in the operations management area recently. This thesis includes three

essays on the operations, valuation and financing of energy assets. How the energy assets

are operated determines the value of the assets. Different financing policies impose different

constraints on operations and hence affect the valuation of the assets.

The first essay studies the valuation of seasonal energy storage and proposes a new

approach to improve a common practice in the industry. According to the industry heuristics,

the firm decides its energy injection/withdrawal operations by solving static optimization

problems contingent on the forward curve observed in the market, and dynamically adjusts

operations as the forward curve changes over time. The new approach improves the industry

practice by embedding the option values not captured by the static optimization into adjusted

forward curves and applying the static optimization to the adjusted forward curve. Numerical

experiments show this price-adjusted approach can significantly close the gap between the

industry practice and the optimal valuation. The second essay develops a model to integrate

the granular spot market operations into the valuation and risk management of energy

storage. The firm takes profit not only from the winter-to-summer futures price differentials

but also from the spot-futures price differentials due to higher spot market volatility. I

study the structure of the optimal inventory control and trading strategy, and also construct

a heuristic policy that is numerically shown to be near-optimal. In the third essay, I develop a

multi-period model to explore the interactions between financing method and operations for

viii



non-renewable resource projects. I analyze how different financing approaches (e.g., equity

and debt) impose restrictions on project operations and affect the cash-flows in different

ways. I describe the conditions under which equity performs better than debt financing and

vice versa, and how the financing choice is affected by various market factors.
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CHAPTER 1

Introduction

This dissertation includes three essays on the operations, valuation and financing of

energy assets. The first essay is focused on the management of seasonal energy storage assets,

the operations and valuation of which are subject to physical constraints and fluctuations in

futures market. The second essay develops a model to integrate the granular spot market into

the valuation and risk management of energy storage assets. The third essay examines the

appropriate financing approach for projects of exhaustible resource and interactions between

financing and operational policy.

The first essay, “Seasonal Energy Storage Operations with Limited Flexibility,” studies

the management of seasonal energy storage and develops a new method to improve the the

conventional management policy. The value of seasonal energy storage depends on how

the firm best operates the storage to capture the seasonal price spread. Energy storage

operations typically face limited operational flexibility characterized by the speed of storing

and releasing energy. A widely used practice-based heuristic, the rolling intrinsic (RI) policy,

generally performs well, but can significantly under-perform in some cases. In this paper,

I aim to understand the gap between the RI policy and the optimal policy, and design

improved heuristic policies to close or reduce this gap. A new heuristic policy, the “price-

adjusted rolling intrinsic (PARI) policy,” is developed based on theoretical analysis of the

value of storage options. This heuristic adjusts prices before applying the RI policy, and

the adjusted prices inform the RI policy about the values of various storage options. The

numerical experiments show that the PARI policy is especially capable of recovering high

1



value losses of the RI policy. For the instances where the RI policy loses more than 4% of

the optimal storage value, the PARI policy on average is able to recover more than 90% of

the value loss.

The second essay, “Inventory Control and Risk Management of Energy Storage Assets,”

builds a model to integrate spot transactions in the valuation of storage assets. Manag-

ing a natural gas storage asset involves injection and withdrawal of natural gas and risk

management via trading on spot and futures markets. The objective is to shape the prob-

ability distribution of end-of-winter profit, so as to balance the down-side risk and up-side

profit. The firm takes profit not only from the winter-to-summer futures price differentials

but also from the spot-futures price differentials due to higher spot market volatility. Phys-

ical constraints are also present: injection and withdrawal of natural gas are subject to the

storage capacity constraint, injection/withdrawal rate constraint, and the delivery schedule

constraint. In this paper, I analyze a model that captures all the above essential features. I

compare the utility maximization objective with the heuristic method used currently in the

industry. I study the structure of the optimal inventory control and trading strategy, and

also construct a heuristic policy that is numerically shown to be near-optimal.

In the third essay, “Capacity Investment, Production Scheduling and Financing Choice

for Non-renewable Resource Projects,” I study the interaction among capacity investment,

production and financing decisions for projects in a multi-period model. I consider a budget-

constrained firm that can finance the capacity investment in the project through either

equity (e.g., joint venture) or debt (e.g., loans). The firm operates the project in subsequent

periods to earn stochastic cash flows through sales of inventory at fluctuating market prices.

I analyze how different forms of financing impose restrictions on project operations and

affect the cash-flows in different ways. Debt financing involves bankruptcy risk but also

sets a limit on the amount paid back to the creditor, while financing through equity is risk-

free but demands a certain fraction of the revenue. I show with the bankruptcy risk the

firm’s optimal production quantity may be decreasing in its inventory level and increasing

in its cash position. I describe the conditions under which equity performs better than debt

2



financing and vice versa. Equity financing is preferred over debt if the project size exceeds

some certain threshold. Furthermore, the firm is prone to use debt financing when price

volatility increases. I demonstrate that with fixed interest rate on debt, project value first

increases and then decreases in debt maturity. Therefore, debt financing performs the best if

maturity is at intermediate levels. The firm should choose equity over debt if debt maturity

is too long or too short. Moreover, project value is most sensitive with respect to changes

in debt maturity when market price is low.

3



CHAPTER 2

Seasonal Energy Storage Operations with Limited

Flexibility

2.1. Introduction

Energy storage plays an essential role in managing the mismatch between energy sup-

ply and demand. Because of the seasonality in demand, energy storage operations exhibit

seasonal patterns: Natural gas storage (e.g., depleted reservoir, aquifer) operates in an-

nual cycles; electricity storage (e.g., hydroelectric pumped storage, compressed air storage,

batteries) typically has daily cycles.

The value of energy storage depends not only on the seasonal price spread, but also on

how the firm best operates the storage. Energy storage operations typically face limited

operational flexibility: Firms can choose periods with the best energy prices to buy and

sell energy, but the quantities are limited by the storing and releasing capacities, which are

determined by physical constraints or contractual terms. Figure 2.1 shows an example of

physical constraints for a typical natural gas storage facility. Panel (a) shows that the maxi-

mum injection rate is initially constant and then declines in response to the higher reservoir

pressure as working inventory builds up; a reverse trend is observed for the withdrawal rate.

(Gas reservoirs hold working gas and base gas. Working inventory refers to gas that can be

withdrawn; base gas is needed as permanent inventory to maintain adequate reservoir pres-

sure.) Panel (b) is derived from panel (a) and shows the monthly injection and withdrawal

capacities: An empty storage can receive a maximum of 3.1 trillion Btu (British thermal

4



unit) in the first 30 days and less in the following months. It takes about four months to fill

up or deplete the storage, or about eight months to complete a cycle.

Figure 2.1: Injection and withdrawal capacities of a typical natural gas storage facility

Source: Financial Engineering Associates (FEA)
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Managing storage with unlimited capacity is known as the warehouse problem, which

was first proposed by Cahn (1948). With limited flexibility, storage valuation is considerably

more challenging because it involves multiple interacting real options, i.e., options to store or

withdraw within capacity limits in every period. Analytical solutions for storage valuation

typically do not exist; significant development in numerical techniques of valuation has been

seen in recent years, e.g., Manoliu (2004), Chen and Forsyth (2007), Thompson et al. (2009),

among others.

In general, finding the optimal storage policy is analytically and computationally chal-

lenging. Consequently, heuristic methods have been developed in practice and studied in

academia. A widely-used heuristic method is the rolling intrinsic (RI) policy, detailed in

Gray and Khandelwal (2004a,b), and is also referred to as the reoptimized intrinsic policy

by Secomandi (2010) and Lai et al. (2010). Under the RI heuristic, in each period, the stor-

ing or releasing quantity is decided by solving a static optimization problem that involves

only forward prices or price forecasts; prices are updated every period and the storage is re-

5



evaluated. The RI policy has near-optimal performance in many circumstances (Secomandi

2010, Lai et al. 2010), but can significantly underperform in some cases.

This paper aims to understand the gap between the RI policy and the optimal policy and

to design improved heuristic policies to close or reduce the gap. We design a new heuristic

policy called the “price-adjusted rolling intrinsic” (PARI) policy, in which prices are adjusted

before applying the RI policy. This simple idea turns out to be very effective: In a three-

period problem, the PARI policy is proven to be optimal, and in the multiperiod setting, our

numerical results show that the PARI policy is especially capable of recovering high value

losses caused by the RI policy.

The price adjustment method is derived based on the understanding of four types of

option values in storage operations, briefly described below.

(a) Value of waiting. Even if the current price is higher than the expected future prices,

it may be beneficial to defer sales when the firm has the flexibility to release energy to

capture the expected maximum selling prices.

(b) Value of avoiding adverse price. Even if the current price is the lowest compared to the

expected future prices, selling some inventory right now may be beneficial because it

allows the firm to avoid the expected minimum selling prices in the future.

(c) Value of counter-seasonal operations. Price fluctuations may create within-season profit

opportunities, which can be captured by counter-seasonal operations, e.g., buying in the

selling season.

(d) Value of raising operational capacity. When the storing (releasing) speed depends on the

inventory level, storing (releasing) less energy in the current period allows the firm to

have a higher storing (releasing) capacity in the future to profit from better prices.

The value of waiting and the value of raising operational capacity reduce the firm’s

incentive to sell, whereas the value of counter-seasonal operations and the value of avoiding

adverse price increase that incentive. Thus, it is necessary to strike a balance between these

values. We formalize these tradeoffs in this paper.

The rest of this paper is organized as follows. The relevant literature is reviewed in §2.2.

6



The seasonal storage operations are modeled in §4.2. The PARI policy is constructed and

analyzed in §2.4 and §2.5. Numerical results are presented in §3.4. We conclude the paper

with discussion in §3.5.

2.2. Literature Review

Managing a fully flexible storage facility is known as the warehouse problem (Cahn 1948).

Many researchers have addressed the problem under various settings. The deterministic

version of the problem is studied by Charnes and Cooper (1955), Bellman (1956), Prager

(1957), and Dreyfus (1957). The warehouse problem with stochastic price variations is

considered by Charnes et al. (1966), who find that the optimal policy is a bang-bang type

(if the firm acts, it would either fill up the storage or sell all the inventory). Kjaer and

Ronn (2008) analyze a model with both spot and futures markets. Hodges (2004) solves a

continuous-time model of a fully flexible storage facility.

In practice, storage facilities typically have limited flexibility, due to physical constraints

or contractual terms. Secomandi (2010) shows the optimal policy under injection and with-

drawal capacities is characterized by two state-dependent basestock targets: If inventory

falls between the two targets, it is optimal to do nothing, otherwise the firm should inject or

withdraw to bring the inventory as close to the nearer target as possible. In a continuous-

time framework, Kaminski, Feng, and Pang (2008) prove the optimal policy has a similar

structure.

In essence, energy storage operations are multiple interacting real options, that is, options

to store or withdraw within capacity limits in every period. Dixit and Pindyck (1994) and

Schwartz and Trigeorgis (2001) provide the theoretical background of real options. Analyt-

ical valuation of storage options typically do not exist due to the injection and withdrawal

constraints. Three computational methods have been developed for storage valuation: nu-

merical partial differential equation techniques (Chen and Forsyth 2007, Thompson, Davi-

son, and Rasmussen 2009), binomial/trinormial trees (Manoliu 2004, Parsons 2007), and

the Monte Carlo simulation (Boogert and De Jong 2008, Carmona and Ludkovski 2010, Li

2009). Chen and Forsyth (2007) provide a good survey of these computational methods.
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Our work complements the above works by identifying various types of storage options and

revealing useful insights to improve heuristic policies.

Practitioners typically employ two heuristic policies to value seasonal energy storage,

the rolling intrinsic (RI) approach and the rolling basket of spread options approach (Gray

and Khandelwal 2004a,b, Eydeland and Wolyniec 2003). Lai et al. (2010) refer to them

as reoptimized intrinsic value policy and reoptimized linear program policy, respectively.

Gray and Khandelwal (2004b, p. 4) state, “Additionally, we have found empirically that,

in general, the rolling intrinsic value is equal to the rolling basket value.” Lai et al. (2010)

employ an approximate dynamic programming approach to value storage with constant

capacities and study the effectiveness of the heuristics. They find both heuristics have near-

optimal performance. Lai et al. (2011) value the real option to store liquefied natural gas

at a regasification terminal. Our work complements the above research by identifying the

conditions under which the RI heuristic deviates from the optimal policy and by developing

methods to bring the RI heuristic closer to optimality.

2.3. The Model

Consider an energy storage facility with maximum working inventory level denoted as

K. The planning horizon lasts N periods, indexed by t = 1, 2, . . . , N . At the beginning of

period t, let xt be the inventory level in the storage. In this paper, we interchangeably use

‘energy level’ and ‘inventory level,’ which are measured in units of energy. The price-taking

firm aims to maximize the profit from storage operations.

2.3.1 Operational Constraints and Costs

Let λ(x) ≥ 0 and λ(x) ≤ 0 be the capacity functions. Their absolute values, λ(x) and

−λ(x), express the maximum amount of energy that can be stored and released, respectively,

in one period when the period-starting energy level is x. These capacity functions satisfy

the following assumption:

Assumption 1. There exists H ∈ (0, K) such that λ(x) = −x when x ≤ H, and λ′(x) ∈
(−1, 0] when x > H. There exists G ∈ (0, K) such that λ(x) = K − x when x ≥ G, and

8



λ
′
(x) ∈ (−1, 0] when x < G.

Assumption 1 implies that the storage can be emptied (filled up) within one period if

and only if the period-starting inventory level x ≤ H (x ≥ G). The slopes of the capacity

functions imply that the period-ending inventory limits, defined as y(x)
def
= x + λ(x) and

y(x)
def
= x + λ(x), are nondecreasing in x.

When the injection and withdrawal speeds are constant for all inventory levels, we have

λ(x) = max{C,−x} and λ(x) = min{C, K−x} for some C < 0 and C > 0. We refer to this

case as the constant capacities case, which is examined by Secomandi (2010) and Lai et al.

(2010).

Storing and releasing energy typically involves operational frictions. For example, in

natural gas storage operations, the pumps of the storage facility use some of the gas as fuel

(Maragos 2002). If q units are to be added to the storage, the firm needs to purchase (1+α)q

units; if q units are withdrawn from the storage, a fraction βq will be lost and (1− β)q can

be sold, where α and β are positive constants. In addition to the volume losses, the firm

also incurs a variable cost of cαq when q units are stored, and a variable cost of cβq when q

units are withdrawn, where cα and cβ are positive constants. These costs cover the use of

pumps and other equipment (Maragos 2002).

Many firms contract gas storage for one year and must remove the gas before the end of

the term (usually March 31, the end of the peak season) or pay a penalty (Buurma 2010).

The penalty is typically proportional to the leftover inventory (Carmona and Ludkovski

2010, Chen and Forsyth 2007) or in general form (Boogert and De Jong 2008). We let p ≥ 0

denote the penalty per unit of inventory at the end of period N ; p is realized in period N

and may depend on the market prices modeled below.

2.3.2 Price Model and Problem Formulation

At the beginning of period t, the futures price for delivery in period t is maturing, denoted

as f̃tt. The firm sees this maturing price and other futures prices f̃tτ that mature in period

τ = t+1, . . . , N , and decides the quantity to purchase or sell at price f̃tt. The settled amount

9



is then stored in or released from the storage over the entire period t.

We make the standard no-arbitrage assumption under which the futures prices are mar-

tingales under an equivalent martingale measure Q (see, e.g., Duffie 2001):

f̃tτ = EQ
t

[
f̃sτ

]
, t < s ≤ τ, (2.1)

where EQ
t denotes the expectation under Q-measure with information available up to the

beginning of period t. If the futures market is absent, all results in this paper continue to

hold with f̃tt interpreted as the spot price in period t and f̃tτ interpreted as the forecast

in period t for the price in period τ . We choose to model the futures market because it

provides the firm with instruments to hedge the storage value (perfect hedging is achievable

in a complete market).

We refer to (1 + α)f̃tτ + cα as the buying price of inventory, the price the firm must pay

for having one unit of inventory available in the storage in period τ . This price includes

procurement cost, volume losses, and operating costs. Similarly, we refer to (1− β)f̃tτ − cβ

as the selling price of inventory, which is the net profit the firm obtains from releasing one

unit of inventory in period τ .

To derive the expected discounted value of the storage, we note that the expected marked-

to-market profit/loss from the futures positions held by the firm is zero under Q-measure,

since futures prices are martingales. Hence, if the firm does not have capital constraints, the

no-arbitrage value of the storage is the sum of cash flows at maturity dates evaluated under

Q-measure and discounted at the risk-free rate (see, e.g., Duffie 2001). Operations of large

energy storage facilities often require large sums of capital, thereby increasing the possibility

of financial distress during the storing season. Froot and Stein (1998) show that firms require

investments to yield a higher return when all risks cannot be frictionlessly hedged. For the

purpose of this paper, we assume that the firm discounts the cash flows at a constant rate

R. The insights of the paper are intact under any choice of R, including the risk-free rate.

Define ftτ and f
b
tτ respectively as the selling price and buying price of inventory discounted
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to the first period:

ftτ
def
= e−R(τ−1)

[
(1− β)f̃tτ − cβ

]
, f

b
tτ

def
= e−R(τ−1)

[
(1 + α)f̃tτ + cα

]
. (2.2)

Discounting the prices back to the first period allows not to include the discount factor in the

problem formulation in (2.3) below, which simplifies the analytical expressions throughout

the paper. Note that for any fixed maturity τ , the discounted selling and buying prices in

(2.2) are still martingales.

Let ft = (ftτ : τ = t, t + 1, . . . , N) be the discounted forward selling price curve (or

simply forward curve when no confusion arises) observed at the beginning of period t. Let

Vt(xt, ft) be the discounted expected profit-to-go from period t onward. Let yt be the ending

inventory in period t, which is decided by the firm at the beginning of period t.

The storage valuation problem can be written as:

Vt(xt, ft) = max
yt∈[y(xt), y(xt)]

r(yt − xt, ftt) + EQ
t

[
Vt+1(yt, ft+1)

]
, (2.3)

where the one-period reward function r(q, ftt)
def
= −f

b
tt q, if q ≥ 0 (purchase), and r(q, ftt)

def
=

−ftt q, if q < 0 (sell); the period-ending inventory is bounded between y(xt) = xt + λ(xt)

and y(xt) = xt + λ(xt). In the last period, the firm sells as much as possible to maximize

the profit, and thus,

VN(xN , fNN) = −fNN λ(xN)− y(xN)p. (2.4)

In general, solving the problem in (2.3)-(2.4) is complicated. A widely-used heuristic policy

is detailed below.

2.3.3 Rolling Intrinsic Policy

To define the rolling intrinsic (RI) policy, we first define the intrinsic policy, a policy that

decides in the first period the actions to be performed in each of the remaining periods. The

intrinsic policy is found by solving an optimization problem using only the forward prices
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seen in the first period. The corresponding value is called the intrinsic value. The RI policy

re-optimizes the action in each period by solving the intrinsic valuation problem using the

updated forward prices. We refer to the corresponding value as the rolling intrinsic value.

The RI policy is commonly used in practice (Gray and Khandelwal 2004a,b) and is also

referred to as the reoptimized intrinsic policy by Secomandi (2010) and Lai et al. (2010).

Because futures prices are martingales, the RI heuristic essentially replaces uncertain prices

by their expected values, which is a type of certainty equivalent control studied by Bertsekas

(2005). The policy is formally defined below.

Let V I
t (xt, ft) and V RI

t (xt, ft) denote the intrinsic value and the rolling intrinsic value of

the storage in period t, respectively.

In period t, given the discounted forward selling prices ft = (ftτ : τ ≥ t), the intrinsic

value of the storage V I
t (xt, ft) is determined by:

V I
N(xN , ft) = −ftN λ(xN)− y(xN)EQ

t [p], (2.5)

V I
s (xs, ft) = max

ys∈[y(xs), y(xs)]
r(ys − xs, fts) + V I

s+1(ys, ft), t ≤ s < N. (2.6)

When t = 1, the recursion in (2.5)-(2.6) yields the intrinsic policy in period 1. If the firm

implements the intrinsic policy via futures contracts in period 1 and holds all contracts until

maturity, then the policy yields the intrinsic value V I
1 (x1, f1).

In the RI policy, the firm solves (2.5)-(2.6) in every period with updated forward curve ft,

and adjusts the futures positions accordingly. Let y†t be the futures position on the maturing

contract in period t, solved from (2.5)-(2.6). Then, the rolling intrinsic value of the storage

is defined as:

V RI
N (xN , fN) = V I

N(xN , fN), (2.7)

V RI
t (xt, ft) = r(y†t − xt, ftt) + EQ

t

[
V RI

t+1(y
†
t , ft+1)

]
, 1 ≤ t < N. (2.8)
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2.4. Improving the RI Policy: The Three-Period Case

This section introduces the main ideas of improving the RI policy. In §2.4.1, we consider

several simple examples that lead to the construction of a new heuristic policy − the price-

adjusted rolling intrinsic (PARI) policy. In §2.4.2, we prove the optimality of the PARI

policy for the three-period setting.

2.4.1 From RI Policy to PARI Policy

The RI policy solves a deterministic optimization problem every period and may miss

potential option values rising from the stochastic evolution of the forward curve. The idea

of the PARI policy is to adjust the forward curve to inform the RI policy about the value

of various options. The following three examples each illustrate a different option value and

introduce a price adjustment scheme to capture the option value.

The common settings of all the examples are as follows. The storage size is K = 4 units.

The storage can release (store) three units per period as long as inventory (space) is available,

i.e., λ(x) = max{−x,−3} and λ(x) = min{4 − x, 3}. The operating cost parameters are:

α = 2%, β = 1%, cα = cβ = $0.02. Assume the discount rate R = 0. Then, the definitions in

(2.2) imply that f
b
tτ = 1+α

1−β
(ftτ + cβ) + cα = 1.03ftτ + 0.04. We assume the storage is initially

full and consider a three-period (N = 3) selling season problem.

Example 1: Value of waiting. Suppose in period 1 the forward selling price curve is

(f11, f12, f13) = ($5.00, $4.97, $4.95). The intrinsic policy can be found by a greedy method:

sell three units at the highest price $5.00 and sell one unit at the second highest price $4.97.

Thus, the intrinsic value of the storage is $19.97. (Operating costs are accounted for in the

selling prices.)

Under the RI policy, the firm first sells three units at $5.00, as prescribed in the intrin-

sic policy. In the second period, assume the selling prices (martingales) evolve as follows:

(f22, f23) = ($5.30, $5.10) with probability 0.5, and (f22, f23) = ($4.64, $4.80) with probabil-

ity 0.5. Upon price increase, the RI policy is to sell the remaining unit at $5.30. Upon price

decrease, the RI policy is to do nothing in the second period (no incentive to buy because
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f
b
22 = 1.03 × 4.64 + 0.04 = $4.82 > f23) and sell the remaining unit at $4.80 in the third

period. Thus, the remaining unit is sold at an expected price of ($5.30 + $4.80)/2 = $5.05.

The expected rolling intrinsic value of the storage is $20.05.

In the above RI policy, the firm effectively sells energy at EQ
1

[
max{f22, f23}

]
= $5.05

by exploiting the flexibility of when to sell, but this flexibility is limited: The storage can

release at most three units per period. Hence, the optimal policy is to sell one unit at $5.00

in the first period and sell the remaining three units at $5.05 in expectation, yielding the

optimal expected profit of $20.15. Thus, although the maturing price f11 is the highest on

the forward curve, there is a value of delaying sales.

Let us preview one of the key ideas behind the price-adjusted rolling intrinsic (PARI) pol-

icy. The original forward curve does not reveal the value of waiting, because max{f12, f13} <

f11. Suppose we adjust either f12 or f13 up to $5.05, and use the adjusted forward curve

as the input to the RI policy. Then, because f11 = $5.00 is the second highest among the

adjusted prices, the RI policy is to sell only one unit at $5.00. Hence, for this example,

adjusting either f12 or f13 up to EQ
1

[
max{f22, f23}

]
informs the RI policy about the value of

waiting and brings the RI decision to the optimal.

Example 2: Value of potential purchase. Suppose in period 1 the forward curve is

(f11, f12, f13) = ($5.00, $4.85, $5.05). The intrinsic policy is to sell one unit at $5.00 and sell

the remaining three units at $5.05, yielding an intrinsic value of $20.15. Selling more in the

first period and buying in the second period cannot improve the intrinsic value, because the

buying price f
b
12 = 1.03f12 + 0.04 = $5.04 > f11.

Under the RI policy, the firm sells one unit in the first period. In the second period,

assume the martingale selling prices (f22, f23) is ($5.20, $5.20) or ($4.50, $4.90) with equal

probabilities. If (f22, f23) = ($5.20, $5.20), the firm sells the remaining three units at $5.20.

If (f22, f23) = ($4.50, $4.90), the firm faces a low buying price f
b
22 = 1.03f22 + 0.04 = $4.68

and can make a profit of f23 − f
b
22 = $0.22 per unit by buying at f

b
22 and selling at f23.

However, it can capture this opportunity only if the storage has less than three units at the

start of the second period, which is not the case under the RI policy. Hence, the storage
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value under the RI policy remains $20.15.

Let us now consider the strategy of selling 1+ ε units in the first period, where ε ∈ [0, 2].

Based on Example 1, this strategy gives up some value of waiting: (EQ
1

[
max{f22, f23}

] −
f11)ε = $0.05ε, but it brings an extra profit of EQ

1

[
max{f23 − f

b
22, 0}

]
ε = $0.11ε from the

potential purchase in the second period. The net expected gain is 0.06ε. The optimal policy

is to sell three units in the first period, i.e., ε = 2, yielding an extra profit of $0.12 and

raising the storage value to $20.27.

This leads to the second key idea of the PARI policy. The forward buying price f
b
12 =

$5.04 is too high to reveal the option value of buying inventory in the second period. Let

us adjust f
b
12 down to f̂

b
12 = ($4.68 + $5.20)/2 = $4.94, implying that f12 is lowered to

f̂12 = $4.76. Under the adjusted prices (f11, f̂12, f13) = ($5.00, $4.76, $5.05), the RI policy

is to sell three units at the maturing price $5.00, which coincides with the optimal policy.

Note that f13 − f̂
b
12 = $5.05− $4.94 = $0.11 equals EQ

1

[
max{f23 − f

b
22, 0}

]
, representing the

value of potential purchase.

Example 3: Value of avoiding adverse price. Suppose (f11, f12, f13) = ($5.00, $5.05, $5.02).

Note the maturing price f11 is the lowest. The intrinsic value is $20.17, which is the profit

of selling three units at $5.05 and one unit at $5.02.

The RI policy is to do nothing in the first period. In the second period, assume (f22, f23) is

($5.40, $5.10) or ($4.70, $4.94) with equal probabilities. Upon price increase (or decrease),

the RI policy sells three units at $5.40 (or $4.94) and one unit at $5.10 (or $4.70). The

expected value of the storage under the RI policy is $20.41.

However, if in the first period the firm sells ε ∈ (0, 1] units at the lowest price f11 = $5.00,

then upon price increase (or decrease) it sells 1−ε units at $5.10 (or $4.70). Thus, by selling

ε units at $5.00 now, the firm sells ε units less at an expected price ($5.10+$4.70)/2 = $4.90,

which equals to the expected minimum price EQ
1

[
min{f22, f23}

]
. The optimal policy is to set

ε = 1, and the storage value is improved to $20.51.

We introduce another idea of the PARI policy that helps the firm avoid selling at

the adverse price. The original forward curve does not reveal the adverse price, because
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min{f12, f13} > f11. Suppose we adjust either f12 or f13 down to EQ
1

[
min{f22, f23}

]
= $4.90,

and use the adjusted forward curve as the input to the RI policy. Then, because f11 = $5.00

is no longer the lowest price among the adjusted prices, the RI policy is to sell one unit at

$5.00, which coincides with the optimal policy. Note that f11−EQ
1

[
min{f22, f23}

]
= $0.10 is

exactly the value difference between the optimal policy and the RI policy.

The previous examples show three different option values under constant storing and

releasing capacities. In Example 3, if the maximum releasing speed increases in the inventory

level, there is an incentive not to sell in the first period, because keeping a higher inventory

level raises the releasing capacity in the second period, allowing the firm to sell more at f22

and less at f23 when f22 > f23. This is the fourth option value − value of raising operational

capacity.

We summarize the four option values in Table 2.1. For the value of potential purchase,

we use a more general term “value of counter-seasonal operations.” The third column shows

the impact of the option values on the first-period decision. The fourth and fifth columns

show the option values and the related spreads seen on the forward curve in the first period.

Table 2.1: Summary of option values in the selling season

Impact
on y∗1

Option value Related spread
on forward curve

Price adjustment

f11 > f12

Value of waiting ↑ EQ
1

[
max{f22, f23}

]− f11
max{f12, f13} −

f11 f13 ↑, f12 ↓
Value of counter-
seasonal
operations

↓ EQ
1

[
max{f23 − f

b
22, 0}

]
f13 − f

b
12

f11 < f12

Value of avoiding
adverse price

↓ f11 − EQ
1

[
min{f22, f23}

] f11 −
min{f12, f13} f13 ↓, f12 stays

Value of raising
operational
capacity

↑ EQ
1

[
max{f22 − f23, 0}

]
f12 − f13

In Table 2.1, the option values (column 4) typically exceed the corresponding spreads on

the forward curve (column 5). The idea of the PARI policy is to adjust the forward curve

to bring the deterministic spreads closer to the option values. Interestingly, there exists a
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set of price adjustments under which the deterministic spreads equal the option values. This

set of price adjustments is stated in Definition 2.1 below; the last column of Table 2.1 shows

the direction of the price adjustments.

Definition 2.1. Price-adjusted rolling intrinsic (PARI) policy for N =3

Step 1. Price adjustment. Based on the forward curve f1, define a new forward curve f̂1 as

follows.

(i) When f11 > f12, define f̂1 = (f11, f̂12, f̂13) such that

f̂
b
12 = EQ

1

[
median{f22, f

b
22, f23}

]
and f̂13 = EQ

1

[
max{f22, f23}

]
.

(ii) When f11 ≤ f12, define f̂1 = (f11, f12, f̂13) where

f̂13 = EQ
1

[
min{f22, f23}

]
.

Step 2. In the first period, we solve the intrinsic valuation problem (2.5)-(2.6) with f1

replaced by f̂1, and implement the corresponding first-period decision.

Step 3. Apply the regular RI policy for the remaining two periods.

The three previous examples assume binomial price processes and constant injection and

withdrawal speeds. One surprising result is that the above PARI policy is optimal for the

three-period model under general price distributions and capacity functions. We now turn

to prove this optimality.

2.4.2 Optimality of the PARI Policy

We assume the storage can be emptied in two out of three periods, capturing the limited

flexibility of typical seasonal storage. Formally, this assumption is stated as follows:

Assumption 2. (i) x1 > H. (ii) |λ(K)| > K −H.

Part (i) suggests that the initial inventory cannot be sold in a single period. Part (ii)

implies that a full storage can release more than K−H in one period. Thus, a full storage can
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be emptied in two out of three periods. Typical capacity functions satisfying Assumptions 1

and 2 are illustrated in Figure 2.2. In the figure, H ′ will be defined in Lemma 1.

Figure 2.2: Storing and releasing capacity functions for the three-period model

We first show that Step 3 of the PARI policy is optimal for the last two periods.

Proposition 1. (i) The RI policy is optimal for the last two periods.

(ii) If the penalty satisfies P
{

p ≥ sf33 − f22

1− s

}
= 1, where s

def
= sup{−λ′(x) : x ∈ (H, K]},

then for any given first-period decision y1, the second-period RI (optimal) decision is:

y∗2(y1, f2)− y1 =





λ(y1), if f22 ≥ f23,

min{H − y1, 0}, if f22 < f23 ≤ f
b
22,

min{H − y1, λ(y1)}, if f
b
22 < f23.

(2.9)

Furthermore, y∗2(y1, f2) ≤ H, and the storage is emptied in the third period.

The penalty condition in the above proposition is typically satisfied in practice. Under

the constant capacities, we have s = 0 and the penalty condition clearly holds. When the

injection and withdrawal speeds vary with inventory, s is typically no more than 0.5 (see

Figure 2.1). Thus, the term sf33 − f22 is typically negative, given the fact that the end-of-

season selling price f33 is typically lower than the mid-season selling price f22 (see an example

in §2.6.1).
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The RI policy in (2.9) reacts to the forward curve as follows: If the forward curve is

downward sloping f22 ≥ f23, the firm sells as much as possible at price f22. If f22 < f23,

the firm has an incentive to delay sales but needs to sell inventory down to H so that all

inventory can be sold in the last period. If the period-starting inventory x2 is already below

H and if the forward curve is steeply upward-sloping f
b
22 < f23, then the firm buys inventory

up to or as close as possible to H.

Using the second-period optimal action in (2.9), we can write the first-period problem

as:

V1(x1, f1) = max
y1∈[y(x1), y(x1)]

U1(x1, y1, f1), (2.10)

U1(x1, y1, f1) = r(y1 − x1, f11) + EQ
1

[
r
(
y∗2(y1, f2)− y1, f22

)
+ f23 y∗2(y1, f2)

]

= r(y1 − x1, f11) + f13y1 + EQ
1

[
r
(
y∗2(y1, f2)− y1, f22

)
+ f23(y

∗
2(y1, f2)− y1)

]

= r(y1 − x1, f11) + f13y1 + P{A1}EQ
1

[
(−f22 + f23)λ(y1) | A1

]

+ P{A2}EQ
1

[
(−f22 + f23) min{H − y1, 0} | A2

]

+ P{A3}EQ
1

[
r
(
min{H − y1, λ(y1)}, f22

)
+ f23(min{H − y1, λ(y1)}) | A3

]
,

where A1 = {f22 ≥ f23} is the downward-sloping forward curve event, A2 = {f22 < f23 ≤ f
b
22}

is referred to as the slightly upward-sloping forward curve event, and A3 = {f b
22 < f23} is

the steeply upward-sloping forward curve event.

Next, we prove the optimality of the PARI policy by analyzing the optimal policy and

comparing it with the RI policy. We study two cases: f11 > f12 and f11 < f12.

2.4.2.1 Case of f11 > f12

For this case, we show in the appendix that the problem (2.10) can be rewritten as:

max
y1∈[y(x1),H]

V wy1 + V c min{H − y1, λ(y1)}, (2.11)
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where,

V w def
= EQ

1

[
max{f22, f23}

]− f11 = value of waiting, (2.12)

V c def
= EQ

1

[
max{f23 − f

b
22, 0}

]
= value of potential purchase (counter-season operations).

(2.13)

By definition, V c ≥ 0, and the sign of V w is unrestricted. The optimal policy for the first

period is summarized in the lemma below.

Lemma 1. In the first period, if f11 > f12, then the optimal decision y∗1 is determined as

follows:

(a) If V w ≤ 0, then y∗1 = y(x1);

(b) If V w > V c, then y∗1 = H;

(c) If 0 < V w ≤ V c, then y∗1 = y(x1) when y(x1) ≥ H ′; when y(x1) < H ′, y∗1 is determined

by max
y1∈[y(x1), H′]

V wy1 + V cλ(y1), where H ′ is defined by

H ′ def
= inf{y ∈ [0, K] : y + λ(y) ≥ H}. (2.14)

The value of waiting V w and the value of potential purchase V c drive the decision y∗1 in

opposite directions, as shown in Table 2.1. Lemma 1(b) and (c) reveal the tradeoff between

the two values:

• When V w > V c, the firm should exercise all options of waiting by keeping H units unsold

at the end of the first period, leaving no option of purchase in the second period.

• When 0 < V w < V c, the firm should sell as much energy as possible in the first period,

as long as it can buy inventory up to H in the second period (this condition is formally

stated as y(x1) ≥ H ′, where H ′ is the level above which the inventory can be raised to H

in one period), thereby giving up the options of waiting while maximizing the opportunity

of purchase.

Next, we describe the first-period RI policy in the following lemma.
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Lemma 2. In the first period, if f11 > f12, then under the RI policy, y†1 is determined as

follows:

(a) If f11 ≥ max{f12, f13}, then y†1 = y(x1);

(b) If f11 < min{f b
12, f13}, then y†1 = H;

(c) If f13 > f11 ≥ f
b
12, then y†1 = y(x1) when y(x1) ≥ H ′; when y(x1) < H ′, y†1 is determined

by max
y1∈[y(x1), H′]

(f13 − f11)y1 + (f13 − f
b
12)λ(y1).

Comparing the optimal policy and the RI policy, we can prove that if the forward curve

in Lemma 2 is adjusted according to Definition 2.1, the resulting PARI policy is the optimal

policy in Lemma 1, as stated in the following proposition.

Proposition 2. When N = 3 and f11 > f12, the price-adjusted rolling intrinsic (PARI)

policy in Definition 2.1 is optimal. In particular, solving the intrinsic valuation problem

(2.5)-(2.6) with f̂
b
12 = EQ

1

[
median{f22, f

b
22, f23}

]
and f̂13 = EQ

1

[
max{f22, f23}

]
yields the

optimal policy for the first period.

Raising f13 allows the RI policy to see the best selling opportunity in the future, thus cap-

turing the value of waiting. Note that f12 is adjusted down because f̂
b
12 = EQ

1

[
median{f22, f

b
22, f23}

] ≤
EQ

1

[
max{f22, f

b
22}

]
= EQ

1

[
f

b
22

]
= f

b
12. Lowering f12 enlarges the gap between f12 and f13,

which reflects the value of counter-seasonal operations.

2.4.2.2 Case of f11 < f12

The appendix shows that in this case the problem in (2.10) simplifies to:

max
y1∈[H, y(x1)]

U1(y1) =





f11x1 − V ay1 − V lλ(y1), if y1 ∈ [H, x1],

f
b
11x1 − V aby1 − V lλ(y1), if y1 ∈ (x1, y(x1)],

(2.15)
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where

V a def
= f11 − EQ

1

[
min{f22, f23}

]
= value of avoiding adverse price by selling one more unit,

(2.16)

V ab def
= f

b
11 − EQ

1

[
min{f22, f23}

]
= value of avoiding adverse price by buying one less unit,

(2.17)

V l def
= EQ

1

[
max{f22 − f23, 0}

]
= value of raising operational capacity. (2.18)

By definition, V l ≥ 0, V a < V ab, and the signs of V a and V ab are unrestricted. Furthermore,

V a < V l because V a − V l = f11 − EQ
1

[
min{f22, f23}+ max{f22, f23} − f23

]
= f11 − f12 < 0.

The following lemma summarizes the optimal policy in this case.

Lemma 3. In the first period, if f11 < f12, then the optimal decision y∗1 is determined as

follows:

(a) If V ab ≤ 0, then y∗1 = y(x1);

(b) If V a ≤ 0 < V ab ≤ V l, then y∗1 ∈ arg max
y1∈[x1, y(x1)]

−V aby1 − V lλ(y1);

(c) If V a ≤ 0 ≤ V l < V ab, then y∗1 = x1;

(d) If V a > 0, then y∗1 ∈ arg max
y1∈[H, y(x1)]

U1(y1), where U1(y1) is defined in (2.15).

Example 3 in §2.4.1 shows that even if f11 < min{f12, f13} and all the inventory can be

sold in the later periods, selling some inventory in the first period may still be beneficial

as it avoids the expected minimum selling price. Similarly, even if f
b
11 < min{f12, f13}, the

firm needs to be cautious about buying because the expected minimum price may be below

the buying price. We thus refer to V ab in (2.17) as the value of avoiding adverse price by

buying one less unit. Only when V ab ≤ 0, should the firm purchase as much as possible, as

confirmed in Lemma 3(a).

The value of avoiding adverse price (V a or V ab) and the value of raising operational

capacity (V l) drive the decision y∗1 in opposite directions. When V a ≤ 0 (implying that

selling inventory brings no benefit), the firm trades off between V l and V ab to decide the
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purchase quantity, as prescribed in Lemma 3(b) and (c). When V a > 0, the optimal action

may be purchase or sell, determined in part (d).

Next, we summarize the first-period RI policy in the following lemma.

Lemma 4. In the first period, if f11 < f12, then under the RI policy, y†1 is determined as

follows:

(a) If f
b
11 ≤ min{f12, f13}, then y†1 = y(x1);

(b) If f11 ≤ min{f12, f13} < f
b
11 ≤ f12, then

y†1 ∈ arg max
y1∈[x1, y(x1)]

−(
f

b
11 −min{f12, f13}

)
y1 −max{f12 − f13, 0}λ(y1);

(c) If f11 ≤ min{f12, f13} and f12 < f
b
11, then y†1 = x1;

(d) If f11 > f13, then y†1 ∈ arg max
y1∈[H, y(x1)]

URI
1 (y1), where

URI
1 (y1) =





f11x1 − (f11 − f13)y1 − (f12 − f13)λ(y1), if y1 ∈ [H, x1],

f
b
11x1 − (f

b
11 − f13)y1 − (f12 − f13)λ(y1), if y1 ∈ (x1, y(x1)].

(2.19)

We can prove that if the forward curve in Lemma 4 is adjusted according to Definition 2.1,

the resulting PARI policy is the optimal policy in Lemma 3, as stated below.

Proposition 3. When N = 3 and f11 < f12, the price-adjusted rolling intrinsic (PARI)

policy in Definition 2.1 is optimal. In particular, solving the intrinsic valuation problem

(2.5)-(2.6) with f̂13 = EQ
1

[
min{f22, f23}

]
yields the optimal policy for the first period.

Adjusting f13 alone captures two values. The adjusted price f̂13 informs the firm about

the adverse price in the future. Meanwhile, the difference between f12 and f̂13 reflects the

value of raising operational capacity.

2.5. Improving the RI Policy: The N -Period Case

In §2.5.1 and §2.5.2, we consider a multiperiod model (N ≥ 3) with constant capacities,

and show that the value of waiting, counter-seasonal operations, and avoiding adverse price

characterize the optimal policy. Because of the constant capacities, the value of raising
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operational capacity does not appear in the tradeoffs. In §2.5.3, we extend the PARI policy

to the N -period problem. In §2.5.4, we further extend the PARI policy to multiple seasons,

with each season containing multiple periods.

2.5.1 Value of Waiting and Value of Avoiding Adverse Price

To focus on the value of waiting and value of avoiding adverse price, we first consider a

problem of selling inventory over N periods and delay considering injection (counter-seasonal)

operations in §2.5.2. The capacity functions satisfy the following assumption:

Assumption 3. (i) λ(x) = max{C,−x}, where C < 0; (ii) K = T |C | for some T ∈
{2, 3, . . . , N}; (iii) λ(x) = 0.

Part (i) suggests that the storage can release |C | per period until it is empty, following

Secomandi (2010) and Lai et al. (2010). Part (ii) assumes that a full storage can be emptied

in exactly T periods when releasing energy at the maximum rate. Although part (ii) is not

crucial, it simplifies the exposition of our analysis. Part (iii) implies injection operations are

not considered.

We let ft ≡ ftt for notational convenience. For period t, we introduce a T -dimensional

vector ut = [u
(1)
t , u

(2)
t , . . . , u

(T )
t ], whose k-th element u

(k)
t represents the expected k-th largest

price at which inventory may be sold from period t onward. Formally,

uN
def
= [ fN , 0, . . . , 0 ],

u
(k)
t

def
= k-th largest element of

{
ft, EQ

t ut+1

}
, k = 1, . . . , T, t = 1, . . . , N−1. (2.20)

Let Hk
def
= k|C|, for k = 0, 1, . . . , T . In period t < N , when the inventory level is xt ∈

(Hk−1, Hk], we extend the definitions for the value of waiting and value of avoiding adverse

price:

V w
tk

def
= EQ

t u
(k−1)
t+1 − ft, k = 2, . . . , T, (2.21)

V a
tk

def
= ft − EQ

t u
(k)
t+1, k = 1, . . . , T. (2.22)

The optimal policy can be characterized using the values in (2.21) and (2.22).

24



Proposition 4. Under Assumptions 1 and 3, when xt ∈ (Hk−1, Hk], k = 2, . . . , T , the

optimal decision in period t is as follows:

y∗t =





y(xt), if V w
tk ≤ 0,

Hk−1, if V w
tk > 0 and V a

tk ≥ 0,

xt, if V a
tk < 0.

(2.23)

When xt ∈ (0, H1], y∗t = 0 if V a
t1 ≥ 0, and y∗t = xt if V a

t1 < 0.

Intuitively, when xt ∈ (Hk−1, Hk], the storage can be emptied in k periods, and the firm

aims to sell inventory at the k largest expected prices. When the maturing price ft is among

the k − 1 highest expected selling prices (ft > EQ
t u

(k−1)
t+1 ), there is no value of delaying sales

(V w
tk < 0) and the firm should sell as much as possible, as in the first case of (2.23).

If the maturing price ft is lower than the k-th largest expected selling price (ft < EQ
t u

(k)
t+1),

then ft itself is an adverse selling price. Thus, there is no value of avoiding adverse price by

selling inventory right now (V a
tk < 0), and the firm should do nothing, as in the last case of

(2.23).

When the maturing price ft is the k-th largest, we have the second case in (2.23). If

the firm sells nothing at ft, then to sell all inventory it cannot avoid selling some inventory

later at a price lower than ft in expectation. On the other hand, if the firm sells as much as

possible right now, then it does not take full advantage of the larger expected selling prices;

waiting has a value. The best strategy is to sell down to Hk−1, and the remaining Hk−1 units

are expected to be sold at the k − 1 largest expected selling prices.

The definitions in (2.21) and (2.22) are extensions of the definitions of V w and V a in

(2.12) and (2.16), respectively. Note when the storage can be emptied in two out of three

remaining periods, i.e., when N = 3, t = 1, and k = 2, (2.21) and (2.22) reduce to (2.12)

and (2.16), respectively.

2.5.2 Value of Counter-Seasonal Operations

We now allow counter-seasonal operations during the selling season. For ease of illustra-

tion, we assume the maximum storing and releasing speeds are the same.
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Assumption 4. (i) λ(x) = min{C, K−x} and λ(x) = max{C,−x}; (ii) K = TC = T |C|
for some T ∈ {2, 3, . . . , N}.

For period t, we introduce a vector vt = [v
(1)
t , v

(2)
t , . . . , v

(T )
t ], whose k-th element v

(k)
t

represents the expected marginal value of inventory in period t when xt ∈ (Hk−1, Hk]. For-

mally

vN
def
= [ fN , 0, . . . , 0 ],

v
(k)
t

def
= (k + 1)-th largest element of

{
ft, f

b
t , EQ

t vt+1

}
, k = 1, . . . , T, t = 1, . . . , N−1.

(2.24)

We inductively prove ut ≥ vt. This clearly holds for t = N . Suppose ut+1 ≥ vt+1. Then,

u
(k)
t = k-th largest element of

{
ft, EQ

t ut+1

} ≥ (k+1)-th largest element of
{
ft, f

b
t , EQ

t ut+1

} ≥
v

(k)
t . We intuitively explain ut ≥ vt: Without injection operations, the value of a marginal

unit of inventory is the expected price at which this unit can be sold, captured by ut. When

injection is allowed, the marginal unit of inventory brings extra sales revenue but reduces the

value of counter-seasonal operations. Hence, ut − vt indicates the value of counter-seasonal

operations.

In period t ≤ N−2, for k = 1, . . . , T , we define the value of counter-seasonal operations

and the value of avoiding adverse price by buying one less unit:

V c
tk

def
= EQ

t

[
u

(k)
t+1 − v

(k)
t+1

]
, (2.25)

V ab
tk

def
= f

b
t − EQ

t u
(k)
t+1. (2.26)

The optimal policy can be characterized by the values defined in (2.21), (2.22), (2.25),

and (2.26).

Proposition 5. Under Assumptions 1 and 4, when xt ∈ (Hk−1, Hk], k = 2, . . . , T−1, the
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optimal decision in period t is as follows:

y∗t =





y(xt), if V w
tk ≤ V c

t,k−1,

Hk−1, if V w
tk > V c

t,k−1 and V a
tk + V c

tk ≥ 0,

xt, if V a
tk + V c

tk < 0 ≤ V ab
tk + V c

tk,

Hk, if V ab
tk + V c

tk < 0 ≤ V ab
t,k+1 + V c

t,k+1,

y(xt), if V ab
t,k+1 + V c

t,k+1 < 0.

(2.27)

When xt ∈ (0, H1], the optimal decision is (2.27) with the first two cases combined into:

y∗t = 0 if V a
t1 + V c

t1 ≥ 0. When xt ∈ (HT−1, K], the optimal decision is (2.27) with the last

two cases combined into: y∗t = K if V ab
tT + V c

tT < 0.

The first three cases in (2.27) parallel (2.23). When counter-seasonal operations are not

allowed, the optimal policy in (2.23) considers only the signs of V w
tk and V a

tk. Here in (2.27),

V w
tk and V a

tk are traded off with the value of counter-seasonal operations.

The last two cases in (2.27) exercise the option of counter-seasonal operations (purchase).

The firm should buy as much as possible when buying less provides no combined value of

avoiding adverse price and counter-seasonal operations (V ab
t,k+1 +V c

t,k+1). If buying less brings

some combined value until inventory hits Hk, then the firm should buy only up to Hk.

The definition of V c
tk in (2.25) extends that in (2.13). For the three-period model (N = 3),

we have:

u
(1)
2 − v

(1)
2 = max{f22, f23} −median{f22, f

b
22, f23}

=





f23 − f
b
22, if f

b
22 < f23

0, if f
b
22 > f23

= max{f23 − f
b
22, 0}.

Thus, V c
11 = EQ

1

[
max{f23 − f

b
22, 0}

]
, which is exactly V c defined in (2.13).

2.5.3 N -Period PARI Policy

Computing the optimal policy for the multiperiod problem faces the curse of dimension-

ality, manifested in the recursive definition in (2.24). In this section, we design a PARI policy
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for the N -period problem without dramatically increasing the computational burden.

Definition 2.2. N -period price-adjusted rolling intrinsic (PARI) policy

Step 1. Set t = 1.

Step 2. “Min-Max” price adjustment. Let ftτ1 , ftτ2 , ftτ3 , and ftτ4 be the maximum, the

second maximum, the second minimum, and the minimum of the futures prices {ftτ : τ =

t+1, . . . , N}, respectively. Let t′ = τ1 ∧ τ4, and t′′ = τ1 ∨ τ4, where ∧ (∨) refers to the min

(max) operator.

(i) When ftt > ftt′ , we define f̂tt′ and f̂tt′′ such that

f̂
b
tt′ = EQ

t

[
median{ft′t′ , f

b
t′t′ , ft′t′′}

]
, f̂tt′′ = EQ

t

[
max{fτ1∧τ2,τ1 , fτ1∧τ2,τ2}

]
.

(ii) When ftt ≤ ftt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = ftt′ , f̂tt′′ = EQ
t

[
min{fτ3∧τ4,τ3 , fτ3∧τ4,τ4}

]
.

Step 3. Adjust other prices based on f̂tt′ and f̂tt′′ . We adjust ftτ by multiplying a scalar that

is piecewise linear in τ :

(i) For t < τ < t′, define f̂tτ = ftτ (1− δ + δf̂tt′/ftt′), where δ = τ−t
t′−t

;

(ii) For t′ < τ < t′′, define f̂tτ = ftτ

(
(1− δ′)f̂tt′/ftt′ + δ′f̂tt′′/ftt′′

)
, where δ′ = τ−t′

t′′−t′ ;

(iii) For t′′ < τ ≤ N , define f̂tτ = ftτ

(
(1− δ′′)f̂tt′′/ftt′′ + δ′′

)
, where δ′′ = τ−t′′

N−t′′ .

Step 4. We solve the intrinsic valuation problem (2.5)-(2.6) with ft replaced by f̂t =

(ftt, f̂t,t+1, . . . , f̂tN), and implement the decision at the maturing price ftt.

Step 5. If t < N − 2, increase t by 1 and go back to Step 2. Otherwise, apply the regular RI

policy for the remaining two periods.

Figure 2.3 illustrates two typical instances of price adjustment. Step 2 of the above PARI

policy resembles the three-period PARI policy. The three focal prices are ftt, ftt′ , and ftt′′ .

The median price formula parallels that in Definition 2.1, whereas the maximum (minimum)

expected selling price is estimated based on the two highest (lowest) futures prices. Note

that when N = 3, the second maximum price ftτ2 is the minimum price ftτ4 , and the second

minimum price ftτ3 is the maximum price ftτ1 . Then, the price adjustment formulae in Step
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Figure 2.3: Price adjustment (steps 2 and 3) in the PARI policy

Original prices

Adjusted prices Original prices

Adjusted prices

(a) (b)

2 are the same as in Definition 2.1. Indeed, when N = 3, the entire policy is identical to

that in Definition 2.1.

The focal prices ftt, ftt′ , and ftt′′ divide the forward curve into three segments. Step 3

specifies how each segment should be adjusted if the segment contains prices other than the

three focal prices. In essence, the other prices are “attracted” toward f̂tt′ and f̂tt′′ . This

adjustment is important for informing the RI policy about the option values. For example,

suppose f11 is the highest on the forward curve, the inventory can be sold in two periods,

but the optimal policy is not to sell right now. Adjusting f1t′′ upward in Step 2(i) puts f11 in

the second highest, which does not stop the RI policy from selling at f11. Step 3 raises other

prices, which may signal enough value of waiting such that the RI policy coincides with the

optimal policy. Such a heuristic can significantly close the gap between the RI policy and

the optimal policy, as will be examined in §3.4.

Finally, we discuss the computation of the adjusted prices in Step 2. For ease of expo-

sition, assume τ1 < τ2 so that in Step 2(i) we have f̂tt′′ = EQ
t

[
max{fτ1τ1 , fτ1τ2}

]
. To com-

pute this expectation, we assume (log fτ1τ1 , log fτ1τ2) is normally distributed with parameters

(µ1, µ2, σ1, σ2, ρ), where µi and σi are mean and standard deviation of log fτ1τi
, i = 1, 2, and ρ

is the correlation coefficient; these parameters are derived from the forward curve dynamics

(see §2.6.1). Let fM = max{log fτ1τ1 , log fτ1τ2}. Clark (1961) provides the formulae for the
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moments of the maximum of two normal random variables:

EQ
t fM = µ1Φ(b) + µ2Φ(−b) + aφ(b),

EQ
t f 2

M = (µ2
1 + σ2

1)Φ(b) + (µ2
2 + σ2

2)µ2Φ(−b) + (µ1 + µ2)aφ(b),

where a2 = σ2
1 + σ2

2 − 2σ1σ2ρ, b = (µ1 − µ2)/a, and φ(·) and Φ(·) are the probability

density function and cumulative distribution function of standard normal random variable,

respectively. Clark (1961) also shows that the maximum of two normal random variables is

approximately normally distributed. Thus, the adjusted price f̂tt′′ can be calculated as

f̂tt′′ = EQ
t exp(fM) ≈ exp

(
EQ

t fM + 1
2
VarQt fM

)
.

The expected minimum of two futures prices in Step 2(ii) can be calculated similarly. To

estimate f̂
b
tt′ in Step 2(i), note that median{ft′t′ , f

b
t′t′ , ft′t′′} = min

{
f

b
t′t′ , max{ft′t′ , ft′t′′}

}
,

which can be calculated by repeated use of Clark (1961)’s formulae.

2.5.4 Multi-Season PARI Policy

Seasonal energy storage operates across seasons. For example, the natural gas industry

considers two seasons in storage operation – the withdrawal (peak) season, from Novem-

ber 1 through March 31, and the injection (off-peak) season, from April 1 through October

31 (Energy Information Administration 2011). For storage valuation, we divide the valu-

ation horizon into multiple seasons and apply the PARI policy to each season. Thus, the

performance of the PARI policy does not deteriorate when the valuation horizon increases.

With distinct price seasonality (e.g., Figure 3.1 in §3.4), storage is typically filled during

the off-peak season and emptied during the peak season. The off-peak season problem is

mathematically equivalent to the peak season problem analyzed in the previous sections,

because reducing the inventory level to zero in the peak season is analogous to reducing the

space level to zero in the off-peak season. Formally, we define the multi-season PARI policy

as follows:

Definition 2.3. Multi-season PARI policy

Step 1. Divide the planning horizon into a sequence of alternating peak and off-peak seasons.
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Let N1 and N2 be the number of periods in the peak and off-peak seasons, respectively.

Step 2. Solve peak season problems and off-peak season problems alternately. For each peak

season, apply the PARI policy in Definition 2.2 with N = N1. For each off-peak season,

apply the PARI policy in Definition 2.2 with N = N2 and the following modifications of

Step 2:

(i) When f
b
tt < f

b
tt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = EQ
t

[
median{f b

t′t′ , ft′t′ , f
b
t′t′′}

]
, f̂

b
tt′′ = EQ

t

[
min{f b

τ3∧τ4,τ3
, f

b
τ3∧τ4,τ4

}].

(ii) When f
b
tt ≥ f

b
tt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = ftt′ , f̂
b
tt′′ = EQ

t

[
max{f b

τ1∧τ2,τ1
, f

b
τ1∧τ2,τ2

}].

In addition, the terminal condition in (2.5) is replaced by V I
N(xN , ft) = −f

b
tN λ(xN)+y(xN)pb,

where pb is a large constant, which provides incentive to fill up the storage in period N2.

In the modified (i) above, the buying price f
b
tt′′ is adjusted down to f̂

b
tt′′ to reflect the value

of waiting for a lower buying price, and ftt′ is adjusted up to reflect the value of potential

sales during the buying season. The price adjustment in (ii) captures the value of avoiding

adverse buying price.

2.6. Application to Natural Gas Storage

2.6.1 Data and Setup

The average size (for working gas) of a depleted oil/gas reservoir is about 10 trillion Btu

(TBtu). We consider a firm leasing a 10 TBtu storage facility for 12 months.

Injection and withdrawal capacities. We consider the case of constant capaci-

ties. The capacity pair (injection capacity, withdrawal capacity) takes three values: (2

TBtu/month, 3 TBtu/month), (3 TBtu/month, 4 TBtu/month), and (4 TBtu/month, 5

TBtu/month). Under constant capacities, it is optimal to empty the storage at the end of

the horizon regardless of the penalty level (see the proof of Proposition 4). Thus, we set

p = 0.
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Operating cost parameters. For depleted reservoirs, the injection loss rate α is

typically between 0% and 3%, the withdrawal loss rate β is between 0% and 2%. Throughout

our analysis, we set α = 1.5%, β = 0.5%, and the variable operating costs cα = cβ = $0.02

per million Btu. These parameters are consistent with other studies, e.g., Maragos (2002)

and Lai et al. (2010).

Discount rate. The discount rate reflects the firm’s cost of capital and is typically

benchmarked using the London Interbank Offered Rate (LIBOR,

available from http://www.liborated.com). We consider three discount rates: 0%, 1%, and

2% above the six-month LIBOR.

Storage contract terms. We consider two different contract terms: (a) the lessee

receives an empty storage and returns it empty (such a contract typically starts in April

and ends in March); (b) the lessee receives a full storage and returns it full (such a contract

typically starts in November and ends in October). These two types of terms are referred

to as “seasonal cycling” and “storage carry,” respectively, by Eydeland and Wolyniec (2003,

p. 354).

Storage valuation under various policies. For the seasonal cycling contracts, the

storage value is calculated at the end of March every year for operations from April 1 to March

31. For the storage carry contracts, the value is calculated at the end of October every year.

When solving for the optimal policy and the RI policy, we solve the optimization problem

without dividing the valuation horizon into peak and off-peak seasons. When implementing

the PARI policy, we divide the year into a 7-month off-peak season (April through October)

and a 5-month peak season (November through March), and apply the PARI policy in

Definition 2.3.

We value the seasonal cycling contracts in each of the 9 years from 2001-2009, and value

the storage carry contracts in each of the 8 years from 2002-2009. At each valuation time,

we consider 3 capacity pairs and 3 discount rates. This gives us a total of 153 instances.

Forward curve dynamics. Figure 3.1 shows the New York Mercantile Exchange

(NYMEX) natural gas futures prices observed on the first trading day of March 2005-2009.
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Figure 2.4: Natural gas forward curve on the first trading day of each March (2005-2009)

Data source: Bloomberg
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We use the NYMEX natural gas futures price data to estimate the following multi-

factor martingale model for futures prices (see also Manoliu and Tompaidis (2002) and the

references therein):

df̃tτ

f̃tτ

=
n∑

j=1

σj(t, τ)dWj(t), (2.28)

where Wj(t), j = 1, . . . , n, are independent Brownian motions, and σj(t, τ) is the volatility

of the futures price f̃tτ contributed by the factor j at time t. We employ the principal

component analysis (Basilevsky 1994) to estimate these volatility functions. See Clewlow

and Strickland (2000) for examples of principal component analysis for energy prices.

The first two principal components (factors) capture majority of the futures price vari-

ations. We build a multi-layer two-factor tree model for the forward curve. Each layer

corresponds to a discrete inventory level. This feature is similar to the multi-layer one-factor

tree constructed by Jaillet, Ronn, and Tompaidis (2004), whereas in our tree each node

represents a forward curve. In addition, our tree captures the time-varying volatility feature

of the futures prices. The tree construction is described in part 2.8.
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2.6.2 Performance of the PARI Policy

We measure the performance of a heuristic policy (RI or PARI policy) by the gap be-

tween the storage value under the heuristic policy and optimal storage value, expressed as a

percentage of the optimal storage value. Figure 2.5 compares the percentage storage value

losses under the RI policy and PARI policy when valuation is conducted at the end of March

(i.e., seasonal cycling contracts). To save space, the results for storage carry contracts are

included in part 2.8.

The value loss of the PARI policy is remarkably lower than the RI policy. For the 153

instances, the PARI policy achieves an average of 99.8% of the optimal value (minimum

99.13% and maximum 99.99%). That is, the value loss under the PARI is no more than 1%

of the optimal value, and 0.2% of the optimal value on average.

Among the 153 cases, there are 5 cases where the RI policy leads to more than 4% value

loss in a year, and the PARI policy recovers 92% of that value loss on average. In 13 cases,

RI policy results in more than 2% value loss, and the PARI policy recovers 85% of the loss

on average. In 26 cases, RI policy loses more than 1% of the value, and the PARI policy

recovers 75% of the value loss. For all 153 cases, the PARI policy recovers 64% of the value

loss.

Figure 2.6 depicts this trend over a wider range of percentage value losses. It also shows

the quartiles of the distribution of the loss recovered by the PARI policy (when the RI policy

loses more than 5%, there are not enough data points to show the quartiles). Figure 2.6

suggests the higher the value loss under the RI policy, the more capable the PARI policy in

recovering the loss.

We remark on the continuity of the storage value in the discount rate. The discount rate

bends the forward curve and affects the option values. The optimal policy takes the option

values into account (e.g., in (2.11)) and, therefore, the optimal storage value is continuous

in the discount rate. However, under the RI policy, a small change in the forward curve can

cause the RI policy to miss a lump sum of option values. Thus, the rolling intrinsic value of

the storage is, in general, not continuous in the discount rate.
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For instance, in Figure 2.5, for year 2001, the value loss of the RI policy under LIBOR+2%

is significantly higher than that under LIBOR. Figure 2.7 shows how the storage value in

2001 varies with the discount rate. The value loss of the RI policy clearly does not vary

smoothly with the discount rate. Remarkably, the PARI policy consistently performs close

to the optimal policy. Figure 2.7 also reinforces the finding in Figure 2.6 that the PARI

policy is especially capable of recovering high value losses of the RI policy.

2.6.3 Impact of Flexibility

In this section, we study how the operational flexibility of the storage affects the storage

value. We vary the flexibility by increasing the injection and withdrawal capacities in tandem,

as illustrated in Figure 2.8(a), which shows capacity functions of the form λ(x) = C∧(10−x)

and λ(x) = C∨(−x), where |C| = C +1. The storage values are calculated for each capacity

function pair indexed by C.

Figure 2.8(b) shows when the flexibility increases, the gap between the rolling intrinsic

value and the optimal value widens, and the PARI policy performs significantly better than

the RI policy.

One phenomenon is thought-provoking: More flexibility brings more benefits under the

optimal policy, but more flexibility may reduce the storage value under the RI policy. In

Figure 2.8(b), the rolling intrinsic value increases and then decreases in flexibility. Intuitively,

higher flexibility causes larger deviations of the RI decisions from the optimal decisions,

resulting in deteriorating performance. In the online supplement part 2.8, we provide some

theoretical support for this finding. We show that if f11 ≥ max{f12, f13} and V w > V c,

then the expected loss of the RI policy is at least (V w − V c)(H − y(x1)). If f12 < f11 <

min{f b
12, f13} and V w < V c, then the expected loss of the RI policy is at least (V c−V w)(H−

max{y(x1), H
′}). Note that these lower bounds on the performance gap increase when

y(x1) = x1 + λ(x1) decreases or when the releasing capacity |λ(x1)| increases. This suggests

that more flexibility may cause larger deviation from the optimal policy and lead to higher

value loss. Therefore, operational flexibility, if not used with prudence, can be detrimental

to the firm. This finding calls for meticulous action to manage relatively flexible storage
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facilities. The PARI policy does not have the shortcoming of the RI policy: In all of the

instances we tested, the storage value under the PARI policy always increases in flexibility.

2.7. Conclusion and Extensions

Injection and withdrawal capacities are common operational constraints for energy stor-

age facilities. The presence of these constraints renders the optimization of energy storage

operations very difficult. In practice, firms use heuristic policies to capture the seasonal price

spread under limited flexibility. This paper identifies when and why the rolling intrinsic (RI)

policy leads to significant losses and develops an improved heuristic policy called the price-

adjusted rolling intrinsic (PARI) policy. The PARI policy is designed based on the analysis

of the option values embedded in the optimal policy. Our numerical analysis shows that the

gap between the PARI policy and the optimal policy is consistently small, even when the RI

policy leads to significant value losses.

Besides natural gas storage, the ideas in this paper and the resulting heuristic policy

can be applied to other types of energy storage, such as hydroelectric pumped storage and

compressed air energy storage. An interesting future application is the optimization of the

battery recharge process for electrical vehicles. Customers may set a time when the battery

needs to be fully charged. The electricity distributor aims to meet customers’ needs at

the minimum procurement cost for energy. This is essentially the problem of filling up the

storage with limited flexibility, i.e., the off-peak season problem, with ftτ interpreted as the

price forecast in period t for the price in period τ . We believe the heuristic policies, such as

the PARI policy designed in this paper, have great potential to be used in this application.

There are several limitations of this research. First, we do not analyze the combined spot

and futures storing and selling strategy. We refer the reader to Goel and Gutierrez (2006),

Kjaer and Ronn (2008), and Li (2009) for analysis of models that involve both spot and

futures markets. It would be interesting to study how the insights in this paper extend to the

setting where both markets are present, and how one can capture the value of spot trading

opportunities. Second, we value storage under the forward curve modeled by a two-factor

tree. In recent years, the natural gas futures market has seen more variations that cannot be
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explained by merely two factors. With higher variations, storage options are expected to be

more valuable and, therefore, the PARI policy may be more effective in recovering the value

loss of the RI policy. Simulation methods can be used in practice to accommodate more

factors in the forward curve model. Finally, the firm considered in this paper is a price-

taker. The price is determined by the demand and collective behavior of the production

and storage firms (see, e.g., Wu and Chen 2010). To consider market equilibrium of storage

operations and analyze how energy storage affects energy prices would be another important

future direction.

Several extensions to our work are possible. Because explicit analysis of N -period (N > 3)

models with general level-dependent capacities is intractable, extending our work to N -period

with more restrictive level-dependent capacity functions, such as piecewise constant or linear

functions, would be useful.

This paper provides us with a deeper understanding about the tradeoffs involved in

storage operations and the managerial insights behind the optimal policies. Using these

insights, we have developed a new method to improve the RI policy. This improvement

significantly reduces the gap between the rolling intrinsic value and the optimal value.

The method of adjusting the forward curves before applying the RI policy may be im-

plemented in various ways. We find that some other simple forward curve adjustments also

lead to noticeable improvement. For example, one can slightly raise the maximum price and

lower the minimum price on the forward curve. Such an adjustment can lead to a significant

improvement in some instances.

We identify conditions under which the rolling intrinsic (RI) policy is sub-optimal, explain

why the RI policy is sub-optimal, and how the optimal policy is able to make the best use of

the limited flexibility. We numerically tested a wide range of realistic settings, and examined

how the optimal policy differs from the RI policy. We found that the differences between

the two policies can be well explained by the theoretical results derived in this paper.
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2.8. Appendix: Proofs and Derivations

Derivation of (2.11) and (2.15)

When f11 > f12, we first show that y∗1 ≤ H. For any policy with y1 > H, we revise

that policy by setting y1 = H, while keeping y2 unchanged (note that y2 ≤ H following

Proposition 1). The revised policy sells more in the first period and less in the second

period. Because f11 > f12 = EQ
1

[
f22

]
, the expected profit under the revised policy is higher.

Hence, any policy with y1 > H is sub-optimal, and we must have y∗1 ≤ H. Thus, to solve

(2.10) under f11 > f12, we need to consider only y1 ∈ [y(x1), H]. The problem in (2.10)

simplifies to:

max
y1∈[y(x1), H]

−f11(y1 − x1) + f13y1 + P{A1}EQ
1

[
f22 − f23 | A1

]
y1

− P{A3}EQ
1

[
f

b
22 − f23 | A3

]
min{H − y1, λ(y1)}.

(2.29)

Ignoring the constant term f11x1, noting that−P{A3}EQ
1

[
f

b
22 − f23 | A3

] ≡ EQ
1

[
max{f23 − f

b
22, 0}

]
,

and employing the following identity:

f13 + P{A1}EQ
1

[
f22 − f23 | A1

]
= EQ

1

[
f23

]
+ P{A1}EQ

1

[
f22 − f23 | A1

]

= EQ
1

[
f23 + max{f22 − f23, 0}

]
= EQ

1

[
max{f22, f23}

]
,

(2.30)

we can rewrite the problem in (2.29) as:

max
y1∈[y(x1),H]

(
EQ

1

[
max{f22, f23}

]− f11

)
y1 + EQ

1

[
max{f23 − f

b
22, 0}

]
min{H − y1, λ(y1)}

= V wy1 + V c min{H − y1, λ(y1)},

which is the problem in (2.11).

When f11 < f12, we first show y∗1 ≥ H. For any policy with y1 < H, we can improve

the expected profit by raising y1 to H, i.e., selling H − y1 ≡ ∆ less in the first period

and selling ∆ more (or buying ∆ less) in the second period. The revised policy is feasible,

because Assumptions 1 and 2 imply that, by raising y1 up to H, the releasing capacity |λ(x)|
increases by ∆ and the storing capacity |λ(x)| decreases by at most ∆. Thus, to solve (2.10)

we need to consider only y1 ≥ H and the problem in (2.10) simplifies to:
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max
y1∈[H, y(x1)]

r(y1 − x1, f11) + f13y1 − P{A1}EQ
1

[
f22 − f23 | A1

]
λ(y1)

+ P{A2 ∪ A3}EQ
1

[
f22 − f23 | A2 ∪ A3

]
(y1 −H).

(2.31)

Using P{A1}EQ
1

[
f22 − f23 | A1

] ≡ EQ
1

[
max{f22 − f23, 0}

]
and the following identity,

f13 + P{A2 ∪ A3}EQ
1

[
f22 − f23 | A2 ∪ A3

]
= EQ

1

[
f23 + min{f22 − f23, 0}

]
= EQ

1

[
min{f22, f23}

]
,

and ignoring the constant term related to H, we can rewrite the problem in (2.31) as in

(2.15).

Two-Factor Tree Model for the Forward Curve Dynamics

This section describes the estimation of forward curve volatility functions from historical

data and a two-factor tree model for the price dynamics.

Our historical estimation of forward curve volatility functions follows the principal com-

ponent analysis (PCA) described in Clewlow and Strickland (2000, §8.6.1). We estimate the

volatility functions using the daily futures price data within the three years prior to the date

of valuation. For instance, when valuing the storage at the end of March 2005, we use the

data from April 2003 to March 2005. The daily futures price data are from Bloomberg.

We construct a two-factor tree model for the evolution of futures prices based on the

volatility functions of the first two principal components (factors) that drive the futures

price dynamics.

The volatility function for the first factor can be approximated by an exponential function

(see, e.g., Clewlow and Strickland 2000): σ1(t, τ) = σ̂e−θ̂(τ−t), where τ − t is the time to

maturity, and σ̂ and θ̂ are positive constants estimated using a least squares regression:

ln σ1(t, τ) = ln σ + θ(t− τ) + ε.

The exponential volatility function suggests that the volatility increases as a futures

contract approaches its maturity. This property of increasing volatility over time can be

captured by a tree model with decreasing size of time steps, as shown in Figure 2.9. The

tree bifurcates at times t0(= 0), t1, t2, . . . , tM . The time step ∆tm ≡ tm+1 − tm decreases in

m in a certain way described shortly. In each time step prior to the maturity date τi of the

i-th futures, the price ftτi
evolves to either uiftτi

or diftτi
. For ease of illustration, Figure 2.9

uses only three steps in April. In our actual evaluation, we use many more steps discussed
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below.

We use the same time steps for all futures contracts, while each futures contract has its

own ui and di. Because the first factor drives all futures prices toward the same direction

(by different amounts), we must ensure that futures prices move up or down with the same

probability. Let the probability of moving up at time tm be pm for all futures prices. Match-

ing the first and second moments implied by the binomial tree with those implied by the

continuous-time price model, we have:

pmui + (1− pm)di = 1 (2.32)

pmu2
i + (1− pm)d2

i = exp(σ1(tm, τi)
2∆tm) = exp(σ̂2e2θ̂(tm−τi)∆tm) (2.33)

Note that (2.32) suggests that pm must be time-invariant because ui and di are constants

for each futures contract. This, in turn, suggests that the left side of (2.33) is time-invariant,

implying that σ̂2e2θ̂(tm−τi)∆tm on the right side must be invariant with respect to m. This

specifies how the size of the time steps should shrink over time:

∆tm+1 = e−2θ̂∆tm∆tm. (2.34)

In our implementation, we set ∆t0 to be 0.4% of a year. Because θ̂ is estimated at each

valuation time, the total number of steps over the 11 months (the last future matures at

the beginning of the 12th month) depends on the valuation time. The least number of time

steps is 495 (when valuing in March 2004); the maximum number of time steps is 760 (when

valuing in March 2002).

We set pm = 1/2 for all m. Then, we can solve for ui and di from (2.33) as follows:

ui = 1 +

√
exp(σ̂2e−2θ̂τi∆t0)− 1, di = 2− ui.

The volatility function for the second factor σ2(t, T ) estimated using PCA generally

cannot be approximated by an exponential function, because this factor typically drives the

near-term futures and the long-term futures in opposite directions. Consequently, the tree

is no longer recombining. To reduce the burden of computing hundreds of instances studied

in the paper, we let the tree take one step per month, which leads to 211 = 2048 nodes at

the beginning of the 12th month.
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Storage valuation using the above two-factor tree model can be typically solved within

10 minutes with a 2.4GHz Core 2 processor.

Storage Carry Contracts

In storage carry contracts, the lessee receives a full storage and returns it full (Eydeland

and Wolyniec 2003). Storage carry contracts typically start in November and end in October.

We conduct storage valuation at the end of each October for storage operations over the 12

months, starting with a 5-month withdrawal season, followed by a 7-month injection season.

Figure 2.11 reports the results, with value in year 2002 referring to the value from Novem-

ber 2001 to October 2002. On average the PARI policy recovers 63% of the value loss. Note

that the value loss of the RI policy for the storage carry contracts is lower (less than 2%)

compared to the value loss for the seasonal cycling contracts reported in Figure 2.5. This

difference is probably because the peak season forward curve observed at the end of Octo-

ber is typically more curved than the off-peak season forward curve observed at the end of

March; the RI policy tends to make suboptimal decisions when the forward curve is flatter.

Proof of Proposition 1. The RI policy is optimal in the last period, because under

both policies the firm sells as much as possible to maximize the last-period profit. Next

we show that the RI policy is optimal in the second period. Based on (2.3) and (2.4), the

second-period problem can be written as:

V2(x2, f2) = max
y2∈[y(x2), y(x2)]

U2(y2)
def
= r(y2 − x2, f22) + EQ

2

[− f33λ(y2)− (y2 + λ(y2))p
]
,

(2.35)

where, for ease of exposition, we suppress the dependence of U2(y2) on x2 and f2.

Based on (2.5) and (2.6), the second-period RI policy is determined by:

max
y2∈[y(x2), y(x2)]

r(y2 − x2, f22)− f23λ(y2)− (y2 + λ(y2))E
Q
2 [p],

which is identical to (2.35), noting the martingale property of ft3. Thus, the RI policy is

optimal in the second period. Next, we prove that the optimal policy has the form in (2.9).

41



For y2 ∈ (H, K] and y2 6= x2, the first-order derivative of the objective in (2.35) is

U ′
2(y2) = ∂r(y2 − x2, f22)/∂y2 − λ′(y2)f23 − (1 + λ′(y2))E

Q
2 [p]

≤ −f22 + sf23 − (1− s)EQ
2 [p] ≤ 0.

The first inequality follows from two facts: The definition of r(q, f22) implies ∂r(q, f22)/∂q ≤
−f22, and the definition of s leads to −λ′(y2) ≤ s, for y2 ∈ (H, K]. The last inequality is

because the condition P
{
p ≥ sf33 − f22

1− s

}
= 1 implies EQ

2 [p] ≥ sf23 − f22

1− s
.

Because U ′
2(y2) ≤ 0 for y2 ∈ (H, K], we need to consider only y2 ≤ H in solving (2.35).

Assumption 1 implies λ(y2) = −y2 when y2 ≤ H. Thus, the problem in (2.35) becomes

V2(x2, f2) = max
y2

{
r(y2 − x2, f22) + f23y2 : y(x2) ≤ y2 ≤ min{H, y(x2)}

}
.

The solution to the above problem is:

y∗2(x2, f2) =





y(x2), if f22 ≥ f23,

min{H, x2}, if f22 < f23 ≤ f
b
22,

min{H, y(x2)}, if f
b
22 < f23,

which leads to the optimal decision expressed in (2.9) in the paper.

Proof of Lemma 1. Consider the objective (2.11) in the paper:

max
y1∈[y(x1),H]

V wy1 + V c min{H − y1, λ(y1)}.

Under Assumption 1, min{H−y1, λ(y1)} is decreasing in y1 at a rate no faster than the unit

rate.

(a) Since V c ≥ 0 by definition, the second term in the objective (2.11) is decreasing in y1.

When V w ≤ 0, the first term is also decreasing in y1 and, therefore, the optimal solution

is y∗1 = y(x1).

(b) When V w > V c, the objective can be written as:

(V w − V c)y1 + V c
(
y1 + min{H − y1, λ(y1)}

)
= (V w − V c)y1 + V c min{H, y(y1)},

which is increasing in y1, because y(y1) is nondecreasing in y1. Hence, y∗1 = H.
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(c) When 0 < V w ≤ V c, the objective can be written as:

(V w − V c)y1 + V c min{H, y(y1)} =





(V w − V c)y1 + V cH, if y1 ≥ H ′,

V wy1 + V cλ(y1), if y1 < H ′.

Thus, the objective is decreasing in y1 for y1 ≥ H ′. If y(x1) ≥ H ′, then y∗1 = y(x1). If

y(x1) < H ′, then y∗1 ∈ [y(x1), H ′] and is determined by maximizing V wy1 +V cλ(y1).

Proof of Lemma 2. Had we not known the optimal policy, we would prove Lemma 2 from

scratch. With the optimal policy derived in Lemma 1, a short-cut is available. If we set the

volatilities of futures prices to be zero, then the optimal policy in Lemma 1 becomes the RI

policy. Specifically, under the zero price volatilities assumption, (2.12)-(2.13) in the paper

become

V w = max{f12, f13} − f11 and V c = max{f13 − f
b
12, 0}.

We now show that each part of Lemma 1 becomes the corresponding part of Lemma 2:

(a) V w ≤ 0 is equivalent to f11 ≥ max{f12, f13}.
(b) Because f11 > f12, V w > V c is equivalent to f13 − f11 > max{f13 − f

b
12, 0} or f11 <

min{f b
12, f13}.

(c) Based on the equivalence in (a) and (b) above, we can see that 0 < V w ≤ V c is equivalent

to f13 > f11 ≥ f
b
12. The maximization problem in Lemma 1(c) is also equivalent to that

in Lemma 2(c) because V w = f13 − f11 and V c = f13 − f
b
12.

Proof of Proposition 2. The price is adjusted such that f̂
b
12 = EQ

1

[
median{f22, f

b
22, f23}

]

and f̂13 = EQ
1

[
max{f22, f23}

]
. Using f̂1 = (f11, f̂12, f̂13) as the input prices of the RI policy,

we show that each part of Lemma 2 is equivalent to the corresponding part in Lemma 1:

(a) f11 ≥ max{f̂12, f̂13} = f̂13 = EQ
1

[
max{f22, f23}

]
is equivalent to V w ≤ 0.

(b) f11 < min{f̂ b
12, f̂13} = f̂

b
12 = EQ

1

[
median{f22, f

b
22, f23}

]
is equivalent to V w > V c, because

median{f22, f
b
22, f23} = max{f22, f23} −max{f23 − f

b
22, 0}. (2.36)

One can verify (2.36) by considering three cases: f22 < f
b
22 < f23, f22 < f23 < f

b
22, and

f23 < f22 < f
b
22.

(c) Based on the equivalent relations in (a) and (b), f̂13 > f11 ≥ f̂
b
12 is equivalent to 0 <
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V w ≤ V c. Furthermore, the maximization problem in Lemma 2(c) is identical to that

in Lemma 1(c) because V w = f̂13 − f11 and V c = f̂13 − f̂
b
12, where the latter is due to

(2.36).

Proof of Lemma 3. Consider the objective (2.15) in the paper:

max
y1∈[H, y(x1)]

U1(y1) =





f11x1 − V ay1 − V lλ(y1), if y1 ∈ [H, x1],

f
b
11x1 − V aby1 − V lλ(y1), if y1 ∈ (x1, y(x1)].

(a) Because V l ≥ 0 by definition and λ(y1) is decreasing in y1 under Assumption 1, the term

−V lλ(y1) in the objective is increasing in y1. When V ab ≤ 0, the terms −V ay1 and

−V aby1 are also increasing in y1 and, therefore, the optimal solution is y∗1 = y(x1).

(b) When V a ≤ 0 < V ab, U1(y1) is increasing for y1 ∈ [H, x1], and the optimal decision is

determined by maximizing −V aby1 − V lλ(y1) for y1 ∈ [x1, y(x1)].

(c) Continue from part (b). If V l < V ab, then the maximizer of −V aby1−V lλ(y1) is y∗1 = x1.

(d) When V a > 0, the objective is not monotone in general and the optimal solution may lie

anywhere between H and y(x1).

Proof of Lemma 4. Parallel to the proof of Lemma 2, when the price volatilities are

assumed to be zero, the optimal policy in Lemma 3 becomes the RI policy stated in this

lemma.

Proof of Proposition 3. The adjusted price is f̂1 = (f11, f12, f̂13), where f̂13 = EQ
1

[
min{f22, f23}

]
.

Note the following relations:

f11 − f̂13 = f11 − EQ
1

[
min{f22, f23}

]
= V a, (2.37)

f
b
11 − f̂13 = f

b
11 − EQ

1

[
min{f22, f23}

]
= V ab, (2.38)

f12 − f̂13 = f12 − EQ
1

[
min{f22, f23}

]
= EQ

1

[
max{f22 − f23, 0}

]
= V l, (2.39)

f
b
11 − f12 = (f

b
11 − f̂13)− (f12 − f̂13) = V ab − V l. (2.40)

Using f̂1 = (f11, f12, f̂13) as the input prices of the RI policy, we show that each part of

Lemma 4 is equivalent to the corresponding part in Lemma 3:

(a) f
b
11 ≤ min{f12, f̂13} = f̂13 is equivalent to V ab ≤ 0, due to (2.38).

(b) f11 ≤ min{f12, f̂13} = f̂13 < f
b
11 ≤ f12 is equivalent to V a ≤ 0 < V ab ≤ V l due to (2.37),
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(2.38), and (2.40). The maximization problem in Lemma 4(b) is identical to that in

Lemma 3(b) because f
b
11 − min{f12, f̂13} = f

b
11 − f̂13 = V ab and max{f12 − f̂13, 0} =

f12 − f̂13 = V l.

(c) f11 ≤ min{f12, f̂13} ≤ f12 < f
b
11 is equivalent to V a ≤ 0 ≤ V l < V ab due to (2.37) and

(2.40).

(d) f11 > f̂13 is equivalent to V a > 0 due to (2.37). The maximization problem in Lemma 4(d)

is identical to that in Lemma 3(d), because (2.37)-(2.39) imply that the objective in

(2.19) is identical to the objective in (2.15).

Proof of Proposition 4. The multiperiod problem is formulated in (2.3)-(2.4), and sim-

plified below under Assumption 3.

Vt(xt, ft) = max
yt∈[y(xt), xt]

(xt − yt)ft + EQ
t

[
Vt+1(yt, ft+1)

]
, (2.41)

VN(xN , fN) = −fN λ(xN). (2.42)

Note that under constant capacities, there is no value of raising withdrawal capacity by

withholding sales. Thus, it is optimal to empty the storage by the end of period N , and

the penalty term is not needed in (2.42). Formally, we show that y∗t ≤ (N−t)|C| and, in

particular, y∗N = 0. If yt > (N−t)|C|, then for the remaining N − t periods, the best policy

is to sell |C| every period, leaving
(
yt − (N−t)|C|) units unsold in the last period. Thus,

yt > (N−t)|C| is a suboptimal decision.

We now inductively prove that for any ft, Vt(xt, ft) is a concave piece-wise linear function

in xt with slope u
(k)
t defined in (2.20) for xt ∈ (Hk−1, Hk], k = 1, . . . , T .

First, because λ(x) has slope −1 for x ∈ (0, H1] and zero slope otherwise, VN(xN , fN) is

concave in xN and has slope u
(k)
N for xt ∈ (Hk−1, Hk]. Suppose Vt+1(yt, ft+1) is concave in yt

with slope u
(k)
t+1 for yt ∈ (Hk−1, Hk]. Then, the objective in (2.41) is concave in yt with slope

EQ
t u

(k)
t+1 − ft for yt ∈ (Hk−1, Hk].

Let xt ∈ (Hk−1, Hk], for some k ∈ {2, . . . , T}. Consider three cases:

(i) If the slope EQ
t u

(k−1)
t+1 −ft ≤ 0 (i.e., V w

tk ≤ 0), then the objective in (2.41) is non-increasing

for yt ≥ Hk−2. Thus, it is optimal to sell |C|. We have Vt(xt, ft) = |C|ft + EQ
t

[
Vt+1(xt −

|C|, ft+1)
]
, which is linear in xt with slope EQ

t u
(k−1)
t+1 for xt ∈ (Hk−1, Hk].
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(ii) If the slopes EQ
t u

(k)
t+1 − ft ≤ 0 and EQ

t u
(k−1)
t+1 − ft > 0 (i.e., V a

tk ≥ 0 and V w
tk > 0), then the

objective in (2.41) is increasing in yt for yt ≤ Hk−1 and non-increasing for yt ≥ Hk−1.

The optimal decision is y∗t = Hk−1; the value function is Vt(xt, ft) = (xt − Hk−1)ft +

EQ
t

[
Vt+1(Hk−1, ft+1)

]
, which is linear in xt with slope ft for xt ∈ (Hk−1, Hk].

(iii) If the slope EQ
t u

(k)
t+1 − ft > 0 (i.e., V a

tk < 0), then the objective in (2.41) is increasing

in yt for yt ≤ xt, and the optimal decision is y∗t = xt. Under the optimal decision,

Vt(xt, ft) = EQ
t

[
Vt+1(xt, ft+1)

]
and has slope EQ

t u
(k)
t+1 for xt ∈ (Hk−1, Hk].

In sum, for xt ∈ (Hk−1, Hk], k ≥ 2, Vt(xt, ft) is linear in xt with slope:




EQ
t u

(k−1)
t+1 , if ft ≥ EQ

t u
(k−1)
t+1 ,

ft, if EQ
t u

(k)
t+1 ≤ ft < EQ

t u
(k−1)
t+1 ,

EQ
t u

(k)
t+1, if ft < EQ

t u
(k)
t+1,

which is essentially u
(k)
t = k-th largest element of

{
ft, EQ

t ut+1

}
.

Finally, when xt ∈ (0, H1], case (iii) above still applies, whereas cases (i) and (ii) are

replaced by the following: If EQ
t u

(1)
t+1 ≤ ft (i.e., V a

t1 ≥ 0), then the optimal decision is y∗t = 0;

the value function is Vt(xt, ft) = xtft + EQ
t

[
Vt+1(Hk−1, ft+1)

]
, which is linear in xt with slope

ft for xt ∈ (0, H1]. This, together with case (i), implies that u
(1)
t = max

{
ft, EQ

t ut+1

}
.

Proof of Proposition 5. The N -period problem is as follows:

Vt(xt, ft) = max
yt∈[y(xt), y(xt)]

r(yt − xt, ft) + EQ
t

[
Vt+1(yt, ft+1)

]
, (2.43)

VN(xN , fN) = −fN λ(xN). (2.44)

We inductively prove that for any ft, Vt(xt, ft) is a concave piece-wise linear function in

xt with slope v
(k)
t defined in (2.24) for xt ∈ (Hk−1, Hk], k = 1, . . . , T . This is true for t = N ,

as seen in the proof for Proposition 4. Suppose Vt+1(yt, ft+1) is concave in yt with slope v
(k)
t+1

for yt ∈ (Hk−1, Hk]. Then, the objective in (2.43) is concave in yt with slope EQ
t v

(k)
t+1 − ft for

yt ∈ (Hk−1, Hk].

Let xt ∈ (Hk−1, Hk], for some k ∈ {2, . . . , T − 1}. Consider five cases below. The first

two cases parallel those in the proof of Proposition 4.

(i) If the slope EQ
t v

(k−1)
t+1 − ft ≤ 0 (i.e., V w

tk ≤ V c
t,k−1), it is optimal to sell |C|. The value

function Vt(xt, ft) has slope EQ
t v

(k−1)
t+1 for xt ∈ (Hk−1, Hk].
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(ii) If the slopes EQ
t v

(k)
t+1− ft ≤ 0 and EQ

t v
(k−1)
t+1 − ft > 0 (i.e., V a

tk + V c
tk ≥ 0 and V w

tk > V c
t,k−1),

the optimal decision is y∗t = Hk−1. The value function Vt(xt, ft) has slope ft for xt ∈
(Hk−1, Hk].

(iii) If the slopes EQ
t v

(k)
t+1 − ft > 0 and EQ

t v
(k)
t+1 − f

b
t ≤ 0 (i.e., V a

tk + V c
tk < 0 ≤ V ab

tk + V c
tk), then

the objective in (2.43) is increasing in yt for yt ≤ xt, and non-increasing for yt ≥ xt.

The optimal decision is y∗t = xt, and Vt(xt, ft) = EQ
t

[
Vt+1(xt, ft+1)

]
has slope EQ

t v
(k)
t+1 for

xt ∈ (Hk−1, Hk].

(iv) If the slopes EQ
t v

(k)
t+1−f

b
t > 0 and EQ

t v
(k+1)
t+1 −f

b
t ≤ 0 (i.e., V ab

tk +V c
tk < 0 ≤ V ab

t,k+1 +V c
t,k+1),

then the objective in (2.43) is increasing in yt for yt ≤ Hk, and non-increasing for

yt ≥ Hk. The optimal decision is to buy up to y∗t = Hk, and Vt(xt, ft) = −(Hk − xt)f
b
t +

EQ
t

[
Vt+1(Hk, ft+1)

]
has slope f

b
t for xt ∈ (Hk−1, Hk].

(v) If the slope EQ
t v

(k+1)
t+1 − f

b
t > 0 (i.e., V ab

t,k+1 + V c
t,k+1 < 0), then the objective in (2.43)

is increasing for yt ≤ Hk+1. It is optimal to buy C, and the resulting value function

Vt(xt, ft) = −Cf
b
t + EQ

t

[
Vt+1(xt + C, ft+1)

]
has slope EQ

t v
(k+1)
t+1 for xt ∈ (Hk−1, Hk].

In sum, for xt ∈ (Hk−1, Hk], k ≥ 2, Vt(xt, ft) is linear in xt with slope:




EQ
t v

(k−1)
t+1 , if ft ≥ EQ

t v
(k−1)
t+1 ,

ft, if EQ
t v

(k)
t+1 ≤ ft < EQ

t v
(k−1)
t+1 ,

EQ
t v

(k)
t+1, if ft < EQ

t v
(k)
t+1 ≤ f

b
t ,

f
b
t if EQ

t v
(k+1)
t+1 ≤ f

b
t < EQ

t v
(k)
t+1,

EQ
t v

(k+1)
t+1 if f

b
t < EQ

t v
(k+1)
t+1 ,

which is essentially v
(k)
t = (k + 1)-th largest element of

{
ft, f

b
t , EQ

t vt+1

}
,

When xt ∈ (0, H1], cases (i) and (ii) are replaced by the following: If the slope EQ
t v

(1
t+1 −

ft ≤ 0 (i.e., V a
t1 + V c

t1 ≥ 0), we have y∗t = 0, and Vt(xt, ft) has slope ft for xt ∈ (0, H1].

When xt ∈ (HT−1, K], cases (iv) and (v) are replaced by the following: If the slope

EQ
t v

(T )
t+1 − f

b
t > 0 (i.e., V ab

tT + V c
tT < 0), we have y∗t = K, and Vt(xt, ft) has slope f

b
t for

xt ∈ (HT−1, K].

Lower Bounds on the Value Loss from RI Policy

In this section, we show that if f11 ≥ max{f12, f13} and V w > V c, then the expected loss

of the RI policy is at least (V w−V c)(H− y(x1)). If f12 < f11 < min{f b
12, f13} and V w < V c,
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then the expected loss of the RI policy is at least (V c − V w)(H −max{y(x1), H
′}).

In the appendix of the paper, the derivation of the objective (2.11) suggests that:

V (x1, f1) = max
y1∈[y(x1),H]

U1(x1, y1, f1) ≡ V wy1 + V c min{H − y1, λ(y1)}+ f11x1.

Proposition 1 shows that the RI policy is optimal for the last two periods. Hence,

V1(x1, f1)− V RI
1 (x1, f1) = U1(x1, y

∗
1, f1)− U1(x1, y

†
1, f1).

We now prove the two statements in sequence.

(i) When f11 ≥ max{f12, f13} and V w > V c, Lemma 1(b) and Lemma 2(a) imply that

y†1 = y(x1) < H = y∗1. Then,

U1(x1, y
∗
1, f1)− U1(x1, y

†
1, f1) = V wH − V wy†1 − V c min{H − y†1, λ(y†1)}

≥ V w(H − y†1)− V c(H − y†1)

= (V w − V c)(H − y(x1)).

(ii) When f12 < f11 < min{f b
12, f13}, Lemma 2(b) implies that y†1 = H. When V w < V c, the

optimal solution is determined by Lemma 1(a) or (c).

If y(x1) ≥ H ′, then y∗1 = y(x1) and

U1(x1, y
∗
1, f1)− U1(x1, y

†
1, f1) = V wy(x1) + V c(H − y(x1))− V wH = (V c − V w)(H − y(x1)).

If y(x1) < H ′, then y∗ ∈ [y(x1), H
′] and

U1(x1, y
∗
1, f1)− U1(x1, y

†
1, f1) ≥ U1(x1, H

′, f1)− U1(x1, H, f1)

≥ V wH ′ + V c(H −H ′)− V wH = (V c − V w)(H −H ′).

Summarizing the above two cases, we have

U1(x1, y
∗
1, f1)− U1(x1, y

†
1, f1) ≥ (V c − V w)(H −max{y(x1), H

′}).
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Figure 2.5: Value loss under RI and PARI policies: Valuation at the end of March
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Figure 2.6: Value loss of the RI policy recovered by the PARI policy
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Figure 2.7: Effect of discount rate on storage value
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Figure 2.8: Effect of operational flexibility on storage value

The storage values are calculated in March 2007. Discount rate: LIBOR + 1%
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Figure 2.9: Tree model for the first factor
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Figure 2.10: Binomial tree for forward curve with time-varying volatility

T1 represents the end of March, when our planning horizon starts and the April contact is about
to mature. For illustration purpose, we used only 3 binomial steps from T1 to T2. T2 represents
the end of April, when there are 11 remaining prices on the forward curve, the first being the
maturing May futures price. At T3 (end of May), 10 prices remain on the forward curve, and so
on. The time steps shrink and the number of steps within each month increases as the time goes
by, capturing the time-varying volatility. In our actual binomial tree model, we choose a small
initial time step ∆t0 = 0.001 year. When σ = 0.7 and θ = 0.75, there are 90 steps in the first
month, and 480 steps in the last month. The total number of time steps over a year is 2,626.
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Figure 2.11: Value loss under RI and PARI policies: Valuation at the end of October
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CHAPTER 3

Inventory Control and Risk Management of Energy

Storage Assets

3.1. Introduction

In the United States, daily production of natural gas is relatively constant at 52 billion

cubic feet per day (BCF/d), while consumption exhibits significant seasonal variations: 55

BCF/d during the non-heating season (April through October), and 70 BCF/d during the

heating season (November through March)1. The seasonal supply-demand imbalance makes

it necessary to build underground natural gas storage facilities throughout the U.S., in

particular in the Gulf production area and the North East and Midwest consumption areas.

Reflecting this seasonal supply-demand imbalance, the natural gas futures market on the

New York Mercantile Exchange (NYMEX) prices summer contracts at a significant discount

relative to the winter contracts, providing incentives for physical players to acquire and use

the storage assets to capture the summer-to-winter price differentials.

Figure 3.1 shows the natural gas futures prices observed in March 2007. In March, the

firm (owner of a natural gas storage asset) can decide an injection and withdrawal schedule

from April through to the next March by taking long or short positions on futures contracts.

Once these futures positions are determined (e.g., by solving a static profit maximization

problem subject to certain physical constraints discussed in detail in the next section), the

firm essentially locks in a risk-free profit. This is sometimes referred to as the day-1 intrinsic

value of the storage asset. On top of that value, the firm can re-balance its portfolio of

1Source: http://www.eia.doe.gov/pub/oil gas/natural gas/analysis publications/ngprod/ngprod.pdf
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Figure 3.1: Natural gas futures price observed on March 1, 2007

Data source: New York Mercantile Exchange
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futures contracts over time to lock in more profit as futures prices move. However, a potential

problem of this approach is that the storage asset value associated with spot price volatility

is ignored.

Figure 3.2 shows evolution of the Henry Hub spot price and the prices two futures that

mature in 2007 summer and 2008 winter. It is clear that spot price is much more volatile

than the futures prices. It can also been seen that the correlation between spot price and

futures prices are less than the correlation among futures with different maturity dates.

Firms backed by storage assets can take advantage of the volatile spot price and its low

correlation with the futures to make profit from the price spread between the two. This

feature need to be considered in the storage asset valuation.

There are several physical constraints that need to be considered in order to make the

futures and spot trading operationally feasible. First, a natural gas storage facility has its

maximum capacity. If the firms buy more futures than the storage space allows, the firm will

be forced to sell the excess volume on the spot market. Second, the injection and withdrawal

rates depend on the inventory level in the storage facility. The more natural gas is in the

storage, the higher the pressure in the reservoir, hence the slower the maximum injection

rate and the faster the maximum withdrawal rate. Third, New York Mercantile Exchange
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Figure 3.2: Natural gas futures and spot prices
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regulates the timing of delivery of natural gas futures contract2 : (1) delivery shall take place

no earlier than the first calendar day of the delivery month and shall be completed no later

than the last calendar day of the delivery month; (2) all deliveries shall be at as uniform an

hourly and daily rate of flow over the course of the delivery month as is possible under the

operating procedures and conditions of the transporting pipelines. These regulations mean

that the decision made at the last trading day of each futures contract will immediately

affect the decision throughout the delivery month.

In this paper, we incorporate all of the above profit opportunities and physical constraints

into a stochastic dynamic programming problem. The underlying uncertainties are those in

the spot and futures markets, which are modeled as a multi-dimensional stochastic process.

The objective of the firm is to maximize the expected utility of the winter-end profit. The

energy company we contacted with has its fiscal year end in March, and therefore it is most

relevant to concentrate our attention on the shape of the probability distribution of the

winter-end profit.

Our paper is closely related to literature on commodity procurement problem. Seifert

et al. (2004) consider a risk-neutral decision maker who can either buy the commodity in

advance with forward contracts or buy on spot market with a negligible lead time. Under

2http://www.nymex.com/rule main.aspx?pg=33
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a single period setting with stochastic spot price and demand, they derive a closed-form

expression for the optimal order quantity. Golovachkina and Bradley (2002) consider co-

ordinating supply chain of a single supplier and a single manufacturer with the presence

of spot market. By modeling the negotiation procedure as a Stachelberg game, they ob-

tain a closed-form expression for the optimal quantity of contracts the manufacturer should

buy. All the above papers deal with one- or two-period setting. Secomandi (2010) studies

the procurement and sales policy for commodity storage assets under a multi-period model.

Moreover, he introduces inventory dependent injection and withdrawal capacities into the

problem, and commodity spot price is modeled as an exogenously given Markov process.

The optimal trading policy is shown to be characterized by two base-stock levels. Haksoz

and Seshadri (2007) provide an extensive review on recent literature about supply chain

management with the presence of spot market.

None of the above papers consider procurement on futures markets. Goel and Gutierrez

(2006) considered procurement decision making and stochastic inventory control problem in a

periodic review model with the presence of futures market. Different from most other papers

in the field, they include convenience yield and transaction costs into the model. Their results

suggest a significant reduction on storage costs by incorporating spot and futures market

information and cast light on the way how convenience yield affects procurement strategy.

However, their paper doesn’t feature physical constraint common in commodity operations.

Their model admits only one future contract, and does not involve seasonality issues.

The rest of this paper is organized as follows. We start with a formal description of our

model in Section 4.2. The analysis of the inventory control and trading policy is conducted

in Section 3.3. The numerical results are presented in Section 3.4. Concluding remarks are

summarized in Section 3.5.

3.2. Model Description

We consider a firm managing a natural gas storage asset for an entire fiscal year. The

fiscal year ends on March 31st3, so that the management problem starts with injection

(from April to October) and then withdrawal (from November to next March). The firm’s

3The energy company we contacted with has fiscal-year end on March 31.
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objective is to maximize the profit realized at the end of the fiscal year. As discussed in

the introduction, the firm can lock in a risk-free profit by contracting for future deliveries.

But the firm aims at achieving a better profit profile by balancing between the down-side

risk and upside-side potentials. This requires certain control of the risk in the management

objective. In this paper, we control the risk by maximizing the expected utility of fiscal-year

ending profit generated from the natural gas storage asset.

Figure 3.3: Time line of the storage asset management
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The time line of the firm’s decision process is depicted in Figure 3.3. A total of N = 12

futures contracts (corresponding to 12 months) are available for injection or withdrawal

during the fiscal year, with maturity date denoted as Ti (i = 1, 2, ..., N). When a futures

contract matures at the end of a month, in addition to the monetary transactions, the firm

must fulfill the contract obligation by delivering natural gas to or receiving natural gas from

the commodity exchange. The exchange typically requires a uniform delivery schedule over

the entire delivery month.

The firm also engages in spot market trading every day (in practice, spot delivery takes

place within 24 hours after the transaction occurs). Hence, the daily injection or withdrawal

amount is the sum of the futures contract delivery and the spot delivery. That daily amount

has a physical constraint described below.

The total injection or withdraw rate is constrained by the physics of the natural gas
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storage facility. Figure 3.4 shows the daily injection and withdrawal limits for a 1000 BBtu

(billion British thermal unit) storage facility. When the storage has less than 430 BBtu of

natural gas, the maximum injection rate is only constrained by the flow rate at the valve

(10.35 BBtu/day). After that, the more natural gas in the storage, the higher pressure

makes it more difficult to inject. In the case of withdrawing natural gas, a similar logic

can be understood. We note that due to the injection/withdrawal limits, spot trading

volume depends on the futures contract delivery. For example, if the contract schedule

is to withdrawal 5 BBtu of natural gas every day, then the upper and lower limits for daily

spot trading volume have the same shape as in Figure 3.4, but shifted up by 5 BBtu. In

particular, if the inventory is below 120 BBtu, then the firm will be forced to purchase on

the spot market in order to fulfil its obligation.

Figure 3.4: Daily limit of injection and withdrawal
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Data Source: Courtesy of DTE Energy

During injection and withdrawal procedure, a fraction of natural gas is lost due to various

reasons (fuel burning, leakage, etc.). The fuel loss is relatively small (about 1% for injection

and 0.5% for withdrawal), but including it in the model would introduce unnecessarily long

terms that are not essential to the model. For the reader’s ease, we do not include them in

the model description below. For the same reason, we ignore the transaction cost related to

the financial trading.
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The model can be formally written as follows:

Decision epochs:

t = 0, 1, ..., T .

State variables:

pt: spot price in period t;

ft = {f(t, Ti) : t ≤ Ti, i = 1, 2, ..., N}: vector of futures prices, where Ti < T is the

maturity date of the i-th futures. For notational convenience, let us define TN+1 ≡ T . The

delivery of the i-th futures occurs between Ti and Ti+1;

It: inventory (i.e., amount of natural gas in the storage) at the beginning of period t;

wt: wealth (i.e., initial wealth plus cumulative cash flows associated with natural gas

tradings) at the beginning of period t;

dt: futures contract delivery in period t, dt > 0 corresponds to injection, dt < 0 corre-

sponds to withdrawal; this quantity is determined by the futures position on the previous

maturity date (see below for details).

Decisions:

xt = {x(t, Ti) : t ≤ Ti, i = 1, 2, ..., N}: vector of futures positions in period t; x(t, Ti) > 0

corresponds to long positions, x(t, Ti) < 0 corresponds to short positions;

yt ∈ A(It) ≡
[
It + λ(It), It + λ(It)

]
: inventory level at the end of period t. Note that

the change of inventory within a period is yt − It, which must fall within
[
λ(It), λ(It)

]
,

where λ(It) (resp. −λ(It)) is the maximum amount can be injected (resp. withdrawn) in

a single period when the starting inventory level is It. Figure 3.4 depicts a real example of

λ(It) and −λ(It). Note that deciding the ending inventory level yt is equivalent to deciding

the spot market trading volume, which is yt − It − dt.

State Transitions:
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The state (It, dt, wt) has an initial value (I0, d0, w0) = (0, 0, w) and transits as follows:

It+1 = yt (3.1)

dt+1 =





dt, for t 6= Ti

x(Ti, Ti)/(Ti+1 − Ti), for t = Ti

(3.2)

wt+1 = (1 + r)wt +
∑

i : Ti>t

x(t, Ti)
(
f(t + 1, Ti)− f(t, Ti)

)− pt(yt − It − dt)− dtf(Tj, Tj)(3.3)

(3.4)

where r is the one-period interest rate, and Tj is the last maturity date.

Transition equation (3.2) indicates that the futures delivery is even: dt+1 = dt as long as

t is not a maturity date, and when i-th futures contracts mature, the firm has a position of

x(Ti, Ti), which will be evenly spread out between Ti and Ti+1.

In (3.4), the first term is the wealth cumulated at the risk-free interest rate r, the second

term is the cash flows associated with the futures positions (futures are marked to market),

the third term is the cash flows related to the spot market purchase/sales, and the last term

is the cash flow associated with the futures delivery, where we assume pay-on-delivery.4

We use a price model that is commonly seen in practice (see, e.g., Clewlow and Strickland

(2000)). In continuous time, the futures prices are modeled as an n-factor process:

df(t, T ) = f(t, T )
n∑

j=1

σj(t, T )dzj(t) (3.5)

where zj(t), j = 1, . . . , n, are independent Brownian motions and σj(t, T ) is the volatility

of T -maturing futures price due to the factor j at time t. The volatility function can be

estimated from historical forward price data. In practice, it has been found that using a

small number of factors (e.g., n = 2 or 3) can usually capture most of the futures price

dynamics. As empirical observation shows, volatility factors can shape the forward curves

with different maturities in three fundamental ways. One way is to shift up all curves under a

positive shock. A second way is to tilt the curve by moving short maturity and long maturity

curves in opposite directions. The third way is to bend the curve so that two ends move in

the same direction while the middle section moves in opposite direction.

4In reality, the payment is typically delayed until the 20th of the next month. Pay-on-delivery is an
innocuous assumption, which amounts to a slight difference due to the interests earned on early payment.
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The spot price in our context is the one of the regional spot market. It is not the

spot price implied from futures prices. (When implied from the futures prices, spot price

itself is served as an unobservable factor and backed out based on theoretical spot-futures

relations. See, e.g., Schwartz (1997).) In practice, the spot price is typically much more

volatile than the futures price, and the correlation between spot and futures is also less than

the correlations among futures contracts. Firms backed by storage assets often try to make

profit from the price spread between the two.5 In our model, the spot price is assumed to

follow an mean-reverting process with a time-varying mean:

dpt = −κ(pt −mt)dt +
n+1∑
j=1

αj(t)dzj(t), (3.6)

where κ > 0 is the mean-reverting coefficient. Note that an additional factor zn+1 presents

in the spot price dynamics, but not in the futures price. This additional factor captures the

above-mentioned fact that spot is more volatile. The mean process mt reflects the spot price

trend, which should be estimated from the data.

Objective: The firm aims to maximize the expected utility on its fiscal year end wealth

wT :

max E0U(wT ) (3.7)

where U is a concave and increasing utility function, and Et denotes expectation given the

information available at time t.

Dynamic Program formulation:

Let Vt(w, I, p, f, d) be the maximum expected utility at time t when the state of the

system is (w, I, p, f, d). Then

Vt(wt, It, pt, ft, dt) = max
xt,yt

Et[Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)] for t < T (3.8)

VT (wT , ·, ·, ·, ·) = U(wT ) (3.9)

where the state variables evolve according to (3.1)-(3.6). Note that inventory left at the end

of the fiscal year IT has no contribution to the fiscal year end wealth.

5Based on our conversation with the energy company, this fact that spot is more volatile than and less
correlated with futures price is an essential feature that must be captured in valuing a storage asset.
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3.3. Inventory Control and Trading Policies

3.3.1 Optimal Policy

In this section, we examine some basic properties of the optimal inventory control and

trading policy. We show that the value function is concave under mild assumptions, and

then derive the optimality conditions.

Assumption 5. λ(I) is convex and decreasing in I, and λ(I) is concave and decreasing in

I.

Assumption 6. λ and λ are differentiable, and −1 ≤ ∂λ
∂I
≤ 0, −1 ≤ ∂λ

∂I
≤ 0.

The above assumption essentially imposes analytical properties on the injection and with-

drawal constraints in Figure 3.4. The shape of the injection/withdrawal limits in Figure 3.4

can be approximately assumed to satisfy Assumption 5.

Proposition 6. Under Assumption 5, the value function Vt(w, I, p, f, d) defined in (3.8) is

concave in (w, I, d) for any (p, f).

Proof. From (3.9), VT (wT , IT , pT , fT , dT ) = U(wT ). The result clearly holds for t = T .

Suppose that the result holds for Vt+1, t < T . We now show that it holds for Vt. Let the

maximand in (3.8) be

Jt(wt, It, pt, ft, dt, xt, yt) := Et[Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)]

We first show Jt is concave in (wt, It, dt, xt, yt) for any price vector (pt, ft). Consider any two

distinct points: (wi
t, I

i
t , d

i
t, x

i
t, y

i
t), i = 1, 2, and for any given α ∈ (0, 1), let

(w0
t , I

0
t , d0

t , x
0
t , y

0
t ) = α(w1

t , I
1
t , d1

t , x
1
t , y

1
t ) + (1− α)(w2

t , I
2
t , d2

t , x
2
t , y

2
t )

Let (wi
t+1, I

i
t+1, d

i
t+1), i = 0, 1, 2 be the corresponding values of the state variables in the next

period. Then by (3.1)-(3.4), we have

I0
t+1 = αI1

t+1 + (1− α)I2
t+1

d0
t+1 = αd1

t+1 + (1− α)d2
t+1

w0
t+1 = αw1

t+1 + (1− α)w2
t+1, for any realization of (pt+1, ft+1)
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Since Vt+1 is concave in (wt+1, It+1, dt+1), we have for any realization of (pt+1, ft+1):

Vt+1(w
0
t+1, I

0
t+1, pt+1, ft+1, d

0
t+1) ≥

αVt+1(w
1
t+1, I

1
t+1, pt+1, ft+1, d

1
t+1) + (1− α)Vt+1(w

2
t+1, I

2
t+1, pt+1, ft+1, d

2
t+1)

Taking expectation on both sides, we have the concavity of Jt in (wt, It, dt, xt, yt):

Jt(w
0
t , I

0
t , pt, ft, d

0
t , x

0
t , y

0
t ) ≥ αJt(w

1
t , I

1
t , pt, ft, d

1
t , x

1
t , y

1
t ) + (1− α)Jt(w

2
t , I

2
t , pt, ft, d

2
t , x

2
t , y

2
t ).

Next, we show Vt is concave in (wt, It, dt). To simplify notation, we omit subscript t

in the arguments. According to the dynamic program in (3.8), for any r > 0, there exist

(xir, y1r) and (x2r, y2r), such that

Vt(w
i, I i, p, f, di) < Jt(w

i, I i, p, f, di, xir
t , yir) + r, i = 1, 2. (3.10)

Let (w0, I0, d0, x0r, y0r) = α(w1, I1, d1, x1r, y1r) + (1− α)(w2, I2, d2, x2r, y2r). By Assumption

1, we have:

I0 + λ(I0) ≤ α(I1 + λ(I1)) + (1− α)(I2 + λ(I2))

≤ αy1r + (1− α)y2r = y0r

≤ α(I1 + λ(I1)) + (1− α)(I2 + λ(I2))

≤ I0 + λ(I0)

Hence, y0r ∈ A(I0), i.e., y0r is a feasible policy. Now

Vt(w
0, I0, p, f, d0) ≥ Jt(w

0, I0, p, f, d0, x0r, y0r)

≥ αJt(w
1, I1, p, f, d1, x1r, y1r) + (1− α)Jt(w

2, I2, p, f, d2, x2r, y2r)

> αVt(w
1, I1, p, f, d1) + (1− α)Vt(w

2, I2, p, f, d2)− r

where the first inequality is due to the feasibility of the policy (x0r, y0r), the second inequality

is due to the concavity of Jt proved earlier, and the last inequality follows from (3.10). Letting

r → 0 in the above inequalities yields the concavity of Vt in (w, I, d).

Proposition 7. Under Assumption 6, the value function Vt(w, I, p, f, d) defined in (3.8) is

increasing in w and I for any (p, f).
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Proof. For t = T the claim holds since VT = U(wT ) is an increasing function of wT . Suppose

Vt+1 is increasing in wt+1 and It+1. If wt increases, then wt+1 increases. Therefore Vt is

increasing in wt. If It increases from It to It + ∆I, by Assumption 6,

It + ∆I + λ(It + ∆I) > It + λ(It) (3.11)

where we have used property that λ(I) decreases under-proportionally compared to I. Let y∗t

be the original optimal inventory level when starting inventory is It: (1) if y∗t is still feasible

for It +∆I, then by setting inventory to y∗t , we have a scenario where wt+1 increases and the

other state variables for t+1 remain unchanged, (2) if y∗t is no longer feasible for It+∆I, then

it must be that y∗t < It+∆I+λ(It+∆I). Since y∗t +∆I ≥ It+λ(It)+∆I ≥ It+∆I+λ(It+∆I),

y∗t +∆I is feasible for It+∆I. Under the inventory level y∗t +∆I, It+1 increases and the other

state variables remain unchanged. In both scenarios, the value function Vt will increase.

The concavity result gives the following characterization of the optimal policy. Based on

the dynamic program in (3.8) and the state evolution in (3.1) and (3.4), we have the first

order condition for yt:

Et

[
− pt

∂Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)

∂w
+

∂Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)

∂I

]
= 0

Let yt0 be the point that satisfies the above first-order condition, then the optimal y∗t can

then be written as

y∗t =





yt0 if yt0 ∈ A(It)

It + λ(It) if yt0 < It + λ(It)

It + λ(It) if yt0 > It + λ(It)

The optimal x(t, Tj) satisfies:

Et

[∂Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)

∂w

(
f(t + 1, Tj)− f(t, Tj)

)]
= 0, if t 6= Tj,(3.12)

Et

[∂Vt+1(wt+1, It+1, pt+1, ft+1, dt+1)

∂d

]
= 0, if t = Tj.(3.13)

The first-order condition in (3.12) means that at non-maturity date the firm tries to profit

from the futures price dynamics, whereas the first order condition in (3.13) implies that at

the futures maturity date the firm focuses on setting up the optimal delivery rate for the

64



next month.

3.3.2 A Heuristic Policy

The firm’s futures position decided at the maturity date is the firm’s final decision on how

much natural gas to buy or sell during the next month. This position affects the allowable

daily spot trading volume over the next month, since total daily injection/withdrawal amount

is physically constrained. This coupling effect between spot and futures trading exacerbates

the “curse of dimensionality.”

In this section, we develop a heuristic policy under which spot and futures decisions are

decoupled, and the required computational effort is 60-70% less than a full optimization.

More importantly, in Section 3.4, we numerically show that this heuristic policy is actually

near-optimal in the sense that the resulting fiscal-year-end profit distribution is very close

to that under the optimal policy.

In searching for the optimal policy, we notice the following computational burden: at

maturity date Ti, to evaluate each trial futures position x(Ti, Ti), the firm has to resolve

the entire dynamic program from Ti onwards, which is computationally cumbersome. The

idea of the heuristic policy is essentially to obviate the need for resolving the entire dynamic

program for each futures position x(Ti, Ti). In fact, the heuristic algorithm first solves for

the optimal policy for a certain fixed x(Ti, Ti). Then, for other values of x(Ti, Ti), we simply

apply that policy rather than solve for the optimal policy.

Formally, at maturity date Ti, the system state is (wTi
, ITi

, pTi
, fTi

, dTi
), and the firm is to

decide (xTi
, yTi

). We first fix x(Ti, Ti) = (Ti+1 − Ti)d
0 for certain fixed d0 (implying dt = d0

for t = Ti + 1, . . . , Ti+1), and we use the usual backward induction to solve for the optimal

decisions at Ti and for the next month, denoted as {(x∗t (wt, It, pt, ft, d
0), y∗t (wt, It, pt, ft, d

0)
)

:

t = Ti, . . . , Ti+1}.
Next, we search for the optimal position x(Ti, Ti). Rather than search for optimal policy

again for each value of x(Ti, Ti), we apply {(x∗t (wt, It, pt, ft, d
0), y∗t (wt, It, pt, ft, d

0)
)

: t =

Ti, . . . , Ti+1} in the following ways. For each t = Ti, . . . , Ti+1 − 1, we compute the next-

period wealth as if the delivery schedule is d0 every period:

wt+1 = (1 + r)wt +
N∑

j=i+1

x∗(t, Tj)
(
f(t + 1, Tj)− f(t, Tj)

)− pt(y
∗
t − It − d0)− d0f(Ti, Ti)
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and the next-period decisions (x∗t+1, y
∗
t+1) are based on the above wt+1. This policy can be

seen as feasible, because the physical constraint y∗t ∈
[
It + λ(It), It + λ(It)

]
is clearly still

satisfied. In fact, the firm would sell the difference x(Ti, Ti)/(Ti+1 − Ti)− d0 on the spot so

as to maintain its period-end inventory to be y∗t .

The above heuristic policy significantly reduces the computational effort, yet achieves

near-optimal performance (see Section 3.4).

Another important implication of the above heuristic policy is that it allows us to further

derive insights associated with the firm’s management decision. For clarity of exposition, for

the rest of this section, we assume that the daily interest rate r = 0. (When considering the

tradeoff in short time horizon, e.g., a month, r = 0 is an innocuous assumption.)

Using the above heuristic policy, for t = Ti + 1, . . . , Ti+1, wealth evolves according to,

wt+1 = wt +
N∑

j=i+1

x∗(t, Tj)
(
f(t + 1, Tj)− f(t, Tj)

)− pt(y
∗
t − It − dt)− dtf(Ti, Ti).

Taking sum of the above equation from t = Ti to Ti+1−1 and noting that dt = x(Ti, Ti)/(Ti+1−
Ti), we obtain

wTi+1+1 = wTi+1 +

Ti+1∑
t=Ti+1

N∑
j=i+1

x∗(t, Tj)
(
f(t + 1, Tj)− f(t, Tj)

)

−
Ti+1∑

t=Ti+1

pt

(
y∗t − It − x(Ti, Ti)

Ti+1 − Ti

)

−x(Ti, Ti)f(Ti, Ti)

Rearranging terms, we have

wTi+1+1 = wTi+1 + x(Ti, Ti)

[
1

Ti+1 − Ti

Ti+1∑
t=Ti+1

pt − f(Ti, Ti)

]

+

Ti+1∑
t=Ti+1

N∑
j=i+1

x∗(t, Tj)
(
f(t + 1, Tj)− f(t, Tj)

)

−
Ti+1∑

t=Ti+1

pt(y
∗
t − It) (3.14)

In (3.14), we note that by the definition of the heuristic policy, (x∗t , y
∗
t ) is independent of
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x(Ti, Ti). Hence, the decision x(Ti, Ti) affects wealth only through the term

x(Ti, Ti)

[
p[Ti,Ti+1] − f(Ti, Ti)

]
,

where p[Ti,Ti+1] ≡ 1
Ti+1−Ti

Ti+1∑
t=Ti+1

pt is the average spot price over the delivery month.

This term captures the essential tradeoff the firm faces when deciding futures delivery

volume x(Ti, Ti). It shows that by signing x(Ti, Ti) number of futures contracts, the firm

exchanges a deterministic cash flow of the amount x(Ti, Ti)f(Ti, Ti) for a stochastic cash flow

of the amount x(Ti, Ti)p[Ti,Ti+1].

The above result not only reveals the tradeoff of the firm’s decision, but also have signif-

icant implication to our understanding of the futures markets. In finance, it is well-accepted

that the futures price converges to the spot market price when it matures, otherwise arbi-

trage opportunity exists. In the commodity markets, however, the delivery lag casts doubt

on the validity of this convergence. As the delivery of matured futures contracts need to be

evenly spread over the month, the simple arbitrage strategy of getting delivery at low price

and selling high on spot does not work. Instead, the firm is concerned about the average

spot level over the entire delivery month. And we conjecture that, under certain conditions,

in the equilibrium the futures price would converge to the expected average spot price.6

3.3.3 Simplified Model

In this section we simplify the general model. We assume that instead of maximizing

the utility on the end-of-period wealth, the firm is risk-neutral and chooses to maximize

the expected wealth itself. From the futures price process (3.5), f(t, Ti) is martingale with

Etf(t+1, Ti) = f(t, Ti). Thus the expected marking-to-market return from futures is always

zero, and we only need to decide the spot trading on non-maturity days. Let Vt(It, pt, ft, dt)

be the maximal expected revenue-to-go function from period t. The DP formula can then

6Based on our conversation with the energy company, the relationship between the matured futures price
and the average spot price may have strong relations.
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be written as,

Vt(It, pt, ft, dt) = max
xt,yt

−pt(yt − It − dt)− dtf(Tj, Tj)

+Et[Vt+1(It+1, pt+1, ft+1, dt+1)] for t ≤ T (3.15)

VT+1(·, ·, ·, ·) = 0 (3.16)

where the four state variables evolve according to (3.1), (3.2), (3.5) and (3.6).

Proposition 8. Under Assumptions 5 and 6, Vt is concave in (I, d) and increasing in I.

Proof. The simplified model is a special case of the original model with a linear utility

U(w) = w. So all the properties derived in the previous section also hold here.

The optimal spot trading a non-maturity day is characterized by a base stock level y∗t

independent of the starting inventory It. If the inventory level is such that y∗t is attainable

within the delivery limit, then the inventory is increased or decreased to the base stock level.

If y∗t exceeds the upper limit, then the firm should inject up to capacity. If y∗t drops below

the lower limit, then the firm should withdraw down to capacity.

At maturity Ti, the firm needs to decide yTi
and x(Ti, Ti). Let (y∗Ti

, x∗(Ti, Ti)) denote the

maximizer of the RHS of (3.15). If y∗Ti
is attainable, the optimal policy is to set inventory

position at y∗Ti
, and long x∗(Ti, Ti) futures. If y∗Ti

< ITi
+λ(ITi

), choose the limit ITi
+λ(ITi

),

and long x̂(Ti, Ti) futures, where x̂(Ti, Ti) is the maximizer of the maximand when yTi
=

ITi
+ λ(ITi

). If y∗Ti
> ITi

+ λ(ITi
), choose the limit ITi

+ λ(ITi
), and long x̂(Ti, Ti) futures,

where x̂(Ti, Ti) maximizes the RHS of (3.15) when yTi
= ITi

+ λ(ITi
).

Proposition 9. The optimal spot trading volume decreases in It.

Proof. Let st = yt− It− dt be the spot trading volume. The the maximand in (3.15) can be

written as

Jt(It, pt, ft, dt, xt, st) := −ptst − dtf(Tj, Tj)

+Et[Vt+1(It + st + dt, pt+1, ft+1, dt+1)]

Jt is submodular in (It, st) since

∂2Jt

∂It∂st

= Et

∂2V 2
t+1

∂I2
≤ 0
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Note that st ∈ [λ(It), λ(It)], and λ and λ are both decreasing in It. So s∗t decreases in It.

Proposition 10. Under Assumption 6, the marginal value of inventory ∂Vt

∂It
is constrained

by the inequality

∂Vt

∂It

≤ max{Etpt+i|i = 0, 1, ..., T − t}

Proof. To be completed. For t = T , ∂VT

∂IT
= ∂

∂IT
(−pT λ(IT )) = −pT λ′. By Assumption 6

|λ′| ≤ 1, so ∂VT

∂IT
satisfies the inequality. Now suppose the claim holds for t + 1, we will show

that it holds for t as well. There are three cases to consider.

(1) If y∗t = It+λ(It). Vt(It, pt, ft, dt) = −ptλ(It)−dtf(Tj, Tj)+Et[Vt+1(It+λ(It), pt+1, ft+1, dt+1)].

∂Vt

∂It
= −ptλ

′
+ Et[

∂Vt+1

∂It+1
](1 + λ

′
). By Assumption 6, 1 ≥ 1 + λ

′ ≥ 0. So ∂Vt

∂It
≤ (−λ

′
+ 1 +

λ
′
) max{Etpt+i|i = 0, 1, ..., T − t} = max{Etpt+i|i = 0, 1, ..., T − t}.

(2) If It + λ(It) < y∗t < It + λ(It). Vt(It, pt, ft, dt) = −pt(y
∗
t − It − dt) − dtf(Tj, Tj) +

Et[Vt+1(y
∗
t , pt+1, ft+1, dt+1)]. So ∂Vt

∂It
= pt ≤ max{Etpt+i|i = 0, 1, ..., T − t}.

(3) If y∗t = It + λ(It). Proof is the same as (1).

3.4. Numerical Results

In this section, we numerically analyze a six-period model. The periods are indexed as

1, 2, . . . , 6. We consider only two futures, which we call “summer futures” and “winter

futures.” The summer futures are traded in period 1 and 2, maturing at the end of period

2, and delivered from period 3 to 4. The winter contracts are traded from period 1 to 4,

maturing at the end of period 4, and the delivery takes place in period 5 to 6. The summer

futures prices are generally lower than the winter futures prices, and spot commodity is

traded in all periods with a mean-reverting price process (see the price model below).

The detailed time line is shown in Figure 3.5. For notational convenience, we denote

futures prices as f i
t = f(t, Ti), and futures positions as xi

t = x(t, Ti), where i = 1 for summer

futures and i = 2 for winter futures. In the first two periods, the firm decides the spot

trading and the futures positions based on the market information. At the end of period 2,

x1
2 number of summer contracts mature, and will be delivered in equal amounts over period

3 and 4. The firm continues to adjust its position on the winter futures that mature at the

end of period 4, and fulfill the contract delivery over period 5 and 6. The firm’s objective,
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as before, is to maximize the expected utility of the wealth at the end of period 6.

The utility function we impose on end wealth is an exponential utility U(w) = −αe−rw

(α > 0, r > 0). In practice, considering the range of ending wealth and precision of results,

we choose α = 20000 and r = 1/80.

Figure 3.5: The six-period model
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To model the futures and spot prices, we apply the technique described in Section 4.2

with two factors (i.e., n = 2 in (3.5)). Futures prices can then be written as

df1
t = a1f

1
t dz1 + b1f

1
t dz2 (3.17)

df2
t = a2f

2
t dz1 + b2f

2
t dz2 (3.18)

In order to capture the “shift” and “tilt” dynamics, we choose parameters such that

a1a2 > 0 and b1b2 < 0. So the two prices moves in the same (opposite) direction under

shocks on z1 (z2). Moreover, as indicated in Section 4.2, summer contracts are priced at

a significant discount relative to winter contracts. Hence we choose volatility factors and

initial prices to ensure that second forward curve is above the first one. These parameters

are shown in Table 3.1.

Table 3.1: Parameters of futures price

Future 1 a1 = 0.01 b1 = −0.01
Future 2 a2 = 0.01 b2 = 0.005
Notes. The initial prices f0

1 = 6.2 and f0
2 = 6.8
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The spot price evolution (3.6) now becomes:

dpt = κ(pt −mt)dt + a0ptdz1 + b0ptdz2 + c0ptdz3 (3.19)

As discussed in Section 1, correlation between spot price and futures prices is less than

correlation among futures prices with different maturities, so we assign smaller coefficients

a0 and b0 for spot price relative to parameters of futures. Also for the heuristic policy, we

have derived the tradeoff between futures price and expected average spot price in equation

(3.14). In order to avoid arbitrage in the tradeoff term and considering the risky nature of

spot price, we choose κ and mt such that average spot price over period 3 and 4 (5 and 6)

is slightly higher than f 1
2 (f 2

4 ). Parameters of spot price are shown in Table 3.2.

Table 3.2: Parameters of spot price

t 1 2 3 4 5 6
mt f 1

1 + 0.2 f 1
2 − 0.3 f 2

3 − 0.1 f 2
4 + 0.1 f 2

5 + 0.2 f 2
6

κ −0.5 −0.4 −0.6 −0.5 −0.5 −0.5
a0 0.005 0.001 0.005 0.003 0.002 0.005
b0 0.005 0.001 0.001 0.002 0.004 0.005
c0 0.02 0.02 0.15 0.05 0.05 0.02
Notes. The initial spot price is set to 6.4

The firm initially has zero inventory and wealth. The total storage capacity is assumed

to be 100 contracts. We assume that injection/withdrawal limits are the following functions

of inventory,

λ(It) =





40 if It ≤ 40

2
3
(100− It) if It > 40

(3.20)

λ(It) =




−It if It ≤ 40

−40 if It > 40
(3.21)

The curve shown in Figure 3.6 has a similar shape as the empirical plots shown in

Figure 3.4, but the delivery limits magnitude relative to total capacity has been significantly

scaled up. The reason is that we are using this six-period model to simulate for the entire

fiscal year, and accordingly each period represents not a single day but a longer period of

time covering tens of days. As a result, period-wise constraint should be scaled to mimic the
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total injection/withdrawal capacity over months.

Figure 3.6: Injection and withdrawal limits per period

40
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This six-period model is simple, yet captures all the essential features of concern: (a)

the summer-winter price spread and mean-reverting spot price are essential features of the

natural gas prices; (b) the delivery of the futures contract does not happen immediately,

but evenly spreads over the next a few periods; (c) injection and withdrawal are subject to

certain physical constraints.

Figure 3.7: Histogram of the winter-end wealth under the optimal policy
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We first evaluate the performance of optimal policy. Figure 3.7 shows the histogram of

winter-end profit under optimal policy. The vertical line in the figure corresponds to the
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Figure 3.8: Futures delivery per period in period 5 and 6
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“day-1 intrinsic value” that firm can lock on futures market at the beginning of horizon.

This risk-free profit equals the futures price spread (0.6) in the first period multiplied by

total capacity (100).

Figure 3.7 shows that the risk-free profit is at about the 3rd percentile of the histogram.

The upside gain under optimal policy can be as high as 450% of the risk-free profit while the

maximum downside loss is about 60%. Hence the optimal policy offers significant benefits.

Figure 3.8 depicts delivery volume of the second future per period(i.e., x2
4/2 in Figure 3.5)

as a function of spot price and futures price for different starting inventory levels in period 4.

We can see that the surface is negative, which means that the firm sells natural gas through

the second future during the last two periods. When inventory increases, futures position

becomes more negative, which implies that the firm sells more natural gas on futures market.

Also when spot price increases, absolute value of futures delivery decreases, and so does the

withdrawal quantity on futures market.

Figure 3.9 depicts delivery volume of the first future per period(i.e., x1
2/2 in Figure 3.5)

for different prices when the starting inventory in period 2 is 30 or 50. Different from the

results of the second future, futures delivery is positive now, which means that the firm buys

natural gas through the first future. The shape of the surface indicates that the firm buys
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Figure 3.9: Futures delivery per period in period 3 and 4
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more on futures market when spot price is high and futures price is low.

All these results are rather intuitive. Because second future price is generally higher

than the first future price, the firm would like to buy inventory assets using the first future

and sell these assets through the second future later. During the withdrawal season, the

more starting inventory the firm has, the faster she withdraws natural gas. Furthermore, a

higher spot price induces the firm to reduce futures withdrawal and sell more inventory on

spot market. And if futures price increases, selling through futures market becomes more

preferable. A similar explanation extends to the first future in Figure 3.9.

Figure 3.10 shows the histogram under the heuristic policy. The first period intrinsic

value is at the 5th percentile. We can see that the profit distribution under heuristic policy

is very close to the optimal. So heuristic policy is near-optimal for our model. Table 3.3

shows the percentage of the heuristic histogram relative to the optimal histogram in mean,

5th, 25th, 50th, 75th, 95th percentiles. It shows that difference between two histograms

decreases from low percentile to high percentile. At the 95th percentile the difference is very

small. Thus the heuristic policy can capture most of the upside benefits. On the other hand,

the greater difference at low percentile suggests a higher downside risk under heuristic policy.

74



Figure 3.10: Histogram of the winter-end wealth under heuristic policy
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Table 3.3: Performance of the heuristic policy

mean 5th 25th 50th 75th 95th
93.4% 85.8% 92.3% 93.2% 93.5% 99.3%

3.5. Conclusions

This paper studies an inventory control and risk management problem that is of immedi-

ate concern for firms managing natural gas storage assets. Our model takes into account the

delivery mechanism of natural gas futures and the physical constraints in the operation of

storage facilities. We formulate the problem as a stochastic dynamic programming problem,

and characterize the optimal solutions. We numerically determine the optimal policy for a

six-period model. The results demonstrate that optimal policy offers substantial benefits,

and futures delivery at maturities has some certain monotone properties. However, the curse

of dimensionality and the coupling effect between trading in futures market and spot market

make it extremely hard to solve for the optimal policy in practice.

To partially overcome the “curse of dimensionality”, we develop a more time-efficient

heuristic policy. For the same six-period model, we show that the heuristic policy yields a

profit distribution very close to that of an optimal policy. Furthermore, under this heuristic

policy, we identify a crucial tradeoff the firm faces when deciding futures delivery at ma-
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turities. According to the tradeoff, the firm exchanges a deterministic cash flow evaluated

at known futures price for a stochastic cash flow evaluated at unknown average spot price.

This tradeoff also implies that under a financial market equilibrium, natural gas futures price

might converge to its expected average spot price. This is different from the well-accepted

belief in finance that futures price converges to spot price at maturity, and suggests directions

for future research in the interface between operations and finance.

Our model can be easily extended to include injection/withdrawal losses. Another im-

mediate focus is to solve for the problem under a more practical setting, with a much longer

horizon and more futures.
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CHAPTER 4

Capacity Investment, Production Scheduling and

Financing Choice for Nonrenewable Resource Projects

4.1. Introduction and Literature Review

Many nonrenewable projects require significant investment in their early setup stage,

especially in energy and mining sections. The acquisition of mineral rights, exploration and

construction of infrastructure constitute the bulk of setup investment before any revenue can

be realized. The size of the investment made during the setup stage determines the total

amount of resource that the firm has access to during the following production stage. Usually

the firm does not have enough capital to pursue the project on its own and need to seek

external capital to finance the investment. After the project is set up, the project enters the

production stage that is much longer than the setup stage. During production stage, the firm

extracts the resource and sells it at fluctuating market prices. Part of the revenue is paid

back to external investors according to predetermined arrangements in financing contract

and the firm earns the rest.

Equity financing (e.g., joint venture) and debt financing (e.g., loans) are the two primary

forms of financing used in the industry. The essential distinction between equity financing

and debt financing lies in the way how the external investors should be paid back. In equity

financing, the firm, as the original owner of the project, can obtain necessary capital from

outside investor through equity financing partnership, such as joint venture. The external

equity investor and the firm share the cost and profit of the project. In doing so, the

external investor obtains rights to a fraction of the sale revenue by providing part of the
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initial investment, and receives a pre-specified fraction of the revenue as a return. For

instance, in a 60-40 joint venture, the firm pays 60% of the setup cost with its own capital

and its joint venture partner pays the remaining 40%. Reflecting on each party’s share of the

cost, the firm and its joint venture partner split the revenue in production periods according

to some agreed upon ratio, say 60% and 40% in a proportional split, or 70% and 30% in an

unproportional split. As a special case of equity financing, whenever the firm has enough

capital to finance the project on its own, it will do so and act as the single stakeholder in

the project. In terms of the effect of equity financing on operation, no matter how much

stake the firm has in the project, the operations of the project are free from any financial

obligations. Therefore, equity financing allows the firm to choose the operation policy to

maximize its revenue. However, the absolute amount paid to external investor as a fixed

share of the revenue can be huge when revenue soars.

Debt financing also plays an important role in energy/mining industry. Compared to

equity financing, debt financing imposes direct restrictions on the firm’s operation strategy

because of the debt repayment obligation. For example, oil and natural gas producers heavily

depend on external loans to finance the project and such loans can have maturities ranging

from shorter terms of less than 12 months to longer terms of more than 5 years. The

producers repay their debts through the sales of crude oil and natural gas.1 In a booming

market, the producer can easily pay off the debt and retain all the remaining revenue. If

the market is bad, the firm may need to adjust up its production in order to generate

enough revenue to meet the debt repayment obligation. If the firm fails to pay off the debt

at maturity, it declares bankruptcy and loses all the accumulative revenue. While debt

financing may result in bankruptcy, in a booming market, the revenue the firm has to pay

back to loan creditor is capped by a fixed amount, compared to the uncapped amount in

equity financing. In this case, the firm can earn a higher profit under debt financing than

equity financing.

Take the shale natural gas industry as an example. A typical shale gas play consists of the

following steps: land acquisition, drilling, hydraulic fracturing, completion and production.

1Producers can hedge a certain fraction of their production. But oil and natural gas producers usually
hedge production only for the next year or so. Given that the project’s life can be longer than twenty years,
we do not consider hedging in our model.
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In the land acquisition stage, the producer leases land from land owners at a cost that can

be as high as $15000 per acre, and it needs 40-80 acres to drill a well. Exploration, drilling,

hydraulic fracturing and completion can cost the producer $3-7 million per well dependent

on the depth of the well and the exact technology used, and can be done in 4-6 months.

Production of the gas can last for at least 10-20 years, and it takes 3-4 years to recover the

cost assuming a $4 per mmBtu natural gas price. Shale gas play demands huge upfront

investment in the phases of land grabbing, exploration, drilling and hydraulic fracturing.

Shale gas producers depend heavily on external sources for financing, such as joint venture,

debt, intercompany advances, etc. Producers embarked on a shale gas land rush in the past

several years. An interesting ensuing phenomenon in the industry is that even though the

natural gas price collapsed in 2008 and never returned to the pre-peak $6-8 level, instead of

cutting back their production and waiting for the price to recover, producers are actually

extracting more and more natural gas. Among the reasons for producing more in a dire

market is that some producers is forced to produce under financial pressure to pay off their

debts. 2 What happened in the shale gas industry presents provoking research questions

to us. How is the firm’s operation affected by different financing schemes? What are the

factors driving the firm’s financing choice? Under what conditions will the firm choose equity

financing over debt financing and vice versa?

The broad problem of supply chain financing has received substantial attention recently.

We refer readers to Xu and Birge (2004), Buzacott and Zhang (2004), Lai et al. (2009), Kou-

velis and Zhao (2009) for the most recent progress in this area. Xu and Birge (2004) studies

joint production and financing decision making in the presence of market uncertainty and

imperfection, and demonstrates the significant value of integrating production and financing

decisions. Buzacott and Zhang (2004) studies the interactions between a firm’s financing and

operation decisions in a multi-period model where the firm’s borrowing capacity is deter-

mined by its assets. Kouvelis and Zhao (2009) compares bank financing against trade credit,

and concludes that trade credit is superior to debt financing. Most paper in the operations

management area discuss the financing problem using the newsvendor framework, which is

2A Business Week article states that: Shale-gas producers may very well be forced to produce no matter
what the price of natural gas because so much money has already been staked on these various projects. -
Gas Output in Lower 48 Declined in October, EIA Says, Business Week, Dec 29, 2010.
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not suitable for the shale natural gas industry. Also, none of the papers discuss about joint

venture.

The interaction of firm’s capital structure and operational policy is an active research

area in corporate finance literatures. Leland and Toft (1996) examines the optimal amount

and maturity of the debt that the firm should borrow to maximize the firm value in a

continuous-time model. Hennessy and Whited (2005) and Gamba and Triantis (2008) study

the optimal investment and financial policies of a firm in a discrete-time infinite horizon

model. In our basic model we use debt of arbitrary maturity rather than the single-period

debt in Hennessy and Whited (2005) or the perpetual debt in Gamba and Triantis (2008).

Moreover, in our model inventory is exhaustible and the production is capacity constrained.

We consider a stylized model in which a firm needs to finance the project to initiate.

Once the project kicks off, the firm accrues the revenue that is a function of price (which

is exogenous) and production (endogenous). In deciding the optimal level of output in each

period, the firm trades off the value of resource sold in current market and the expected

value of resource to be extracted in the future. If the project is financed by risky debt, then

the obligation to pay back the debt also plays a role in determining the optimal output. The

setting of a financially-constrained firm operating in multiple periods enables us to study the

inter-temporal production pattern and distinguishes our paper from most existing literature.

Classical finance papers treat financing and operation separately. In other words, the form

of financing should not affect how these firms operate. But, our results show that operation

policy depends on the firm’s financing method. We show that with financial obligations, the

firm’s actions will deviate from the unconstrained case. For instance, the firm that finances

the project with equity always follows the optimal policy that a centralized firm will follow,

but the firm under debt financing may modify production quantity with the obligation to pay

back the debt in mind. With bankruptcy risk, the firm chooses its output level to balance

its exposure to bankruptcy risk and its potential to take profits in the future. There does

not exist a monotonic relationship between the firm’s output and its inventory/wealth. We

find that in contrast to the results from prior asset selling models, the optimal output level

may decrease for a higher inventory position if the firm has debt obligation. Besides, when

the firm’s debt position decreases, instead of reducing production as it is under less pressure
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to pay back the debt, sometimes the firm should increase its output.

We are interested in determining the optimal financing method for a project of given

size. We find that under secured debt financing with no default risk, there exists a threshold

project size below (above) which debt financing (equity financing) should be used. If bor-

rowing debt can cause bankruptcy, there may not exist a single threshold that defines two

regions, but rather two or even more critical project sizes to define more than two regions.

The firm may alternate between equity financing and debt financing when project size goes

from one region to another.

Within the context of this multi-period model, we also investigate the effect of debt term

structure and price dynamics on the firm’s financing policy. When debt interest rate is fixed,

we show the maturity leading to the highest project value may be at intermediate maturity

levels. Therefore, equity financing can beat debt financing when the debt maturity is in the

short-term end or long-term end. We show the effect of changing the debt maturity is most

significant when the price is low. We find that as the drift and volatility of price increase, the

firm is more prone to using debt financing. The assumption of finite maturity distinguishes

our study from the majority of papers, which assume either perpetual debt (e.g., Hennessy

and Whited (2005)) or single-period debt (e.g., Buzacott and Zhang (2004) and Boyabath

and Toktay (2011)). We also find that if the price follows a geometric Brownian motion of a

mean-reversion process as in Schwartz (1997), higher volatility leads to higher project value

and the firm is more prone to use debt financing.

The rest of the paper is organized as follows. Section 4.2 describes the multi-period

model used in the paper. We analyze the optimal production policy during the operating

periods in Section 4.3. Section 4.4 discusses the relationship between the term structure of

debt and the firm’s operations and investment policy. Section 4.5 examines the impact of

price dynamics on the firm’s financing choice. Throughout the paper, we consolidate and

complement analytical results with numerical experiments.

4.2. Model Description

We consider a discrete-time finite-horizon model, with periods labeled as t =0, 1, ..., T .

At the beginning of the horizon (t = 0), the firm owns the right to invest in a exhaustible

resource project. The project size is measured by its capacity K, which is the total amount

81



of non-renewable resource in the entire field that the project can produce. Consequently, the

term “capacity” is used to describe the “project size”, and the term “inventory” is used to

denote the amount of resource left in the reserve. Investment in the project is irreversible.

And there is no option to expand or shrink the project size later.

The investment is made at the beginning of period 0. Pre-production preparations, such

as installment of equipments and construction of infrastructures, will take place in period 0.

Period 0 can be much longer than each operating period, reflecting the time needed to set

up the project. The firm starts extracting and selling the resource at the stochastic market

price from time 1 to T . The project has a finite life-time of T periods. The salvage value

of inventory at the end of the last period is zero. No matter what financing vehicle is used,

all parties in our model have the same information. The firm’s objective is to maximize its

own discounted expected profit, by choosing the optimal project size and the appropriate

financing method in period 0, and optimally producing from 1 to T . The profit from the

project consists of the revenue from the project less the capacity investment cost, loan paid

back to creditors and cash flow paid to outside equityholders depending on the financing

method used.

The firm acts as a price-taker. It extracts the resource and sells the output in the

stochastic spot market.3 The spot price of the resource, denoted as pt, follows a stochastic

Markovian process. At the beginning of period t, after observing the current inventory in

reserve xt and the spot price pt, the firm decides the production quantity qt. The per-period

operational profit (revenue flow minus variable cost) of the firm is denoted as r(qt, pt). We

assume r(qt, pt) is continuous, strictly increasing, and differentiable almost everywhere in qt

and pt. Also, we assume r(qt, pt) is concave in qt, and r(0, pt) = 0. We comment that some

widely-used profit functions in existing literature can be regarded as special cases of r(qt, pt).

We refer the reader to the Appendix for detailed discussion of possible forms and relevance

of the various profit functions.

Let wt denote the firm’s wealth (total cash on hand) at the beginning of period t. At the

3In reality, natural resource companies may dynamically hedge their production by using various financial
derivatives over time. However, they only hedge for a period of time that is short relative to the horizon of
the project. For instance, in 2010 Chesapeake hedged about 50% of its year 2011 production according to
its SEC filing. Therefore, we do not consider hedging of price in our model.
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beginning of period 0, the firm is endowed with initial capital w0 and needs to decide project

size K. The required capital cost for this size is cK, where c is the unit cost of capacity. If

the firm does not have sufficient initial wealth to cover the project cost, i.e., w0 < cK, then

the firm needs to seek external sources for financing. It finances through either equity-type

(joint venture) or liability-type (debt-financing) method. We assume the firm has no further

financing opportunities from time 1 to end of project. 4 In our basic model, we consider

a frictionless capital market where taxes, transaction costs and bankruptcy costs are zero.

The firm can invest its revenue in a risk-free security.

According to whether and how the project is financed, we describe the problems for

equity-financed firm and debt-financed firm as follows. Notations used in the paper are

summarized in Table 4.1.

Table 4.1: Notations

K : Project size,

K̂ : Optimal project size when the firm has enough capital to finance on its own,
c : Capacity investment cost per unit,

pt : The price of the resource in period t,
rf : Risk-free interest rate,
xt : The inventory at the beginning of period t,
qd
t : The production in period t under debt financing,

qe
t : The optimal production when the project is financed by equity,
α : The fraction of revenue reserved for the original firm in equity financing,
R : The interest rate charged by the creditor on debt,
m : The maturity of debt,
D : The amount of cash that has to be paid to creditor at maturity,
wt : The cash holding of the firm at the beginning of period t.

A. The Equity-financed Firm

If the project is financed by raising equity, the firm shares the expenses and revenues

of the project with a counter-party equity-holder. If the firm has enough cash holdings to

kick off the project, it will finance the project on its own and consequently become the sole

claimant to the revenue. We also assume if the firm does not have enough capital and decides

4In practice, the firm may repay its existing short-term debt by borrowing or debt rollover. The ability
of the firm to so depends the credit market situation and its own financial strength. Rollover of debt can be
risky because the creditor may refuse to roll over the debt contracts.
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to finance through equity financing, it will dump all its capital in the project. We assume

the fraction of revenue, β, received by the firm in the equity financing partnership has an

affine structure,

β(w0, K) = α + (1− α)
min(w0, cK)

cK
, (4.1)

where α is the fraction reserved for the firm and the remaining fraction of 1 − α is split

proportionally. The term min(w0,cK)
cK

is the share of capacity investment cost contributed by

the firm. The share β(w0, K), once determined in period 0, will remain fixed throughout the

ensuing operating periods.

If the firm has a sufficiently deep pocket w0 ≥ cK, it finances and operates the project

on its own. In this case, the firm has sole ownership of the project. The capacity investment

and production decisions are unconstrained. The firm maximizes the project’s discounted

expected market value, V e
0 (K, p0), determined as follows:

V e
t (xt, pt) = max

0≤qt≤xt

{
r(qt, pt) +

1

1 + rf

EtV
e
t+1(xt − qt, pt+1),

}
t = 1, ..., T (4.2)

V e
T+1(., .) = 0. (4.3)

where rf is the risk-free interest rate per operating period, Et is the conditional expectation

under risk neutral measure Q at period t. For the purpose of simplicity, we suppress the

notation of Q throughout the paper. The terminal condition means that the residual value

of left-over inventory is zero. We let qe
t denote the optimal production in period t, which

depends on inventory and price. At time 0, the project’s expected revenue is V e
0 (K, p0) =

1
1+rf

E0V
e
1 (K, p1). Here we have normalized the discount factor in period 0 to rf . At the

beginning of period 0, the firm decides the optimal project size K̂ by solving the following

optimization,

K̂ = arg max
K≥0

{
V e

0 (K, p0)− cK
}
. (4.4)

If the firm needs to finance the project with the help of external equity, we assume the

firm initiating the project has control right and is responsible for the operations. 5 Unlike

5For instance, in a recent joint venture, “Devon Energy Corp. agreed to sell 30% of its interest in about
650,000 net acres in the oil-rich Cline and Midland-Wolfcamp shales in West Texas to Japan’s Sumitomo
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debt financing, equity financing partnership does not involve bankruptcy risk and operations

are not financially constrained. Since the firm earns a fixed share of the revenue, maximizing

the firm’s revenue is equivalent to maximizing the entire project’s revenue. Therefore, the

firm should follow identical production policy as the unconstrained case given in (4.2), and

the revenue of the entire project will be V e
0 (K, p0).

In equity financing, if the project is too big, the firm has to get more funding from its

equity financing partner and consequently forfeits a larger fraction of revenue. If the project

is too small, it may not generate enough revenue. At time 0, the firm decides the optimal

project size by solving the following problem,

max
K≥0

{
β(w0, K)V e

0 (K, p0)− cK
}
. (4.5)

B. The Debt Financed Model

If the firm starts a project of size K with cK > w0, the firm borrows cK−w0, the amount

exactly needed to cover capacity investment. The debt needs to be paid off at the end of

period m, 1 ≤ m ≤ T (m stands for maturity). Let R be the per-period interest rate paid

to the creditor. Let D denote the total amount that the firm needs to pay the creditor at

the end of period m. R and D satisfy the condition,

(1 + R)m(cK − w0) = D. (4.6)

For simplicity, we assume the debt does not demand any intermediate coupon payment.

There is no transaction cost of raising/liquidating debt. Depending on how the project is

financially constrained, the operation of the project can be divided into three stages, after,

before or at debt maturity.

After maturity m, if the firm survives and has already paid off all debt at m, it becomes

the sole owner of the project and earns the entire revenue. Its operation policy is identical

to the unconstrained policy under equity financing and the project value is given by (4.2).

We now focus on the decision that the firm makes in period m. The firm needs to

pay back D at the beginning of period m from sales of inventory and cash holdings. In

Corp. ...... Devon will serve as the operator of the project and be responsible for marketing.” - Wall Street
Journal, August 1st 2012.
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the worst case, the firm is unable to pay D even if it extracts and sells all inventory, i.e.,

r(xm, pm) + wm < D. Then, the firm goes bankrupt and the value of the project diminishes

to zero.6

If the firm can manage to pay off all debt r(xm, pm) + wm ≥ D, the project value is

determined by the following optimization problem,

V d
m(xm, wm, pm) = max r(qm, pm) + wm −D +

1

1 + rf

EmV e
m+1(xm − qm, pm+1) (4.7)

s.t. 0 ≤ qm ≤ xm (4.8)

r(qm, pm) + wm ≥ D (4.9)

From period 1 to m−1, the firm extracts the inventory, sells it in spot market and invests

the proceedings in a risk-free security. The firm decides production quantity conditional on

current inventory, capital and price,

V d
t (xt, wt, pt) = max

0≤qt≤xt

1

1 + rf

EtV
d
t+1(xt − qt, (1 + rf )(wt + r(qt, pt)), pt+1), 1 ≤ t < m.

(4.10)

At time 0, the firm borrows loan of the amount (cK −w0)
+ with maturity m. The time

0 value function can be written as

V d
0 (K, w0, p0) =

1

1 + rf

E0V
d
1 (K, (1 + rf )(w0 − cK)+, p1). (4.11)

The firm chooses the optimal project size

max
K≥0

V d
0 (K, w0, p0)−min(w0, cK). (4.12)

Next we turn to describe how to determine R, the interest on debt, and D, the amount

paid back to creditor. We consider two situations, i.e., interest R is either exogenously given

or endogenously determined. In the case of exogenously given interest, R is a fixed constant

regardless of the project size and maturity.

6We define bankruptcy in the sense of Wruck (1990), i.e., “as a situation where cash flow is insufficient
to cover current obligations.” This flow-type definition is distinct from the stock-type insolvency, where
“the present value of its cash flows is less than its total obligations.” Since the project is financed with zero
coupon debt, bankruptcy is triggered only at maturity if the firm does not earn enough revenue from the
project to pay debt.
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In the case of endogenously determined interest, we impose the assumption that the

credit market is competitive, debt is fairly priced and the creditor earns an expected return

equal to risk-free rate (see, e.g., Dotan and Ravid (1985), Xu and Birge (2006) and Boyabath

and Toktay (2011)). We turn to the cash flow received by the creditor at maturity m. The

creditor receives D if the firm has enough cash and sales revenue to pay D. Otherwise the

firm defaults and the creditor grabs all the accumulative revenue. Therefore, the cash flow

to the creditor is

Yd(xm, wm, D) = min{r(xm, pm) + wm, D}. (4.13)

In a perfectly competitive market, debt is fairly priced in that the expected return earned

by the creditor under rate R should be equal to the risk-free rate rf . Therefore, we have

E0Yd(xm, wm, D) = (1 + rf )
m(cK − w0). (4.14)

The condition (4.14) guarantees that the borrower can not transfer wealth from the creditor.

From (4.13), (4.6) and (4.14), the interest of the fairly priced debt can be endogenously

determined. Due to the possibility of bankruptcy, R should be no less than risk-free rate

rf . If the firm can always manage to avoid bankruptcy, R would be equal to rf . If the

project size is too big, fairly priced debt may not exist. From a creditor’s perspective, the

maximum profit it can earn from the project is V e
0 (K, p0) through an initial investment

of cK − w0.
7 If cK − w0 > V e

0 (K, p0), there is no way debt could be fairly priced. The

firm’s borrowing capacity is constrained by the maximum value that can be generated by

the project. Throughout the paper, we focus our attention on the case where the firm stays

within its borrowing capacity.

We comment that in the single-period financing models (e.g.,Dotan and Ravid (1985), Xu

and Birge (2004), Kouvelis and Zhao (2009) and Boyabath and Toktay (2011)), production

decision is independent of debt obligation. Because of independence, the fair interest rate

can be analytically derived given the distribution of post-production revenue. In our model,

production decisions before maturity depend on outstanding debt. Therefore, we generally

do not have an analytical representation of R except for some special cases.

7Here we have assumed that the creditor also uses risk-free rate to discount the cash-flow.
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4.3. The Operational and Investment Policy

In this section we examine the optimal operational policy for the project under different

financing methods. We illustrate how the risk of bankruptcy may alter the production policy

and its dependence on inventory/wealth. We describe the condition under which the equity

financing results in higher return than debt financing. In this section, the project size is

exogenously specified and does not come into the firm’s decision.

The operations under equity financing are not financially constrained, no matter how

much stake the firm invests in the project. Because of bankruptcy, the value function under

debt financing is generally not concave. However, if we restrict our attention to the region

where the firm can always manage to avoid bankruptcy, the value function is still concave.

Proposition 11. (i) For an unconstrained firm, the value function V e
t (xt, pt) (t = 1, ..., T )

is increasing and concave in inventory level xt. The optimal production qe
t is increasing in

xt.

(ii) At debt maturity the value function Vm, as described by (4.7), is jointly concave in

(xm, wm, D) in the region r(xm, pm) + wm ≥ D.

(iii) Before maturity, in the set of states (xt, wt, pt) (1 ≤ t < m) where there is no default

risk, (i.e., the firm can always operate the project to avoid bankruptcy no matter what price

scenario happens),the project value is jointly concave in (xt, wt).

Due to the concavity of value function for unconstrained firm, the optimal production qe
t

is characterized by the first-order condition,

∂r

∂q
− 1

1 + rf

Et

∂V e
t+1

∂x
= 0. (4.15)

The above equation means that at optimality the marginal value of current extraction should

equal the expected marginal value of inventory in the future.

Now we examine the behavior of the optimal production policy under debt financing. We

assume the project size and debt term structure are such that the firm can always manage to

avoid bankruptcy. Therefore the value function V d
t is concave and the first-order condition

is valid. If the firm increases production, in that period it will earn a higher cash flow.

But at the same time, the firm will have less inventory left. The optimal production q∗t is
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characterized by the first-order condition,

Et

{
−∂V d

t+1

∂x
+ (1 + rf )

∂r

∂q

∂V d
t+1

∂w

}
= 0. (4.16)

The above equation states that the firm should choose a production quantity such that the

expected marginal value of inventory is equal to the expected marginal value of cash holding.

How the inventory level xt affects production q∗t is characterized by the second-order cross

derivative,

Et

{
−∂2V d

t+1

∂x2
+ (1 + rf )

∂r

∂q

∂2V d
t+1

∂w∂x

}
. (4.17)

The sign of (4.17) is undetermined. Therefore, it is hard to determine if the firm should

produce more with higher inventory/wealth. If the cross-derivative is negative, then the firm

should reduce production for higher inventory level.

Lemma 5. The value function under debt financing satisfies V d
t (xt, wt, pt, D) = V d

t (xt, 0, pt, D−
(1 + rf )

m−twt) for t = 1, .., m.

The above lemma shows that we can use a single variable to record the net cash position

(debt-wealth) of the firm.

Based on the constraint imposed on operations, Figure 4.1 divides states at maturity into

three regions. For a given price pm, the value function is

V d
m(xm, 0, pm, D) =





0, if r(xm, pm) < D,

1
1+rf

EmV e
m+1(xm − r−1(D, pm), pm+1), if r(xm, pm) ≥ D and r(qe

m, pm) < D,

V e
m(xm, pm)−D, if r(qe

m, pm) ≥ D,

(4.18)

where r−1 is the inverse function of r and qe
m is the optimal production of the unconstrained

case.

In deciding the output level, the firm always tries to balance its exposure to market risk

and its potential to profit from a volatile market. Increasing production to attain a higher

cash position provides better protection for the firm against financial distress. Decreasing

production to reserve more inventory implies the project has a higher value in the future. If
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Figure 4.1: The constrained operations at maturity

Bankruptcy

Operationally constrained

Operationally free

Figure 4.1 plots the value and decision at debt maturity. There are three
distinctive regions. If the debt is high enough or inventory is low enough,
the project goes bankrupt. The project is default-free but the production
is operationally constrained if r(xm, pm) ≥ D and r(qe

m, pm) < D. Here
qe
m is the optimal production under equity financing when inventory is xm.

When the firm is operationally constrained, it must produce the minimum
amount to pay off the debt. If r(qe

m, pm) < D, the firm produces qe
m which

is enough to pay the debt. Note that the boundaries between the regions
will change if pm changes.

the firm has low inventory, it tends to take the safe way and produce more to have a higher

cash position. This is because with more cash it can degrade the effect of negative market

situation rather than be forced to produce more in financial distress. If the the firm has high

inventory, it will be less concerned about market risk, because it can always have enough

inventory left to capture profit opportunities in the future. Hence, the firm may cut back

production when it has more inventory. It is worthwhile to note that if inventory continues

to grow higher, eventually the firm should produce more.

In a similar way, we argue that the optimal production may increase if the cash position

decreases or debt increases. If cash position is too low and debt is high enough, increasing

the output in the current period may have little effect to relieve the firm from financial

distress later. Instead, the firm, realizing there is a high chance of bankruptcy/firesale,

would rather cut back production so it can take advantage of higher inventory to capture

profit opportunities in the following periods. The bankruptcy loss resulted from decreasing
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production can be compensated by the gain from higher inventory.

We further examine the optimal production policy through numerical experiments. The

numerical study helps us derive additional managerial insights and characterize the invest-

ment and production policies under different financing approaches. We use the one-factor

model in Schwartz (1997) and the parameters estimated therein to model the commodity

price. Details of the design and implementation of numerical experiments are described in

Appendix B.

Figure 4.2: Optimal production as a function of inventory
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Figure 4.2 plots the optimal production as a function of inventory at different prices and
wealth levels. It is assumed that T = 20, debt maturity m = 3, project size K = 15, initial
capital w0 = 100, revenue function r(q, p) = pq0.6, variable capacity cost c = 18. The interest
rate on debt is exogenously given, R = 3.5%. The two panels all illustrate the optimal
production quantities one period before maturity at t = 2, and are sampled at two different
prices respectively.

Figure 4.2 depicts how the optimal production under debt financing qd
t changes in xt and

wt at different prices. When the wealth position is high enough, the debt obligation becomes

less stringent and the firm simply follows the unconstrained optimal policy. When the wealth

position is too low, the risk of bankruptcy becomes bigger and raising production can only

marginally reduce bankruptcy risk. The non-monotonic relationship between production and

inventory/wealth is most obvious when the market price is at low or intermediate levels.

4.3.1 Financing Policy

Whether equity financing performs better than debt financing and vice versa depends

on various factors. In this section we analyze the effect of project size, cost/revenue split

in equity financing and risk-free rate on financing choice. We postpone the analysis of the
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impact of debt term structure and price dynamics to the next two section. First we look at

the performance of equity financing.

Lemma 6. equity financing profit β(w0, K)V e
0 (K, p0)−min(w0, cK) is an increasing function

of reserved share α. If the reserved share for the firm is α = 0, the profit is a decreasing

function of project size K.

According to the definition of β(w0, K), the expected profit earned by the counter-party

in equity financing is

(1− α)
cK − w0

cK
V e

0 (K, w0, p0). (4.19)

If the counter-party firm makes an expected zero return from the equity financing, we must

have that the above expression is equal to cK − w0, which implies

(1− α)V e
0 (K, w0, p0) = cK. (4.20)

We define Ko as the maximum project size that can satisfy condition (4.20). If Ko ≤ w0

c
,

the firm finances the project on its own. Only when the project is smaller than Ko, does the

counter-party firm make a positive return through the equity financing.

Next, we compare the two financing methods with respect to the changes in the key pa-

rameters, including project size, interest rate, fixed equity financing share and debt maturity.

We start with discussion of the simpler case where the firm has no default risk, then the

analysis is extended to the case with default risk.

Proposition 12. Assume no default risk, and project size is given at K.

(i) There exists a threshold project size Ko. If K > max(Ko, w0

c
), equity financing is preferred

over debt finance; If w0

c
≤ K ≤ max(Ko, w0

c
), debt financing is preferred over equity financ-

ing; If K < w0

c
, the firm finances the project on its own. The threshold Ko is determined

by8

cKo

V e
0 (Ko, p0)

= 1− α. (4.21)

8The result holds because the cost cK is a straight line and has two intersection points with a concave
value function (One intersection is 0). If capacity investment cost is a convex function, the threshold result
still holds. If the capacity cost function is concave, then there may be multiple intersection points.

92



(ii) Furthermore, there exists a level αo, such that for a given project size, equity financing

(debt financing) should be used if α is above (below) αo.

(iii) If debt is fairly priced, then there exists a date, with the maturity beyond (below) which

the firm should choose debt financing (equity financing).

(iv) Ko decreases as the risk-free rate rf increases. Therefore, the firm is more prone to

adopting equity financing when interest rate is higher.

The threshold capacity level in (4.21) is given as the point where the fraction of revenue

proportionally shared in equity financing is equal to the total capacity investment cost. If

α = 0, at the threshold the expected revenue equals the capacity investment cost. However,

this will never happen because It implies that if α = 0, equity financing should not be used.

As α increases, K̂ will increase.

Based on the proof, for part (i) to hold it only requires that the value function is increasing

and concave in capacity. Therefore part (i) is a quite general result. The threshold is

independent of the firm’s capital w0. For a fixed capacity, equity financing and debt financing

will contribute the same amount of capital cK−w0 to the project. The firm pays cK−w0 back

to creditor in debt financing. The threshold Ko is the size of project at which the counter-

party in equity financing makes zero expected profit. This is not surprising because under

debt financing without default risk, the expected return for the creditor is zero. Therefore,

equity financing can only beat debt financing when the counter-party’s expected return is

negative.

In a equity financing with α = 0, project value is decreasing in K. If α = 1, project value

is increasing and always higher than debt financing. For intermediate α, project value is

between the two extremes. The value under debt financing with no default risk, as shown by

the dotted line, attains its maximum at K̂, and intersects with equity financing at Ko. As

α increases, equity financing value goes up and the intersection point Ko becomes smaller.

If α is big enough, equity financing value is consistently higher than debt financing and the

intersection point does not exist.

Part (iii) is straightforward because the value of debt-financed project is increasing in

debt maturity. So far, change in α and m only affects the performance of debt financing. But

in part (iv), change in risk-free rate will affect performance of both debt financing and equity
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financing. While a higher interest rate will result in lower value for both equity financing

and debt financing, the drop in debt financing value is more than equity financing. Under

debt financing, the expected present value of the cash-flow paid back to creditor remains the

same no matter what the interest rate is. However, under equity financing, the firm paid

less to the counter-party since the project value has decreased due to higher interest rate.

We now turn to the comparison of financing methods if the firm may go bankrupt in debt

financing. It can be shown that the the value function under debt financing and the value

function under equity financing can have more than one intersection point.

Proposition 13. If debt is fairly priced and the firm faces bankruptcy risk, there exist double

thresholds Ko and K l (Ko ≥ K l), such that if K > Ko, equity financing should be used; if

K < K l, debt financing should be used. The upper threshold Kh is the same as the capacity

given in (4.21). (But what is the financing decision for K in the middle is not clear yet) Ko

and K l coincide if there is no default risk.

4.4. Impact of Debt Term Structure

In this section we analyze how the debt term structure (e.g., maturity and interest rate)

affect the firm’s project value and capacity investment decision. We consider both exoge-

nously given fixed rate and endogenously determined fair pricing rate. Throughout the paper

we use V d
0 (K, w0, p0 | m,R) to denote the value of the project if it is financed through debt

of maturity m and interest rate R.

Proposition 14. (i) Consider two types of debts with different maturities ml < mh and the

corresponding interest rates Rl and Rh. If (1 + Rh)
mh < (1 + Rl)

ml(1 + rf )
mh−ml, then the

long-term debt should be used,

V d
0 (K, w0, p0 | ml, Rl) ≤ V d

0 (K, w0, p0 | mh, Rh). (4.22)

(ii) If a project of given size with cK > w0 is financed through fairly priced debt (e.g., the

debt satisfies (4.14)), longer debt maturity will result in higher project value. Therefore, there

exists a date, with the maturity beyond (below) which the firm should choose debt financing

(equity financing).
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Proposition 14(i) specifies the the condition under which one term structure performs

better than the other one. Note that the condition is a sufficient condition. Also note that

we derive the above result without imposing any restrictions on the price process.

If interest rate is exogenously given, debt maturity can impact the project value in two

ways. First, a longer maturity implies a higher degree of operational flexibility for the firm

before the firm can produce for longer time before debt is due. Second, a longer maturity

may change the amount of debt the firm has to repay. A longer maturity will results in

a higher face value. If the interest rate is fixed, depending on the specific price process

under consideration, the firm’s ability to pay back the face value may increase or decrease.

Therefore the relationship between maturity and project value is generally undermined unless

additional information is known about the price process. However, if the expected return on

debt is the risk-free rate, shorter maturity does lower the project value.

We qualitatively analyze how the maturity affects the value of the project. Let V d
t (xt, wt, pt | m,R)

denote the value function at t when the debt maturity is m ≥ t and interest is R. For no-

tational convenience, we denote the case r(xm, pm) + wm < D, r(qe
m, pm) + wm ≥ D as Ω1

and Ω2 respectively, and define Ω3 = (Ω1 ∪Ω2)
c. With outstanding debt of maturity m, the

optimal policy is denoted as πm. We denote the state attained in period m under policy πm

as (xm, wm, pm). In order to analyze the variation of value due to change of maturity, we

construct a feasible policy with debt of maturity m + 1. Specifically, we assume under debt

of maturity m + 1, the firm still operates according to πm until m, but operates optimally

from m to T . The difference between the value functions of different maturities can be

decomposed as

V d
0 (K, 0, p0 | m + 1, R)− V d

0 (K, 0, p0 | m,R)

≥ 1

(1 + rf )m
E0

(
V d

m(xm, wm, pm

∣∣ m + 1, R)− V d
m(xm, wm, pm | m,R)

)

=
1

(1 + rf )m

[
E0

(
V d

m(xm, wm, pm | m + 1, R)− 0
∣∣Ω1

)
Prob(Ω1)

+ E0

(
V d

m(xm, wm, pm | m + 1, R)− V d
m(xm, wm, pm | m,R)

∣∣Ω2 ∪ Ω3

)
Prob(Ω2 ∪ Ω3)

]
.

(4.23)

The term E0

(
V d

m(xm, wm, pm | m+1, R)−0
∣∣Ω1

)
calibrates the benefit of longer debt maturity
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where shorter maturity leads to bankruptcy. This term is positive since the firm cannot

perform worse with a longer maturity. The second term calibrates the change of value

where the shorter maturity does not result in bankruptcy. The sign of the second term is

undetermined. If the probability of bankruptcy is high enough, the sum of the two terms

is positive and the value function increases in longer maturity V d
0 (K, 0, p0 | m + 1, R) ≥

V d
0 (K, 0, p0 | m,R). Based on the above analysis, we conjecture that under fixed interest,

the project value will first increase and then decrease in maturity.

If we assume the price pt is capped by an upper bound pu, then the effects of debt

maturity and interest rate on project value can be summarized in the following proposition.

Proposition 15. (i) The project value V d
0 decreases upon the extension of debt maturity

from m to m + 1, if the project size, interest rate and m satisfy the inequality

(1 + rf )r(K, pu)

cK − w0

≤ R(1 + R)m. (4.24)

(ii) For any fixed R, there exists a threshold maturity such that V d
0 decreases in m if m is

greater than this threshold maturity.

(iii) There exists a threshold interest rate, such that V d
0 decreases as debt maturity increases

from m to T for any R greater than this threshold interest.

(iv) If limK→∞ rK(K, pu) = 0, for any given R and m, there exists a threshold project size,

such that V d
0 decreases as debt maturity increases from m to T for any project larger than

this threshold project size.

Figure 4.3 and Figure 4.4 provide numerical illustration relevant to above proposition.

Figure 4.3 illustrates variation of project value as a function of debt maturity at different

initial prices. Panels (a)(b)(c) indicate that the project value first increases and then decrease

in debt maturity. In panel (d), the project value always decreases. In panel (a), as the initial

price p0 is low, the project value monotonically grows from 132.6 for m = 5 to 216.7 for

m = 16. Comparing the curves in (a)(b)(c), we find that as debt maturity increases, the

project value grows faster under a lower initial price. The reasoning is as follows. If the

initial price is low, the firm is under huge pressure to pay off the debt, and more inventory

will be sold and hence less inventory will be left. Extension of maturity will then provide

with the opportunity to save more inventory. If the initial price is higher, the firm may still
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save some inventory given a longer maturity. But the effect is not as significant as the case

when price is low. If the initial price is the highest, the firm is not that concerned about

debt repayment obligation and having a longer maturity does little to save the inventory.

Figure 4.3: Impact of debt maturity on project value at different prices
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Figure 4.3 plots the project value as a function of debt maturity at different initial prices. It
is assumed that T = 20, debt maturity varies from 5 to 20, project size K = 30, initial capital
w0 = 100, revenue function r(q, p) = pq0.6, variable capacity cost c = 8. The firm borrows
cK −w0 = 140 to initiate the project. The risk-free rate rf = 2.5%; the interest rate on debt
is exogenously given, R = 2.8%. The four panels are obtained at four different starting prices
respectively.

A longer maturity impacts the project value in two ways. It implies higher operational

flexibility for the firm and a higher amount to pay to creditor. Figure 4.3 shows that the

optimal maturity m at which the project attains the highest value decreases as the initial

price becomes bigger. Longer maturity is generally better when the price is low. Shorter

maturity is favored when the price is high enough. Medium price implies that optimal

maturity is somewhere in the middle. The project value can decrease in maturity because

the effect of a higher amount paid to creditor will dominate. The benefit of better operational
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flexibility is more significant for lower prices and gradually degrades as maturity increases.

The higher the price, the earlier the loss from a higher amount paid to creditor outweighs

the benefit of flexibility. How longer maturity affects the project value depends on the price.

The firm should be cautious against longer debt maturity if the initial price is high.

Figure 4.3 also implies that there may exist two maturities ml < mh, such that debt

financing performs better than equity financing only when the debt maturity m falls between

ml and mh. This is different from the case of fairly priced debt where the debt financing is

better if m is larger than some threshold maturity. Figure 4.4 is obtained with the output

capacitated by an upper limit. It indicates that the relationship between debt maturity and

project value can be even more complex.

Figure 4.4: Impact of debt maturity on project value at different prices
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Figure 4.4 plots the project value as a function of debt maturity at different initial prices.
It is assumed that T = 20, debt maturity varies from 2 to 20, project size K = 30, initial
capital w0 = 100, revenue function r(q, p) = p min(q, C) with C = 5, variable capacity cost
c = 8. The firm borrows cK −w0 = 140 to initiate the project. The risk-free rate rf = 2.5%;
the interest rate on debt is exogenously given, R = 2.8%. The four panels are obtained at
four different starting prices respectively.
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4.5. Impact of Price Dynamics

In this section, we investigate how the price dynamics impact the firm’s investment

decision and financing strategy. To derive analytical results, we assume the cash flow from

the project is r(q, p) = pqr with r ∈ (0, 1). We will draw some conclusions with respect

to very general price processes first, and then focus the discussion on some specific price

processes that have been widely used to model commodity price.

Lemma 7. If the revenue function r(q, p) = pqr for some r ∈ (0, 1),

(i) the value of the project for an unconstrained firm is V e
t (xt, pt) = δt(pt)x

r
t . The coefficient

δt can be defined recursively,

δt(pt) =

1
1+rf

Etδt+1(pt+1)

(
1 +

(
Etδt+1(pt+1)

(1+rf )pt

) 1
r−1

)r−1 , t = 1, ..., T − 1. (4.25)

with the boundary condition δT (pT ) = pT .

(ii) The project value for an unconstrained firm at time 0 is

V e
0 (K, p0) =

1

1 + rf

KrE0δ1(p1). (4.26)

The corresponding optimal project size is

K̂ =

(
(1 + rf )c

rE0δ1(p1)

) 1
r−1

(4.27)

(iii) The optimal project size K̂ decreases in risk-free rate rf .

We comment that Lemma 7(i)(ii) does not require any additional assumptions on the

price dynamics. The only parameter depending on price dynamics in the expression of

V e
0 and K̂ is δ1(p1). Now we analyze how δ1(p1) changes with respect to price dynamics.

Specifically, we consider two types of price processes,

pt+1 = pte
µ+σε, (4.28)

log(pt+1) = ρ log(pt) + σε, (ρ > 0) (4.29)

where ε ∼ N (0, 1) i.i.d. is the random shock, σ models the volatility, µ models the drift, and

ρ is the decay rate. The first process can be viewed as a discrete-time version of continuous-
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time geometric Brownian motion. The second process specifies that the log price follows an

AR(1) process. The AR(1) process can be obtained by sampling a continuous-time mean-

reversion process. Both processes have been widely used to model evolution of commodity

price (see e.g. Deaton and Laroque (1996)). In the Appendix, we show the AR(1) process can

be regarded as a discrete-time version of the one-factor commodity price model in Schwartz

(1997).

When the price evolves according to (4.28), we analyze the relationship between drift/volatility

and δt(pt). First we note ET−1pT and ET−1pT

(1+rf )(pT−1)
= 1

1+rf
eµ+ 1

2
σ2

are increasing in µ and σ.

Hence, δT−1(pT−1) is an increasing function of µ and σ. By induction it can be proved that

δt(pt) is increasing in µ and σ. Therefore, the optimal project size K̂ increases in µ and σ.

When the price evolves according to (4.29), we can prove that δt(pt) is monotonically

increasing in volatility σ. Therefore, the firm with a sufficient capital should invest more

aggressively if the market is more volatile. However, the relationship between δt(pt) and ρ

is not monotonic. We will examine the impact of ρ by numerical method later.

Proposition 16. If the price follows geometric Brownian motion, the threshold inventory

level Ko increases in µ and σ. In other words, if the price drift µ or volatility σ increases,

the firm is more likely to use debt financing.

The reason is that the project value increases in µ and σ. As a result, the partner of

the firm in equity financing will make more profit if µ and σ increase. But the creditor

who lends money to finance the project always earns the same amount no matter what the

project value is.

4.6. Conclusions

In this paper we develop a multi-period model to study how the firm makes real invest-

ment, financing and production decisions, and how these decisions are affected by various

market factors. The firm has an irreversible investment opportunity in a project in the very

beginning. Since the firm has a limited budget, external capital is needed if the setting up

the project demands more than the firm’s own capital. The firm can raise additional capitals

to cover the project setup cost through either equity financing or debt financing. There are

no further opportunities to raise additional capitals after the operations start. Operations

100



of the project generate stochastic cash-flows, out of which the firm repays its partner in

equity financing or creditor in debt financing. The two financing approaches differ in the

way the cash-flows are garnered from the project and the restrictions imposed on the opera-

tions. If a firm with outstanding debt fails to meet the debt repayment obligation, it declares

bankruptcy and is divested of any wealth generated by the project. The firm is immune from

bankruptcy if it finances through equity financing, but it may give up a significant share of

the revenue to its equity financing partner.

We show and explain that debt obligation can significantly alter the firm’s operations

policy. With higher inventory or lower wealth, the firm with outstanding debt may decrease

its output to maximize the expected profit. We show how price dynamics impact the firm’s

investment decision. Increased drift and volatility make the firm more prone to use debt

financing. We demonstrate how the firm’s financing choice and operation policy are affected

by the term structure of debt. Extension of debt maturity provides the firm more flexibility

in scheduling its production but also demands more amount to be paid back to creditor.

With the interest rate fixed, we show that a longer maturity generally results in higher value

if the project is financed by short-term debt but can be detrimental if the project is financed

by long-term debt. The effect that longer maturity leads to higher project value is most

significant when the market price is low. The non-monotonic relationship between project

value and debt maturity indicates that debt financing may be used only when the maturity

falls into certain intermediate range. The non-monotonic relationship provides managerial

insights for managers to choose appropriate maturity under debt financing. We discuss

the conditions under which equity financing is better than debt financing and vice versa.

Without bankruptcy risk, equity financing is preferred over debt financing if the project size

exceeds some certain threshold.

There are several directions that the current work can be extended in the future. For

instance, we may consider a model where debt demands periodic coupon payment and the

firm can default before maturity if it misses coupon payment. While the production decision

is made dynamically in our model, the firm is given a single opportunity to make irreversible

investment and financing decisions. It may be possible to develop a model where the firm

can dynamically adjust its capital structure by issuing new debt and equity in later periods.
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4.7. Appendix

4.7.1 Examples of Revenue Function

The production qt may be limited by either a physical limit, e.g., pipeline capacity, or

the economics of the production is such that qt has an upper bound. The general form of

r(q, p) covers various types of revenue function, such as

r(q, p) =





qp if q ≤ C̄

C̄p if q > C̄
(4.30)

r(q, p) =





qp− aq − 1
2
bq2 if q ≤ p−a

b

(p−a)2

2b
if q > p−a

b

(4.31)

r(q, p) = pqr for r ∈ (0, 1) (4.32)

The formula in (4.30) corresponds to the case when the output per period is capacitated by

a constant limit C̄. For instance, C̄ may represent the maximum flow rate of the pipeline

for an oil field. We can also include a quadratic production cost ax + 1
2
bx2 in the function

as in (4.31). With a quadratic cost function, production is naturally capacitated as the

firm should stop producing when marginal cost is equal to the current price. The function

in (4.32) represents an iso-elastic revenue. All three types of function have been used in

previous literature.

4.7.2 Setup of Numerical Study

Price. In our numerical study, we derive the discrete-time price pt from the the one-factor

commodity price model in Schwartz (1997), which specifies that the commodity price S in

continuous-time follows,

dS = κ(µ− log S)Sdt + σSdZP ,

where κ is the mean-reverting rate, µ is long-term mean, σ is volatility and ZP is the

Brownian motion under physical measure. The logarithmic price log S follows the Ornstein-

Uhlenbeck process, with its representation under risk-neutral measure as

d log S = κ(µ− σ2

2κ
− λ− log S)dt + σdZ.
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Here λ is the market price of risk. The discrete-time price pt is sampled from St with time

step size δt = 1. Then we have log pt follows an AR(1) process

log(pt+1) = η + ρ log(pt) + σεt, (4.33)

where εt ∼ N(0, σ) is the random shock, and

ρ = e−κ, η = (1− e−κ)(µ− σ2

2κ
− λ), σ = σ

√
1− e−2κ

2κ
.

Following the method in Tauchen (1986) and Hennessy and Whited (2005), we approx-

imate the AR(1) process (4.33) with a Markov-chain of Np states (p1, ..., pNp), which are

defined as follows,

pi = exp

{(
i− Np + 1

2

)
6σ

Np

√
1− ρ2

}
, i = 1, ..., Np

We then divide the price space into Np cells {[θi, θi+1]}, i = 1, ..., Np, where the boundary

points θis are

θ1 = −∞, θi =
log pi−1 + log pi

2
, θNp+1 = ∞.

If the price falls into [θi, θi+1], we regard it as in state i. The state transition matrix is

π(i, j) = N

(
θj+1 − ρ log pi

ρ

)
−N

(
θj − ρ log pi

ρ

)
.

We also discretize state variable inventory x and cash holding w into Nx and Nw sections.

The decision variable q takes values in [0, x] and we discretize it into Nq sections. All param-

eters used in the basic model are summarized in Table 4.2. The values of price parameters

(κ, µ, σ, λ) are from Schwartz (1997) Table IV.

4.7.3 Proofs

Proof of Proposition 11: (i) It is straightforward to establish that V e
t is increasing in

xt. Now we prove concavity. In the last period, given the zero salvage value of inventory,

the firm simply sells all inventory on hand and its profit V e
T (xT , pT ) = r(xT , pT ) is concave

in xT . Supposing V e
t+1(xt+1, pt+1) is concave in xt+1, we now prove V e

t (xt, pt) is concave in
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Table 4.2: Basic model parameters

T Production horizon 20
κ Mean-reverting rate 0.301
µ Long-term mean 3.093
σ Volatility of price 0.334
λ Market price of risk -0.242
r Interest rate 2.0%
ρ AR(1) process decay rate 0.6
σ AR(1) process random shock volatility 0.15
Np Number of states for price 12
Nw Number of cash holding discretization steps 50
Nx Number of x discretization steps 200
Nq Number of production q discretization steps 100

xt. The maximand in (4.2)

r(qt, pt) +
1

1 + rf

EtV
e
t+1(xt − qt, pt+1)

is jointly concave in (xt, qt). After optimization over qt, we have that V e
t (xt, pt) is concave

in xt. Checking the cross derivative of the maximand with respect to xt and qt, we find the

derivative is non-negative. Therefore optimal production qe
t increases in inventory position

xt.

(ii) We note that Vm in the region r(xm, pm) + wm ≥ D can be written as

V d
m(xm, wm, pm; D) = max

qm

{
r(qm, pm) + wm −D +

1

1 + rf

V e
m+1(xm − qm, pm+1)

}
, (4.34)

s.t. 0 ≤ qm ≤ xm,

r(qm, pm) + wm ≥ D

where we have made the dependence of Vm on D explicit. The maximand in (4.34) is

jointly concave in (xm, wm, D, qm). The feasible set defined by the two inequalities in the

above optimization problem is a convex set. Therefore we have Vm is jointly concave in

(xm, wm, D).

(iii) The value function before maturity is given by (4.10). The maximand 1
1+rf

EtV
d
t+1(xt −

qt, (1+rf )(wt+r(qt, pt)), pt+1) in jointly concave in (xt, wt, qt). In fact, let us consider the max-
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imand defined at (xa
t , w

a
t , q

a
t ), (xb

t , w
b
t , q

b
t ) and (xc

t , w
c
t , q

c
t ) = θ(xa

t , w
a
t , q

a
t ) + (1− θ)(xb

t , w
b
t , q

b
t )

for θ ∈ (0, 1). Then

θV d
t+1(x

a
t − qa

t , (1 + rf )(w
a
t + r(qa

t , pt)), pt+1) + (1− θ)V d
t+1(x

b
t − qb

t , (1 + rf )(w
b
t + r(qb

t , pt)), pt+1)

≤V d
t+1(x

c
t − qc

t , (1 + rf )(w
c
t + θr(qa

t , pt) + (1− θ)r(qb
t , pt)), pt+1) (because V d

t+1 is concave)

≤V d
t+1(x

c
t − qc

t , (1 + rf )(w
c
t + r(qc

t , pt)), pt+1). (because r(qt, pt) is concave)

The optimization of a concave function in a convex set will yield Vt, which is jointly concave

in (xt, wt). ¥

Proof of Lemma 6: Because β(w0, K) is increasing in α, the profit under equity financing

simply increases as α increases. If α = 0, the derivative of profit with respect to K is

w0

c

∂V e
0

∂K
K − V e

0

K2
. (4.35)

Since V e
0 is concave in K, the nominator in the above expression is not positive

∂V e
0

∂K
K−V e

0 ≤
0. Hence, the derivative (4.35) is not positive and expanding the project through equity

financing can only decrease the project value earned by the firm. ¥

Proof of Proposition 12: (i) For project size K ≤ w0

c
, the firm simply uses its own capital.

For bigger project K > w0

c
, the profit under equity financing and debt financing are

(
α + (1− α)

w0

cK

)
V e

0 (K, w0, p0)− w0 and V e
0 (K, w0, p0)− cK

respectively. The difference between the above two values is,

((
α + (1− α)

w0

cK

)
V e

0 (K, w0, p0)− w0

)
− (V e

0 (K, w0, p0)− cK)

= (cK − w0)

(
1− 1− α

cK
V e

0 (K, w0, p0)

)
.

Which financing method is better depends on the sign of 1−1−α
cK

V e
0 (K, w0, p0). If 1−α

cK
V e

0 (K, w0, p0)

is consistently greater than or less than 1 for any K > 0, either debt financing or equity fi-

nancing prevails. Otherwise, there exists Ko > 0 at which 1−α
cKo V e

0 (Ko, w0, p0) = 1. Moreover,

Ko is unique because V e
0 is concave.

(ii) The profit under equity financing is a strictly increasing function of α. Further, if α = 1,

equity financing prevails over debt financing. If α = 0, either debt financing yields higher
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profit than equity financing or equity financing is still better. The threshold αo is either 0

or the number at which equity financing profit is equal to debt financing.

(iii) The value under debt financing is an increasing function of m.

(iv) V e
0 is a decreasing function of rf . ¥

Proof of Lemma 7: (i) We prove by induction. In the last period T , the firm ex-

tracts and sells all remaining inventory, V e
T (xT , pT ) = pT xr

T and the result holds. Assuming

V e
t+1(xt+1, pt+1) = δt+1(pt+1)x

r
t+1, the optimal production in period t is determined by

V e
t (xt, pt) = max

0≤qt≤xt

qr
t pt +

1

1 + rf

(xt − qt)
rEtδt+1(pt+1) (4.36)

The optimal production

qe
t =

( 1
1+rf

Etδt+1(pt+1))
1

r−1

p
1

r−1

t + ( 1
1+rf

Etδt+1(pt+1))
1

r−1

xt. (4.37)

Therefore, qe
t is a certain fraction of xt. Plugging qe

t into (4.36), we have

V e
t (xt, pt)

=


 ( 1

1+rf
Etδt+1(pt+1))

1
r−1

p
1

r−1

t + ( 1
1+rf

Etδt+1(pt+1))
1

r−1




r

xr
tpt +

Etδt+1(pt+1)

1 + rf


 p

1
r−1

t

p
1

r−1

t + ( 1
1+rf

Etδt+1(pt+1))
1

r−1




r

xr
t

=
Etδt+1(pt+1)

1 + rf

pt

( 1
1+rf

Etδt+1(pt+1))
1

r−1 + p
1

r−1

t(
p

1
r−1

t + ( 1
1+rf

Etδt+1(pt+1))
1

r−1

)r xr
t

=

Etδt+1(pt+1)
1+rf

pt

(
p

1
r−1

t + ( 1
1+rf

Etδt+1(pt+1))
1

r−1

)r−1xr
t

=

Etδt+1(pt+1)
1+rf(

1 + ( 1
1+rf

Etδt+1(pt+1)
pt

)
1

r−1

)r−1xr
t

= δt(pt)x
r
t

(ii) The project value net of capacity investment cost at time 0 is 1
1+rf

KrE0δ1(p1) − cK,

which is concave in K. Using the first-order condition, we find the optimal project size as

K̂ =
(

(1+rf )c

rE0δ1(p1)

) 1
r−1

.
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(iii) We prove δt(pt) is a decreasing function of rf by induction. Suppose it is true for

δt+1(pt+1) is decreasing in rf . Then Etδt+1(pt+1)
1+rf

is a decreasing function of rf . By checking

the first-order derivative, we can prove that δt(pt) is an increasing function of Etδt+1(pt+1)
1+rf

.

Therefore, higher interest rate will lead to lower optimal project size. ¥

Proof of Proposition 13: We consider three different value functions, V e
0 , V d

0 and V †
0 . We

derive upper and lower bounds to benchmark the profit when the project can go bankrupt.

In order to derive the lower bound, we construct a value function V †
0 . The only difference

between V †
0 and V0 is the treatment of bankruptcy. Specifically, we define

V †
m(xm, wm, pm) =





V e
m(xm, pm) + wm −D, if r(xm, pm) + wm < D

V d
m(xm, wm, pm) if r(xm, pm) + wm ≥ D

(4.38)

Due to the way it is constructed, the inequality V †
m ≤ V d

m holds for all states. Therefore, we

have V †
0 ≤ V d

0 .

The value under bankruptcy risk is lower than the value without bankruptcy risk, V d
0 (K, w0, p0)−

w0 ≤ V e
0 (K, w0, p0) − cK. Therefore, V e

0 (K, w0, p0) − cK provides an upper bound on the

value.

If there is no default risk, V †
0 and V e

0 − cK coincide, V †
0 = V e

0 − cK. ¥

Proof of Proposition 14: (i) We let πt denote the optimal operation policy when debt

maturity is t. If debt maturity is mh, we construct a policy based on πml
and show this policy

can yield a value no less than V0(K, w0, p0 | ml, Rl). Specifically, we let the firm operates

in the way exactly the same as πml
. We denote the distribution of profit in period t under

policy π by Qpi(ωt), which is contingent on the price realization ωt.

(ii) We consider two projects of the the same size but different debt maturities. Let Rt denote

the interest for debt of maturity t. To study the effect of maturity on project value, we need

to compare V d
0 (K, 0, p0 | m,Rm) and V d

0 (K, 0, p0 | m + 1, Rm+1). Let πt denote the optimal

operation policy when debt maturity is t. The realization of profit in period m under policy

π and price evolution ωm is denoted by Qπ(ω). Therefore we have E0 min(Qπm(ωm), Dm) =

(1 + rf )
m(cK − w0).

If the maturity is extended to m+1, we construct a hypothetical policy and interest rate

such that the creditor earns the same risk-free return and the firm earns a value not less
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than V0(K, 0, p0 | m,Rm). Specifically, we consider an interest rate

Rm+1 = ((1 + rf )(1 + Rm)m)
1

m+1 . (4.39)

Under this rate, Dm+1 = (1 + rf )Dm. We assume the firm still follows policy πm. If for

some state the firm goes bankrupt under maturity m debt, it will go bankrupt in the same

state with maturity m + 1 debt. If for some state the firm is solvent under maturity m

debt, it will still be solvent under maturity m + 1 debt. Then the creditor earns E0 min((1 +

rf )Q
πm(ωm), (1 + rf )Dm) = (1 + rf )E0 min(Qπm(ωm), Dm) = (1 + rf )

m+1(cK − w0), which

means the return on debt is the risk-free rate. At the same time, the value earned by the

firm is still V0(K, 0, p0; m,Rm). Therefore, given that the firm has alternative policies other

than the above hypothetical policy, it will earn a higher value than V0(K, 0, p0 | m,Rm). ¥
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CHAPTER 5

Conclusions

This dissertation consists of three essays, with the first two dealing with operations

and valuations of energy storage assets and the third essay dealing with the interactions of

financing and operations in the development of non-renewable resource projects.

In the valuation problem based on futures market, the firm operates the storage on

a monthly schedule with the injection and withdrawal quantity constrained by inventory-

dependent limits. In practice, practitioners use heuristic policies to capture the seasonal

price spread under limited flexibility. The first essay identifies when and why the industry

heuristics lead to significant losses. A new heuristic policy called the price-adjusted rolling

intrinsic (PARI) policy is developed to capture the optimal values embedded in the optimal

policy. The second essay develops a model to integrate the granular spot market. The firm

can take profits not only from seasonal price spreads, but also futures/spot price differentials.

The problem is considerably more complex due to the coupling effect of trading in futures

market and the spot market. We develop a more time-efficient heuristic policy to overcome

“curse of dimensionality”.

In the third essay, I develop a multi-period model to study how the firm makes real

investment, financing and production decisions jointly, and how these decisions are affected

by various market factors. Operations and financing decisions are intertwined even if the

project does not bear any default risk. I show that with higher inventory or lower wealth, the

firm with outstanding debt may decrease its output to maximize the expected profit. Higher

drift and volatility of price make the firm more prone to use debt financing. Extension of debt

maturity provides the firm more flexibility in scheduling its production but also demands
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more amount to be paid back to creditor. There does not exist a monotonic relationship

between debt maturity and project value. I show that increasing debt maturity generally

results in higher project value in the short term. But increasing maturity can be detrimental

if the debt maturity is longer than some certain date. Project value is most sensitive to debt

maturity when the market price is low. The non-monotonic relationship between project

value and debt maturity also implies that the firm may choose equity over debt if debt

maturity is too long or too short.

Several extensions to the above essays are possible. For the energy storage assets valua-

tion problem, it is worthwhile to derive a hedging strategy since in practice the manager is

concerned about the distribution of profit. For the financing problem, the model may be ex-

tended to include periodic coupon payment, with which the firm can default before maturity

if it misses coupon payment. In the current model the firm is given a single opportunity to

make irreversible investment and financing decisions. It may be possible to develop a model

where the firm can dynamically adjust its capital structure by issuing new debt, paying out

dividends and raising equity in any periods.
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