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Abstract

This thesis reports the first observations and theory of transverse magnetic response at
optical frequencies under non-relativistic conditions. The nonlinear optical process respon-
sible for magnetic dipole scattering is identified and analyzed with classical and quantum
treatments. The intensity dependence of nonlinear magnetic dipole scattering is found to be
quadratic in a centrosymmetric liquid, indicating that this must be a new nonlinear effect not
described by traditional nonlinear optics. Contrary to standard treatments of non-relativistic,
nonlinear optics, strong effects due to the optical magnetic field are predicted and verified
experimentally. Saturation behavior of the magneto-electric response is measured in carbon
tetrachloride, water, and benzene well below the threshold of relativistic optics and is shown
to depend on their molecular structure. Magnetic saturation intensities of these three liquids
are reported here for the first time.

Several mutually consistent theoretical descriptions of Transverse Optical Magnetism are
developed. The classical Lorentz Oscillator Model is extended to include Lorentz forces and
the equations of motion are solved perturbatively to establish that second order dynamics
result from their inclusion. It is found that the equations of motion support unstable motion
and are expressible as a system of sinusoidally coupled Mathieu equations. Quantum me-
chanical theories based on the density matrix and Heisenberg formalisms are also presented.
The quantum mechanical results agree quantitatively with the classical theory.

Thus, a new class of nonlinear optical phenomena is uncovered, and in particular,
magneto-electric optical rectification is foreseen. If used in the transient regime with pulsed
sources this effect holds promise for generating intense terahertz radiation in unbiased
dielectrics. This effect is also capable of producing a static voltage and analysis is presented
showing that it may be useful for laser beam energy conversion or for solar power generation.
With numerical modeling this interaction is shown to be robust enough to be potentially
efficient even for incoherent light sources like the sun.

xiii



Chapter 1

Introduction

The goal of this thesis is to expand the model of the interaction of light and matter in the
non-relativistic regime to include the action of the magnetic field of the light and present
the first experimental observations of nonlinearities due to the optical magnetic field. The
need for a concise model began with the observation of strong magnetic dipole scattering
reported by Oliveira [1][2]. This thesis therefore develops classical and quantum models,
and makes detailed comparisons with the first experiments on this topic. Non-relativistic
magneto-electric optical effects have not previously been measured due to the perpendicular
geometry necessary to observe them, unexpected requirements for material symmetry, and
the need for intermediate optical intensities that have been of little recent interest.

The perpendicular geometry used for the present experiments is uncommon in coherent
nonlinear optics because no beam can form at right angles to the input light. If one searched
for magnetic dipole effects in the forward direction, no conclusion could be reached. The
polarization and frequency of coherent electric dipole (ED) and magnetic dipole (MD) re-
sponses are indistinguishable in the forward direction. This is expanded upon and exploited
in Chapter 3 to exclude the possibility of observing mixed electric and magnetic signals. The
symmetry requirements of magnetic processes are different than those of electric processes
due to the axial nature of the magnetic field. Second order polarizations are not possible
in centrosymmetric media, whereas second order magnetizations are allowed. Finally, the
intensity regime of the experiments reported here has been considered to be too low to be
of current interest. The process of Transverse Optical Magnetism reaches saturation in the
range of 107 to 1010W/cm2 in the materials studied as part of this dissertation. This regime
is below the threshold for electric-field-based nonlinear effects in most materials yet much
higher than the typical intensity range for linear effects. It is also beyond the capability of
most continuous wave (CW) sources, even with strong focusing, but is only a fraction of the
peak intensity of modern Chirped Pulse Amplified laser systems. Thus, many laboratories
either exploit the stability and narrow bandwidth of CW systems, or the high peak intensity
and wide bandwidth capabilities of femtosecond laser systems. This combination of factors
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has apparently deterred prior detection of non-relativistic magnetic effects at optical fre-
quencies. The implications of this work therefore include a large number of new nonlinear
optical effects, new methods of terahertz radiation and solar power generation, and relevance
to pre-pulse interactions in high-field physics.

While geometric optics has been studied and understood for thousands of years, quan-
titative models of the nature and effect of light have only been developed in the last 150
years. The work of James Clerk Maxwell showed that light is the oscillation of electric
and magnetic fields and H.A. Lorentz developed the early classical theory of light-matter
interaction [3] [4]. Quantitative descriptions of optics developed rapidly, particularly in the
years after the invention of the laser, into the pervading and useful field we know today.
Modern optics spans a wide range of wavelengths, interaction times, and intensities from
single photon interaction to laser pulses so intense that they accelerate charges to nearly
the speed of light. The extension of the original basic models into new regimes has worked
remarkably well over this vast set of regimes but has also engrained a set of assumptions
into several generations of scientists. It is one of these assumptions, that the magnetic field
of light is too small to effect the dynamics at non-relativistic intensities [5], that is explored
in this dissertation.

1.1 Wave Nature of Light

The small magnitude of the magnetic component of a plane wave relative to the electric
component can be established by deriving the spatial and temporal dependences of the
electric and magnetic fields. In the absence of charges, Maxwell’s equations take the form

∇×~E =−µ0
∂ ~H
∂ t

(1.1)

∇× ~H = ε0
∂~E
∂ t

(1.2)

∇ ·~E = 0 (1.3)

∇ · ~H = 0 (1.4)

These equations can be put into the form of wave equations for the electric field and the
magnetic field. Taking the curl of (1.1) and the time derivative of (1.2) and vise versa results
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in

∇× (∇×~E) =−µ0ε0
∂ 2~E
∂ t2 (1.5)

∇× (∇× ~H) =−µ0ε0
∂ 2~H
∂ t2 (1.6)

Using the vector identity and Eqs. (1.3) and (1.4)

∇× (∇×~X) = ∇(∇ ·~X)−∇
2~X (1.7)

we obtain

∇
2~E =

1
c2

∂ 2~E
∂ t2 (1.8)

∇
2~H =

1
c2

∂ 2~H
∂ t2 (1.9)

where c = (µ0ε0)
−1/2 is the speed of propagation of the wave, or, the speed of light. Thus,

both the electric and the magnetic field obey a wave equation in free space. A solution to
the wave equations is the plane wave where the fields are given by the expressions

~E = ~E0ei(~k·~r−ωt) (1.10)

~H = ~H0ei(~k·~r−ωt) (1.11)

~E× ~H ∝~k (1.12)

This solution shows that the light can be linearly polarized and that in this case the direction
of propagation, the electric field, and the magnetic field are perpendicular. The relative
magnitude of the electric and magnetic fields may be found directly from Eq. (1.2) by
substitution of Eqs. (1.10) and (1.11): B = µ0H = E/c.

1.2 Electric Interaction of Light and Matter

Accurate modeling of the interaction of bound electrons with light requires a quantum
mechanical description. However, if the light is non-resonant, a classical model is very
accurate. Here we begin by considering a classical model in the point dipole limit and
consider the total macroscopic response of the medium to be simply N times the atomic
dipole response, where N is the number density of atoms.
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The combination of the Coulomb potential and the angular momentum of the orbiting
electron creates a potential landscape with a minimum. As with any minimum, this potential
can be approximated by a parabola as long as the displacement of the electron is small. This
means that as long as the electric field of our incident light is small compared to the binding
field, which is almost always the case, the electron acts as if it is bound to the nucleus by a
spring. We can include any possible energy losses as a velocity dependent damping term.

me~̈r+ γ~̇r+ k0~r = 0 (1.13)

Combining the local field with the light fields we model the response of a material to the
light and therefore have sources for the re-emmitted light. The force due to the light is
dominated by the electric field because it is a factor of c, eight orders of magnitude, larger
than the magnetic field. Combining the internal forces (1.13) with the force due to the
electric field of the light we find the expression

me~̈r+ γ~̇r+ k0~r =−e~E0ei(~k·~r−ωt) (1.14)

In the visible and infrared regime the wavelength of the light is much longer than the size
of a single atom so the term~k ·~r can be ignored, resulting in a damped, sinusoidally driven
simple harmonic oscillator.

me~̈r+ γ~̇r+ k0~r =−e~E0e−iωt (1.15)

This is commonly known as the Lorentz Oscillator Model (LOM) and it is the basis for the
theory of dispersion in dielectric materials. The sources of radiation are time dependent
polarizations

~P =−Ne~r (1.16)

To solve the equation we notice that the driving force is harmonic, therefore we assume the
solution will also be harmonic at the same frequency. This changes all of the time derivatives
to ω

(
−meω

2− iωmeγ + k0
)
~r =−e~E (1.17)
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and we can multiply through by N and solve for ~P

~P =
Ne2/me

ω2
0 −ω2− iωγ

~E (1.18)

where ω0 =
√

k0/me is the natural frequency.
In a medium the wave equation contains source terms.

∇× (∇×~E)+
1
c2

∂ 2~E
∂ t2 =−µ0

∂ 2~P
∂ t2 (1.19)

Substituting the polarization from Eq. (1.18) into Eq. (1.19) and using the vector identity
(1.7) we obtain

∇
2~E =

1
c2

(
1+

Ne2

meε0

1
ω2

0 −ω2− iωγ

)
∂ 2~E
∂ t2 (1.20)

which again has a plane wave solution of the form

~E = ~E0ei(Kz−ωt) (1.21)

but with a complex wavenumber K. By substitution of Eq. (1.21) into (1.20), the requirement
for a solution of the given form

K2 =
ω2

c2

(
1+

Ne2

meε0

1
ω2

0 −ω2− iωγ

)
(1.22)

We can write this complex wavenumber in real and imaginary parts

K = k+ iα (1.23)

which allows us to write our plane wave solution as

~E = ~E0e−αzei(kz−ωt) (1.24)

This form shows that the amplitude of the wave decreases exponentially with distance and is
known as Beer’s Law.

Rather than using a complex wavenumber, K, we can also use a complex refractive index
N = c

ω
K. Equating the real and imaginary parts yields a set of equations from which the

functions n(ω) and κ(ω) can be found.
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Figure 1.1 Frequency dependence of n(ω) (solid curve) and κ(ω) (dashed curve). The damping
parameter γ corresponds to the full width at half maximum of n(ω).

The solution for the dispersion relation given by Eq. (1.22) displays the familiar properties
of dispersion and resonant absorption. If the incoming light is oscillating at a frequency
near the natural frequency ω0, a significant fraction of the light is absorbed and the index
of refraction is significantly different than one as shown in Fig. 1.1 [6]. In this model the
dispersion is entirely due to electric polarization because magnetic response has been ig-
nored. In the next section the model is extended to include magnetic response and magnetic
contributions to the dispersion.

1.3 Magneto-Optics

Magnetic fields can be included in this type of analysis. Ignoring damping for simplicity,
we again assume the electron is bound to the nucleus as if by a spring. The external forces
now include both electric and magnetic fields.

me~̈r+ γ~̇r+ k~r =−e~E− e~̇r×~B (1.25)
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In this situation the electric field is still due to the light field and therefore we still have
a solution of such a form that both the electric field term and~r vary sinusoidally in time.
The magnetic field is a DC field applied externally. This allows us to again convert all time
derivatives to iω

(
−meω

2 + k
)
~r =−e~E + iωe~r×~B (1.26)

We still want to find the polarization, so collecting terms of ~P =−Ne~r

(
−meω

2 + k
)
~P = Ne2~E + iωe~P×~B (1.27)

This equation allows us to extend our basic model of optics into magneto-optics, optics in
the presence of a large magnetic field. Applying a magnetic field in a certain direction can
change how light propagates through the material. If we choose the magnetic field to be
parallel to the direction of propagation of the light, i.e. the ẑ direction, we can solve (1.27)
in component form.

(
−meω

2 + k
)

Px = Ne2Ex + iωePyBz (1.28)(
−meω

2 + k
)

Py = Ne2Ey + iωePxBz (1.29)(
−meω

2 + k
)

Pz = Ne2Ez (1.30)

This system of equations can be put in a more illuminating form showing the polarization
generated for a given electric field input

~P = ε0~χ~E (1.31)

This system of equations then takes the form

~P = ε0

 χ11 iχ12 0
−iχ12 χ11 0

0 0 χ33

~E (1.32)
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where

χ11 =
Ne2

meε0

(
ω2−ω2

(ω2
0 −ω2)2−ω2ω2

c

)
(1.33)

χ33 =
Ne2

meε0

(
1

(ω2
0 −ω2)

)
(1.34)

χ12 =
Ne2

meε0

(
ωωc

(ω2
0 −ω2)2−ω2ω2

c

)
(1.35)

ωc ≡
eB
me

(1.36)

Looking at the susceptibility tensor in (1.32) we see that applying a magnetic field makes
the material anisotropic. This illustrates that fact that applying a magnetic field parallel to the
direction of propagation of the light, the material becomes optically active and it develops
magnetic dispersion. As the light propagates through the medium its polarization rotates.
This is known as the Faraday effect and it is used in many ways, perhaps most notably
in Faraday isolators. These devices are often used to prevent reflections from damaging
delicate optical components by rotating the polarization of reflections to an orientation
perpendicular to the original beam and rejecting them with polarization sensitive filters.

A more general analysis of dispersion needs to be set in the context of nonlinear optics.
As the intensity of the incident light increases, the amplitude of motion of the electrons
increases beyond that which is allowed by the simple harmonic approximation. As a
consequence, new contributions to dispersion appear.

In what follows we limit ourselves to dielectric media in which there are no free charges
or currents, allowing us to set ~J f = 0 and ρ f = 0. In the absence of light the medium is
assumed to be non-magnetic. Hence ~B = µ0~H and ~D = ε0~E +~P but ~P may contain terms
proportional to more than one field. This does not exclude the possibility of the development
of magnetic response on individual atoms in a dilute medium. In this case Maxwell’s
equations are

∇ ·~D = 0 (1.37)

∇ · ~H = 0 (1.38)

∇×~E =−∂ ~H
∂ t

(1.39)

∇× ~H =
∂~D
∂ t

(1.40)

Following the same procedure as in Section 1.1, we take the curl of one curl equation,
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the time derivative of the other and apply the curl identity (1.7). This results in the wave
equation for propagation in matter.

∇
2~E− 1

ε0c2
∂ 2~D
∂ t2 = 0 (1.41)

In order to include the nonlinear effects of driving the electrons beyond the simple
harmonic approximation we allow for the polarization to have a nonlinear component

~D = ε0

(
1+χ

(1)
)
~E +~PNL (1.42)

giving us a wave equation for the electric field due to nonlinear polarization [7].

∇
2~E−

~(
1+χ(1)

)
c2

∂ 2~E
∂ t2 =

1
ε0c2

∂ 2~PNL

∂ t2 (1.43)

Polarization can be expanded as a power series in the electric field.

~P = ε0

(
χ
(1)~E +χ

(2)~E2 +χ
(3)~E3 + . . .

)
(1.44)

The susceptibility χ(n) is a tensor. This allows the electric field direction to the generate
polarizations in directions other than parallel to the electric field. The susceptibility tensor
effectively contains the symmetry of the nonlinear medium and thus dictates which direc-
tions of motion and therefore polarizations are allowed. Group theory allows us to determine
the possible susceptibility tensors due to the symmetry of the medium. Even without group
theory we can make one important deduction regarding which terms of (1.44) contribute in
an important type of material, a centrosymmetric medium.

A centrosymmetric medium is one in which a reversal of all position vectors causes
no change. This means that χ(x) = χ(−x). We apply such a symmetry by inverting all
parameters in the interaction

~E(−~x) =−~E(~x)

~P = ε0

(
χ
(1)~E +χ

(2)~E2 + . . .
)
→−~P = ε0

(
χ
(1)(−~E)+χ

(2)(−~E)(−~E)+ . . .
)

(1.45)

We see that for the linear term, and therefore for all odd order terms, both sides of the
equation changed signs. However, the quadtratic term, and therefore all even order terms,
must be identically zero because ~P =−~P. This means that any materials with centrosym-
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metry cannot support second order nonlinear effects. The first nonlinear optical effect to
be discovered was frequency doubling or second harmonc generation (SHG). Historically,
even after the prediction of nonlinear effects in optics the first experiments to measure them
were performed in silica, a centrosymmetric medium. It was the insight of Weinreich that
the material must lack inversion symmetry that allowed SHG to be measured for the first
time in crystaline quartz [8].

An extension of this argument that is not typically considered is very important to the
results of this thesis. Polarizations are only one of the possible responses of a medium
under the influence of electromagnetic fields. It is also possible, in principle, to induce
magnetizations and magnetizations have different symmetry properties. While polarizations
are vectors, they are functions of the position vector, magnetizations are pseudovectors, the
result of the cross product of two vectors. An inversion of coordinates does not change the
sign of a pseudovector [9]. Thus, since magnetizations are even under inversion, it is possible
to have a second order nonlinear effect that generates a magnetization in a centrosymmetric
medium.

~M = ε

(
χ
(1)~E +χ

(2)~E~H + . . .
)
→ ~M = ε

(
χ
(1)(−~E)+χ

(2)(−~E)(−~H)+ . . .
)

(1.46)

We see in this situation that for the linear term, and therefore for all odd order terms, the
magnetization does not change sign. However, the even order terms are non-zero. This
implies that materials with centrosymmetry can support second order nonlinear effects, but
only to generate nonlinear magnetizations, not polarizations. This being said, the preceding
sections have followed tradition by pointing out the small magnitude of B relative to E and
omitting magnetization from Maxwell’s equations altogether.

A further generalization of nonlinear optics into the relativistic regime is presented in
Appendix A

1.4 Magnetization at Optical Frequencies

When the magnetic field is ignored, linearly polarized light causes the electrons of a material
to oscillate, at the light frequency, along the direction of the electric field. Since the nucleus
is many orders of magnitude more massive it is assumed to remain stationary. This creates a
time-varying electric dipole that oscillates at the light frequency.
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~p(t) = p0 cosωtẑ (1.47)

If we assume that the dipole oscillation is small compared to the wavelength of the light
and that we are observing the light from a distance much larger than both the size of the
dipole and the wavelength of the light, the radiated fields and power from the electric dipole
source are given by

~E =−µ0 p0ω2

4π

(
sinθ

r

)
cos [ω(t− r/c)]θ̂ (1.48)

~B =−µ0 p0ω2

4πc

(
sinθ

r

)
cos [ω(t− r/c)]φ̂ (1.49)

~S =
µ0

c

[
p0ω2

4π

(
sinθ

r

)
cos [ω(t− r/c)]

]2

r̂ (1.50)

where r̂ is the radial unit vector, θ̂ is the polar angle unit vector measured from the ẑ axis
and φ̂ is the axial angle unit vector measured from the x̂ axis. These relations are valid when
the wavelength of UV, visible, and IR light is both several orders of magnitude larger than
atoms and several orders of magnitude smaller than typical measuring distances. We see
that power is radiated away from the dipole radially but in a sinθ 2 pattern. The polarization,
the orientation of the electric field, is in the θ̂ direction which will appear parallel to the
dipole from the point of view of a distant observer.

A similar oscillation can be imagined in which a charge is induced to move in a circle
about the ẑ axis. Viewed from along the x̂ axis the charge is seen to oscillate. This motion is
that of a magnetic dipole.

~m(t) = m0 cosωtẑ (1.51)

Under the same assumptions as those above, the radiated fields and intensity can be re-
calculated for a magnetic dipole source.
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~E =−µ0m0ω2

4πc

(
sinθ

r

)
cos [ω(t− r/c)]φ̂ (1.52)

~B =−µ0m0ω2

4πc2

(
sinθ

r

)
cos [ω(t− r/c)]θ̂ (1.53)

~S =
µ0

c

[
m0ω2

4πc

(
sinθ

r

)
cos [ω(t− r/c)]

]2

r̂ (1.54)

Again, we see that power is radiated radially in a dipole pattern. However, this time the
polarization is in the φ̂ direction which will appear perpendicular to the dipole when viewed
by a distant observer. This is the key distinguishing feature between magnetic and electric
dipoles [10]. Next, the question of whether the magnitude m0 of an induced magnetic dipole
like the one in Eq. (1.51) can be large at optical frequencies is considered.

A famous argument by Landau and Lifshitz attempts to prove that no material has a
significant magnetic susceptibility at optical frequencies [5]. Magnetic susceptibility implies
generating a magnetic moment, defined as

~m =
1
2

∫
~x× ~J(~x)d3x (1.55)

The physical quantity required is ~J, the current due to the moving charge. Current appears
in the the curl of B Maxwell equation

∇×~B = µ0~J+µ0ε0
∂~E
∂ t

(1.56)

which can also be written in terms of free current

∇× ~H = ~J f +
∂~D
∂ t

(1.57)

In order to expose the magnetization ~M = ~B/µ0− ~H, the magnetic response of the medium,
we subtract (1.57) from (1.56). Doing so leaves us with an expression for the bound current

~Jb = ∇× ~M+
∂~P
∂ t

(1.58)

however, the integral (1.55) can only be put in the form
∫
~MdV if ~J = ∇× ~M and ~M = 0

outside the volume of integration. In other words, ~M is only well defined if the term ∂~P
∂ t can
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be neglected. Landau and Lifshitz present the following dimensional agrument against such
a situation:

For a given frequency, the most favourable conditions for measuring the sus-
ceptibility are those where the body is as small as possible (to increase the
space derivatives in ∇× ~M) and the electric field is as weak as possible (to
reduce ~P). The field of an electromagnetic wave does not satisfy the latter con-
dition, because EH̃. Let us therefore consider a variable field, say in a solenoid,
with the body under investigation placed on the axis. The electric field is due
only to induction by the variable magnetic field, and the order of magnitude
of E inside the body can be obtained by estimating the terms in the equation
∇×~E =−(1/c)∂~B

∂ t , whence E/l ∼ ωH/c or E ∼ (ωl/c)H, where l is the di-
mension of the body. Putting ε−1∼ 1, we have ∂P

∂ t ∼ ωE ∼ ω2lH/c. For the
space derivatives of the magnetic moment ~M = χ~H we have |c∇× ~M| ∼ cχH/l.
If |∂~P

∂ t | is small compared with |c∇× ~M|, we have

l2� χc2/ω
2 (1.59)

It is evident that the concept of magnetic susceptibility can be meaningful
only if this inequality allows dimensions of the body which are (at least) just
macroscopic, i.e. if it is compatible with the inequality l � a, where a is
the atomic dimension. This condition is certainly not fulfilled for the optical
frequency range; for such frequencies, the magnetic susceptibility is always
∼ v2/c2, where v is the electron velocity in the atom; but the optical frequencies
themselves are ∼ v/a, and therefore the right-hand side of the inequality (1.59)
is ∼ a2.

Thus there is no meaning in using the magnetic susceptibility from optical
frequencies onward, and in discussing such phenomena we must put µ = 1.
To distinguish between ~B and ~E in this frequency range would be an over-
refinement. Actually, the same is true for many phenomena even at frequencies
well below the optical range.

This argument [5] and other less rigorous versions have discouraged all research into mag-
netic effects at optical frequencies except in the relativistic optics regime where v2/c2 ∼ 1.
In this thesis, not only are large magnetic effects discovered experimentally at optical
frequencies under non-relativistic conditions, but the flaw in the argument of Landau and
Lifshitz is exposed.

In Chapter II, theoretical work is presented in two main parts, classical and quantum. In
the classical section 2.1, the sources of radiation are examined, particularly the multipole
expansion of radiation from oscillating sources of interest to us in optics. This leads to the
realization that all radiation is caused by the position of charges as a function of time. The
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Complete Lorentz Oscillator Model (CLOM) is developed and solved by several methods to
provide different insights. The position versus time of the electron cloud and therefore the
sources of radiation are found.

In the quantum section 2.2, a density matrix model of the optical magnetic interaction is
developed. The expectation values of position of the electric and magnetic dipole operators
are found to have the same form as the solutions from the classical model. The quantum
model is then extended to include the symmetry of the system in order to predict which
materials, namely symmetry groups, will show a large suceptibility to the optical magnetic
interaction. This result will guide future research toward finding materials of interest in
the study of Transverse Optical Magnetism and the development of optical processes and
devices exploiting Transverse Optical Magnetism.

In Chapter III, the experimental setup and techniques for measuring large magnetic
dipole scattering are discussed. Particular focus is placed on the choice of samples and
measurement techniques to exclude the possibility of other nonlinear processes obscuring
our signal. Chapter IV presents the experimental results. Chapter V discusses the experi-
mental results and examines the possibility of exploitation for expanding nonlinear optics
and developing new technology. Comments are made about future research both in the short
and long term as well as the possible impact of this research on other fields of research and
development.
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Chapter 2

Theory

In this chapter a new class of non-linear optical effects associated with Transverse Optical
Magnetism is considered. The purpose of this section is to examine the possible mechanisms
for the generation of strong magnetic response at optical frequencies. This response includes
magnetic dipole scattering, generating large magnetizations in non-magnetic materials,
collinear optical rectification, and more.

2.1 Classical Theory

2.1.1 Magnetic Response at Optical Frequencies

First, we revisit the argument against magnetic response at optical frequencies by Landau
and Lifshitz. Based on experimental observation of optical magnetization to be presented in
Chapter 4, it is clear that the argument must have a flaw.

Magnetic dipole radiation is generated by time-dependent magnetic dipoles. As stated
by Landau and Lifshitz, the definition of a magnetic dipole is given by:

~m =
1
2

∫
~x× ~J(~x)d3x (2.1)

=
1
2

∫
~x×

(
∇× ~M+

∂~P
∂ t

)
d3x (2.2)

where, in the case of dielectrics, the current can only be bound current defined in Eq. (1.58).
Written in tensor form for ease of manipulation
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1
2

εi jk

∫
V

r jJkd3~r =
1
2

εi jk

∫
V

r j
∂Pk

∂ t
d3~r+

1
2

εi jkεklm

∫
V

r j
∂Mm

∂ rl
d3~r

=
1
2

∂

∂ t
εi jk

∫
V

r jPkd3~r+
1
2
(δilδ jm−δimδ jl)

[∫
S

r jMmd2rn 6=l−δ jl

∫
V

Mmd3~r
]

(2.3)

where the indices can take three values indicating the cartesian vector direction, δi j is a
Kronecker delta function that equals 1 if i = j and 0 if i 6= j, and εi jk is the Levi-Civita
tensor that equals 0 if any two indicies are equal, 1 if the indices are an even permutation
of i jk, and −1 if the indices are an odd permutation of i jk. The integral over the surface is
zero because we assume that the magnetization is zero outside the medium. This yields, in
vector form,

1
2

∫
V
~r× ~Jbd3~r =

1
2

∂

∂ t

∫
V
~r×~Pd3~r+

∫
V
~Md3~r (2.4)

It is common to drop the first term on the right hand side since we are most often considering
steady state solutions. In that situation, the time dependence would be zero. However, in the
case of illumination by light, the polarization is time dependent! Thus, as the polarization
changes in time to follow the electromagnetic fields of the light, it can contribute to the
generation of magnetic dipoles directly! The only restriction is due to the cross product.
The time derivative of polarization must have a non-zero value away from the origin that is
due to axial, not radial, motion. We will see later in this chapter that this is precisely what
occurs in the presence of the Lorentz force.

2.1.2 Sources of Radiation in the Multipole Expansion

With the possibility of magnetic response at optical frequencies confirmed, we need to find
the sources of such magnetization. We begin by looking at light scattering in dielectrics.
When light passes through a material, the electric and magnetic fields of the light exert
forces on the charges of which the matter is made. In the far field of the light source we can
approximate the incident fields to take the form of a plane wave, meaning that the fields and
therefore the charges in the material, oscillate sinusoidally in time. Since each frequency
component of the light wave can be handled separately, we lose no generality by considering
a single frequency component [11].
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ρ(~x, t) = ρ(~x)e−iωt (2.5)

~J(~x, t) = ~J(~x)e−iωt (2.6)

As is well known the choice of gauge is arbitrary [11] in developing a multipole expan-
sion for the vector potential. Following convention we use the Lorenz gauge in which the
vector potential generated by moving charges can be written as

~A(~x, t) =
µ0

4π

∫
d3x′

∫ ~J(~x′, t ′)
|~x−~x′|

δ

(
t ′+
|~x−~x′|

c
− t
)

dt ′ (2.7)

where primes indicate integration coordinates.
The sinusoidal time dependence simplifies this equation to

~A(~x) =
µ0

4π

∫
~J(~x′)

eik|~x−~x′|

|~x−~x′|
d3x′ (2.8)

In the far field, where we will operating, the exponential in (2.8) can be approximated by

|~x−~x′| ' r−~n ·~x′ (2.9)

If we want only the leading term in kr, the inverse distance 1
|~x−~x′| can be replaced with r

and the vector potential becomes

lim
kr→∞

~A(~x) =
µ0

4π

eikr

r

∫
~J(~x′)e−ik~n·~x′d3x′ (2.10)

If the source dimensions are small compared to the wavelength as they are in optics, we
can expand the integral in powers of k

lim
kr→∞

~A(~x) =
µ0

4π
∑
n

(−ik)n

n!

∫
~J(~x′)(~n ·~x′)nd3x′ (2.11)

This result is the common multipole expansion for radiation.
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We are interested in the largest effects so we take only the first term

~A(~x) =
µ0

4π

eikr

r

∫
~J(~x′)d3x′ (2.12)

of the multipole expansion. We examine the typical derivation of the result that only the
electric dipole, ~p, contributes to the vector potential at first order.

The integral of the current cannot in and of itself be solved because no information is
given about the current. However, it should be possible to recast this integral into a different
form using integration by parts. We note that the goal of this integration by parts is to find a
tensor product expressed as a pure derivative that evaluates to two terms, one of the form we
already have ∫

~J(~x′)d3x′ (2.13)

and another of a form which can be evaluated either directly or indirectly.
Similar to an equation found in chapter 9 of [11],∫

~J(~x′)d3x′ =−
∫
~x′(∇′ · ~J)d3x′ (2.14)

It is common to choose a tensor product for integration by parts of the form

∇ · (~x~J) = ~J+~x(∇ · ~J) (2.15)

where we note that the second term on the right hand side contains the term~x(∇ · ~J) used in
its primed form in (2.14). We perform an integration by parts on this product. Integrating
both sides of (2.15) we apply the divergence theorem to the left hand side∫

(∇ · (~x~J))d3x =
∫

~Jd3x+
∫
~x(∇ · ~J)d3x (2.16)∮

S(∞)
(n̂ · (~x~J))d2x =

∫
~Jd3x+

∫
~x(∇ · ~J)d3x (2.17)

Assuming the current is localized, i.e. there is no current on the surface at infinity, the
surface term on the left hand side goes to zero

0 =
∫

~Jd3x+
∫
~x(∇ · ~J)d3x (2.18)∫

~Jd3x =−
∫
~x(∇ · ~J)d3x (2.19)

The left hand side is an integral of the current, as we needed, and the right hand side involves
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the divergence of the current. We can learn about the form of the divergence of the current
from Maxwell’s equations. Beginning with Ampere’s Law because it contains current

∇×~B = µ0

(
~J f +

∂~D
∂ t

)
(2.20)

we take the divergence of both sides to have a divergence of current term. On the left hand
side, the divergence of a curl is zero so we can quickly simplify.

∇ ·∇×~B = µ0

(
∇ · ~J f +

∂∇ ·~D
∂ t

)
= 0 (2.21)

∇ · ~J f =−

(
∂∇ ·~D

∂ t

)
(2.22)

The divergence of ~D is also a Maxwell equation ∇ ·~D = ρ f , so we substitute

−
∂ρ f

∂ t
= ∇ · ~J f (2.23)

This says that if the current is diverging through surface there must be a time rate of change
of the current density within that surface. This is the Law of Conservation of Charge.
Following standard procedure again, we assume the charges and currents vary sinusoidally
in time, so the time derivative can be evaluated

iωρ = ∇ · ~J (2.24)

and we plug this result into our integral (2.15)

∫
~J(~x′)d3x′ =−

∫
~x′(∇′ · ~J)d3x′ =−iω

∫
~x′ρ(~x′)d3x′ (2.25)

The final integral in (2.25) is the electric dipole moment

~p =
∫
~x′ρ(~x′)d3x′ (2.26)

allowing the first term of the multipole expansion of the vector potential (2.12) to be
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re-expressed in the form

~A(~x) =− iµ0ω

4π
~p

eikr

r
(2.27)

It appears from this result that only the electric dipole contributes to the vector potential at
first order.

This result, while technically correct has three flaws. First, the choice of ∇ · (~x~J) as the
tensor product to begin with is arbitrary. There are other products that contain ~J as a term in
their expanded form. This leads immediately to the second flaw. While it is commonplace
to call the identity ∫

∇ ·~Ad3x =
∮

n̂ ·~Ad2x (2.28)

the Divergence Theorem, it is in fact only one of a family of identities in which the volume
integral of any gradient operator applied to a tensor can be transformed into a surface integral
of the normal vector performing the same operation on the tensor. For example∫

∇×~Ad3x =
∮

n̂×~Ad2x (2.29)

is another Divergence Theorem. This allows us to explore many other tensor products that
might be chosen to make an integration by parts. The third flaw results from not treating
the current as a full vector field. We know from Helmholtz theory that any vector field can
be described by its divergence and its curl. However, by using the continuity equation, we
have implicity assumed that the current is curl free. The continuity equation describes the
divergence of a current, which is a vector field, but makes no comment about its curl. This
makes sense physically since a purely solenoidal, i.e. only curl, vector field will not have
any net flow through a bounding surface. The continuity equation cannot describe the curl
of the current. If the current does have a solenoidal component, we have failed to account
for it in this derivation.

Beginning with equation (2.12) we will now proceed with these flaws in mind. We
will choose a new tensor product which may contain more terms. We will use a different
version of the Divergence Theorem if required, and we will not assume the curl of the
current, implicitly or explicitly, is identically zero. First we must choose a vector product
whose expanded form contains ~J as a term; but what products are available? We begin by
considering a vector J, three-dimensional postion vector x, and derivative ∇. We construct a
general combination of these in standard index notation, Aabc = ∂a(xbJc). In order to use
the Divergence Theorem and eliminate Aabc through

∮
Aabcd2x = 0, the derivative must be
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outside the product xbJc. Furthermore, the expanded terms must be rank one so contraction
must occur over two of the indices. Only one free parameter, a, b, or c, is left uncontracted
yielding a vector.

Our first possible product is ∂ j(xiJ j) which amounts to contracting the derivative with
the J term of a tensor Jx

∂ j(xiJ j) = xi∂ jJ j + J j∂ jxi

= xi∂ jJ j + J jδi j

= xi∂ jJ j + Ji

= x∇ · J+ J

0 =
∫

x∇ · J+
∫

J∫
J =−

∫
x∇ · J (2.30)

This result is (2.25). It represents a divergence of J and can be replaced by the electric
dipole term.

The second possible product is ∂ j(x jJi) where we use the transpose of the tensor from
the previous choice.

∂ j(x jJi) = x j∂ jJi + Ji∂ jx j

= x j∂ jJi + Jiδ j j

= (x ·∇)J+3J

0 =
∫
(x ·∇)J+3

∫
J∫

J =−1
3

∫
(x ·∇)J (2.31)

This result is more difficult to interpret geometrically. It is not clear what type of current
distribution this describes.

A third product is possible in which ~J is represented by a contraction over the product
itself, ∂i(x jJ j).

∂i(x jJ j) = x j∂iJ j + J j∂ix j

= x j∂iJ j + J jδi j

= x j∂iJ j + Ji (2.32)

In order to write the first term on the right hand side in vector form we must eliminate the
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contraction across the derivative. Our strategy is to introduce Kronecker deltas to move the
uncontracted index i off of the derivative. The only free parameter is which of the two j

indices is left unchanged. This corresponds to which of two commonly available vector
identities are used to expand the term ∇(x · J).

If we leave the x j alone the term x j∂iJ j can be rewritten as δilδ jmx j∂lJm. We then move
the uncontracted index by adding and subtracting the term x j∂ jJi = δimδ jlx j∂lJm

∂i(x jJ j) = δilδ jmx j∂lJm−δimδ jlx j∂lJm + x j∂ jJi + Ji

= (δilδ jm−δimδ jl)x j∂lJm + x j∂ jJiJi

= εi jkx jεklm∂lJm + x j∂ jJi + Ji

= x× (∇× J)+(x ·∇)J+ J

0 =
∫

x× (∇× J)−2J∫
J =

1
2

∫
x× (∇× J) (2.33)

This form depends directly on the curl of the current and is the natural description of a ring
antenna. Equation (2.33) is the main result of this section.

If we leave the J j alone the term x j∂iJ j can be rewritten as δimδ jlxl∂mJ j. We then move
the uncontracted index by adding and subtracting the term xi∂ jJ j = δilδ jmxl∂mJ j

∂i(x jJ j) = δimδ jlxl∂mJ j−δilδ jmxl∂mJ j + xi∂ jJ j + Ji

=−(δilδ jm−δimδ jl)xl∂mJ j + xi∂ jJ j + Ji

=−εi jkεklmxl∂mJ j + xi∂ jJ j + Ji

= (x×∇)× J+ x(∇ · J)+ J

0 =
∫
(x×∇)× J+

∫
x(∇ · J)+

∫
J (2.34)

Using (2.15) we can see that
∫
(x×∇)× J = 0.

In summary, ∫
J =

∫
−x(∇ · J) (2.35)

=
∫
−1

3
(x ·∇)J (2.36)

=
∫ 1

2
x× (∇× J) (2.37)∫

(x×∇)× J = 0 (2.38)
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The three approaches, Eqs. (2.35), (2.36), and (2.37), furnish alternative ways of represent-
ing the integral of current density. (2.36) is similar to (2.35) but with a different grouping
of operations that changes the magnitude of the result by a factor of three. The third result,
(2.37) is the most important since it provides a way to write the integral of J as a curl
rather than a divergence. This means that solenoidal currents can contribute to the first
order multipole expansion as much as divergent currents. If we can find a mechanism for
generating solenoidal in optics, it should be possible to generate new magneto-optic effects
that are large because they occur in the first term of the multipole expansion.

2.1.3 Maximum Solenoidal Current

In this section the question of the maximum possible magnetic current is considered. If
a solenoidal current can be developed, how large can it be? These results summarize the
earlier arguments made in Ref. [2].

In a dielectric there are no free charges or currents. The Maxwell equation including
current is Ampere’s Law, which without free current, is written

∇×~B = µ0

(
ε0

∂~E
∂ t

+ ~JM + ~JP

)
(2.39)

If we imagine a plane wave, polarized along the x̂ direction, incident on a spherical volume
of atoms containing N bound electrons, we know the electrons will be set into motion.
Some fraction of the current will be parallel to the polarization direction and some fraction
perpendicular.

~JP = ~JP,⊥+ ~JP,‖ (2.40)

~JM = ~JM,⊥+ ~JM,‖ (2.41)

Integrating Ampere’s law over the surface S

∫
S

(
∇×~B

)
·dn̂S = ε0

∫
S

∂~E
∂ t
·dn̂S +

∫
S
~Jp,‖ ·dn̂S +

∫
S
~JM,‖ ·dn̂S (2.42)

To deduce a relationship between optically induced currents ~JP and ~JM, one can specialize
the calulation to optical frequencies by substituting Faraday’s Law (∇×~E)/iωµ for ~H in
(2.42). Furthermore we set µ = µ0(1+χm), and consider χm� 1, which ostensibly limits
the estimate of our ratio to transparent media with small polarization and magnetization far
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Figure 2.1 Geometry for integration of Ampere’s law to determine relative magnitudes and phases
of electric and magnetic current density

from resonance. While our experiments were indeed performed in this limit, the theoretical
result obtained is more general, as will become evident.

With these approximations, the integral on the left side of (2.42) is equal to the first term
on the right. Hence one obtains

0 =
∫

S
~JP,‖ ·dn̂S +

∫
S
~JM,‖ ·dn̂S (2.43)

or ∫
S
~JM,‖ ·dn̂S =−

∫
S
~JP,‖ ·dn̂S (2.44)
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A similar integration over surface S′ in Figure 2.1 yields∫
S′
~JM,⊥ ·dn̂S =−

∫
S′
~JP,⊥ ·dn̂S (2.45)

Because ~JM is by definition a solenoidal current, the amplitudes of ~JM,‖ and ~JM,⊥ are equal
JM,‖ = JM,⊥ = JM, the addition of the integrals yields the result

JM =−1
2
[JP]tot =−

1
2

JE (2.46)

Since the input electric and magnetic fields are in phase, the sign in (2.46) is a phase
factor indicating that the magnetic moment opposes the optical magnetic field. The ratio
Rmax = JM/JE = 1/2 is the same as the ratio of magnetic to electric dipole moments of a
perfectly conducting sphere in magnetostatics [11], but here it is obtained in a classical
model that treats bound electrons as the carriers of electric and magnetic displacement
current densities at optical frequencies. It indicates that of all the charges displaced along
x̂ by ~E, at most half can turn in the ~B field and contribute to positive magnetic current by
passing through the surface S′.

Scattered electromagnetic fields in the radiation zone may be calculated using the
expressions [12]

~Erad =
1

4πε0c2

∫
([~̇J]× r̂)× r̂

r
dV (2.47)

~Hrad =
1

4πc

∫
[~̇J]× r̂

r
dV (2.48)

where square brackets indicate evaluation at the retarded time and the integration is per-
formed over source volume V . r̂ is a unit vector in the direction in the direction of the point
of observation at a distance r from the scattering volume. Knowledge of the vector current
denisities ~JE and ~JM (assumed to be uniform in this continuum model) associated with the
time-varying ED and MD moments is enough to determine the electric and magnetic dipole
components of light radiated from the sample. This can be seen explicitly by calculating
the ratio of the magnitudes of the Poynting vector ~S = ~Erad× ~Hrad for electric and magnetic
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radiation, namely SM/SE , given by

SM

SE
=

∣∣∣∣∣
∫

ω(~JM× r̂)× r̂
r

dV ′×
∫

ω(~JM× r̂)
r

dV ′
∣∣∣∣∣/
∣∣∣∣∣
∫

ω(~JE × r̂)× r̂
r

dV ′×
∫

ω(~JE × r̂)
r

dV ′
∣∣∣∣∣

=
J2

M

J2
E

∣∣∣∣∣
∫

(~JM× r̂)× r̂
r

dV ′×
∫

(~JM× r̂)
r

dV ′
∣∣∣∣∣/
∣∣∣∣∣
∫

(~JE × r̂)× r̂
r

dV ′×
∫

(~JE × r̂)
r

dV ′
∣∣∣∣∣

=
J2

M

J2
E

(2.49)

Since the maximum magnetic current density is [JM]max = RmaxJE = (1/2)JE , it follows that
the ratio of the far-field intensities cannot exceed

SM

SE
= R2

max =
1
4

(2.50)

This is the maximum possible value of the ratio R of magnetic dipole to electric dipole
emission intensity in dielectric materials. Even in the non-relativistic limit, the dynamic
magnetic dipole moment due to the passage of light may be as large as one half the electric
dipole moment. If a mechanism for generating solenoidal currents can be found, it is
possible to generate a magnetic current up to one half of the size of the electric current.

2.1.4 Origin of Solenoidal Current

One mechanism for generating current with a curl at optical frequencies is via the Lorentz
force. Magnetic fields induce curvature, and therefore curl, in currents. The light in optics
already contains a magnetic field that is in phase with the electric field. Our goal is to
include the magnetic field of light in the interaction of the light and matter. The Lorentz
Oscillator Model (LOM) of optics is based on a picture in which an electron is bound to the
nucleus by a harmonic potential and undergoes forced motion subject to internal damping.
The external forces are due to components of electromagnetic fields in the form of a plane
wave. Since the forces exerted on a charge by electric and magnetic fields are well known,
the equations of motion follow directly from Newton’s Law.m 0 0

0 m 0
0 0 m


ẍ

ÿ

z̈

+

γx 0 0
0 γy 0
0 0 γz


ẋ

ẏ

ż

+

ω2
x 0 0

0 ω2
y 0

0 0 ω2
z


x

y

z

=

qEx +qẏBz−qżBy

qEy +qżBx−qẋBz

qEz +qẋBy−qẏBx


(2.51)
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The z axis is defined to be the direction of propagation of the plane wave and the x axis to be
parallel to the electric field. This requires that the magnitc field be parallel to the y axis. The
fields are also sinusoidal in time. In component form, the equations of motion can be written

ẍ+ γxẋ+ω
2
x x =

qE0

m
cos(ωt)− qB0

m
cos(ωt)ż (2.52)

z̈+ γzż+ω
2
z z =

qB0

m
cos(ωt)ẋ (2.53)

where γi is the damping coefficient in the ith direction, ωi ≡
√

ki
m is the natural oscillation

frequency in the ith direction, m is the mass of the electron and q is the charge of the electron.
E0 and B0 are the amplitudes of the electric and magnetic components of the field. In a
departure from earlier work [13], these equations are left in component form to avoid drop-
ping any terms that couple motion between the x and z directions. A perturbation solution
to them may then be sought and thoroughly checked by numerical integration as described
in the next section. Through agreement between perturbation and numerical approaches, it
will be shown that dynamic coupling between the electric and magnetic degrees of freedom
in an oscillator model with Lorentz forces yields dramatically enhanced magnetic response
at modest intensities. In section 2.1.7 the enhancement mechanism is explored by reducing
the equations of motion to a Mathieu equation. Solutions are plotted in a stability diagram
which illustrates the relaxed conditions under which parametric enhancement is expected.
Excellent agreement is thereby reached with the experimental results presented in Chapter 4
and quantum theory of Section 2.2.

2.1.5 A Lorentz Model Including Magnetic Forces

Maxwell’s equations show that the ratio of the electric to magnetic field amplitudes for a
plane wave in free space is E0/B0 = c. Thus, the electric field amplitude E0 is eight orders
of magnitude larger than the magnetic field amplitude B0. It is therefore common practice
to drop the final term in (2.52) and in (2.53) involving the magnetic field amplitude. This
simplification results in a single driven equation of motion

ẍ+ γxẋ+ω
2
x x =

qE0

m
cos(ωt) (2.54)

for the x coordinate alone (see for example Ref.[14]). Eq. (2.54) is the starting relation for
the standard LOM. In this thesis the LOM is adopted as the zeroth order description of the
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system (following [15]) and an expansion is used to examine the consequences of retaining
the magnetic terms in the description of the driven motion of bound electrons.

If the magnetic field terms in (2.52) and in (2.53) are small, they can be considered a
perturbation of the motion. Introducing the order parameter λ , it is assumed that solutions
then take the form

x(t) = x0(t)+λx1(t)+λ
2x2(t)+ . . . (2.55)

z(t) = z0(t)+λ z1(t)+λ
2z2(t)+ . . . (2.56)

where x1,x2 . . . are amplitudes associated with orders 1,2. . . . In the present treatment the
electric field is considered in zero order and the magnetic field is considered in first order.
We substitute (2.55) and (2.56) into the equations of motion, namely (2.52) and (2.53), and
collecting terms of like order in λ .

Collecting terms that are zeroth order in λ , one finds

ẍ0 + γxẋ0 +ω
2
x x0 =

qE0

m
cos(ωt) (2.57)

z̈0 + γzż0 +ω
2
z z0 = 0 (2.58)

These equations of motion constitute the standard LOM and have been well studied in the
past. For an electron initially at rest at the origin, they yield the solutions

x0(t) =
qE0

m
√
((ω2

x −ω2)2 + γ2
x ω2)

cos(ωt +φ0) (2.59)

z0(t) = 0 (2.60)

where φ0 = tan−1
(
−γxω

(ω2
x−ω2)

)
. The solution for motion along the electric field is proportional

to the amplitude of the applied field E0 and oscillates harmonically at the driving frequency
ω . The amplitude is enhanced near resonance by a factor that depends on the detuning,
(ωx−ω), and the damping, γx, of the linear motion along x̂.

Collecting terms that are first order in λ yields the equations

ẍ1 + γxẋ1 +ω
2
x x1 =−

qB0

m
cos(ωt)ż0 (2.61)

z̈1 + γzż1 +ω
2
z z1 =

qB0

m
cos(ωt)ẋ0 (2.62)
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The driving terms of these equations depend on the derivatives of the zeroth order solutions.
Consequently, the derivatives of the zeroth order solutions are needed.

ẋ0 =−
ωqE0

m
√
((ω2

x −ω2)2 + γ2
x ω2)

sin(ωt +φ0) (2.63)

ż0 = 0 (2.64)

To solve the system of equations (2.61)-(2.64), the homogeneous version of the x1 equation
is considered first.

ẍ1 + γxẋ1 +ω
2
x x1 = 0 (2.65)

The solution to this equation with our initial conditions is simply

x1(t) = 0 (2.66)

Equation (2.66) confirms the expected result that there is no additional response in the x
direction at first order.

The z1 equation is solved next. The homogeneous solution is the same as the previous
order, so only the particular solution needs to be found. Substituting (2.63) into (2.62), one
finds

z̈1 + γzż1 +ω
2
z z1 =−

ωq2E0B0

m2
√
((ω2

x −ω2)2 + γ2
x ω2)

cos(ωt)sin(ωt +φ0) (2.67)

in which a product of sine and cosine functions at the optical frequencies appears. Using the
trigonometric identity cos(a)sin(b) = 1

2 (sin(a+b)− sin(a−b)) this may be simplified to

z̈1 + γzż1 +ω
2
z z1 =−

ωq2E0B0

2m2
√

((ω2
x −ω2)2 + γ2

x ω2)
[sin(2ωt +φ0)− sin(φ0)] (2.68)

Because this equation is linear, a particular solution of the entire equation of motion for z(t)

can be found by analyzing each of the two driving terms in square brackets on the right side
of (2.68) separately and then adding the results. The solution for z(t), complete to first order,

29



is

z(t) = z1(0, t)+ z1(2ω, t)

=
−ωq2E0B0

2m2ω2
z

√
(ω2

x −ω2)2 + γ2
x ω2

sin(φ0)

+
1√

(
(
ω2

z − (2ω)2
)2

+ γ2
z (2ω)2

ωq2E0B0

2m2
√
(ω2

x −ω2)2 + γ2
x ω2

sin(2ωt +φ0−φ1)

(2.69)

where φ1 = tan−1
(

−γz2ω

(ω2
z−(2ω)2)

)
. Similarly, the solution for x(t), correct to first order, is

x(t) = x0(ω, t)

=
qE0

m
√

((ω2
x −ω2)2 + γ2

x ω2)
cos(ωt +φ0) (2.70)

It is possible to derive any term in the expansion by the method outlined in Appendix B.
Eqs. (2.69) and (2.70) are the main results of this section. Superficially it appears that

the solutions do not contain a magnetic dipole. However, if the motion is examined in the
x− z plane as seen in Fig. 5.2 we notice that the electron follows a curved trajectory. The
electron traces this arc at the driving frequency ω . The projection of this motion onto the x

axis is then, clearly, at the driving frequency. However, because the motion does not form
a closed loop, the projection of the arcing motion at ω onto the z axis is at 2ω . Thus, we
see the ω solution in x and the 2ω solution in z are both due to a curved motion at ω . The
torsional oscillation about the y-axis at ω is a magnetic dipole that will radiate at ω . This
result will play an important role in experimental design in Chapter 3.

2.1.6 Numerical Simulations

The perturbation solutions given by (2.69) and (2.70) can be checked by comparing their
predictions to numeric solutions. Using a fourth order Runge-Kutta integration method,
equations (2.52) and (2.53) are solved and the motion of the electron is plotted to examine
transient and steady state response. In Figs. 2.4-2.6, projections of electron trajectories on
the laboratory x and z axes are computed by direct integration of these force equations and
amplitudes of motion along these two directions plotted as a function of field intensity and
natural oscillation frequency for comparison with (2.69) and (2.70). Fig. 2.2 is a reference
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plot showing the position of the electron plotted with all parameters set to unity except
B0, which is set to 1/(3×108) to preserve the ratio E0/B0 = c of a plane wave. Thus, the
electric field amplitude is E0 = 1V/m.

0 5 10 15 20 25 30
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0

2

t

x(
t)

0 5 10 15 20 25 30
0
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1
x 10

−8
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z(
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Figure 2.2 Solid lines are reference plots of electron motion for all parameters set to unity while
preserving E0 = 1V/m and B0 = 1/c T . Dashed lines are plots of electron motion with the fields
doubled to E0 = 2V/m and B0 = 2/c T .

In Fig. 2.2, both the x and z motions reach steady-state oscillation after a short transient
period. The period of the x motion in Fig. 2.2 is 2π and the period of the z motion in Fig.
2.2 is π . Hence, the frequency ratio is 1/2, as predicted in the perturbation result of Eq.
(2.69). It can also be seen that the x motion is centered about zero, whereas the z motion is
offset by a constant amount in the steady state as predicted by the zero frequency term of
the perturbation solution. While the amplitude of motion at low intensity is nine orders of
magnitude greater in the x direction than in the z direction, at higher intensity, corresponding
to E0 = 108V/m and B0 = 108/c T , the amplitude of motion along these two directions
becomes comparable as seen in Fig. 2.3.

Numerous additional checks of the perturbation solution and its predictions were made
using this method of numerical integration of the equations of motion. For this purpose,
a single parameter in Eqs. (2.69) and (2.70) was chosen and all others were fixed at their
reference value. The chosen parameter was then varied over a wide range of values and
the steady state values of the x amplitude, z amplitude, and the z offset were plotted versus
the parameter. As an example, the solid curve in figure 2.2 was calculated with all param-
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Figure 2.3 Plots of electron motion in both x and z directions on the same scale for all parameters
set to unity while E0 = 108V/m and B0 = 108/cT

eters set to the default values of unity whereas the dashed curves were obtained with all
parameters except E0 and B0 set to the default values and E0 and B0 set to twice the default
value. Clearly the x amplitude in Fig. 2.2 increases linearly with this change, but both the
z offset and z amplitude increase quadratically. This procedure was repeated for a wide
range of values of E0 and B0 to generate figure 2.4. The resulting log-log plot shows that
the amplitude of the x motion grows linearly with increasing field. The slope of the fitted
curve is one. The amplitude of z motion and the offset of z motion increase quadratically
with the field. The slopes of their fitted curves are both two.

Figure 2.5 shows that both z amplitude and z offset have a resonance at ωx = 1 as
predicted by the perturbation solution. The x amplitude also has a resonance at ωx = 1 but
this result was not included in the figure because it is predicted by the standard LOM. Figure
2.6 shows that the z amplitude has a resonance at ωz = 2 as predicted by the perturbation
solution. It also shows that the z offset obeys a 1/ω2

z dependence, indicated by the slope
of −2. Thus, all of the major features of response amplitude predicted by the perturbation
calculation are confirmed by numeric integration of the equations of motion.

The first order solution for x1(t) is unchanged with respect to the linear response expres-
sion for x0(t). Hence, it still shows a linear dependence on the input field, together with
damped resonance about the natural frequency ωx and a damping dependent phase shift
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Figure 2.4 Behavior of x and z amplitudes and z offset versus the input field. All parameters fixed
at unity except E0 and B0 which are varied to generate the plot. Note that the x amplitude shows a
linear dependence on field whereas the z amplitude and offset both exhibit quadratic dependences.

φ0. The motion in the z direction, given by z1(t), is much more complicated. First, there
are two different frequency components in the response, one at zero frequency and another
that oscillates at twice the driving frequency. However, both components show a quadratic
dependence on the input fields as is expected for a magneto-optic non-linearity. Both terms
also show a resonance at the natural frequency ωx, but the second, frequency-doubled 2ω

term shows an additional resonance at ω = ωz/2.
It was shown that charge motion induced by an incident plane wave is no longer linear

when magnetic forces are included. In particular, motion along the direction of propaga-
tion is much larger at high intensities than expected due to magnetic coupling between
the motion in the x and z directions. Even though the coupling strength is dependent on
the magnetic field amplitude, which is small, it is evident that large amplitude, complex
dynamics which are magnetic in origin arise at moderate field strengths of the order of
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Figure 2.5 Behavior of z amplitude and z offset versus ωx. All parameters fixed at unity except ωx

which is varied to generate the plot. Note that both have a resonance at ωx = 1.

E = 108V/m. This result calls for analysis to clarify the origin of large amplitude magnetic
dynamics at non-relativistic intensities.

2.1.7 A Mathieu Model of Optical Interactions

Solving the equations of motion of the Complete Lorentz Oscillator Model by perturbation
to high order, one will eventually find a solution that depends directly on time, such as
t sin(t). These terms indicate growth of the solution without bound. Such a result is a
classic behavior of unstable systems in which the solutions grow exponentially in time. A
classic equation in the study of instability is the Mathieu equation. Since we know that
terms directly dependent on time will appear at high order, we will now attempt to write the
equations of motion in a Mathieu-like form.
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which is varied to generate the plot. Note that the z amplitude has a resonance at ωz = 2 and that the
z offset follows an inverse quadratic behavior (slope=-2).

By rearranging equations (2.52) and (2.53) into a form so that all terms that depend on
the coordinates are on the left hand side and the external driving terms are on the right hand
side, the underlying structure can be more clearly seen.

ẍ+ γxẋ+
qB0

m
cos(ωt)ż+ω

2
x x =

qE0

m
cos(ωt) (2.71)

z̈+ γzż−
qB0

m
cos(ωt)ẋ+ω

2
z z = 0 (2.72)

The non-autonomous terms whose coefficients depend on the independent variable t are
of main interest here. All terms in Eqs. (2.71) and (2.72) have constant coefficients except
for the coupling terms. The Lorentz force terms add to the equations an effective sinusoidal,
time-varying damping coefficient. Equations with sinusoidally-varying coefficients are of
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particular interest in the study of instability and it is this aspect of the equations that is of
particular interest here [16].

To set the discussion of instabilities in appropriate context, we briefly review dynamics
described by a traditional Mathieu Equation. The Mathieu Equation is a simple model for a
classic problem in instability, namely the vertically driven pendulum. In the prototypical
problem, a rigid, massless rod is fixed to a pivot at one end and a mass at the other. The
fixed point is then moved vertically, sinusoidally at some amplitude. The linearized equation
of motion of the pendulum can then be reduced to

d2u
dt2 +(a−bcos(2t))u = 0 (2.73)

The sinusoidally time-dependent spring constant, known as the ”parametric excitation”,
acts as an energy source causing the amplitude of motion, u, to grow to a value dependent
on the values a and b. For certain values of a and b, the amplitude of the pendulum grows
exponentially to infinity. These regions are said to undergo unstable motion because they
are in parametric resonance. More discussion of this topic can be found in many differential
equation texts, including [16], [17]. For an intuitive introduction, see Ref [18].

In the case of the vertically-driven pendulum, the system spends more time in unstable
motion as the amplitude of the parametric excitation grows. The addition of damping does
not remove the regions of instability, though it does make them smaller. Only nonlinearities
in the system formally prevent the amplitude from growing to infinity exponentially. For
sufficiently large amplitude motion it should be admitted however that Eq. (2.73) ceases to
be the equation of motion since the approximation of a harmonic restoring force eventually
breaks down. Ionization is one way that breakdown of this kind can occur in our system of
interest.

For the LOM augmented by magnetic forces, it was shown that z motion is enhanced
dynamically by eight orders of magnitude at moderate intensities in the previous section. We
now turn to an examination of predictions for parametrically-resonant stable and unstable
motions in this model. For ease of mathematical analysis, we use dimensionless forms of
the complete equations of motion (2.52) and (2.53)

d2χ

dτ2 +
γx

ω

dχ

dτ
+

ω2
x

ω2 χ = cos(τ)− qB0

mω
cos(τ)

dζ

dτ
(2.74)

d2ζ

dτ2 +
γz

ω

dζ

dτ
+

ω2
z

ω2 ζ =
qB0

mω
cos(τ)

dχ

dτ
(2.75)
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which contain the following constants

a =
γx

ω
;b =

ω2
x

ω2 ;c =
γz

ω
;d =

ω2
z

ω2 ;e =
qB0

mω
(2.76)

The constants a and c represent dimensionless damping parameters, b and d represent
dimensionless natural frequencies, and e represents the dimensionless cyclotron frequency
due to the magnetic field of the incident plane wave. First, consider a spherically symmetric
molecule in which the x and z directions are equivalent, resulting in a = c and b = d. For
ease of interpretation, these constants maybe be redefined with symbols that are in standard
use, namely

γ = a = c (2.77)

ω
2 = b = d (2.78)

fc = e (2.79)

where we now refer to γ as the dimensionless damping constant, ω as the dimensionless
natural frequency, and fc as the dimensionless cyclotron frequency. The equations of motion
then take on the dimensionless form

d2χ

dτ2 + γ
dχ

dτ
+ω

2
χ = cos(τ)− fc cos(τ)

dζ

dτ
(2.80)

d2ζ

dτ2 + γ
dζ

dτ
+ω

2
ζ = fc cos(τ)

dχ

dτ
(2.81)

This process has effectively absorbed the electric field into the coordinates. The problem
can now be seen as in the frame of the electric field. The nondimensionalization of the
classical equations of motion is very similar to using the dressed state formalism in quantum
mechanics. Dressed states are a re-diagonalization of the problem with the effects of the
light field included in the Hamiltonian. This creates new basis states that take the light field
into account, effectively absorbing the electric field into the basis states. That method will
be used in Section 2.2 as one method to calculate the Transverse Optical Magnetic response
quantum mechanically.

It will now be shown that these equations of motion can exhibit unstable motion. This
conclusion may be reached by considering the equations of motion with only the terms that
depend on the coordinates [16]. Dropping the cos(τ) factor which is an external forcing
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term (i.e. it does not depend on the coordinates of the system) Eq. (2.80) reduces to

d2χ

dτ2 + γ
dχ

dτ
+ω

2
χ =− fc cos(τ)

dζ

dτ
(2.82)

and Eq. (2.81) does not change. To proceed, we first make use of the Energy-Rate method
[19] to plot a stability diagram of the dimensionless system of equations as shown in Figure
2.7. Wide regions of parameter space are shown to couple energy between the x and z

directions of motion.
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Figure 2.7 Stability diagram of parameter space for the Complex Mathieu Equation evaluated over
a 6π integration period using the Energy-Rate Method. Red areas indicate rapid transfer of energy
from x (electric) to z (magnetic) degrees of freedom. Blue areas indicate no energy transfer.

Second, the two equations (2.81) and (2.82) can be combined into a single complex
equation of motion of the variable y = (χ + iζ ). Multiplying Eq. (2.81) by i, adding it to Eq.
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(2.82) , and collecting terms results in a single, sinusoidally damped oscillator equation.

d2y
dτ2 +(γ− i fc cos(τ))

dy
dτ

+ω
2y = 0 (2.83)

The stability of the Mathieu equation itself is well studied, so a key result of the present
work is that this latter equation can be rewritten in the form of a Mathieu equation. By
comparing (2.83) and (2.73) it is clear that the damping terms must be eliminated for them to
be formally identical. Mathematically, this may be done by modifying (2.83) with an integral
transformation [20]. The transformed variable is defined to be y(t) = w(t)e

1
2
∫ t

0 γ−i fc cos(τ)dτ .
Substituting this into the complex equation of motion and collecting terms, one finds

ẅ(t)+
1
8
(
−2γ

2 +8ω
2 + f 2

c +4i fc (γ cos(t)− sin(t))+ f 2
c cos(2t)

)
w(t) = 0 (2.84)

This is a Mathieu type equation of the complex variable w(t). The quantity 1
8(−2γ2 +

8ω2 + f 2
c ) acts as the Mathieu constant a and the quantity 1

8 f 2
c acts as the Mathieu constant

b. The successful transformation of the Complete Lorentz Oscillator Model to a Mathieu
type differential equation confirms that the equations of motion support complex dynamics.
In particular, the electric and magnetic degrees of freedom of the system can exchange
energy due to the magnetic modulation at doubled frequency 2t that is governed by the
constant fc (Fig. 2.7).

It should be noted that the quantity fc which represents the Lorentz force strength ap-
pears in all time dependent coefficeients of the equation indicating that it is the source of
unexpected, magnetically-induced behavior. If fc were zero, as applicable to the customary
LOM, the equations of motion could not be written as a Mathieu type differential equation.
On the other hand, the imaginary, sinusoidal, time-dependent excitation terms in Eq. (2.84)
appear to offer novel degrees of freedom and dynamic behavior worthy of additional study.

A similar analysis that is more illuminating can be performed on the dimensionless
system of equations (2.80) and (2.81). Rather than transforming the pair of equations into
a single complex equation, we rewrite them as a matrix equation. Dropping the external
driving force since it plays no role in system stability we end up with

(
1 0
0 1

)(
ẍ

z̈

)
+

(
γx fc cos(τ)

− fc cos(τ) γz

)(
ẋ

ż

)
+

(
ω2

x 0
0 ω2

z

)(
x

z

)
=

(
0
0

)
(2.85)

We define some new variables to similify the following derivation.
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q(t) = q =

(
1 0
0 1

)
r(t) =

(
γx fc cos(τ)

− fc cos(τ) γz

)
s(t) = s =

(
ω2

x 0
0 ω2

z

)
x =

(
x

z

)
(2.86)

This gives us the matrix equation

qẍ+ r(t)ẋ+ sx = 0 (2.87)

We will perform a similar integral transformation to the one found above. Assuming r(t)

has an antiderivative R(t) and an initial condition R(0) = 0 we can define our transformed
coordinates y

x = e−
1
2 R(t)y (2.88)

ẋ =−1
2

r(t)e−
1
2 R(t)y+ e−

1
2 R(t)ẏ (2.89)

ẍ =−1
2

ṙ(t)e−
1
2 R(t)y+

1
4

r2(t)e−
1
2 R(t)y− r(t)e−

1
2 R(t)ẏ+ e−

1
2 R(t)ÿ (2.90)

There is an exponential e−
1
2 R(t) in each term so we drop it. Putting all of the terms together

ÿ− r(t)ẏ− 1
2

ṙ(t)y+
1
4

r2(t)y+ r(t)ẏ− 1
2

r2(t)y+ sy = 0 (2.91)

Simplifying this equation we find that there is no longer a term proportional to ẏ

ÿ+
(
−1

2
ṙ(t)− 1

4
r2(t)+ s(t)

)
y = 0 (2.92)
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ṙ(t) =

(
0 − fc sin(t)

fc sin(t) 0

)
(2.93)

r2(t) =

(
γ2

x − f 2
c cos2(t) (γx + γz) fc cos(t)

−(γx + γz) fc cos(t) γ2
z − f 2

c cos2(t)

)
(2.94)

This system of equations is identical to a damped simple harmonic oscillator when
fc = 0 so we can recover the Lorentz Model in the low intensity limit. We can rewrite this
equation so that it has the features of a Mathieu equation, particularly a cos(2t) term, using
trigonometric identities

ÿ+

(− γ2
x
4 +ω2

x +
f 2
c
8

)
+

f 2
c
8 cos(2t) fc

2

√
1+ 1

4(γx + γz)2 sin(t +φ)

− fc
2

√
1+ 1

4(γx + γz)2 sin(t +φ)
(
− γ2

z
4 +ω2

z +
f 2
c
8

)
+

f 2
c
8 cos(2t)

y = 0 (2.95)

where φ = arcsin

(
− 1

2 (γx+γz)√
1+ 1

4 (γx+γz)2

)
is a phase shift due to damping. Collecting like

groups of parameters we find that the set of equations has the form

ÿ+

(
αx +β cos(2t) δ sin(t +φ)

−δ sin(t +φ) αz +β cos(2t)

)
y = 0 (2.96)

αi =−
γ2

i
4
+ω

2
i +

f 2
c
8

(2.97)

β =
f 2
c
8

(2.98)

δ =
fc

2

√
1+

1
4
(γx + γz)2 (2.99)

We can see now that this system of equations is a Mathieu equation in each direction that is
coupled by a sinusoidal term ±δ sin(t +φ). The stability of such systems can be studied by
multi-scale analysis [21].
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2.2 Density Matrix Analysis

2.2.1 Density Matrix Analysis

The purpose of this section is to formulate a quantum mechanical theory of the intense
transverse magnetic dipole moments and static electric dipole moments that form in bound
electron systems as the result of irradiation with coherent light of moderate intensity. The
development closely follows Ref. [22].

m
2

m
1

-2 -1 0 1 2

-1 0 1

|2>

|1>

ω
0

Figure 2.8 Example of an energy level system that permits a combination of electric and magnetic
dipole transitions

We begin by considering a system of identical 2-level atoms or molecules with a reso-
nance frequency ω0 = (ω2−ω1) subjected to an electromagnetic plane wave of frequency
ω that propagates in the positive ẑ direction (Fig.2.8). The light is linearly polarized along
x̂ and detuned from resonance by δ = ω0−ω . Population dynamics and coherences are
found using the density matrix equation of motion

ih̄ρ̇ = [H,ρ]− ih̄ρ̇relax (2.100)

The system Hamiltonian H = H0 +V (t) is assumed to consist of a static part,

H0 = h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|, (2.101)

which describes the unperturbed diagonal matrix elements of the static Hamiltonian and an
optical interaction V of the combined dipole form

V =−~µe ·~E−~µm ·~B (2.102)

In the semiclassical approach used here, ρ̇relax describes phenomenological relaxation of
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individual density matrix elements in the Schrodinger picture. Uppercase rate constants Γi j

are used to describe coherence decay between levels i and j and lowercase constants γii give
the total population decay rate of a particular level i. The irreducible representations of the
(polar) electric and (axial) magnetic components of the optical wave are

~E(t) =−1
2
[E+ε̂−+E−ε̂+]eiφ +h.c. (2.103)

~B(t) =− i
2
[B+ε̂−−B−ε̂+]eiφ +h.c. (2.104)

In these expressions φ = ωt − kz is the optical phase and the circular basis vectors
ε± =−(x̂± iŷ)/

√
2 are components of the rank one spherical tensor. h.c. is an abbreviation

for Hermitian conjugate. Carets are used to denote unit basis vectors. In the case of linear
polarization along x̂ , we note the correspondences

E+ = E− = E0/
√

2 (2.105)

B+ = B− = B0/
√

2 (2.106)

which assume the circular components have equal amplitudes. The irreducible electric and
magnetic dipole moments induced by the field have magnitudes and directions given by

~µ(e) =−
(

µ
(e)
− ε̂++µ

(e)
+ ε̂−

)
(2.107)

~µ(m) =−i
(

µ
(m)
+ ε̂−+µ

(m)
− ε̂+

)
(2.108)

respectively. When the circular componenets µ± of these moments are equal, the electric
and magnetic moments themselves point along x̂ and ŷ – parallel to the inducing fields.
Combining all of these definitions with the Hamiltonian (2.102) gives us the irreducible
form of the interaction Hamiltonian. The goal of this work is then to determine the induced
electric and magnetic dipole moments, µ(e)(t) and µ(m)(t) in the medium. This is done
by finding the expectation values which in the density matrix formalism take the form
< µ(e)(t)>= Tr[µ(e),ρ(t)] and < µ(m)(t)>= Tr[µ(m),ρ(t)] respectively.

2.2.2 Matrix Elements of Transverse Magnetic Moments

Before proceeding to solve the equation of motion for the density matrix, a discussion of the
calculation of expectation values is warranted due to the transverse nature of the magnetic
dipole moment to be considered here. Individual light quanta carry spin angular momentum
with projections on the axis of propagation given by -h̄,+h̄,or 0, depending on whether their
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state is left-circular, right-circular, or linear polarization respectively. In linear single-field
MD interactions, the angular momentum needed to create or destroy a magnetic dipole
moment is therefore provided by an appropriate state of circularly polarized incident light.
However, in what follows, the induced angular momentum is not along ẑ, which denotes the
propagation axis, but along the optical B field (chosen here to point along the transverse
ŷ direction). The induced transverse moment, therefore, has no projection on the axis of
propagation and can be generated without the transfer of any angular momentum from the
optical field. For the quadratic interaction of interest here, it will be shown that when the
angular momentum of the light field is zero (the case of linearly polarized light), a large
magnetic moment that oscillates at the optical frequency itself can be induced perpendicular
to ẑ. The time average value of this orbital angular momentum is zero so that angular mo-
mentum is conserved overall. However, this process gives rise to intense, radiant magnetic
dipole fields.

To facilitate a comparison of longitudinal and transverse magnetic moments, it is con-
venient to consider two coordinate systems in which the polar axis is either parallel or
perpendicular to the wavevector k̂ = kẑ. First we discuss longitudinal magnetic moments
by considering the coordinate system (r,θ ,φ) in which the polar and quantization axes are
parallel to k̂ = ẑ , and the azimuthal angle φ is measured with respect to the x axis. This
is the geometry of conventional magnetic dipole transitions. The electric dipole transition
moment on a single atom is

<~µ(e)(t)>12 = r̂ < µ
(e)(t)>12

= r̂
∫

ψ
∗
1 (r, t)erψ2(r, t)+h.c.dV

= r̂
∫

c∗1(t)ψ
∗
1 (r)erc2(t)ψ2(r)+h.c.dV

= r̂ < 1|µ(e)|2 > ρ21(t)+h.c. (2.109)

The electric field along x̂ changes only the radial coordinate r of charge position. Thus r̂ = x̂

, and the expectation value of the electric dipole is

<~µ(e) >= Tr
(
~µ(e),ρ

)
= x̂(µ12ρ21 +µ21ρ12) (2.110)

where µ
(e)
12 =< 1|µ(e)|2 > and ρ21(t) = c∗1(t)c2(t). The trace in Eq. (2.110) is, in general, a

sum over all states of the system. Here however, we assume that the dynamics are dominated
by only two states. State 1 is the ground state and state 2 denotes the particular excited
state that has minimum detuning from the incident light frequency and opposite parity with
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respect to state 1. The quantities c1 and c2 are the probability amplitudes of state 1 and state
2, respectively.

The magnetic dipole transition moment for a one-photon interaction connecting states 2
and 3 is

<~µ(m)(t)>23 = (e/2m)
∫

ψ
∗
2 (r,θ ,φ , t)~r×~pψ3(r,θ ,φ , t)dV +h.c.

= (e/2m)
∫

c∗1(t)ψ
∗
2 (r,θ ,φ)~Lc2(t)ψ3(r,θ ,φ)dV +h.c. (2.111)

in terms of the angular momentum operator~L =~r×~p. It is important to note that states 2
and 3 may be excited sub-states or may be excited state admixtures into the ground state,
as examined in more detail in the Heisenberg theory. In this case, the expectation value is
given by the trace of the magnetic dipole operator ~µ(m) = (e/2m)~L with the density matrix:

<~µ(m) >=< 2|~µ(m)|3 > ρ32(t)+h.c.= Tr
(
~µ(m),ρ

)
(2.112)

At low intensities the magnetic moment is negligible for linear polarization, because the
linear momentum ~p of the electron is very nearly parallel to its displacement. The Lorentz
force is negligible compared to the force of the electric field at nonrelativistic intensities.
The cross product in the integrand of Eq. (2.111) and the associated angular momentum
are therefore nearly zero. Only an electric dipole oriented along x̂ is induced. In the case
of circular polarization, the electron follows the electric field adiabatically, circulating
around the propagation axis, inducing a steady magnetic moment oriented along the z axis
(~r×~p 6= 0). This motion mediates the inverse Faraday effect caused by circularly polarized
light [23], which is not of interest in this thesis. Consequently, in one-photon, electric-field-
mediated interactions, only the angular momentum carried by the field E(z, t), where z is
the quantization axis, can be transferred to the atom. The initial and final states |1 > and
|2 > must have the same magnetic quantum number m in the case of linear polarization, and
must differ when the polarization is circular with m2 = m1±1.

In the case of an interaction mediated jointly by the E and B components of a linearly
polarized field, the orientation of the magnetic moment is along the laboratory y axis, and
its calculation is significantly different because two driving forces contribute to the motion.
The Lorentz force causes the linear momentum induced by the electric field E to acquire a
small transverse component that is azimuthal with respect to the B component of the optical
field. We therefore introduce new source coordinates (r′,θ ′,φ ′) with a polar axis along
B(z′ = y′). As before E defines the x̂′ = x̂ axis. The third basis vector is ŷ′ = −ẑ, and φ ′
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is considered to be measured from the ŷ′ axis. In this primed coordinate system the linear
momentum may be written as ~p′ = r̂′p′r + θ̂ ′pθ ′+ φ̂ ′pφ ′ . The expression for the magnetic
moment in Eq. (2.111) becomes

<~µ(m)(t)>23 = (e/2m)
∫

ψ
∗
2 (r
′,θ ′,φ ′, t)~r′× (~pr′+~pθ ′+~pφ ′)ψ3(r′,θ ′,φ ′, t)dV ′+h.c.

=
−e
2m

ŷ
∫

ψ
′
2(r
′,θ ′,ψ ′, t)~r′pφ ′ψ3(r′,θ ′,φ ′, t)dV ′+h.c. (2.113)

since~r′×~pr′ = 0 and r̂′× (pφ ′ φ̂
′) = −pφ ′ ŷ. Here the assumptions have been made that

pθ ′ ' 0 (since neither field drives motion in the θ̂ ′ direction) and that r′ is sufficiently slowly
varying so that the amplitude of an oscillatory magnetic moment can be well defined and
slowly varying too. Equation (2.113) is implicitly written in the rotating frame where the
rapid time dependence is associated with the azimuthal momentum pφ ′ and the magnetic
moment points in the expected direction anti-parallel to the B field (along −ŷ).

Under the action of the forces due to orthogonal fields E and B, the time dependence of
radial (r̂′) and azimuthal (φ̂ ′) motions may differ. Hence we assume the wavefunction is
separable according to ψ(r′,θ ′,φ ′, t) = ψ(r′, t)ψ(θ ′,φ ′, t) and introduce separate c coeffi-
cients for the radial and angular parts of the wavefunction as follows: ψ(r′, t) = c(e)(t)ψ(r′)

and ψ(θ ′,φ ′, t) = c(m)(t)ψ(θ ′,φ ′). Correspondingly, we define electric and magnetic den-
sity submatrices by ρ

(e)
i j = c∗(e)j c(e)i and ρ

(m)
i j = c∗(m)

j c(m)
i in the laboratory reference frame.

The time development of ρ
(e)
i j is determined by E, and that of ρ

(m)
i j is determined by B.

Both fields oscillate at the optical frequency, so by invoking the slowly varying envelope
approximation (SVEA) the two submatrices can be written in the lab frame as

ρ
(e)(t) = ρ̃

(e)eiωt (2.114)

ρ
(m)(t) = ρ̃

(m)e±iωt (2.115)

where ρ̃(e) and ρ̃(m) designate the slowly varying amplitudes of the electric and magnetic
coherences.

In terms of these quantities, the expression for the transverse magnetic moment in Eq
(2.113) becomes

<~µ(m)(t)>=−ŷ < 2|µ(m)|3 > ρ
(m)
32 (t)ρ̃(e)

21 +h.c. (2.116)

where we have made the replacement < 2|µ(m)|3 >=< 2|(e/2m)r′pφ ′|3 >. According to
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Eq. (2.116), when the direction of the magnetic field is fixed along ŷ, the expectation value
for the transverse magnetic moment is given by

<~µ(m)(t)>=−ŷTr(µ(m),ρ(m)
ρ̃
(e)) (2.117)

The main time dependence in this expression for the magnetic moment is associated with
ρ
(m)
32 (t) in the rotating frame. The envelope of the electric contribution designated by ρ̃

(e)
21 is

assumed to vary little during an optical period. The submatrices ρ(m) and ρ(e) are designated
as magnetic and electric, using the superscripts m and e, because the former describes
temporal evolution that is azimuthal with respect to the axis of the optical H field, while the
latter describes radial oscillations of the wavefunction in the direction of E.

Note that the expectation value of the magnetic moment in Eq. (2.116) is second order
in the wavefunction as expected, not fourth order. The full density matrix is just the product
of the submatrices ρ(m)(t) and ρ(e)(t), given explicitly by

ρ = |ψ〉〈ψ|= |ψ(r, t)〉|ψ(θ ,φ , t)〉〈ψ(θ ,φ , t)|〈ψ(r, t)|= ρ
(m)(t)ρ(e)(t) (2.118)

The submatrices ρ(e)(t) and ρ(m)(t) merely describe important degrees of freedom in the
overall motion driven by applied fields E and B. In the next section these kinematically
distinct submatrices are separately evaluated in order to calculate the induced magnetization
and other moments that result from combined electric and magnetic forces.

2.2.3 Steady-state Solution of the Density Matrix

To write the total magneto-optical interaction consistent with any particular choice of refer-
ence frame requires some care. The reason for this is that interactions driven by EB involve
motional effects of two orthogonal fields, one of which is a polar vector (E(t)) and the
other of which (B(t)) is axial. The rotating frame of linear optical interactions governed
by E(t) alone, for example, has an axis along ẑ, whereas the magnetic moment induced by
the combined action of E(t) and B(t) involves currents circulating about the ŷ axis. In this
thesis the joint effect of the electric and magnetic interactions will ultimately be described
in the lab frame of reference, but to provide perspective on the kinematics, use will be made
of a sequence of three reference frames. The calculation of dynamics begins in the rotating
frame, is next transformed to the ordinary lab frame, and finally ends up in a z-adjusted lab
frame.

Customarily, the rotating wave approximation is introduced in optical analysis to solve
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for system dynamics. One result of this is that in the frame co-rotating with a circular
component of E(t), the induced electric dipole is a constant. For this reason the electric
dipole interaction is written as −~µ(e) ·~E(t), where only the field varies with time. However,
in the same reference frame, the magnetic moment oscillates at the optical frequency. This
is implied by Eq. (2.116) where magnetic charge oscillation varies rapidly with time as
ρ
(m)
21 ∝ exp(±iωt) whereas the electric coherence is only slowly varying. To include electric

and magnetic interactions in an atom-field Hamiltonian referenced to a single frame, this
must be taken into account.

The interaction Hamiltoniam in the rotating frame has the form

V (t) =−1
2

h̄
[
(Ω
∗(m)
+ +Ω

∗(m)
− )+(Ω

(e)
+ +Ω

(m)
+ eiφ )eiφ +(Ω

(e)
− +Ω

(m)
− e−iφ

]
+h.c. (2.119)

Here Ω
(e)
± ≡ µ

(e)
± E±/h̄ and Ω

(m)
± ≡ µ

(m)
± B±/h̄ are the electric and magnetic interaction terms

for positive or negative (±) helicity. The time dependence of the magnetic interaction
either adds to or subtracts from that of the electric field, and produces interaction terms
at frequencies of 0 and 2ω as shown by Eq. (2.119). The electric and magnetic transition
matrix elements of V are therefore

V (e)
12 ≡< 1|V (e)|2 >=−1

2
h̄ < 1|[Ω(e)

+ +Ω
∗(e)
− ]eiφ +h.c.|2 > (2.120)

V (m)
23 ≡< 2|V (m)|3 >=−1

2
h̄ < 2|[Ω∗(m)

+ +Ω
∗(m)
− ]+h.c.|3 >−1

2
h̄ < 2|[Ω(m)

+ +Ω
∗(m)
− ]e2iφ +h.c.|3 >

(2.121)

The charge oscillations induced by an electric field acting alone follow the time depen-
dence of E. Hence the electric fieldeld induced coherence has the form ρ

(e)
12 (t) = ρ̃

(e)
12 eiφ

in the lab frame or ρ
(e)
12 (t) = ρ̃

(e)
12 in the rotating frame. Charge oscillations that are jointly

driven by electric and magnetic forces similarly follow the time dependence of the applied
fields, and this gives rise to three distinct frequencies of oscillation in the lab frame, namely,
0 and ±2ω , because there are combination terms in the product of the driving fields E and
B.

E(t)B(t) =
(

1
2

E0eiφ +h.c.
)(

1
2

B0eiφ +h.c.
)

=
1
4
(E0B0e2iω +E∗0 B∗0e−2iω +E0B0 +E∗0 B0) (2.122)

The coherence between levels 1 and 3 is therefore expected to take the form
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ρ13(t) = ρ̃
(e)
12 (ω)ρ̃

∗(m)
23 + ρ̃

(e)
12 (ω)ρ̃

(m)
23 (ω)e2iφ

= ρ̃13(ω = 0)+ ρ̃13(2ω)e2iφ (2.123)

in the lab frame. Notice that the terms on the right hand side have the same time dependence
as those in the magnetic interaction Hamiltonian of Eq. (2.121) and agree with the lab frame
product of the magnetic and electric subma- trices given by Eqs. (2.115).

Equation (2.100) may now be solved directly for steady-state solutions by setting
˙̃ρ(e)
12 = ˙̃ρ(m)

13 = 0. We treat the electric interaction exactly, by applying it as a strong
field in zeroth order (V (0)(t) = −~µ(e) · ~E(t)). The magnetic dipole interaction is then
applied as a perturbation in concert with the electric dipole interaction in first order
(V (1) =−~µ(e) ·~E(t)−~µ(m)(t) ·~B(t)), and the equation of motion is solved for the submatrix
coherences by collecting terms at each frequency.

This procedure yields first-order results for the coherences, which are

ρ
(e)
12 =

1
2

(
(Ω

(e)
+ +Ω

∗(e)
− )12

(∆1 + iΓ12)
eiωt

)
(ρ11−ρ22) (2.124)

ρ
(m)
23 =

1
2

(
(Ω
′(m)
+ +Ω

′(m)
− )23

(ω0 + iΓ(m)
23 )

e−iωt +
Ω

(m)
+ +Ω

∗(m)
− )23

(∆2 + iΓ(m)
23 )

eiωt

)
(ρ0

11−ρ
0
22) (2.125)

in the lab frame. Here the counter-rotating magnetic amplitude that gives rise to the
time-independent term in is designated by Ω

′(m)
± ≡ µ

(m)
∓ B∗±/h̄. The detunings in the resonant

denominators are defined by ∆1 ≡ ω0−ω and ∆2 ≡ ω0− 2ω if the magnetic transitions
are assumed to take place in the excited state. For ground state magnetic transitions, the
denominators in Eq. (2.125) are ωφ + iΓ23 and ∆2 + iΓ23 with ∆2 ≡ ωφ −2ω . In obtaining
Eq. (2.125) the magnetic interaction has been treated as a perturbation, so the population
difference equals the initial value, which may be assumed to correspond to the ground
state (ρ

(0)
11 − ρ

(0)
22 ) = 1. Population saturation effects due to the electric interaction are

nevertheless taken into account when the electric field interaction is applied a second time
to obtain the first-order result. The population difference (ρ11−ρ22) that appears in Eq.
(2.125) is then given by
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ρ11−ρ22 =

(
1+

Γ
(e)
12 |Ω

(e)
+ +Ω

∗(e)
− |2

γ22(∆
2
1 +Γ

(e)2
12 )

)−1

(2.126)

2.2.4 Calculation of Transverse Optical Magnetization

The steady-state solution for the magnetization ~Mthe same macroscopic magnetization that
appears in the constitutive relation ~B = µ0(~H + ~M) associated with Maxwells equationsis
given in the lab frame by

~M = NTr(~µ(m)(t),ρ(t))

= NTr(~µ(m)(t),ρ(m)(t)ρ(e)(t))

=−Nŷ(< 3|µ(m)(t)|2 > ρ
(m)
23 (t)ρ(e)

12 (t)+h.c.) (2.127)

Here ~M is referenced to laboratory coordinates (x,y,z), which parallel the directions of
E, B, and the propagation axis, respectively. Shortly we shall transform to a z-corrected
lab frame with coordinates (x,y,z) in which the theory can be compared directly with
experiments that involve projections of circular currents on the x and z axes.

With the results of Eqs. (2.125) in hand, we now specialize to the case of linear po-
larization. Upon substitution of the coherences (2.125) into , the magnetization yields the
result

~M(t) =− ŷ
(

Ne
2m

)(
1
2

(
< 3|Ly|2 > (Ω

(e)
0 )12(Ω

(m)
0 )23

(∆1 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )
eiωt

+
< 2|Ly|1 > (Ω

(e)
0 )12(Ω

′(m)
0 )23

(ω0 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )
e−iωt

)
+h.c.

)
(ρ11−ρ22) (2.128)

This expression is valid in the lab frame where µ
(m)
21 ∝ e−iωt . The field factors are

Ω
′(m)
0 = µ

(m)
0 B∗0/h̄, Ω

(m)
0 = µ

(m)
0 B0/h̄, and Ω

(e)
0 = µ

(e)
0 E0/h̄. Only one circular component

of the electric field interaction contributes to ~M(t), whereas both circular components of the
magnetic interaction participate. Hence the specific replacement Ω

(m)
0 = (Ω

(m)
+ +Ω

∗(m)
− ) has

been made for the magnetic term, and Ω
(e)
0 = 1/2(Ω(e)

+ +Ω
∗(e)
− ) for the electric term. This
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consideration removes one factor of 2 from the denominator of the expression for ~M.
The magnetization has the general form

~M =
1
2

M̃eiφ +h.c. (2.129)

where the slowly varying amplitude M̃ is given by

M̃ =−ŷ
(

Ne
m

)
1
2

(
< 3|Ly|2 > (Ω

(e)
0 )12(Ω

(m)
0 )23

(δ1 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )
+

< 3|Ly|2 >∗ (Ω
∗(e)
0 )12(Ω

′(m)∗
0 )23

(ω0− iΓ(e)
12 )(∆2− iΓ(m)

23 )

)
(ρ11−ρ22)

(2.130)

Notice that although the process giving rise to this magnetization is second order in the
incident fields, the magnetic dipole oscillates at the fundamental frequency ω not 2ω .

Before we can determine the dimensionless ratio R of magnetic to electric-dipole mo-
ments as a function of incident field strength, we must account for the axial versus polar
nature of MD and ED moments. An adjustment is needed to account for the fact that of all
the electrons that can be set in motion by the electric field to produce polarization P within
a given volume, at most one half can be deflected to contribute to a magnetic moment M in
the same volume [2]. For a given number of charges per unit volume, the amplitude of the
oscillatory magnetization must therefore be corrected by another factor of 2 before direct
comparison with the amplitude of electric polarization is possible.

This correction is equivalent to a transformation (x,y,z)→ (x,y,2z) that rescales the
laboratory z coordinate, since oscillatory motion in an arc about B resolves itself differently
on the Cartesian x and z axes (See [2] for further discussion). Circular arc motion projected
onto ẑ reverses twice as often as the same motion projected on x̂. As a result, the amplitude
of magnetic charge oscillations projected onto the propagation axis must be halved for
comparison with the amplitude of electric dipole oscillation measured along x̂. The halving
of the z amplitude may be taken into account with the substitution Ly→ 2Ly in Eq. (2.130).
We also note that the second term in Eq. (2.130) is much smaller than the first due to the
ω0 factor in the denominator. To an excellent approximation our expression for the radiant
magnetization at the optical frequency therefore reduces to

M̃ =−ŷM
( e

m

) < 3|Ly|2 > Ω
(e)
0 Ω

(m)
0

(∆1 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )
(ρ11−ρ22) (2.131)
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The dimensionless ratio of magnetic to electric moments is therefore given by

R =

∣∣∣∣ M̃
cP̃

∣∣∣∣=
∣∣∣∣∣( e

mc

)< 3|Ly|2 > ρ̃
(e)
12 ρ̃

(m)
23

< 2|ex|1 > ρ̃
(e)
12

∣∣∣∣∣
=

∣∣∣∣(< 2|x(pφ/mc)|1 >

< 2|x|1 >

)
ρ̃
(m)
23

∣∣∣∣ (2.132)

Since the momentum < pφ > of charge motion cannot exceed < pφ >= mc, the ratio of
matrix elements in parentheses on the right side of Eq. (2.2.4) cannot exceed unity. Also,
the maximum value of the off-diagonal matrix element ρ̃

(m)
23 is 1/2 (see [22]). So the ratio R

has a maximum value that is also 1/2. Though not obvious from the form of Eq. (2.2.4), it is
important to note that the ratio of magnetic to electric susceptibility can attain the maximum
value of 1/2 at nonrelativistic intensities. This may be demonstrated by direct numerical
integration of the equations of motion [15]. Ultrafast growth (on a timescale ∆t < 100 f s

[1]) of magnetic response takes place via energy transfer from electric field-induced linear
motion along x, to the azimuthal motion initiated by the magnetic field along φ̂ ′, and is due
to the phenomenon of parametric resonance [18].

The development to this stage can be summarized in a few points. The radiant magnetic
emission intensity is predicted to be quadratic with respect to the input intensity. It may be
enhanced by electronic resonance at ∆1 = 0 and is governed secondarily by a parametric
detuning factor (∆2 + iΓ)−1. It can grow to a value of, at most, one fourth (R2

max = 1/4)
that of the electric dipole emission intensity. These findings are in excellent agreement
with experimental results [2] at intensities ten orders of magnitude below the relativistic
threshold.

To calculate the magnetic susceptibility, and to compare it with the electric susceptibility,
we now make use of Eq. (2.131).

χ
(m) =

M̃
H0

=

(
−Ne
mH0

)(
< 3|Ly|2 > h̄Ω

(e)
0 h̄Ω

(m)
0

h̄2(∆1 + iΓ(e)
12 )(∆2 + iΓ(m)

12 )

)
(ρ11−ρ22)

=

(
−Nµ0e3

2m2h̄2

)(
|< 3|Ly|2 > |2 < 1|x|2 >

(∆1 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )

)
(ρ11−ρ22)E0 (2.133)

The electric susceptibility χ(e) may similarly be determined by comparing its defining
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relationship, namely,

P(t) =
1
2

P̃eiωt +h.c.=
1
2

ε0χ
(e)(−ω)E0eiωt +h.c. (2.134)

with Eqs. (2.110) and (2.125). This yields

P̃ = 2Nµ21ρ̃
(e)
12 =

(
Ne2

h̄

)(
|< 1|x|2 > |2E0

(∆1 + iΓ(e)
12 )

)
(ρ11−ρ22) (2.135)

χ
(e) =

(
Ne2

ε0h̄

)
|< 2|x|1 > |2

(∆1 + iΓ(e)
12 )

(2.136)

In all expressions to this point, local field renormalization has been ignored. The ratio of
magnetic and electric susceptibilities obtained from these results is

χ(m)(ω)

χ(e)(ω)
=

(
−µ0ε0e
2m2h̄

)
|< 3|Ly|2 > |2E0

< 2|x|1 > (∆2 + iΓ(m)
23 )

=
−2
h̄c2
|< 2|µ(m)|1 > |2E0e−iφp

< 2|µ(e)|1 >

√
∆2

2 +Γ
2(m)
23

(2.137)

where φp ≡ tan−1(Γ
(m)
23 /∆2). Note that, in the vicinity of electronic resonance where mag-

netic dispersion is largest, the magnetic linewidth is expected to be much less than the
parametric detuning factor (Γ(m)

23 � ∆2). Therefore φp ' 0 and the signs of electric and
magnetic dispersion are opposite, as depicted in Fig. 1. The matrix element in the numerator
of Eq. (2.137) reflects transformation of the magnetic susceptibility as a rotation R(y) about
the y axis. According to Eq. (2.133), the magnetic susceptibility is also proportional to the
electric dipole transition moment. Hence the matrix elements < 3|Ly|2 > and < 1|x|2 >

must both be nonzero for optical magnetization to be allowed, and the electric field ampli-
tude E0 must be large for it to be intense. The issue of whether magnetic transitions are
considered to take place in the excited state or ground state is deferred to Section 2.3.

Some further comments about selection rules are in order. Explicit evaluation of the mag-
netic matrix element between states of well-defined total initial and final angular momentum
l1 and l2, respectively, using the Wigner-Eckart theorem [24], yields
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< 3|V (m)
± |2 >= (−)l3−m3

1
2
(B± < α3l3m3‖µ

(m)
∓ ‖α2l2m2 >+c.c.)×

(
l3 1 l2
−m3 q m2

)
(2.138)

Here α2 and α3 refer collectively to any quantum numbers other than l and m needed to
specify the initial and final states exactly. MD and ED interaction matrix elements are
proportional to the same 3-j symbol, but their reduced matrix elements transform as rotations
about ŷ and translations along x̂, respectively. Equation (2.138) indicates explicitly that
magnetic interactions induced by circularly polarized components of the B field (q =±1)
exchange spin angular momentum of±h̄ with the atom. By contrast, linearly polarized fields
(q = 0) exchange no spin angular momentum with the atom. Nevertheless, at moderate
intensities, the combined action of linearly polarized E and B fields can drive the formation
of a parametrically enhanced, oscillating transverse orbital angular momentum as specified
by Eq. (2.131). For this to happen, the reduced matrix elements of Ly and x must be
simultaneously nonzero, and the selection rules ∆l12 =±1, ∆m12 = m2−m1 = 0,∆l23 = 0,
and ∆m23 =±1 must be satisfied.

2.2.5 Second-harmonic and DC Electric Dipole Processes

Electric dipole moments can also be generated by the joint action of optical E and B fields.
Two additional processes emerge from this analysis by considering expectation values of the
electric dipole operator in combination with the magneto-electric coherences developed in
Eq. (2.125). One process yields a radiant polarization at the second-harmonic frequency,
and the other produces a static electric dipole in the direction of propagation of light.

We now consider electric dipole moments that develop perpendicular to x̂ and ŷ. A
z-directed, magnetically induced electric dipole moment is clearly distinct from either the
linear electric dipole induced along x̂ or the non-linear magnetic dipole induced along ŷ. Its
macroscopic polarization is calculated using

~P = NTr(~µ(e),ρ(t)) (2.139)

where
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~µ(e) = µ
(e)
0 ẑ (2.140)

By substituting Eq. (2.125), and (2.140) into Eq. (2.139), and specializing again to the case
of linear input polarization, one finds in the Cartesian lab frame where the charge oscillation
along z is at a doubled frequency (i.e., (µ(e)

21 )z ∝ e−2iωt) that

~P(t) = Nẑ(µ(e)
31 ρ

(m)
23 (t)ρ(e)

12 +h.c.)

= Nẑ

[(
1
2

µ
(e)
31 (Ω

′(m)
0 )23(Ω

(e)
0 )12

(∆1 + iΓ(e)
12 )(ω0 + iΓ(m)

23 )
e−2iωt +h.c.

)
+

(
1
2

µ
(e)
31 (Ω

(m)
0 )23(Ω

(e)
0 )12

(∆1 + iΓ(e)
12 )(∆2 + iΓ(m)

23 )
+h.c.

)]
(2.141)

This expression for the electric polarization driven jointly by E and B contains two terms
of different frequency. The first is a field at 2ω that generates second-harmonic radiation.
Unlike the magnetization at frequency ω in Eq. (2.131), the second-harmonic signal is
longitudinally polarized and lacks the parametric resonance factor (∆2 + iΓ)−1, so it is
expected to produce only weak emission perpendicular to the pump wave. The second
term is a zero-frequency term that predicts a static charge separation induced by light in
dielectric media illuminated by moderately intense coherent light. Since it originates from
the oscillatory coherence in Eq. (2.125) and contains the same parametric denominator
as the magnetization in Eq. (2.131), its magnitude is expected to be strongly enhanced.
In ultrashort pulse interactions, this effect will therefore generate intense longitudinally
polarized terahertz radiation, although conventional phase-matching of the output will not
be possible.

These same optical effects were predicted previously using steady-state analysis of a
classical model of electron motion subject to external electric and magnetic forcing fields
and Hookes law restoring forces [15]. The present density matrix treatment has the merit of
identifying the relative intensities, detuning dependences, emission frequencies, selection
rules, directionality and multipole character of these effects in an independent, systematic
way that requires no interpretation and is valid near resonances.
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2.3 Heisenberg Theory of Transverse Optical Magnetism

In this section we consider a simple solution to the dynamics of a nominally 2-level system
with an allowed transition between an L = 0 ground state and L = 1 excited state as a check
on the density matrix approach. The macroscopic polarization P and magnetization M

induced in such a system by a 2-photon process in which the optical E and B fields each act
once they are calculated.

The equation of motion of an operator ÔH in the Heisenberg picture is

dÔ
dt

=
i
h̄
[H0, Ô]+

i
h̄
[V, Ô]−ΓÔ (2.142)

where ΓÔ has been added to account for phenomenological damping. The calculation is
semi-classical and proceeds by finding the amplitude of the electric dipole moment that
develops on the atom as the result of the action of the electric field followed by determination
of the magnetic dipole induced by the magnetic field.

For linear input polarization, a superposition state is formed between the eigenstates
|100 > and |210 > in the first step. In fully quantized, dressed state theory, this results in
new quasistates with equal but opposite admixtures of the second state.

|D(n)>+ = sinθ |1,n >+cosθ |2,n−1 > (2.143)

|D(n)>− = cosθ |1,n >−sinθ |2,n−1 > (2.144)

where

sin(2θ) =
2g
√

n
ΩR

=
Ω

ΩR
(2.145)

cos(2ω) =
∆

ΩR
(2.146)

ΩR ≡
√

∆2 +4g2n (2.147)

Thus, on the basis of this exact procedure, it is expected that the excited state acquires
some ground state character and the ground state acquires some excited state character. The
second step of a coherent, 2-photon magneto-electric transition can therefore proceed in two
ways. The second interaction can be thought of as taking place in the ground or excited
state. These two possibilities can be pictured as the following sequences.
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|1 >≡ |100 >
E−→ |2 >= sinθ |1 >+cosθ |2 >

B−−−→
exc.st.

|3 >= a|211 >+b|21−1 >+c|210 >

(2.148)

|1 >≡ |100 >
E−→ |2′ >= cosθ |1 >−sinθ |2 >

B−−−→
gr.st.

|3′ >= a′|211 >+b′|21−1 >+c′|210 >

(2.149)

Three dipole moments can then form in state|3′ > for example.

P(0) = N < 1|µ(e)(0)|3′ > ẑ 6= 0 (2.150)

P(2ω) = N < 1|µ(e)(2ω)|3′ > ẑ 6= 0 (2.151)

M(ω) =−N < 2′|µ(m)(ω)|3′ > ŷ 6= 0 (2.152)

The electric dipole moments P(0) and P(2ω) appear to violate Laporte’s rule requiring a
change of parity for a non-zero dipole matrix element. That is, they form in the ground state
which has a single parity if inversion symmetry is present. However |2′ > and |3′ > are not
stationary states. Both these states are superpositions of mixed partiy. Hence, the matrix ele-
ments < 1|µ(e)(0)|3′ >, < 1|µ(e)(2ω)|3′ >, and < 2′|µ(m)(ω)|3′ > can all simultaneously
be non-zero, although they are computed between components of a nominally single energy
level.

To incorporate the mutual state mixing of states |100 > and |210 > without appealing
to dressed state theory, it is necessary to introduce a new concept in atomic physics. This
concept is closely related to that of ”‘holes”’ in semiconductor solid state theory. Here,
however, we shall refer to it as ”‘conjugate particle excitation”’. It provides a consistent
picture of the conjugate term in the ED rotating wave approximation as the excitation of a
conjugate electron in a negative frequency space. Consider the ED operator expression

µ̂
(e) =

1
2

µ
(e)
0

(
σ+eiωt +σ

†
+e−iωt

)
(2.153)

Ordinarily the second term would yield zero when operating on the ground state. Here it
is retained because it represents the creation of a conjugate excitation that mixes |210 >

into the ground state wavefunction. In essence, it creates a ”‘hole”’ in the ground state
wavefunction that has |210 > character and must be included in the dynamics because it
corresponds to a secular term in the interaction potential. This interpretation is in complete
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agreement with dressed state theory.
To proceed, we adopt a Heisenberg picture of the dynamics and use Eq. (2.142) to follow

the time evolution of the system during sequential ED and MD interactions. By solving
for the ED and MD operators one can find the macroscopic polarization and magnetization
between and two states using the expressions

P =
1
2

P̃eiωt +h.c. (2.154)

M =
1
2

M̃eiωt +h.c. (2.155)

where

P̃ = Nµ
(e) (2.156)

M̃ = Nµ
(m) (2.157)

The electric interaction is assumed to take place first and the magnetic interaction is a subse-
quent perturbation. Hence the electric dipole operates first between the states |1 >≡ |100 >

and |2 >= |210 >. The static Hamiltonian has the form

H0 = h̄ω1|1 >< 1|+ h̄ω2|2 >< 2| (2.158)

Taking the zero of energy to be at the level of state |1 > and defining the resonant frequency
to be ω0 ≡ ω2−ω1, this Hamiltonian can be written in the 2-state basis as the matrix
operator

H0 = h̄

(
ω0 0
0 0

)
(2.159)

or in terms of Pauli matrices

H0 =
h̄ω0

2
(σz +σI) (2.160)

To solve the Heisenberg equation of motion the interaction Hamiltonian must also be

58



expressed in irreducible form. For an electric dipole process, the interaction may be found by
substituting tensorial expressions for the moment and the field into the customary relation:

V (e) =−~µ(e) ·~E (2.161)

The vector fields have irreducible representations of

~E(t) =−1
2
[E+ε̂−+E−ε̂+]eiωt +h.c. (2.162)

~B(t) =− i
2
[B+ε̂−−B−ε̂+]eiωt +h.c. (2.163)

where ε̂± ≡∓
(

x̂±iŷ√
2

)
. Also, the electric dipole moment has the irreducible vector represen-

tation (most generally):

~µ(e) =
1
2

(
−µ

(e)
− (ω)ε̂+−µ

(e)
+ (ω)ε̂−+µ

(e)
0 (ω)ε̂0

)
eiωt +h.c. (2.164)

In operator form this is

µ̂
(e) =

1
2

(
−µ

(e)
− (ω)σ̂+−µ

(e)
+ (ω)σ̂−+µ

(e)
0 (ω)σ̂z

)
eiωt +h.c. (2.165)

for a one-photon moment. By substituting (2.162) and (2.164) into (2.161), the semi-
classical interaction Hamiltonian is therefore found to be

V (e) =−~µ(e) ·~E

= (−)2
[

1
2

(
µ
(e)
− ε̂++µ

(e)
+ ε̂−−µ0ε̂0

)
eiωt + c.c.

]
·
[

1
2
(E+ε̂−+E−ε̂+)eiωt + c.c.

]
(2.166)

The scalar products of the circular basis vectors ε̂q can be summarized as
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ε̂q · ε̂p =


0 q = p 6= 0
−1 q 6= p 6= 0
0 q = 0, p 6= 0
1 q = p = 0

ε̂
∗
q =−ε̂−q (2.167)

Hence, one finds that the expression for the interaction Hamiltonian reduces to

V (e) =
1
4

[
−µ

(e)
− (ω)E+e2iωt +µ

(e)
− (ω)E∗−−µ

(e)
+ (ω)E−e2iωt +µ

(e)
+ (ω)E∗+

−µ
(e)∗
− (ω)E∗++µ

(e)∗
− (ω)E−e−2iωt−µ

(e)∗
+ (ω)E∗−+µ

(e)∗
+ (ω)E+e−2iωt

]
(2.168)

Making the secular approximation (by dropping the explicitly time-dependent terms) we
find

V (e) =
1
4

[
µ
(e)
− (ω)E∗−+µ

(e)
+ (ω)E∗+−µ

(e)∗
− (ω)E∗+−µ

(e)∗
+ (ω)E∗−

]
=

1
4

[
−µ

(e)
− (ω)E+−µ

(e)
+ (ω)E−−µ

(e)∗
− (ω)E∗+−µ

(e)∗
+ (ω)E∗−

]
=−1

4

[(
µ
(e)
− (ω)E++µ

(e)
+ (ω)E−

)
+h.c.

]
=−1

4

[(
h̄Ω

(e)
− + h̄Ω

(e)
+

)
+h.c.

]
(2.169)

where Ω
(e)
± ≡

µ
(e)
∓ E±

h̄ . For linear polarization, the additional substitutions may be made:

µ
(e)
± =

µ
(e)
0√
2

(2.170)

E± =
E0√

2
(2.171)

So finally the interaction Hamiltonian becomes

V (e) =−1
4

[(
h̄Ω

(e)
0

2
+

h̄Ω
(e)
0

2

)
+h.c.

]
=−1

4

[
h̄Ω

(e)
0 +h.c.

]
(2.172)
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Since this interaction can cause transitions up and down, its semi-classical operator form is

V (e) =−1
4

h̄Ω
(e)
0 (σ++σ−) (2.173)

To solve the Heisenberg equations of motion, commutators of the operators with the
Hamiltonian are needed. To find the temporal evolution of µ(e), we need [H0,µ

(e)] and
[V (e),µ(e)] are therefore needed.

[H0,µ
(e)] =

h̄ω0

4
(σz +σI)

[(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt +h.c.

]
− h̄ω0

4

[(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt +h.c.

]
(σz +σI)

=− h̄ω0

4

[(
µ
(e)
− [σ+,σz]eiωt +µ

(e)
+ [σ−,σz]eiωt

)
+h.c.

]
=− h̄ω0

2

[(
µ
(e)
− σ+−µ+(e)σ−

)
eiωt +h.c.

]
(2.174)

[V (e),µ(e)] =− h̄Ω0

4
(σ++σ−)

[(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt +h.c.

]
+

h̄Ω0

4

[(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt +h.c.

]
(σ++σ−)

=
h̄Ω0

4

[(
µ
(e)
+ [σ+,σ−]+µ

(e)
0 [σz,σ+]+µ

(e)
− [σ−,σ+]+µ

(e)
0 [σz,σ−]

)
eiωt(

µ
(e)∗
− [σ+,σ−]+µ

(e)∗
0 [σz,σ+]+µ

(e)∗
+ [σ−,σ+]+µ

(e)∗
0 [σz,σ−]

)
e−iωt

]
(2.175)

=
h̄Ω0

4

[(
µ
(e)
+ σz +2µ

(e)
0 σ+−µ

(e)
− σz−2µ

(e)
0 σ−

)
eiωt(

µ
(e)∗
− σz +2µ

(e)∗
0 σ+−µ

(e)∗
+ σz−2µ

(e)∗
0 σ−

)
e−iωt

]
(2.176)

2.3.1 The Electric Interaction

With µ(e), [H0,µ
(e)], and [V (e),µ(e)] evaluated we now proceed to solve the Heisenberg

equation for the time depencence of the electric dipole operator µ(e).

dµ(e)

dt
=

i
h̄
[H0,µ

(e)]+
i
h̄
[V (e),µ(e)]−Γµ

(e) (2.177)

The positive frequency terms yield
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iω
2

(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt =− iω0

2

(
µ
(e)
− σ+−µ+(e)σ−

)
eiωt

+
iΩ0

4

(
µ
(e)
+ σz +2µ

(e)
0 σ+−µ

(e)
− σz−2µ

(e)
0 σ−

)
eiωt

− Γ

2

(
−µ

(e)
− σ+−µ

(e)
+ σ−+µ

(e)
0 σz

)
eiωt

(2.178)

We solve for each of the amplitudes separately, beginning with µ
(e)
−

− iω
2

µ
(e)
− (ω) =− iω0

2
µ
(e)
− (ω)+

iΩ0

2
µ
(e)
0 (ω)+Γµ

(e)
− (ω) (2.179)(

− iω
2

+
iω0

2
− Γ

2

)
µ
(e)
− (ω) =

iΩ0

2
µ
(e)
0 (ω) (2.180)

(∆1 + iΓ)µ
(e)
− (ω) = Ω0µ

(e)
0 (ω) (2.181)

µ
(e)
− (ω) =

Ω0µ
(e)
0 (ω)

(ω0−ω)+ iΓ
(2.182)

Similarly we find

µ
(e)
+ (ω) =

Ω0µ
(e)
0 (ω)

(ω0 +ω)+ iΓ
(2.183)

since ω ≈ω0, µ
(e)
− (ω)� µ

(e)
+ (ω). The results for the negative frequency terms are complex

conjugates of the positive frequencies, so the results are very similar. We can neglect the
terms that cause denominators that depend on ω0 +ω . This is known as the rotating wave
approximation (RWA) and can be incorporated into the electric dipole representation by
writing it as

µ
(e)(ω) =

1
2

(
−µ

(e)
− (ω)σ+eiωt−µ

(e)∗
− (ω)σ−e−iωt

)
+

1
2

µ
(e)
0 (ω)σz

(
eiωt + e−iωt)

(2.184)
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2.3.2 The Magnetic Interaction

Once the magnetic component of the optical field acts on a system placed in a superposition
state by the electric field interaction, three frequencies of response emerge. This is due to
the fact that the magnetic dipole operator contains two new frequencies. Thus, temporal
evolution that describes the sequential action of ED and MD operators reflects three frequen-
cies associated with the combined effects of µ(e), µ(m), namely 0, ω , and 2ω . The magnetic
dipole operator has the irreducible tensor representation (see Appendix C for details):

~µ(m) =− 1
2

(
iµ(m)

+ (2ω)ε̂−− iµ(m)
− (2ω)ε̂+− iµ(m)

0 (2ω)ε̂0

)
e2iωt +h.c.

+
(
−iµ(m)

+ (0)ε̂−+ iµ(m)
− (0)ε̂++ iµ(m)

0 (0)ε̂0

)
(2.185)

The two-photon induced magnetic dipole therefore oscillates at frequencies 0 and 2ω ,
because it is assumed here to be driven by the field combination E(ω)B(ω).

The magnetic interaction is calculated in a similar procedure to the electric interaction.
First we find the magnetic dipole interaction Hamiltonian. It is given by

V (m) =−~µ(m) ·~B

=−1
2

[(
iµ(m)

+ ε̂−− iµ(m)
− ε̂+− iµ(m)

0 ε̂

)
eωt +h.c.

]
·
[

i
2
(B+ε̂−−B−ε̂+)eiωt +h.c.

]
=−1

4

[
µ
(m)
+ (ω)B−e2iωt +µ

(m)
+ (ω)B∗++µ

(m)
− (ω)B+e2iωt +µ

(m)
− (ω)B∗−

µ
(m)∗
+ (ω)B++µ

(m)∗
+ (ω)B∗−e−2iωt +µ

(m)∗
− (ω)B−+µ

(m)∗
− (ω)B∗+e−2iωt

]
(2.186)

Making the secular approximation, this reduces to

V (m) =
1
4

[(
µ
(m)
+ (ω)B−+µ

(m)
− (ω)B+

)
+h.c.

]
(2.187)

For linear polarization, the transverse and longitudinal components of the magnetic dipole
moment and field are related the same way as described for the electric components in the
previous section, namely
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µ
(m)
± =

µ
(m)
0√
2

(2.188)

B± =
B0√

2
(2.189)

So the interaction Hamiltonian becomes

V (m) =
1
4

[(
µ
(m)
0 B0

2
+

µ
(m)
0 B0

2

)
+h.c.

]
=

1
2

h̄Ω
(m)
0 (2.190)

In operator form this is

V (m) =
1
2

h̄Ω
(m)
0

(
L+

h̄
+

L−
h̄

)
(2.191)

Again, we need the commutators of the operators with the Hamiltonian for the Heisen-
berg equation of motion. To find the temporal evolution of µ(m) we need [H0,µ

(m)] and
[V (m),µ(m)]. In view of Eq. (2.149), there are two relevant static Hamiltonians. The
magnetic interaction can take place in either the excited state or the ground state. Hence,
expanding the basis set to include all the states but focusing on the L = 1 excited state
sub-space, we write

H0 = h̄

ω0 +ωφ 0 0
0 0 0
0 0 ω0−ωφ

= h̄ω0Î + h̄ωφ

L̂z

h̄
(2.192)

This assumes that magnetic transitions take place with resonant frequency ωφ between L = 1
sub-levels in the excited state. If we consider the magnetic transitions to be between L = 1
sub-levels of the admixture to the ground state the effective Hamiltonian is altered to
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Hφ = h̄

ωφ 0 0
0 0 0
0 0 −ωφ

= h̄ωφ

L̂z

h̄
(2.193)

since the zero of energy is chosen to be the ground eigenstate.
Focusing first on ground state dynamics at frequency 2ω , we calculate the commutators

[
Hφ ,µ

(m)(2ω)
]
= h̄ωφ

Lz

h̄

[(
− i

2
µ
(m)
+ (2ω)

L−
h̄

+
i
2

µ
(m)
− (2ω)

L+

h̄
+

i
2

µ
(m)
0 (2ω)

Lz

h̄

)
e2iωt +h.c.

]
−
[(
− i

2
µ
(m)
+ (2ω)

L−
h̄

+
i
2

µ
(m)
− (2ω)

L+

h̄
+

i
2

µ
(m)
0 (2ω)

Lz

h̄

)
e2iωt +h.c.

]
h̄ωφ

Lz

h̄

=
i

2h̄
ωφ

[(
−µ

(m)
+ (2ω)[Lz,L−]+µ

(m)
− (2ω)[Lz,L+]

)
e2iωt +h.c.

]
=

i
2

ωφ

[(
µ
(m)
+ (2ω)L−+µ

(m)
− (2ω)L+

)
e2iωt +h.c.

]
(2.194)[

V (m),µ(m)(2ω)
]
=

1
2

h̄Ω
(m)
0

(
L+

h̄
+

L−
h̄

)
×[(

− i
2

µ
(m)
+ (2ω)

L−
h̄

+
i
2

µ
(m)
− (2ω)

L+

h̄
+

i
2

µ
(m)
0 (2ω)

Lz

h̄

)
e2iωt +h.c.

]
−
[(
− i

2
µ
(m)
+ (2ω)

L−
h̄

+
i
2

µ
(m)
− (2ω)

L+

h̄
+

i
2

µ
(m)
0 (2ω)

Lz

h̄

)
e2iωt +h.c.

]
×

1
2

h̄Ω
(m)
0

(
L+

h̄
+

L−
h̄

)
=− i

4
h̄Ω

(m)
0

[(
µ
(m)
+ (2ω)

[L+,L−]
h̄2 +µ

(m)
0 (2ω)

[Lz,L+]

h̄2

+µ
(m)
− (2ω)

[L+,L−]
h̄2 +µ

((m)
0 (2ω)

[Lz,L−]
h̄2

)
e2iωt +h.c.

]
=− i

4
h̄Ω

(m)
0

[(
µ
(m)
+ (2ω)

Lz

h̄
+µ

(m)
0 (2ω)

L+

h̄

+µ
(m)
− (2ω)

Lz

h̄
−µ

((m)
0 (2ω)

L−
h̄

)
e2iωt +h.c.

]
(2.195)

With the results for µ(m),
[
Hφ ,µ

(m)(2ω)
]
, and

[
V (m),µ(m)(2ω)

]
in hand, it is straight-

forward to solve the Heisenberg equation of motion for the time dependence of the magnetic
dipole operator at frequency 2ω . This equation is
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dµ(m)(2ω)

dt
=

i
h̄
[Hφ ,µ

(m)(2ω)]+
i
h̄
[V (m),µ(m)(2ω)]−Γµ

(m)(2ω) (2.196)

and the solutions for amplitudes retained in the rotating wave approximation are

µ
(m)
− (2ω) =

Ω
(m)
0 µ

(m)
0 (2ω)

2(ωφ −2ω + iΓ)
(2.197)

µ
(m)∗
− (2ω) =

Ω
(m)
0 µ

(m)
0 (2ω)

2(ωφ −2ω− iΓ)
(2.198)

Repeating this calculation for µ(m)(0), one finds

[
Hφ ,µ

(m)
0

]
= ih̄ωφ

[
µ
(m)
+ (0)

L−
h̄

+µ
(m)
− (0)

L+

h̄

]
(2.199)[

V (m),µ(m)(0)
]
=−ih̄Ω

(m)
0

[
2µ

(m)
− (0)

Lz

h̄
+µ

(m)
0 (0)

L+

h̄
−µ

(m)
0 (0)

L−
h̄

]
(2.200)

µ
(m)
− (0) =

Ω
(m)
0 µ

(m)
0 (0)

2(ωφ + iΓ)
(2.201)

µ
(m)∗
− (0) =

Ω
(m)
0 µ

(m)
0 (0)

2(ωφ − iΓ)
(2.202)

The terms presented in Eqs. (2.201), (2.202), (2.197), and (2.198) are all consistent with the
RWA and come from the ground state dynamics. The excited state dynamics only contribute
terms that do not satisfy the rotating wave approximation and are reduced in magnitude by
the optical frequency.

2.3.3 Heisenberg Polarization and Magnetization

To preserve normalization of the states when the electric and magnetic dipole operators act
on the system, it is necessary to solve for the relative moments. Hence, the results for the
commutators must be divided by the full amplitude of the relevant dipole with respect to the
quantization axis.

The action of the normalized operators on the system is calculated next by writing
down the product µ(m)µ(e)

µ
(m)
0 µ

(e)
0

of amplitudes created by the ED and MD interactions and then

calculating the matrix elements developed in the system by the second order interaction with
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light, namely < 1|µ(e)(0)|3′ >, < 1|µ(e)(2ω)|3′ >, and < 2′|µ(m)(ω)|3′ >.
The action of the normalized electric dipole operator on the ground state |nlm>= |100>

is

µ̂(e)(ω)

µ
(e)
0 (ω)

|1 >=

[
−1

2
µ
(e)
−

µ
(e)
0

σ̂+eiωt +h.c.

]
|100 > (2.203)

=−

[
1
2

Ω
(e)
0

ω0−ω + iΓ
eiωt +

1
2

Ω
(e)∗
0

ω0−ω− iΓ
e−iωt

]
|210 > (2.204)

where σ̂+|1 >= |210 > for the excited state component and σ̂
†
+|1 >= |210 > for the

conjugate particle excitation.
The quantization axis of state |2 > is implicitly along the E field (x̂ direction). The

induced moment is therefore parallel to x̂, not ẑ. Hence, the state |210 > needs to be trans-
formed into the reference frame in which ẑ is the axis of quantization. This is accomplished
by a coordinate rotation in the L = 1 sub-space. Consider a coordinate rotation by an angle
−π/2 about the y axis. The new primed coordinates are related to the original ones by the
mapping

x′

y′

z′

=

 0 0 1
0 1 0
−1 0 0


x

y

z

 (2.205)

The components of a fixed vector experience the inverse rotation

V ′x
V ′y
V ′z

=

0 0 −1
0 1 0
1 0 0


Vx

Vy

Vz

 (2.206)

Recalling the expressions that relate the Cartesian and spherical components of an irreducible
tensor of rank 1, namely
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Vx =−
(

V+−V−√
2

)
(2.207)

Vy = i
(

V++V−√
2

)
(2.208)

Vz =V0 (2.209)

one finds that

V ′z =−
(

V+−V−√
2

)
(2.210)

Hence, the state |2 >= |210 > can be written in the spherical tensor basis as

|210 >= Y0→
Y1−Y−1√

2
=
|211 >−|21−1 >√

2
(2.211)

By the same token, the reference value of the electric dipole moment µ
(e)
0 (ω) is altered

by the rotation. The full dipole moment becomes a transverse amplitude in the primed
coordinates. Hence, the corresponding z component is

µ
(e)
0 (ω)→

√
2µ

(e)
0 (ω)≡ µ

(e)′

0 (2.212)

This shows that the electric dipole interaction creates the superposition state |2′ >:

µ̂(e)(ω)

µ
(e)′
0 (ω)

|1 >=−

[
1
2

Ω
(e)
0

ω0−ω + iΓ
eiωt +

1
2

Ω
(e)∗
0

ω0−ω− iΓ
e−iωt

]
(|211 >−|21−1 >)≡ |2′ >

(2.213)

The magnetic field is now able to act on the state |2′ > to generate the final superposition
state |3′ > in the following way:
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µ(m)

µ
(m)
0

(|211 >−|21−1 >) =

[
i
2

µ
(m)
− (2ω)

µ
(m)
0 (2ω)

L+

h̄
e2iωt− i

2
µ
(m)
+ (2ω)

µ
(m)
0 (2ω)

L−
h̄

e2iωt

− i
2

µ
(m)∗
− (2ω)

µ
(m)
0 (2ω)

L−
h̄

e−2iωt +
i
2

µ
(m)∗
+ (2ω)

µ
(m)
0 (2ω)

L+

h̄
e−2iωt

+i
µ
(m)
− (0)

µ
(m)
0 (0)

L+

h̄
− i

µ
(m)
+ (0)

µ
(m)
0 (0)

L−
h̄

]
(|211 >−|21−1 >)

=−i

[
1
2

µ
(m)
− (2ω)

µ
(m)
0 (2ω)

e2iωt + c.c.+
1
2

µ
(m)
+ (2ω)

µ
(m)
0 (2ω)

e2iωt + c.c.

+
µ
(m)
− (0)

µ
(m)
0 (0)

+
µ
(m)
+ (0)

µ
(m)
0 (0)

]
|210 > (2.214)

The result of the two sequential electric and magnetic dipole interactions is the evolution
of the system from state |1 > to state |3′ >, where

|3′ >=
µ(m)

µ
(m)
0

µ(e)

µ
(e)
0

|1 >

= i

[
1
4

µ
(m)
− (2ω)

µ
(m)
0 (2ω)

µ
(e)
− (ω)

µ
(e)
0 (ω)

e3iωt +
1
4

µ
(m)
+ (2ω)

µ
(m)
0 (2ω)

µ
(e)
− (ω)

µ
(e)
0 (ω)

e−iωt

+
1
4

µ
(m)
− (2ω)

µ
(m)
0 (2ω)

µ
(e)∗
− (ω)

µ
(e)
0 (ω)

eiωt +
1
4

µ
(m)
+ (2ω)

µ
(m)
0 (2ω)

µ
(e)∗
− (ω)

µ
(e)
0 (ω)

e−3iωt

+
1
4

µ
(m)∗
− (2ω)

µ
(m)
0 (2ω)

µ
(e)
− (ω)

µ
(e)
0 (ω)

e−iωt +
1
4

µ
(m)∗
+ (2ω)

µ
(m)
0 (2ω)

µ
(e)
− (ω)

µ
(e)
0 (ω)

e3iωt

+
1
4

µ
(m)∗
− (2ω)

µ
(m)
0 (2ω)

µ
(e)∗
− (ω)

µ
(e)
0 (ω)

e−3iωt +
1
4

µ
(m)∗
+ (2ω)

µ
(m)
0 (2ω)

µ
(e)∗
− (ω)

µ
(e)
0 (ω)

eiωt

+
1
2

µ
(m)
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Now we proceed to calculate < 1|µ(e)
0 (0)|3′>, < 1|µ(e)(2ω)|3′>, and < 2′|µ(m)(ω)|3′>.

The RWA is assumed for both the electric and magnetic interactions. To ensure no net
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angular momentum is excited (linearly polarized light) in the system, the L± operators are
combined only with L∓ terms. Hence, the radiative MD moment has matrix element
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where µ
(m)
32 ≡< 21±1|eL±/2m|210 >. Simplifying and assuming Ω
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0 we find
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Similarly, the two electric moments are
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where µ
(e)
12 ≡< 100|er|210 >. The final expressions for polarization and magnetization,

which are the main results of this section, are therefore:

70



P(0) = N < 1|µ(e)(0)|3′ > ẑ
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=−N
1

16
µ
(m)
32

[
Ω

(e)
0

ω0−ω + iΓ(e)
eiωt Ω

(m)
0 (ωφ −2ω)

(ωφ −2ω)2 +Γ(m)2
eiωt + c.c.

+
Ω

(e)
0

ω0−ω + iΓ(e)

Ω
(m)
0

ωφ + iΓ(m)
e−iωt + c.c.

]
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When the difference in representations is taken into account for dipole moments in this
calculation, the result agrees quantitatively with the results of the last section and Ref. [22]
(as amended), obtained using the density matrix.
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Chapter 3

Methods

In this chapter the experimental methods and apparatus for the observation of magnetic
dipole scattering are discussed. This includes the calibration and statistics of the photomulti-
plier detector, design of the collection optics system, sample preparation, and data collection
algorithms.

3.1 Magnetic Dipole Scattering

The experimental approach used in this work was based on elastic light scattering, for which
the radiation patterns are well known [11]. In the case of dipole radiation, the maximum
amount of energy is emitted in a direction perpendicular to the axis of the dipole and none is
emitted parallel to the dipole axis, regardless of whether the dipole is electric or magnetic.
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Figure 3.1 Electric dipole radiation pattern given a linear charge motion directed through the center
of the dipole pattern. The polarization of the radiation is parallel to both the charge motion and the
electric dipole moment.
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Figure 3.2 Magnetic dipole radiation pattern given a solenoidal charge motion orbiting the center
of the dipole pattern. The (electric field) polarization of the radiation is perpendicular to the magnetic
dipole moment.

The result of a full calculation (see Sec. 1.4) yields the classic sin2
θ radiation pattern

displayed in Fig. 3.1. The polarization of the light emitted depends on the type of dipole as
discussed in Chapter 1. The goal of the experimental portions of this dissertation research
was to separate the electric and magnetic dipole contributions in scattered light in order to
study the radiation pattern, polarization, and intensity dependence of the magnetic dipole in
several different samples. Since the radiation patterns of electric and magnetic dipoles are
orthogonal for elastic scattering at the unique angle of θsc = 90◦, all experiments described
here were performed at this angle.

When linearly polarized light is passed through a dielectric sample, the first motion of
the electrons is an oscillation parallel to the direction of polarization. This oscillating, linear
dipole radiates in a sin2

θ pattern where θ is measured from the direction of the electric
field. The polarization of this radiation is parallel to the electric field of the light (Figure 3.1).
Second, the magnetic field, which is perpendicular to the direction of polarization, causes
the electron motion to oscillate in a curve around the magnetic field. This circular motion is
an induced magnetic dipole that also radiates in a sin2

θ pattern where θ is now measured
from the direction of the magnetic field. The polarization of this radiation is perpendicular
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to the magnetic field of the light (Figure 3.2). However the incident electric and magnetic
fields are also perpendicular. Hence, the radiation patterns are indistinguishable in the
forward direction where both dipoles are transverse to the propagation axis of scattered
light. When θsc = 90◦, the polarization of incident light maybe rotated to control whether a
given induced dipole is transverse or longitudinal and the radiation patterns may be observed
separately (Fig. 3.3).

Figure 3.3 Radiation and polarization from electric (Red) and magnetic (Blue) dipoles generated
by a plane wave of light. The purple arrow indicates that the polarizations of the two polarizations
are parallel, and therefore indistinguishable, along the forward direction

Experimentally, the finite volume of emission and the finite area of detection introduce a
small solid angle in collection. In spherical coordinates defined in Fig. 3.4, we can calculate
the error in our signal due to collecting a small solid angle of light rather than θsc = 90◦

scattered light alone.
From Chapter 1 it may be recalled that the polarization of an electric dipole is along

the θ̂ direction and the polarization of a magnetic dipole is along the φ̂ . Assuming that the
detector is along the x̂ of Fig. 3.4 and collects a small angle in both θ̂ and φ̂ we can find the
projection of the polarization direction onto the detector.
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Figure 3.4 Spherical coordinate system following standard physics/mathematics conventions

A transverse electric dipole scatterer located at the origin is oriented parallel to the θ̂

vector which decomposes as

θ̂ = cos(θ)cos(φ)x̂+ cos(θ)sin(φ)ŷ− sin(θ)ẑ (3.1)

For a small angle around the x̂ axis, θ ' π/2 and φ ' 0. This allows the simplification of
the projection to

76



θ̂ ' θ x̂+θφ ŷ− ẑ (3.2)

When projecting onto the yz plane, the x̂ direction is normal to the detector and therefore
can be ignored, resulting in

θ̂ ' θφ ŷ− ẑ (3.3)

∆θ̂ ' ∆θ∆φ ŷ (3.4)

This shows that for small angles in θ (about π/2) and φ , setting an analyzing polarizer to
the vertical direction, ẑ, ontroduces errors in second order, proportional to ∆θ∆φ . Only a
very small amount of signal from an electric dipole is lost by passing through a polarizer.

A transverse magnetic dipole scatterer located at the origin is parallel to the φ̂ vector
which decomposes as

φ̂ =−sin(φ)x̂+ cos(φ)ŷ (3.5)

For a small angle this simplifies to

φ̂ '−φ x̂+ ŷ (3.6)

∆φ̂ '−∆φ x̂ (3.7)

As before, the x̂ direction is normal to the detector and therefore can be ignored, resulting in

φ̂ ' ŷ (3.8)

∆φ̂ ' 0 (3.9)

Interestingly, there is no error in measuring the magnetic dipole signal through a hori-
zontally, ŷ, oriented polarizer. This means that to second order there is no signal leaking
from electric dipole scattering into the magnetic dipole measurement.
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3.1.1 Construction and Alignment

In order to measure the two scattered signals we implement a perpendicular scattering
geometry. A linearly polarized beam is first passed through a precision 90◦ prism in order to
define the sample location as well as a precisely perpendicular direction along which we
will place the detection optics. The two beam paths are defined by pairs of irises.

Figure 3.5

A second, low-power, alignment laser is then passed through the pair of irises defining the
detection arm so that in the future the system can be aligned without using the more intense
pump laser. The precision right angle prism is then removed but its mount is left to serve as
a sample holder. the intersection of the pump beam and alignment beam is centered on any
sample placed on the holder.

The intensity of the pump beam is controlled by a variable neutral density filter. The
polarization, while initially 100:1 out of the laser, is improved to 10000:1 by passing the
beam through a Glan-Laser polarizer. The direction of polarization is then controlled by
a half-wave plate mounted in a motorized rotary stage. In the detection arm, a 10000:1
Glan-Laser polarizer is mounted in a motorized rotary stage just behind the final iris in order
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to allow only the selected polarization to pass into a detector. The face of this polarizer is set
normal to the detection arm axis by retroreflection of the alingment laser. After passing over
the sample holder the pump beam enters a beam dump with the option of being replaced by
a photodetector to enable real-time power measurement and compensation.

Figure 3.6 Experimental setup for photon counting in a perpendicular scattering geometry

With the location, intensity, and polarization of the pump beam controlled, we now focus
on collecting the signal. As the pump beam passes through a dielectric material, the electrons
are induced to move in phase with the light and each other. Only in the forward direction are
the motions seen to be in phase and therefore form a beam of light that continues through
the medium. In the perpendicular direction, since the oscillations are seen to be out of phase,
only a tiny signal propagates. This signal is still at the fundamental frequency of the pump
beam. In order to detect this small signal we place behind the analyzing polarizer a 10nm
FWHM bandpass intereference filter centered on the pump laser wavelength. This reduces
the possibility of detecting photons other than those from the sample by at least four orders
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of magnitude compared to the signal. To reduce the possibility even further, a dark box is
constructed around the entire apparatus with only three holes punched in the exterior walls.
Two holes allow for the entrance and exit of the pump beam. A third hole (on the left of
Fig. 3.6) allows the alignment laser to pass into the box toward the detector. This hole can
be blocked by a shutter during data collection. A dividing wall is constructed inside the
dark box separating the apparatus into two halves, one containing the sample, sample holder,
and the three entrance and exit holes, the other containing the detection arm. A small hole
through the dividing wall allows the alignment laser, and also the signal, to pass from one
half of the box into the other. This setup eliminates the possibility of any stray light entering
the detection arm. To collect the signal light a two lens imaging telescope is constructed in
the detection arm. The first lens is placed between the sample/dividing wall and the first iris
of the detection arm. The second is placed between the second iris and analyzing polarizer.
The imaging conditions of the telescope can be adjusted to change the magnification of the
image on the detector. The total signal onto the detector can be adjusted by changing the
size of the irises within the collimated beam portion of the imaging telescope.

3.1.2 Detection and Data Collection

For photon counting experiments the detector is a Hamamatsu R636 side-on photomultiplier
tube. It is housed in a Products for Research sealed, air cooled photomultiplier housing
with a shutter. It is wired for low noise with the anode held at ground and the high bias
voltage applied over the cathodes by a Stanford Research PS325 High Voltage Power Supply.
To reduce the noise, before any data collection, the photomultiplier was left under high
voltage in the dark for an extended period of time. To improve the efficiency and average
out any inhomogeneity of the photocathode, the image of the sample formed by the imaging
telescope was magnified to fill a significant fraction of the photocathode without extending
beyond the boundaries. Once the photomultiplier is powered, the signal is viewed on an
oscilloscope to see if clean, well-separated, and repeatable pulses are generated. If the pulses
reach a peak height below 10mV (the minimum recommended discriminator height of the
SR400 discussed below) a Stanford Research SR445 Preamplifier is available to provide
amplification of up to 625 times before data collection.

The pulse height and noise of the photomultiplier are primarily determined by the voltage
applied across the cathodes. The pulse height and gain of the R636 photomultiplier is nearly
linear over the range 500-1500V. However, with increased voltage also comes increased
dark current. The total current drawn through the photomultiplier as a function of applied
voltage was explored. It was found that for higher intensity experiments 1250V provided
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sufficient gain and low noise. For experiments at low intensity requiring more gain, 1400V
was found to provide sufficient gain while not increasing the dark counts to unreasonable
levels.

Data collection was performed using a Stanford Research SR400 photoncounter. The
main function of the SR400 is to use an electronic discriminator to count the number of
pulses, during a window of time, that reach a peak voltage greater than the set voltage of
the discriminator. There are three discriminators, each of which can count pulses separated
by a minimum of 5ns or a pulse rate of approximately 200 million counts per second. The
intensity of scattered light is never expected to approach this count rate, so it is assumed
that every pulse is counted. No two-photon peaks are observed in Fig. 3.8 confirming that
the pulses are well separated. The simplest form of data collection, used for long integration
times, is CW or having the disscriminators constantly counting. By counting the number of
pulses in a fixed time while the pump beam is on but the sample cuvette is empty we find the
background count rate of the setup. Then the cuvette is replaced with an identical cuvette
filled with the sample liquid and pulses are counted for the same duration. Subracting the
first result from the second provides background correction to the measurement.

The SR400 also has two independent gates that can trigger the discriminators. These
gates can be triggered to open for a fixed amount of time after a delay. The gate width is
accurate to less than 1ms and the delay can be as short as 25ns. Between each measurement
the SR400 must dwell for a fixed amount of time, as short as .2ms. Combining the discrimi-
nators with the gates, there are many possible count modes. We made use of the A-B mode
to provide real-time background subtraction during data collection. In this mode the SR400
counts the number of pulses that reach the discriminator height of both the A discriminator
and the B discriminator and then records the difference. Using the timing diagram of Fig.
3.7 the number of pulses of height H measured while the pump beam was off was subracted
from the number of pulses measured while the pump beam was on.
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Figure 3.7 Timing diagram of real-time background subtraction using multiple gates on SR400
photoncounter

This provides a background subtraction for any light reaching the detector due to sources
other than scattering from the sample. Given the 1kHz repetition rate of the pump beam
this means that background subtraction was performed every millisecond, a very short time
compared to most fluctuations in light levels in the room. Thus, any light leakage through
the enclosing box, telescope apertures, and interference filter is still subtracted from the the
measured signal.

A differential pulse height analysis was performed to find the ideal pulse discriminator
voltage to collect all counts due to single photon events but a minimum of dark count events
or noise. In this procedure, the discriminator threshold is scanned from nearly 0mV to well
beyond the highest expected peak height. At each discriminator step, the SR400 is allowed
to count pulses for a fixed amount of time. Then the number of counts at discriminator
height N is subtracted from the number of counts at discriminator height N-1. This results
in a binned data set where the number of pulses between pulse heights N and N-1 is plotted
versus pulse height as seen in Fig. 3.8.
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Figure 3.8 Differential pulse height spectrum of output from Hamamatsu R636 photomultiplier
tube. The arrow indicates the discriminator voltage setting that should be chosen to count all photon
events but as few dark counts as possible.

This data is used to choose the best discriminator voltage setting for data collection. By
setting the discriminator voltage at the local minimum indicated in the diagram only pulses
of height greater than (to the left of) this set point will be counted. This excludes a significant
number of dark counts as seen in Fig. 3.8 as the discriminator voltage approaches 0mV .

With the photomultiplier and discriminator voltages chosen we can now collect data.
First, the input intensity is set using a variable neutral density filter outside the data collection
box. In order to measure the intensity dependence of the magnetic dipole scattering, the
intensity is first set quite low, approximately 107W/cm2. With the intensity fixed we set the
analyzing polarizer in front of the photomultiplier to the vertical direction. The polarizer is
mounted in a Newport PR50PP rotation stage that is powered by a Newport SMC100PP and
controlled by LabView drivers. This will allow vertically polarized light from an electric
dipole to be detected. The quarter-wave plate in the pump beam is also mounted in a
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Newport PR50PP powered by a Newport SMC100PP and controlled by the same LabView
program. In the course of data collection the angle of the quarter-wave plate is varied in
steps while vertically polarized signal is measured at each step by the photomultiplier. The
minimum step size is .02 degrees but larger step sizes are typically chosen for speed of
collection and clarity of plots. After a complete 360 degree sweep of the quarter-wave plate
is recorded the analyzing polarizer is rotated 90 degrees into the horizontal position and the
sweep of the quarter-wave plate is repeated. This will generate both an electric dipole and
magnetic dipole measurement for analysis. By automating the experiment the laboratory can
be placed in full darkness and no experimenter is required to be in the room to add possible
signal from reflection of ambient light or additional infrared generated by body heat. It
also allows extremely long integration times for low signal collection and very precise and
repeatable angular postioning of the quarter-wave plate and analyzing polarizer.

3.1.3 Sample Selection

Samples that were available in extremely pure form and that had well known optical prop-
erties were selected for the experiments. Three spectoscopic grade liquids that lacked
resonances anywhere near the excitation wavelengths of 775nm and 810nm were deemed
the most appropriate in this regard, while being dense enough to cause a measureable number
of scattering events into the perpendicular direction. The use of gases was excluded because
of the low scattering rate. Liquids were also chosen because they lack impurities or flaws
that could give rise to multiple scattering. Nor do they have long range structure to cause any
changes to the polarization or intensity of the light due to interaction with a non-isotropic
medium. Ideal samples should have a third order susceptibility, χ(3), that is low enough to
allow experiments to be performed at significant pump intensites (1010W/cm2) without the
possibility of third order nonlinear processes changing the measured signal. Finally, and
most importantly, the control sample must be centrosymmetric to exclude all second order
nonlinear optical processes other than the optical magnetic process of interest.

Our control sample was chosen to be spectroscopic grade carbon tetrachloride. Carbon
tetrachloride is a very well studied chemical reagent that is optically clear and can be
purchased in a highly purified liquid form. The density of liquid provides the necessary
scattering but the amorphous structure provides no long range order. It also has a low third
order susceptibility [25], as seen in Table 3.1, and is effectively centrosymmetric, so its
second order (electric) susceptibility is zero.

To test the dependence of magnetic scattering on electronic structure it is necessary to
select other liquids that are optically clear and highly pure but with dramatically different
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Material χ(3)(esu) n2(cm2W−1)

Benzene 6.8×10−14 1.2×10−15

Carbon tetrachloride 8.0 ×10−14 1.5×10−15

Water 1.8×10−14 4.1×10−16

Table 3.1 Third order nonlinear optical coefficients for sample reagents

structure. Benzene, another organic solvent, is readily available in spectroscopic grade
purity and has a ring structure that allows some of the electron cloud to be nearly free. Water
provides a polar liquid that is also readily available as highly purified, deionized water.
Consequently CCl4, H2O, and C6H6 were picked as samples for the investigation. Their
nonlinear properties are summarized in Table 3.1.

3.1.4 Sample Preparation

Samples for the magnetic dipole scattering experiment were highly purified, spectroscopic
grade reagents. The liquids were passed through two 0.2µm Millipore filters to remove
any possible particle contaminants and deposted in Hellma QS 1cm x 1cm quartz spec-
trophotonic cells. Cells were washed on the inside using high concentration detergent using
the procedurer recommended by the manufacturer. A drop of detergent was placed in the
cell and mixed with distilled water to approximately 75% full. The cell was capped and
shaken vigorously for approximately 30 seconds. The cells were emptied and filled with
distilled water and shaken. This rinsing step was reapeated about six times to guarantee that
all detergent was removed. The outer faces of the cell were cleaned with methanol and a
dragged lens tissue, a standard optics procedure. The sample was allowed to sit undisturbed
for several hours to let any bubbles formed during filtering or during the filling process to
escape.

Sample cells were individually placed at the intersection of the pump laser and the
alignment laser on the sample stand. The position of each one was optimized so that both
lasers passed through the center of each face of the cell on both entrance and exit. The angle
of the sample was adjusted by retroreflecting the alignment beam. In this way the alignment
laser was arranged to pass through the cell and intersect the path of the pump beam at 90◦

in the center of the cell. Beyond the cell it impinged on the photomultiplier housing. The
position of the photomultiplier housing, and therefore photomultiplier, was adjusted by three
dimensional micrometers to place the alignment laser on the center of the photocathode.
The alignment laser was turned off and its hole into the dark box was sealed. The lid was
placed on the dark box and the photomultiplier shutter was opened to begin data collection.
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Chapter 4

Results

In this chapter experimental data that compare magnetic dipole scattering intensities in
carbon tetrachloride, water, and benzene are presented. The intensity dependence of the
nonlinear magnetic dipole response is reported along with confirmation of the linear intensity
dependence of the electric dipole response. These results confirm that the intensity has not
reached the typical electric nonlinear intensity regime. The ratio of the magnetic to electric
dipole responses versus intensity is shown to be linear and to saturate at a value of 1/4. The
intensity dependences of each dipole response, the ratio of the responses, and the saturation
of the ratio at a value of 1/4 are all shown to support the theory of Optical Magnetism
developed in Chapter II.

4.1 Magnetic Dipole Scattering

4.1.1 Sample Properties

Strong magnetic dipole scattering was unexpectedly observed in 2007 [1] in several dielec-
tric liquids. Since the liquids in question, water, carbon tetrachloride and benzene, have no
resonances near the pump wavelengths of 775nm and 810nm the original results clearly are
not due to electronic resonances of any kind. The absence of resonances was confirmed by
UV-Vis absorption in the spectral range of 200nm-1100nm using low intensity excitation at
room temperature (Figs. 4.1 - 4.3).
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Figure 4.1 Absorbance spectrum of distilled water in Hellma QS quartz cell. No significant reso-
nances are seen near the pump wavelengths of 775nm and 810nm. The arrow indicates the regime of
exciation in the experiments. The small feature at 970nm is attributed to a combination of symmetric
and antisymmetric stretching modes in the water molecule.
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Figure 4.2 Absorbance spectrum of carbon tetrachloride in Hellma QS quartz cell. No significant
resonances are seen near the pump wavelengths of 775nm and 810nm. The arrow indicates the
regime of exciation in the experiments. The large feature on the left is strong UV absorption that
saturated the spectrophotometer resulting in the jagged appearance for large absorbance.
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Figure 4.3 Absorbance spectrum of benzene in Hellma QS quartz cell. No significant resonances
are seen near the pump wavelengths of 775nm and 810nm. The arrow indicates the regime of
exciation in the experiments.

This also confirms that there are no significant impurities in the liquids to effect the results
of scattering experiments. In such a pure dielectric sample, far off resonance, a beam of
light will pass through the sample uneffected. However, even in a highly purified liquid with
no suspended impurities, thermal fluctuations of density cause local changes in index of
refraction. These index fluctuations act as scattering centers. A small fraction of light will
be Rayleigh scattered perpendicular to the original direction of propagation.

4.1.2 Magnetic Dipole Scattering Over the Visible and NIR Spectrum

The earliest experiment in Transverse Optical Magnetism was a magnetic dipole scattering
experiment performed by Oliveira [1] in a slightly different geometry than that described
in Chapter 3. Rather than using a square quartz cuvette illuminated from the side by a low
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intensity beam, a rather high intensity beam (I < 1013W/cm2) was focused weakly through
the meniscus of carbon tetrachloride held in a cylindrical glass holder. Scattered light passed
through the cylindrical wall of the holder into the collection optics and detector. This proce-
dure is described in more detail in reference [1]. The use of relatively high intensity caused
white light generation due to the onset of nonlinear phase modulation. Scattered electric
and magnetic dipole signals were recorded at several different wavelengths to determine if
there was any dependence on the excitation wavelength. By pumping the sample at 775nm
and placing a 10nm FWHM bandpass filter in front of the detector, radiation patterns for
scattered light were determined at many wavelengths in the visible and NIR spectrum.

One result, shown in Fig. 4.4, was obtained in carbon tetrachloride pumped at 775nm.
Scattered light was recorded at 640nm and used to prepare polar plots of the radiation
pattern. Similar electric and magnetic dipole patterns were recovered from 390nm to 775nm
but gave similar results and are not shown.
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Figure 4.4 Experimental intensity patterns for electric (open circles) and magnetic (solid circles)
scattering measured using amplified pulses, (775nm) measured at 640nm, in CCl4. The solid lines
are fits to the data by sin(θ)2 and cos(θ)2 respectively.

The reader may note that the data in Fig. 4.4 is quite noisy. The nonlinear processes
that contribute to white light generation are dependent on local fluctuations of density and
index of refraction within the focal volume caused by incipient self-focusing. To improve
the experimental signal to noise ratio we made use of three improvements. First, the quartz
cuvette geometry described in Chapter 3 was used to eliminate the air/meniscus interface
at the input of the cylindrical glass holder. Second, the intensity was reduced by almost
three orders of magnitude to 2.2× 1010W/cm2 to eliminate white light generation and
other electric nonlinearities. This reduction in intensity was the result of using an 80MHz
unamplified modelocked Ti:Sapphire laser source. Third, the pulse to pulse noise was
reduced to well below 0.5%, much lower than the amplified system, again as the result of
using the mode-locked oscillator. The pump wavelength changed to 810nm for the oscillator
experiments but no change in the electric and magnetic dipole pattern was observed.
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Figure 4.5 Experimental intensity patterns for electric (open circles) and magnetic (solid circles)
polarization directions measured using unamplified pulses (810nm), measured at 810nm, in CCl4.
The solid lines are fits to the data by sin(θ)2 and cos(θ)2 respectively, indicating that the data is
dipolar to an excellent degree.

It can be seen in Fig. 4.5 that the noise in the signal is dramatically reduced while the
magnetic scattering signal remains at the same intensity relative to the electric dipole signal
seen in Fig. 4.4. Scattering with the electric field polarization is now well-fitted by a dipole
pattern sin2(θ). Expanding the view of the magnetic dipole signal alone in Fig. 4.6 we
see that the magnetic dipole pattern also fits cos2(θ) very well. There is no evidence of
quadupolar contributions in the data. The null in the dipolar distribution of Fig. 4.6 is very
well defined.
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Figure 4.6 Magnified view of the magnetic dipole response using unamplified pulses (810nm),
measured at 810nm, in CCl4. The solid line is a fit to the data by cos(θ)2 indicating that the data is
dipolar to an excellent degree.

4.1.3 Magnetic Dipole Scattering Dependence on Molecular Structure

After observing magnetic dipole scattering in CCl4, additional observations were sought
in other samples over a range of intensities. First, in the high intensity (I < 1013W/cm2)
regime a regeneratively amplified Ti:Sapphire laser with a repetition rate of 1kHz (Clark
MXR CPA-2001) was used. This source produced pulse trains of 150fs pulses at 775nm.
Up to 3.5mW of power was focused into the quartz cell containing deionized water. The
geometry and photon counting method described in Chapter 3 were used to detect the
scattered light. Because this experiment was performed in the white light generation regime
data was collected at several wavelengths, but again, as was the case for carbon tetrachloride,
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no wavelength dependence of the MD/ED scattering ratio was observed. Figure 4.7 shows
the result of this experiment when pumped at 775nm and measured at 775nm as well. The
electric and magnetic signals remain dipolar but with the increased noise expected from the
amplified pump and higher intensity.

Figure 4.7 Experimental intensity patterns for electric (open circles) and magnetic (solid circles)
polarization directions measured using amplified pulses (775nm), measured at 775nm, in deionized
water. The solid lines are fits to the data by sin(θ)2 and cos(θ)2 respectively.

Pulsed experiments confirmed that the magnetic dipole scattering process and continuum
generation could be induced in H2O and C6H6 as well as carbon tetrachloride with no
quantitative differences. This suggests a broad universality of this phenomenon.

Subsequent experiments were performed with the lower noise, unamplified pulses of ap-
proximately 100fs duration from the mode-locked oscillator. In this series of measurements
approximately 400mW of average power at 810nm was focused through a 2cm focal length
lens into the liquid. The peak intensity was limited to I � 2× 1010W/cm2, 1000 times
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below the white light generation threshold of water [26]. Synchronous detection was used to
increase the signal to noise ratio of the data further. This was achieved through mechanical
chopping of the pump beam and measuring the signal with a polarization-insensitive EG&G
FND-100 photodiode connected to a Stanford Research SR530 Lock-in Amplifier. The data
was measured at the fundamental frequency, 810nm, and is shown in water and benzene in
Figs. 4.8 and 4.9 respectively.

Figure 4.8 Experimental intensity patterns for electric (open circles) and magnetic (solid circles)
polarization directions measured using unamplified pulses (810nm), measured at 810nm, in deionized
water. The solid lines are fits to the data by sin(θ)2 and cos(θ)2 respectively, indicating that the data
is dipolar to an excellent degree.
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Figure 4.9 Experimental intensity patterns for electric (open circles) and magnetic (solid circles)
polarization directions measured using unamplified pulses (810nm), measured at 810nm, in benzene.
The solid lines are fits to the data by sin(θ)2 and cos(θ)2 respectively, indicating that the data is
dipolar to an excellent degree.

4.1.4 Intensity Dependence of Magnetic Dipole Scattering and the
Electric to Magnetic Dipole Scattering Ratio

The next experiment focused on the intensity dependence of the magnetic scattering signal.
For this experiment we returned to the carbon tetrachloride sample because of its centrosym-
metric structure. To determine the low intensity magnetic response, the pump laser was
replaced with a linearly polarized, CW, Argon laser at 514nm capable of producing 1-10W
of power. Focused, this laser provided 105W/cm2 at maximum intensity. At this intensity
no measureable magnetic dipole scattering was found. This placed a lower bound on the
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intensity regime to be explored to find the intensity dependence of the magnetic dipole
response.

A broad range of intensities was then investigated, beginning at 105W/cm2 and ex-
tending to the white light generation regime in order to observe the onset of the magnetic
scattering. While the unamplified laser system provided lower noise, it did require focusing
of the beam to achieve sufficient intensity. Unfortunately for an intensity scan, the focal
position changes as a function of intensity due to nonlinear self-focusing. Using this pump
laser required realigning the system for each step in intensity. Making such a procedure
reproducible was both challenging and time consuming, so all subsequent experiments
using the amplified laser system were performed with a collimated beam. This allowed
measurement of a wide range of intensities from 105W/cm2 to 1010W/cm2.

Using the R636 photomultiplier and the procedure of Chapter 3 a scan of intensity from
approximately 106W/cm2 to 108W/cm2 was performed for carbon tetrachloride. To find the
intensity dependence of both the electric and magnetic dipole signals it was only necessary
in practice to find the dependence of the ED and MD scattering maxima on intensity. Thus,
at each step in intensity data pairs were taken with the input polarization and analyzer in the
electric signal maximum and the magnetic signal maximum orientations.

In this regime of intensities there should be no nonlinear electric scattering effects, so a
linear dependence of scattered light intensity with vertical polarization is expected versus
intensity. The growth of the magnetic scattering signal relative to the electric one is shown
as squares referring the right axis of Fig. 4.10 taken from Ref. [2]. The dashed line is a
quadratic line of best fit for the data displayed indicating that the dependence is quadratic
with intensity. The ratio of the magnetic dipole signal to the electric dipole is plotted as
circles refering to the left axis. The solid line is a line of best fit indicating that the ratio
follows a linear dependence as a function of intensity.
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Figure 4.10 Experimental intensity dependence of magnetic dipole scattering (solid squares) and
magnetic to electric dipole ratio (open circles) versus input intensity in CCl4. The dashed line is a
quadratic regression through the magnetic dipole scattering data. The solid line is a linear regression
through the ratio data.

The intensity dependence of the onset of magnetic response was determined with good
accuracy in this way. However, higher intensities were clearly needed to see the development
of magnetic saturation. In the next experiments a wider intensity range was used in order
to push the sample toward and see magnetic saturation. Given the results of the previous
experiments in the unamplified laser system where the magnetic dipole signal reached the
full 1/4 of the electric dipole signal, it was believed that the full intensity dependence up to
saturation and beyond could be seen with this setup. The ratio of magnetic to electric dipole
signal is plotted in Fig. 4.11 taken from Ref.[27].
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Figure 4.11 Experimental intensity dependence of magnetic dipole scattering versus input in-
tensity in CCl4 over a wide range of intensities including the saturation point at approximately
4.5×108W/cm2.

The linear dependence of the ratio on intensity is seen to continue up to a saturation value of
1/4 in agreement with the discussion of Sec. 2.1.3.

The data of Fig.4.12 provide evidence of the magnetic response limitation described
in Sec. 2.1.3. Hence, it is desirable to confirm how general this behavior might be experi-
mentally. The measurements were therefore made for each of the three liquids over a wide
intensity range. The magnetic to electric scattering ratios for all three liquids has been
plotted as a function of intensity in Fig. 4.12.
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Figure 4.12 Experimental intensity dependence of magnetic dipole scattering versus input intensity
in Water (red), CCl4 (green), and Benzene (blue).

In Fig. 4.12 the ratio of magnetic to electric response of each liquid can be seen to ap-
proach the ”‘saturation”’ value of 1/4 linearly as a function of intensity. Since the magnetic
response was shown to be quadratic in Fig. 4.10, this also confirms that the electric dipole
response is still in the linear regime. We also see that the slope of the intensity dependence
in the ”‘linear”’ regime below an MD/ED ratio of 0.25 is different for each liquid. Benzene
appears to have a very steep initial onset slope. In fact, it was found that all data points
taken were not statistically different from 1/4. It was found not to be possible to reliably
measure the intensity at the low powers making it impractical with the amplified laser source
to search for the linear ratio dependence in the case of benzene. Future experiments with
lower intensity sources may make this possible. This seemingly strong magnetic response
for benzene will provide important perspective for discussions of applications in Chapter 5.

Thermal nonlinearities cannot contribute to the measured quadratic signal. While ran-
dom density fluctuations in the liquid due to thermal energy are possible, the efficiency of
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second harmonic generation would vary wildly as the fluctuations change with each laser
pulse. The laser does not deposit enough heat to cause a significant temperature change.
The lack of resonances near the pump wavelength means the absorption is extremely low, as
seen in Figs. 4.1-4.3. The laser pulses are of order 1µJ in energy. When combined with
an absorption of order one percent the total energy deposited approaches the nJ level. The
heat capacity of the sample is approximately 5J/K, so the laser must fire of the order one
billion times to raise the temperature of the sample by 1K. In the time required to fire this
many times, any heat gained would be exchanged with the air keeping the sample at room
temperature. Even on the microscopic scale, heating cannot play a role. The pulses are of
order 100fs in duration and separated by microseconds to milliseconds. The time scale for
phonon interactions is picoseconds. Thus, the laser pulse has entered the sample, excited
electron motion, and re-emitted a photon in the perpendicular direction before any phonon
processes can take place. The next pulse arrives after microseconds or longer, well after any
phonon processes decay back to the ground state.

A similar experiment was performed at high power in which the analyzing polarizer
was rotated rather than the input polarization. The result was a beam width dependent
de-polarization of the measured scattered light. The results have not yet been successfully
interpreted, so the data and discussion are presented in Appendix D.
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Chapter 5

Conclusions

In this chapter we discuss the experimental results, in relation to the theory derived in
Chapter 2, and make predictions based on that theory about future possibilities. It is shown
that the Complete Lorentz Oscillator Model correctly predicts that Transverse Optical
Magnetism is a second order process that can take place in materials with centrosymme-
try. Interactions dependent on both an electric field and a magnetic field have symmetry
restrictions that differ from those of the more typical, second order, nonlinear interaction
involving two electric fields. Here we summarize experimental results showing that the
quadratic nonlinearity of interest here takes place in centrosymmetric media and that the
maximum current density that can be directed from linear motion into solenoidal motion to
generate magnetic effects is JM =−1/2JE , in agreement with theory. The implications of
intense optical magnetic effects are explored as a new direction for nonlinear optics with
implications for the generation of large magnetic fields, terahertz radiation, and solar power
without the use of semiconductor solar cells.

5.1 Maximum Magnetic Scattering

In this work, unexpectedly large magnetic dipole scattering was observed in dielectric liquids
as described in Section 4.1.2. These results contradicted previous arguments by Landau and
Lifshitz predicting that magnetic effects at optical frequencies are unimportant [5]. Atoms
were deemed to be too small to support magnetic effects at optical frequencies. In this
section we identify the flaw in this earlier argument and discuss the evidence supporting the
opposite conclusion based on theory developed in Section 2.1.

Since the polarization states of radiation due to electric and magnetic dipoles are separa-
ble in the perpendicular direction, as described in Section 3.1, we conclude that the signals
of Figures 4.4 and 4.5 are independent measurements of the electric and magnetic responses
generated in the samples. The fits to dipolar patterns for each data set, particularly those

102



using the low noise oscillator in Fig. 4.5, are excellent. Hence, we must conclude that they
arise from orthogonal transverse dipole sources. Hence, they must correspond to electric
and magnetic dipoles. Moreover, these signals cannot be due to linear rotary effects or
quadratic electric nonlinearities, especially in the case of CCl4. Carbon tetrachloride is not
chiral, it has no permanent dipole, and is centrosymmetric. Alternative optical processes
cannot explain our results. Additionally, the results appear to be universal in dielectrics. The
results of Figures 4.7, 4.8, and 4.9 in different liquids with different electronic and molecular
structures are similar. Thus, we conclude that intense magnetic dipole radiation has been
generated at optical frequencies and that a new chapter in nonlinear optics has begun.

Extracting the ratio of the signals in Figures 4.4 through 4.9 we find that in each case
the maximum magnetic dipole signal attainable is approximately 1/4 the size of the electric
dipole signal. The ratio data is compared in Table 5.1.

Material (pump light condition) Maximum MD/ED Ratio
Benzene (unamplified) 0.28±0.04
Carbon tetrachloride (amplified) 0.22±0.05
Carbon tetrachloride (unamplified) 0.28±0.03
Carbon tetrachloride (unamplified) 0.27±0.04
Water (amplified) 0.38±0.10
Water (unamplified) 0.23±0.04

Table 5.1 Ratio of the maximum of the magnetic dipole signal to the maximum of the electric
dipole signal for benzene, carbon tetrachloride, and water under both amplified and unamplified
pump light conditions.

The measurements of Table 5.1 were repeated 10 times each to estimate standard deviation.
We see that there is no doubt that magnetic response can exceed predictions of the traditional
multipole expansion by five orders of magnitude and the theory of Landau and Lifshitz must
be incorrect. There is no long range order or structure in these dielectric liquids, so the
bodies generating the magnetic signal are individual molecules.

In view of the conclusion we compare the results with the model developed in Section
2.1.3. It was predicted, theoretically, that the maxiumum amount of current that can be
deflected from linear motion, caused by the electric field, into solenoidal motion due to a
magnetic field is 1/2. It is well known that the sources of radiation are currents and that
the intensity of light collected in our experiment depends on the source current squared.
The maximum solenoidal current is 1/2 so the maximum magnetic dipole signal due to that
current is (1/2)2 = 1/4. This is in excellent agreement with our results in Table 5.1. Further,
the derivation of the maximum current made no assumption about the electronic structure of
the matter supporting the solenoidal current. Thus, we expect to find the same maximum
value of 1/4 universally in all dielectric materials, in agreement with the experimental
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results of Section 4.1.2.

5.2 Symmetry and Frequency Considerations

As described in Section 4.1.4, the intensity dependence of the magnetic dipole was observed
to be accurately quadratic in carbon tetrachloride . This result stands in stark contrast to
previous nonlinear optics as outlined in Section 1.3 in which centrosymmetry prohibits
quadratic nonlinearities. The results of this research nevertheless clearly establish that
centrosymmetric materials can support second order magnetization at the frequency of the
incident light.

Liquids have no long range order to develop nonlinear effects. The random positions
of molecules act as an amorphous material and thus have no structure. An amorphous
material can be treated as centrosymmetric over distances containing several molecules
since no preferred direction is defined. Thus, we expect no second order effects in any
liquid. To eliminate the possiblity of stray second order nonlinearities we can also choose a
liquid that is centrosymmetric on the molecular scale as well. Carbon tetrachloride has a
tetragonal structure, group Td , which is of the cubic, centrosymmetric type. Thus, in liquid
carbon tetrachloride the symmetry can only be broken by a surface. In the setup described
in Chapter 3 care was taken to exclude the quartz/liquid interface from the observed region.
The collection optics were designed to collect light only from the center of the cuvette and
the peak intensity of the beam was always centered in the liquid volume.

All these precautions aside, if any second order process took place involving only the
electric fields of the light, the radiation developed would have been at an even harmonic
of the pump wavelength. All previously known second order processes induce signals at
either 0ω (a DC effect) or 2ω (a second harmonic generation effect). However, in the results
reported here we measured scattered light at the fundamental frequency. No electric dipole
can be created via a second order purely electric effect at the fundamental frequency. A
magnetic field can, however, deflect electrons into a curved motion to form a magnetic
dipole at the fundamental frequency. Moreover such a dipole would be oriented parallel to
the magnetic field and perpendicular to the electric field. Thus, the expected polarization
and frequency of the elastic scattering signals reported here can only be due to magnetic
dipole response.

The Complete Lorentz Oscillator Model of Section 2.1.5 predicted that in second order
a curved motion can be driven by light that forms a magnetic dipole oriented parallel to the
driving magnetic field. In agreement with this, the numerical results in Figs. 5.2 and 5.3
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showed that just such a curved motion is expected classically. While the projection of the
motion along the ẑ direction is at 2ω , the rotational motion about a point in the center of the
arc is at ω . This circular motion is indeed a magnetic dipole that can only exist in second
order. The mechanism requires an electric field to add energy to the system by initiating
linear motion and the magnetic field causes a deflection which is solenoidal in character. We
reiterate that all these theoretical expectations are consistent with the experimental results.

5.3 Predictions of Additional Magneto-electric Effects

We now turn to predictions of the CLOM to analyze additional effects that may be studied
in the future. The following sub-sections examine further implications of the classical
expressions derived earlier to describe light-induced motion in bound electron systems. The
results were:

x(t) = Ax0,ω cos(ωt +φ0) (5.1)

z(t) = Az1,0 sin(φ0)+Az1,2ω sin(2ωt +φ0−φ1) (5.2)

and predict two magnetically-induced electric dipole effects that have not yet been thor-
oughly discussed.

5.3.1 Magneto-electric Second Harmonic Generation

In Eq. (5.2) the second term that oscillates at 2ω . That is, it predicts electric dipole radiation
at 2ω in centrosymmetric media, a result that can only be magnetic in origin. Consequently,
this predicts megneto-electric second harmonic generation. Unfortunately, the orientation of
the dipoles does not allow for easy observation of this radiation. Because the radiation is z

polarized, the oscillations occur along the direction of propagation of the light. This means
that the dipoles do not radiate at all along the direction of propagation. Instead they radiate
perpendicular to the direction of propagation. However, since the excitation pulse is moving,
each induced dipole is slightly out of phase with its neighbors due to the finite propagation
speed of the light. Hence, contributions to the radiated field off-axis are not perfectly in
phase and do not form a beam of coherent light at the second harmonic wavelength.

Constructive interference of the second harmonic waves can be synchronized in a special
direction. The analysis incorporates dispersion at the ω and 2ω wavelengths and is similar
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to the approach used to describe generation of Cherenkov radiation by high energy particles
passing through dielectrics.

Figure 5.1 An incident excitation moves through a dielectric medium at group velocity v(i)g . The
electromagnetic disturbance of its passage causes radiation to be emitted spherically from each
point along its path. At angle θc the oscillations of the radiation are in phase and form a wavefront
propagating with phase velocity v(o)ph .

As the incident passes through the medium at its group velocity v(i)g , a second wavelength
of light is generated. The harmonic light propagates through the medium in all directions,
but in only one direction do its expanding spherical waves form a form a wavefront with
uniform phase. This direction is found by determining the angle at which the excitation
velocity, v(i)g , and the emission velocity, v(o)ph , form a right triangle. This angle, θc, dictates
the cone formed by the emitted phase front. A detector placed off-axis at angle θc will detect
light at the harmonic wavelength.

If the velocities of the excitation and emission are similar, the angle θc can be quite
small. For a sufficiently small angle, and propagation confined to a waveguide like an optical
fiber, the emitted light will then be totally internally reflected by the air-dielectric interface.
Second harmonic light generated by the excitation pulse will be guided down the fiber to
exit at the far end. In such a geometry it is easy to imagine that the entire cone of emitted
light could be collected for detection.

Calculation of the efficiency of conversion from the excitation wavelength into the
second harmonic requires a coupled mode solution such as the one presented in Appendix E.
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5.3.2 Magneto-electric Terahertz Generation

The zero frequency term in Eq. (5.2) is potentially useful for the generation of terahertz
radiation. One of the methods of terahertz generation in common use today is optical
rectification [28]. In this method a non-centrosymmetric crystal is excited by a high inten-
sity light pulse of duration shorter than 1ps. The high intensity light pulse generates an
electromagnetic field in the crystal at zero frequency by the process

P(2)(0) = χ
(2)(0;ω,−ω)E(ω)E(−ω) (5.3)

The rectified field grows and subsides with the pulse as the intensity rises and falls. This
transient field causes electron acceleration that generates the radiation. The bandwidth of
the radiation is determined by the duration of the acceleration period. By choosing the
pulse duration to be on the order of a picosecond, the frequency bandwidth of the radiation
generated is approximately ∆ν ∝ 1/10−12s = 1012Hz = 1T Hz.

A nearly identical method is possible using Transverse Optical Magnetism. In this case
however the polarization is magneto-electric in origin. Therefore it obeys a relation like

P(2)(0) = χ
(2)(0;ω,−ω)E(ω)B(−ω) (5.4)

and takes place in centrosymmetric media. This realization opens the door to THz generation
in a host of new materials including silica glass.

5.3.3 Solar Power Generation

The zero frequency term in Eq. (5.2) can also be used to generate a constant voltage if the
input light is sufficiently intense and continuous. Provided that the incident field does not
change the occupation of energy levels of atoms in the medium, the classical theory is valid
and can be used to estimate the efficiency of energy conversion by this means. In this section
the possibilities of this interaction are explored through numeric integration of the equations
of motion, 2.70 and 2.69. In order to meet the requirement that the incident field does not
induce population changes the incident frequency is assumed to be detuned by more than
the relevant transition linewidths, specified by γx and γz. The chosen field strengths are also
assumed to correspond to two regimes: a low intensity regime where magnetic interactions
are negligible and a high intensity regime where magnetically-driven polarizations attain
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their maximum amplitude with respect to the linear electric polarization of the medium. On
the other hand, when the electric field is increased by eight orders of magnitude, motion
driven solely by E is no longer dominant.

Figures 5.2 and 5.3 present two trajectories calculated by direct integration of the Com-
plete Lorentz Oscillator Model including the magnetic Lorentz force from Chapter 2. In each
plot, the optical field is applied as a step function at time zero and frequency is detuned from
electronic resonance by ∆1/γx = ∆1/Γ

(e)
12 = 1.67. Normalized frequency parameters were

assigned fixed values of ω = 1, ωx = ωy = 1.5, ωz = 0.2, γx = γy = γz = 0.3. Figure 5.2 is
calculated for an incident plane wave field of E0 = 1V/m and Fig. 5.3 is for E0 = 108V/m.
In the first case, at low field strength, the trajectory lies almost entirely along the x-axis of
the electric field, as expected for low intensity optical interactions. Motion driven by the
electric field dominates the dynamics overwhelmingly. Magnification of the horizontal scale
by 109 is necessary to make the component of the motion in the direction of propagation of
light large enough to see. It is this small component that originates from the Lorentz force.
In Fig. 5.3, the horizontal scale is only one hundredth that of the vertical axis and yet the
motion along z has developed an amplitude much more comparable to that of motion along
x.

It can be seen from both of these figures that motion driven by the optical fields reaches
a steady state after only a few periods. The deviations from linear response along the electric
field direction therefore appear on an ultrafast time scale in this simulation. The electron
follows a strongly curved path and the centroid of the motion is displaced forward along the
direction of propagation, away from the nucleus located at x = y = z = 0. Although E and B
are similar in that they oscillate harmonically at the optical frequency and therefore have an
average value of zero, E is a polar vector that reverses sign upon inversion, whereas B is an
axial vector which does not. In combination, it is evident from Figs. 5.2 and 5.3 that these
field components can drive a sizeable static displacement of bound electrons with respect to
the nucleus.
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Figure 5.2 Trajectory of electron motion calculated by integration of the equations of motion
for an incident electric field of strength E0 = 1V/m. Note the axes differ by nine orders of magni-
tude. Frequency and linewidth parameters were chosen to be ω = 1, ωx = ωy = 1.3, ωz = 1, and
γx = γy = γz = 1.
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Figure 5.3 Trajectory of electron motion calculated by integration of the equations of motion
for an incident electric field of strength E0 = 108V/m. Note the axes differ by only two orders of
magnitude. Frequency and linewidth parameters were chosen to be ω = 1, ωx = ωy = 1.3, ωz = 1,
and γx = γy = γz = 1.

Remarkably, the exchange of energy that takes place between the electric and magnetic
degrees of freedom in the system does not reverse as time progresses, as it does in other cou-
pled oscillator systems. Here, the overall optical interaction at intermediate (sub-relativistic)
intensities yields an electric dipole (ED) moment on an ultrafast time scale which is qua-
sistatic and intensity-dependent. The large amplitude of this effect may be ascribed to the
doubled frequency of electron motion projected along z [Figs. 5.5,5.10 and 5.13], and
to the orthogonality of the electric and magnetic driving fields, which introduces intense
parametric enhancement of the magnetic response. Since the dynamics have been shown to
obey a complex Mathieu equation in 2.1.7, this result is not too surprising.

The shape of the steady state trajectory is remarkably similar to a hyperbola. It may be
the case that for certain choices of parameters, the solution to the equations of motion may
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be found exactly in future work if the problem is treated in elliptic coordinates.
Visualization of the temporal dynamics is somewhat easier if the true development of

motion along each coordinate is plotted separately. In Figs. 5.4 and 5.5 for example, we
can see the rapid onset of steady state motion along x and z. The combined motions in the z

direction at frequencies 0 and 2ω are readily apparent in Fig. 5.5.
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Figure 5.4 x component of electron motion for an incident electric field of strength E0 = 108V/m
and τcoh = inf. Frequency and linewidth parameters were chosen to be ω = 1, ωx = ωy = 1.5,
ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.5 z component of electron motion for an incident electric field of strength E0 = 108V/m
and τcoh = inf. Frequency and linewidth parameters were chosen to be ω = 1, ωx = ωy = 1.5,
ωz = 0.2, and γx = γy = γz = 0.3.

The results in Figs. 5.3-5.5 indicate that after a transient of approximately one half dozen
cycles of the driving field, the motion reaches steady state. The oscillatory component of
motion that persists at long times in Fig. 5.5 is frequency doubled (compare Fig. 5.4). This
is therefore the second harmonic generation discussed earlier. The remainder of this section
will focus on the DC offset evident in Fig. 5.5 which is the zero frequency term. We can see
that the oscillatory motion is no longer about z = 0 but instead oscillates about .7 units away
from the origin in the positive z direction. This indicates that the electron has pulled away
from its nucleus creating a DC polarization in the material. Considering the effect of light
on all atoms in the sample volume, as seen in Fig. 5.6, it is clear that a volume polarization
density that is steady in time. This looks just like a charged capacitor. With a continuous
light source of sufficient intensity, an optically-charged capacitor can be created.
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Figure 5.6 As light passes through the sample from left to right, each electron cloud is pulled to
the right creating a volume polarization. From end to end this generates a voltage.

The creation of a volume polarization oriented parallel to the direction of propagation of
the light can convert light energy directly into charge separation but will be of limited use if
it only works for coherent light sources. While it may be possible to beam power across
long distances through the use of CW lasers and convert it to electricity with high efficiency,
the field of most interest in power conversion is solar power. The conversion of sunlight into
a voltage would be of great benefit but would require that nonlinear charge separation to be
possible with incoherent light like sunlight. This requirement is examined next by solving
the equations of motion with random phase and polarization changes at a fixed time scale.

To follow charge motion driven by a random light field, an Euler integration technique
was used [29] employing a constant temporal step size. The stochastic character of sunlight
was simulated by changing the phase of the driving fields by an amount in the range 0−2π

at an average rate of τ
−1
coh. One hundred integration steps were performed per optical cycle.

This permitted precise variation and specification of the coherence time. For example, at
a wavelength of 800 nm the optical period is 2.6 fs, so a coherence time of 30 fs can be
modeled accurately by randomly changing phase at an average rate of once per 1150 steps.
The effect of a stochastic driving field with τcoh = 30 f s is presented in Figs. 5.7 and 5.8.
When the dephasing time was reduced to 3fs to correspond specifically to radiation from
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the sun, the results in Figs. 5.9 and 5.10 were obtained. Note that both Figs. 5.8 and 5.10
exhibit a large, positive offset of the average motion in the direction of propagation, despite
dephasing at rates approaching the optical frequency. (Note that the arbitrary unit scales
for all plots of the x position and z position of Figs. 5.4 through 5.13 are the same for easy
comparison.)
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Figure 5.7 x component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase disruption time of τcoh = 30 f s. Frequency and linewidth parameters were chosen
to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.8 z component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase disruption time of τcoh = 30 f s. Frequency and linewidth parameters were chosen
to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.9 x component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase disruption time of τcoh = 3 f s. Frequency and linewidth parameters were chosen
to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.10 z component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase disruption time of τcoh = 3 f s. Frequency and linewidth parameters were chosen
to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.

Sunlight exhibits rapid, random fluctuations both in phase and polarization. To simulate
radiation from this source fully, the procedure described above must therefore be generalized
to include stochastic polarization fluctuations. Allowance for random polarizations in the x-y
plane necessitates an extension of the calculations above to three dimensions. Consequently
in Fig. 5.12 the projection of the electron trajectory along y is presented in addition to the
components along x and z.
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Figure 5.11 x component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase and polarization disruption time of τcoh = 3 f s. Frequency and linewidth parameters
were chosen to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.12 y component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase and polarization disruption time of τcoh = 3 f s. Frequency and linewidth parameters
were chosen to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.
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Figure 5.13 z component of electron motion for an incident electric field of strength E0 = 108V/m
and average phase and polarization disruption time of τcoh = 3 f s. Frequency and linewidth parameters
were chosen to be ω = 1, ωx = ωy = 1.5, ωz = 0.2, and γx = γy = γz = 0.3.

Polarization jumps were assumed to take place at the same time as phase jumps, but were
based on a separate random number generator. Figures 5.11 and 5.12 jointly furnish a
map of the electron motion in the transverse plane. By comparing similar plots where z is
nearly constant, one notices that decreases in the amplitude of motion along x invariably
accompany increases in the amplitude along y and vice versa. In Fig. 5.13, the average
displacement of the charge along z remains similar to that when phase-only disruptions
are taken into account. It should be noted that polarization changes cannot have an effect
on the z component of motion. We can see from Eq. 2.51 that the form of the forces due
to the external fields is the same regardless of the choice of the polarization direction Ei.
Large random excursions and oscillations are evident in Fig. 5.13 but the average offset
remains similar to that in Fig. 5.5. The average offset represents the DC voltage available
for extraction.
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The results above clearly establish that magneto-electric charge separation is feasible
with an incoherent source. It is therefore of considerable interest to find out how efficient
this process can be. The charge separation described above saturates when the magnetic
current density JM attains its maximum value, namely one half the electric displacement
current JE . (See Section 2.1.3). At higher levels of excitation than this, in the so-called
”‘magnetic”’ saturation regime, the magnetic susceptibility is

χ
(m) =−1

2
χ
(e) (5.5)

and the longitudinal polarization established by it is proportional to the electric field, just
like the usual transverse polarization induced by the electric field component of light. As
we show next, through the use of Eq. 5.5, predictions can therefore be made of the surface
charge density attainable in a plane parallel dielectric slab illuminated uniformly with a spec-
ified intensity of coherent light - without knowledge of the linewidth parameters, detunings
and transition moments. With this information, the electric energy density that can be stored
in a magnetic optical capacitor may be accurately estimated in the undepleted pump limit.

The simplest way to calculate the energy U stored in a magnetic optical capacitor is
to imagine a simple parallel plate capacitor formed by a dielectric slab of thickness L and
permittivity ε through which the light propagates. Then, as is well-known,

U =
1
2

CV 2 (5.6)

where C is the capacitance and V is the voltage that develops across the slab due to irra-
diation. The displacement charge Q that develops is given by the beam area A times the
induced surface charge density σs.

Q = σsA (5.7)

The magnitude of any surface charge density is the same as the polarization P per unit
volume that causes it. Hence, making use of Eq. 5.5 and the standard formula for the
capacitance of a dielectric slab, we have
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V =
Q
C

=
σsA

εA/L
=

P(m)L
ε

=
−1

2 χ(e)EL
ε/ε0

=−(εr−1)EL
2εr

(5.8)

where we note that in this case the polarization P(m) =−(1/2)ε0χ(e)E is of magneto-electric
origin and equals half the usual electric polarization. In 5.8, use has also been made of
the relationship χ(e) = εr− 1 between the susceptibility χ(e) and the relative permitivity
εr = ε/ε0. Plugging this result back into the equation for stored energy we find

U =
1
2

ε0εrA
L

[
(εr−1)EL

2εr

]2

(5.9)

In the focal region of a fundamental Gaussian beam of radius ω0, the relevant area and
confocal parameter are given by

A = πw2
0 (5.10)

Lcon f =
2π
√

εrw2
0

λ
(5.11)

Hence, if we ignore depletion of the optical pump wave, the expression for energy stored in
the medium as the result of interacting with a Gaussian beam over the length Lcon f , is

Umax =
ε0π2w4

0
4λ
√

εr
(εr−1)2E2 (5.12)

When the pump wave consists of laser light, the wavelength in Eq. 5.12 is that of the laser
and εr is the permittivity at the laser wavelength. For solar input, representative values near
the peak of the solar spectrum may be assumed. In the latter case it is important to note that
the power conversion is operative at all wavelengths in the solar spectrum that fall within the
transparency range of the conversion material. Hence, εr is determined by the off-resonance
susceptibility and the entire spectrum is useful for power conversion.

For efficient optical power generation, the energy storage process that develops charge
separation must be repeated as rapidly and as often as possible. Because the rise time
of charge separation is faster than 100 f s (see Figs. 5.5 and 5.10), it is virtually instanta-
neous compared to attanable extraction rates, Ω−1. Hence power extraction via conducting
electrodes applied to the surface of the slab will be chiefly limited by Ω, assuming that
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the focused intensity achieves magnetic saturation. Assuming that all the stored energy is
extracted during each cycle, the maximum generated power is expressible as

Pmax =
ε0π2w4

0
2λ
√

εr
(εr−1)2

η0ΩI (5.13)

where η0 is the electromagnetic impedance of vacuum and I is the focused optical
intensity.

Estimates of the power levels and efficiencies of a converter based on magnetic charge
separation can be made using Eq. 5.13. This equation incorporates the relationship between
the length Lcon f of the region over which focusing of a Gaussian beam can be maintained
and the corresponding focal spot size w0. Hence, it will be applied first to estimate optical-
to-electric power conversion of a single mode laser beam, under the assumption that the
focused intensity is adequate to saturate the chosen magnetic conversion medium. Then, a
simple extension involving guided waves will be applied to remove the constraint between
sample length L and spot size. This greatly improves efficiency and makes solar power
conversion possible.

To estimate the optical-to-electric power conversion possible with a 1 kW fundamen-
tal Gaussian beam switched at a rate of Ω = 25MHz, we consider focusing it to a spot
size of w0 = 50µm in a sample of sapphire of length Lcon f = 4.45cm. Taking the relative
permittivity and wavelength to be εr = 3.115 and λ = 800nm respectively, an extracted
power of Pmax = 1.04W is obtained. That is, the conversion efficiency is found to be just
η = Pextr/Pin = 0.104%. This estimate and the ones that follow ignore losses from coupling
to external circuits with real loads, or to energy storage devices like batteries. This is because
electrical coupling losses can be made quite small for capacitive energy sources using energy
harvesting circuitry [30]. An example circuit is provided in Fig. 5.14.
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Figure 5.14 Capacitive energy harvesting circuit based on an ac-dc rectifier with an output capacitor,
a load, and an adaptive control dc-dc converter that maintains optimal power transfer.

Note that if the light were focused into an optical fiber of length L, it would be confined
over lengths much longer than Lcon f , regardless of spot size. Hence, we next consider a
sapphire fiber of length L = 10m, removing the constraint between sample length L and w0

given by Eq.5.11. Single-crystal sapphire fibers have a favorably high index, high thermal
conductivity, and can be grown in meter lengths by the laser-heated pedestal growth method
[31]. In this situation, the expression for extracted power becomes

Pmax =
ε0πw2

0L
4εr

(εr−1)2
η0ΩI (5.14)

For the same input power of 1.0kW and a fiber core radius of w0 = 50µm, the extracted
power is now 0.299kW at Ω = 25MHz. Under these conditions, ignoring pump depletion,
the theoretical conversion efficiency climbs to η = 30%.

On a sunny day at low latitudes, a spherical solar concentrator of diameter 1.0m col-
lects power roughly equal to that considered above, namely 1kW . The concentrator may
be assumed to be an f1 optic whose focal length equals its diameter. In practice this
will focus sunlight as tightly as is practical. The sun subtends a relatively large angle
α = 4.67mrad at earth, so sunbeams are not Gaussian beams. Instead, the focal image
size w0 is a fixed fraction of the radius R of the concentrator: w0 = 4.67× 10−3R. For
collected powers in the kW range, the focal spot size is therefore much larger than in the
earlier estimates for a Gaussian beam source. The available focal spot intensity is limited
to approximately Iavail ' 1.46×107W/m2, which is considerably lower than the intensity
required for saturation of the optical magnetization in materials like CCl4 that have values
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of Isat exceeding 107W/cm2. Recognizing that the magnetic saturation intensity varies
dramatically from one material to another, and that available intensities may be lower than
Isat , a formula for the electrical power that can be extracted from a material with given Isat

at available light intensities is needed. With these constraints, the magnetic susceptibility is
χ(m) =−(Iavail/Isat)

1/2(χ(e)/2). Hence, the expression for power output becomes

Pout =
επ(εr−1)2

3εr
w2

0Lη0Ω

(
I2
avail
Isat

)
(5.15)

The earlier discussion of Figs. (5.7)-(5.13) showed that the charge separation effect of
interest here is not significantly reduced by dephasing or depolarization at rates approaching
the optical frequency itself. Unlike interactions between linear oscillators, the transfer of
energy between the electric and magnetic degrees of freedom of light resists disruption due
to the irreversible nature of the cross product in the Lorentz force. Hence coherent light is
not needed to drive the magneto-electric power generation described here. Taking this into
account and using the expression for Pout in Eq. 5.15, the output of a solar converter based
on magneto-electric conversion can be accurately predicted. As an example, we consider
implementing a generator with a φ = 1m diameter concentrator, a 1-cm diameter bundle
of sapphire fibers each of which has a length L = 10m and external circuitry consisting of
several 50/1 step-down transformers and semiconductor rectifiers with reverse breakdown
voltage ratings exceeding VB ≥ 600V , for power conditioning. According to Eq. 5.8, and
assuming Iavail/Isat = 0.1 in a fiber core with the permittivity of sapphire, the end-to-end
voltage generated in each fiber of the bundle is V = 3.56×105V . Using a representative
wavelength of 0.6µm for sunlight, and a beam switching rate of Ω = 25MHz as before, the
extractable power is 29.7 W, yielding a theoretical efficiency of nearly 3%.

This scheme for optical power conversion is basically capacitive in nature. Hence, the
voltages that develop across the conversion medium approach the megavolt range when the
efficiency is pushed to high values, for example by extending fiber length. Although power
extraction at high voltages can be handled using transformers and robust electronics [30],
the identifiication of materials with lowered intensity requirements will facilitate power gen-
eration by lowering the voltage levels that must be handled. Also, non-capacitive schemes
may offer alternatives. By using pulsed or chopped input light, alternative implementations
of this power generation scheme can be imagined that would exploit the transient, optical
magnetization of the medium to produce current flow inductively. By passing the light
through an array of conducting split rings whose diameters lie parallel to the propagation
axis, single cycle voltage waves would be generated by each pulse passing through the
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medium, according to Lenz’s Law.
The possibility of efficient solar power generation using Transverse Optical Magnetism

depends on finding a suitable conversion material. The properties of the conversion medium
must be such as to achieve magnetic saturation at intensities available from sunlight. In
the data of Fig. 4.12, some hints have already been seen. Delocalized electronic orbitals in
molecules like benzene appear to have promise because benzene was found to be fully satu-
rated at very low intensities (107W/cm2). Through the use of benzene or similar molecules
it may be possible to achieve efficient solar power generation using Transverse Optical
Magnetism.

Materials suitable for Transverse Optical Magnetic power generation must have prop-
erties that are very different from semiconductor solar cells. First, the material needs to
be a dielectric. Bound electrons are required to efficiently couple energy from the induced
electric dipole into the magnetic response. This can be seen in the structure and solutions of
the Complete Lorentz Oscillator Model. With out the binding terms ω2

i xi, the equations of
motion no longer have oscillatory solutions and they cannot be written as a Mathieu-like
system indicating parametric enhancement. In fact, free charge generation, which is the
basis of semiconductor solar power generation, is an energy loss for Transverse Optical
Magnetism. If the molecules are ionized by the incident radiation they cannot be used to
generate the optical rectification required. In theory, a semiconductor illuminated below the
band gap energy would meet this condition, but dielectrics like glass are cheaper and silica
has the lowest loss of any material available to manufacture so no advantage is foreseen at
this time for semiconductor media.

Conversion material also needs to be transparent to the full solar spectrum. Since any
wavelength illuminating the material will generate a rectification term of zero frequency
they do not interfere with one another. As long as the illumination at any given wavelength
is intense enough, a significant amount of rectification will be generated. This rectification
will be added to the rectification generated by the next wavelength and so on. This is a much
different case than for semiconductor solar cells in which the band gap defines a very narrow
range of wavelengths over which the cell will operate efficiently. Longer wavelengths
simple do not generate free charges and thus generate no energy. Shorter wavelengths do
generate free charges, but waste energy above the bad gap by generating heat in the bulk.
This restriction has resulted in multi-junction solar cells in which several different cells are
stacked to cover a broader spectrum of wavelengths. This increases the cost of efficient
semiconductor solar cells. In addition, energy conversion based on Transverse Optical
Magnetism can, in principle, avoid the necessity of manufacturing complex microscopic
structures.
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Transverse Optical Magnetism does require high intensity to achieve efficient power
conversion however. This is already a drawback since a solar collector is almost certainly
required, but it must also be overcome in the conversion medium. The material must be
able to withstand very high intensity irradiation for its entire lifetime without suffering
significant degredation. Possible sources of damage include ionization by single or multiple
photons, thermal stress due to backgorund optical absorption and photochemical degredation,
particularly at the surfaces.

Candidate conversion materials must have appropriate point symmetry as previously
outlined. We know from Chapter 2 that both an electric and magnetic dipole must be allowed
simultaneously for Transverse Optical Magnetism to arise. However, a Heisenberg treatment
showed that the optical field generates suitable admixtures of states in any system with
centrosymmetry. Additionally, the experiments reported here have shown that molecular
liquids in which the molecular point symmetry does not include inversion symmetry also
gave intense signals. So the symmetry requirements do not appear to be highly restrictive.

For manufacturing it would be best if the conversion material can be drawn as a fiber. As
was discussed above, focusing the light into a fiber extends the region of high intensity over
a much longer distance than Lcon f created by simply focusing the light in the conversion
medium. The low cost and high purity of silica fibers should also provide a significant
advantage over semiconductor solar cells.

As a complete energy generation system, Transverse Optical Magnetism holds promise.
The optical recitifcation process appears to be robust even when coherence times are short.
Large area collection optics already exist due to the solar thermal industry. Optical fiber is
already produced in large quantities due to the telecommunications industry. The extraction
of power from capacitive energy sources is a well studied problem due to energy harvesting
research. Hence, the main limitation is the lack of a material that reaches magnetic saturation
at concentrated solar intensities.

5.4 Perspectives on Other Fields

In this section we discuss the possible implications of Transverse Optical Magnetism for
other fields.
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5.4.1 High Field Magnetics

The large magnetic scattering signals presented in Chapter 4 indicate that large magnetic
dipoles are induced by the optical fields. Correspondingly enhanced magnetic fields are
associated with the interactions described in this thesis. It is of considerable interest to
anticipate the magnitude of magnetic fields that can be produced by Transverse Optical
Magnetism.

The ratio of magnetic scattering intensity to electric scattering intensity can be as large
as 1/4, based on the experimental results of Chapter 4. This agrees with the theoretical ratio
of the power radiated by a magnetic dipole (1.54) and an electric dipole (1.50).

R =
MD
ED

=

(
m0

p0c

)2

≤ 1
4

(5.16)

By replacing the moments m0 and p0 with their classical expressions m0 = πr2I0 and
p0 = qd we can solve for the current necessary to obtain the maximum value of the ratio R:

I0 =
qdc
2πr2 (5.17)

where d is the linear displacement of the electron and r is the radius or the circular compo-
nent motion of the electron. The magnetic field at the center of a loop of current is given by
B0 =

µ0I0
2r allowing us to solve for the magnetic field associated with maximum magnetic

response.

B0 =
µ0qdc
4πr3

= 4.5×10−18 d
r3 (5.18)

An estimate of the linear displacement, d, for a hydrogen atom can be made by noting
that the average radial position of the electron in the first excited state is approximately
10−10m. The radius of curvature, r, required to generate a magnetic field of one Tesla can
then be deduced from Eq. (5.18). Setting B0 = 1T and d = 10−10m in Eq. (5.18) one finds

r ≈ 7.7×10−10m (5.19)
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This is an estimate of the radius of a conventional magnetic moment defined in terms of a
closed circular current. Hence this calculation assumed that the magnetic moment m0 is
due to a complete circle of current. However, we have just shown that in fact only a small
portion of the circle actually carries current during magneto-electric interactions in bound
electron systems since d < r (See for example Fig. 5.3). The fraction of the circle that
contains charge is found to be approximately 1/50th suggesting that in the experiments
discussed in Chapter 4 magnetic fields of the order 1/50 Tesla were produced. Extrapolating
our experimental result from 1/50T at 108W/cm2 to the white light generation regime at
1013W/cm2 we find that it may be possible to generate magnetic fields as high as 10T by
this means. We conclude from this result that very large magnetic fields may be generated by
Transverse Optical Magnetism at even higher intensities of light. In other words, with only
the moderate, sub-relativistic, intensities achievable with tabletop lasers, it may be possible
to generate magnetic fields comparable to those generated by superconducting magnets.

5.4.2 High Field Laser Physics

The intensity regime in which the results of this dissertation were obtained is sub-relativistic,
involving intensities less than 1018W/cm2. The majority of research on magnetic effects has
been performed, in recent years, at or above the threshold of relativistic optics and current
experiments rely on extremely high intensity lasers that reach over 1020W/cm2. The results
presented here nevertheless have important ramifications for relativistic optical experiments
performed in plasmas.

To achieve extreme intensities, very short pulses on the order of ten to one hundred
femtoseconds to nanoseconds in duration are used. The generation of these extremely
short duration pulses does not produce a single isolated pulse. Commonly, a main pulse is
surrounded by a few lower intensity pulses and the whole train of pulses rides on top of a
longer duration envelope of much lower intensity as shown in Fig. 5.15.
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Figure 5.15 Autocorrelator trace of pulse output from Hercules laser. Black is the standard output
of the petawatt stage, red is the high constrast mode. All data is normalized to the highest peak of
the trace. We see both pre and post-pulses as well as a background intensity. In standard mode the
pre pulse is four orders of magnitude smaller than the main pulse or still 1016W/cm2. Even the long
duration envelope is 1013W/cm2, well into the saturation regime of Transverse Optical Magnetism
reported in this thesis.

It is already well known that prepulses dramatically influence the generation of protons and
ions in laser acceleration applications [32]. The intensities reached by the prepulses in these
experiments are well above the saturation regime for Transverse Optical Magnetism in the
studied materials. The intitial conditions of the material when the high intensity pulse arives
are certainly determined by the prepulses. Even if the electric effects of the prepulse are

130



incorporated into models they may be missing magnetic effects that are generated at this
sub-relativistic intensity.

5.4.3 Solar Power

Based on the earlier discussions, the use of optical rectification by Transverse Optical Mag-
netism may influence the solar power industry in the future. While the predicted efficiency of
conversion is only comparable to the current state of the art in multi-junction semiconductor
solar cells, the manufacturing, maintenance, and weight of Transverse Optical Magnetism
based systems could be dramatically different. Using pulled optical fiber instead of large
area semiconductor solar cells will change manufacturing from single crystal growth and
layering to pulled fiber. Packaging changes from large area arrays to smaller fiber coils
under an array of solar collectors. Maintenance and reliability of semiconductor solar cells
of comes down to maintaining all of the electrical connections between the thousands of
cells in a large array. Transverse Optical Magnetic fiber arrays require only two connections
per array, front and back contact, and possibly zero if inductive methods are developed.
Finally, using a large foil solar collector focused onto a length of optical fiber would weigh
much less than a full array of standard semiconductor solar cells. If the efficiency and power
output are even comparable to semiconductor solar cells, a significant weight savings is
of prime interest to the space power industry. So any reduction in launched weight would
translate into a massive cost savings per kilogram.

5.5 Future Work

This dissertation has presented only the initial measurements, theory, and predictions of
Transverse Optical Magnetism. To conclude, suggestions for future work are made here.

In order to understand the energy transfer mechanism between electric and magnetic
response the resonances in the classical model should be studied in more detail. The form of
the equations of motion that seems to be of particular interest is the matrix equation 2.99.
While systems of coupled Mathieu equations have been studied in the past, none has been
studied in which the coupling was sinusoidal in time. The case of constant coupling has been
studied for decades beginning with Bolotin and Hsu [33] [34]. The case of time periodic
damping coefficients have also been studied although only as a one dimensional problem
[35]. The combination and extension of these two methods may yield a better understanding
of parametric resonances and energy transfer processes.
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Further measurements of dipole scattering in different materials are needed to both
test the quantum mechanical predictions and search for a material to use in solar power or
terahertz generation. A significant hurdle to power conversion applications is that the DC
voltage induced by optical rectification needs to be measured directly. The most straightfor-
ward method will be to apply transparent contacts to a dielectric material and measure the
voltage developed across the material. This could be done by using a modulated laser source
and measuring the induced voltage across the material with a lock-in amplifier. It may be
a challenge to develop transparent contacts that can withstand the intensities needed for
efficient Transverse Optical Magnetic materials however. It may also be possible to measure
an induced voltage in a ring conductor placed near the pulsed laser beam as described in the
previous section.

Terahertz radiation should be sought in unbiased dielectric materials rather than nonlin-
ear optical crystals. Generation of terahertz radiation in a centrosymmetric material would be
a new effect entirely. To increase efficiency of generation and detection it may be necessary
to use tilted-front excitation in which the pump laser pulse is tilted to the angle that matches
the Cherenkov angle, thus creating a self-reinforcing wavefront of terahertz raditation in the
material [36]. By cutting the exit face of the material to match the Cherenkov angle as well,
a fully formed beam of terahertz radiation should emerge for detection.

The capacitive energy harvesting circuit described in the previous section needs to
be constructed and applied to the opto-magnetically induced voltage. Initial experiments
should seek to harvest energy from a laser beam. The fully coherent source with very high
intensities will make testing the circuitry and design much simpler. Once progress has been
made the system can be coupled to a solar collector and used to generate power from an
incoherent source.
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Appendix A

4-vector Formalism for Transverse
Optical Magnetism

Examining Eq. 2.4 we see that the distinction between magnetization M and dynamic
polarization P is subtle at best. For a complicated, time-dependent currents it is often unclear
how to divide the problem into magnetic and electric sources. In reality, polarization and
magnetization are components of a higher order tensor of material response. Just as an
electric field can look like a magnetic field in a certain frame of reference, a polarization can
look like a magnetization. The theory of Transverse Optical Magnetism may be simplified
by using a more general form of material response and electromagnetic fields.

The most general way to represent classical electromagnetics is to use the 4-vector
formalism typically reserved for relativistic electrodynamics. In this notation the electric
and magnetic fields are simply two parts of the same higher order field. This Maxwell field
tensor is written

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (A.1)

and its dual

F µν =
1
2

ε
µνγδ Fγδ


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 (A.2)

Likewise, the induced polarization and magnetization can be written in 4-tensor form

134



Mµν =


0 −cPx −cPy −cPz

cPx 0 Mz −My

cPy −Mz 0 Mx

cPz My −Mx 0

 (A.3)

and its dual

M µν =
1
2

ε
µνγδ Mγδ


0 Mx My Mz

−Mx 0 cPz −cPy

−My −cPz 0 cPx

−Mz cPy −cPx 0

 (A.4)

indicating that the polarization and magnetization are two parts of the same higher order
field [37]. Note the sign changes between Fµν and Mµν . This comes from the minus sign
in the relationship between magnetic field and magnetization

~H =
1
µ0

< ~B >−~M (A.5)

where brackets indicate a microscopically large volume average. The other quantities of the
dynamics must also be written in 4-vector form, the most important being the 4-velocity
Uν = γ(c,~v).

This notation allows for a fully generalized constituitive relation to be developed between
all four fields. By contracting the field tensors with the 4-velocity we can find the covariant
generalizations of the fields.

MµνUν = γc2

(
~v ·~P

c
,~P−~v× ~M

c2

)
(A.6)

FµνUν = γ

(
~v ·~E

c
,~E +~v×~B

)
(A.7)

In each case, as the velocity approaches zero, i.e. we enter the rest frame, the result reduces
to the typical 3-fields ~P and ~E respectively. This implies that we can write a fully covariant
form of the typical linear constituitive relations
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~P = ε0χe~E (A.8)

~M = χm~H =
χm

µ0(1+χm)
~B (A.9)

in the rest frame. Begining with the electric relation

MµνUν =
χe

µ0
FµνUν (A.10)

which, written in 3-vector form is

~v ·~P = ε0χe~v ·~E (A.11)

~P−~v× ~M
c2 = ε0χe(~E +~v×~B) (A.12)

The first relation, the time-like component, is actually redundant (dot both sides with~v), so
only the second relation, the space-like component is required. We can see that even for a
linear relationship between ~P and ~E some magnetization is mixed in. A similar result comes
from the linear magnetic relation

~v · ~M =
χm

µ0(1+χm)
~v ·~B (A.13)

~M+~v×~P =
χm

µ0(1+χm)

(
~B−~v×~E

c2

)
(A.14)

Just like the typical, non-relativistic, 3-vector form of electromagnetism, generalizations
to anisotropic media and nonlinear processes are possible. Transverse Optical Magnetism,
being a second order process, would require the application of two covariant fields. It can
also take place in an anisotropic medium so we expect to need a susceptibility tensor χµνγ .
A combination of field tensors equivalent to an EB interaction would be

Pµ = χµνγEνBγ = MµνUν = χµνγFνδUδ F γηUη (A.15)

This method of keeping electric and magnetic effects mixed at all orders may prove useful.
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Keeping the electromagnetic fields combined along with the material responses does not
allow any confusion about the type of source currents because in the most general case there
is no distiction. Polarization and magnetization are two components of the same field tensor.
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Appendix B

Graphic Approach to Solving the
Complete Lorentz Oscillator Model

The dimensionless equations of motion of the Complete Lorentz Oscillator Model

d2x
dt2 + γx

dx
dt

+ω
2
x x = cos(t)− fc cos(t)

dz
dt

(B.1)

d2z
dt2 + γz

dz
dt

+ω
2
z z = fc cos(t)

dx
dt

(B.2)

have solutions that follow a regular pattern. Hence, a diagrammatic approach is useful. It is
possible to find a solution, to any order, by observing the following rules:

Notation: The order of the term is denoted by m and frequency is denoted by n. Solutions
at odd orders are in the x direction and solutions of even order are in the z direction. The
subscript i follows this rule; it equals x if m is odd and z if m is even.
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Figure B.1 Diagram of solutions to the dimensionless equations of motion. Can be extended
vertically to arbitrary order following the same pattern.

Method: Select the term on the diagram that you wish to calculate. Trace a path back
to the first order term always moving up one order and one frequency left or right on the
diagram. All paths need to be calculated and added together to find the full solution for any
term.

1:
(
− fc

2

)(m−1)

2: Multiply by all previous numbers on the path back to first order
3: The time dependence is

cos(nt +φ . . .) if m is odd
−sin(nt +φ . . .) if m is even

4: Multiply by the product of all An on path back to first order

An =
1√

(ω2
i −n2)2 +n2γ2

i

(B.3)
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5: The phase shift φ . . . in the time dependence is given by the sum of all φn for each
number on the path

φn = tan−1
(
−nγi

ω2
i −n2

)
(B.4)

6: Repeat previous steps for each possible path back to first order and add them together
AS a specific example of this procedure, consider the frequency doubled term of 4th

order. There are three possible paths: 2→ 3→ 2→ 1, 2→ 1→ 2→ 1, and 2→ 1→ 0→ 1.
The solution for the first path, corresponding to the solid arrows in Fig. B.1, would be

(
f 3
c
8

)
(3)(2)(1)A3A2

2A1 sin(2t +φ3 +2φ2 +φ1) (B.5)

By repeating this process for the large dash and small dash paths of Fig. B.1 and adding
those solutions to that of B.5 the complete solution for frequency doubling at 4th order may
be obtained.
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Appendix C

Irreducible Representations of Electric
and Magnetic Moments

Electric and magnetic dipole moments are polar and axial vectors respectively. Hence, their
irreducible representations are rank 1 spherical tensors that transform like a normal vector
and a cross product of vectors.

The electric dopole moment, being a normal vector, is written:

~µ(e) = e(xx̂+ yŷ+ zẑ) (C.1)

= e(r sinθ cosφ x̂+ r sinθ sinφ ŷ+ r cosθ ẑ) (C.2)

=−er

√
4π

3
(Y1−1ε̂++Y11ε̂−+Y10ε̂0) (C.3)

=−µ
(e)
− ε̂+−µ

(e)
+ ε̂−+µ

(e)
0 ε̂0 (C.4)

where θ is the polar angle and φ is the equatorial angle.
For the magnetic moment, consider an axial vector composed of vectors ~A and ~B

according to

~V = ~A×~B (C.5)

where

Ax =−
A1−A−1√

2
Bx =−

B1−B−1√
2

(C.6)

Ay = i
A1 +A−1√

2
By = i

B1 +B−1√
2

(C.7)

Az = A0 Bz = B0 (C.8)
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then we find

~V = i(A1B0−A0B1)ε̂−+ i(A0B−1−A−1B0)ε̂++ i(A−1B1−A1B−1)ε̂0 (C.9)

Noticing that the pairs of components form a pattern we define C± ≡ A±B0, D± ≡ A0B±,
and F± ≡ A∓B± allowing the simplification:

~V =−i(C−−D−)ε̂++ i(C+−D+)ε̂−+ i(F+−F−)ε̂0 (C.10)

where we are now able to identify tensor components of the magnetic moment as

µ
(m)
± ≡ (C±−D±) (C.11)

µ
(m)
0 ≡ (F+−F−) (C.12)

Hence, the general form of the moment is

~µ(m) = iµ(m)
+ ε̂−− iµ(m)

− ε̂++ iµ(m)
0 ε̂0 (C.13)

One further result to note is that

F∗+ ≡ A∗−1B∗1 (C.14)

= (−)2A1B−1 = F− (C.15)
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Appendix D

Ultrafast Depolarization Observations

During data collection for the experiments of Section 4.1.3 an unexplained effect was ob-
served at very high powers. It is described here to motivate future experiments designed to
provide some understanding of its origin.

Following the methods of Chapter 3 an amplified light beam was passed through a liquid
sample of CCl4 and the scattered light collected and detected by photomultiplier tube. The
standard procedure to map the radiation pattern was implemented by rotating the input
polarization while leaving the analyzing polarizer in either the vertical (electric dipole) or
horizontal (magnetic dipole) orientation. In addition however, the input polarization was
held fixed and the analyzing polarizer was rotated with the expectation of recording a similar
dipole pattern. It was found that for small diameter beams and low powers similar dipole
patterns were recorded. However, for larger diameter beams and higher than usual powers
the results changed. The input polarization was held fixed in the horizontal (magnetic dipole)
orientation and the analyzing polarizer rotated through 360 degrees in 10 degree increments
to record the data of interest here, shown in Fig. D.1.
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Figure D.1 Polarization states of light scattered from CCl4 by the magnetic dipole due to different
beam widths.

An offset of approximately 15 degrees of the dipole maxima from 0 degrees is shown in the
figure. This feature of the plot is not of interest since it was an experimental artifact that can
be ignored.

The radiation patterns of Fig. D.1 do contain other non-dipole features. First, the pattern
never shows zero signal at any analyzer orientation. This implies that the time-averaged
signal is partially depolarized [38]. Second, there is a beam width dependent polarization
pattern superposed on top of the depolarized signal and the dipole contibution. This gave
the pattern X-like shape that extends beyond the basic dipole pattern seen in blue in Fig.
D.1. The beam width dependence manifested itself as the expansion of the X-like pattern to
wider angles at large widths. While no X-like pattern can be seen in the 2mm signal, an X
with approximately 90 degrees between the arms can be seen for the 3mm beam, and an X
of 110 degrees for the 5mm beam.

An initial conjecture about the origin of the polarization X pattern was dynamic Faraday
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rotation. The static Faraday effect was derived in Chapter 1 and the susceptibility tensor was
found in Eq. 1.32. This effect arises when a magnetic field is applied along the direction of
propagation of light causing the material to become optically active. The result is a rotation
of the linear polarization state of the light. The amount of rotation is determined by the
formula

β = V Bd (D.1)

where B is the applied static magnetic field flux density. β is the angle that the polarization
has rotated from its initial orientation, V is the Verdet constant, and d is the distance the
light has travelled in the interaction region. A generalization of this rotation effect to time
dependent magnetic field might be expected to rotate the polarization one way when the
magnetic field is positive and the opposite way when the magnetic field is negative. If this
oscillating polarization were to be measured as a time-average, the turning points of the
motion would yield the largest signal, resulting in an X-like pattern.

This conjecture was tested by using a phase stable interferometer to perform a pump
probe experiment. This work was done in the laboratory of Prof. Dantus at Michigan State
to exploit the dispersion compensation available through the use of Multiphoton Intrapulse
Interference Phase Scan (MIIPS). This system provided us with two beams of pulses of
< 10 f s, one of vertical polarization and one of horizontal polarization. The timing between
the two pulses was controllable with femtosecond accuracy using the MIIPS technique. A
perpendicular geometry was chosen for the pump-probe experiment to imitate the geometry
of the scattered light experiment. By varying the delay between the pump and probe pulses
it was hoped that a time dependence of the polarization pattern in Fig. D.1 would be found.
Unfortunately, no such modification of the probe beam was observed and no insight was
provided on this strange effect.
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Appendix E

Coupled Mode Analysis of Lorentz
Force Coupling

To examine the efficiency of nonlinear processes it is often necessary to perform a cou-
pled mode calculation. Here we attempt to extend the theory of coupled modes to include
Transverse Optical Magnetism. First, the notation of nonlinear optics must be generalized
to include mixtures of fields. There are two possible material responses, polarization and
magnetization, as well as two possible fields, electric and magnetic, for each order of the
interaction. This means, for example, that at second order there are 8 possible interactions:

P = χEE M = χEE
P = χEH M = χEH
P = χHE M = χHE
P = χHH M = χHH

Table E.1 All possible second order effects

It can be seen immediately that each χ must have different units in order for the equations to
be true. It is necessary to keep track of them very carefully by identifying every other input
in the equation. We must also keep track of the frequency of the interaction as is typical in
nonlinear optics. Sum frequency generation of an EH type would read

Pi(ωn +ωm) = ε0Dχ
(P;EH)
i jk (ωn +ωm;ωn,ωm)E j(ωn)H j(ωm) (E.1)

In this notation the superscript (P;em) indicates that the result of the interaction is a polar-
ization, the first field to act is an electric field, and the second field to act is a magnetic field.
D is the degeneracy, the number of distinct combinations of frequencies ωn and ωm.

Time-dependent polarizations and magnetizations are the sources of radiation. In order
to find the radiation due to any source the wave equation for the electromagnetic fields
must be solved. The case of nonlinear response requires solving the wave equation with
nonlinear sources which typically involves solving Eq. (1.44). This is not sufficient for
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our discussion because (1.44) does not contain magnetization as a source. To include it a
procedure similar to that of Sec. 1.3 is used but without the assumption that the medium is
non-magnetic, ~B = µ0~H. The general wave equations for all possible nonlinear sources in a
lossless, dispersionless medium are

∇
2~E− ε(1)

c2
∂ 2~E
∂ t2 =

1
ε0c2

(
∂ 2~PNL

∂ t2 +∇× ∂ ~M
∂ t

)
(E.2)

∇
2~H− µ0µ(1)

c2
∂ 2~H
∂ t2 =− 1

ε0c2 ∇× ∂~P
∂ t

+
µ0

c2
∂ 2 ~MNL

∂ t2 (E.3)

We are only interested in the nonlinear response and since the wave equations are linear in
the fields, only nonlinear sources need to be considered.

We specialized to the problem of one dimensional propagation along the ẑ direction as a
plane wave allowing the simplification

∇
2→ ∂ 2

∂ z2 (E.4)

We also consider only second order processes, limiting the problem to three frequencies and
two input fields. The fields are written

E(ω1)
i (z, t) =

1
2

[
E1i(z)ei(ω1t−k1z)+ c.c.

]
(E.5)

E(ω2)
j (z, t) =

1
2

[
E2 j(z)ei(ω2t−k2z)+ c.c.

]
(E.6)

E(ω3)
k (z, t) =

1
2

[
E3k(z)ei(ω3t−k3z)+ c.c.

]
(E.7)

H(ω1)
i (z, t) =

1
2

[
H1i(z)ei(ω1t−k1z)+ c.c.

]
(E.8)

H(ω2)
j (z, t) =

1
2

[
H2 j(z)ei(ω2t−k2z)+ c.c.

]
(E.9)

H(ω3)
k (z, t) =

1
2

[
H3k(z)ei(ω3t−k3z)+ c.c.

]
(E.10)

where the first subscript of E1i indicates the frequency and the second is an index that can
take any of the cartesian directions. The nonlinear sources are defined similar to (E.1) by
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[
PNL

1 (z, t)
]

i = χ
(P;EH)
i jk E3 j(z)H∗2k(z)e

i[(ω3−ω2)t−(k3−k2)z]+ c.c. (E.11)[
MNL

1 (z, t)
]

i = χ
(M;EH)
i jk E3 j(z)H∗2k(z)e

i[(ω3−ω2)t−(k3−k2)z]+ c.c. (E.12)
...

where ω1 = ω3−ω2.
Plugging these fields into the wave equations (E.3) we find the ith component of electric

field. The Laplacian, taking the direction of propagation to be ẑ, becomes

∇E1i(z, t) =
d2

dz2 E1i(z, t) =
1
2

d2

dz2

[
E1i(z)ei(ω1t−k1z)+ c.c.

]
(E.13)

We assume the amplitude of the wave does not vary on the time scale of one optical cycle
allowing us to make the slowly varying amplitude approximation

k1
dE1i

dz
� d2E1i

dz2 (E.14)

simplifying the Laplacian to

∇
2E1i =−

1
2

[
k2

1E1i(z)+2ik1
dE1i

dz

]
ei(ω1t−k1z)+ c.c. (E.15)

plugging in the nonlinear sources and realizing that ω2
1 ε(1)

c2 = k2
1, ω3−ω2 = ω1, eiω1t is in

each term, and dropping the complex conjugates results in the final coupled mode equation
for E1i

dE1i

dz
=

1
ε0c2

[
−

iω2
1

k1
χ
(P;EH)
i jk E3 jH∗2ke−i(k3−k2−k1)z− εi jkeik1z

∂ j
ω1

k1
χ
(M;EH)
klm E3lH∗2me−i(k3−k2)z

]
(E.16)

similar equations can be found for E2 j, E3k, H1i, H2 j, and H3k.
Specializing to the case discussed in Chapter 2 in which the incoming wave is polarized

along x̂ we can simplify further. The electric field must be Ex, the magnetic field must be
Hy, and since the only spatial dependences of the waves are in the ẑ direction, the ∇ of the
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curl must simplify to ∂

∂ z . Eq. (E.16) simplifies to

dE1i

dz
=

1
ε0c2

[
−

iω2
1

k1
χ
(P;EH)
i jk E3 jH∗2ke−i(k3−k2−k1)z + εizkχ

(M;EH)
kxy

iω1(k3− k2)

k1
E3xH∗2ye−i(k3−k2−k1)z

]
(E.17)

This equation combined with the other five coupled mode equations for E2 j, E3k, H1i, H2 j,
and H3k can be solved to yield the spatial dependence of a general second order process for
nonlinear magnetizations and polarizations.
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