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ABSTRACT

Design Loads Generator: Estimation of Extreme Environmental Loadings for Ship
and Offshore Applications

by

Dae-Hyun Kim

Chair: Armin W. Troesch

High-fidelity hydrodynamic loads computation systems have become available due

to developments in fluid dynamics and computer science. However, the use of these

programs during the concept design stage of novel marine systems remains relatively

unpopular, partly due to prohibitive costs. Addressing this issue requires approaches

in at least two directions. The first would be to improve the accuracy and speed

of computation, while the second would be to find rational and accurate ways of

determining design events. Compared to the many efforts being made in the former

direction, the latter has often been considered an open question or an area of future

research. The aim of the current dissertation is to address this very question.

Design processes can be highly subjective and vary significantly depending on

projects. However, any rational design process should include the identification of

design life and operating environments. The extreme response of a marine system

under an operating environment for a finite time period should then be studied not as

a deterministic event, but as a stochastic process. Therefore, it is fitting and proper

to consider the distribution of extreme environmental loadings.

The distribution of extreme responses can be calculated without extensive Monte

Carlo type computations through a probabilistic process, here designated as Design

Loads Generator (DLG), redeveloped in this dissertation. More specifically, DLG

is a process that can construct an ensemble of short input time series, the extreme

responses of which follow the theoretical extreme value distribution of a Gaussian

random variable for a given exposure time. The input time series are calculated

based on the assumption of a linear system and a Gaussian seaway, which are both

xvi



deemed fit and proper especially during the concept design stage. Moreover, the

exposure time associated with the Gaussian process becomes a good measure by

which the associated nonlinear responses can be bounded. This dissertation presents

several examples that show, through the use of this strategy, how the distribution of

even a highly nonlinear, non-Gaussian process can be bounded, suggesting DLG can

supplement or even replace the rule-based design approach.
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CHAPTER I

Introduction

1.1 Estimation of Extreme Environmental Loadings

Crucial to the robust structural performance of marine vehicles and offshore units

is the prediction of extreme environmental loading. The source of environmental

loading includes, but is not limited to, ocean waves, winds, currents and tides. While

winds, currents and tides can also become salient sources of environmental loading

to offshore units, the most important environmental loading for any marine system

near or on the water surface is due to ocean waves.

Traditionally, environmental loading has been incorporated into design loads esti-

mation via a rule-based design approach. However, this inherently empirical approach

may not guarantee a robust design in an unconventional system, the experience of

which is limited, or when operational requirements are rather special, as in high-speed

vessels. Moreover, since the estimation of loads is based on only a handful of param-

eters, the effects of evolutionary changes during the design process may not be fully

captured in this rather standard approach.

To address this limitation, rule-based initial estimates should be further refined by

incorporating results from model tests and/or computer-based direct analyses. While

model tests produce reliable results when properly done, they are very expensive to

conduct, especially during the concept design stage. Due to the prohibitive cost and

time constraints of model testing in this stage, computer-based design or rationally-

based design as explained in e.g., Hughes (1988) may be more appropriate.

As computation power has literally exploded over the last few decades, many

high-fidelity, hydrodynamic load computation systems have now become available

for the use in rationally-based design. However, computer-based direct analysis also

does not provide a perfect solution that is readily and quickly available to naval

architects. In particular, fully nonlinear problems still require a significant amount of
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time to be solved even with high-performance computers, thus preventing a thorough

investigation of the design space necessary to determine an optimal design. Hence,

one of the open questions is how to efficiently identify the extreme environments that

will yield design loads; this is a formidable task considering the inherent random

nature of ocean environments and the lack of complete mathematical models for such

phenomena as rogue waves.

In order to handle this issue, long-term design load estimates that require lengthy

time domain simulations are often statistically extrapolated, under certain assump-

tions, from a series of rather short-term Monte Carlo simulations that utilizes pseudo-

random number generators. However, these short-term results are still problematic

in that the confidence level in the statistical estimation might be low when based

on a small number of samples, not to mention that the results are dependent on the

validity of the assumptions.

One of the critical assumptions includes a specific probability distribution that

the target response of interest would follow, where the target response refers to a

specific loading to be considered during the design process. For example, the Weibull

distribution (Weibull, 1951) is widely used to model extreme hull bending moments,

and many other important responses. Another important assumption relates to the

proper mathematical models for ocean waves and the characteristics of the marine

system in question. With regard to the ocean waves, the Gaussian model is still

deemed sufficiently accurate for concept design studies. Meanwhile, the response of

a marine system exhibits both linear and nonlinear types of behavior.

1.2 Objective of Current Research

The aim of the current research is not to reexamine the validity and the limita-

tions of the assumptions described above, but rather to find a rational engineering

process that can properly address the aforementioned limitations of model testing

and/or computer-based design approaches utilizing the assumptions. More specifi-

cally, the problem that the current research answers is how to find an ensemble of

short wave/response time histories around the design event defined in a way that is

statistically meaningful. The short input time histories can then be used relatively

easily as inputs to high-fidelity (or very expensive), hydrodynamic load computation

systems. The inception of the idea dates back to Troesch (1997), but Alford (2008)

was first to realize the idea using a non-uniform phase distribution and an optimiza-

tion algorithm. Later, Kim & Troesch (2010), Kim et al. (2010), and Alford et al.
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(2011) presented a more complete picture of the process by including the results from

nonlinear time domain simulations. However, this early version of the Design Loads

Generator (DLG) process did not completely satisfy the overall objective of finding

an ensemble of inputs wave series whose distribution of resulting extreme responses

matches a theoretically derived probability density function (PDF).

The current dissertation presents a significantly redeveloped probabilistic pro-

cess/model, here again designated as DLG. This process can now be used to exactly

and efficiently identify design events under the assumption of a linear system in the

Gaussian ocean wave, eliminating the need for Monte Carlo experiments. In essence,

DLG produces an ensemble of short time series around the target extreme events of a

marine system. The target extreme events in DLG refer to the distribution of extreme

responses that a system would experience in a given time period. The time period

(or exposure time) and the distribution of extreme responses are two fundamental

components assessing the risk associated with a selected design load, which will be

discussed again in Sec. 2.3.

The capability to generate an ensemble of short time histories is invaluable for

addressing the limitation associated with the considerable cost of applying the non-

linear time domain simulators: even high-fidelity nonlinear time domain simulators

can now be routinely utilized in the concept design stage despite the cost, if the in-

put time series are short—typically 150 ∼ 200 seconds long. More importantly, the

development of multi-core CPU technology can readily be exploited to simulate the

DLG ensemble of short time histories simultaneously.

The other crucial advantage of DLG over the typical Monte Carlo approach that

includes time simulation with statistical extrapolation techniques, is that the physics

underlying the distribution of extreme responses need not be lost in DLG. Whereas

the statistical parameter fitting (e.g., the Weibull fitting) and subsequent extrapola-

tion generate mere numbers with all the relevant physics being lost, DLG can identify

an ensemble of short response time series and corresponding input wave time histories

associated with the distribution of the target extreme events. This opens a possibility

of calculating auxiliary, but critical input parameters for a rationally-based design.

For example, the entire hull hydrodynamic pressure map associated with the maxi-

mum combined wave-induced midship bending moments and their associated impact

induced midship bending moments are readily available with DLG. These external

pressure distributions can then be used as input into a finite element program for

subsequent structural analysis of the system.
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1.3 Literature Review

As mentioned, the DLG is able to construct an ensemble of short design wave

profiles identifying the design events of a marine system. How to find a short wave

profile to be used as a design event has been a subject of previous studies, which are

reviewed in this section.

1.3.1 New Wave Profiles

The generation of a short design wave profile under the Gaussian seaway assump-

tion has been addressed before. For example, the most likely wave profile around

an a priori maximum crest height is simply the normalized autocorrelation function

multiplied by the crest height, as developed by Lindgren (1970) and demonstrated

by Tromans et al. (1991). More specifically, on the condition that the crest height at

t = 0 is a, the expected wave elevation can be approximated as

E[ζ(t)|ζ(0) = a, ζ̇(0) = 0] = aρ(t) (1.1)

where ζ(t) is a random process describing wave elevation at each time instance t, ρ(t)

is the normalized autocorrelation function of ζ(t), and E[·] is the conditional mean

of the random variable ζ(t) at t.

This New Wave method was studied and developed further in subsequent research

to address limitations in generating the short design wave profile. For example, the

most likely wave may not generate the extreme response when the dynamic effect of

a system is important. This limitation was addressed to a degree by Friis-Hansen

& Nielsen (1995) and Taylor et al. (1995). Friis-Hansen & Nielsen (1995) included

an additional condition on the instantaneous wave frequency in addition to the given

crest height a, while Taylor et al. (1995) embedded the most likely wave profile in a

short term random wave profile without changing the mean and the variance of the

random signal to the first order. In subsequent research, Jensen (1996) derived a more

general form of Eq. (1.1) to include the second order effect of a slightly non-Gaussian

process.

1.3.2 Response Conditioned Wave Profiles

The New Wave method was later extended to the conditional response of linear

systems. For instance, Adegeest et al. (1998) applied essentially the same method to

obtain random response profiles conditioned on a known extreme response by embed-
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ding the most likely extreme bending response profile. Adegeest et al. (1998) further

used the corresponding linear irregular wave profile for additional nonlinear time

domain simulations. While Pastoor (2002) extended Tromans et al. (1991) to mul-

tidirectional seaways, the embedment of the random backgrounds to the directional

New Wave has never been developed. Later, Dietz et al. (2004) combined the work of

Friis-Hansen & Nielsen (1995), Taylor et al. (1995), and Adegeest et al. (1998). In the

combined approach, the linear response, conditioned on a known extreme response

and an arbitrary instantaneous frequency defined by the derivate of the Hilbert trans-

form, was first calculated, after which the conditioned linear response was embedded

in random responses to calculate the distribution of the associated nonlinear random

responses. A more detailed explanation of how Dietz et al. (2004) calculated this

distribution is given in Sec. 1.3.4. The wave profiles in the above series of research

studies is relatively simple to obtain. However, one potential drawback common to

these approaches, including the New Wave profiles, is that the extreme value must

be fixed a priori and thus the randomness inherent in the extreme value of the ocean

wave for a given time period is not captured systematically by the method itself. In

recognition of this limitation, a few attempts were made to make this method more

useful, which will be introduced in Sec. 1.3.4.

1.3.3 FORM and SORM

In addition to the New Wave method and the Response Conditioned method,

an approach popular in structural reliability theory has been applied to generate a

design wave profile for a marine system. The reliability of a system has been estimated

using the first order reliability method (FORM) and/or the second order reliability

method (SORM). Kiureghian (2000) demonstrated that FORM and/or SORM can

also be used to generate the most probable extreme wave profile leading to a known

extreme response or a design event. Following this work, Jensen (2008, 2009), for

example, applied FORM to several problems such as the deck sway motion of a Jack-

Up unit, the parametric roll of a ship, the TLP floating foundation of an offshore

wind turbine, and the midship bending moment of a ship. In order to illustrate the

difference between Jensen’s FORM approach and the current DLG approach, the

FORM formulation used in Jensen (2008, 2009) is reviewed and summarized below.

In Jensen’s FORM approach, the generation of the most probable wave profile

leading to a given fixed extreme response starts from the construction of the input

wave elevation. For example, the input wave profile may be written as
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ζ(x, t) =
N∑
i=1

aiσi cos(ωit− kix) + biσi sin(ωit− kix) (1.2)

where ai and bi are two uncorrelated standard normal random variables, ωi and ki

are the discretized circular wave frequency and the wave number respectively, and σi

is related to the input wave spectrum S(ω) through

σi
2 = S(ωi)∆ωi (1.3)

Note that the notation for the spatial coordinate x in one dimension wave can easily

be extended to (x, y) to represent two dimensional waves. The notation x and y will

also be used to denote random process/variable as used in Eq. (2.1) and Eq. (3.12).

Since the difference is self-explanatory, it is not expected to cause any problem.

The spectrum of a single random wave input in this model may become degenerate,

unless the number of wave components N is sufficiently large. Moreover, the random

input ζ(x, t) from Eq. (1.2) may not be an accurate representation of typical input

wave elevation, unless N is sufficiently large. However, the system can be nonlinear

in the FORM approach, because the formulation requires only outputs of the system

during the iteration of the solution scheme. Let the nonlinear response of the system

under the wave input ζ(x, t) be termed as φ(t|a1, b1, a2, b2, ..., aN , bN). In addition, the

known extreme response at an arbitrary time to may be written as φo. The points on

the limit-state surface G then represent the infinite number of design points, where

G in 2N space is defined as

G(a1, b1, a2, b2, ..., aN , bN) = φ(t|a1, b1, a2, b2, ..., aN , bN)
∣∣
t=to
− φo = 0 (1.4)

Of the infinite number of failure points on G, the point nearest to the origin in

the 2N space is the design event with the highest likelihood of occurring. The most

probable wave profile leading to the design event φo at t = to can be calculated from

a typical FORM code by a series of iterations, as explained in, e.g., Madsen et al.

(2006). Specifically, the solution of Eq. (1.4) (i.e., a set of ai and bi) can be used to

generate the wave profile using Eq. (1.2). In addition, the distance from the origin to

the most likely design point can be related back to the mean outcrossing rate, which is

the rate of excursions of φ(t) into the failure domain (i.e., G ≤ 0) (Kiureghian, 2000).

This mean outcrossing rate may at times be very useful, e.g., when the assessment of

the mean probability of failure of a known system is a primary target of an analysis.

On the other hand, the variability of the extreme response for a given time period is
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not obtained in the approach, since the problem has not been formulated as such.

Although the system in Jensen (2008, 2009) is not assumed to be linear (i.e.,

φ(to|a1, b1, a2, b2, ..., aN , bN) and its gradient required during the iteration inside a

FORM code may be generated using a nonlinear time domain code), FORM essen-

tially generates an equivalent Gaussian process. In other words, FORM linearizes the

limit-state surface. Like the original New Wave method proposed by Tromans et al.

(1991), this approach generates only one response profile and the associated incident

wave profile, conditioned on an a priori extreme response. In other words, FORM

does not directly address the following questions, which are of critical significance to

any marine designer:

• What would the distribution of extreme responses and corresponding inputs for

the design lifetime of a system be like?

• What are the individual extreme responses and corresponding inputs that have

a desired probability of non-exceedance in the distribution?

As explained in Sec. 1.2, the distribution of the extreme responses is important,

because of the random nature of ocean environments. For example, the maximum

response would not be the same even for two identical vessels operating under the

statistically identical environmental and operating conditions for their entire design

lifetime. Identifying this distribution would thus make it possible to assess the con-

fidence level of the design of a system. In addition, the capability to assess each

individual input time series associated with the distribution of the extreme responses

would be invaluable because the nonlinear time domain simulators can now be ap-

plied. Recognizing the importance of the distribution, a small number of attempts

to address at least the first question have been made utilizing the aforementioned

research, which will be a topic of the next section.

1.3.4 Unconditioning Conditioned Profiles

Cassidy (1999) proposed a convolution technique, based on Taylor et al. (1995),

to “approximate” the distribution of the extreme responses that a Jack-Up structure

would experience for a given time period. In this procedure, five discrete crest ele-

vations representative of the expected range of wave heights in a three-hour storm

were first selected, after which 200 conditioned wave profiles per each crest height

were generated using Taylor et al. (1995). Cassidy (1999) then simulated these 1000

short conditioned wave profiles in time domain to construct a diagram that shows
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200 possible relations between the crest height and the response height. The cost as-

sociated with the construction of the diagram may not be cheap, but the generation

of additional extreme responses is readily available at a small cost. While this is a

very creative procedure, the mathematical rigorousness associated with this process is

somewhat questionable. For example, it remains to be seen whether 200 conditioned

wave profiles, generated by Taylor et al. (1995), can fully capture the randomness

associated with the extreme wave profiles for the given exposure time. In addition,

relating to the two questions in the previous section, this approach is not able to

determine the individual extreme response and corresponding inputs associated with

the approximate distribution of extreme responses. Therefore, the results of this

approach can not be used in subsequent higher fidelity simulations.

Dietz et al. (2004) introduced a similar approach. As mentioned in Sec. 1.3.2,

Dietz et al. (2004) combined the work of Friis-Hansen & Nielsen (1995), Taylor et al.

(1995), and Adegeest et al. (1998). In addition, Dietz et al. (2004) applied a total

probability theorem to “un-condition” the response conditioned profile:

FRNL
(rNL

∣∣Hs, Tz, V, β) =

∫ ∞
0

FRNL
(rNL

∣∣RL = rL, Hs, Tz, V, β)fRL
(rL)drL (1.5)

where RNL is the nonlinear response, RL is the linear response used in the response

condition wave profile, Hs and Tz are the significant wave height and the characteristic

period of the input wave spectrum, V is the cruise velocity of a vessel, and β is the

wave heading.

The calculation of FRNL
(rNL

∣∣RL = rL, Hs, Tz, V, β) starts from generating the

response conditioned wave and the associated incident wave profile (Adegeest et al.,

1998). Utilizing a nonlinear time domain simulator, the associated nonlinear response

time histories can be calculated. By repeating this process multiple times for a few

different values of rL that follow a Rayleigh distribution, FRNL
(rNL

∣∣Hs, Tz, V, β) might

be calculated if the following issues are addressed properly.

• How should RL be discretized?

• How many random backgrounds should be used to generate FRNL
(rNL

∣∣RL =

rL, hs, tz, v, β)?

Dietz et al. (2004) applied 15 points in the discretization of RL and 100 ∼ 250

random backgrounds in the generation of FRNL
(rNL

∣∣RL = rL, hs, tz, v, β). Conse-

quently, the total number of short simulations for nonlinear bending moments was

between 1500 and 3750. In addition, Dietz et al. (2004) had to apply curve fitting
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techniques to address the issues associated with using a finite number of simulations

to calculate Eq. (1.5). This approach alone cannot generate the distribution of ex-

treme responses for a given exposure time. Later in the paper, Dietz et al. (2004)

addressed this limitation by stating that it might be possible using the generalized

extreme value distribution of order statistics, but did not present a result. In fact,

it would be possible to calculate the distribution of extreme responses for a given

exposure time if the above two questions were to be addressed properly. However,

like Cassidy (1999), it will still not be possible to resolve the distribution directly into

the individual extreme responses and corresponding inputs, because the information

has been lost in the construction of the distribution.

1.3.5 Random Experiments

Another way of summarizing and understanding the literature reviewed from

Sec. 1.3.1 to Sec. 1.3.4 is to consider several different random experiments (or Monte

Carlo simulations):

• Random Experiment I: Simulate random seaways representing a given sea spec-

trum, and collect the short wave profiles around an a priori extreme crest height.

By continuing this experiment, an ensemble average of the short wave profiles

around the given crest height can be obtained.

• Random Experiment II: Simulate a dynamic marine system in random seaways

representing a given sea spectrum and an operational condition, and contin-

uously collect the peaks/troughs of the response. Order statistics can then

be used to present the collected maxima/minima in a cumulative distribution

function (CDF) plot. There is no explicit condition on the length of the sim-

ulation time in this experiment. As the length of the simulation increases, the

maximum CDF value out of this experiment will converge to 1.

• Random Experiment III: Simulate a dynamic marine system for T hours in

random seaways representing a given sea spectrum and an operational condition

and find the extrema of the response. By repeating this experiment multiple

times, the extreme value distribution of the largest response in T hours and the

corresponding wave inputs can be calculated.

The results of Random Experiment I is what the New Wave approach in Sec.

1.3.1 aims to approximate. Specifically, Random Experiment I should be compared
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with Tromans et al. (1991). If the additional condition about the instantaneous

frequency is added in Random Experiment I, Friis-Hansen & Nielsen (1995) would be

recovered. Of course, each short wave profile around an a priori extreme crest height

should be comparable to Taylor et al. (1995). The response conditioned approach

in Sec. 1.3.2 is essentially identical to the New Wave, except that it is applied to

the response of a system under the assumption of a linear system. The associated

incident wave profile is back-calculated, which can then be plugged into nonlinear

simulators. The FORM approach by Jensen (2008, 2009) can also be substituted for

Random Experiment I, which is not sufficient to complete a design process directly

without further assumptions. Moreover, a single time series, whether it represents an

ensemble average or the most likely wave profile, will not be sufficient to capture all

the randomness associated with the response of the system.

Sec. 1.3.4 explained how Cassidy (1999) attempted to address Random Experi-

ment III based on Random Experiment I. Dietz et al. (2004) followed a similar path.

While Dietz et al. (2004) is essentially centered on Random Experiment I, a mathe-

matical equation to model Random Experiment II based on Random Experiment I is

also proposed with some results. Moreover, the possibility of approximating Random

Experiment III based on Random Experiment II was suggested, but no attempt was

made to show any results.

Random Experiment III is crucial to the sound design of a marine system, because

it relates to the lifetime of the system and the randomness associated with the time

period. Alford (2008) showed the possibility of reducing the time required to conduct

Random Experiment III. However, as mentioned previously, this version of the DLG

process was incomplete in the sense that the matching between the theoretical ex-

treme value distribution and the distribution of the DLG responses was not so good.

Naturally, the current research draws on the insights obtained from Alford (2008),

which will be examined carefully in Chapters II ∼ III.

This dissertation will demonstrate that Random Experiment III can be extremely

useful to statistically bound even highly nonlinear responses, such as extreme midship

whipping responses or hull impact pressures, in Chapters VI ∼ VII.

1.4 Overview of Current Thesis

As indicated earlier, the current dissertation presents the development of the DLG

process. In addition, the application of the process to a few important types of ship

responses will be introduced. In Chapter I, the previous research on how to find a
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design wave profile has been examined. Although the previous studies reported in the

literature review bear some resemblance to DLG, there exists a critical difference as

elaborated in Sec. 1.3.5. Chapter II starts by introducing a Gaussian random process,

and proceeds to the extreme value theory of the process based on order statistics. In

other words, the extreme value theory of a Gaussian process is the basis of the cur-

rent research. A formulation of the problem is presented in Chapter III, followed

by a new solution scheme developed for the current research. This solution method

permits, for the first time, a numerically accurate representation of the extreme value

distribution based on an ensemble of short time series. Chapter IV extends the solu-

tion in Chapter II to multidirectional cases and shows that the current formulation

of DLG can be applied to address, for instance, the extreme response statistics of a

system under a bidirectional or even short-crested seaway. Important in the current

DLG model is the nonlinear time domain simulations, for which the Large Amplitude

Motion Program (LAMP) is used. Therefore, the LAMP program is introduced with

its post-processors in Chapter V. Explained simultaneously in this chapter is how to

execute a typical statistical extrapolation based on short-term time domain simula-

tions. The remaining chapters are devoted to presenting the results of the current

formulation of DLG applied to the estimation of extreme midship bending moments

(Chapter VI) and extreme impact-induced hull pressures (Chapter VII). Chapter VIII

then summarizes the dissertation with recommendations for future research.
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CHAPTER II

Background

2.1 Gaussian Random Process

Consider a random process x(t) that is expressed as the summation of cosine

functions:

x(t) =
N∑
j=1

aj cos(ωjt+ εj) (2.1)

where

aj =
√

2S(ωj)∆ωj (2.2)

and S(ω) is a single-sided spectrum representing the process, and the phase angles εj

are uniformly distributed random variables between −π and π. As N goes to infinity,

the random variable X expressed by the random process x(t) approaches the zero-

mean Gaussian random variable due to a central limit theorem. Refer to, for example,

Feller (1965) for the derivation of this version of the central limit theorem. The

probability density function (PDF) of the random variable X, when N is sufficiently

large, may still be approximated as a Gaussian distribution. Therefore, the PDF of

X is

fX(x) =
1

σ
√

2π
e−x

2/(2σ2) (2.3)

where the standard deviation of this zero-mean process, σ, can be calculated from

Eq. (2.2) as

σ2 =

∫ ∞
0

S(ω) dω ≈
N∑
j=1

S(ωj)∆ωj =
N∑
j=1

1

2
a2
j (2.4)
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The cumulative distribution function (CDF) of X defined by Eq. (2.3) may be ex-

pressed using the CDF of the standard normal distribution Φ(·) as

FX(x) =

∫ x

−∞

1

σ
√

2π
e−t

2/(2σ2) dt =

∫ x/σ

−∞

1√
2π

e−t
2/2 dt = Φ

(x
σ

)
(2.5)

A stochastic ocean seaway can be analyzed using this random process x(t) (St.

Denis & Pierson, 1953; Longuet-Higgins, 1957). The Gaussian model is somewhat

limited in the sense that it is not able to capture, for example, a breaking wave or

the nonlinear evolution of waves, which may affect the lifetime design loads of the

system. However, as Ochi (1998) stated,

It has been verified through observations at sea as well as in laboratory

tests that waves can be considered a Gaussian random process even in

very severe seas if the water depth is sufficiently deep.

Moreover, this model will produce a reliable first estimate of design loads especially

during the concept design stage, where the fast and efficient investigation of the whole

design space is most desired.

The response of a linear system under the Gaussian random wave input can also

be expressed using Eq. (2.1) (St. Denis & Pierson, 1953). Unless specified otherwise,

however, the random variable X denotes the target response of a system in this

research. Hence, S(ω) in general should represent a response spectrum of the system.

One aspect that should be noted in using this model is that the number of har-

monic components (or Fourier coefficients) N should be sufficiently large, not only

because the central limit theorem requires an infinitely large N in Eq. (2.1), but also

because the maximum value out of this model is bounded by xmax in Eq. (2.6). In

other words, an insufficient N can corrupt the extreme value statistics of the response

from this model.

xmax =
N∑
j=1

aj (2.6)

In addition, Eq. (2.6) suggests that a set of aj plays an important role, because xmax

is determined by the set of aj (or the shape of the response spectrum of the target

process). The other reason why N has to be large enough is, of course, to maintain the

variance of the process as close as possible to the theoretical value. A more detailed

discussion of the effect of N is included in Appendix A.

13



2.2 Extreme Value Distribution

Consider a random experiment that simulates random seaways for a sea spectrum

representing the given operational condition for T hours and finds the extreme of

a response. By repeating this experiment multiple (say, m) times, the distribution

of the extreme response for T hours can be obtained (i.e., Random Experiment III

in Sec. 1.3.5). These experiments are analogous to finding the distribution of the

extreme response that m identical marine systems (e.g., ship and/or offshore unit)

would experience in T hours for the same operational condition. Although relatively

straightforward, the experiments will take a significant amount of time as T and m

increase if a typical Monte Carlo approach is chosen to get the distribution. How to

obtain this distribution efficiently is one of the most important questions addressed

in this dissertation.

This extreme value distribution answers, to a degree, one of the most important

questions that naval architects or ocean engineers should raise during the design

process of any marine system: how to determine the distribution of extreme responses

of the system for a given time period T .

The extreme response, by definition, includes both extreme (positive/negative)

maxima and minima of the response time histories. In order to determine the extreme

of the positive maxima, for example, the PDF of the positive maxima needs to be

obtained first, which can be derived in a dimensionless form (see e.g., Ochi, 1990):

fΞ(ξ) =
2

1 +
√

1− ε2

[
ε√
2π

e−ξ
2/(2ε2)

+
√

1− ε2 ξ e−ξ
2/2 Φ(

√
1− ε2

ε
ξ)

]
(2.7)

where ξ is the normalized positive maxima x̃/σ, x̃ is the positive maxima. The

broadness (or bandwidth) parameter ε is defined as

ε =

√
1− m2

2

m0m4

(2.8)

where mk is the kth moment of the spectrum of the process defined as

mk =

∫ ∞
0

ωkS(ω) dω (2.9)

The derivation of a more general PDF that includes both positive and negative max-
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ima was originally given in Cartwright & Longuet-Higgins (1956). Without loss of

generality, however, the discussion below is limited to the extreme positive maxima.

If ε is zero, Eq. (2.7) becomes the PDF of the Rayleigh distribution. In dimensional

form, the PDF and CDF or the Rayleigh distribution are

fX̃(x̃) =
x̃

σ2
e−x̃

2/(2σ2) (2.10)

FX̃(x̃) = 1− e−x̃
2/(2σ2) (2.11)

where the tilde notation emphasizes the fact that this random variable comes from the

envelope process of x(t). Specifically, the envelope process of a narrow-banded zero-

mean Gaussian random process with a variance σ2 follows the Rayleigh distribution

given in Eqs. (2.10) ∼ (2.11).

Meanwhile, the largest value in m independent samples, when these samples

follow an independent and identical PDF of fX(x) and CDF of FX(x), is also a

random variable that may be designated as Xm. From the set of ordered samples

(x1, x2, x3, · · · , xk, · · · , xm)1, the CDF of Xm can be calculated as

FXm(x) = P (x1 ≤ x, x2 ≤ x, x3 ≤ x, · · · , xm ≤ x)

= P (x1 ≤ x)P (x2 ≤ x)P (x3 ≤ x) · · ·P (xm ≤ x)

= FX(x)FX(x)FX(x) · · ·FX(x) =
(
FX(x)

)m
(2.12)

This equation is referred to as the exact distribution of extremes in Gumbel (1958).

The derivative of Eq. (2.12) yields the PDF of Xm as

fXm(x) = mfX(x)
(
FX(x)

)m−1
(2.13)

A notable fact from Eq. (2.13) is that the most likely extreme value, termed as

x̂, is related back to the number of samples m associated with the extreme value

distribution, which is

1

m
∼ 1− FX(x̂) as m→∞ (2.14)

Eq. (2.13) is a theoretical PDF of the largest value in m positive maxima, when

Eq. (2.7) and the associated CDF are substituted for fX(x) and FX(x) respectively.

For example, the distribution of the extreme values of n samples that follow the

1xk indicates kth value from the smallest sample in the set.
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Rayleigh distribution, of which PDF and CDF are Eqs. (2.10) ∼ (2.11), has been

widely used to model the distribution of, for example, extreme wave heights:

fX̃n
(x) = n

( x
σ2

e−x
2/(2σ2)

)(
1− e−x

2/(2σ2)
)n−1

(2.15)

In the mean time, an asymptotically identical extreme value distribution can be

obtained from the Gaussian distribution. Specifically, when Eq. (2.13) is used, the

largest value in m independent zero-mean Gaussian random samples is expressed as

fXm(x) = m

(
1

σ
√

2π
e−x

2/(2σ2)

)(
Φ
(x
σ

))m−1

(2.16)

In order for Eq. (2.15) and Eq. (2.16) to be the same asymptotically, m and

n should satisfy Eq. (2.14) for the same most likely extreme value x̂. Hence, m is

analogous to n and/or T in the sense that they all measure the exposure time inherent

in the extreme value distribution.
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Figure 2.1: Asymptotically Equal Extreme Value Distributions Based on Gaussian
Process and Based on Corresponding Rayleigh Process [TEV = 3, 4, 5,
6, and 7]

In Fig. 2.1, these two asymptotically identical extreme value distributions from

Eq. (2.15) and Eq. (2.16) as well as the distributions of two original processes are

given for five different Target Extreme Values (TEV), where TEV is defined as

TEV =
x̂

σ
(2.17)

Table 2.1 shows n and m for several TEVs. Note that the numbers are rounded to the
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TEV m n
3.0 741 90
3.5 4,299 457
4.0 31,574 2,981
4.5 294,219 24,959
5.0 3,488,556 268,337
5.5 52,660,508 3,704,282
6.0 1,013,594,635 65,659,969
6.5 24,900,406,809 1,494,413,991
7.0 781,332,343,402 43,673,174,852

Table 2.1: TEV and Corresponding Number of Samples of Gaussian Random Variable
(m) and Rayleigh Random Variable (n)

nearest integer. It is evident that TEV is a scale closely related to the exposure time

of the extreme events: a higher TEV represents a longer exposure time. Specifically,

TEV can be converted to the exposure time and vice versa using the mean response

period and the following relation as shown, e.g., in Ochi (1990).

TEV =

[
2ln
( 2
√

1− ε2

1 +
√

1− ε2
n
)]1/2

(2.18)

where ε is the broadness parameter and n is the expected number of peaks or troughs

(i.e. comparable to the number of samples of the Rayleigh random variable when ε

is zero) in the exposure time.

When TEV is 5, for example, the design event may be called a 5σ event. As

Eq. (2.17) indicates, the most likely extreme values of the distribution would be five

times the standard deviation of the process. However, it should be noted that the

design event with a specific TEV in DLG is not a single realization that produces an

extreme value, but an ensemble of realizations that produce a complete distribution

of extreme values associated with a given exposure time

Although the Rayleigh distribution is much more straightforward to relate the

exposure time T to the number of samples to be simulated, the current formulation

of DLG is based on the Gaussian distribution due to the simplicity in numerical

implementation. Following this approach, DLG is free of the additional requirement

that the process needs to be narrow-banded, and the computation time required to

calculate the derivatives of the time series. This is possible, as mentioned above,

due to the inherent relation between the Gaussian random variable and the Rayleigh

distribution. Therefore, the investigation of the maximum of the positive maxima of
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the Gaussian process can be achieved by finding the maximum of the original process.

As for the accuracy of Eq. (2.13) as a basis of DLG, Fig. 2.2 shows a comparison

between the histogram obtained from Monte Carlo simulations using a normally dis-

tributed psuedo-random number generator (NORMRND) and the theoretical extreme

value distribution2 of a Gaussian random variable (THEORY) given in Eq. (2.16).

The number of total realizations Nruns obtained through Monte Carlo simulations is

50000, and each realization is the largest value in 3488556 normally distributed ran-

dom samples. Therefore, the total number of Gaussian random samples generated

for this figure is about 1.74× 1011.
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Figure 2.2: Comparison between Theoretical Extreme Value Distribution and His-
togram from Gaussian Random Samples

2.3 Cell-Based Design

The extreme value distribution is important in the sense that it allows designers

to determine the design event rationally. Specifically, the risk parameter α associated

with using x̄m as a design load is defined by∫ x̄m

−∞
fXm(x)dx = [FX(x̄m)]m = 1− α (2.19)

2Strictly speaking, this is not a PDF but a histogram expressed in terms of the expected number
of occurrence (or frequency) for each bin. However, it is often called as a distribution or a PDF in
this dissertation for the purpose of simplicity.
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Instead of the risk parameter α, the probability of non-exceedance (PNE) defined by

Eq. (2.20) is often used to represent the risk level.

PNE = 1− α (2.20)

This parameter, either α or PNE, is a useful metric to evaluate the reliability of

a system, which is essentially the probability that no failure will occur in a given

operation time interval.

In order to perform a typical loads analysis using this approach, the total op-

erational life of a ship (DT ) is typically divided into a finite number (M) of “cells”

wherein ship speed and heading are held constant, and wave conditions are stationary

and ergodic. In this approach, the variability of the ocean environment is approx-

imated by a collection of independent stationary process. This cell-based approach

does not, however, imply that all events associated with a cell occur consecutively.

The frequencies of occurrence of speed, heading, and sea condition are deter-

mined by oceanographic observations and by log book analyses. These frequencies of

occurrence and the assumed total operational life of the ship serve to determine the

expected length of time (Di) that a ship spends in each operational cell:

DT =
M∑
i=1

Di (2.21)

A formal application of probability theory requires that the extreme value prob-

ability distributions be determined for each cell. Combining the M extreme values

for each cell based on the frequency of occurrence will then allow the distribution of

lifetime design respons to be calculated as explained in Richardson (2007).

FL(x) =
M∏
i=1

FCi(x) (2.22)

where FCi(x) is the CDF of the extreme load from ith cell and FL(x) is the CDF of the

lifetime extreme response. Therefore, FL(l) is the lifetime probability of the extreme

response not exceeding the load level l, or the PNE associated with the lifetime

design load l. The exposure time (operation period) for each cell is accounted for in

the estimation of the CDF. The CDF, the extreme value distribution of the response

from a given cell, or equivalently FCi(x). What the DLG approach can produce is the

extreme value distribution of the response from a given cell, or equivalently FCi(x).

Given that the total number of operational cells M may reach 2000 or more, previ-
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ous experience is often used to determine which operational cells need to be examined

in detail. In fact, limited resources and constrained testing schedules frequently dic-

tate that the lifetime load is based on the distribution of maxima of a few few cells.

Mathematically, FCi(x) from many cells will not come into play in the calculation of

FL(x) for a value in the upper tail, because the CDF asymptotically goes to 1 as x

goes to infinity. Even so, the calculation of GCi(x) using a high-fidelity load com-

putation tool is a formidable task. Accordingly, as mentioned in Sec. 1.1, statistical

extrapolation techniques are often used.

As explained so far, the extreme value distribution expressed in Eq. (2.16) is very

important, but it has a critical limitation in that the shape of x(t) around Xm has been

lost. This is a crucial limitation for any time domain computational effort. In order to

reconstruct the shape of x(t) around Xm, a set of εj in Eq. (2.1) should be preserved,

which can be accomplished through Monte Carlo simulations similar to Fig. 2.2.

Nevertheless, if this histogram is to be generated based on Eq. (2.1) with TEV and

N being 5 and 201, respectively, the total number of uniformly distributed random

samples exceeds 3.51 × 1013. Considering the fact that a typical design operation

time for each cell of a marine system is roughly located between TEV = 4 and

TEV = 6, there are multiple cells to be investigated for each mode of response, and

the computational load to generate and handle the astronomical number of random

samples is onerous, an approach through typical Monte Carlo simulations is not a

feasible option.

How to overcome this challenge is the focus of the current dissertation. The

natural next step to address the challenge is to study the set of phase angles εj as

random variables, because Xm itself is a random variable. Hence, the PDF of εj

should be investigated if the reconstruction of an ensemble of x(t) associated with

the extreme value distribution is desired, which is a topic of the next section.

2.4 Non-Uniform Phase Distribution

Consider that a realization of the Gaussian process 1x(t), the record length of

which is T , reaches its maximum at an arbitrary time t = t1. The short time series

around the extreme response from Eq. (2.1) can be linearly transformed such that the

extreme occurs at t = 0, and the short time series can still be modeled by Eq. (2.1)

as

1xm(0) =
N∑
j=1

aj cos(1εmj
) (2.23)
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By definition of the random process, the maximum from another random realiza-

tion, e.g., 2x(t), will almost certainly be different from that of 1x(t). By repeating

this random experiment, an ensemble of short time series around t = 0 can be col-

lected. Note that the superscript notation is used to denote the number of samples

in the ensemble. In addition, two random variables X ′m and Emj
, that model the

maximum at t = 0 (kxm(0)) and the associated set of of phase angles (kεmj
) may be

approximated:

X ′m : 1xm(0), 2xm(0), 3xm(0), . . . , kxm(0) (2.24)

Emj
: 1εmj

, 2εmj
, 3εmj

, . . . , kεmj
(2.25)

where the prime notation is added to Xm to differentiate it from the theoretical value

defined by Eq. (2.13), the subscript m is due to the fact that the distribution of

the maximum (i.e., the largest positive maxima) in T is asymptotically equal to the

distribution of the largest of m Gaussian samples, as demonstrated in Sec. 2.2. Note

that kεmj
is not a single random number but a set of N random phase angles, as j

takes a value between 1 and N

As k increases, the random variable X ′m should assume a certain distribution.

Specifically, the PDF of X ′m follows Eq. (2.16) asymptotically as m increases. In a

similar way, as k increases, Emj
should assume single/multiple distribution(s), too.

If the distribution(s) of the phase angles εmj
is known, the shape of the time series

around x(0) in a short window can be determined. Moreover, assuming a linear

system, the incident wave profile can be reverse-calculated, as mentioned in Sec. 2.1,

which facilitates the use of even fully nonlinear hydrodynamic simulators during the

concept design stage.

Therefore, roughly speaking, the core of DLG is to find the distribution(s) of

phase angles εmj
associated with the distribution of X ′m. In order to address the

distribution(s) of Emj
, Alford (2008) hypothesized that the set of phase angles εmj

associated with X ′m are independent and non-identically distributed (inid) for each j

(or Em1 , Em2 , . . . , EmN
are mutually independent and non-identically distributed). In

addition, Alford (2008) modeled εmj
using a modified Gaussian distribution of which

parameter is λj based on the observation from a series of numerical experiments. The

modified Gaussian distribution was defined as

fEmj
(z) =

1

λj
√

2π
e−z

2/(2λ2j ) +
1

2π

(
1− erf

(
π

λj
√

2

))
, −π ≤ z < π (2.26)

where z, not εmj
, is used as an argument to simplify the equation, and erf(·) is the
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standard error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt (2.27)

Using Eq. (2.26), λj was assumed to be positive, but less than or equal to 10 in Alford

(2008). This is because as λj increases, the modified Gaussian distribution almost

becomes a uniform distribution as shown in Fig. 2.3. Hence stopping at λj = 10

made little difference in terms of the shape of the distribution, saving a significant

amount time spent on the solution process. Although the approximation of εmj
using

the modified Gaussian distribution introduces some error, the effect of which will be

discussed visually in Sec. 3.3, the fact that the distribution is expressed as a single

parameter is highly beneficial.
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Figure 2.3: Modified Gaussian Distributions with Parameter λj

2.5 Characteristic Function of Extreme Value Distribution

In probability theory, the characteristic function of a random variable X is defined

as

ψ(s) = E[eisX ] =

∫ ∞
−∞

fX(x) eisx dx, −∞ < s <∞ (2.28)

which is essentially the Fourier transform of the PDF of the random variable X.

Therefore, once the characteristic function is determined, the PDF of the correspond-

ing random variable can be uniquely determined by calculating the inverse Fourier
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transform of the characteristic function. From this point on, the domain of the char-

acteristic function will be omitted for simplification, unless required for clarity.

Since the PDF of Xm is given as Eq. (2.16), the characteristic function of the

theoretical extreme value distribution of the Gaussian process can be determined by

calculating

E[eisXm ] =

∫ ∞
−∞

m

σ
√

2π
e−x

2/(2σ2)
(

Φ
(x
σ

))m−1

eisx dx (2.29)

This function should be identical to the characteristic function of X ′m. Alford (2008)

used this fact to derive the equation to be solved, based on the hypothesis that the

phase angles are inid and the PDF of εmj
is defined by Eq. (2.26). That is∫ ∞

−∞

m

σ
√

2π
e−x

2/(2σ2)
(

Φ
(x
σ

))m−1

eisx dx

?
=

N∏
j=1

∫ 1

−1

eiajsy

πλj
√

1− y2

{√
2π e−(arccos y)2/(2λ2j ) − λj erf

(
π/(λj

√
2)
)

+ λj

}
dy (2.30)

The derivation of the right-hand side of the above equation, the characteristic function

of X ′m, is elaborated again in Apendix B due to its importance in the generalization

of Eq. (2.1) for short-crested seaways, which is the topic of Chapter IV.

Since Eq. (2.30) is a highly nonlinear equation without a known exact solution,

Alford (2008) used an optimization scheme developed by Rowan (1990) to find a set

of the parameters λj that would minimize the L1 norm of the difference between the

left hand side and the right hand side of Eq. (2.30). The question mark on top of

the equal sign in Eq. (2.30) is to indicate that, as mentioned in Chapter I, Alford

(2008) was not successful at finding a satisfactory solution, but only an approximate

engineering solution. While a more detailed explanation of Alford (2008) will be

covered in the next chapter, the new developments and improvements made in the

current research will be the focus of the chapter.
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CHAPTER III

Problem Formulation

3.1 Governing Equation

As stated in Eq. (2.30), the governing equation of DLG can be expressed as

ψXm(s;m,σ) = ψX′
m

(s; a1, a2, . . . , aN , λ1, λ2, . . . , λN) (3.1)

where ψXm and ψX′
m

are defined as

ψXm(s;m,σ) =

∫ ∞
−∞

m

σ
√

2π
e−x

2/(2σ2)
(

Φ
(x
σ

))m−1

eisx dx (3.2)

and

ψX′
m

(s; a1, a2, . . . , aN , λ1, λ2, . . . , λN)

=
N∏
j=1

∫ 1

−1

eiajsy

πλj
√

1− y2

{√
2π e−(arccos y)2/(2λ2j ) − λj erf

(
π/(λj

√
2)
)

+ λj

}
dy (3.3)

The equal sign in Eq. (3.1) dictates that the extreme value distribution of the target

Gaussian random process should be equal to that of the extreme value distribu-

tion that DLG generates. The question mark on top of the equal sign appeared in

Eq. (2.30) is temporarily removed, but will be discussed again in Sec. 3.3.

The left-hand side of the governing equation ψXm defined in Eq. (3.2) is the char-

acteristic function of the extreme value distribution of a zero-mean Gaussian random

process with variance σ2, while the right-hand side of the governing equation ψX′
m

as

defined in Eq. (3.3) is the characteristic function of the extreme value distribution

that the DLG process would generate when the phase angles are sampled according

to the modified Gaussian distribution determined by λ. The set of parameters λ is

the unknown to be solved in Eq. (3.1) and defined as
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λ = (λ1, λ2, . . . , λN) (3.4)

On the other hand, the parameters m, σ and a are all inputs to DLG and completely

determined once the output spectrum and TEV are both known. The set of input

Fourier coefficients a is defined as

a = (a1, a2, . . . , aN) (3.5)

To date, the question of whether there exists a solution—and further a unique

solution—to Eq. (3.1) has not been answered. As an alternative to solving this

governing equation analytically, Alford (2008) utilized an optimization routine to find

λ that minimizes the L1 norm of the difference between ψXm and ψX′
m

of Eq. (3.1)

at a finite number of points on the s axis. In other words, the objective function (or

cost function) used in Alford (2008) was

fobjective =
Ns∑
k=1

∣∣∣ψXm(sk;m,σ)− ψX′
m

(sk;a,λ)
∣∣∣ (3.6)

where s was discretized between −smax and smax and the maximum Ns applied was set

at 101 due to time constraints. In addition, smax was set at 4π/xmax, where xmax was

determined by Eq. (2.6). When ψXm and ψX′
m

are calculated inside the optimization1,

Alford (2008) applied a standard trapezoidal integration scheme. In the application

of the trapezoidal integration, special care had to be taken to handle the singularity

at y = −1 and y = +1 in ψX′
m

(s).

The optimization routine did not succeed in finding λ that satisfies the equality

condition in Eq. (3.1). The biggest reason is due to the fact that the inid assump-

tion from which Eq. (3.1) has been derived is not entirely correct. This means that

the extreme responses from Alford (2008) could not perfectly follow the theoretical

extreme value distribution of the Gaussian random variable. Although the optimal

solution from the optimization did generate only an approximate distribution, the

mean of which was very close to the mean of the theoretical extreme value distribu-

tion, the mismatch in the tail regions made it almost impossible to assess the risk

associated with the use of the extreme value distribution from this process as a de-

sign value. The other shortcoming was that it took a great deal of time (on the order

of a few hours when N = Ns = 101) to obtain the approximate distribution using

1From this point on, in expressing ψXm
and ψX′

m
, the parameters, i.e., m, σ, a, and λ, will be

omitted for simplification, unless required for clarity.
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the optimization routine. This is partly due to the characteristics of the problem—

nonlinear and multidimensional. Moreover, as the number of wave coefficients N

increased, the computation time needed to achieve a consistent level of accuracy in-

creased significantly. More specifically, the fact that the computation of ψX′
m

required

a considerable amount of time presented difficulties in increasing N and Ns. Over-

coming the aforementioned shortcomings in Alford (2008) is one of the aims of the

current research.

3.2 A New Approach

In the current research, the complexity of ψX′
m

is first reduced to increase the

efficiency of the computation. As can be seen in Eq. (3.3), ψX′
m

is the multiplication of

N functions, each of which consists of three components. Although highly nonlinear,

these three components can be simplified by introducing a new variable θ such that

y = cos θ. Specifically,

∫ 1

−1

eiajsye−(arccos y)2/(2λ2j )√
1− y2

dy =

∫ 0

π

eiajs cos θe−θ
2/(2λ2j )

√
1− cos2 θ

(− sin θ) dθ

=

∫ π

0

eiajs cos θe−θ
2/(2λ2j ) dθ (3.7)

∫ 1

−1

erf

(
π

λj
√

2

)
eiajsy√
1− y2

dy = erf

(
π

λj
√

2

)∫ 0

π

eiajs cos θ

√
1− cos2 θ

(− sin θ) dθ

= πerf

(
π

λj
√

2

)
J0(ajs) (3.8)

∫ 1

−1

eiajsy√
1− y2

dy =

∫ 0

π

eiajs cos θ

√
1− cos2 θ

(− sin θ) dθ

=

∫ π

0

eiajs cos θ dθ = πJ0(ajs) (3.9)

In the derivation of Eq. (3.8) and Eq. (3.9), the following definition of the first kind

Bessel function Jn(z) is utilized:

Jn(z) =
i−n

π

∫ π

0

eiz cos θ cos(nθ) dθ (3.10)
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In addition, the application of an adaptive trapezoidal scheme allows Eq. (3.7) to be

evaluated very accurately and efficiently. Moreover, the error function and the Bessel

function in Eq. (3.8) and Eq. (3.9) can be computed using the standard library of any

computational program. These modifications of ψX′
m

(s) greatly improve the efficiency

of the computation of ψX′
m

(s).
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Figure 3.1: Example Characteristic Functions (ψXm) of Extreme Value Distribution
of Gaussian Process

Meanwhile, ψXm is the characteristic function of the Gaussian extreme value distri-

bution, which is a complex-valued function. This function can be efficiently calculated

using a Fast Fourier Transform (FFT). Fig. 3.1 shows two examples of ψXm , which

suggest that the domain of s may be truncated at a certain level that depends on m.

27



In the current research, this level, termed as sthreshold, is set to be a point on the s

axis, where the |ψXm | becomes less than 0.01.

The characteristic function of a random variable X defined by Eq. (2.28) always

exists since |eisX | is a continuous and bounded function for all finite real values of s

and X. In addition, the characteristic function has the following properties:

1. ψ(0) = 1

2. |ψ(s)| ≤ 1

3. ψ(−s) = ψ∗(s), where ψ∗(s) denotes the complex conjugate of ψ(s).

These properties are readily confirmed in Fig. 3.1. Due to the last property, consid-

ering only the positive s-domain reduces the computational workload by half again,

compared to Alford (2008).

All of the aforementioned improvements contribute to the significant reduction

in the computation time in the optimization routine, but they still do not remove

the shortcoming that the extreme response from DLG failed to closely follow the

theoretical extreme value distribution, or do not find the solution of Eq. (3.1) with

an acceptable accuracy.

3.3 Existence of Solutions

The existence and the uniqueness of the solution of Eq. (3.1) are not clear at

all, and a rigorous investigation is beyond the scope of this research. However, the

graphical investigation of Eq. (3.1) can present a useful insight on this matter. For

this purpose, a zero-mean Gaussian process with unit variance is considered without

loss of generality. Because of the unit variance, Eq. (2.4) becomes

N∑
j=1

a2
j = 2

which suggests that the maximum value aj can take is
√

2 for a perfectly narrow

banded process. As shown in Fig. 3.2, however, aj is usually much smaller than
√

2

for the normalized case, depending on the broadness parameter or the number of

Fourier coefficients. In Fig. 3.2, the number of Fourier coefficients N is 301.

For this normalized case, the summation of Eqs. (3.7) ∼ (3.9) for a few possible

aj and λj is illustrated in Fig. 3.3. The summation may be seen as a basis function

of ψX′
m

(s), because the summation is ψX′
m

(s) when N = 1. Note also that the three
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properties of the characteristic function explained in the previous section are readily

confirmed visually in Fig. 3.3.

At this point, Eq. (3.1) may be re-formulated to find λ such that the multiplica-

tion of N basis functions comes as close as possible to the known ψXm of Eq. (3.1).

However, a closer observation of Fig. 3.3 reveals that as λj and s increase, the basis

functions decrease significantly. In addition, these basis functions are all less than 1,

which means that ψX′
m

will decay very fast as N increases. Specifically,

|ψX′
m
| → 0 even when s� sthreshold (3.11)

which strongly suggests that the existence of λ that satisfies the equality condition in

Eq. (3.1) is not guaranteed. This line of reasoning is confirmed in Fig. 3.4, which shows

a ψXm , labeled as THEORY, for two different TEV cases of the Gaussian random

process expressed by a in Fig. 3.2. Plotted simultaneously is ψX′
m

, labeled as MCS and

calculated based on λ obtained from the curve fitting of phase angles to the modified

Gaussian distribution. The phase angles are associated with X ′m defined in Sec. 2.4.

When s is around the origin, the comparison is very good. As s increases, however,

ψX′
m

quickly diminishes to zero, while ψXm slowly decays oscillating around zero. The

discrepancy is due to the fact that the phase angles associated with the maximum in m

samples are assumed to be inid in the calculation of ψX′
m

. Limited simulations indicate

that the phase angles are not exactly independent. On the contrary, they are slightly

dependent. But the use of a multivariate phase PDF to resolve the discrepancy is

not a viable option, because as N increases the amount of computation to identify
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Figure 3.4: Example Comparisons: Characteristic Function of Theoretical Extreme
Value Distribution of Standard Normal Distribution (ψXm) and Charac-
teristic Function of Corresponding Empirical Extreme Value Distribution
from Monte Carlo Simulations (ψX′

m
)

the phase PDF will become astronomical, not to mention the increased complexity

in handling the new characteristic function.

The effect of the discrepancy on the extreme value PDF is illustrated again in

Fig. 3.5. For this figure, Nruns ×m × N uniformly distributed random phase angles

were generated first to find X ′m in Eq. (2.24). The Nruns, m and N used were 50000,

31574, and 201, respectively. Note that m = 31574 corresponds to TEV = 4. Al-

though the comparison is somewhat worse than is seen in Fig. 2.2 due to a finite and
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Figure 3.5: Effect of inid Assumption

“insufficiently” large N , the histogram of X ′m still matches relatively well with that

of the theoretical extreme value distribution as shown in Fig. 3.5(a). The matching

will improve further as N increases for the reason detailed in Appendix A.

As stated previously, the fundamental idea behind DLG is to construct the extreme

value distribution based on the distributions of the associated phase angles. In order

to identify these phase distributions associated with X ′m, the method of least squares

was used to find the optimized λ, based on the inid assumption, such that the squared
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difference between the modified Gaussian distribution defined by Eq. (2.26) and the

distribution of Emj
in Eq. (2.25) is at its minimum.

If the inid assumption is to reveal the truth about Emj
, the random phase an-

gles generated by Eq. (2.26) using the optimized λ should recover the original ex-

treme value distribution shown in Fig. 3.5(a) within the error introduced by apply-

ing the least square method. However, the distribution from this recovery process

(MCS/INID), as shown in Fig. 3.5(b), is much wider compared to the extreme value

distribution of a Gaussian random variable (THEORY) of the same variance, where

the Nruns, m and N used are identical to those in Fig. 3.5(a). In other words, the dis-

tributions of extreme values are quite different, even though the distributions of the

phase angles are almost identical when expressed according to the inid assumption.

Fig. 3.5(b) also shows the distribution directly calculated from the inverse Fourier

Transform (IFFT) of ψX′
m

based on the optimized λ. The fact that MCS/INID and

IFFT match perfectly in Fig. 3.5(b) indirectly confirms the accuracy of the develop-

ments made in Sec. 3.3.
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Figure 3.6: Evidence of Not Entirely Correct inid Assumption

Other evidence that the inid assumption is not entirely correct is presented in

Fig. 3.6. In order to generate this figure, the phase angles collected from MCS in

Fig 3.5(a) are shuffled randomly for each ωj. This shuffling process should not change

the distribution of Emj
determined from the method of least squares. Specifically,

designated as SHUFFLE in Fig. 3.6 is the extreme value distribution reconstructed

from the shuffled phase angles, while IFFT is copied from Fig. 3.5(b). If inid is the

correct hypothesis, the extreme value distribution reconstructed from the shuffled
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(b) Phase PDFs Utilized in Reconstruction of Extreme Value Dis-
tribution based on λ from Empirical Extreme Value Distribution
(MCS/INID)

Figure 3.7: Approximation of Phase PDFs using Modified Gaussian Distribution

phase angles should recover the distribution identical to MCS in Fig. 3.5(a). But this

is not the case, which again shows that the inid assumption is not entirely correct.

The statement that inid is not “entirely” correct reflects the fact that, at the very
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least, the mean values of SHUFFLE and IFFT are very close. For example, this

assumption reflects reality more closely than the assumption that the phase angles

are independent and identically distributed (iid) (Alford, 2008).

The difference between SHUFFLE and IFFT is most likely due to the approxima-

tion of phase angles using the modified Gaussian distribution. For example, Fig. 3.7(a)

is the collection of the PDFs of Emj
based on the sets of phase angles associated with

X ′m from MCS, while Fig. 3.7(b) is the collection of the phase PDFs based on the sets

of phase angles used in the reconstruction of MCS/INID in Fig. 3.5(b).2 Although

they look almost identical, there exists a deviation between the two figures when λj

is small. The use of the least squares method to find the best fit from a finite number

of phase samples is a salient issue, too.

As mentioned, there exists a significant deviation between MCS/INID (or IFFT)

and THEORY in Fig. 3.5. When an optimization routine, instead of the Monte

Carlo simulation, is applied, the comparison may be improved, as evidenced in Alford

(2008). However, it will not be sufficient for obtaining an acceptable match in the

tail regions of two PDFs. Naturally, how to fill this gap is the topic of next section.

Specifically, a systematic approach to filtering out the sets of phase angles generated

by the inid assumption such that they match well needs to be devised.

3.4 Acceptance-Rejection Algorithm

The Acceptance-Rejection (A-R) method is a scheme popular in probability theory

and related fields, but it has never been given due attention in the fields of naval

architecture and marine engineering. This algorithm, as explained in, for example,

von Neumann (1951), is a powerful tool that can be a foundation for designing a

numerical random number generator, when the inverse of the CDF of the target

random variable is not available as an explicit form. Before elaborating how this

scheme can be modified to remove the discrepancy due to the inid assumption, the

standard A-R algorithm is explained first.

Assume that a numerical random number generator needs to be constructed to

sample a random variable X, of which PDF is fX(x). If another random variable Y , of

which PDF is gY (x), can be sampled efficiently, and the condition that fX(x) ≤ cgY (x)

for some c and all x is satisfied, as shown in Fig. 3.8, then the A-R method can be

applied in the following steps:

2The PDFs are prepared as if Emj
is a continuous random variable, when the construction of

the phase PDFs are done in a discrete sense. Note also that the PDFs in Fig. 3.7 are not the joint
PDFs of ε and ω, but the PDFs of ε for each ω.
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Figure 3.8: Schematic of Acceptance-Rejection Method [c = 4.0614]

1. Generate a random sample y from the random variable Y generator and a

uniform random number u from U(0, 1). Note that U(a, b) is a uniformly dis-

tributed random variable between a and b.

2. If u ≤ fX(y)/cgY (y), accept y as a sample x from the random variable X. If

not, return to the first step.

What needs to be proved in order to show that this procedure works as a random

number generator of X is

P{X ≤ x} = P{Y ≤ x
∣∣∣U ≤ fX(y)/cgY (y)} (3.12)

Since Y and U are independent, the joint PDF of Y and U , which may be designated

as hY,U(y, u), can be expressed as

hY,U(y, u) = gY (y) · 1 = gY (y) (3.13)

In addition, by definition of the conditional probability, the right hand side of Eq.

(3.12) is expressed using Eq. (3.13) as

P{Y ≤ x
∣∣∣U ≤ fX(y)/cgY (y)} =

[ ∫
y≤x

∫
0≤u≤fX(y)/cgY (y)

gY (y)dudy
]
/K (3.14)

where the denominator K is, by definition, the probability of a selected uniform
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random number u satisfying u ≤ fX(y)/cgY (y), which is

K = P{U ≤ fX(y)/cgY (y)} (3.15)

Since the numerator of Eq. (3.14) can be simplified as∫
y≤x

∫
0≤u≤fX(y)/cgY (y)

gY (y)dudy =

∫ x

−∞

∫ fX(y)/cgY (y)

0

dugY (y)dy

=

∫ x

−∞

(
fX(y)/cgY (y)

)
· gY (y)dy

= (1/c)

∫ x

−∞
fX(y)dy (3.16)

Eq. (3.12) becomes

P{X ≤ x} = (1/cK)

∫ x

−∞
fX(y)dy (3.17)

Therefore, Eq. (3.17) is true if and only if

K = 1/c (3.18)

The proof of Eq. (3.18) is readily available by applying the total probability theorem

to Eq. (3.15).

K = P{U ≤ fX(y)/cgY (y)}

=

∫ ∞
−∞

P (U ≤ fX(y)/cgY (y)
∣∣∣Y = y) · gY (y)dy

=

∫ ∞
−∞

(
fX(y)/cgY (y)

)
· gY (y)dy = 1/c (3.19)

The number of iterations needed to collect the required number of realizations

(mr), designated as Ni, is a geometric random variable with the success probability

1/c, as implied in Eq. (3.19). Hence, the expected value of Ni is mr times c, which

indicates that the constant c should be maintained as low as possible to minimize the

expense of the A-R method.

The similarity between Fig. 3.5 and Fig. 3.8 strongly suggests that the approxi-

mated extreme value distribution based on the inid phase distribution can be a perfect

candidate for gY (x), while the extreme value distribution that DLG should generate

is fX(x). In other words, the acceptance-rejection algorithm explained above can be

implemented in DLG according to the following sequence:
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1. Generate a random sample y from the random variable Y generator by produc-

ing a set of phase angle ε′j that follows the modified Gaussian distribution based

on λ that satisfies Eq. (3.1) approximately, and a uniform random number u

from U(0, 1).

2. If u ≤ fX(y)/cgY (y), accept y as a sample x from the random variable X and

store the associated set of phase angle ε′j. If not, return to the first step.

3. Repeat the above two steps until mr sets of N phase angles are collected.

The question then arises whether the random variable Y generator is inexpensive.

In other words, how can the sets of phase angle ε′j be generated efficiently, given aj

and m? Before answering this question, it is necessary to address how to determine

gY (y) for an arbitrary target event with a given exposure time m.

3.5 Determination of gY (y)

The first task to utilize the A-R scheme is to determine gY (y) in Fig. 3.8. For a

small m, Monte Carlo simulations (MCS) are the fastest way to obtain λ from which

gY (y) can be calculated, as presented in Sec. 3.3. However, as m (or equivalently

TEV) increases, the computation time will increase exponentially, which defeats the

purpose of DLG and the A-R method.

A second option is to apply an optimization routine (OPT). As demonstrated by

Alford (2008), OPT would generate gY (y). However, this is still a time-consuming

approach even with the improvements introduced in Sec. 3.1. Specifically, it is not

clear how to increase m and N in the optimization without sacrificing the speed of the

computation. What is very interesting is the combination of the first and the second

option offers a viable solution. Assume that gY (y) for a 6σ event (Target) is required.

Finding λ that would generate gY (y) from either MCS or OPT requires a significant

amount of time. However, MCS for a 3σ event (Initial) can be done in a fraction of

the time that the 6σ event would require, based on which an optimization problem

can be formulated to determine λ for the 6σ event. Specifically, the characteristic

function of 3σ can then be translated, in the s domain, using the shift property of
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the Fourier transform:

ψX′
m

(s)
∣∣∣
Target

=

∫ ∞
−∞

eisxfX′
m

(x− xo) dx

=

∫ ∞
−∞

eis(x+xo)fX′
m

(x) dx

= eisxo ψX′
m

(s)
∣∣∣
Initial

(3.20)

where

xo = TEV
∣∣∣
Target

− TEV
∣∣∣
Initial

(3.21)

The objective of this translation is, of course, to find gY (y) suitable for the target

TEV event. An example of the characteristic function of gY (y) calculated for the 6σ

event by multiplying eisxo by the characteristic function of the 3σ event is presented

in Fig. 3.9(a). In this figure, the deviation between the characteristic function of the

6σ theoretical extreme value PDF and the PDF translated to the 6σ event exists,

too. However, as Fig. 3.9(b) shows, the shifted gY (y) satisfies, for some c and all x,

the necessary condition for applying the A-R method:

fX(x) ≤ cgY (x) (3.22)

A natural question then arises as to how big the difference would be between the

characteristic function of gY (y) for a higher TEV event from the shift property and

the characteristic function for the higher TEV event from MCS alone. In Fig. 3.10(a),

the characteristic function for a 3.0σ event from MCS is shifted to a 4.5σ event to be

compared with that of a 4.5σ event obtained purely from MCS. They match relatively

well. In Fig. 3.10(a), the characteristic function for a 4.0σ event from MCS is shifted

to a 4.5σ event to be again compared with that of a 4.5σ event from pure MCS. The

general matching becomes slightly better. Although this near-equivalency between

SHIFT and MCS is expected to become weaker as xo in Eq. (3.21) increases, the

“mismatch” will not be a problem at all, because SHIFT will only be used as a target

characteristic function of the optimization. Moreover, the optimization will find the

set of lambda that will be much closer to MCS than SHIFT, which will be presented

in Sec. 3.6.

The shift property is not directly validated against MCS for a much higher TEV

event (e.g., 5.0σ or 6.0σ event) due to prohibitive cost. For example, the number of

random samples m to be generated for a 5.5σ event alone is about 180 times more

than that of a 4.5σ event for the same Nruns and N , as listed in Table 2.1. The increase
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Figure 3.9: Summary of Strategy to Find gY (y) for Target TEV

in the computational cost due to the memory management will also be significant.

The remaining issue is how to find a new λ that will generate the shifted gY (y). It

is unclear whether the new λ associated with the translated 6σ event can be obtained

analytically by comparing Eq. (3.3) and Eq. (3.20). However, as stated before, it is

possible to convert the problem to a typical optimization problem where the new λ

is calculated using an empirical relation between a and λ. Specifically, this will be

done by utilizing the relation between a and λ as TEV varies.

Before explaining the optimization using the empirical relation, the strategy ex-
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Figure 3.10: Difference between Characteristic Function from Monte Carlo Simula-
tions (MCS) and Characteristic Function from the Shift Property of
Fourier Transform (SHIFT)

plained above may be summarized as

λInitial → gY (y)
∣∣∣
Initial

→ SHIFT→ gY (y)
∣∣∣
Target

→ λTarget

In other words, λInitial can be estimated based on MCS for a low TEV case initially

(e.g., TEV=3), from which gY (y) for the initial TEV can be calculated. Using the

shift property of the Fourier transform, the initial gY (y) can be translated to a new

gY (y) for the target TEV (e.g., TEV=6). How to calculate λ for the higher target
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TEV (or λTarget) from the target gY (y) will be the topic of the next section.

3.6 Optimization of λ

The relation between a and λ for a few different TEVs is sought in this section.

The objective of this investigation is to find whether λ for a higher TEV can be

estimated based λ for a lower TEV. In the discussion below, instead of a and λ,

aj and λj will be used where necessary to refer to each object in sets, because the

relation between each object in a and λ is of interest.

In order to reveal the relation more clearly, two different sets of aj are prepared,

as shown in Fig. 3.11. The number of Fourier coefficients used to discretize ω is 201.

The selection of two symmetric sets of aj is intended to reveal the one-to-one relation

between aj and λj for a fixed TEV, where j can take any value between 1 and N .

For each set of aj given in Fig. 3.11, the corresponding set of λj is calculated using

MCS, as presented in Fig. 3.12(a) and Fig. 3.12(b), which shows the convergence of

λj as Nruns increases. A few important tendencies are readily observed. First of all,

as aj increases, λj decreases. Second, the convergence rate is lower for a smaller

aj. Third, when two aj are identical, two corresponding λj are very close, as can

be seen, e.g., for two identical aj at 0.8 [rad/sec] and 1.2 [rad/sec]. The very minor

difference is considered to be due to the the random nature of the results. Last,

but most important, the set of λj moves downward evenly, while maintaining its

original shape as TEV increases, which is shown Fig. 3.12(c) and Fig. 3.12(d). This

tendency is becoming somewhat weak as λj increases (or aj decreases). However, this

is expected because the modified Gaussian distribution does not change significantly

as λj increases (say λj larger than 3), which was shown in Fig. 2.3.

This last tendency has a profound implication: it shows that a simple parameter

λo can be introduced to find the set of new λj for the target TEV from the set of the

initial λj. In other words, the problem now becomes a much simpler optimization

where the objective function is to find the offset λo that minimizes the L2 norm of

the difference between two corresponding characteristic functions for the target TEV

event:

gobjective(λo) =

[
Ns∑
k=1

∣∣∣eiskxoψX′
m

(sk;a,λInitial)− ψX′
m

(sk;a,λInitial − λo)
∣∣∣2]1/2

(3.23)

subject to

0 < λo < min(λInitial) (3.24)
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Figure 3.11: Example Sets of Fourier Coefficients a

where xo is from Eq. (3.21), λInitial is from MCS for the initial TEV, λo is (λo, λo, . . . , λo),

s is discretized between 0 and sthreshold, and Ns is typically around 40 ∼ 60 depend-

ing on TEV. Unlike fobjective in Eq. (3.6), gobjective in Eq. (3.23) is a single-variable

optimization problem, which can be solved straightforwardly. The optimal λo from

Eq. (3.23) can then be used to find the set of λj for the target TEV event.

λTarget = λInitial − λo
∣∣∣
optimal

(3.25)

Fig. 3.13 shows the result of this optimization applied to two different cases: 4.5

and 6.0σ cases of the process defined by the Fourier coefficients shown in Fig. 3.2.
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Figure 3.13: Two Example Results of Single-Variable Optimization

The characteristic functions for the two cases are obtained based on the character-

istic functions for two sets of 10000 3.0σ realizations and the shift property. These

characteristic functions are labeled as SHIFT. Plotted simultaneously are the charac-

teristic functions based on the single-variable optimization formulated in Eqs. (3.23)

and (3.25), which is labeled as OPT. For the 4.5σ case, a pure MCS is shown at

the same time. Surprisingly, the matching between OPT and MCS is much better

than that of OPT and SHIFT in Fig. 3.13(a), even though the objective function

of the optimization was formulated using SHIFT. This observation strengthens the

foundation of the optimization formulated in this section. Moreover, it suggests the
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phase distributions between MCS and OPT will be very close in Fig. 3.13(b) at least

under the inid assumption, which is one of the necessary conditions to guarantee the

statistical equivalency between the ensembles of the time series from DLG and MCS.

Specifically, as shown in Fig. 3.14, the comparison between λ from OPT and λ from

MCS for the same Nruns is excellent, considering their statistical natures. The “mis-

match” where λj is bigger than, say, 4 is statistically negligible as mentioned before,

because the modified Gaussian distribution does not change its shape significantly

when λj is approximately greater than 4.

The results in Figs. 3.13(a) and 3.14 are remarkable, especially when the fact that

MCS takes significantly more time is taken into account. For example, MCS needs an

order of 400 times more samples than OPT, even when the number of Nruns used to

estimate λInitial in OPT is identical to the number of extreme samples of X ′m in MCS.

Extensive simulations show that theNruns to be used to estimate λInitial can be reduced

to 5000, or even fewer, without changing the statistics significantly, as suggested in

Figs. 3.12(a) and 3.12(b). The cost associated the approximation of λInitial at this

level of Nruns is almost trivial, because the initial TEV can be set to 3. It is true that

there will be an additional cost associated with the A-R method. However, this cost

is practically negligible compared to the savings associated with maintaining Nruns

constant, as long as c in Eq. (3.19) remains smaller than around 10, which was shown

to be possible in Fig. 3.9(b). As TEV increases, the computational time required

to execute MCS will increase almost exponentially, as Table 2.1 suggests, while the
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computational time to finish OPT is not influenced by TEV. The increase in the

total computation time due to the increase in N is at least linear with MCS, while

the increase is less than linear with OPT. In summary, the absolute time savings

achieved by choosing OPT over MCS is tremendous especially when TEV is bigger

than, say 4.5. The savings will increases even more as TEV, N , or Nruns increase.

The very last question raised at the end of Sec. 3.4 can finally be answered: gY (y)

for the target TEV in the A-R method and the sets of the associated phase angle

ε′j can be generated very efficiently using the strategy and the optimization problem

developed in Secs. 3.5 ∼ 3.6. In others words, OPT will be used to obtain gY (y),

which will then be fed into the A-R algorithm to generate the sets of phase angles.

These sets of phase angles can be considered as kεmj
associated with X ′m, defined in

Sec. 2.4. These phase angles will then be used in the construction of an ensemble of

short input wave profiles, which will be the topic of the next section.

3.7 Construction of Incident Wave Profiles

An irregular seaway may be expressed as the summation of N Fourier coefficients:

ζ(x, y, t) =
N∑
j=1

bj cos(kj(x cos βj + y sin βj)− ωjt+ ψj) (3.26)

where bj is a set of Fourier coefficients obtained from Eq. (2.2) using the input wave

spectrum representing the seaway, x and y are distances from the origin in a global

reference frame, and βj is the heading angle of the corresponding wave coefficients.

Without loss of generality, y may be assumed zero. In this case, the wave elevation

at a point (x̄, 0), which moves from the origin of the global reference frame at t = 0

with a constant velocity U, is expressed as,

ζ(x̄, 0, t) =
N∑
j=1

bj cos(kjx̄ cos βj − ωjt+ ψj)

=
N∑
j=1

bj cos(kjUt cos βj − ωjt+ ψj)

=
N∑
j=1

bj cos(−ωej t+ ψj) = ζ(t) (3.27)
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where ωej is the encounter wave frequency defined as

ωej = ωj − Ukj cos βj (3.28)

and ψj is the phase angles typically distributed between −π and π.

Given the response amplitude operator H(iωe; βj) at an arbitrary target point on

ship with respect to the incident wave measured at (x̄, 0), the response time history

x(t) measured at the target point is determined as

x(t) =
N∑
j=1

|H(iωe; βj)|bj cos(−ωej t+ ψj + φj)

= aj cos(−ωej t+ ψj + φj) (3.29)

where aj can be calculated from the response spectrum of the process S(ω; βj) as

aj =
√

2S(ωej ; βj)∆ωej =
√

2S(ωj; βj)∆ωj (3.30)

and φj is the argument (or phase angle) of the response amplitude operator H(iωe; βj)

with respect to the incident wave measured at (x̄, 0). Comparing Eq. (2.1) with

Eq. (3.29) shows the relation between ψj and εj.

ψj = −εj − φj (3.31)

Therefore, the conversion of εmj
to ψj is straightforward, because the phase angles

of the response amplitude operator H(iωe; βj) is just a known input parameter to the

DLG process. The short incident wave profiles around t = 0 from Eq. (3.27) can

then be fed into high-fidelity nonlinear hydrodynamic loads computation systems, to

find the corresponding nonlinear responses. This is an important part of the DLG

process, which will be a topic of Chapter V.

3.8 Summary of DLG Process

In the DLG process, an ensemble of short random wave trains generated by the

linear summation of a finite number of spectral coefficients is tailored to produce

the distribution of extreme responses during a specified exposure time in the neigh-

borhood of the extreme responses. By applying non-uniform phase distributions of

the random extreme event, wave elevations leading to the distribution of extreme
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responses can be calculated via linear theory and subsequently used as input to high

fidelity nonlinear hydrodynamic computation codes. Fig. 3.15 is a graphical summary

of the DLG process

In more detail, the DLG method devised for calculating design responses for a

given exposure time and the associated wave elevations takes the following steps.

1. Choose the response of interest (e.g., vertical bending moment, relative motion,

or relative velocity).

2. Calculate the input spectrum (e.g., the ITTC Sea Spectrum) and the Response

Amplitude Operator (RAO) of the target response to produce the response

spectrum.

3. Determine the exposure time the system (e.g., vessel or offshore unit) will spend

in a cell, which produces Target Extreme Value (TEV).

4. Check for sufficient number of Fourier coefficients N . In other words, TEV

should be sufficiently lower than the maximum attainable response given in

Eq. (2.6), or N should be big enough not to limit the maximum from the

process artificially.

5. Conduct a quick Monte Carlo simulation for a initial TEV to determine λj for

the initial TEV.

6. Solve an optimization problem to determine the phase PDFs that is statisti-

cally equivalent to those from Monte Carlo simulations of the target TEV. This

produces λj that corresponds to the target TEV.

7. Generate the sets of phases εj based on λj using the Modified Gaussian distri-

bution.

8. Calculate an ensemble of design responses using linear superposition. Conduct

the Acceptance-Rejection procedure described in Sec. 3.4 until the desired num-

ber of sets of N phase angles are collected.

9. Calculate corresponding short incident wave profiles using linear systems theory.

10. Calculate an ensemble of extreme nonlinear responses to short wave records

using a high fidelity seakeeping program such as CFD codes or time domain

potential codes to collect the distribution of extreme nonlinear responses.
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CHAPTER IV

Expansion of Problem Formulation

4.1 Sum of Two Gaussian Processes

Implicitly assumed in the development of DLG in Chapters II ∼ III are long-

crested seaways. Specifically, Eq. (2.1) represents the response of a system that occurs

when the incident wave is coming into the system primarily from one direction. A

natural question then arises whether the current formulation of DLG can be extended

to more general cases. For example, will it be possible to apply DLG to the extreme

response under short-crested seaways? To answer these questions, as an initial ap-

proximation of short-crested seaways, the response of a system under bi-directional

seaways measured at a fixed point is first investigated:

xbi(t) =
N∑
j=1

1aj cos(1ωjt+ 1εj) +
N∑
k=1

2ak cos(2ωkt+ 2εk) (4.1)

where
1aj =

√
2S1(1ωj)∆1ωj (4.2)

2ak =
√

2S2(2ωk)∆2ωk (4.3)

and S1(1ωj) and S2(2ωk) are two single-sided spectrums, and εj and εk are two mutu-

ally uncorrelated uniformly distributed (between −π and π) random phase vectors.

Without loss of generality, the same number of Fourier coefficients N is used to dis-

cretize the response spectra. As N goes to infinity, the random variable Xbi expressed

by the random process xbi(t) in Eq. (4.1) also goes to a zero-mean Gaussian random

variable due to the central limit theorem. In addition, similar to Eq. (2.4), the vari-

ance of the random variable can be approximated as
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Figure 4.1: Two Example Sets of Fourier Coefficients 1a and 2a [N = 201]

σ2
bi ≈

1

2

N∑
j=1

(1aj)
2 +

1

2

N∑
k=1

(2ak)
2 (4.4)

The response of a system under bi-directional seaways composed of swells and

wind-generated waves with different directionality fits into this model. Instead of more

realistic spectrums suitable for swells and wind-generated waves, however, two sets

of artificial Fourier coefficients in Fig. 4.1 are selected to show that the development

in Chapter III can be extended to the response under bi-directional seaways. These

two examples may be viewed as the summation of two different low frequency (LF)
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Figure 4.2: Extreme Value Distribution from Monte Carlo Simulations (MCS) and
Theoretical Extreme Value Distribution (THEORY) for Two Example
Sets of Fourier Coefficients [TEV = 4.5 and Nruns = 50000]

spectra, and the summation of a low frequency (LF) spectrum and a high frequency

(HF) spectrum. From this point, the subscript “bi” will be dropped and the set

notation, as defined in Eqs. (3.4) ∼ (3.5) will be used at the time same for simplicity.

First of all, the maximum of m samples generated from X, as described in Sec. 2.4,

should also follow the theoretical extreme value distribution of a zero-mean Gaussian

random variable with variance expressed by Eq. (4.4). Fig. 4.2 confirms that they

do actually match, where 50000 realizations of Xm (MCS) are compared with the

theoretical extreme value distribution (THEORY). The matching is in fact better
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than the comparison in Fig. 3.5(a), which is due to the increased number of Fourier

coefficients. Note that the effective number of Fourier coefficients is now doubled to

400. The expected occurrence from THEORY for each cell differs slightly between

Fig. 4.2(a) and Fig. 4.2(b), because the number of bins, not the width of bins, in the

two histograms is kept constant.

In order to use the current construction of DLG, it is assumed that modified Gaus-

sian distribution can still be used to model the phase PDFs. Under this assumption,

Eq. (3.3) can be expanded to Eq. (4.5) as shown in Appendix. B. The characteristic

function of the theoretical extreme value distribution does not change from Eq. (3.2)

except that the variance of the bidirectional process in Eq. (4.4) should be used.

ψX′
m

(s; 1a, 1λ, 2a, 2λ)

=
2∏

k=1

N∏
j=1

∫ 1

−1

ei
kajsy

π(kλj)
√

1− y2

{√
2π e−0.5 arccos2 y/kλ2j − λj erf

(
π/(kλj

√
2)
)

+ kλj

}
dy

(4.5)

Since two sets of Fourier coefficients are involved in x(t) for each case, two sets

of λj, here designated as 1λ and 2λ, need to be determined for each case. Similar to

what has been done for Fig. 3.7(a), the phase angles associated with the maximum

in m samples are first collected. The least squared method is then used to find the

optimized 1λ and 2λ such that the squared difference between the modified Gaussian

distribution in Eq. (2.26) and the distribution of the phase angles for each set of

Fourier coefficients is minimized. Figs. 4.3 and 4.4 show the results of this procedure,

which confirms that the convergence of 1λ and 2λ as Nruns increases for both cases. In

addition, found again are the tendencies observed in Fig. 3.12, from which the opti-

mization problem is formulated in Sec. 3.6. What is the most important is that, even

for this bi-directional process, 1λ and 2λ move downward evenly, while maintaining

their original shape as TEV increases. Due to this highly advantageous property,

all the developments used for the directional seaways, as explained in Chapter III,

can very easily be adapted for the current bi-directional process. Specifically, the

optimization problem now becomes one of finding λo that minimizes the following

54



0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 
N

R
un

s=
50

00
0

N
R

un
s=

30
00

0

N
R

un
s=

10
00

0

(a
)

E
st

im
at

ed
1
λ

fo
r

1
a

w
h

en
T

E
V

=
4
.5

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 
N

R
un

s=
50

00
0

N
R

un
s=

30
00

0

N
R

un
s=

10
00

0

(b
)

E
st

im
a
te

d
2
λ

fo
r

2
a

w
h

en
T

E
V

=
4
.5

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 

T
E

V
=

4.
5

T
E

V
=

4.
0

T
E

V
=

3.
5

T
E

V
=

3.
0

(c
)

E
st

im
at

ed
1
λ

fo
r

1
a

w
h

en
N

ru
n
s

=
5
0
0
0
0

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 

T
E

V
=

4.
5

T
E

V
=

4.
0

T
E

V
=

3.
5

T
E

V
=

3.
0

(d
)

E
st

im
a
te

d
2
λ

fo
r

2
a

w
h

en
N

ru
n
s

=
5
0
0
0
0

F
ig

u
re

4.
3:
λ

B
as

ed
on

M
on

te
C

ar
lo

S
im

u
la

ti
on

s
(M

C
S
),

as
N

ru
n

s
or

T
E

V
In

cr
ea

se
s

[L
F

+
L

F
C

as
e]

55



0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 
N

R
un

s=
50

00
0

N
R

un
s=

30
00

0

N
R

un
s=

10
00

0

(a
)

E
st

im
at

ed
1
λ

fo
r

1
a

w
h

en
T

E
V

=
4
.5

1
1.

2
1.

4
1.

6
1.

8
2

2.
2

2.
4

2.
6

2.
8

3
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 
N

R
un

s=
50

00
0

N
R

un
s=

30
00

0

N
R

un
s=

10
00

0

(b
)

E
st

im
a
te

d
2
λ

fo
r

2
a

w
h

en
T

E
V

=
4
.5

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 

T
E

V
=

4.
5

T
E

V
=

4.
0

T
E

V
=

3.
5

T
E

V
=

3.
0

(c
)

E
st

im
at

ed
1
λ

fo
r

1
a

w
h

en
N

ru
n
s

=
5
0
0
0
0

1
1.

2
1.

4
1.

6
1.

8
2

2.
2

2.
4

2.
6

2.
8

3
012345678910

ω
 [r

ad
/s

ec
]

λ

 

 

T
E

V
=

4.
5

T
E

V
=

4.
0

T
E

V
=

3.
5

T
E

V
=

3.
0

(d
)

E
st

im
a
te

d
2
λ

fo
r

2
a

w
h

en
N

ru
n
s

=
5
0
0
0
0

F
ig

u
re

4.
4:
λ

B
as

ed
on

M
on

te
C

ar
lo

S
im

u
la

ti
on

s
(M

C
S
),

as
N

ru
n

s
or

T
E

V
In

cr
ea

se
s

[L
F

+
H

F
C

as
e]

56



objective function:

gobjective(λo) =

[
Ns∑
l=1

∣∣∣eislxoψX′
m

(sl;
1a, 2a, 1λInitial,

2λInitial)

− ψX′
m

(sl;
1a, 2a, 1λInitial − λo, 2λInitial − λo)

∣∣∣2]1/2

(4.6)

subject to

0 < λo < min(1λInitial,
2λInitial) (4.7)

where 1λInitial and 2λInitial are from MCS for the initial TEV, xo is the difference be-

tween the initial TEV and the target TEV as defined in Eq. (3.21), λo is (λo, λo, . . . , λo),

s is discretized between 0 and sthreshold, and Ns varies depending on TEV. The op-

erator min finds the smallest element of 1λInitial and 2λInitial. The optimal λo from

Eq. (4.6) can then be used to find the two sets of λj for the target TEV event.

kλTarget = kλInitial − λo
∣∣∣
optimal

where k = 1, 2 (4.8)

Compared to the uni-direction process analyzed in Chapter III, the computation

time to obtain 1λInitial and 2λInitial, by solving Eqs. (4.6) and (4.8), increases approx-

imately twofold. However, the increase in the absolute computation time is almost

trivial, compared to the savings achieved by applying the current strategy rather

than MCS. This is mostly because Eqs. (4.6) and (4.8) can be solved very efficiently.

Therefore, the total saving in computational expense over MCS increases approxi-

mately twofold, compared to the saving observed in the uni-directional process.

Similar to Fig. 3.13, the results of this optimization applied to two different

cases—4.5 and 6.0σ cases of the process defined by the Fourier coefficients shown

in Fig. 4.2(b)—are given in Fig. 4.5. The characteristic functions for these two cases

are obtained from the characteristic functions of two 3.0σ realizations using the shift

property. These characteristic functions are labeled as SHIFT. Plotted simultaneously

are the characteristic functions based on the single-variable optimization formulated

thorugh Eqs. (4.6) and (4.8), which are labeled as OPT. For the 4.5σ case, a pure

MCS is shown at the same time. Similar to Fig. 3.13, the matching between OPT

and MCS is slightly better than that of OPT and SHIFT, even though the objective

function of the optimization was formulated using SHIFT. This observation shows

that the optimization developed for the bi-directional process works as expected, and

the A-R method can be applied in the same manner.
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Figure 4.5: Two Example Results of Single-Variable Optimization [LF + HF Case]

For the 6.0σ case, a pure MCS has not been obtained due to prohibitive1 cost.

However, the result so far strongly suggests the phase distributions between MCS and

OPT will still be very close, at least under the inid assumption, if MCS for the 6.0σ

case were available.

1It really is prohibitive. The expected computational time for the task with a highly optimized
code under the best machine available, at the time of writing, to the author is at least an order
of 38 years. This is an estimation linearly scaled, according to Table 2.1, from the actual compu-
tational time measured for the 4.5σ case. A well-designed pseudo-random number generator with
the implementation of a parallel processing algorithm could reduce the computational cost, but it is
unfortunately beyond the scope of the current research.
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4.2 Multidirectional DLG

The observation that λ moves downward evenly, while maintaining its original

shape as TEV increases makes the optimization developed in this research very pow-

erful as shown in Sec. 4.1. Moreover, the optimization problem can be expanded for

multidirectional or short-crested seaways, which is the topic of the current section.

The response in the short-crested seaways can be expressed as:

x(t) =
h∑
k=1

N∑
j=1

kaj cos(kωjt+ kεj) (4.9)

where
kaj =

√
2Sk(kωj)∆kωj (4.10)

and h is the number of wave spectra. In other words, these equations are the gen-

eralization of Eqs. (2.1) ∼ (2.2), and Eqs. (4.1) ∼ (4.3). Similar to Eq. (4.4), the

variance of the process that combines h different processes can also be expressed as

σ2
short ≈

1

2

h∑
k=1

N∑
j=1

(kaj)
2 (4.11)

While the characteristic function of the theoretical extreme value distribution does

not change from Eq. (3.2) except that the variance from Eq. (4.11) should be used,

the characteristic function of the response that DLG should generate becomes, as

explained in Appendix B,

ψX′
m

(s; 1a, 1λ, 2a, 2λ, · · · , ha, hλ)

=
h∏
k=1

N∏
j=1

∫ 1

−1

ei(
kaj)sy

π(kλj)
√

1− y2

{√
2π e−0.5 arccos2 y/kλ2j − λj erf

(
π/(kλj

√
2)
)

+ kλj

}
dy

(4.12)

Moreover, the relation between λ and TEV shown in Sec. 4.1 remains valid even for

multidirectional seaways, which means that the problem now becomes the minimiza-

tion of the following objective function:
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gobjective(λo) =

[
Ns∑
l=1

∣∣∣eislxoψX′
m

(sl;
1a, 1λInitial,

2a, 2λInitial, · · · , ha, hλInitial)

− ψX′
m

(sl;
1a, 1λInitial − λo, 2a, 2λInitial − λo, · · · , ha, hλInitial − λo)

∣∣∣2]1/2

(4.13)

subject to

0 < λo < min(1λInitial,
2λInitial, · · · , hλInitial) (4.14)

where 1λInitial,
2λInitial, · · · , kλInitial are from MCS for the initial TEV, xo is the

difference between the initial TEV and the target TEV as defined in Eq. (3.21), λo is

(λo, λo, . . . , λo), s is discretized between 0 and sthreshold, and Ns varies depending on

TEV. The operator min() returns the smallest element among 1λInitial,
2λInitial, · · · ,

kλInitial. Once the optimized solution for λo is determined, kλj for the target TEV

can be calculated as

kλTarget = kλInitial − λo
∣∣∣
optimal

where k = 1, 2, · · · , h (4.15)

The optimized solution, whether it is derived from a bidirectional process or a

multidirectional process, can only produce gY (y) in Sec. 3.5. The acceptance-rejection

algorithm explained in Sec. 3.4 should be used to generate h sets of phase angles, from

which the response time histories and the corresponding incident wave profiles can

readily be obtained.

4.3 Example DLG Simulation

As an example DLG simulation, a 5σ event of the incident wave profile at a fixed

location is investigated in this section, where a penta-directional seaway is assumed.

Specifically, the directional sea spectrum S(ω, β) is calculated from the cosine direc-

tional spreading as explained in, for example, Kim (2008):

S(ω, θ) = S(ω)D(θ) (4.16)
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Figure 4.6: Example Comparisons between 5σ Penta-Directional DLG Realizations
and Theoretical Extreme Value Distribution

where

D(θ) =


2

π
cos2 θ when − π/2 ≤ θ ≤ π/2

0 otherwise

(4.17)

As a demonstration, θ is discretized into five different angles: −30, −15, 0, 15,

and 30 degrees. For the point spectrum S(ω), the Bretschneider spectrum with the

significant wave height Hs = 3.25 [m] and modal wave period Tp = 9.7 [sec] is used.

Fig. 4.6(a) shows that the histogram of 10000 realizations generated by the multi-
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directional DLG matches the theoretical extreme value distribution. Any realization

in the histogram is a possible extreme wave peak amplitude in about 800 hours

under the same seaway, considering Table 2.1. The realizations in the histogram are

converted into CDF to be compared with the theoretical CDF of the corresponding

Gaussian process as shown in Fig. 4.6(b). The application of the A-R method results

in very good matching.
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Figure 4.7: Example Time History Recorded at X=Y=0 from 5σ Penta-Directional
DLG Realizations

An example realization from the 10000 realizations in Fig. 4.6(a) is presented as a

time history in Fig. 4.7. Due to a rather coarse discretization, the loss in the variance

is significant. Even compared with the variance of the original point spectrum, the

extreme crest height at t = 0 exceeds the common criteria of rogue waves (Dysthe

et al., 2008).

The DLG model is based on a linear model and it should not be used to analyze

ocean rogue waves, even though there is no concensus of theories suitable for rogue

waves. However, Fig. 4.7 is not inconsistent with extreme wave examples observed

from actual radar measurements as shown in e.g., Lehner (2004). Fig. 4.8(a) shows

the seaway captured at t = 0. Fig. 4.8(b) is the associated contour plot that shows

wave elevations at the same time step.

The DLG process in this case is applied to the incident wave, not the response

of a system. Applying the DLG model to the response of a system under a penta-

directional seaway is no different from the current example, as discussed in Sec. 3.7.

Increasing the number of heading angles to 10 ∼ 20 directions, is very possible.
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Figure 4.8: Example Seaway and Corresponding Contour Plot from 5σ Penta-
Directional DLG Realizations

Under the cell-based design approach introduced in Sec. 2.3, a long-crested seaway

is often assumed. However, applying a short-crested seaway to the cell-based approach

is straightforward. Moreover, there are a few problems that can take full advantage

of the multidirectional DLG. For example, the bi-directional seaways composed of

waves coming from two different directions may be crucial in springing analysis of a

vessel, as demonstrated in Vidic-Perunovic (2005) or offshore applications as shown
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in, for example, ABS (2010).

As mentioned in Sec. 1.3.2, the most likely wave profile conditioned on a fixed

maximum value at t = 0 under the short-crested seaway has been discussed in Pas-

toor (2002). Compared to Pastoor (2002), which is essentially the generalization of

Tromans et al. (1991), the current multidirectional DLG can capture the variabil-

ity of the irregular random waves associated with a given exposure time. Thus, the

DLG approach is much more suitable for realistic design problems as explained in

Chapter I.

64



CHAPTER V

Nonlinear Time Domain Simulations

5.1 Large Amplitude Motions Program

Numerical time domain simulations are performed using the Large Amplitude Mo-

tions Program (LAMP). The program can provide both linear and nonlinear solutions

to the seakeeping problem at various levels, and may be considered as a high-fidelity

hydrodynamic computation tool that has been verified and validated extensively (Shin

et al., 2003).

LAMP is a time domain simulation model developed specifically for computing

the motions and loads of a ship in rough seas. LAMP uses a time-stepping approach

in which all forces and moments acting on the ship, including those due to wave-body

interaction, appendages, control systems, and green water on deck, are computed at

each time step. The forces and moments are used to solve the equations of the motion

at each time step. In addition to ship motions, LAMP computes the main hull-girder

loads using either a rigid or elastic beam model, and includes an interface for develop-

ing finite element load data from the three-dimensional pressure distribution. Various

post-processors are available to calculate, for example, impact-induced bending mo-

ments (or whipping) based on the rigid hull computation, or surface pressure due to

impacts. The following description of the program suite is taken from the manual

(Lin et al., 2008).

• LAMP1 (Body linear solution): Both perturbation potential and hydrostatic

and Froude-Krylov forces are solved over the mean wetted hull surface.

• LAMP2 (Approximate body nonlinear solution): The perturbation potential is

solved over mean wetted hull surface while the hydrostatic and Froude-Krylov

forces are solved over the instantaneous wetted hull surface.
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• LAMP3 (Approximate body nonlinear solution allowing large lateral motions):

The perturbation potential is solved over the mean wetted surface while the

hydrostatic/Froude-Krylov forces are solved over the instantaneous wetted hull

surface. LAMP3 is different from LAMP2 in the sense that LAMP3 can handle

large lateral motions.

• LAMP4 (Body nonlinear solution): Both the perturbation potential and the

hydrostatic and Froude-Krylov forces are solved over the instantaneous wetted

hull surface.

The most practical level is the approximate body-nonlinear LAMP2 solution, as it

captures a significant portion of nonlinear effects in most ship-wave problems at a frac-

tion of the computation effort for the general body-nonlinear formulation. Although

DLG does not dictate the use of LAMP, all nonlinear time domain computation results

reported in the current research, including the results from Monte Carlo simulations,

are based on LAMP. Specifically, the approximate body-nonlinear LAMP2 version of

the code is used.

5.2 LAMP Post-Processors

The prediction of two important impact-induced loadings, whipping bending mo-

ment and impact pressure, are presented in Chapter VI ∼ VII. These two loading

are rapidly varying and hard to calculate accurately. LAMP is capable of generating

these two loadings using the post-processors introduced in this section. Although

LAMP has been verified and validated quite extensively in general, the calculation

of these two highly nonlinear transient loadings (especially impact pressure) need

further research. The DLG model will still remain valid.

5.2.1 LMPOUND

To account for the whipping loads, several options are available within LM-

POUND. This LAMP post-processor does calculate slamming loads and the resulting

main-girder structural response (i.e., whipping). The hydrodynamic impact forces

are calculated using two dimensional approaches. Specifically, ships are modeled by

a collection of 2-D sections or stations that are created by making cuts of the LAMP

input geometry. The motion of each cut with respect to the incident wave free surface

is computed from the 6-DOF ship motion history and the incident wave profiles. Im-

pact forces are then calculated, at each time step, on the sections where the relative
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velocity is negative and the bottom point of the section is submerged. The structural

response is calculated based on these impact force calculations. This means that the

impact forces and vibrations are decoupled from the motions of the ship and other hy-

drodynamic forces computed by main LAMP runs, and the number and the location

of stations are two important input parameters to LMPOUND.

In LMPOUND, four different options are available to calculate the impact force.

Of four different approaches, The results presented in this research are primarily based

on SLAM2D and WEDGE options.

• SLAM2D: a generalized Wager solution where the exact body boundary condi-

tion is satisfied on the body surface.

• WEDGE: a semi-empirical formula based on a semi-empirical wedge approxi-

mation, where sectional forces are calculated via the changing added mass of

an equivalent two-diminutional wedge.

LMPOUND calculates the structural response using a finite element analysis via

either direct integration or modal superposition. The direct integration is mainly

used in the current research.

To find out the best approach is not of interest in the current research. However,

it is noted that different options and input parameters may produce significantly dif-

ferent results. Therefore, special care is taken to use the same option and parameters,

when a comparison is made.

LMPOUND also calculates the impact pressure at a node point. This pressure,

combined with the summation of three different types of pressure in LMPRES, is

termed as the total pressure Ptot in Chapter VII

5.2.2 LMPRES

LMPRES is another important post-processor that computes the surface pressure

due to the three different potentials. In other words, the total pressure from LMPRES

is a summation of three different components:

PT = PFK + PHS + PPF (5.1)

where PFK is the Froude-Krylov pressure, which is due to the linear components of the

incident wave; PHS is the hydrostatic pressure; and PPF is the perturabtion pressure,

which includes the effects of radiation, diffraction, forward speed and nonlinear terms

in the incident wave potential. But the perturbation pressure from LMPRES does not

67



include the impact pressure. On the contrary, the impact pressure can be calculated

from LMPOUND, as mentioned above. So the “real” total pressure may be defined

as

PTOT = PT + PI (5.2)

where PT is the total pressure from LMPRES and PI is impact pressure from LM-

POUND.

In LAMP2, the perturbation potential is computed about the mean wetted surface,

as mentioned in Sec. 5.1. Therefore, the perturbation pressure is mapped onto the

instantaneous water surface.

5.3 Statistical Extrapolation from Nonlinear Simulations

Arguably, extensive Monte Carlo simulation in time domain is the correct way

to define the design events. However, one of the critical limitations with the Monte

Carlo approach is its high implementation cost. In most design applications, the

extreme value comparable to the lifetime extreme cannot be found through Monte

Carlo simulations alone. Hence, additional statistical techniques are often used in

addition to short term Monte Carlo simulation.

The typical approach used to statistically predict lifetime maximum loads is based

on Weibull analysis techniques, assuming the responses collected during full-scale

trials and model tests may follow a Weibull distribution.

Regardless of whether model testing or computer simulation is used, the general

rule of thumb for analyzing a specific sea state/ship speed/heading combination (i.e.,

a cell) is to collect 30 minutes of data for linear ordinary wave-induced loads and 60

minutes for nonlinear responses such as combined wave plus whipping loads. The

resulting time histories can then be statistically analyzed to estimate extreme values

for a specified PNE, provided a sufficient number of samples are collected for a given

sea state, speed, and relative heading.

The general three-parameter Weibull cumulative distribution function (CDF) is

expressed as follows:

FX(x) =

 1− exp
[
−
(x− xthreshold

η − xthreshold

)β]
if x > xthreshold

0 if x ≤ xthreshold

(5.3)
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where

FX : the cumulative distribution function of a Weibull random variable X

β: a shape (or slope) parameter

xthreshold: a threshold value below which there is no measurable data

η: a characteristic value which corresponds to the x value with a cumulative

probability of 1− e−1 (or approximately 0.632)

η − xthreshold: a scale factor

To use the Weibull distribution to extrapolate the target extreme, the CDF of each

observed sample should be calculated, for which order statistics can be utilized:

F = FX(xk) =
k

n+ 1
(5.4)

where n is the total number of observed samples (i.e., peaks or troughs), and k is the

order of the numbers with k = 1 being the smallest value and k = n being the largest

value. Based on Eq. (5.4), the CDF value of DLG realizations can also be calculated,

which will be necessary to compare the results from DLG with the results from Monte

Carlo simulations. In this case, the expected number of observations from Eq. (2.18)

is used instead of the total number of observed samples n.

Depending on the Weibull shape parameter, β, the distribution can be the ex-

ponential (β = 1) or the Rayleigh (β = 2) with many other distributions possible.

The condition that x = η occurs at the same cumulative probability (i.e., 1− e−1) on

every Weibull distribution, and is independent of the slope parameter. This condition

is called the characteristic value. Some amplitude data can contain values that are

relatively small, and in such cases the threshold parameter, xthreshold, may be assumed

zero.

If a random variable X follows the Weibull distribution, the measurement of the

random variable X will form a straight line in Weibull space defined by
(
ln(x −

xthreshold), ln
(
− ln(1−FX(x))

))
. The slope of the straight line is the shape parameter

β and the y-intercept is −βln(η − xthreshold). Subsequently, the analysis essentially

becomes the estimation of the Weibull parameters to extrapolate the lifetime extreme

response from observed samples.

A natural approach to find the Weibull parameters from the sampled data is linear

regression. The ordered linear regression method provides an easy graphical means of
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assessing the data and determining the Weibull parameters. However, linear regres-

sion has two major shortcomings. The ranking of the individual peak magnitudes and

the assigning of probability terms to each peak present potential errors, unless the

measured data population is very large. In addition, in plotting the data, the slope

and intercept terms are biased to the lower magnitudes by the nature of logarithmic

plots. The more important data are the higher magnitude peaks, which have lesser

weighting using the linear regression approach. This can result in the linear regression

providing a better fit to the lower magnitudes and distorting the Weibull parameters

for the higher magnitudes that are of much greater interest.

One method to address this limitation in determining the Weibull parameters

is based on calculating the mean and variance of the data set, and estimating the

characteristic value. For a three-parameter Weibull distribution, as explained in e.g.,

Bishop & Price (1979), the analysis is essentially to solve the following two equations

for β, and xo:

µsample = (η − xthreshold)Γ(1 +
1

β
) + xthreshold (5.5)

and

σ2
sample = (η − xthreshold)2

[
Γ(1 +

2

β
)− (Γ(1 +

1

β
))2

]
(5.6)

where µsample and σsample are just the mean and the variance of the observed data,

and η is estimated from the observed data by finding the sample with the CDF of

1− e−1.

Compared to a simple linear regression method, this so-called moment method

provides a better fit to the entire data distribution, in the sense that the lower mag-

nitude data are not weighted. In the study of the high speed sealift vessel, both the

linear regression and the moment method are applied. The results that provided the

best fit are used for comparisons in Chapters VI ∼ VII.

Given η, β, and xthreshold, the extreme value can be estimated by the extrapolation

for the expected length of time Di, or equivalently, the number of samples n (i.e.,

the number of peaks or troughs) in each operational cell. Specifically, when the CDF

of extrema from Eq. (5.3) is combined with the definition of PNE in Eq. (2.19), the

lifetime maximum for an operational cell corresponding to a specific PNE may be

calculated as

x̄n
∣∣
PNE

= xthreshold + (η − xthreshold)(−ln(1− PNE1/n))1/β (5.7)
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Although this approach is a de facto standard, there are a few important limi-

tations. One of them is the uncertainty associated with the insufficient number of

samples. For example, the statistical extrapolation of nonlinear loads based on just

one hour’s worth of data can result in very large uncertainties. Another limitation is

that the approach is based on the validity of the Weibull distribution. For example,

while it is reasonable to assume that a certain limit exists for physical responses, the

method itself can not capture it. These limitations will be discussed again in the

following chapters.

5.4 Test Hull Form: Joint High Speed Sealift (JHSS)

The nonlinear time domain simulation is an important part of the DLG process

as emphasized several times. In the research, as a test vessel of the DLG process, a

Joint High Speed Sealift (JHSS) hull from is chosen. The JHSS is a potential future

logistic ship of the US Navy, whose feasibility is currently being evaluated. The

JHSS concept is expected to perform as a future inter-theater connector supporting

sea-based operations. The principal dimensions and the numerical hull model of the

JHSS are shown in Table 5.1 and Fig. 5.1, respectively.

Table 5.1: Principal Dimensions of JHSS

Parameter Value
LOA 303 m
Beam 32.0 m
Draft 8.65 m
Displacement (mass) 35122 tonnes
Model Number 5663

In this research, a limited amount of experimental results1 are also presented. The

experimental model of the JHSS is shown in Fig. 5.2. The model as constructed is a

segmented model which entails six shell sections connected to a structurally-scaled,

continuous aluminum back-spline beam that is instrumented with strain gages at each

segment cut to provide measurable responses from combined quasi-static and dynamic

seaways loads. For primary hull girder loads data, a sampling rate of 200 Hz is used

to collect the data. Following standard practice, the sampling rate is approximately

20 times the lowest hull natural frequency (Dinsenbacher & Engle, 2011).

1Experimental results shown in this dissertation have been previously presented in Kim et al.
(2011)
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Figure 5.1: LAMP Geometry of Joint High Speed Sealift Segmented Model

In order to conduct the most rigorous experiments/LAMP comparison possible,

the experimental incident wave profile, measured at a point forward of the model,

was projected to the midship position of the model using linear gravity-wave theory.

This profile was then used as input to LAMP simulations, which will be introduced

in the following chapters.

Figure 5.2: Joint High Speed Sealift Segmented Model (Dinsenbacher & Engle, 2011)

While experimental pressures for the JHSS are unavailable for comparison, it is

noted that the LAMP motions calculation, which has been extensively validated,

requires accurate force (or potential pressure) calculation. However, the calculation

of the impact pressure that will be presented in the following chapters is, without

a doubt, of a topic of further research. It is assumed that LAMP is capable of

generating reasonably accurate impact pressures, based on, for example, reasonably

accurate impact-induced midship bending moment predictions.
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CHAPTER VI

Application I: Estimation of Extreme Bending

Moments

6.1 Midship Bending Moments

One of the most important hull loadings of any ship is the hull girder vertical

bending moment. Especially important is the midship bending moment, which is used

in the scantlings of structural members at midship and become the basis of designing

the entire hull structure. The midship bending moments may be decomposed into

still-water bending moment, wave induced-bending moment, and impact-induced (or

whipping) bending moment. In this chapter, as a validation of DLG, the estimation of

long-term wave-induced bending and impact-induced bending for a Joint High Speed

Sealift (JHSS) type hull is studied numerically and experimentally.

One of the most important tasks in the structural design process is to find the

lifetime maximum load with the desired level of confidence. To do so, the identifi-

cation of design events for each operational cell is a most critical step. The “design

event” encompasses the stochastic wave field, the vessel dynamic response, and the

subsequent hydrodynamic loading, all of which contribute to the combined wave and

whipping design bending moment for a single operational condition.

As mentioned in Sec. 2.3, once M design events in Eq. (2.21) have been deter-

mined, the lifetime maximum loads of each cell may be calculated using statistical

extrapolation techniques. The lifetime maximum load of a vessel is the combination

of the lifetime maximum loads of each cell, as dictated by Eq. (2.22). However, en-

gineering expediency may restrict the investigation of the lifetime load to a small

number of operational cells, as the reduced number of cells still requires a significant

amount of computation. Instead of attempting the calculation of the lifetime maxi-

mum combining all cells, which is beyond the scope of the dissertation, the lifetime
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maximum loads of a small number of cells are studied using the numerical data cal-

culated from the LAMP program introduced in Sec. 5.1 and the experimental data

available from Kim et al. (2011). The realizations from DLG are compared with the

results from the statistical extrapolation techniques and two long-term Monte Carlo

simulations. The environmental and operating conditions of the cells tested in this

chapter are summarized in Table 6.1.

Table 6.1: Environmental & Operation Conditions of Bending Moment Test Exam-
ples

Sea State (SS) Hs [m] Tmodal [sec] Wave Heading [deg] Speed [knots]

5 3.26 9.7 180 15
7 7.5 14 180 15
8 11.5 16.4 180 23

Hurricane Camille 12.2 13.4 180 15

As explained in Kim et al. (2011), all experimental results introduced in this

dissertation were performed in random seas, utilizing a Bretschneider wave spectrum.

Data was collected for a minimum of 30 minutes, full scale. For operational conditions

where nonlinear effects were expected, a minimum of 60 minutes of equivalent full

scale data was recorded. For all test conditions, ship motions, accelerations, global

and local loads were measured. In addition, all wave time histories were recorded at a

location in front of the model. The recorded data was then used in conjunction with

linear wave theory such that the actual waves encountered by the model ship could

be determined and used in any subsequent time domain LAMP simulations.

6.2 LAMP for Weibull Extrapolation

Although nonlinear time domain simulation such as LAMP simulation is an im-

portant part of the DLG process, the validation of the numerical simulation code

is not the topic of the current research. Rather, the purpose of this research is to

develop DLG, to show the application of DLG, and to validate DLG to the extent

possible. However, a few different comparisons from LAMP simulations and model

tests will strengthen the credibility of the results shown in this chapter, which is the

topic of the current section.

As shown in Fig. 6.1, it is possible to reasonably accurately express the incident

wave profile measured in the model tests with a finite number of wave components.

74



0 50 100 150 200 250 300

−2

0

2

SS5 (Run366)

[m
]

 

 

0 50 100 150 200 250 300

−5

0

5

SS7 (Run195)

[m
]

0 50 100 150 200 250 300

−5

0

5

HC (Run325)

Time [sec]

[m
]

Experiment
LAMP

Figure 6.1: Comparison of Incident Wave Time Histories for Example Cases

Extensive test/simulations using these “almost” equivalent incident wave profiles con-

firm that the match between the LAMP results and the model tests is very accurate

in most cases. As can be seen in Table 6.2, for example, a very good comparison is

obtained from the LAMP results up to sea state 7. However, the JHSS simulations

in Hurricane Camille (HC) at 15 knots and head seas do not show the same level of

agreement. The time domain comparison in Fig. 6.2 shows that the LAMP program

is able to predict pitch responses even in HC at 15 knots, but not so successfully pre-

dict the impact-induced vertical bending moment1 that occurred at approximately

25 seconds. The LAMP simulated time history results in a shape parameter of just

under 2.0 (the Rayleigh distribution), whereas the response time history generated

by the model test results in a value of approximately 1.5 (closer to the Exponential

distribution). If this trend is representative of other operational cells, it may result

in a significant deviation in the estimation of the lifetime maximum load. Thus,

this example illustrates one of the potential shortcomings inherent in the statisti-

cal extrapolation mentioned in Sec. 5.3. Nevertheless, it is noted that the overall

comparison is quite good even for HC.

1The sign convention in Fig. 6.2 is following the convention of the experimental results, which is
opposite of the LAMP convention. In LAMP, the positive bending represents sagging.
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Figure 6.2: Example Incident Wave Profile and Corresponding Pitch and Midship
Bending Time Histories [Hurricane Camille, 15 knots, Run 332]

6.3 Monte Calo Simulations

As mentioned in Sec. 5.3, the Monte Carlo approach is arguably one of the best

approaches to study a complex nonlinear system with uncertainty in input. However,

in general, empirically derived extreme value histograms (or distributions) based on

Monte Carlo simulations are not feasible for high-fidelity hydrodynamic computation

programs. To illustrate the value of DLG to the extent possible in this research,

extensive Monte Carlo simulations are conducted using LAMP2. That is, two rel-

atively “long-term” LAMP2 Monte Carlo simulations are conducted to validate the

DLG process: an ensemble of 5 minute and 15 minute random incident wave pro-

files are generated by using sets of 300 uniformly distributed random phase angles in

Eq. (2.1). The 5 minute time histories represent SS8, and the 15 minute time histo-

ries represent SS7 defined in Table 6.1. By keeping any one record length relatively

short, self-repetition of the incident wave profiles due to the finite number of Fourier

coefficients N is prevented, as suggested, e.g., in Belenky (2005).

The associated linear midship bending wave profiles can readily be calculated us-

ing the corresponding response amplitude operators. An example time series from this

process is illustrated in Fig. 6.3. When this process is repeated 288 times and 3000

times for SS8 and SS7 respectively, the extrema of linear midship bending moments

from 24 hours’ and 750 hours’ worth of Monte Carlo simulations are collected. Specif-
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Figure 6.3: Example Incident Wave Profile and Linear Midship Bending Time History
[Sea State 7, 15 knots, Head Seas]

ically, the peaks and troughs in the zero-upcrossing cycles of the bending moment

time histories are collected to be presented in a Weibull space. The peaks and troughs

will form a straight line if they follow the Weibull distribution perfectly. Moreover,

the slope parameter β of the line should be close to 2, as shown in Fig. 6.4, because

the results are based on linear theory. As expected, there is no significant differ-

ence between the positive bending moments (SAGGING) and the negative bending

moments (HOGGING). Note that F in this figure comes from Eq. (5.4).

The incident wave time histories of the composite Monte Carlo simulations are

next simulated in LAMP2 to calculate the nonlinear JHSS wave-induced midship

bending moments and combined midship bending moments. One set of example

time histories of the LAMP simulation is presented in Fig. 6.5. The LAMP bending

moments represent the dynamic portion of the raw outputs from LAMP, while the

combined bending moment moments are defined as the summation of rigid wave-

induced midship bending moments and the impact-induced midship bending moments

from LMPOUND. To identify peaks and troughs, the zero-upcrossing period is again

used. Note that the lengths of the total time series are slightly under 24 hours and

750 hours, due to the initial transients and incomplete cycles at the end of the record.

Unlike Fig. 6.4, the difference between the positive bending moments and the

negative bending moments is in general distinct, as shown in Fig. 6.6. Since the

sagging bending moments can be significantly larger than the hogging, the sagging

bending moments are of greater interest. However, the hogging bending moments
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will also be discussed in Sec. 6.8.

The difference between the linear bending moments and the nonlinear bending

moments can also be quite significant, and these differences show the necessity of

including nonlinearities in the estimation of design loads. For small peaks/troughs,

duplicated samples are found due to an artificial low limit of the LAMP bending

moments, which occurs because LAMP uses a single-precision floating format for

printing out the bending moments. In order to prevent the duplicates and to reduce

to numerical “noise” about the mean value, samples smaller than a threshold value

(2 percent of the maximum value) are filtered out. This operation slightly changes

the denominator of Eq. (5.4). After this operation, the mean period of LAMP2 time

histories becomes closer to the mean period calculated from the response spectrum of

the process, while the effects on the estimation of the Weibull parameters, especially

when based on the momentum method, are negligible.

Fig. 6.6 shows that the assumption of even wave-induced bending moments follow-

ing the Weibull distribution can be a risky one, which illustrates another shortcoming

inherent in the statistical extrapolation mentioned in Sec. 5.3. A bigger problem is

that this limitation may not be recognized easily, when the length of the simulation is,

for example, 0.5 ∼ 3 hour. More specifically, in Fig. 6.7, the linear extrapolation based

on a subset (1 hour) of the 24 hour Monte Carlo simulations seems not unreasonable.

But it will result in a significant over-prediction as suggested by Fig. 6.6.

This shortcoming may be viewed in a different way, using the 750 hour composite
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Figure 6.4: 750 Hour Composite Monte Carlo Simulation of Linear Midship Bending
Moments in Weibull Space [Sea State 7, 15 knots, Head Seas]
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Figure 6.5: Example Nonlinear Monte Carlo Simulations [Sea State 7, 15 knots, Head
Seas]

Monte Carlo simulations. Specifically, the total simulation is divided into 200 seg-

ments such that the single segment represents 3.75 hour Monte Carlo simulations.

The set of the maximum in 200 segments is illustrated as a histogram, as shown in

Fig. 6.8. The ratio of the maximum sample to the minimum sample in the histogram

is approximately 1.6935 to 1. This ratio will somewhat decrease as the exposure time

increases from 3.75 hours to, for example, 750 hours, but the variability can be still

quite significant. Similar to the deviation in Table 6.2, this variability can result in a

significant difference when extrapolated to relatively long-term extreme values. This
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Figure 6.6: 24 Hour Composite Monte Carlo Simulation of LAMP2 Nonlinear Wave-
Induced Midship Bending Moments in Weibull Space [Sea State 8, 23
knots, Head Seas]
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Figure 6.7: 1 Hour Composite Monte Carlo Simulation for Nonlinear Wave-Induced
Midship Bending Moments [Sea State 8, 23 knots, Head Seas; Sagging:
β = 1.475, η = 1.453 × 109 [Nm], xthreshold = 0; Hogging: β = 2.126, η =
1.314× 109 [Nm], xthreshold = 0]

variability has been explained using the idea of PNE in Sec. 2.3, and the variability

is what the DLG model does capture. Thus, the shortcomings associated with the

Monte Carlo approach can be removed or minimized with the DLG approach, which

will be presented in the next section.

81



3.5 4 4.5 5 5.5 6 6.5 7
0

5

10

15

20

25

30

35

40

x/σ

O
cc

ur
re

nc
e
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knots, Head Seas; xthreshold = 0]

6.4 DLG Simulations

The Monte Carlo simulation results introduced in the previous section are pro-

cessed in various ways such that they can be compared with the DLG results, and

eventually validate the DLG results to the extent possible. The DLG results in this

section are derived from the LAMP2 simulations of the short incident wave profiles

identified by DLG. These results are simply denoted as DLG, because the Monte

Carlo simulation results are also based on LAMP2. However, when necessary, the

results are denoted as DLG+LAMP, too. For example, Fig. 6.9 shows an example 5σ

DLG realization.

To show an overall comparison, the 24 hour composite Monte Carlo simulation

discussed in the previous chapter is presented in Weibull space with the DLG results

of four different TEVs (3.5, 4.25, 5.0, and 5.25) in Fig. 6.10. For each TEV case,

30 realizations are collected (a total of 120 DLG realizations) through a process

illustrated in Fig. 6.9. Here, the standard deviation of the linear rigid body midship

bending is denoted as σ. According to Eq. (2.18), the 3.5σ, 4.25σ, 5.0σ, and 5.25σ

values correspond to the design bending values for approximately 1 hr, 21 hr, 667

hr, and 2399 hr exposure times, respectively. The averages of the 30 DLG sagging

results of 3.5σ and 4.25σ are close to the actual Monte Carlo simulations. Judging by

the overall tendency, it is not unreasonable to assume that the longer Monte Carlo

simulation would pass the points close to the averages of the 30 DLG sagging of
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Figure 6.9: Example DLG realization of 5.0σ Event and Corresponding LAMP2 Cal-
culation [Sea State 7, 15 knots, Head Seas]

3.5σ and 4.25σ as well. However, the linear extrapolation of a short term (e.g., one

hour) Monte Carlo simulation in Weibull space is likely to over-predict the extreme

wave-induced bending moments for this operational condition.

The DLG hogging results are lower than the Monte Carlo results because the

DLG realizations are obtained from an ensemble of short-time wave environments

that produce extreme sagging moments, as opposed to hogging moments. These

results should be understood as a lower bound of the “true” hogging extreme values,

which will be discussed again in Secs. 6.7 ∼ 6.8.
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Figure 6.10: DLG Predictions and 24 Hour Monte Carlo Simulation (MCS) for Rigid
Hull Midship Bending [Sea State 8, 23 knots, Head Seas; Sagging: β =
1.448, η = 1.426 × 109 [Nm], xthreshold = 0; Hogging: β = 2.334, η =
1.349× 109[Nm], xthreshold = 0]

The whipping bending moment is also calculated for the 24 hour Monte Carlo

simulation to be compared with the whipping bending moment of the 120 DLG real-

izations, as shown in Fig. 6.11. The effect of whipping for this operational condition

is shown to be significant. Specifically, the maximum combined bending during the

24 hour Monte Carlo simulation is approximately 1.45 times the value realized solely

through rigid wave-induced bending. As in the case of rigid hull bending, the com-

bined wave bending and whipping Monte Carlo results are in the very range of the
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Figure 6.11: DLG Predictions and 24 Hour Monte Carlo Simulation (MCS) for Com-
bined Midship Bending [Sea State 8, 23 knots, Head Seas; xthreshold = 0]

DLG predicted values, while the statistical extrapolation based on one hour Monte

Carlo simulation would result in a significant over-prediction.

6.5 Lifetime Extreme Loads of A Cell

In this section, the lifetime extreme load of the SS7 condition defined in Table 6.1

is studied in three different ways: the Weibull extrapolation, the DLG analysis, and

the Monte Carlo simulations. As an example of the Weibull extrapolation, a 1 hour

model test introduced in Table 6.2 is extrapolated, using Eq. (5.7), to the estimated
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length of time (Di = 954 hours) the JHSS is expected to spend in this operational

cell in its lifetime. The extrapolated value generated by Eq. (5.7) corresponds to

a given PNE value. Three PNE values (i.e., 0.368, 0.990, and 0.999) are used in

the extrapolation. As explained in Sec. 5.3, the PNE of 0.368 is close to e−1, which

corresponds to the modal value of the theoretical extreme value distribution.
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Figure 6.12: Comparison between Histogram from 1000 DLG Realizations and The-
oretical Extreme Value Distribution of 5σ Event [Sea State 7, 15 knots,
Head Seas]

Collected together are the DLG realizations that represent the same exposure

time. The exposure time Di = 954 is approximately equivalent to TEV = 5 in

this cell, when the mean period and the broadness parameter of the linear response

spectrum are used in Eq. (2.18). Before applying LAMP to DLG realizations, the

comparison between the theoretical extreme value distribution and the histogram of

the 1000 DLG realizations is examined, as shown in Fig. 6.12. Due to the development

made in Chapter III, the DLG realizations now exactly follow the theoretical extreme

value distribution in the limit of infinite realizations. The wave-induced bending

and the combined bending moments associated with these 1000 DLG realizations

are then obtained as shown in Fig. 6.9. The results of the process are presented as

two histograms in Fig. 6.13. Note that the bin widths used in Figs. 6.12 ∼ 6.13 are

identical.

The results obtained so far are summarized in Table 6.3. The DLG+LAMP re-

sults indicate that bending moments are higher, for each PNE, than those from the

extrapolated value (Weibull Based Prediction). Since two results are subject to dif-
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(b) Combined Bending via LMPOUND

Figure 6.13: Histograms from 1000 DLG Realizations of 5σ Event [Sea State 7, 15
knots, Head Seas]

Table 6.3: Comparison of Model Test Predictions from Weibull Analysis (954 Hours)
with 5σ DLG Predicted Maximum [Midship Bending [Nm], Sea State 7,
15 knots, Head Seas]

Weibull Based Predictions DLG+LAMP Based Predictions
PNE Wave-Induced Combined PNE Wave-Induced Combined
0.368 3.56E+9 3.82E+9 0.368 4.50E+9 4.80E+9
0.990 4.25E+9 4.57E+9 0.990 5.37E+9 5.97E+9
0.999 4.57E+9 4.94E+9 0.999 5.51E+9 6.33E+9
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ferent uncertainties, it is hard to pinpoint the source of the deviation exactly. For

the Weibull extrapolation, as Table 6.2 shows, 259 peaks were recorded in the model

test corresponding to an exposure time of approximately 60 minutes in full scale.

Based on this relatively short record, four Weibull parameters were determined, as

presented in Table 6.2. Then, assuming that the process and the contributing physics

remain unchanged, extreme values associated with an exposure time of 954 hours

were extrapolated. The results may have been influenced by the shortcomings of the

statistical extrapolation, which will be discussed again in Sec. 6.6. The issue with

DLG+LAMP relates to the ability of the LAMP program to accurately capture the

physics of a vessel experiencing a 5.0σ event. The graphic display of a representative

DLG+LAMP simulation shows steep non-breaking waves, excessive water-on-deck,

and large bow emergence followed by severe impact. Both of these issues potentially

affect the accuracy of extreme value predictions. Although LAMP in general has

been shown to generate reliable and consistent results, it remains the subject of con-

tinued research. The uncertainties notwithstanding, the comparison in general may

be viewed as favorable. Unlike the Weibull predictions where the physics associated

with the extreme values has been lost, the DLG simulations, have produced 1000

complete pressure maps under irregular seaways, which may be used in subsequent

Finite Element (FE) structural analysis.

Notwithstanding the differences between the two methods, it may be possible

to draw qualitative conclusions regarding the contributions of nonlinearities and of

whipping to extreme bending moments for the operational cell in Table 6.3. This is

because the observation is consistent between the Weibull Based Predictions and the

DLG + LAMP simulations. The histogram in Fig. 6.13 is the basis for the statistics

shown in the DLG+LAMP columns of Table 6.3. Noting again that the standard

deviation σ for the DLG ensemble associated with the TEV = 5 design event is about

6.89 × 108 [Nm], the most probable (i.e., modal value) DLG extreme wave-induced

bending moment, based on linear theory, is about 3.44×109 [Nm]. The modal value of

the histogram based on the nonlinear LAMP2 simulations shown in Fig. 6.13 is about

4.6 × 109 [Nm], which means that the ratio of the most probable 954 hour LAMP2

wave-induced bending moment to the 954 hour DLG wave-induced bending moment is

approximately 1.34, a 34% increase due to the nonlinearities captured by the LAMP2

model. Under this operational condition, whipping does not play as important a role

as when the vessel is subjected to the operational condition illustrated in Fig. 6.11.

The 750 hour composite Monte Carlo simulation introduced previously can also be

used to validate two previously mentioned results. Specifically, the results summarized
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(b) Enlargement

Figure 6.14: Comparison of LAMP2 Wave-Induced Bending Moments from 750 Hour
Composite Monte Carlo Simulation, Weibull Extrapolation from 1 Hour
Experiment, and 1000 5σ DLG Realization [Sea State 7, 15 knots, Head
Seas; xthreshold = 0]

in Table 6.3 and illustrated in Fig. 6.13 are compared with the Monte Carlo simulation

in Figs. 6.14 ∼ 6.15. In this figure, the maximum in a single 750 hour (composite)

Monte Carlo simulation is larger than the value that corresponds to the PNE of 0.99 of

the 954 hour extrapolated extreme value. However, the maximum value is consistent

with the distribution from the DLG 5σ extreme value distribution in the sense that

the maximum of the 750 hour is approaching the most likely value from the 1000

DLG realizations for both wave-induced bending moments and combined bending
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(b) Enlargement

Figure 6.15: Comparison of LAMP2 Combined Bending Moments from 750 Hour
Composite Monte Carlo Simulation, Weibull Extrapolation from 1 Hour
Experiment, and 1000 5σ DLG Realization [Sea State 7, 15 knots, Head
Seas; xthreshold = 0]

moments. This suggests that the DLG process works as designed. Figs. 6.14 ∼ 6.15

show that the shortcomings inherent in the statistical extrapolation can be reduced

or even overcome by the DLG approach.
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6.6 Validation of DLG

The ultimate question to be addressed in the chapter is whether the distribution

of the nonlinear extreme responses associated with DLG realizations is statistically

comparable to the distribution obtained from Monte Carlo simulations. In other

words, do the nonlinear extrema found in the vicinity of the linear extrema in a

exposure time (DLG+LAMP) closely match the “true” nonlinear extrema (MCS) in

the same exposure time?

The challenge with this task is that the extreme value distribution of a high

TEV case is very difficult to obtain from MCS. For example, the 1000 realizations

of a 5σ event discussed in Sec. 6.5 are equivalent to almost 1 million hours of MCS.

Considering that LAMP2 runs much slower than real time, this is clearly beyond the

scope of this dissertation. But for a relatively moderate TEV (e.g. TEV = 3.5 ∼ 4),

using the 750 hours’ worth MCS introduced in Sec. 6.3, comparing DLG+LAMP with

MCS is possible.

To be more specific, the 750 hour composite Monte Carlo simulation is divided

into 100 segments and 375 segments such that one segment represents approximately

7.5 hours’ and 2 hours’ worth simulation, respectively. The maximum in each segment

is retrieved to obtain the empirical CDF of extreme values in 2 hours and 7.5 hours.

This process is repeated for linear, LAMP2 wave-induced, and combined bending

moments, respectively. The results are given as MCS in Figs. 6.16–6.18. Presented

simultaneously in each figure are the CDFs from the 500 DLG realizations of which

TEV levels are approximately 3.63 and 3.98. These TEV levels correspond to the

exposure time of 2 hours and 7.5 hours, according to the mean wave period and

the broadness parameter of the response spectrum. The bending moments are all

normalized by the variance of linear wave-induced bending moments. The number of

samples used to construct the CDFs of DLG results is 500, which is larger than those

of MCS. For this reason, the CDFs of DLG results exhibit much smoother shapes.

In general, the DLG generated linear responses match the extreme value distri-

bution of linear bending moments from MCS very well in Fig. 6.16. It should be

noted though that DLG slightly over-predicts THEORY for the same CDF level. As

the number of samples increases, the matching in this plot will definitely improve, as

explained in Chapter III.

The overall comparisons between DLG and MCS for both wave-induced bending

and combined bending moments are also very good, as evidenced in Fig. 6.17(a) and

Fig. 6.18(a). The excellent matching in the upper tail is significant, because this
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(b) Exposure Time: 7.5 Hours

Figure 6.16: Comparison between Extreme Value Distribution of Linear Bending Mo-
ments from Monte Carlo Simulations (MCS) and Corresponding DLG
Linear Bending Moments [Sea State 7, 15 knots, Head Seas]

range includes the target point (i.e., a high PNE design event) sought by structural

designers. The excellent matching in the upper tail is not a coincidence, which will

be explained again in Sec. 6.7. The CDFs are over-predicted by MCS when the CDF

level is below 0.3, in Fig. 6.17(a) and Fig. 6.18(a). This is consistent with the tendency

observed in Monte Carlo simulations, which will also be discussed in the next section.

The under-prediction of MCS when the CDF level is between, say, 0.3 and 0.8 may be

explained, to a degree, by the under-prediction of MCS in Fig. 6.16(a) in the similar

CDF range.
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(b) Exposure Time: 7.5 Hours

Figure 6.17: Comparison between Extreme Value Distribution of LAMP2 Nonlinear
Wave-Induced Bending Moments from Monte Carlo Simulations (MCS)
and Corresponding Nonlinear Wave-Induced Bending in the Vicinity of
DLG Linear Extreme Bending Moments (DLG) [Sea State 7, 15 knots,
Head Seas]

It is somewhat more difficult to conclusively assess Fig. 6.17(b) and Fig. 6.18(b),

due to the small number of samples. The effect of the insufficient number of samples

can be seen in linear bending moments between Fig. 6.16(a) and Fig. 6.16(b). It is

expected that the level of comparison in Fig. 6.17(b) and Fig. 6.18(b) would improve

especially in the upper tail region, if more samples were available. As the exposure

time increases further, the comparison may worsen for the same number of samples.
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(b) Exposure Time: 7.5 Hours

Figure 6.18: Comparison between Extreme Value Distribution of LAMP2 Nonlinear
Combined Bending Moments from Monte Carlo Simulations (MCS) and
Corresponding Nonlinear Combined Bending in the Vicinity of DLG
Linear Extreme Bending Moments (DLG) [Sea State 7, 15 knots, Head
Seas]

However, favorable matching is still expected, which will be explained in Sec. 6.7.

These results strongly indicate the validation of the DLG approach in the application

of midship bending moments.

The results in this section may be explained in comparison with the correlations

between extreme linear bending, extreme wave-induced bending, extreme combined

bending moments in the same exposure time, which will be introduced in the next
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section. The insights obtained in the next section will provide more confidence to the

DLG approach.

6.7 Correlations from Monte Carlo Simulations

The nonlinear extreme response based on the incident wave profile identified by

DLG should be understood as a lower bound of the “true” extreme response in the

given exposure time. The reason for this can be illustrated using the following dia-

gram.

ζ(t) {f(x)}

y1(t)

y2(t)

Figure 6.19: Schematic Diagram of Bounding “True” Extreme in DLG

Consider the schematic shown in Fig. 6.19. Input to a system {f(x)} is the

Gaussian process ζ(t). In this case, {f(x)} may be considered as multiple filters

working in parallel. The multiple outputs from the system consist of y1(t) and y2(t),

where y1(t) is a linear Gaussian or near-Gaussian process, and y2(t) is a nonlinear non-

Gaussian process. In Fig. 6.20(a), y1(t) is the linear wave-induced bending, while y2(t)

is the nonlinear wave-induced bending identified by LAMP. Note that y2(t) becomes

y1(t) in Fig. 6.20(b), where the relation between the nonlinear wave-induced bending

and the impact-induced bending is studied.

A procedure for finding the square symbol in y2(t), which is the maximum of the

peaks identified by the zero-upcrossing cycles of y1(t) in 15 minutes, may be designed.

By the definition of the procedure, the maximum of y2(t) (marked as square) found in

the zero-upcrossing cycle that has the maximum of y1(t) (marked as circle) represents

a low bound of the “true” maximum (marked as star) of y2(t) in the same exposure

time. This is a meaningful demonstration, because the time history around the circle

may be considered as the time history identified DLG. The time history of LAMP2

nonlinear response associated with the DLG identified time history is comparable to
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Figure 6.20: Examples of y1(t) and y2(t) in Schematic Diagram

By repeating the procedure illustrated in Fig. 6.20, a correlation coefficient be-

tween the maximum of y2(t) in the cycle of the maximum of y1(t) and the “true”

maximum of y2(t) can be calculated. Moreover, the histogram (or PDF) created from

the collection of squares will certainly form a lower bound of the histogram of stars

from the same exposure time. The closer the correlation between the extreme of

y1(t) and y2(t), in general, the more accurate the non-Gaussian maxima based on

DLG+LAMP estimates will be in a statistical sense. A high positive correlation co-
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efficient is not a sufficient condition to guarantee good matching, because it does not

reflect the slope of the relationship. This point will be discussed using the composite

Monte Carlo simulation. Different processes will have better or poorer correlations,

but the tendency for the collection of squares to form a lower bound of the histogram

of stars will remain valid. It should be emphasized that a specific realization that

produced the linear maximum is not necessarily the same realization that will produce

the non-linear maximum. However, the input ζ(t) that produced the DLG extreme

value statistics will produce a good approximation of the non-Gaussian extreme value

statistics.

The procedure is applied to the 750 hour composite Monte Carlo simulation [Sea

State 7, 15 knots, Head Seas]. Specifically, the total record length is divided into

100 segments and 375 segments respectively. For each segment, two different time

histories (i.e., wave-induced bending, and combined bending) do exist as presented

previously. For each time history, three different maxima explained above (i.e., circle,

square, and star) are collected. In total, 12 different figures are generated based on

the 750 hour composite Monte Carlo simulation, as shown in Figs. 6.21 ∼ 6.23. These

figures, especially Fig. 6.23, explain why the comparisons were exceptional between

the nonlinear response associated with the DLG identified time history and the “true”

nonlinear response. Given simultaneously is the correlation coefficient of two random

variables in each figure, which is defined by

ρXY =
Cov[X, Y ]

Var[X] · Var[Y]
=
E[(X − µX)(Y − µY )]

σXσY
(6.1)

where µX and µY are the mean of the two random variables X and Y , and σX and

σY are the variance of X and Y .

Presented in Fig. 6.21 for two different TEVs are the relations between 1) linear

wave-induced maximum bending (LWMax) and “true” nonlinear wave-induced maxi-

mum bending (TNLWMax), and 2) linear wave-induced maximum bending (LWMax)

and “true” nonlinear combined maximum bending (TNLCMax). As the exposure

time increases, ρXY decreases slightly. The correlations for wave-induced bending

moments are slightly higher than those of the combined bending moments, where

nonlinearity is somewhat more important.

Similarly, in Fig. 6.22, the correlations between 1) LWMax and the associated

nonlinear wave-induced maximum bending (ANLWMax), and 2) LWMax and the

associated nonlinear combined maximum bending (ANLCMax) are presented. The

associated nonlinear maxima, whether it is ANLWMax or ANLCMax, represent the

97



results from DLG+LAMP, as previously explained.

The most important results are shown in Fig. 6.23, where the relations between

ANLWMax and TNLWMax, and between ANLCMax and TNLCMax are presented.

Not only are the correlation coefficients higher than those presented in Figs. 6.21 ∼
6.22, ANLWMax and ANLCMax (especially ones with higher magnitude) successfully

find many of TNLWMax and TNLCMax exactly. This is why the CDF comparisons

in the upper tails are exceptional in Figs. 6.17 ∼ 6.18.

In order to be more specific, the CDFs from ANLWMax, TNLWMax, ANLCMax

and TNLCMax are generated in Fig. 6.24. Note that TNLWMax and TNLCMax are

identical to MCS in Figs. 6.17 ∼ 6.18, while ANLWMax and ANLCMax are compara-

ble to the realizations from DLG. Unlike ANLWMax and ANLCMax in Fig. 6.24, the

responses from DLG are not always lower than those from MCS in Figs. 6.17 ∼ 6.18,

which is probably due to the uncertainties introduced by the insufficient number of

samples. However, the overall comparison implies that the DLG realizations success-

fully find not only the theoretical extreme value distribution, but also the backgrounds

of the incident wave profiles. In other words, the incident wave profiles identified by

DLG are statistically comparable to those identified by MCS.

As the exposure time increases the correlation decreases, but the tendency that

ANLWMax and ANLCMax represent the low bounds of TNLWMax and TNLCMax

remains true. Therefore, the CDF comparisons between DLG+LAMP and MCS in

the upper tails will still be better than those in the lower tails as can be deduced in

Fig. 6.25.

6.8 Hogging Bending Moments

As can be deduced from Fig. 6.14, the extreme nonlinear hogging bending mo-

ments in general are less Gaussian than the nonlinear sagging bending moments. This

will increase the deviation between the nonlinear response associated with the DLG

identified events and the “true” nonlinear response. However, as mentioned previ-

ously, the tendency that the nonlinear response based on the DLG forms a lower

bound of the “true” maximum will remain unchanged, which is shown in Fig. 6.26.

In Fig. 6.26(a), the CDF, denoted as DLG, is calculated from 500 randomly se-

lected realizations of an approximately 3.63σ event. The TEV is slightly different

from the sagging example with the same exposure time, because the hogging re-

sponse amplitude operator is calculated again with LAMP2 using the regular wave

inputs, the height of which is equal to the significant wave height. While the statis-
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Figure 6.26: Comparison between Extreme Value Distribution of LAMP2 Wave-
Induced Hogging Bending Moments from Monte Carlo Simulations (2
Hours) and Corresponding Wave-Induced Hogging Bending Moments in
the Vicinity of DLG Linear Extreme Bending Moments [Sea State 7, 15
knots, Head Seas]

tical linearization may better represent the hogging response amplitude operator, an

attempt is not made to show that DLG works as expected, even with the simplified

approach. The variance of the corresponding response spectrum is used to calcu-

late the CDF denoted as THEORY. The two CDFs in Fig. 6.26(b) are calculated

from LAMP simulations of the incident wave profiles associated with the CDFs in

Fig. 6.26(a). Unlike Figs. 6.17 ∼ 6.18, the uncertainty introduced by the insufficient
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number of samples is not strong enough to “corrupt” the tendency that the response

generated by DLG+LAMP represents the low bound of the “true” extreme responses.

6.9 Effects of Whipping to Total Combined Bending

The calculation of whipping requires the application of nonlinear time domain

simulations. This is often not an option during a design process. Even if it is, long-

term estimates under irregular seaways are not available without resorting to the

statistical extrapolation approach. Therefore, whipping is often taken into account

as a dynamic loading factor. The results presented in this chapter may be used to

assess the contribution of whipping to rigid wave-induced bending when estimating

lifetime design values. The recommendations found in the literature are mixed when

addressing this issue. Some authors, e.g., Baarholm & Jensen (2004), claim that the

whipping contribution is significant. Other authors, e.g., Soares et al. (2008), state

that the whipping “effect on the global maximum vertical loads at midship are in

general relatively small.” The results presented so far show that both positions may

be valid, depending on the hull form and operating conditions under consideration.

For example, the JHSS hull form may experience a significant increase in wave-induced

bending due to whipping for the conditions shown in Fig. 6.11 (45% increase in SS8

at 23 knots), or have a small increase in the whipping contribution to total bending

for the conditions shown in Table 6.3 (∼10% increase in SS7 at 15 knots).

As shown in this chapter, it may be very difficult to accurately find an increase

due to whipping from the statistical extrapolation or simplified equations. However,

this is relatively easy and straightforward using the DLG model, thus demonstrating

the value of the DLG approach.
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CHAPTER VII

Application II: Estimation of Extreme Slamming

Pressures

7.1 Bow Slamming Pressure

While the impact-induced bending moment analyzed in Chapter VI acts on the

hull girder, the local hull members (e.g., hull plates and transverse frames) are also

subject to high impact pressures. Due to their characteristic short duration and ex-

treme local concentration, the impact pressures prove to be particularly troublesome

in the design of fast modern ships.

Slamming can occur when two necessary conditions are satisfied: hull emergence,

which is related to the high relative motion of a target point on ship hull, and the

relative velocity exceeding a certain threshold value. These two conditions were used

in Ochi & Motter (1973) to derive the probability of slamming occurrence. In their

work, they also estimated the magnitude of the impulsive pressure based on the as-

sumption that the pressure is an exponentially distributed random variable. Although

the design process presented in Ochi & Motter (1973) was comprehensive, their study

was primarily based on the statistical analysis of slamming per se, rather than input

random waves that would cause extreme slamming events. In other words, when

advanced nonlinear time domain simulations are required to calculate the impact

Table 7.1: Environmental & Operation Conditions of Slamming Pressure Test Exam-
ples

Sea State (SS) Hs [m] Tmodal [sec] Wave Heading [deg] Speed [knots]

7 7.5 14 180 15
8 11.5 16.4 180 23
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pressure, the input waves leading to the extreme slamming events need to be iden-

tified. How this task can be done employing the DLG process is presented in this

chapter. The environmental and operating conditions of the test examples presented

here are listed in Table 7.1.

The relative motion of a point on a ship hull with respect to the incident wave, in

a head/following sea, may be linearly approximated as

r(t) = ζ3(t)− Lζ5(t)− ζ0(t) + z (7.1)

where ζ3(t) is the heave displacement, ζ5(t) is the pitch angle in radians, ζ0(t) is

the incident wave height at the target point, L is the distance between the center of

gravity and the point in question, and z is the vertical coordinate (positive upward) of

the target point from z = 0 (usually mean free surface). The temporal average of r(t)

approaches z as the record length increases. In this chapter, the surface pressure at a

point near the intersection of the Forward Perpendicular (FP) and the hull bottom,

referred to as the target point, is studied using the two sets of the composite Monte

Carlo simulations introduced in Sec. 6.3. The longitudinal distance L between the

center of the gravity and the target point (L) is 138.55 [m], and the vertical coordinate

(Z) of the target point from the free surface is −8.33 [m]. While only bow slamming

is studied here, the process employed in this chapter remains valid even for bow flare

slamming or stern slamming (Kim et al., 2010) as long as the available hydrodynamic

computational tools are capable of calculating those pressures consistently.

7.2 Monte Carlo Simulations

As illustrated in Fig. 7.1, the total surface pressure PTOT may be defined as the

summation of three potential pressures PT and the impact-induced pressure PI , which

are all defined in Eq. 5.2. The peaks of these pressures may be obtained based on

the zero-upcrossing cycles of the mean-removed relative motion at the target point.

The mean-removed relative motion time history can work as a “clock” to measure

the exposure time of the impact pressure PI as shown in Fig. 7.2. While PT may

be studied using the distribution of these peaks in Weibull space, PTOT is not a

suitable target of a typical Weibull analysis as shown in Fig. 7.3. In Fig. 7.3(b), a

straight line that passes the point of which vertical coordinate is zero (i.e., the sample

approximately equal to the characteristic value η) clearly fails to model the extreme

values accurately. This is because two physically different processes are combined
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Figure 7.1: Example Time Histories of PT , PI , and PTOT [Sea State 8, 23 knots, Head
Seas]

0 50 100 150 200 250 300

−30

−20

−10

0

10

20

30

[m
]

 

 

0 50 100 150 200 250 300

0

1

2

3

4

5

x 10
5

Time [sec]

[P
a]

 

 

Relative Motion

P
TOT

Figure 7.2: Collection of PTOT Maxima Based on Zero-Upcrossing Cycles of Mean-
Removed Relative Motion Time History [Sea State 8, 23 knots, Head
Seas]

in the total pressure. While the application of two straight lines may be considered

in the extrapolation, the results would still be subject to the shortcomings of the

statistical extrapolation technique.

The DLG process, however, can be used to estimate the extreme PT , PTOT , or

even PI , because it does not require any statistical extrapolation technique. As an

example demonstration, this chapter focuses on the estimation of PI , which is a

highly nonlinear process. The prediction of the extreme PI is much more interesting

than that of the extreme PT , because PT is essentially dominated by the hydrostatic
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Figure 7.3: 24 Hour Composite Monte Carlo Simulation of PT and PTOT , Associated
with Maxima of Relative Motion in Weibull Space [Sea State 8, 23 knots,
Head Seas; xthreshold = 0]

pressure and the Froude-Krylov pressure.

To assess the highly nonlinear impact pressure PI , the DLG process uses an indi-

rect method. Specifically, since the conditions under which a marine vehicle becomes

conducive to impacts (i.e., hull emergence and extreme negative relative velocity) are

known, the DLG process finds an ensemble of short incident wave profiles that will

lead the vehicle to experience, for example, an extreme relative motion event at t = 0.

The ensemble of short incident wave profiles ensures the hull emergence at t = 0 so

that the target point is likely to experience the impact.
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Figure 7.4: Example Time Histories Showing Relationship between Relative Motion,
Relative Velocity, and PI [Sea State 8, 23 knots, Head Seas]

Although this approach does not guarantee the extreme negative relative velocity

exceeding a certain threshold value, as TEV increases, the target point becomes more

exposed to the extreme negative relative velocity by the time the target point hits

the instantaneous water surface. The reason is due to the inherent relation between

the relative motion and the relative velocity. This means that the distribution of the

hull surface pressure associated with the ensemble of maximum relative motion for

a given exposure time should be considered as the low bound of the distribution of

“true” extreme pressure, as explained in Sec. 6.7. However, this approach is clearly

much more rigorous than, for instance, calculating the maximum pressure associated

110



with a short regular wave train, in the sense that an ensemble of irregular waves are

used. Moreover, the exposure time associated with the ensemble of incident waves is

known due to DLG, which is the critical information to designers.
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Figure 7.5: Example Time Histories Showing Relationship between Pitch and PI [Sea
State 8, 23 knots, Head Seas]

The relative motion is not the only response with which the impact pressure PI

may be bounded. As mentioned, the extreme negative relative velocity at the target

point is a necessary condition for the extreme slamming pressure. Therefore, slam-

ming is expected to happen in the vicinity of the extreme negative relative velocity.

Fig. 7.4 shows two example time histories that reveal a relation between the relative

motion and the impact pressure, and the relative velocity and the impact pressure.

In Fig. 7.4(a), the target point is above the instantaneous free surface in the time

interval in which the relative motion is positive. It it clear that the extreme impact

pressure PI is observed when the target point is reentering the instantaneous free

surface. In Fig. 7.4(b), the negative relative velocity is used to illustrate the time

history to better show the relation between the relative velocity and the magnitude

of PI . In Fig. 7.4(a), two almost identical impact pressure peaks are observed in

two consecutive relative motion cycles in which the peaks of the relative motion are

quite different. This phenomena may be explained in Fig. 7.4(b), where the relative

velocities at the two instances of slamming are nearly equal.

As used in Alford et al. (2011), another example response to bound the impact

pressure is an extreme pitch event, because an extreme pitch motion is associated

with the bow emergence as shown in Fig. 7.5. In this case, the zero-downcrossing

period appears to be a better choice than the zero-upcrossing period due to the phase
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Figure 7.6: Correlations between Impact Pressure Associated with Relative Motion
Maxima (AIPMax) and “True” Impact Pressure (TIPMax) [Sea State 8,
23 knots, Head Seas]

difference.

Among the few different choices discussed above, the relative motion (RM) at the

target point is chosen as the clock with which the nonlinear impact pressure PI can be

bounded. The 24 hour composite Monte Carlo simulation under SS8 is used again to

generate the composite relative motion time history and the impact pressure PI at the

target point near FP. The simulation results are then divided into 12 and 24 segments

to find the maximum peaks in the corresponding operation periods. Similar to the

scatter diagrams presented in Sec. 6.7, shown in Fig. 7.6 are the relations between the
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“true” extreme impact pressure (TIPMax) and the impact pressure found in the zero-

upcrossing cycle of the maximum relative motion (AIPMax) in 1 hour and 2 hours.

This figure appears to show that the relative motion was a reasonable choice to bound

the highly nonlinear impact pressure following the strategy described in Sec. 6.7. Since

the statistical significance is not so high due to the insufficient number of samples

in the SS8 example, more samples are collected using the 750 hour composite Monte

Carlo simulation under SS7. It should be noted that the impact load calculations of

LAMP reasonably well matched the experimental results up to SS7 as discussed in

Sec. 6.2.

Presented in Fig. 7.7 are one hour subsets of the peaks of the relative motion and

the associated impact pressure collected from the 750 hour composite Monte Carlo

simulation. As expected, the relative motion nicely follows the Rayleigh distribution

(i.e., the slope parameter β close to 2), as shown in Fig. 7.7(a), but the impact

pressure does not. Unlike Fig. 6.7, even a 1 hour composite Monte Carlo simulation

does not follow the Weibull assumption. The slope of the curve of PI appears to be

close to 1 around the characteristic value η (Ochi & Motter, 1973), but it decreases to

around 0.5 as the curve goes up. Since the slope changes drastically, a typical Weibull

parameter estimation is not meaningful. Note that the lowest value of F is different

between Fig. 7.7(a) and Fig. 7.7(b), because impacts are not observed for certain time

intervals. Although the difference is not significant, the maximum of F associated

with the impact pressure is adjusted to that of F associated with the relative motion.

The results of the complete 750 hour Monte Carlo simulation will be presented in the

next section in comparison with the DLG simulations of two different TEVs.

7.3 DLG Simulations

The results from two different TEVs are presented in this section. For each TEV,

1000 realizations are selected and processed through LAMP and LMPOUND to get

the nonlinear relative motion and the associate impact pressure time histories. Of

interest is only the impact pressure associated with the peak of the relative motion

at t = 0. Therefore, the impact pressure calculation through LMPOUND is limited

between t = −30 and t = 30 only.

The two TEVs associated with the ensemble are approximately 3.96 and 4.99,

which are equivalent to 7.5 hours and 750 hours, according to the mean period and

the broadness parameter of the relative motion response spectrum at the target point.

The generation of several thousand realizations that follow the extreme value distri-
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Figure 7.7: 1 Hour Composite Monte Carlo Simulation of Relative Motion (RM) and
Impact Pressure in Weibull Space [Sea State 7, 15 knots, Head Seas;
xthreshold = 0]

bution associated with the given TEVs can be finished in a matter of a few minutes.

Of 1000 realizations randomly selected for the 3.96σ case, the first 20 realizations are

presented in Fig. 7.8. The responses at t = 0, of course, follow the distribution of the

extreme relative motion of the given exposure time at the target point. The ensemble

average of the realizations is presented at the same time.

Two set of the 1000 DLG realizations are processed through LAMP2. The result of

this process is referred to as DLG. However, the results are denoted as DLG+LAMP,

when it is necessary for clarity. An example result from this process is given in
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Figure 7.8: 20 Example Time Histories from 1000 DLG Realizations of Mean-
Removed Extreme Relative Motion [TEV = 3.96σ Event, Ensemble Av-
erage of 20 Time Histories]

Fig. 7.9(a). The comparison between the relative motion predicted by DLG and the

relative motion from LAMP2 is very good, because the relative motion retains the

characteristic of heave and pitch motions, which are typically represented well by

linear theory, even under SS7. As expected, the extreme relative motions lead the

vessel to slam. One example is given in Fig. 7.9(b). Note that the temporal average

of the relative motion in 7.9(b) approaches the vertical coordinate of the target point

from the mean free surface, and the impacts are observed when the target point

reenters the instantaneous free surface.

Similar to the process employed for Fig. 7.6, the 750 hour composite Monte Carlo

simulation is divided into 100 segments and 375 segments such that each segment

represent the random simulations for 7.5 hours and 2 hours, respectively. Collected

for each segment are the maximum of the relative motion time history r(t) defined by

its mean-removed zero-upcrossing cycles, the extreme impact pressure associated with

the maximum relative motion (AIPMax), and the “true” maximum impact pressure

found in the entire record length (TIPMax). The sets of maxima collected from this

process are presented in Fig. 7.10.

Compared to Fig. 7.6, the number of samples are increased so that a higher sta-

tistical confidence level is achieved. The correlation coefficient between AIPMax

and TIPMax is much higher than that of SS8. The comparison between AIPMax

and TIPMax is perfect for the peaks with high magnitude. The tendency observed

in Fig. 7.6 becomes much clearer, even when the exposure time is increased to 7.5
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Figure 7.9: Example 7.5 Hours DLG Realization Based on Maximum Relative Motion
[Sea State 7, 15 knots, Head Seas]

hours. The scatter diagram suggests that the distribution of the impact pressure for

a given exposure time can be estimated by the distribution of the impact pressure

associated with the extreme relative motion for the given exposure time at the target

point. Since the DLG process can find an ensemble of short incident wave profiles

extreme responses that follow the distribution of the extreme relative motion for a

given exposure time (i.e., comparable to AIPMax), the impact pressure associated

with those DLG realizations will follow the distribution of extreme impact pressure

(i.e., comparable to TIPMax). The deviation in the comparison of two CDFs is of
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(b) Exposure Time: 7.5 Hours; ρXY = 0.8105

Figure 7.10: Correlations between Impact Pressure Associated with Relative Motion
Maxima (AIPMax) and “True” Impact Pressure (TIPMax) [Sea State
7, 15 knots, Head Seas]

course expected, but the scatter diagram suggests the deviation will decrease as PNE

increases, to the point where the cycle of extreme relative motion can exactly find the

cycle of extreme impact pressure. This is a very promising result, because the peaks

with higher PNE values are those sought by designers.

If this tendency remains valid, to a certain extent, as the exposure time increases,

the maximum impact pressure from the 750 hour composite Monte Carlo simulation

result may be somewhat larger than the most likely value of the 5σ DLG+LAMP

impact pressure distribution. The basis of this claim, which is somewhat different
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Figure 7.11: Comparison Between Extreme Value Distributions of 4.99σ DLG Real-
izations and Maximum of 750 Hour Composite Monte Carlo Simulations
[Sea State 7, 15 knots, Head Seas; xthreshold = 0]

from the claim made in association with Figs. 6.14 ∼ 6.15, is that the correlation

coefficients are relatively lower, thus expecting a bigger deviation between AIPMax

and TIPMax.

Fig. 7.11 shows the CDF of the relative motion and the CDF of the associated

impact pressure constructed from 1000 LAMP2 simulation results of the 4.99σ DLG

event. Presented simultaneously is the vertical line that corresponds to the maximum

of the 750 hour Monte Carlo simulation using LAMP2. Since the 750 hour composite

Monte Carlo simulation produces only one sample, the CDF level cannot be deter-
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Figure 7.12: 750 Hour Composite Monte Carlo Simulation of Relative Motion (RM)
and Impact Pressure in Weibull Space [Sea State 7, 15 knots, Head Seas;
xthreshold = 0]

mined. In this figure, the extreme relative motion from MCS is slightly lower than

the most likely value (the inflection point of the CDF) of the distribution, which is

very possible. But the extreme impact pressure from MCS is higher than the most

likely value of the distribution, which is in accordance with the expectation explained

above. A comparison of Fig. 7.7(b) with Fig. 7.12(b) strongly suggests that the pre-

diction with this level of accuracy would not be possible with the typical Weibull

extrapolation.

Although Fig. 7.11 suggests that the DLG results are consistent with the scatter
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Figure 7.13: Comparison between Extreme Value Distribution of Associated Impact
Pressure Maxima (AIPMax) and “True” Impact Pressure Maxima (TIP-
Max) from Monte Carlo Simulation [Sea State 7, 15 knots, Head Seas]

diagram created from the Monte Carlo simulation, this is not enough to completely

validate the DLG approach. Extending the record length is not a feasible option.

Similar to the 5σ case discussed in Chapter VI, it would require 750,000 hours’ worth

of LAMP2 Monte Carlo simulation to process the 1000 realizations of the 4.99σ event,

which clearly exceeds the scope of the current research. However, the CDF of 7.5 hours

may be approximately calculated from the 750 hour Monte Carlo simulation, based

on which the 1000 realizations of the 3.96σ event may be validated.

While the results will be presented in the next section, it is possible to predict the
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comparison between them. Specifically, the scatter diagrams in Fig 7.10 is processed

in the form of two CDFs, as shown in Fig. 7.13. Due to the difference in the number

of samples and its stochastic nature, the CDF from DLG will not be identical to

AIPMax. However, the CDF of the impact pressure from the 3.96σ DLG event

should be comparable to the CDF of AIPMax in Fig. 7.13(b). On the other hand,

the comparison between the CDF of the relative motion from DLG and the CDF

of the relative motion from MCS is expected to be almost perfect, as suggested by

Fig. 7.9(a).

7.4 Validation of DLG

Similar to Sec. 6.6, the question to be addressed in this section is whether the dis-

tribution of the nonlinear bow impact pressures collected from the 1000 DLG+LAMP

realizations is statistically comparable to the distribution of the Monte Carlo simula-

tions with the corresponding exposure time. As mentioned, the 750 hour composite

Monte Carlo simulation is divided into 100 segments, such that each segment repre-

sent approximately 7.5 hours’ worth Monte Carlo simulation. The maximum in each

segment is collected to obtain the empirical CDF of extreme relative motion and im-

pact pressure in 7.5 hours. The exposure time of 7.5 hours is comparable to the TEV

of 3.96 according to the mean period and the broadness parameter of the response

spectrum of this case. The extreme relative motions and the impact pressures for each

DLG+LAMP realization are processed to obtain the CDFs of the extreme relative

motion and the extreme impact pressure. The results of this process are presented in

Fig. 7.14.

In summary, the results are as expected in the closing of the previous section. First

of all, in Fig. 7.14(a), the DLG+LAMP successfully finds the CDF of the extreme

relative motion at the target point. Since the number of samples associated with MCS

is significantly lower than that of DLG+LAMP, however, the CDF of MCS is not as

smooth as the CDF of DLG+LAMP. The comparison of two impact pressure CDFs

in Fig. 7.14(b) also meets the expectation discussed in the previous section. The

two CDFs shows a rather significant deviation at the lower tail, which was expected.

As PNE increases, however, the matching between them improves. As can be seen,

there is still a small deviation in the upper tail. Considering the highly nonlinear

nature of the problem, the statistical nature of the results, and the difference in the

number of samples used in the construction of two CDFs, the comparison is very

good. The difference in the number of samples is important, because the maximum
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Figure 7.14: Comparison between Extreme Value Distribution from DLG and from
Monte Carlo Simulations (MCS) for 7.5 Hours [Sea State 7, 15 knots,
Head Seas]

value achievable from the empirical CDF is simply the maximum of the observed

samples. While the results presented so far show that the DLG process is working as

expected for the extreme bow slamming pressure estimation, the comparison between

two CDFs may be further improved by designing a more accurate “clock”,

If the magnitude of the slamming pressure is highly dependent on the relative

velocity as assumed, for example, in Ochi & Motter (1973), an “artificial” process

that combines the extreme positive relative motion and the extreme negative rela-

tive motion may be a better choice to bound the impact pressure PI . Consider the
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dimensionless mean-removed relative motion r(t) expressed by uniformly distributed

random phase angles γj between −π and π:

r(t) =
N∑
j=1

bj cos(−ωej t+ γj) (7.2)

where bj is the Fourier coefficients normalized by the standard deviation of the process,

such that the variance of the process becomes unity. Given the set of phase angles γj,

the non-dimensional relative velocity at the same target point can be deterministically

calculated as

ṙ(t) =
N∑
j=1

cj sin(−ωej t+ γj) (7.3)

where cj is ωejbj normalized again such that the variance of ṙ(t) becomes unity.

Since the relative velocity at the instance of slam is important, the extreme impact

pressures may be correlated to the maxima of a derived process x(t) defined by the

normalized relative motion at t minus the normalized relative velocity at t + to as

shown in Eq. (7.4).

x(t) = r(t)− ṙ(t+ to)

=
N∑
j=1

bj cos(−ωej t+ γj)−
N∑
j=1

cj sin(−ωej(t+ to) + γj)

=
N∑
j=1

bj cos(−ωej t+ γj) +
N∑
j=1

cj cos(−ωej t+ γj − ωej to + π/2) (7.4)

where to accounts for the time it takes to the hull submergence after the peaks of the

relative motion time history at the target point, and the phase angle γj is uniformly

distributed between −π and π. The maximum of this derived process x(t) in a given

exposure time may be better correlated with the extreme impact pressure in the same

exposure time.

Two random variables sampled from r(t) and ṙ(t) are uncorrelated, so they ap-

proach two independent Gaussian random variables as N goes to infinity. The sum-

mation of two independent random Gaussian random variables follows a Gaussian

distribution. Thus, the DLG process can readily be applied. Due to the time shift

to, however, two random variables (D and V ) sampled from r(t) and −ṙ(t + to) are

correlated, and they approach a bivariate Gaussian distribution as N goes to infinity

(see e.g., Newland, 2005). Even in this case, the random variable D + V follows a

123



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

AIPMax [Pa]

T
IP

M
ax

 [P
a]

(a) Exposure Time: 2 Hours; ρXY = 0.9411

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

AIPMax [Pa]

T
IP

M
ax

 [P
a]

(b) Exposure Time: 7.5 Hours; ρXY = 0.9754

Figure 7.15: Correlations between Impact Pressure Associated with Derived Process
(AIPMax) and “True” Impact Pressure (TIPMax) [Sea State 7, 15 knots,
Head Seas]

Gaussian distribution (see e.g., Feller, 1965). The mean of the random variable is still

zero, but the variance includes the effect of the non-zero covariance as

σ2
D+V = σ2

D + σ2
V + 2Cov[D, V ] (7.5)

Meanwhile, Eq. (7.4) can be combined into the form of Eq. (2.1) using the trigono-
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metric identities.

x(t) =
N∑
j=1

aj cos(−ωej t+ εj) (7.6)

where

a2
j = (bj)

2 + (cj)
2 + 2bjcj cos(ωej to − π/2) (7.7)

and

εj = arctan
( bj sin(γj) + cj sin(γj − ωej to + π/2)

bj cos(γj) + cj cos(γj − ωej to + π/2)

)
= arctan

(bj sin(γj) + cj cos(γj − ωej to)
bj cos(γj)− cj sin(γj − ωej to)

)
(7.8)

Therefore, the Fourier coefficients of this derived process can be calculated from the

Fourier coefficients of the relative motion, or it can be directly computed from a

series of time domain analysis under regular wave inputs. When the DLG process

generates an ensemble of εj, the back-calculation of the associated γj using Eq. (7.8)

is straightforward.

In order to show that this process may bound the extreme of PI better than the

pure relative motion, the scatter diagrams are constructed in Fig. 7.15. The time

shift to is assumed to be 1.4 seconds, based on the mean period and the mean value

of the relative motion at the target point. Not only are the correlation coefficients

significantly higher compared to those in Fig. 7.6, it is apparent that the extreme

AIPMax can significantly better bound the extreme TIPMax. In other words, the

impact pressure associated with the distribution of extreme responses of this derived

process found from the DLG model better bounds the CDF of the highly nonlinear

PI than the relative motion.

Fig. 7.16 displays the result of a DLG analysis of the derived process x(t). The

TEV value associated with the exposure time of 7.5 hours is estimated approximately

as 3.97, based on the response spectrum of the process. The extreme impact pres-

sures associated with the 1000 realization of the 3.97σ of x(t) are collected and then

processed as a CDF, which is shown as CDF(RM-RV). Presented simultaneously is

the CDF of the maximum impact pressures in the 100 segments of the 7.5 hour Monte

Carlo simulations (MCS). The CDF of the 1000 realizations of the 3.96σ introduced

in Fig. 7.14(b) is referred as DLG(RM). As predicted by Fig. 7.15, DLG(RM-RV) is a

better clock to bound the impact pressure of the target point, at least for the current

environmental condition. A small deviation between DLG(RM) and DLG(RM-RV)

in the upper tail may come from the uncertainty in the estimation of TEVs based on
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Figure 7.16: Comparison between Extreme Value Distribution from DLG of Derived
Process x(t) and from Monte Carlo Simulations (MCS) for 7.5 Hours
[Sea State 7, 15 knots, Head Seas]

two different response spectra.

It is possible to improve the matching even further by introducing a weight factor

w in front of ṙ(t) in Eq. 7.4. For example, Fig. 7.17 displays a slightly improved

DLG(RM-RV) compared to Fig. 7.16. The weight factor w is set to be approximately

1.32. This weight factor is obtained from the 750 hour Monte Carlo simulation and

found to yield slightly higher correlation coefficients (0.9712 for 2 hours and 0.9765

for 7.5 hours) than those in Fig. 7.15, which is consistent with the DLG results.
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Figure 7.17: Comparison between Extreme Value Distribution from DLG of Derived
Process x(t) with Weight Factor w and from Monte Carlo Simulations
(MCS) for 7.5 Hours [Sea State 7, 15 knots, Head Seas]
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The prediction of extreme impact pressure based on the derived process x(t) not

only validate the DLG approach again, but also suggest that the applicability of the

current DLG approach can be significantly broadened if a suitable process can be

devised, based on an understanding of the physics of the problem. For example,

the combination of stresses at different points of a hull can be addressed using this

approach.
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CHAPTER VIII

Conclusions

8.1 Summary

The rule-based design approach has long been validated and found to be extremely

useful for conventional ship design. Despite a successful history, the classification so-

cieties are continuously updating their rules to incorporate new developments such as

state-of-the-art time domain computational tools. The computer-based direct analy-

sis using these computational tools is essential to the design process for novel ships

and/or offshore units. This is because the class rules are largely based on simplified

empirical formulas that work within limits and thus they sometimes fail to capture

the complex physics observed in nature.

Due to the developments in computer science and marine hydrodynamics, high-

fidelity hydrodynamic computation is indeed becoming more popular and feasible.

However, these high-fidelity computation softwares usually run much slower than

real-time, which prevents a thorough investigation of the design space, especially

during the concept design stage. This may negatively affect structural design and its

optimization.

To address this limitation, a new probabilistic model/process, Design Loads Gen-

erator (DLG), has been developed and presented in this dissertation. As demon-

strated, the process determines an ensemble of critical wave episodes associated with

an input exposure time for different types of responses. Specifically, it can successfully

replace the estimation of the long-term extreme value distribution based on various

extrapolation techniques. With the application of DLG, the shortcomings associated

with the statistical extrapolation can be minimized. Consequently, the process has

a strong potential to supplement or even replace the current practice of determining

critical wave episodes central to the computer-based direct analysis.
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The utility of the DLG analysis method is that the interaction between the inci-

dent wave and the dynamic vessel response (both wave-induced and whipping-induced

bending) occurs naturally, within the limits of the modeling assumptions of the sim-

ulator. The total duration of a DLG realization can be reduced to several minutes

around an extreme for a specified exposure time, suggesting that even fully nonlinear

hydrodynamic computation systems can begin to be used far more routinely in sup-

port of a ship design. The reduced simulation times required to accurately identify

lifetime maximum loads will be especially useful during the concept design stage of

a novel ship and marine system. Despite these advantages, the increased number

of realizations (e.g., 500 ∼ 1000 as used in this dissertation) compared to a typical

approach utilizing a single regular wave train may be viewed as a challenge. However,

it is the cost to be spent to address the problem more accurately. This challenge will

be solved naturally, as the multi-core CPU technology develops further, because the

realizations can be simulated in parallel.

Unlike other methods found in the literature, this process contains all of the

following features:

• The process can find an ensemble of critical wave episodes, not just a single

wave realization that will produce a predetermined response.

• Each wave episode determined by the DLG process represents an irregular sea-

way around the extreme events for a given input exposure time, which is an

important component of risk-based design analysis.

• The process is practically not influenced by the number of wave components

(N) or the exposure time (TEV).

• The process is sufficiently fast and robust to readily be used in the real design

process. Partially due to its speed and robustness, the process can be expanded

to the extreme response under the short-crested seaways.

Compared to Alford (2008), the predecessor of the current research, the distri-

bution generated by the current DLG now exactly matches the theoretical extreme

value distribution. Moreover, since the time-consuming multivariable nonlinear opti-

mization is no longer required, the total computation time to find the phase angles

associated with the exact theoretical extreme value distribution is only a fraction of

what Alford (2008) had to spend. Furthermore, the number of Fourier components N

can now be increased to several thousands without being affected by the cost of the
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multivariable nonlinear optimization. Last but not least, the DLG model can handle

the response of a system under bi-directional seaways or even short-crested seaways.

For example, as mentioned in Chapter IV, the bi-directional seaways composed of

waves coming from two different directions may be important in the springing analy-

sis of a vessel as discussed in Vidic-Perunovic (2005) or offshore units such as FPSO

as explained in ABS (2010).

8.2 Contributions of Current Research

The extreme value distribution, which is the core of the current DLG model, is

still a basis for the prediction of long-term wave statistics. For example, the probable

maximum value in Ochi (1978), frequently referred to in class rules, is simply the

modal value of the extreme value distribution. This value corresponds to a PNE of

1-e−1, which may not be sufficient; thus, a safety factor is often added to find the

design extreme value. Although very useful, these values are just numbers, and no

information regarding the physics behinds the extreme events can be found unless

the realistic time series associated with the extreme event can be obtained. This,

in fact, is the motivation of the Dynamic Loading Approach (DLA), an optional

classification notation available from American Bureau of Shipping as explained in

e.g., ABS (2006).

Unlike the DLA analysis, where an equivalent regular incident wave history is pro-

duced, the DLG model generates an ensemble of irregular time histories associated

with the distribution of extreme responses for the given input exposure time. How-

ever, DLA and DLG share common attributes. Most notably, they are both geared to

the utilization of high-fidelity nonlinear seakeeping and structural codes. Since DLG

does not require designers to change any previous tools and practices, the current

DLG model can readily be combined into the current practice of designing ships and

offshore units. In fact, the DLG approach facilitates the efficient use of high-fidelity

hydrodynamic computational softwares available to them during the design process

and strengthens the philosophy already in place.

Presented in Chapter III is the discovery that the change in the extreme value

distribution as the exposure time (i.e., TEV) increases can be described as a single

parameter (i.e., λo). Due to this discovery and a novel approach devised to find

gY (y), the optimization problem now becomes much simpler than that of Alford

(2008). The expansion or generalization of the DLG model introduced in Chapter IV

is another important contribution. As mentioned, this can potentially facilitate the
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use of DLG in the field of offshore engineering. In addition, as demonstrated in

Sec. 4.3, the DLG process can provide statistically meaningful initial conditions for

more rigorous nonlinear wave-field simulations as shown in e.g., Wu (2004). While the

generalization of the DLG model can handle the summation of multiple independent

random processes, the derivation of a completely new process is also possible as

formulated in Sec. 7.4 or as used in Kim & Troesch (2011). This strategy will allow

DLG to address a wider range of problems better than earlier methods.

The dissertation is first to use the acceptance-rejection method in the field of

naval architecture and marine/ocean engineering, to the best of author’s knowledge.

This algorithm is a very powerful scheme and it can possibly be extended to other

problems in our fields. For example, the theoretical extreme value distribution, which

was used as a target PDF may be adjusted to address a slightly non-Gaussian process

with a suitable model.

Last but not least, the dissertation employs the strategy of estimating the extreme

value distribution of highly nonlinear processes based on the extreme value distribu-

tion of an associated linear process of the same exposure time. Unlike some of the

previously available methods introduced in Chapter I, the dissertation demonstrated

that this strategy can bound the distribution of extreme responses of highly nonlinear

processes, which is also an important contribution of this research.

8.3 Future Research

Unfortunately, the world is not so simple to be completely described by linear sys-

tems. The dynamical systems found in a real world problem are rarely linear. They

are most frequently located on a scale between slightly nonlinear and fully nonlinear.

Although the strategy adopted by the current dissertation to address nonlinear pro-

cesses works well and provides much more information about the nonlinear processes,

such as whipping bending moments and impact pressures, than previously available,

the next natural step would be to find a way to directly pinpoint the extreme re-

sponses of nonlinear systems. Similarly, since the DLG process can now perfectly

address the extreme response under the assumption of the Gaussian wave model us-

ing the probabilistic model developed in the current dissertation, the natural next

step would be to develop a version of DLG that can address non-Gaussian wave in-

puts. The use of the second-order wave model based on the phases for linear waves

would be an obvious step. But it might be possible to directly include the effects of

higher order wave model into the governing equation of DLG.
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The other potential direction the DLG model can follow is the addition of a new

capability of investigating of different types of extreme events. Each DLG realization

captures a single extreme event in a given exposure time. The wave trains outside the

very extreme event may look relatively benign as shown in Fig. 4.7. As mentioned,

this phenomenon is not inconsistent with extreme wave examples observed from actual

radar sets as shown in e.g., Lehner (2004). However, a series of big waves (e.g., the

phenomena called three sisters) may induce a more critical condition of interest to

designers. This problem is expected to be addressed by the approach introduced with

Eq. (7.4). Similarly, since the second largest or third largest linear extreme response

in a given exposure time might be better correlated with the true nonlinear extreme

response (Torhaug, 1996), the ability to handle the kth extreme value will be a useful

addition to the current DLG formulation.

This dissertation shows that the DLG process can be used for highly nonlinear

whipping bending moments and impact pressures, thus validating the DLG process

to a degree. However, without a doubt, further validation efforts need to be made

using a wide range of problems and much longer Monte Carlo simulations than used

in this research. For example, the probability of experiencing green water on deck can

be addressed in the concept design stage using the DLG approach. The estimation of

the extreme wetdeck slamming of multi-hull vessels and offshore floating units will be

possible, using the very approach applied to predict the extreme bow impact pressures

in Chapter VII.
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APPENDIX A

Effects of N

As explained in Chapter II, the derivation of DLG model starts from a process

defined by Eq. (A.1).

x(t) =
N∑
j=1

aj cos(ωjt+ εj) (A.1)

Assuming the process is stationary and ergodic, the random variable X from this

process is sampled from an ensemble space at t = 0 defined by Eq. (A.2).

x(0) =
N∑
j=1

ajYj (A.2)

where

Yj = cos(εj) (A.3)

where εj is uniformly distributed between −π and π.

The random variable X sampled by Eq. (A.2) is determined by the choice of εj:

εj may be sampled from a uniformly distributed random variable between −π and π

such that X models a Gaussian random variable. When N goes to infinity, the PDF

of X approaches the Gaussian PDF, which is due to the central limit theorem. Even

when N is finite, the difference between the Gaussian PDF and the PDF of X may

be quite small.

However, the difference between the extreme value distribution of the Gaussian

random variable and the random variable X can be significant due to the nature

of Eq. (2.13). The deviation can be calculated, without any random sampling of εj,

using the Fast Fourier Transform. In other words, the PDF of the extreme values in m
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samples of X can be calculated from the inverse Fourier transform of the characteristic

function of the random variable as derived below:

The CDF of the uniformly distributed (between −π and π) random phases εj can

be defined as

FEj
(z) =

z

2π
+

1

2
, −π ≤ z < π (A.4)

Therefore, the characteristic function of its component Yj, when the CDF of εj follows

Eq. (A.4), is then calculated as

FYj(y) = P (cos εj ≤ y)

= P (εj ≥ arccos y)

= 2− 2FEj
(arccos y)

= 1− arccos y/π, −1 ≤ y ≤ 1 (A.5)

where Eq. (A.4) is used in the last equality. Due to its definition, Yj is a random

variable distributed between −1 and 1. Differentiating Eq. (A.5) with respect to y

produces the PDF of Yj, which is

fYj(y) =
1

π
√

1− y2
, −1 ≤ y ≤ 1 (A.6)

Additionally, when a random variable is expressed as a summation of N statisti-

cally independent random variables, the characteristic function of the random vari-

able can be expressed using the characteristic functions of N independent random

variables:

E[eisX ] = E[eis(a1Y1+a2Y2+···+aNYN )]

= E[eisa1Y1 eisa2Y2 · · · eisaNYN ]

= E[eisa1Y1 ]E[eisa2Y2 ] · · ·E[eisaNYN ] (A.7)

where the last equality is from the independency. Due to this identity, the charac-

teristic function of X can now be determined from the product of the characteristic

functions of Yj, which is
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ψX(s) =
N∏
j=1

∫ ∞
−∞

eisajyfYj(y) dy

=
N∏
j=1

∫ 1

−1

eisajy
1

π
√

1− y2
dy

=
N∏
j=1

Jo(ajs) (A.8)

where the second equality is due to Eq. (A.6) and the last equality is from the use

of Eqs. (3.9) ∼ (3.10). Taking the inverse Fourier Transform of Eq. (A.8) generates

the PDF of X, which should be very close to the theoretical Gaussian distribution

for larger N . Due to the characteristic of Eq. (2.13), however, a small deviation can

make quite a big difference in the distribution of Xm.
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Figure A.1: Example Comparison between Empirical Extreme Value Distribution
from Monte Carlo Simulations (MCS), Theoretical Extreme Value Dis-
tribution (THEORY), and Inversion of Characteristic Function (IFFT)

The next step is to apply Eq. (2.13) to X from the inversion of Eq. (A.8) to

get the PDF of Xm or the extreme value distribution of X. An example is shown

in Fig. A.1. Similar to Fig. 3.5(a), Monte Carlo simulations (MCS) using the ap-

proach explained in Sec. 2.2 approximates the theoretical extreme value distribution

of a process (THEORY) reasonably well, but a small discrepancy between MCS and

THEORY still exists due to the finite N . However, the inverse Fourier transform of
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Eq. (A.8) (IFFT) can find MCS without time-consuming Monte Carlo simulations.

Moreover, IFFT matches MCS better than THEORY. In fact, DLG calculates gY (y),

as explained in Sec. 3.5, using IFFT in a very similar way: the only difference is the

use of the modified Gaussian distribution instead of the uniform distribution for the

phase angles.

In DLG, the extreme value distribution of the theoretical Gaussian random vari-

able is used as the target extreme value distribution. Utilizing the extreme value

distribution calculated from the inversion of Eq. (A.8) as a target extreme value dis-

tribution is an available option in DLG. However, in most cases, the difference is not

expected to be significant, as long as N is not too low. The DLG program generates

an warning message, if N is too low, considering the input spectrum. For an addi-

tional discussion of the effect of N on the finite approximation of a Gaussian process,

refer to Hodapp et al. (2012).
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APPENDIX B

Derivation of Governing Equation

As shown in Sec. 2.4, the cornerstone of DLG is to recover Xm using the the

characteristic function of X ′m, where the modified Gaussian distribution with different

parameters is used to generate a set of phase angles. In other words, the phase

distribution associated with X ′m is modeled by the modified Gaussian distribution.

The PDF of the modified Gaussian distribution can be calculated from the integration

of Eq. (2.26), which is

FEj
(z) =

1

2
erf(

z

λj
√

2
) +

1

2π

(
1− erf(

π

λj
√

2
)
)
(z + π) +

1

2
erf(

π

λj
√

2
) (B.1)

Similar to the approach introduced in Appendix A, when εj follows the modified

Gaussian distribution, the CDF of Yj defined by Eq. (A.3) becomes

FYj(y) = P (cos εj ≤ y)

= 2− 2FEj
(arccos y)

= 1− erf(
arccos y

λj
√

2
) +

arccos y

π

(
erf(

π

λj
√

2
)− 1

)
, −1 ≤ y ≤ 1 (B.2)

Taking the derivative of Eq. (B.2) with respect to y yields the PDF of Yj when εj

follows the modified Gaussian distribution with a parameter λj.

fYj(y) =

√
2π e−(arccos y)2/(2λ2j ) − λj erf

(
π/(λj

√
2)
)

+ λj

πλj
√

1− y2
, −1 ≤ y ≤ 1 (B.3)

By substituting Eq. (B.3) into Eq. (A.7), the characteristic function of X ′m can be
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obtained as

ψX′
m

(s) =
N∏
j=1

∫ 1

−1

eiajsy

πλj
√

1− y2

{√
2π e−(arccos y)2/(2λ2j ) − λj erf

(
π/(λj

√
2)
)

+ λj

}
dy

(B.4)

This equation can very easily be extended to the characteristic function of X ′m

under short-crested seaways. According to Eq. (4.9), the response of a system at

t = 0 can be expressed as

x(0) =
h∑
k=1

N∑
j=1

kaj cos(kωj · 0 + kεj) =
h∑
k=1

N∑
j=1

kajYjk (B.5)

where kεj is uniformly distributed between −π and π, and Yjk is simply defined as

Yjk = cos(kεj) (B.6)

Since the statistical independency of Yjk remains valid, using Eq. (A.7), Eq. (B.4) can

readily be extended to derive the characteristic function of X ′m under the short-crested

seaways:

ψX′
m

(s) =
h∏
k=1

N∏
j=1

∫ 1

−1

ei(
kaj)sy

π(kλj)
√

1− y2

{√
2π e−0.5 arccos2 y/kλ2j

− λj erf
(
π/(kλj

√
2)
)

+ kλj

}
dy (B.7)
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APPENDIX C

Rankine Source Formulation in LAMP

Although the DLG process does not dictate any specific nonlinear simulation pro-

gram, LAMP has been significantly used in this research. LAMP has been introduced,

verified, and validated quite extensively (e.g., Shin et al., 2003; Lin et al., 2007). How-

ever, it is not a commercially available program. Therefore, a background of LAMP,

available in the manual of LAMP (Lin et al., 2008), is taken and summarized in this

appendix.

LAMP is a 3D time domain potential code and it solves the combined effect

of the diffraction problem and the radiation problem using a choice of singularity

models and computational approaches. Several singularity models are available to

solve the problem at each time step. Originally, LAMP was developed to use the

transient Green function to solve the boundary value problem. With this approach,

singularities need to be distributed only on the wetted body surface, which can save

the computational cost. However, numerical difficulties arises near the free surface

for ship with non-wall-sided geometry or on the area where the intersection angles

between the the body surface and the free surface become small. To address this

problem, the mixed source formulation (i.e., the combination of the transient Green

function approach and the Rankine source approach) has been added, which is the

current principal singularity model. However, the mixed source formulation also has

a problem when the Froude number is high: obtaining a stable free surface solution

may become a challenge. For this reason, the Rankine source method with a damping

beach is recommended for a problem with a high Froude number.

Since the Rankine source does not automatically satisfy the free surface boundary

condition, the singularity should be placed on the free surface, too. However, it

has to be truncated at a certain limit due to the high computational cost. Instead,
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the so-called numerical damping beach is placed around the outer boundary of the

truncated free surface. The effect of the singularity on the far field surface S∞ to the

body surface or the free surface is assumed zero. Even though LAMP has a capability

of addressing the shallow water effects, all the LAMP simulations introduced in this

dissertation assume infinite water depth.

In LAMP, the exact body boundary condition can be applied on the instantaneous

body surface, but a linearized free surface boundary condition is used even with

LAMP4. In order to make it possible, the hull geometry is deformed such that the

free surface on the body becomes flat in a computational domain at each time step.

The boundary value problem LAMP solves is also taken from the LAMP manual

(Lin et al., 2008) and summarized. First, the total velocity potential is decomposed

as the summation of the incident wave potential and the perturbation potential

ΦT (~x, t) = ΦI(~x, t) + ΦP (~x, t) (C.1)

where ~x is the position vector in a space-fixed coordinate system. Since the incident

wave potential by definition satisfies the Laplace equation, the governing equation in

this approach becomes

∇2ΦP = 0 in Ω (C.2)

The body boundary condition is then applied on the instantaneous submerged

hull surface Sb. Therefore, the no-flux boundary condition on the body is expressed

as
∂ΦP

∂n
= ~V · n̂− ∂ΦI

∂n
on Sb (C.3)

where ~V is the instantaneous velocity of a point on the body including rotational ef-

fects. n̂ is the normal vector on the body surface and it is positive into the body. This

boundary condition ensures that the perturbation potential includes the diffraction

potential.

With regard to the free surface boundary condition, the linearized dynamic free

surface boundary condition is applied on the mean free surface Sf .

∂ΦP

∂t
= −gζ on Sf (C.4)

where ζ is termed as the total disturbance wave elevation on Sf .

The kinematic free surface boundary condition is a little different due to the

numerical damping beach applied to absorb the outgoing wave energy generated by
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the body.

∂ζ

∂t
=


∂ΦP

∂ζ
on Sf1 (for |~x| < ro)

∂ΦP

∂ζ
− µ1(~x)ζ +

µ2
1(~x)

4g
ΦP on Sf2 (for |~x| > ro)

(C.5)

where Sf1 ∩ Sf2 = Sf and Sf2 is the damping beach region (outer area of the free

surface). The coefficient µ1 is the damping beach parameter, which is defined as

µ1 = 3µ0
(|~x| − ro)2

(L− ro)3
(C.6)

where ro and L define the inner and the outer edge of the damping beach and µo is

called the beach strength. ro, L and µo are parameters that can be changed in the

input control file.

The free surface boundary condition needs to be integrated in time to update ζ

and ΦT at the next time step. Due to the space fixed coordinate, the free surface

boundary condition is rewritten as

Dζ

Dt
=


∂ΦP

∂ζ
+ ~U · ∇ζ on Sf1

∂ΦP

∂ζ
− µ1(~x)ζ +

µ2
1(~x)

4g
+ ~U · ∇ζΦP on Sf2

(C.7)

and
DΦP

Dt
= −gζ + ~U · ∇ΦP on Sf (C.8)

where ~U is the grid velocity of the free surface and D/Dt is the material derivative

following a moving control point. The initial conditions for the time integration are

ΦP =
∂ΦP

∂t
= 0 at t = 0 (C.9)

The boundary integral equation corresponding to the ranking source singularity

G = 1/r = 1/|P −Q| is

2πΦP (P ) +

∫
Sb+Sf

(
ΦP

∂G

∂n
− ∂ΦP

∂n
G
)
dS = 0 (C.10)
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where P is the field point, Q is the source point. This equation is solved using the

boundary element method at each time step.

Once the total disturbance potential ΦP is obtained, the total hydrodynamic pres-

sure can be calculated on Sb using the Bernoulli equation.

p = −ρ
(∂ΦT

∂t
+

1

2
|∇ΦT |2

)
(C.11)

The associated forces and moments can be calculated by the integration of the pres-

sure over the instantaneous body surface at each time step and the resulting forces

and moments can finally be used to solve the equation of the motion at each time

step.

~F =

∫
Sb

pn̂dS and ~M =

∫
Sb

p~r × n̂dS (C.12)
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