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ABSTRACT

High-Energy-Density Physics Experiments Relevant to Astrophysical Systems

by

Channing M. Huntington

Chair: R. Paul Drake

This thesis details a trio of distinct high-energy-density experiments, each related to

a specific astrophysical phenomenon. The greatest attention is paid to the applica-

tion of novel diagnostic techniques to a radiative shock system in xenon gas. The

radiative shock was created using the OMEGA Laser to launch a beryllium pusher

into a xenon-filled shock tube. Significant radiative cooling of the xenon leads to a

layer of dense gas that facilitates x-ray radiography and, in a novel application of

the technique, x-ray Thomson scattering. Previously limited to low-Z, solid density

materials, the investigation of the fast, high-Z, weakly coupled Xe shock with scat-

tered x-rays required concurrent developments in experimental design, theory, and

diagnostic capabilities. Similar structures abound in astrophysics; examples include

the interaction of shocks with molecular clouds, blast waves generated by gamma-ray

bursts, and the evolution of late-stage supernova remnants.

Other aspects of gamma-ray bursts and supernovae physics were explored with

an experiment on the ultrafast HERCULES Laser, and simulations of an experiment

designed for the National Ignition Facility, respectively. At the HERCULES Laser,

a relativistic electron beam was imaged after propagation through increasing lengths

xiii



of background plasma. The beam was observed to evolve and break apart as a result

of filamentation instabilities, the same forces that act on the charged particle fluxes

from gamma-ray bursts.

Finally, the radiative shock was revisited by performing 1D simulations of a 200

MBar, x-ray driven pressure pulse that is only achievable at the National Ignition

Facility. The HYDRA code was used to model shock propagation though a Rayleigh-

Taylor unstable interface in a low-density foam target. Using models of radiative

Rayleigh-Taylor growth from literature, the plasma conditions were extracted from

the simulations and used to predict the instability growth in the upcoming experi-

ment. Although they study vastly different regimes, each of the these experiments

relates the physics of astrophysical objects to laboratory-based laser plasma science,

and in doing so advances understanding of both fields.
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CHAPTER I

Introduction

Few topics have inspired the wonder–and sustained scientific research–as the cos-

mos. Studies of early civilizations reveal the detailed knowledge these people had of

the movement of solar and extra-solar bodies, as evidence by the alignment of marvels

like Stonehenge and the Great Pyramids of Giza to the locations of celestial bodies.

Centuries later, armed with only a notebook and a keen eye, diligent astronomers

recorded the motions of the stars with such precision that they were able to identify

new points of light; objects now known to have been supernovae explosions 1

With the development of magnifying optics and the telescope in the 17th century,

observational astronomy entered a new age. In the modern era, visible light observa-

tions of the stars are complemented by radiation measurements across a wide range of

wavelengths, made possible by radio telescopes and observation stations which rival

in scale and sophistication any of man’s scientific endeavors. Now, the technological

innovations of the past several decades once again have the potential to revolutionize

the way we understand astrophysical objects.

1The most famous such example occurred in November, 1572, when the Danish astronomer Tycho
Brahe recorded the appearance of what is formally known as SN 1572 “B Cassiopeiae,” but is often
referred to as “Tycho’s Supernova.” The discovery contradicted the widely held view of the time that
the nighttime sky was unchanging, and the importance was not lost on Brahe, whose manuscript on
the subject is titled Concerning the New Star, never before seen in the life or memory of anyone...
(translated from the Latin De nova et nullius aevi memoria prius visa stella, iam pridem anno
nato...)
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To study astrophysical objects terrestrially, connection must be rigorously devel-

oped between the experiment and the astrophysical system one intends to investigate.

While their size cannot be matched, supernovae (SN), gamma ray bursts, and astro-

physical shock-cloud interactions are all examples of systems characterized by high

Mach-number flows, ionized gas, and significant radiation transport effects – physi-

cal processes that can be studied in the laboratory. To do this, facilities have been

constructed to direct large amounts of energy into small volumes, in some cases with

astounding quickness. The ability to create high energy density systems allows the

rigorous matching of laboratory experiments to astrophysical systems through dimen-

sionless parameter scalings. In the following sections I describe the nascent field of

Laboratory Astrophysics and provide give several examples of experiments related to

astrophysical objects. This is followed by a brief description the capabilities of the

laboratories that have been used to perform this work, as well as other high-energy-

density physics (HEDP) facilities where “lab astro” experiments are conducted.

1.1 Laboratory Astrophysics

The number of physical processes involved in the dynamics of astrophysical ob-

jects is daunting. In a Type II supernova, for example, all four of the fundamental

(gravitation, electromagnetic, strong nuclear, and weak nuclear) forces are evident:

the gravitational collapse of a star compresses the burning gas until the strong-force-

mediated neutron-neutron repulsion (as well as the increasing neutron degeneracy

pressure) slows the implosion. At this stage neutrinos, possibly 1057 per second and

interacting via the weak force, carry away tremendous amounts of energy [13]. The

rebounding matter is highly ionized and relativistic, setting up intense electric and

magnetic fields as the remnants stream out into the interstellar media. Correctly

modeling such an event is a challenge on a computer, and matching it in the lab is

an impossibility.
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Given the scope of the task, to make progress one must simplify the system and

focus on a small segment of the dynamics. In the example of a Type II supernova, an

experiment may be dedicated to understanding the nuclear forces of strongly coupled

plasma. Or, relevant to the explosion phase, one can investigate the hydrodynam-

ics of the outflowing material. Still later in the explosion, an experiment may be

designed to observe the dynamics of the relativistic electrons that escape from the

supernovae remnants (SNR). In each case a comparison of the parameters of the ex-

periment and astrophysical object must be made, with attention paid to the scalings

of dimensionless parameter that match rigorously, and those that are yet unachieved

in the lab. In the following sections I describe three astrophysical phenomena: as-

trophysical radiative shocks, gamma ray bursts, and Rayleigh-Taylor instabilities in

supernovae. For each case, a laboratory experiment has been designed, the outline of

which is presented here. The detailed results of these are presented in the subsequent,

respective chapters.

1.1.1 Astrophysical Radiative Shocks

There are myriad examples of astrophysical objects whose dynamics are strongly

influenced by the production and transport of radiation. Examples include the in-

teraction of radiative shocks with molecular clouds [75], blast waves generated by

gamma-ray bursts [142], and the evolution of late-stage supernova remnants. In the

case of a spherically expanding shock from a supernova, one observable difference be-

tween the radiative and non-radiative (adiabatic) case is the rate of expansion. The

well-known adiabatic solution for the expansion of a blast wave is given by R ∝ t2/5.

This was independently shown by von Neumann, Sedov in 1946, and Taylor in 1950

in their investigations of nuclear explosions, and is now called the Sedov-Taylor blast

wave in honor of the historically significantly work [191, 204, 205] 2. In the radiative

2The second of Geoffrey Taylor’s 1950 papers incorporated experimental data, in the form of
photographs of the 1945 Trinity nuclear test. The photographs were taken at regular intervals after
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case relevant to supernova remnants, a similar power-law dependence has been derived

by Edison and Keity [142] where R ∝ (at)n, and a and n depend on the upstream

and downstream adiabatic indices, the energy loss fraction, and the initial conditions

of the system. Indeed, experimental evidence has shown that radiation lowers the

effective adiabatic index, leading to deviations from the Sedov-Taylor scaling [98].

Experiments to explore radiative shocks have been performed by many groups

[51, 20, 119, 193, 181, 180, 179, 197]. The present work follows efforts of Reighard et

al., and later Doss et al., whose experiments investigating the structure and dynamics

of a radiative shock in xenon gas made possible the scattering experiments described

in §V. The threshold for determining the radiative effects of the shock is found by

equating the radiation energy flux and the kinetic energy flux at the shock front. The

former is given by the Stephan-Boltzmann law,Φ = σT 4, where Φ is the radiation

energy flux, σ is the Stefan-Boltzmann constant and T is the immediate post-shock

temperature. The kinetic energy flux is a function of the shock velocity us and the

upstream material density ρo, and is given by ρu3
s/2. A shock is said to be radiative

when Rrad approaches or exceeds unity, where Rrad is given by

Rrad ≈
2σT 4

ρou3
s

∝ u5
s

ρo
. (1.1)

Clearly the effects of radiation are most pronounced in a fast shock passing through

a low-density material. The proportionality of Eqn. 1.1 is developed further in the

later discussion of the xenon radiative shock system.

When Rrad nears one, strong radiative cooling of the electrons is taking place. In

the experiments described here a cooling layer is formed, and is accompanied by a

region of xenon which is compressed to higher density than predicted by strong shock

relations with γ ≈ 4/3. However, the details of this process are dependent on the

the detonation, allowing Taylor to compare the scaling to the data with close agreement. He further
calculated the total energy released by the atomic blast, reporting 16.8 kilotons TNT-equivalent.
This also agreed well with the 18.6 kiloton equivalent later reported [46]
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specifics of radiation transport through the system. A useful metric for quantifying

this transport is the optical depth, defined in terms of the total opacity χν as

τν =

s0∫
s

χν(s
′)ds′. (1.2)

We leave the details of xenon opacity to the description of the experiment in §3.3.

Qualitatively, however, the optical depth characterizes the occlusion of radiation at

frequency ν between point s and s0. A large optical depth implies that radiation is

readily absorbed and/or scattered–a regime termed optically thick. In the optically

thin regime, where τ is small, radiation of frequency ν flows essentially unimpeded

through the system. The optical depth may be different in pre- and post-shocked

materials. In the frame of reference of the shock, the pre-shocked region is termed

upstream, while the post-shock region is downstream. Given this nomenclature, radia-

tive shocks can be classified by the upstream and downstream optical depth. Several

examples of radiative shocks in the lab and in nature are given in Tbl. 1.1.1.

A strong shock launched into a gas or low-density solid with a moderate to high

number of loosely bound electrons will, in many cases, develop into a thick–thin ra-

diative shock. Such a system is thus readily accessible in the lab, and numerous

experiments have addressed this case. A particularly robust thick-thin shock experi-

mental platform has been established at the University of Michigan by Reighard and

Doss using atmospheric Xe gas as the shock medium. The above descriptions are

elaborated upon for the specific case of the xenon thick-thin system Chap. III.

For the xenon system at the University of Michigan, x-ray radiography has been

the primary diagnostic for diagnosing the plasma conditions. The resulting 2D images

were used to infer shock compression, velocity, and to perform stability analysis.

However, the electron temperature Te, which plays a central role in determining the

radiative properties (Eqn. 1.1) cannot be measured through imaging. In Chap. IV
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Down Up Astrophysical examples Laboratory examples

Thick Thick · Shocks in stellar interiors [224]
· Blast waves in supernova, prior
to breakout

· Difficult to produce

Thick Thin · Supernova blast wave emerging
from stars [65]
· Accretion shocks in young stel-
lar nebula [41, 30, 107]

· High-Z gas (Xe) at low pressure
[20, 127]
· Low-density SiO2 aerogel [119]
· High-Z gas (Xe) at atmospheric
pressure [179]

Thin Thin · Phases of type II SN [36]
· Shock-cloud interactions [75]
· Shock in jet outflows from
young stars [103]

· Low density gas experiments
[98]

Thin Thick · Possible in some phases of
supernova remnant interaction
with molecular clouds [19]

· May exist in a transient sense,
likely to transition to thin-thin

Table 1.1:
A partial summary of radiative shocks in astrophysics and in the labora-
tory. They are classified based on the optical depth of the upstream and
downstream material.

6



a complementary diagnostic – non-collective x-ray Thomson scattering (XRTS) – is

described in detail. This technique has the potential to directly measure the electron

temperature, and also to infer the average ionization of the system. The details of

recent experiments and results from XRTS measurements, and their implications for

future radiative shock experimental diagnosis, are the subject of Chap. V.

1.1.2 Gamma Ray Bursts and Current Filamentation instabilities

The first data from gamma ray bursts (GRBs) was collected in 1969 by the Vela

satellite project. Developed by the U.S. Air Force and managed by the Advanced

Research Projects Agency and the U.S. Atomic Energy Commission, the first Vela

satellites were launched in October 1963 to monitor compliance (primarily of the

Soviet Union) with the atmospheric nuclear test ban treaty signed the same year.

Because of the precession of the satellites, several times each day the diagnostic

packages–including numerous x-ray, gamma-ray, and neutron detectors– pointed away

from the Earth and swept out an arc through the sky [42]. Though early designs of the

Vela probes likely observed GRB signal, later versions with improved instrumentation

enabled scientists to conclusively determine that over a dozen of the gamma ray signals

that had been detected were of cosmic origin [123].

For nearly two decades mysterious gamma-ray signals were detected. It was not

until the launch of the Compton Gamma-Ray Observatory (CGRO) in 1991 that

the next step in GRB research could be taken. In particular, a set of time-resolved

detectors spanning six decades of the electromagnetic spectrum (30 keV - 30 GeV)

aboard the CGRO showed that GRBs are isotropically distributed through the sky

[81, 68]. Further progress in understanding the nature of GRBs was made by the

Italian-Dutch Beppo-SAX satellite project, which observed in GRB970228 the longer-

duration “afterglow” which had been predicted to follow a GRB event [167, 118, 157,

43].
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Gamma ray bursts have been observed at distances greater than 13 billion light

years from Earth [174, 44]. This fact highlights the tremendous energy release associ-

ated with these events. However, research into the mechanisms by which that energy

is converted to the observed light curves (which vary drastically from one GRB to

the next [150]) is an active field. It has been proposed that a portion of the observed

spectra may be the result of relativistic electrons interacting with tiny, tangled mag-

netic fields. If the fields are strong enough to appreciably deflect the electrons, they

will radiate in a process dubbed “jitter radiation,” [154, 183]3 The proposed origin of

these fields is the Weibel instability, which tends to form current filaments from rel-

ativistic electron populations (see §6.1). However, the details of the instability scale

lengths and radiation spectrum produced by Weibel-mediated electron beam filamen-

tation have not been studied in the laboratory, suggesting the utility of a lab-astro

experiment to understand the nature of GRB light curve.

In collaboration with scientists at the HERCULES Laser at the University of

Michigan Center for Ultrafast Optical Science (CUOS) and several other groups, an

experiment to create and measure electron filamentation and the resulting radiation

was designed in 2007. In 2008 we conducted several weeks of experiments aimed

at seeding and controlling Weibel filamentation in relativistic electron beams. The

results of these measurements are given in Ref. [111]. Although these experiments

are not decisive with regard to the open questions of GRB light curve generation,

they have been important to understanding the dynamics of electron beams and may

prove a useful test bed for further laboratory GRB research.

3More generally, Fleishman has pointed out that the movement of an electron interacting with
random EM fields is akin to a diffusion process, and refers to the radiation from this process “diffusive
synchrotron radiation.” [69]. This work extends the work of Ref [154] by applying a non-perturbative
approach to the calculation of the spectra which remains valid as the coherence length of the magnetic
field increases.
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1.1.3 Supernova-Relevant Radiative Rayleigh-Taylor Instability

The Rayleigh-Taylor (RT) instability is a fluid instability which results from op-

posing pressure and density gradients. Numerous terrestrial examples exist, including

the rate of rise of salt domes [223], and the familiar inversion of a jar of oil and vine-

gar salad dressing. Rayleigh Taylor instability plays a role in astrophysical objects

as well, and the Type II supernovae described previously has been an area of active

research in the laboratory astrophysics community.

The opposing pressure and density gradients necessary for RT instability are set

up in an exploding star as follows: while the massive (> 8M�) progenitor star burns,

lighter elements like hydrogen and helium are fused into heavier ones. This occurs at

the core, with each successive fusion cycle generating the pressure needed to halt core

collapse. This cycle repeats until iron is produced (as a decay product of nickel), at

which point further fusion cycles are no longer energetically favorable. Iron continues

to be produced until the core reaches the Chandrasekhar limit of ≈1.4M� [31]. Next,

the core begins to gravitationally contract and heat, initiating electron capture and

photo-disintegration of the iron and producing the neutrino flux discussed previously.

The inrushing core material moves at such high speed that the outer layers of the

star are not immediately affected. When these less dense materials begin collapsing,

they encounter the outflow of the rebounding core material and a shock is formed,

traveling radially outward. As the shock propagates it is overtaken by a rarefaction

and evolves into a blast wave that passes through the progressively less dense layers.

After the blast wave has crossed the interfaces between layers (He to H, for example),

the density gradient is directed inwards, (from H to He, for example), but the pressure

gradient established by the blast wave is directed along its propagation vector. In this

way opposing pressure and density gradients are established, producing a Rayleigh-

Taylor unstable configuration in the Type II supernova.

Both theoretical and experimental studies of the hydrodynamic RT unstable sys-
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tem described above have been conducted [5, 117, 187, 186, 136, 135]. However, as

established earlier, a shock which is cooling via radiation will evolve differently than

a hydrodynamic one. In the case of supernovae surrounded by a dense outflow, as

arises from red supergiant stars, it has been shown that the ejecta from the star will

create a radiative forward shock in the direction of propagation as well as a radiative

reverse shock that travels back into the ejecta [166]. A qualitatively similar system

exists in the deceleration phase of imploding ICF capsules, further motivating exper-

iments addressing this method of RT stabilization. To directly measure the effect of

a radiative shock on an embedded, RT unstable interface, we designed an experiment

based on previous, non-radiative RT work by Kuranz et al. [136, 135]. Design work

has been performed in one-and two-dimensional simulations, and details of this work

are presented in Chapter VII.

The capability to drive a shock radiative shock through an RT-unstable system

which is diagnostically viable has only recently been made possible by the comple-

tion of the National Ignition Facility (NIF) [133, 109]. While the NIF is a unique

laboratory, it is one of many HED facilities in the United States and throughout the

world.

1.2 Facilities

Laboratory astrophysics is a young field, largely because the tools needed to create

high-energy-density conditions in the lab did not exist until recently. Each of the

experiments alluded to previously use a different laser to deliver energy to the physics

target. While study of these “laser driven” experiments represents one of the most

active areas of HED science, using a laser to drive the experiment is not the only

method of creating high energy density conditions. An overview of the facilities

used for the work presented here is given in the following sections, as well as a brief

description of other facilities around the world.
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1.2.1 OMEGA Laser Facility

Located at the Laboratory for Laser Energetics (LLE) at the University of Rochester

in Rochester, NY, OMEGA (sometimes referred to as OMEGA 60, to differentiate it

from OMEGA EP, described in section 1.2.4) has been a workhorse facility for laser-

driven HED experiments since it began operation in 1979. The current configuration

includes 60 beams that can be individually pointed, each delivering up to 500 J at

3ω (351 nm). Owing to the mechanism of producing and amplifying the seed pulse,

the sixty beams are grouped into three sets of 20, which share pulse shape and some

timing characteristics, but are themselves uniformly distributed around the spherical

target chamber. The target chamber is seen on the left in Fig. 1.1, separated by the

laser bay on the right by a shielding wall, and all sitting above several rooms housing

the capacitors that power the laser amplifiers. The neodymium:glass laser system

can fire slightly more than once per hour, allowing up to a dozen or more shots in a

single day. Each shot is analyzed with a set of fixed and user-specified diagnostics.

By taking advantage of the flexibility in laser setup and the large suite of diagnostics,

a tremendous range of physics experiments have been performed at OMEGA.

1.2.2 HERCULES Laser

Construction of the HERCULES laser at the University of Michigan began in 1990,

when the Center for Ultrafast Optical Science (CUOS) was established by the National

Science Foundation. The single-beam facility uses Ti:sapphire crystals and chirped

pulse amplification (CPA) to achieve record-setting focused intensities, greater than

1022 W/cm2 [221]. These intensities are reached by compressing a modest amount

of energy, ≈15J, into an exceptionally short pulse length of 30 fs. When focused

to single-micron spot sizes relativistic plasma conditions are reached, as quantified

by a normalized vector potential a0 = eE
mecω0

> 1 4. In this form E is the electric

4Guassian cgs units are used throughout, unless otherwise noted.
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Figure 1.1:
Diagram of the OMEGA Laser Facility. Adapted from LLE Facility Doc-
uments
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field strength, ω0 is the laser frequency, c is the speed of light, and e and me are

the electron charge and momentum, respectively. For a0 > 1 the kinetic energy

imparted to the electron by the laser electric field is greater than the electron rest

energy and relativistic effects begin to play an important role the plasma dynamics.

By focusing this ultrarelativistic pulse into a region of low-density gas an electric

field structure can be setup that is able to accelerate electrons to near the speed of

light. This process is called Laser Wakefield Acceleration (LWFA), and has been used

by researchers at HERCULES to produce electrons with energies of many hundreds

of MeV. At somewhat lower energies, similar electron beams were created and used

to study the GRB dynamics introduced in §1.1.2. Details of the LWFA mechanism

are given in Chapter VI, as well as results of the GRB-motivated electron beam

filamentation experiment.

1.2.3 National Ignition Facility

By a significant margin, the largest laser facility in the world is the National

Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), in Liv-

ermore, CA. With the expressed goal of achieving nuclear fusion, the NIF uses 192

beams to deliver a total 1.8 MJ energy (at the time of writing) to the center of a

30-foot diameter spherical target chamber. The beams are not uniformly distributed

like the 60 beams of OMEGA, but instead are arranged in two nearly-circular rings

around each pole. This configuration was motivated by an x-ray driven approach to

inertial confinement fusion (ICF) design. The choice of diagnostics at the NIF also

reflects the ICF mission, with neutron and gamma ray detectors in place to record the

flux and energy of the fusion products. Numerous x-ray diagnostics, many of which

leverage well-tested designs from OMEGA, have also been commissioned. Chapter

VII further describes the ramifications of the beam arrangement and diagnostic suite

on indirect drive platform development with respect to laboratory astrophysics ex-
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periments on the NIF.

1.2.4 Other facilities: Lasers, Pinches, and Accelerators

Beyond the laser facilities described above, there are many additional laboratories

both in the United States and abroad performing HED experiments. Noting three in

particular, the addition of the four-beam OMEGA EP laser at LLE adds short-pulse

capabilities to the OMEGA 60 chamber, or can be used for independent experiments.

The Nike Laser at the Naval Research Lab achieves an exceptionally uniform laser

spot from a krypton-fluorine gas amplifier, and has been used to perform numerous

experiments on Rayleigh-Taylor instability issues relevant to ICF. At Sandia National

Laboratories, the Z-machine is able to release 26 million Amps of current through tiny

wire arrays, compressing them on axis and creating HED plasmas and intense x-ray

sources. With careful experimental design, each of the facilities described here are

capable of creating astrophysically-relevant conditions in the laboratory and helping

expand our knowledge of the basic physics mechanisms at work in the cosmos.
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CHAPTER II

X-ray production for experimental diagnostics

Many of the methods used to probe high-energy-density systems rely on an ex-

ternal source of x-rays. This is the case for x-ray Thomson scattering, the subject of

Chapter V, as well as for x-ray radiography, used to image the radiative Rayleigh-

Taylor experiment in Chapter VII. In both cases, the success of the diagnostic relies in

part on the properties of the x-ray source. For a given experiment, one must prioritize

the brightness, energy, and degree of energy spread of the x-ray probe. Understanding

the processes by which x-rays are produced in laser-matter interaction is essential to

designing appropriate sources, and is the topic of this chapter.

In discussing the emission spectrum from a laser-produced x-ray source, the con-

tributions of continuum and line emission may be considered separately. Continuum

emission is an important diagnostic for magnetically confined plasmas [137], but is

not commonly used as a diagnostic in laser-produced plasma experiments. As such,

it is discussed only briefly here. Line emission is the primary source of x-rays for

HED experiments, and has been employed for decades as a diagnostic probe for ra-

diography, scattering, and spectroscopy experiments [3, 4, 9, 10, 12, 15, 21, 26, 35,

40, 53, 71, 72, 73, 74, 82, 83, 89, 87, 94, 108, 112, 115, 121, 129, 130, 131, 134, 139,

140, 138, 141, 147, 168, 169, 176, 192, 207, 213, 216, 217]. Following our mention of

continuum emission, we describe the basic mechanisms of generating line emission,
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explain briefly the suite of computational tools used to model x-ray spectra, review

the physics of laser-solid interaction frequently used to generate x-rays, and provide

an illustrative example of a recent x-ray source experiment.

2.1 Continuum radiation

Continuum emission in the systems of interest here is dominated by the radiation

of accelerating free electrons, called Bremsstrahlung radiation. Bremsstrahlung is

produced when an electron interacts with an ion, decelerating and changing direction,

without being captured by the ion1. The power emitted into the spectral region

around the energy ~ω per unit volume is reported as reported in Ref. [97] is:

Pff (~ω) =
32

3

√
π

3
r2

0c

√
EH
Te
Z2nineexp

(
−~ω
Te

)
d(~ω). (2.1)

In this equation r0 = e2/mc2 = 2.818 × 10−13 cm is the classical electron radius,

c is the speed of light, and EH = 13.6 eV is the binding energy of the ground state

hydrogen electron. Equation 2.1 is valid in the classical limit, with quantum correc-

tions being incorporated in the form of the multiplicative Gaunt factor. However,

this factor is near unity over a wide range of parameter space [188] and can often be

neglected. The subscript on P indicates the free-free nature of the electron before and

after the interaction. This is contrasted with bound-free and bound-bound processes

in the discussion of photon scattering of Chapter V.

Radiative losses from bremsstrahlung can be the main cooling mechanism in low-

Z plasmas [188], and the measurement of bremsstrahlung can be a useful diagnostic

for understanding plasma conditions [120]. Continuum radiation has been used as a

1If the electron is captured by the ion, this is categorized as radiative recombination. The power
spectrum of radiative recombination is continuum, but is also dependent on the binding energy of
the level into which the electron was captured. Radiative recombination is a small effect which is
dominated by bremsstrahlung in the systems described here.
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diagnostic source for HED experiments [76, 220], and development of brighter con-

tinuum sources continues. One example is the work on dynamic hohlraums, which

consist of a thin plastic shell filled with a high-Z gas. The shell is imploded via di-

rect laser irradiation, and the spherically converging shock produces a plasma which

strongly emits continuum radiation up to several keV [100]. Such a source is useful

for absorption spectrometry or gated spectrometer measurements. However, for the

purpose of creating higher energy x-ray sources for imaging or scattering measure-

ments, the exponentially decreasing nature of Eqn. 2.1 with photon energy means

that the continuum emission is often only a low background under the line-emission

spectrum.

2.2 Line emission

Line emission is produced by the transitions of electrons between energy levels of

an atom. The energy of the photon emitted is a function of the electronic structure

of the atom, and to a lesser extent the properties of the plasma surrounding the

emitting atom. Because the exact quantized energy of the transitions depends on

the electronic structure of the element, line radiation from each element is slightly

different, motivating the term “characteristic” x-ray radiation.

Characteristic line emission is produced in two related processes, namely inner-

shell transitions and ionic resonance line transitions. In the former, an electron from

the inner shell of a neutral or weakly ionized atom absorbs energy and is liberated

from the atom. An electron from a higher shell then falls to repl3ace it, and in

doing so radiates energy equal to the potential difference between its initial and final

state. Transitions from the L to K shell produce Kα radiation, which is the most

commonly used inner-shell transition in HED experiments. Kβ radiation is generated

by transitions from the M shell to K shell, and the ratio of Kβ / Kα can be used as

a diagnostic for the x-ray source material bulk temperature [161, 159, 162, 207, 95].
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However, the ratio is necessarily small (≤0.14), and Kβ radiation is rarely generated

specifically for use as a diagnostic probe.

Unlike the inner shell transitions, resonance transitions occur in highly ionized

atoms retaining only one, two, or a few electrons (called H-like, He-like, etc, owing

to their similarity in electronic structure to these low atomic number elements). The

energy of the line transition is again equal to the difference between initial and fi-

nal states of the decaying electron, but the distribution of possible electron levels

resembles that of the neutral atom with the same number of electrons. The increased

Coulombic potential from the remaining nuclear charge increases the energy of the

transitions. For hydrogen-like atoms, the energy of the transitions was measured

empirically before the advent of quantum mechanics (at which time the numerical

coefficient in Eqn. 2.2, taking Z = 1, became known as the Rydberg energy), and was

later explained by the Bohr model,

~ωi,f =
Z2e2

2a0

(
1

n2
f

− 1

n2
i

)
. (2.2)

Here, the subscripts i, and f indicate the initial and final principle quantum level n,

a0 is the Bohr radius, Z is the nuclear charge, and ~ω is the energy of the photon

emitted. Thus, the energy emitted in the ni = 2 → nf = 1 transition in a H-

like Al atom (Z = 13) is ∼ 132× more than the same Lyα transition in hydrogen.

Although the Bohr model serves to illustrate the basic scalings of the line transitions,

the electronic structure of a real plasma is tremendously more complicated than this.

Calculation of the emission spectra for experimental design and analysis requires

computer models capable of solving the coupled equations–or some simplified subset

of the equations–that describe the system.
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2.3 Calculation and modeling of emission spectra

For simple, single-atom systems the calculation of emission energy can proceed

by Eqn. 2.2, suitably modified to account for shifts in the energy levels. For a real

system, however, the level structure of the atom can be tremendously complicated,

and transitions may occur between potentially millions of level pairs. The rate at

which these transitions occur depend on the relative occupations of the level pairs,

and for a plasma with gradients in temperature and density, these occupations are not

well described by a simple Boltzmann model. A calculation of the level occupations

must include (at least) the dominant processes that move electrons between the levels,

including:

• Collisional excitation (bound-bound collisional processes)

• Collisional ionization (bound-free collisional processes)

• Collisional de-excitation

• Spontaneous radiative decay

• Photoexcitation

• Radiative recombination

• others, depending on the system.

Each of these transitions has associated rates, either measured or calculated for every

atom, and a complete description of the level populations can be found by solving the

set of equations which couples all of the levels though these processes. For a single

level i, the population rate of change of is given by

dni
dt

=

NL∑
i 6=j

njWji + ni

NL∑
i 6=j

Wij, (2.3)

where Wji and Wij are the populating and depopulating rates between levels i and j,

and NL is the total number of energy levels in the system. In practice this requires an
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unrealistically large collection of cross section data (note that Wji and Wij each have

numerous contributions) and produces a computationally overwhelming set of coupled

equations. Progress can only be made by applying several simplifying assumptions.

A tractable solution to the atomic level population calculation has been developed

in the form of the collisional-radiative model (CR model) [122, 39]. The CR model

assumes that collisions are the primary mechanism for excitation, and thus neglects

transitions from interaction of the atoms with the radiation field. Additionally, not

every possible level is modeled explicitly. Instead, a group of transitions between

levels with nearly-equal energy differences (specifically, when the spacing between

neighboring lines is comparable to or greater than the line width), are treated as a

single, broad distribution of transition energies. These are called unresolved transition

arrays, and are important for reducing the number or transitions in moderate- and

high-Z atoms. These features, along with many other technical aspects beyond the

scope of this document, have been incorporated into the set of CR codes that are

readily available for analysis of plasma population and x-ray emission properties.

2.4 Laser-produced x-ray sources

Laser irradiation of transition metals is commonly employed to produce character-

istic x-rays for use in high-energy-density experiments. At its simplest, this technique

requires only a moderate amount of laser energy (with respect to the scale of facilities

described previously) to be focused on a metal foil. To investigate how the specific

regions of a laser-irradiated x-ray source produce radiation, it is useful to describe

here the basics of laser-solid interaction. The description below assumes a “high-

intensity” laser pulse on the order 1013 < IL < 1017, with laser intensity IL in units of

W/cm2. Below this intensity the high energy fluxes described here are not delivered,

while above this intensity relativistic electron motion driven by the strong electric

field begins to play a role in the dynamics.
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The thickness of the target foil is determined by the experimental geometry. The

foil is thin (order of several µm) if the x-rays are intended to be used on the side

opposite the laser, or can be arbitrarily thick when the intended target of the x-rays

is on the laser-irradiated side. Near-instantaneously, relative to a 100 ps or longer

pulse, a laser impinging on a solid target heats it, and the heated material expands into

the vacuum. This expanding plasma is known as the corona region, and is necessarily

lower density than the solid material. Laser light cannot penetrate beyond a certain

electron density, known as the critical density and given by:

nc =
πmec

2

e2λ2
L

(2.4a)

nc =
1.1× 1021

λ2
µ

cm−3. (2.4b)

The critical density depends only on the the laser wavelength λL and the physical

constants of electron mass me, speed of light c, and electron charge e, and as such

can be expressed in the convenient engineering form of Eqn. 2.4b, where λµ is in

units of microns. The laser heats the underdense region, where ne < nc, but is

strongly absorbed near nc. The other interface of note is the ablation front, the point

from which mass flows away from the solid material [63]. These are indicated in the

schematic shown in Fig. 2.1.

The laser energy deposited near nc is transported into the plasma by x-rays, which

can penetrate to higher densities, and by electron heat conduction. For this reason,

it is called the conduction or transport layer. The electron distribution is largely

Maxwellian, and the lateral propagation of electrons through the target serves to

smooth hot spots that may be present in the laser. This has little role in x-ray

generation, but is relevant to the hydrodynamic instabilities described in Chap. VII,

where laser-imprinted perturbations of the ablation front can be unstable to Rayleigh-
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Figure 2.1:
Diagram of the temperature and density profiles established in a laser-
produced plasma (not drawn to scale). The flow directions of several
energy-transport mechanisms are indicated by the arrows, in relation to
the plasma corona and conduction regions.
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Taylor growth. In addition to the Maxwellian population, for laser intensity greater

that 1015 W/cm2 the generation of supra-thermal electrons with energies of tens of

keV to MeV is well documented [27, 33, 62, 73, 104, 160, 207, 215, 222, 169]. This

“hot electron” population is the result of electrons interacting with waves in the

plasma, particularly those generated by stimulated Raman scattering (SRS) in the

plasma corona [66, 58]. This process is related to the acceleration of electrons via

laser wakefield acceleration, which is the topic of Chap. VI. Hot electrons play an

important role in x-ray generation, and are discussed further in §2.5.

Although it is not usually an important feature for x-ray production experiments,

the establishment of an ablation surface leads to recoil motion of the upstream mate-

rial in the opposite direction. We diverge briefly to explore this, as it is an important

feature in experiments subsequently discussed. At the critical surface, the conserva-

tion equations for mass, momentum, and energy can be written:

ρcuc = ρu ≡ ṁ, (2.5a)

ρcu
2
c + Pc = ρu2 + P, (2.5b)

ṁ

(
γ

γ − 1

Pc
ρc

+
1

2
u2
c

)
+ qout = ṁ

(
γ

γ − 1

P

ρ
+

1

2
u2

)
+ qin + I. (2.5c)

In these equations ρ is material density, u is the plasma flow velocity, P is pressure, q

is the electron heat flux, I is the absorbed laser energy flux, ṁ is the areal mass rate

of change, and γ is the polytropic index. The subscript of c indicates the quantity is

evaluted on the laser-irradiated side of the critical surface, where quantities without

subscripts are on the conduction zone side of nc. At the ablation surface the equations
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are somewhat different:

ρu = ṁ = constant (2.6a)

Pa = ρu2 + P, (2.6b)

ṁ

(
γ

γ − 1

P

ρ
+

1

2
u2

)
+ qin = 0. (2.6c)

Here Pa denotes the ablation pressure. Note that Eqn. 2.6a indicates that the ablation

surface is a “source” of plasma in the laboratory frame, which relates to the definition

of the ablation surface. The density profile in the corona region is that of an isothermal

rarefaction, implying a flow velocity given by the isothermal sound speed

uc = cT =

√
P

ρ
. (2.7)

With Eqns. 2.5a and 2.5b we find the ablation pressure to be

Pa = 2ṁcT . (2.8)

After a brief period as the shock passes though the material (shock transit time), the

ablation pressure serves to accelerate an initial mass m0 to a velocity v at time t given

by

Pa = m(t)
dv(t)

dt
(2.9)

where, assuming a constant mass flow rate we have

m(t) = m0 −
t∫

0

(
dm

dt

)
dt = m0 − ṁt. (2.10)

Using our value for ablation pressure from Eqn. 2.8 in Eqns. 2.9 & 2.10 and inte-
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grating yields the rocket equation:

v(t) = 2cT ln

(
m0

m(t)

)
(2.11)

At cessation of a constant power laser pulse, the final mass mf = m0 − δm is accel-

erated in response to the outgoing mass δm traveling at exhaust velocity vex ≈ 2cT .

This is a result of the absorbed energy flux I. Taking γ = 5/3 in Eqns. 2.5c & 2.6c,

I can be solved for,

I = 4ṁc2
T , (2.12)

where we have taken qout = ρu3
c = ṁu2

c , which represents the energy that must be

added at the critical surface to keep the rarefaction isothermal [6].

To a good approximation for low-Z materials, the important quantities given here

are expressed by Atzeni and Meyer-ter-Vehn [6] as

Tc = 13.7(I15λ
2
µ)2/3 keV, (2.13a)

cT = 8.75× 107(I15λ
2
µ)1/3 cm/s, (2.13b)

pa = 57(I15/λµ)2/3 Mbar, (2.13c)

ṁa = 3.26× 105(I15/λ
4
µ)1/3 g/cm2 s, (2.13d)

where I15 is laser irradiation is I / 1015 W/cm2 and λµ is the laser wavelength in

microns. Note that the numerical coefficients may vary across references [54, 143],

depending on assumptions of the plasma outflow speed (taken here to be cT , but

elsewhere
√

2 larger than this), the electron flux model used to evaluate q, and the

degree of ionization (this enters in the form of the gas constant in calculation of Eqn.

2.13a). While the quantitative values of these parameters are rarely important in

designing x-ray sources, understanding the profiles and fluxes depicted in Fig. 2.1 is
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crucial for analysis of laser-irradiated foil experiments.

2.5 Illustrative x-ray source experimental analysis

Laser-irradiated foils provide a simple method of x-ray generation but suffer from

low conversion efficiency from laser energy to multi-keV x-rays. Experiments us-

ing underdense gas targets have shown significantly higher conversion efficiency, but

gaseous targets are available in only limited energy ranges and are more difficult to

field experimentally [12, 11]. It has been suggested that low density solid “foam”

targets may behave more like gaseous targets, yielding increased conversion efficiency

while remaining simple to field [56]. To investigate this, we performed an experiment

using a 10% solid density copper (foam) target, and compared this with a solid copper

(foil) target, under near-identical laser irradiation at the Omega EP Laser Facility.

As is often the case for laser-irradiated metallic foils, the data from this experiment

(Fig. 2.2) shows peaks from inner-shell x-ray emission as ionic resonance transitions.

The K-shell ionization of cold material is attributed to electron impact ionization,

and the observation of the Kα radiation from this process has been used as a means

of inferring the properties of the hot electron population [14]. It has been shown that

the temperature of this non-Maxwellian population, denoted as Thot, scales roughly

as (Iλ2)1/3. These electrons are sufficiently energetic to ionize K-shell electrons from

the solid density region of the x-ray source foil, generating the Kα radiation. X-rays

generated by hot electron refluxing can be the dominant signal in high-intensity, short

pulse (order ps or less) x-ray sources. In such experiments the laser pulse ceases before

significant hydrodynamic expansion of the target occurs (isochoric heating), limiting

the Heα production [161, 159, 162, 207, 95].

For the experiment presented here, however, approximately 930 J of 1.053 µm

wavelength laser light was delivered in 74 ps into a 200 µm spot size, producing an

intensity of 4 ×1016 W/cm2. The hydrodynamic expansion depicted in Fig. 2.1 does
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occur on this time scale, and as a result Heα peaks are evident in both the foam and

foil targets. The solid-density copper target was a 250 µm diameter, 10 µm-thick

copper disk, while the foam target consisted of a short cylinder of elemental Cu at

ρ = 0.89 g/cm3, affixed to a CH substrate. The cylinder was 1865 µm in diameter

and 706 µm high; making it significantly more massive (≈ 360×) than the foil. For

both targets, a single short pulse beam from OMEGA EP was used at near-normal

incidence.

The primary diagnostic for this experiment was the Dual Channel HOPG Spec-

trometer (DCHOPG), which uses a pair of highly-ordered pyrolytic graphite (HOPG)

crystals, one optimized for copper Kα (8 keV) and the other in second order diffrac-

tion for silver Kα (22 keV) [4]. Both take advantage of mosaic focusing of the HOPG

crystal, which has a mosaic spread of 0.4 degrees. Only the low-energy channel was

employed for the copper targets, having an approximate energy range 7500 - 10500

eV. The detector was a BAS-MS 2040 image plate (IP), which was digitized with a

Fuji FLA7000 scanner.

As seen in Fig. 2.2 (a), clear peaks mark the transitions in the neutral or weakly

ionized atom (Kα and Kβ lines). Line emission from highly ionized atom is produced

mainly from the He-like state, with Li-like and H-like lines also evident. Figure

2.3 shows the occupation fractions of the higher charge states for a range of electron

temperatures, with density held constant at ne = nc = 1×1021 cm−3. For temperatures

> 2 keV, the distribution is strongly peaked at He-like ions, consistent with the

observed spectra. This is a result of the increased ionization energy required to

remove the first electron from any closed atomic shell, which leads to peaks in the

charge state distribution at noble gas-like ion states.

The Kα peaks from the foam and foil targets are seen to have nearly equal intensity

and shape. The foam target produced significantly more Kβ, though this feature is

resolved on both shots. Both measurements record the resonance lines though they
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Figure 2.2:
Experimental and synthetic spectra. a) Data from copper foil and 10%
solid density copper foam are shown with the composite synthetic spec-
trum from FLYCHK. b) Details of the components of the synthetic spec-
trum. Note that the dashed curve is identical in both plots.
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differ in intensity, with the foam target producing 50% more integrated emission in

the range 8.2 - 8.8 keV. While it is known that the absolute yield of x-rays will

fluctuate between nominally identical shots [217, 12], this result encourages further

investigation of low-density metallic foams as efficient x-ray radiation sources.

Figure 2.3:
Distribution of charge states for Cu plasma, as calculated by the FLYCHK
steady-state collisional-radiative model. The density is fixed at ne = 1021

cm−3 for temperatures between 200 - 5000 eV (note the break at 1 keV).
The increased ionization potential of the closed shell configurations (Ne,
and more so He) mean these states have higher occupation fractions over
a wider range of parameter space.

To model the x-ray emission, synthetic spectra were generated from the radiative-

collisional code FLYCHK [39]. However, because the DCHOPG spectrometer is spa-

tially and temporally integrating, the data shown in Fig. 2.2 (a) is the total emission
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from a system with a range of plasma conditions. To account for distinct plasma

conditions, the model curve shown is a combination of synthetic spectra from three

plasma regions, which are shown separately in Fig. 2.2 (b). The contributions of

the individual components were adjusted to match the spectrum, which correspond

to the volume of emitting plasma in the physical system. Each plasma at a specific

temperature and density represents itself a complex average over a range of plasma

states, as described in detail below.

Considering first the ionized resonance lines in the region 8.2 - 8.6 keV, least-

squares comparison of normalized FLYCHK spectra to the data yields a best fit

for plasma condition with temperature Te = 2500 eV and electron density ne =

4×1021/cm3. This is approximately four times the critical density nc, and corre-

sponds to the most dense region where temperatures are high enough to reach the

ionized states [9]. Note that the FLYCHK output has been convolved with a Gaus-

sian instrument response function with FWHM = 25 eV, which is in addition to the

natural broadening mechanisms accounted for by the FLYSPEC code. This is in ad-

dition to the resolution limiting effects accounted for by the FLYSPEC code, namely

the calculation of Doppler and Stark broadening, and represents the instrument res-

olution which is dominated by depth broadening [4] in the HOPG crystal. The same

FLYCHK spectrum is also a good fit to the foil resonance lines (not shown).

To model the K-shell lines a hot electron population was added to the Maxwellian

electron distribution function in FLYCHK simulations of greater-than-solid density

Cu. Extrapolation of Beg scaling [Thot = 215(I18λ
2)1/3 keV] to the intensity of this

experiment suggests a suprathermal electron population of 71 keV [32], though the

computed spectra are not a strong function of the specific value used [207]. For low

thermal electron temperatures (< 50 eV), both Kα and Kβ lines are predicted. As

shown in Fig. 2.2 (b), the best fit to the K-shell emission from the foam target is Te

= 19 eV and electron density ne = 1.4×1023/cm3.
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The region between the Kα and Li-like line is spanned by numerous transitions

in lesser-ionized atoms (Be-like, B-like, C-like, etc. See Fig. 2.3). In the experiment

these conditions correspond to the plasma which expands laterally during the laser

pulse, and to the cooling, expanding plasma after the laser has turned off. Empirically

this region is well modeled by a plasma with conditions Te = 1000 eV and electron

density ne = 8×1020/cm3. This is the third component of the synthetic spectra shown

in Fig. 2.2 (b). Together, the FLYCHK spectra from the hot coronal plasma, K-shell

lines, and cooler coronal plasma yield a spectra nearly equalling the measured foam

x-ray emission.
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Cold material 
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Figure 2.4:
a) Depletion of the M shell by bulk heating decreases the Kβ emission
(Image adapted from P. Nilson et al., Ref. [162]) b) The cold Kβ / Kα

value is a maximum, and the ratio decreases as the M shell is depleted at
higher Te. (Image from J. Myatt et al., Ref. [159])

Predictive estimates of absolute Kα and Kβ emission requires Monte-Carlo simula-

tion beyond the scope of this work. However, the ratio of Kβ/Kα has been calculated

as a function of bulk temperature in low mass targets similar to the foil used here

in several references [159, 162], one of which is reproduced in Fig. 2.4 b). From our

data, the measured Kβ/Kα for the foam target is 0.117, and is decreased to 0.013 in
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the foil target. On comparison with the studies in References [159] and [162], this

implies K-shell emission from nearly-cold copper in the case of the massive foam, and

a bulk temperature of >300 eV in the low mass foil target.

Research into the mechanisms described here is ongoing, with the goal of producing

brighter, more efficient x-ray sources. For use as a diagnostic probe, the details of a

given experiment dictate whether K-shell or resonance line x-rays are the preferred

option. For the purpose of radiography the Heα and Kα peaks represent nearly-

equivalent energies, assuming that the target to be imaged does not have absorption

lines that fall between the peaks (elements with Zi-1, where Zi is the x-ray source

material atomic number, can have this effect. Nickel, for example has a K-edge

near 8.3 keV, falling between the Kα and Heα peaks of Zn). For x-ray Thomson

scattering experiments, however, monoenergetic sources are preferred. In particular,

Kα emission provides an excellent incident source because of the paucity of red-wing

satellites in the region where down-scattered signal is expected. Thomson scattering

is the topic of the Chapters IV and V, where the stringent requirements on the x-ray

source are presented in full details.
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CHAPTER III

Radiative shock experiments

3.1 Introduction to the xenon radiative shock

The astrophysical motivation for studying radiative shocks was described in the

Introduction. Additionally, radiative hydrodynamic systems are shaped by a com-

plex interaction of physics processes, including radiation transport and fluid motion,

but also the atomic physics of ionization, line emission, significant departures from

LTE conditions, and the boundary effects inherent in finite-sized experiments. This

complexity makes radiative shock experiments compelling from a simulation bench-

marking perspective as well1.

Before quantifying important physical parameters of the system, it is useful to

introduce the experiment and its lineage. Early measurements of the xenon radiative

shock were taken by Reighard et al. [181, 179, 180], and continued by Doss et al.

[50, 53, 52, 51]. Fundamentally, the radiative xenon shock system consists of a 660 µm

diameter polyimide tube capped with a 20 µm beryllium disk. The tube-disk interface

is made gas-tight and filled to near one atmosphere with xenon gas. Ten OMEGA

beams deliver 3.8 kJ of laser energy at 353 nm in a one nanosecond square pulse. This

incident energy ablates a fraction of the Be disk, accelerating the remaining portion

into the shock tube. The Be acts as a piston, driving a strong shock into the stationary

1See Appendix section of Ref. [55]
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Figure 3.1:
The fundamental components of the Xe radiative shock experiments are
shown. A 20 µm-thick Be disk is affixed to a polyimide (plastic) tube so
as to be gas tight. The tube is filled with ∼ 1.1 atm of Xe gas. Laser
irradiation of the Be disk leads to a shock traveling down the tube. (Note
that the diagram is not to scale, and similarly that the laser pulse ends
before the shock propagates appreciably into the Xe.)

gas. The shock serves to heat and compress the gas, which ionizes and radiates away

much of the incoming energy. Understanding this hot, compressed, radiating xenon

layer that is formed by the shock has been the focus of the radiative shock campaign

at OMEGA. Figure 3.1 is a diagram of the system showing the components common

to all of the radiative shock experiments described herein.

The primary diagnostic for this system has been 2-dimensional (2D) x-ray radiog-

raphy. The “camera” is operated in a point-projection configuration, where a detector

is left un-apertured and the source of photons is made to be nearly point-like. To pro-

duce a high-contrast image the photons must be strongly attenuated in select regions

of the target, while passing largely impeded in others. A brighter source decreases

noise, and like any photograph of a rapidly evolving structure, the x-ray camera must

have a sufficiently fast “shutter” to minimize motion blurring. All of these factors

have been individually studied in the references listed above, and these efforts have

yielded repeatable images of the quality seen in Fig. 3.2.

To understand the dynamics of the system, images were taken at a range of times.
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Figure 3.2:
Transmission x-ray radiograph of a radiative shock in xenon gas. The
shock is traveling left-to-right down the shock tube, which is partially
obscured on the upper side by an opaque grid used for spatial calibration
of the image. Image credit Doss et al., [53]

At “early time,” less than approximately 10 ns after the drive pulse, the shock is

moving its fastest, and is also very thin, as it has not passed through and compressed

an appreciable amount of gas. A thin, fast shock will tend to produce blurred, low-

contrast images. At “late-time,” roughly 20 ns or more after cessation of the laser

pulse, the shock has passed through much of the xenon and created a large, dense

layer behind it. As it decelerates, the shock front and collapsed layer are susceptible

to instabilities, the scope of which could fill a thesis [52]. These instabilities distort

the planar shock front the late-time images, and also believed to account for the

variation in structure between images taken at the probe time at 13 ns post-drive.

The utility of 2D imaging is apparent from Fig. 3.2. Taken at 14 ns, the shock

has progressed approximately 2.2 mm down the shock tube, and the compressed

layer has reached a thickness of ≈ 120 µm. Assuming that this layer contains all

of the xenon that has passed through the shock front, and that it is homogeneous

in density, the compression is then 2200 µm / 120 µm ≈ 18. Observations of this
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dense layer is an important signature of a system that is strongly radiative. Beyond

this example, detailed analysis of the shock compression has been performed based

on repeated measurements, with attention paid to the asymmetric effect of shock

tilt on the inferred compression [53]. The results of that analysis is consistent with

compressions around 20×, which are also expected from the analysis in the following

section. Gaining a better understanding of the plasma properties in this layer was

the goal of the x-ray Thomson scattering measurements described in Chap. V.

3.2 Temperature and density in the shocked xenon

Estimating the parameters one would hope to measure, namely electron temper-

ature and density, can be done largely from simple energy balance and equation of

state arguments. The laser intensity delivered by the ten beams is ∼ 7×1014 W/cm2,

which is in the range where the ablative acceleration analysis of §2.4 is applicable.

We begin after the laser has turned off and ablative acceleration has launched the

remaining mass of Be into the Xe-filled shock tube. From Eqn. 2.13d one estimates

that the areal mass corresponding to 6.3 µm of Be is ablated, which can be used in

the rocket equation (2.11) to find an ablation velocity of ∼ 250 km/s 2.

Launched at such a high velocity, the Be piston drives a strong shock in the

gas. In a strong shock the Mach number squared – the Mach number being simply

the ratio of shock speed to the sound speed, M = vs/cs – is much greater than

unity. Anticipating our goals of performing x-ray Thomson scattering measurements

of electron temperature and ionization state, it is useful to estimate these parameters

here (along with density, which is a crucial parameter for any x-ray-matter interaction

analysis).

2Observations of this experiment both early and late in time, as well as simulations of the shock
breakout, suggest that the Be may not quite reach this velocity. The shock in the Xe does remain
> 100 km/s for the length of the experiment (up to 26 ns), confirming an initial velocity well in
excess of this [59].
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In the strong shock limit, the density ratio of shocked (ρf ) to unshocked material

(ρ0) tends to a value determined only by the adiabatic index γ:

ρf
ρ0

=
γ + 1

γ − 1
. (3.1)

The specific value of γ depends on the system and the shock, and is commonly 5/3 (for

a polytropic gas) or 4/3 (for a radiation-dominated plasma). From Eqn. 3.1, these

values imply material compressions of 4 and 7, respectively. However, in the case of

a high-Z, ionizing gas, the effective γ may be nearer to unity and the compression

of Eqn. 3.1 is greater. We work here with some simple assumptions to assess the

material compression and temperature independent of the specific value of γ.

Following the launch of the Be piston, the shock heats and compresses the gas,

which is initially near atmospheric pressure (ρ = 0.006 g/cm3 at standard temperature

and pressure). Taking v ≈ 200 km/s, the pressure in the shock heated region is then

P ∼ ρv2 ≈ 2.4 Mbar. The ions are heated by the shock front, and their temperature

can be found from an ideal gas equation of state, where A is the atomic weight of the

element:

downstream 
(optically thick) 

upstream 
(optically thin) 

cooling 
layer 

Figure 3.3:
Energy flux vectors for a thick-thin system, shown in the shock frame.
The final state in the downstream region is taken to be in equilibrium,
which implies radiation flux balance at the rear edge of the cooling layer.
Energy is provided to the shock by the incoming kinetic energy flux ρu3

s/2.
(note: not to scale).
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p =
ρkBT (1 + Z)

Amp

→ kBT ≈
Ampv

2

(1 + Z)
(3.2)

To solve Eqn. 3.2 for temperature, the degree of ionization Z is needed, and can be

found via myriad models. Regardless of the model, the values of ne and Te are central

to finding an average ionization. Here we approximate energy transfer such that that

the ions share their energy with the electrons via collisions (and no energy is lost to

other mechanisms, like radiation), so that Te = Ti/(Z + 1). The electron density is

taken to be the average value ne = Zni, and with these two estimates one can solve

the Saha equation to find [59]

Z =

√
kBTe
EH

√
ln

[
1

ne

1

4a3
0

(
kBTe
πEH

)]
− 1

2
(3.3a)

Z = 19.7

√√√√ Ti
(Z + 1)

[
1 + 0.19 ln

(
1024T

3/2
i

(Z + 1)3/2Zni

)]
− 1

2
. (3.3b)

Equation 3.3b evaluates to Z = 10.3, implying that the collisional transfer of energy

from Ti to Te yields Ts ' 180 eV, where we have used the subscript to indicate the

approximate temperature at the shock front.

Because the upstream optical depth is long3, the energy radiated by the shock-

heated electrons serves to cool them. The temperature profile thus decreases from

Ts at the shock front to a final downstream temperature Tf over a region called the

cooling region. If the final downstream system is to be in steady state, the radiation

flux in the region – including at the boundary of the final region and the cooling

layer – must be zero [153]. This is depicted in Fig. 3.3, and leads to the condition

σT 4
f = FCL, where FCL is the radiation flux emitted in the downstream direction from

the cooling layer.

3See the discussion of §1.1.1.
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In the approximation that the cooling layer is optically thin to the right-moving

radiation flux σT 4
f , then at the upstream boundary of the cooling layer (ie. at the

shock front) we have in the right-moving direction F = σT 4
f + FCL = 2σT 4

f . In the

limit that all of the incoming kinetic energy goes into radiation, one then has ρu3
s/2 =

2σT 4
f . For a shock speed of 150 km/s, assuming an optically thick downstream region,

this equality yields a final temperature Tf of∼ 47 eV . Though simplistic, this analysis

provides estimates of the electron temperature one might hope to measure in an x-ray

Thomson scattering experiment.

If the details of the temperature profile in the cooling layer are neglected and the

total right-moving radiation flux is taken to be the product of an electron population

at an effective temperature Teff, then the normalized flux at the shock is

Fn =
σT 4

eff

ρou3
s/2

(3.4)

=
2σu5

s

ρ0R4

(
R4Teff

u2
s

)4

(3.5)

=
2σu5

s

ρ0R4

(
R4

u2
s

ρ0u
2
s

ρfR(1 + Z)

)4

(3.6)

=
2σu5

s

ρ0R4

(
η

1

(1 + Z)

)4

. (3.7)

Here we have made liberal use of the ideal gas equation of state (Eqn. 3.2), and

denote the inverse compression η = ρ0/ρf . From Eqn. 3.7, we define the radiation

strength parameter Q = 2σu5
s/(ρ0R

4(1+Z)4). Upon consideration of the conservation

equations for the system (analysis similar to §2.4), the value of η is found to be

dependent only on Q, which we note is independent of γ. The solution for inverse

compression in terms of Q is [54] :

η =

√√
1 + 8Q− 1

4Q
. (3.8)
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For values of Z and us discussed earlier for xenon gas, one finds shock compressions

on the order of 20 - 30. These are several times higher than the compressions expected

for customary values of γ from the strong shock relations (Eqn. 3.1). This dense,

radiatively collapsed Xe layer has important implications for the x-ray transmission

and scattering diagnostics used to probe the experiment.

3.3 Contributions to xenon x-ray opacity

The discussion of optical depth (recall Eqn. 1.2) and the arguments of the previous

section speak of the opacity of the system at various points. Opacity, also known

as the material absorption coefficient, is related to the fraction of radiation that is

attenuated as it passes through a material. The transmission T is given by the Beer

Lambert Law, T = exp[−αabsx], where αabs is the absorption coefficient and x is the

length of material traversed. Evidently the absorption coefficient has units of l−1,

and is the product of the mass attenuation coefficient – written as µ/ρ with units of

area per unit mass – and the density of the material.

While it is often useful to perform calculations using the mass density, the in-

teraction of x-rays with matter is fundamentally a quantum process. As such, the

mass attenuation coefficient is equal to the per-atom cross section for scattering and

absorption over the atomic mass of the element. This tour of nomenclature is rel-

evant when one is designing an experiment with both x-ray radiography and x-ray

scattering diagnostic components, as is described subsequently. The total, frequency

dependent, per-atom cross section σtot for photon-matter interaction is

σtot = σpe + σincoh + σcoh + σpair + σtrip + σph.n. (3.9)

where σpe is photon absorption by the photoelectric effect and inverse bremsstrahlung

processes, σcoh and σincoh are coherent and incoherent scattering, σpair and σtrip rep-
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Figure 3.4:
Mass attenuation coefficients for photon attenuation processes important
to radiative shock diagnostics for a) xenon, and b) beryllium. Attenuation
via mechanisms not plotted here are negligible for this energy range (<
200 keV).

resent electron-positron pair and triplet production, and σph.n. is photonuclear ab-

sorption [106]. At low energies, the cross section is dominated by photoabsorption,

with contributions from coherent and incoherent scattering decreased from this by

several orders (Fig. 3.4). At higher energies the cross section for incoherent scat-

tering (Compton scattering) increases, while the photoabsorption cross section drops

sharply with increasing photon energy.

The abrupt jumps in attenuation coefficient (corresponding to a decrease in trans-

mission via the Beer Lambert Law) are due to photoionization of inner shell electrons.

For Xe, the L-shell binding energy is near 5 keV, and K-shell ionization at 34.5 keV.

It is the L-shell absorption feature that is used to produce the high-contrast images

seen in Fig. 3.2 and published in Refs. [180, 59, 53, 50, 178, 51]. These features are

not seen in beryllium (Fig. 3.4(b)) because it lacks the electronic structure of xenon.

Also noteworthy is the fact that at ≈ 20 keV, Compton scattering becomes the domi-

nant attenuation process in Be (with similarly values for other low-Z materials). This
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has enabled Compton radiography of inertial confinement fusion capsules [209], and

should be exploited by any future efforts aimed at imaging of scattered x-ray radi-

ation [112]. However, absorption remains the dominant process for photon energies

below 200 keV in Xe. The implication for scattering experiments is that while it

is beneficial to avoid peaks in absorption (like the Xe L-edge), the input signal will

always be attenuated, sometimes substantially, by photoabsorption.
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CHAPTER IV

X-ray Thomson scattering theory

4.1 Framing the problem at hand

Collecting the particles scattered from a system of interest to better understand

the constituents of the scatterer is a proven and powerful method in the physicists

toolbox. In the 1909 “gold foil experiment,” Rutherford, Geiger, and Marsden bom-

barded a gold foil with α particles [185]. Observation of large-angle scattering of

these particles led to the modern theory of an atomic nucleus of positively charged

particles surrounded by electrons. A century later, scientists at the European Center

for Nuclear Research (CERN) use similar principles, at orders of magnitude greater

energy, when they collide protons and collect the scattered remnants to investigate

the fundamental building blocks of our universe.

The gold foil experiment, high energy particle collisions, and x-ray Thomson scat-

tering experiments are each a paragon of inverse problems. In a general sense, inverse

problems arise in any system where one desires to infer the parameters of that system

based on observations. They involve the formulation of two problems, denoted as the

forward or primary problem, and its complement, the inverse problem. These are

related by the fact that a complete formulation of one involves finding a solution to

the other [64]. Examples abound in physics, and include tomography, medical and

other non-invasive imaging, geophysical location of seismic activity, and scattering
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experiments of all types.

Here I present the investigation of a system with x-ray Thomson scattering (XRTS)

in the qualitative framework of inverse problem theory1. Clearly the accuracy of the

inferred plasma parameters is a function not only of the resolution of the measure-

ments, but also of the accuracy of the inverse model. The focus of this chapter is to

introduce the methods used to map a measured spectrum back to physical parameters

like temperature, density, and ionization level. Attention is paid to the approxima-

tions inherent in each of the models, as these serve to define the regimes of validity

for different manifestations of the inverse problem. This framework is useful in the

discussion that follows, where aspects of the analysis can be understood as belonging

to one or more of the following three steps of scientific measurement. Broadly, these

are [202] :

1. Parameterization: A system must be divided into a set of model parameters.

For a given physical process, these parameters should completely characterize

the system.

2. Forward modeling : The model parameters must be related to the system via a

set of physical laws. Given the model parameters and the physical laws, one is

able to predict the outcome of measurements to a degree of accuracy dependent

on the input parameters and the completeness of the model.

3. Inverse modeling : Solving the inverse problem involves using the observations

of a system to determine the model parameters. Data collected to do this are

called observable parameters.

1Generally, Thomson scattering is the elastic wave-particle interaction wherein a charged particle
oscillates in an applied electromagnetic field, and in doing so accelerates and remits radiation. The
corresponding quantum mechanical description of Thomson scattering, where a photon bounces off
a charged particle, is elastic given ~ω � mc2. When this is not the case and the probe photon
has non-negligible energy relative to the scattering particle, the inelastic scattering process is called
Compton scattering. Compton scattering plays an essential role in the process, though the diagnostic
is generally refered to as “Thompson scattering.”
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These steps are clearly related, and a satisfying scientific theory cannot be for-

mulated without progress on all three. Here, we are motivated by the desire to

understand radiative shocks for reasons described in the introductory section 1.1.1.

By “understand,” one would like to know the macroscopic properties of the system,

namely parameters such as pressure, temperature, density, and shock speed the (model

parameters). These variables are related through the fluid equations of Chapter III,

which constitute the laws of the forward problem. Given a subset of the model pa-

rameters as inputs, one can use the fluid equations to calculate other values (ie. these

equations constitute the forward model). Alternatively, given a complete set of model

parameters, the future state of the system can be predicted.

To improve the accuracy of the forward model, experiments are done on the sys-

tem. Some experiments require the solution of only a simple inverse problem; using

near-coincident imaging to measure the instantaneous shock velocity is an example

of this. In this case, the relation between position and velocity, x(t) = x0 + vst,

constitutes the forward model and two pairs of position vs. time measurements are

the observables. The model and observables allow the calculation of vs. The errors

inherent in a simple inverse problem of this type are generally well expressed by the

familiar mean squared error. More complex inverse problems require careful consid-

eration of the inputs. Inferring the density of the shocked xenon from radiographs

is an example of this. In this case the observable is a map of photon density on a

piece of film. To make an estimate of the gas density one must have (at least) an

estimate of the source x-ray spectrum, a model of the x-ray transmission through the

target, and a model of the film response function. One is referred to Ref. [50] for

the description of a forward model for inferring density from x-ray radiographs that

incorporates aspects of the problem beyond these limited inputs.

45



4.2 Plasma coupling

One of the primary ways that plasmas can be categorized is by the degree of

interparticle interaction. Intuitively, at low temperatures and high densities, Coulomb

effects between particles will influence their collective behavior. This is known as

plasma coupling and the plasma coupling parameter Γ quantifies this effect. For

coupling between ions, this is given by:

Γii =
Z2e2

diTi
, (4.1a)

di =

(
4πni

3

)−1/3

, (4.1b)

and similarly for electrons by

Γee =
e2

deTe
, (4.2a)

de =

(
4πne

3

)−1/3

. (4.2b)

The coupling constant is the ratio of the potential energy to kinetic energy between

particles of a given species. The potential is given by Z2e2/dk, where Z = 1 for

electrons and dk is the particle spacing, with k = e or i for electrons or ions. In either

case the kinetic energy goes like Tk. In an ideal plasma the ions are uncorrelated and

Γ� 1. At the opposing extreme, when Γ� 1, the motion of one particle is conferred

to neighboring particles via their electrostatic repulsion. For very dense and cold

plasmas, the total energy of the system is minimized by the ions assuming a lattice

structure. This is predicted to occur at Γ ≥ 172 (T = 100 eV, ni = 4 × 1032 cm−3)

for an ionized hydrogen plasma [114]; this is approximately 10 orders of magnitude

higher in density than the gas in the present experiments.
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A second important metric in the classification of plasmas is the degeneracy pa-

rameter. Because electrons are fermions they are governed by Fermi-Dirac statistics

and obey the Pauli exclusion principle. As Te → 0, electrons successively fill the

lowest unoccupied energy state. The highest occupied energy at T = 0 is the Fermi

energy and is given by

εF =
~2

2me

(3π2ne)
2/3. (4.3)

The degeneracy parameter Θ is simply the ratio of the thermal kinetic energy of the

electrons to the Fermi energy:

Θ =
kBTe
εF

. (4.4)

In ideal plasmas (Γ� 1) the electron density is low enough and/or temperature high

enough that the kinetic energy is greater than the Fermi energy and Θ � 1. Such

a system is said to be “classical,” as quantum effects are negligible in describing the

electrons.

Contours of constant plasma coupling parameter Γee are shown in Fig. 4.1. Also

plotted are the lines of Θ = 1 and de = λD. As discussed in the following sections, the

Debye length and the related Debye-Hückel potential represent the limiting behavior

of a weakly coupled system. Finally, Fig. 4.1 also shows regions of parameter space

accessed by recent experiments where XRTS was a primary diagnostic.

4.3 Structure in a plasma

The response of a system to a small perturbation requires knowledge of the spatial

and temporal structure of the system. Here we establish first the spatial component,

given by the static structure factor S(k), followed by the frequency dependance cap-
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Figure 4.1:
Electron temperature-density parameter space, with several important
values for XRTS shown. Contours of the coupling parameter Γee are
shown in red. Fermi degenerate plasmas exist in the upper-left region,
above Θ = 1 (blue line). The region of ideal plasmas is indicated where
Γee � 1, which also corresponds to an inter-electron spacing de > λDebye

(where λDebye is given later by Eqn. 4.11b). Also shown are approximate
parameter ranges of several experiments where XRTS has been used. The
Xe radiative shock tube experiments discussed in Chapter III are similar
to the argon work of Visco et al. [213]. Most experiments have been
performed in the warm dense matter regime; shown are the compressed
Be experiments by Lee et al. 2009 [141], and the compressed lithium
hydride experiments of Kritcher et al. [128].
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tured by the dynamic structure factor S(k, ω). This is developed from the poorly-

named theory of classical simple liquids [212, 102], which assumes a total of N point-

like particles of mass m, momentum p, and position r, governed by a Hamiltonian of

the form

H =
N∑
i=1

p2
i

2m
+ V (rN), (4.5)

where V (rN) is the interatomic potential energy. Using n for the average particle

density and explicitly writing n(k)(r) for the position-dependent local density between

k particles, we have the probability of finding those k particles in the fractional volume

drk =
∏k

i=1 dri given by the density distribution:

n(k)(rk) =
N !

(N − k)!

∫
· · ·
∫
exp(−βV (rN))drN−k

ZN(T, V )
. (4.6)

Here β = 1/kT is the Boltzmann constant and ZN(T, V ) is the configuration integral:

ZN(T, V ) =

∫
· · ·
∫
drNexp(−βV (rN)). (4.7)

Equation 4.6 is normalized such that the number of ways to find one (k = 1), two

(k = 2), or k particles is

∫
n(1)(r1)dr1 = N, (4.8a)∫ ∫

n(2)(r2)dr2 = N(N − 1), or (4.8b)∫
· · ·
∫
n(k)(rk)drk =

N !

(N − k)!
. (4.8c)

The second of these, Eqn. 4.8b, gives the total number of pairs of particles in the

entire volume. The arrangement of these particles is described by the pair distribu-

tion function. This function describes the likelihood of finding nearby particles at a
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specific location, relative to the particle of interest. Pair distribution functions can

be developed for both ion-ion and ion-electron pairs, where the former predicts the

structure of the material as a whole (isotropic vs. lattice-like) and the latter is a

measure the polarization of the electrons around an ion. For isotropic fluids the pair

distribution function depends only on the interparticle spacing r = |r1 − r2|, and in

this case is referred to as the radial distribution function [102]. This is denoted by

gα(r), where α = i or e for ions or electrons, and has has the general form

gα(r) =
n

(2)
α (r)

n2
α

, (4.9)

where nα is the average species density. For an ion at the origin one would expect

ni(r) → 0 for r → 0, reflecting repulsion of ions at close range. For weakly coupled

plasmas the value of gi(r) increases monotonically to unity. For strongly coupled

plasmas the energy of the system is minimized when ions occupy specific regions

relative to one another. This gives the plasma structure, and can be seen in Fig. 4.2

for several values of the coupling parameter Γ.

The pair correlation function is simply the deviation of the radial distribution

function from the ideal plasma limit, given by h(r) = g(r) − 1. One can take the

Fourier transform of h(r) to find the static structure factor [114]:

S(k) = 1 + n

∫
d3r [g(r)− 1]e−ikr. (4.10)

The static structure factor quantifies the density response (ie. scattering) of a system

as a result of a small perturbation of wavelength k. For a given system, the spatial

distribution of particles n(r) can be calculated via Monte-Carlo or molecular dynamics

simulations, from which h(r) can then be computed. This is commonly done in

the one-component plasma (OCP) approximation, where calculation of the electron

radial distribution function (Eqn. 4.9) is neglected and the electrons are taken to
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Figure 4.2:
Radial distribution functions, g(r), for several values of the coupling pa-
rameter Γ. Weakly coupled plasmas exhibit a dip in g(r) at the origin
and trend to unity with increased distance. The ions in strongly cou-
pled plasmas have clear preferential positions relative to each other, and
are predicted to settle into a lattice for Γ ≥ 172. Data for this plot
from Monte Carlo simulations by: (Γ = 0.01, 2) Brush, Sahlin, and Teller
(1966) [24], (Γ = 20) Hansen (1973) [101], and (Γ = 80, 160) Slattery,
Doolen, and DeWitt (1980) [194].
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be a mobile, uniform, neutralizing background (ne(r) = ne). In the limit of weakly

coupled plasmas (Γii � 1), the potential between particles is given by the Debye-

Huckel potential

V (r) =
Ze

r
e−r/λD (4.11a)

λD =

√
kT

4πnZe2
. (4.11b)

The Debye length λD is the characteristic screening length for weakly coupled plasmas,

and in this limit the static structure factor has the form

S(k) =
k2

k2 + k2
D

, (4.12)

where k2
D = 4πnee

2/kT is the Debye wave number. Equation 4.12 serves as the

starting point for more detailed calculations of the static structure factor used in

scattering experiments, details of which are presented in Gregori et al. (2003) [96].

To understand the scattering of photons from a plasma, the static structure factor

must be extended to the frequency domain. This is done in a manner similar to

the development of the static structure factor. Noting that the density distribution

function n(k) for an isotropic fluid can be recast from Eqn. 4.6 using delta functions

as

n(1)(r) =

〈
N∑
i=1

δ(ri)

〉
and, (4.13a)

n(2)(r1, r2) =

〈
N∑
i=1

N∑
j=1,j 6=i

δ(r − ri + rj)

〉
, (4.13b)
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the pair distribution function can then be expressed as [219]

g(r1, r2) =
1

n2

〈
N∑
i=1

N∑
j=1,j 6=i

δ(r − ri + rj)

〉
. (4.14)

In Eqns. 4.13a - 4.14 brackets indicate an average over the canonical ensemble. The

time-dependent version of this is the van Hove equation [211, 102], given by

G(r, t) =
1

N

〈
N∑
i=1

N∑
j=1,j 6=i

δ(r − ri(t) + rj(0))

〉
. (4.15)

The dynamic structure factor is then the space-time Fourier transform of this,

S(k, ω) =
1

2π

∫ ∫
G(r, t)exp(−i(kr − ωt))drdt. (4.16)

In a scattering experiment, the dynamic structure factor describes the response of

the plasma as a function of k and ω. It can be cast in a number of forms depending

on the probe (x-rays, optical photons, electrons, neutrons, etc), and various plasma

approximations, often relating directly to the degree of coupling (through g(r), see

Fig. 4.2) in a system of interest.

4.4 X-ray Thomson scattering

Using electromagnetic radiation to probe a plasma is an attractive diagnostic

technique because it is minimally perturbing to the system, can be used to probe a

wide range of plasma densities and temperatures, and has the potential to directly

measure the electron distribution function of a system [113]. Thomson scattering

proved to be a powerful diagnostic less than a decade after the invention of the laser

when Peacock et al., in collaboration with Russian physicists, used it to probe the

confined plasma in the T3 Tokamak [170]. The method has since been extended
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significantly, with x-ray Thomson scattering joining laser scattering as a method to

probe dense plasmas.

Thomson scattering is used to probe plasma experiments in two fundamentally

different regimes: collective and non-collective (sometimes referred to as coherent and

incoherent) scattering. In collective scattering, incident photons couple to and scatter

from electron-plasma and ion-acoustic waves. Conversely, non-collective scattering

probes the plasma at smaller length scales, bypassing the collective fluctuations and

instead interacting with the individual particles in the system. The collective versus

non-collective regimes are quantified by the scattering parameter α:

α =
λ

2πλS
. (4.17)

In this equation, λ is the probe wavelength, and is computed in terms of the x-

ray wavelength λ0 and the scattering direction θ as λ = λ0/(2 sin(θ/2) [140]. This

is compared to the plasma scale length λS of the system under investigation. The

scale length of the plasma is quantified by the usual Debye length in weakly coupled

plasmas, but must be refined for strongly coupled plasmas. In the latter case, λS is

given by the Thomas-Fermi screening length [89]:

λTF =

√
~2

4mee2

(
π

3ne

)1/3

. (4.18)

When α� 1, the incident light probes the individual (non-collective) electron thermal

motion, as opposed to the bulk (collective) plasma motion when α is greater than

one.

In the non-collective regime, x-ray Thomson scattering (XRTS) can be thought

of as collisions between photons and the particles in the plasma. Each particle has a

cross section for scattering, and each collision must conserve energy and momentum.

Assuming they are not promoted to a higher energy level or liberated from the atom
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(bound-free), electrons which are bound to an ion respond elastically in a collision,

resulting in a scattered photon with the same energy as before the interaction. Free

electrons, however, will recoil and take some energy from the photon, which results

in a red-shifted scattered wave.

Figure 4.3:
A photon with initial wavelength λ scatters from an electron at scattering
angle θ. The scattered wavelength λ′ is longer than λ, as energy has been
transferred to the electron in the collision.

For a free electron initially at rest with energy mec
2 and a photon with energy hν,

energy conservation requires that

hν +mec
2 = hν ′ +

√
p2c2 +m2

ec
4, (4.19)

where p is the electron momentum after the collision. Conserving momentum gives

q = p + q′, (4.20)

where q = hν/c for the photon. Solving 4.20 for the square of the electron momentum

p2 introduces the cosine of the angle θ between the incoming and outgoing photon

via the cross term:

p2 =

(
hν

c

)2

+

(
hν ′

c

)2

− 2

(
hν

c

)(
hν ′

c

)
cos θ. (4.21)
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The energy equation (Eqn. 4.19) can also be expressed in terms of the electron

momentum

p2 +m2
ec

2 =

(
hν

c
− hν ′

c
+mec

)2

, (4.22)

p2 =

(
hν

c

)2

+

(
hν ′

c

)2

− 2

(
hν

c

)(
hν ′

c

)
+ 2meh(ν − ν ′) +m2

ec
2. (4.23)

Together, Eqn. 4.21 and 4.23 yield the Compton formula, which expresses the shift

in energy (or wavelength, as ν = c/λ) in terms of the photon deflection angle θ:

2

(
hν

c

)(
hν ′

c

)
(1− cos θ) = 2mehc

(
ν

c
− ν ′

c

)
(4.24)

λ′ − λ =
h

mec
(1− cos θ) . (4.25)

This shift in the scattered photon energy is a signature of a free electron popula-

tion in XRTS data. In any real system the electrons are not stationary, but have a

distribution of velocities. In the scattering process, this electron motion Doppler shifts

the scattered photon and adds a term proportional to the inner product of the x-ray

and electron wave vectors to the solution for the shifted photon. Expressing Eqn.

4.25 in terms of energy shift ∆E via E = hc/λ and wavevector k = (2Eo/~c) sin(θ/2)

gives

∆E =
~2k2

2me

± ~k · v. (4.26)

The Compton-shifted photon signal from free electrons is a fundamental observ-

able and can be understood from first principles. As such, it is a powerful diagnostic

for the electron distribution function. However, Eqn. 4.26 is appropriate only for an

isolated free electron. As developed in the previous section, the total scattered signal

is given by the dynamic structure factor. For a multi-species plasma, S(k, ω) is a
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convolution of numerous sources which contribute to varying degrees depending on

the plasma conditions.

A model for the total scattering from a plasma which separates contributions from

free electrons and bound electrons, as well as separating the motion of electrons and

ions, has been developed by Chihara [37, 38]. The result is the dynamic structure

factor S(ω, k):

S(ω, k) = |fI(k) + q(k)|2Sii(k, ω) + ZfS
o
ee(k, ω)

+Zc

∫
Sce(k, ω − ω′)Ss(k, ω′)dω′.

(4.27)

In this form, the contribution from free electrons which scatter inelastically (propor-

tional to Zf ) is given by the second term. The function S0
ee is the electron-electron

correlation function, and describes the motion of the electrons relative to one another.

The third term is proportional to Zc, the number of core electrons, and describes

inelastic scattering by electrons undergoing Raman transitions to the continuum. Fi-

nally, the first term represents scattering from electrons that follow the ion motion,

which is given by Sii. This includes bound electrons described by the ion form factor

fI(k), as well as weakly bound electrons within the ion sphere. These “free” electrons

are given by q(k), and also follow the ion motion but may scatter inelastically [93].

The designation of “free” electrons with respect to Eqn. 4.27 requires further

description. In the process of x-ray scattering, an electron is kinematically free if

it experiences a (negative) Coulomb potential with magnitude that is less than the

energy of the Compton shift given by Eqn 4.26 [93]. These weakly bound valence

electrons contribute to the scattering in the same manner as free electrons, but are

not free in the usual sense that they are not associated with any ion. For an isolated

atom in the hydrogenic approximation, the binding energy of an atom in quantum

level n is given roughly by En = Z2
AEH/n

2, where EH = 13.6 eV is the binding energy

of hydrogen and ZA is the nuclear charge of the atom of interest. However, the many-
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particle interactions in a plasma distort this simple analysis and the descriptions

of atomic models in Chap. II are relevant here. In this document Zf indicates

kinematically free electrons (electrons which scatter inelastically), Z refers to the

actual (average) charge state, and ZA refers to the total nuclear charge of an atom.

4.5 Measurements from x-ray Thomson scattering

Analysis of the scattered x-ray spectrum has the potential to yield information on

the plasma temperature Te, the electron density ne, and the number of electrons which

are kinematically free Zf . The forward model governing the measurement of Te is the

simplest, as was shown in Eqn. 4.19 - 4.26. In particular, for a monoenergetic source

E = hc/λ, Eqn. 4.25 gives exactly the scattered wavelength, with the second term

in Eqn. 4.26 fully capturing the dependence of the inelastic peak on the electron

distribution function. Indeed, in analysis of some experiments the elastic peak is

subtracted and analysis of the scattered signal is reduced to a calculation of v or,

equivalently, the average temperature Te [213].

Inference of the electron density from a scattered spectrum can be made in two

ways. First, the total scattered power into a solid angle dΩdω is given by

PS(R, ω)dΩdω =
Por

2
0dΩ

4πA
NS(k, ω)dω × (1 + cos2 θ). (4.28)

Here P0 is the incident power, A is the area being probed, r2
0 is the classical electron

radius, N is the total number of scatterers (electrons), and the factor 1/2(1 + cos2 θ)

is valid for unpolarized light. In principle, from Eqn 4.28 one could solve for N if the

other values of the equation were well known. However, beyond the model-dependent

approximations incorporated in S(k, ω), one would need one or more detectors capable

of accurately measuring PS and P0, including understanding the frequency-dependent

detector quantum efficiency. These experimental challenges, compounded with errors

58



associated with measurement of the solid angles and the area A, make this inverse

problem very difficult and it has yet to be attempted in HED XRTS experiments.

A method to determine the electron density which has proven more fruitful is via

analysis of the density dependence on the “effective temperature”. When a system

transitions from an ideal plasma to the warm dense matter (WDM) regime, the system

can no longer be considered classical (quantified by Θ ≤ 1). We repeat here the Fermi

energy, noting the dependance on the parameter of interest, ne:

εF =
~2

2m

(
3neπ

2
)(2/3)

. (4.29)

In a degenerate electron system the thermal temperature Te is comparable to TF

(given TF = εF/kB), and Te alone does not fully characterize the particle motion. In

XRTS experiments, this is accounted for by following the work of Perrot and Dharma-

wardana [171], who describe the fluid by an effective temperature Tcf ' (T 2
e + T 2

q )1/2

(the subscripts here indicate “Coulomb fluid,” “electron (thermal),” and “quantum,”

respectively). The form of Tq was found to be Tq = TF/(1.3251− 0.1779
√
rs), where

rs = d/ao, d = (3/4πne)
1/3, and ao is the Bohr radius. This fitting was shown to

reproduce the Monte-Carlo predications of the pair distributions (g(r)) of the Te = 0

quantum fluid, while having the correct asymptotic behavior for small Θ. Through

Tq, which is proportional to TF and thus (from Eqn. 4.29) n
2/3
e , the electron density

affects the width of the Compton peak. For experiments with Θ ≥ 1, the electron

density has been measured in this way [129, 128].

In addition to measurements of temperature and density, the potential to use

XRTS as a diagnostic for ionization of a material was described by Landen et al. [140].

This measurement is made by comparing the intensities of the elastic and inelastic

peaks of the scattered spectrum, as the inelastic peak is produced by scattering from

Zf electrons, while the elastic peak is from ZA−Zf = Zc core electrons. The intensity
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of the electron feature from Eqn. 4.27 is given by [93]

Ie(k) = Zf

∞∫
0

S0
ee(k, ω)

[
1 + exp

(
−~ω
T

)]
dω = ZfS

0
ee(k), (4.30)

while the ion feature intensity is

Ii(k) = |fI(k) + q(k)|2Sii(k, ω). (4.31)

Following Ref. [37], the free electron density correlation function S0
ee(k) is related to

the electron structure factor by

S0
ee(k) = See(k)− |q(k)|2

Zf
Sii(k). (4.32)

In the case of α � 1 and Γ� 1 (ie the non-collective scattering regime in a weakly

coupled plasma) then q(k) � 1 and S0
ee(k) = See(k) = Sii(k) ≈ 1. The ratio of

inelastic to elastic scattering is then [140]

Iinel.(k)

Iel.(k)
≈ Zf
|fI(k)|2

≥ Zf
Z2
c

. (4.33)

In the Xe radiative shock experiment, α = .02 and Γee ≈ .08, so Eqn. 4.33 is valid

and the ratio of the inelastic scattered intensity over elastic will tend to Zf/Z
2
c . In

principle, but comparing elastically and inelastically scattered signals one can make

an estimate of Zf : Zc. However, the Doppler broadening through the electron tem-

perature, as well as blurring of the collected spectrum from the instrument response

function, make determination of the free electron function more challenging than it

may appear from Eqn. 4.33.
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CHAPTER V

X-ray Thomson scattering experiments

5.1 Experimental overview

The radiatively-collapsed Xe shock system consists of three distinct regions: the

upstream, unshocked gas, the radiatively-collapsed dense Xe layer, and the down-

stream region of entrained xenon and beryllium. The goal of the radiative shock

x-ray Thomson scattering campaign was to measure the plasma conditions (electron

temperature, density, degree of ionization, and possibly the detection of ions other

than xenon in the entrained flow) in each of the these regions. Ideally the data would

be of sufficient resolution to discern the scattered signal from each of the regions, and

would complement the numerous previous x-ray radiography observations. Addition-

ally, the ability to analyze the data from the regions individually builds on XRTS

work by Visco et al., who measured spatially integrated scattering spectra from ra-

diative shocks in argon gas [213]. In that work, the same disk-tube system was filled

with Ar, and data was collected at two different times. For each time, 1D radiative

hydrodynamic simulations were used to estimate the plasma temperature and density

profile in the scattering volume. These profiles were convolved to produce a weighted

“effective electron temperature Teff ,” and the data was seen to agree well with the

simulated Teff . However the error bars associated this complex average over plasma

conditions are large, and it was a further goal of the work described here to reduce
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these errors.

Collecting scattered x-ray signal from the radiatively-collapsed dense Xe layer,

which has an axial extent of ≈ 150µm, requires spatial “resolution” of this same

order in the collected spectrum. This requirement is complicated by an inherent

shot-to-shot variation in the shock speed of approximately 5% [53]. This uncertainty

is the result of several factors, including variations in laser energy, Be disk thickness,

and gas pressure, among others. Thus, at the chosen time point of the experiment –13

ns after the drive laser – the shock front has progressed nearly 2 mm ±100µm. As this

is also approximately the spatial extent of the dense Xe layer, knowing what region

of the shock was passing through the scattering volume at the time of the Thomson

scattering probe was an important consideration when designing these experiments.

Different approaches to solving this problem were taken in each of the experiments,

and are detailed in their respective sections.

An additional consideration in the design of the XRTS experiments was the need

to probe the experiment at 13 ns after the drive. At times much earlier than this the

amount of Xe compressed behind the shock front is less, giving less material to scatter

from. The shock is also moving faster earlier in time, and both of these factors make

accurately probing a precise region of the system difficult. Finally, the majority of

radiographic data from previous experiments was taking at 13 ns post-drive, further

motivating probing at this time. However, the ability to efficiently utilize the 60

beams available at OMEGA is difficult for delays of this length. At the time of this

writing, this restriction is based on the following:

• The thin Be drive disk must be irradiated with a uniform intensity. Failure to

do this would imprint laser “hot-spots” on the 20 µm-thick disk, seed Rayleigh-

Taylor growth, and add unwanted structure to the Be ablator as it is driven

into the Xe gas [195, 175].

• The smoothest possible beam at OMEGA is produced through a process called
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“smoothing by spectral dispersion” (SSD) [177]. SSD improves the uniformity

by oscillating the speckle pattern in the laser profile, thereby time-averaging

the non-uniformity [1].

• The electro-optic phase modulation that produces the smoothed pulse is done

before prior to beam amplification, at the level of the beam drivers. The drivers

produce the shaped pulses that go on to be amplified and delivered to the target.

One of the three drivers is devoted to the SSD system, and produces seed pulses

for two legs of beams. Each leg is made up of a specific set of 20 beams; ie. the

60 beams are divided into three legs.

• To achieve the necessary 13 ns delay the SSD driver must be offset from another

driver, in this case the backlighter driver. As such, there will be 40 beams

available to irradiate the Be disk and 20 available for all diagnostic probes at

13 ns.

The nominal Xe radiative shock experiment is driven with 10 beams. In the

design for each shot day one must find these ten beams, within the constraints of the

diagnostics and x-ray sources. In practice, this becomes an effort to maximize the

number of the 20 backlighter beams which can be brought to bear on the x-ray source

foils, to maximize probe signal. It is an ongoing effort of the Laboratory for Laser

Energetics and the Omega Laser User Group to modify the driver hardware to permit

SSD to be run on only one leg, allowing the remaining 40 beams to be dedicated to

probing at a delay. Such a capability would permit more energy and much greater

flexibility in planning experiments where low probe signal, like XRTS, is a primary

concern.

The three experiments in the following sections were carried out in the the spring

months of 2010, 2011, and 2012, respectively. Each target shared the same funda-

mental Be disk and Xe shock tube described in Chap. III, and the goal of each was
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the same, namely collecting XRTS spectra from the individual regions of the shock

system. However, each experiment was unique and designed to leverage XRTS diag-

nostics that improved year-to-year. This work is presented chronologically, with data

and conclusions following each experimental description.

5.2 2010 Campaign

5.2.1 2010 Experimental design and diagnostics

The primary diagnostic for the 2010 XRTS experiments was the Zinc Spectrometer

(ZSPEC), designed and maintained by Lawrence Livermore National Laboratory. The

diagnostic relies on a Highly-Ordered Pyrolytic Graphite (HOPG) crystal to disperse

x-rays onto a detector consisting of a microchannel plate (MCP) coupled to a CCD

camera. The energy resolution of the instrument is determined by the properties of

the crystal, while a coarse ability to perform time gating is provided by the strips of

the MCP. The spectrographic properties of the diagnostic can be modified by changing

the crystal; at the time of the 2010 experiments a flat, high-mosaicity HOPG crystal

was available. A rendering of the diagnostic is shown in Fig. 5.1.

Owing to the small cross section for Thomson scattering, photometric estimates

motivated the incorporation of two zinc x-ray source foils, to increase the source

photon count. The placement of the sources relative to the vector to the spectrometer

defines the Compton angle, as given by Eqn. (4.25). Increasing the scattering angle

increases the separation between elastic and inelastic (λ and λ′) peaks on the detector

and facilitates analysis, so effort was made to maximize this angle. To minimize the

number of separate k vectors in the scattered signal, the two sources were positioned

at equal angles to the scattering volume and spectrometer. A scattering angle for

both sources of ≈ 130◦ was achieved by affixing the source foil to precisely aligned

gold “wings,” which also served to shield the spectrometer from the zinc plumes.
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Target Location (TCC) 

Crystal (inverted geometry) 

Microchannel Plate/CCD detector 

X-ray path (dashed) 

Figure 5.1:
Rendering of the ZSPEC diagnostic in the “inverted” geometry. Much
of the housing has been hidden to show the position of the crystal and
detector. An example of the path of a scattered photon is depicted by
the dashed ray.

These shields are clear in the annotated target diagram (Fig. 5.2).

The pair of zinc source foils needed to be shielded from the spectrometer, and were

located behind 50 µm of gold. The two source foils were illuminated with 4 and 5

beams respectively, with the normal vector of the source foil offset at an oblique angle

of ≈ 70◦ to the shock tube. The spectrum from the laser-irradiated face of a source

foil includes emission from cooler, low-density plasma. These plasma conditions exist

in the regions that have expanded laterally, out of the field of the laser, as well as in

the cooling, rarefied plasma after the laser pulse has turned off [110]. The ionization is

lower in these regions and the emission lines peak at lower energies than the primary

Heα peaks, which complicates analysis of XRTS data. However, this configuration

was chosen for this initial experiment based on concerns about photometrics.

As described previously, data from a flat-crystal spectrometer provides no indi-

cation of the shock position, i.e. what region of the shock was interrogated by the
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Scattering Slit

Acrylic "scaffold"
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(a) View in the plane of the vector to the
ZSPEC.

To ZSpec

Zinc Foil

Acrylic "scaffold"

Approximate FOV of !
streak camera

(b) View along SSC line of sight.

Figure 5.2:
Views depicting the relevant vectors for Thomson scattering and radiog-
raphy.

scattering diagnostic. Despite its proven utility in previous experiments, ungated

x-ray radiography was not an option to monitor the shock position because the high-

energy zinc source used for XRTS would saturate the film. Instead, an x-ray streak

camera was enlisted (denoted as SSC, for historical reasons). This instrument sacri-

fices one of the spatial dimensions of imaging radiography, but is able to monitor a

1D image as it evolves in time. This is done by converting the photons collected from

the 1D image to electrons via a photocathode, and then using a pulsed electric field

to “sweep” the electrons across the detector. To measure the position of the shock in

this experiment, the SSC was pointed to image a “slice” in the central region of the

shock tube where the shock front is nearly planar, as shown in Fig. 5.3. The streak

camera provides no data regarding the 2D structure of the system, but is capable of

recording the variation in x-ray transmission along chords through the field of view

(ie., record the density variation created by the shock) with time. Additionally, be-

cause it is time-resolved, the bright x-ray signal generated by the lasers striking the

zinc foil is separated on the film from the earlier vanadium signal. This effectively
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overcomes the limitations of the ungated detectors for tracking the shock position in

this experiment.

Approximate streak 
camera field of view.  

Radiative shock 

Shock tube 
1000 1200 1400 1600 1800 2000 2200

µm

µm

Figure 5.3:
The field of view of the streak camera is shown overlaid on a radiograph
from previous experiments. The image of the shock front is swept in time,
providing data on the position of the shock front with time.

Figure 5.4 shows the spatial and temporal relationship of the streak camera,

ZSPEC, and their associated target features. The ordinate shows increasing dis-

tance from the drive disk, while the abscissa shows time elapsed since the drive pulse.

The shock front travels at ≈ 100µm/ns after 10 ns, and forms the leading edge of

the dense xenon layer, shown in green. Two x-rays sources are shown, labeled as V

Bl (backlighter) and Zn Bl, providing 5.2 and 9.0 keV x-rays for the streaked radio-

graphy and Thomson scattering diagnostics, respectively. Both sources are created

by striking a foil with several 1 ns OMEGA beams. The laser intensity for maximal

conversion efficiency is informed by the literature. For vanadium, we have had success

with irradiance of 2.3×1014 W/cm2, which can be achieved with 2 beams. For this

experiment we used three pairs of beams staggered in time to form a total pulse of

several ns in duration.

The vertical extent of the red regions in Fig. 5.4 represent the collection field-

of-view of the streak camera, which images a strip of the target approximately 0.8

mm along the tube axis. To calibrate the absolute position of the shock, a 100µm-

thick tungsten wire was affixed to each target and measured precisely during pre-shot
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Figure 5.4:
Both 2.5 ns and 5 ns streak camera sweep speeds are shown. The height
of the streak camera boxes are determined by the extent of the uniform
vanadium backlighter spot size, while the height of the ZSpec collection
region is determined by the slit width, either 150 or 400 µm.
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metrology. This is shown in black in Fig. 5.4. (For orientation, it is useful to note

that the wire exists in the same place, 1.55 mm from the disk, for the duration of

the experiment.) The streak camera was positioned to capture the shock when it had

reached the scattering volume, centered at 2 mm down the shock tube. The electron

optics of the streak camera can be pulsed with a 2.5 or 5.0 ns pulse, indicated by the

two red regions in the Fig. 5.4. Because stacked 1 ns backlighter beams must be used

to create a longer pulse, it is difficult to create x-rays for the full extent of the 5 ns

sweep speed, but the increased data collection has generally motivated the use of the

longer sweep for most shots.

5.2.2 2010 Data analysis

Typical data from the SSC collected with a 5 ns sweep is shown in Fig. 5.5. It is

oriented to match the diagram in Fig. 5.4, with the shocked Xe passing the opaque

tungsten wire as it progresses in time from the bottom to the top of the image. Anal-

ysis of several such images yielded a shock velocity of us = 110±15µm/ns. Deviation

of the shock front from a straight line in x−t space indicates shock deceleration. How-

ever, quantifying this was found to be highly-variable, possibly due to non-linearity

in the streak camera electron optics.

Analysis of the scattering data begins with the input spectrum. Ideally, this is

a measurement of the x-ray spectrum “seen” by the scattering volume. To measure

it as accurately as possible, a simple zinc foil target was constructed and oriented

at the same 70◦ angle to the ZSPEC as the target sources were to the shock tube.

The integrated opacity of the plasma plume influences the emitted spectrum, and

this configuration was chosen to produce the same opacity and angular effects as the

sources on the target [105]. The gain of the microchannel plate detector was varied

to capture a range of features in the spectrum, which is seen in Fig. 5.6.

The MCP strip with the highest voltage setting (corresponding to the lowest gain)
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Figure 5.5:
Five nanosecond streak camera image. Oriented as in Fig. 5.4, the fiducial
wire is opaque to x-rays and appears as a dark bar between ≈ 1425 −
1525µm. The shock is also partially opaque to x-rays, and is seen passing
by the fiducial wire. Modulation in the intensity of the backlighter pulse
in time is a result of the staggered laser beams irradiating the vanadium
foil.
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(a) Microchannel plate image.
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(b) Integrated spectra from (a).

Figure 5.6:
Integrated energy spectra from three strips of the MCP (a) are shown
in (b), for the zinc disk shot. The colored boxes in (a) show the regions
where spectra in (b) are taken from.
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in on the bottom of Fig 5.6 a) and highlighted in green. In frame (b), the two peaks

of the Heα lines can be seen at the maximum point of the green trace, just below the

saturation limit. A low intensity foot extends from 8.6-9.4 keV. At higher gain these

features are more prominent, as shown in in the red and blue curves corresponding to

the top and second-to-bottom strips in (a). X-ray Thomson scattering is concerned

primarily with the signal that is downshifted from the input x-rays (primarily the Heα

lines here), and as such the Kα peak has the greatest potential to obscure data. In

the data from full shots, it is possible that the Kα radiation from hot electron-matter

interaction partially obscured the desired scattered signal.

An instance of the scattering data collected on the 2010 shot day is shown in Fig.

5.7. The input spectrum is shown in blue and the collected spectrum in green. All

of the data collected on this day showed evidence of line emission peaks in addition

to the desired Heα elastic scattering peaks. Unlike a uniform background that can

be accounted for without significantly changing the shape of the scattered spectrum,

line emission (especially from unknown sources) cannot be precisely removed. Addi-

tionally, a large background was seen on the high energy side (near 9.5 keV in Fig.

5.7). Because this was not uniform through the spectra (not evident at 8.5 keV, for

example) and of unknown origin, it is also unclear how intense this signal is in the

Compton energy range. These inconsistent features in the collected signal precluded

accurate fitting of the data from this shot day.

5.2.3 2010 Conclusions

The two primary diagnostics for the 2010 campaign – x-ray Thomson scattering

and streaked radiography – produced mixed results. The radiography was successful,

yielding data on every shot and proving the utility of the diagnostic for shock velocity

and acceleration measurements. Data from the spectrometer differed greatly from

the predicted scattering spectra from Xe gas, which is expected to be dominated
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Figure 5.7:
Integrated data from a full target shot (green) shown with the input x-ray
spectrum (blue). Significant, non-uniform background was seen on both
the high and low energy sides of the Heα peaks in the scattered data.

by an elastic peak. The high inelastic peak lead us to conclude that x-rays were

scattering from a low-Z source in the target; likely culprits were the acrylic body

and the polyimide tube containing the Xe gas. It is possible that hot electrons were

produced in the interaction of the lasers and the zinc source foils, and that these

were directed along a vector through the zinc and into the gold shielding where they

interacted to create background signal. Furthermore, 50 µm of gold shielding may

have been transmissive to a fraction of the zinc x-ray signal capable of distorting the

measurement. Designs for future experiments would need to remove low-Z material

from the scatterinyhg volume and better shield the diagnostic from plasma plumes,

potential hot electron-generated radiation, and the x-ray sources themselves.
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5.3 2011 Campaign

5.3.1 2011 Experimental design and diagnostics

In 2011, investigation of the radiatively collapsed dense Xe layer with x-ray Thom-

son scattering remained the focus of the experiment, but several substantive changes

were made. A pair of collimating slits – one for the input and one for the outgoing

x-rays – served to define the scattering volume (See Fig. 5.8). This had two benefits:

the remediation of k-vector blurring in the scattered signal, and the minimization of

radiation scattered from the polyimide shock tube. The first effect can be understood

by reference to Fig. 4.3. If the incoming and outgoing vectors, k and k′ in the figure,

are not unique but vary over a range of vectors, then the collected signal will repre-

sent scattering from a related range of angles θ. This can be accounted for in data

analysis by convolving the intensity-weighted signals from an appropriate range of

angles to produce a final scattered spectrum. However, in practice it is very difficult

to quantify the incoming x-ray intensity as it varies over the solid angle represented

by the source-tube-detector system. Incomplete determination of these effects can

produce into erroneous temperature measurements because Compton peak which is

blurred by a range of k-vectors will be fit by a hotter electron temperature profile.

The second advantage to collimating both the incoming and outgoing x-rays is

that this affords control over the number of x-rays scattering from the tube that can

reach the detector. Each slit, as seen from the side opposite the tube (ie, as seen from

the detector and the x-ray source, respectively) projects a volume into the target.

Only x-rays scattering from the region where these solid angles overlap are able to

reach the detector. In practice, it is relatively simple to anticipate the projection of

the scattering slit, because the diagnostic-to-slit distance is much greater than the

slit-to-tube distance. However, the slit collimating the x-ray source is approximately

equidistant from the source and tube. Additionally, the emitting plasma on the x-
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ray side is known to expand greatly during and after the laser pulse, and does not

emit uniformly. These factors make determination of the regions of the tube that

are exposed to x-rays harder to determine). Despite these factors, the incoming and

outgoing collimation of the 2011 target represents an improvement over the “open

input” design of 2010.

X-ray input slit 

Output slit to ZSPEC 
Vanadium x-ray source 
(streaked radiography) 

Be drive disk 

PI shock tube 

Acrylic mount with  
gas ports 

Plastic frame 

Fiducial wire for 
radiography 

Zinc x-ray source 

Alignment feature  

Figure 5.8:
The 2011 x-ray Thomson scattering target. The PI tube (shown in green)
is capped with a Be drive disk (black) and again supported by an acrylic
body (blue). A pair of gold shields, each with a laser-cut slit, serve to
define the scattering volume.

The slits defining the scattering volume were laser-cut into 100 µm gold foils, twice

the thickness of the shields in the 2010 experiment. The increase in foil thickness

decreased the transmission of 9 keV x-rays by a factor of ∼ 3×106 (to ∼ 1.5×10−13),

and by a factor of 10 for 30 keV hard x-rays (to ∼ 6.3 × 10−3). Only a single x-ray
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source foil was used, positioned at an angle of ≈ 100◦ to the detector (as defined by

the pair of scattering slits). The second x-ray source was dropped based on the 2010

results, where signal intensity was high, but background was a significant problem. It

was thought that a single source could be better shielded, and that the extra signal

from a second source may not be necessary. Additionally, the incorporation of a

streak-camera line of sight precluded the use of two incoming x-ray collimation foils.

Initial designs and construction specified a curved zinc foil, as shown in Fig. 5.8.

The thought was that the shaped foil (or, more accurately, the arc-shaped segment of

the thick plastic tube that the zinc was mounted on) would impede the lateral flow

of plasma over the top of the gold shielding where it could affect the data collection.

To keep plasma from passing through the scattering slit, this was also covered with a

thin layer of plastic (20µm, 99% transmissive at 9 keV). Both the plastic supporting

the zinc foil and the plastic covering the slit were also intended to mitigate hot

electron interaction with the gold shields. The zinc structure was to be be affixed

at a “floating” position, out of contact with the gold shield, limiting any conductive

paths between the laser-irradiated surface and the shielding. Several prototypes of

this target were made, but it was determined that the shape and position of the

curved foils was too variable, and the targets fielded on this shot day replaced the

curved foil with a flat, 25µm-thick zinc foil.

The primary diagnostics were again the zinc spectrometer (ZSPEC) and the streak

camera (SSC). In 2011 a second zinc spectrometer was also available, and could be

fitted with a range of crystals. The target was oriented in the OMEGA chamber to

allow use of both ZSPEC instruments – one acting as the primary data collector,

and the second as a “source monitor,” with a line of sight to the zinc foil. For

improved signal gathering the primary instrument was fielded with a cylindrically

curved crystal. In this configuration, the x-rays impinging on the crystal are scattered

towards the axis of the crystal radius of curvature. This effectively collapses the four
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MCP strips seen in Fig. 5.6 (a) onto one strip, increasing the signal-to-noise at the

sake of timing information provided by the four-strip MCP. The source monitor was

configured with a flat crystal like that used in the 2010 experiment.

To accommodate the pair of ZSPEC instruments and find beams sufficient for

the drive, zinc x-ray source, and vanadium x-ray source, the streak camera imaging

axis could not be made perpendicular to the tube axis. Instead, it was at 97◦, 7◦

from the ideal position. This oblique view had the effect of blurring the edges of the

dense layer and changing the line-integrated mass density through which the x-rays

traveled. In this configuration a uniform dense layer of xenon 120 µm thick and 500

µm in diameter appears, “corner-to-corner,” to be 207 µm thick. Because the x-rays

traverse varying lengths of the dense plasma, the image, especially at the leading

edge, is expected to less sharp than in a perpendicular configuration. However, with

a tilt of 7◦ there is a ∼ 60 µm-thick region where the x-rays pass through greater

than 500 µm of dense xenon. The attenuation of this region should be greater than

the attenuation in the 2010 data (Fig. 5.5), and should have been observable with

the SSC.

5.3.2 2011 Data analysis

An example of the SSC data foreshadowed in the previous paragraph is shown in

Fig. 5.9. The fiducial wire is clear, with no evidence of the minor distortions seen in

the 2010 data. Ostensibly the camera setup was the same as the 2010 campaign, but

on this day there was no evidence of a shock in the SSC image. During the shot day

large adjustments were made to the spatial and temporal field of view, but no shock

was observed. Possible explanations include a systematic error in the diagnostic con-

figuration that was not detected (mispointed, miscalibrated), an incorrectly designed

target (the tube did not fall in the SSC field of view, or that the above analysis of

the 7◦ tilt is incomplete), or that the diagnostic was working properly but no shock
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Figure 5.9:
Negative image from the 5 ns sweep on the streak camera from the 2011
OMEGA campaign. The fiducial wire is clearly visible at the bottom of
the image, but the dense xenon layer was not observed.

was produced (possible if the target was not driven properly, the tube was not filled

with gas, etc). This final point is the most likely, as there is evidence in other exper-

iments that relied on the same gas-fill system that the tubes were not filled with Xe

gas. Instead of Xe the tubes were filled with pressurized air, which does not have the

optical properties to produce an image of the shock.

Because only one curved crystal was available, the first several shots were taken

with flat crystals in both the “primary” and “monitor” ZSPEC instruments. This

was done to facilitate direct comparison between the x-ray input and and scattered

signal. The data from the primary instrument was of generally poor quality for these

shots, and during the second half of the day the curved crystal was used. It is data

from the latter half of the day that is analyzed here, though all spectra are given in

Appendix F.

An example of the data recorded from the primary ZSPEC (with the curved

crystal) is shown in Fig. 5.10 (a). Distinct peaks are seen, offset from one another
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a)

b)

c)

Primary	  peak	  

Background	  peaks	  

Figure 5.10:
Scattered signal recorded on the central MCP strip of the ZSpec (color
indicates signal intensity). a) Uncorrected data from a driven Xenon ex-
periment. b) Data from a non-driven shot. The two background peaks
are prominent, while minimal signal is recorded from the scattering vol-
ume at TCC. c) Subtracting b) from a) removes much of the background,
leaving the central peak corresponding to signal from the scattering vol-
ume.

in both directions (note the horizontal axis is the dispersive direction). This can

be understood as follows: for both a flat or curved crystal, deviation from a point

source in the dispersive direction (vertical axis in the target plane, as seen from the

spectrometer) leads to blurring of the spectrum if the source is spatially continuous,

or the illusion of distinct energy bands if multiple sources are distinct and spatially

separated. This is illustrated in Fig. 5.11, which shows the target as it was oriented

relative to the crystal, though otherwise not to scale. The scattering slit on the target

is not visible in this view, but is cut at the point on the shield indicated by the green

ray in the figure.

The peaks on either side of the central peak were identified as originating from

secondary sources by comparing the signal from a “full” shot (Fig. 5.10 (a)), when

the target is driven and the x-ray source beams fire, with a “disk” shot, which is

simply a flat zinc foil placed at TCC. This made clear that the central peak in Fig.
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Figure 5.11:
Relation of the target shields to the spectrometer, with rays from mul-
tiple sources. Note that the line colors are solely to aid the eye in this
case, and do not correspond to energies. All of these rays represent 9
keV x-rays, but at distinct locations – the scattering slit, and above and
below the shield.

5.10 (a) originated at TCC, the same location as the zinc foil shot. The secondary

sources are the result of lateral expansion of the zinc plasma above and below the

edge of the gold shielding, resulting in the signal on either side of the central peak

in Fig. 5.10 (a) and (b). This was partially mitigated on one shot by adding extra

shielding during the shot day (further confirming our understanding of the secondary

sources), but is still present to some degree on that and all other shots.

Despite the insufficient shielding, it remains the case that the central peak in Fig.

5.10 (a) shows scattering from the scattering volume at TCC. To improve signal to

noise in the data, one would like to integrate across the spatial axis (vertical in Fig.

5.10). To do so, the central peak must be isolated from the the secondary sources

of signal. This was done by subtracting the signal collected from an undriven target

(Fig. 5.10 (b)), from the data collected from a full (driven) target. The result of

this subtraction is seen in Fig. 5.10 (c). Importantly, the undriven target had a 150

µm scattering aperture, and one would expect less intensity in the scattered (central)

peak for this reason alone. Comparison of the data in the subtracted image (Fig. 5.10

(c)) with models of the predicted scattering was then performed to infer the plasma
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conditions.

Model scattered spectra were generated using the XRTS computational program

written by Gianluca Gregori (hereafter, “xrts code”). This code constitutes the for-

ward model, requiring as inputs the parameters needed to generate the dynamic

structure factor S(k, ω). Several static structure models can be chosen, including

one-component plasma (OCP), screened OCP (SOCP), and SOCP with negative

screening (SOCPN), and Debye-Hückel (DH) models. However, because the xenon

radiative system is weakly coupled (Γ � 1) and the electron kinetic temperature is

much greater than the Fermi temperature (Θ > 1) there is not a significant difference

in the calculated dynamic structure factor between models1. Based on the discussion

in §4.5, the normalized spectra are thus not sensitive to electron density ne.

Regardless of the static model, the result of the dynamic structure factor calcu-

lation must be convolved with a spectrum representing the incoming x-rays in the

experiment. Ideally this is measured during the experiment, because the ratio of

line intensities is a complex sum over the emission from many plasma conditions

[110, 95, 168, 169]. The spectrum used in the calculation must also take into account

the resolution of the detector, further motivating a measurement of the source spec-

trum during the experiment. In the xrts code, this instrument-dependent spectrum

is termed the instrument function. Here, because the ZSPEC intended to serve as a

source monitor employed a flat crystal, while the data was collected with the curved

crystal, the detector response was significantly different between these two instru-

ments. The instrument function used for fitting was instead collected from a single

zinc foil shot, recorded using the primary ZSPEC with the curved crystal. The same

instrument function is used to produce model curves in Fig. 5.12.2

1The DH model is the simplest model, and represents the limiting behavior for an ideal plasma,
which the system under investigation is not. The calculations shown here were performed with
the OCP model, and the results shown were nearly unchanged under any set of plasma coupling
assumptions more sophisticated than DH (i.e. SOCP or SOCPN).

2The xrts code calculations were also performed using an ideal (analytic Gaussian) instrument
response function and an instrument response generated with FLYCHK in a similar method as Ref.
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Figure 5.12:
Data from a 400 µm-slit scattering target is shown in blue in both sub
figures. The least-squares best fit, with parameters Te = 77 eV, Zf=48,
is shown in red in both sub figures. The subfigures show: a) variation
in free electron number (constant Te) , and b) variation in electron tem-
perature (constant Zf ). Each of the model curves is indicated on Fig.
5.13.

Then, for a given instrument function, the shape of the Compton peak is a function

of the free electron fraction Zf and the electron temperature Te. To understand the

dependance on these parameters, several thousand xrts runs were performed over a

range of Zf and Te. Using a least-squares difference between the data and the model

result, a best fit was found at Te = 77 eV, Zf = 48. This is shown as the red curve

overlying the blue data in Fig. 5.12 (a) and (b). Variations around these parameters

are also plotted, and shown overall by the contour plot in Fig. 5.13. The location of

each curve is indicated in the Te - Zf parameter space of the contour plot. The fit is

relatively sensitive to Zf , but large changes in Te still produce reasonable fits to the

data. Additionally, this analysis assumes only one homogeneous plasma condition

throughout the entire scattering volume, which is known to be a simplification based

[110]. The difference in goodness of fit between the model spectra produced with this array of input
functions and the data was essentially uniform over parameter space. Thus, the choice of instrument
function did not significantly change the results presented below.
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on spatial dimensions of the dense Xe layer measured in 2D radiographs.
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Figure 5.13:
Model spectra over the Te - Zf parameter space is compared to the data
via simple least-squares differencing. This converges to a minimum at
Te = 77 eV, Zf = 48. This point is indicated by the red dot. Each of
the black points is the displayed in Fig. 5.12.

Comparison of the inverse problem results with the calculations of Chap. III draw

into question the design of the experiment as having probed Xenon. The large error

bars in the XRTS temperature measurement permits agreement with the analytic

estimates, but the value of Zf higher than expected. For conditions of ne = 5× 1022

cm−3 and Te = 100 eV, the Thomas Fermi model predicts an average ionization state

of ∼ 18. This is the electron configuration of the nobel gas krypton, and as such

represents a relatively stable state3. However, because of the screening of the inner

electrons, six electrons (in addition to the outer 18) have binding energies less than

the Compton shift (≈ 169 eV) of the 9 keV probe electrons. (These six are the 4p6

electrons, with binding energies of 145 eV. The outer 18 are the 5s2 level at 23 eV,

3Note that this is a coincidental prediction of the TF model, which does not take into account
the electron shell structure of atoms. See Appendix A for details of this model.
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4d10 at 67-145 eV, and 5p6 at 12-13 eV, [2]). This Zf value of 24 may be considered

kinematically free with respect to the XRTS probe, but is still well short of the 48

needed to fit the data.

Reprinted here for convenience, the ratio of inelastic scattering intensity to the

elastic intensity is given by Eqn. 4.33:

Iinel.(k)

Iel.(k)
≈ Zf
|fI(k)|2

≥ Zf
Z2
c

. (5.1)

It is clear that theory predicts the scattered spectrum for a high-Z system, where

more than half of the electrons remain tightly bound, will be dominated by elastic

scattering. In a low-Z system, particularly when is hydrogen present, it is possible

to ionize a significant fraction of the electrons and increase the inelastically scattered

signal. In the experiment here it must be considered that the polyimide tube, with

chemical formula C22H10N2O5, contributed to the scattered signal.

Comparison of the data with model scattering curves from xenon yielded a best-

fit temperature of 77 eV. This value is independent of the scatterer; any optimum

fit to the data will be at this temperature. If one assumes that this represents the

actual temperature of the scattering material, the ionization of polyimide can be

found using an appropriate model. Applying the Thomas Fermi model with a solid

density of 1.4 g/cm3, on finds average ionizations for each of the constituent elements

to be C (Zf= 4.1), H (0.9), N (4.6), and O (5.0). These are subject to the validity of

the model, discussed further in the appendix on the topic, but represent reasonable

starting values. Beginning with the same instrument function used to generate the

xenon curves of Figs. 5.12 and 5.13, the xrts code calculation for scattering from PI

was carried out. This is shown in black in Fig. 5.14, plotted with the data (blue) and

the best-fit model curve from Xe scattering (red). Notably, air is also primarily N and

O and produces a similar curve to the polyimide and highly-ionized Xe models. The
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striking similarity between calculated scattering spectra from xenon at unphysical

conditions and plastic or air at reasonable ones precludes making strong claims about

the model parameters in the system of interest.
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Figure 5.14:
The measured data spectrum is shown in blue, with the best fit xenon
spectrum overlaid in red. Plotted in black is the xrts calculation for
scattering from polyimide (C22H10N2O5) at 77 eV. The ionization states
are determined from the Thomas-Fermi model to be C (Zf= 4.1), H
(0.9), N (4.6), O (5.0).

5.3.3 2011 Conclusions

Using the cylindrically curved crystal in the zinc spectrometer, we were able to

identify the sources of background in the 2011 experiment. Isolation of the scattered

signal from the signal from multiple sources was roughly achievable, and permitted

the comparison between the data and model spectra calculated with the xrts code.

Using an instrument function recorded from the zinc disk x-ray source, the data is

well-fit by scattering from xenon with an unrealistically high ionization state. Because

of the ill-posed nature of the XRTS analysis method, the data was also well-fit by
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scattering from the plastic shock tube. In reality the measured spectrum is almost

certainly an average of scattering from electrons bound to xenon atoms, electrons

bound in the plastic, and free electrons from all sources. This experiment made

several key improvements over the 2010 effort, and permitted the inference of a free

electron temperature, albeit with large error bars. It also convincingly illustrates

the stringent requirements on shielding and experimental design when attempting to

probe a low-density, high-Z material with XRTS.

5.4 2012 Campaign

5.4.1 2012 Experimental design and diagnostics

In April of 2012 a new diagnostic had been completed to measure spatially re-

solved x-ray Thomson scattering. The “imaging x-ray Thomson spectrometer,” or

ixts, was designed by E.J. Gamboa and collaborators at Los Alamos National Labo-

ratory. Central to the ixts is a torriodially-bent crystal with high-resolution spectral

dispersion along one axis and spatial resolution afforded by a Von Hamos geometry

on the orthogonal axis. The crystal is aligned for use with a nickel Heα x-ray source

with characteristic lines at 7766 and 7806 eV. A diagram of the instrument is shown

in Fig. 5.15; full specifications can be found in Ref. [79] and [78].

Building on the previous experiments and working to take advantage of the new

diagnostic, several changes were made to the target design. These included tighter

collimation of the input x-rays, using a laser-cut 300 µm-diameter hole to limit the

irradiance of the tube walls. The imaging capabilities of the ixts diminished the

importance of a streak camera and relieved the need for a second x-ray source. As

such, the vector approximately 180◦ to the ixts direction was designed to accommo-

date the curved-crystal ZSPEC in a configuration similar to 2011. This provided a

complementary diagnostic for comparison to previous data, with minimal additional
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Figure 5.15:
Diagram of the imaging x-ray Thomson spectrometer. Image credit:
Gamboa et al. [78]

experimental requirements. An annotated photograph of the target is shown in Fig.

5.16.

Relative to the ZSPEC, the ixts has significantly higher resolution and photon-

gathering capabilities. Owing to this, we were able to decrease the width of the

scattering slit from 500 µm to 300 µm. This is approximately half of the tube diam-

eter, and eliminates the collection of any photons scattered from the tube walls with

normal vector parallel to the incident x-rays. The slit was lengthened to 1 mm along

the direction of the shock tube to guarantee the presence of the dense xenon layer

during the probing time. The ixts imaging capability was relied upon to monitor the

shock position.

Not unexpectedly, the lateral expansion of the x-ray source plasma once again

extended beyond the shields. Emission from the Be disk also produced strong emission

in the energy range of interest (7400 – 7900 eV), which was collected by the time-

integrating CDD. However, with the spatial discrimination of the ixts this background

was trivially cropped out and did not interfere with the scattered data4.

4This understates the issue somewhat. The first shot of the day produced background bright
enough to saturate and possibly endanger the CCD detector if repeated. This motivated the attach-
ment additional gold shielding to subsequent targets, which is generally considered a “last-resort”
solution. Still, it remains the case that the saturated shot did produce viable data. This highlights
the power of the instrument and the yet-unachieved amount of shielding needed to eliminate the
collection of direct x-ray emission in these sensitive XRTS measurements.
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Figure 5.16:
Photograph of the 2012 target, with important features labeled. Signif-
icant improvements in the target viewing and metrology system in the
Drake lab between 2011 and 2012 enabled this image.

5.4.2 2012 Data analysis

Data from this day is shown in Appendix G, and an example is given in Fig. 5.17.

The plot on the left of this figure shows the spatial variation recorded by the ixts

(integrating both elastic and inelastic scattering). A region of enhanced signal is seen

between 350 and 550 µm from the edge of the scattering slit, or 1850 – 2050 µm from

the drive disk. This is scattering from a region of higher density, and is consistent with

the plethora of shock position measurements at 13 ns. Spatial modulation was not

seen in the scattering from an undriven experiment, shown in Fig. 5.18. indicating

that the structure is the result of the shock in the xenon gas.

To account for background scattering, the signal collected from the undriven target

was subtracted from the full target data. Subtraction was performed in 2D (pixel-by-

pixel image subtraction) and in 1D (subtraction of lineouts taken at the same spatial

coordinate in the scattering slit), with negligible difference in the qualitative results.
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Figure 5.17:
Raw data is shown in false color on the right. Integration over all en-
ergies gives the spatial scattering profile on the left (blue is the sum,
red is smoothed slightly) where upstream, compressed, and downstream
regions are indicated.

There was not a shot dedicated to measurement of the Ni x-ray spectrum on this shot

day, so an instrument function had to be developed. A zeroth order approximation

uses a pair of Gaussians fit to the two clear Ni Heα peaks in the data. This represents

a best-case scenario, as the spectrum from a real laser-produce plasma will have

lower-charge state populations emitting at lower energy than the He-lines. Similarity

to the experiment described in §2.5 motivated the use of FLYCHK to produce an

input x-ray spectrum. Convolving the results of such a calculation with a simulated

instrument response function so as to match the measured Heα lines produces the

instrument function used in the xrts calculations. This is shown in gray in Fig. 5.19,

with data plotted in red.

The power of x-ray Thomson scattering comes from the fitting of inelastically

scattered signal. However, it is clear that a radiative shock in a high-Z systems may

not sufficiently ionize the system to produce a measurable down-scattered signal. In
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Figure 5.18:
Raw data from a null (undriven) shot is shown in false color on the
right. Integration over all energies gives the spatial scattering profile
on the left. The signal intensity is approximately half of that in Fig.
5.17, and there is very little spatial modulation. The signal here is thus
attributed to scattering from the PI tube walls, and can be subtracted
from the full-shot signal.
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Figure 5.19:
Data is shown in red, with several calculated scattering spectra shown.
Because of the low Zf fraction all of the spectra are dominated by elastic
scattering and are indistinguishable from the instrument function (shown
in thick gray).
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such a case the input spectrum matches the data over the entire parameter space.

Notably, nature is nearly as uncooperative for low-Z materials. Figure 5.20 shows

the predicted scattering from beryllium at density ne = 1.2 × 1023 cm−3 and Te = 5

eV for two different ionization states, Zf = 0 and Zf = 2. (Other parameters, like

instrument function and coupling model, are also the same). This indicates that

the inverse problem results are non-unique for the parameter Zf in low-Z materials,

making inference of this parameter difficult. Despite this, the presence of an inelastic

signal allows for fitting of other parameters, which is not possible for moderately

ionized high-Z materials.

8200 8400 8600 8800 9000 9200

0

Figure 5.20:
Scattering response from Be at solid density, 5 eV, and ionization of 0
and 2, as calculated by the xrts code. For a 50 eV full-width-half-max
Gaussian instrument function at 9 keV, the expected scattering is not
sensitive to the ionization to within errors in typical experimental data.
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5.4.3 2012 Conclusions

The 2012 radiative shock campaign made use of the ixts instrument. This spec-

trometer uses a toroidially-bent crystal in the von Hamos geometry to spatial resolve

input x-rays in one dimension while spectrally dispersing them in the other. The

high-resolution spatial discrimination allowed complete separation of background x-

ray sources that plagued earlier efforts. Additionally, the subtraction of signal from

an undriven, evacuated shock tube – representing scattering entirely from the PI tube,

acrylic housing, and other uninteresting sources – yielded the scattered signal from

the xenon gas. This signal was dominated by elastic scattering, a result that is in

keeping with the limiting behavior of the scattering theory and the calculations of

the xrts code, which uses more advanced models.

Future efforts to use XRTS to probe a high-Z gas will require improvements in

experimental design. In particular, a brighter, higher energy x-ray source will be

needed to increase the total number of scattered x-rays and improve the signal-to-

noise. Continuing to reduce background sources–scattering from the tube or other

target elements, plasma expansion beyond the shields, and signal produced by hot

electrons–will be necessary. Finally, improvements in detector dynamic range will be

required to resolve both the elastic and inelastic scattering peaks. These issues are

discussed further in Chap. VIII: Conclusions and future directions.
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CHAPTER VI

Laser wakefield acceleration and current

filamentation instabilities

6.1 Introduction

The physics of relativistic charged particle beams is of central importance to

gamma ray bursts, as introduced in Chapter I, as well as astrophysical jets of other

types. During these events, tremendous fluxes of charged particles are accelerated

into the interstellar media (ISM). It was shown in 1959 by Erich Weibel that such

a system may be unstable in the presence of thermal anisotropies, evolving into a

series of current filaments via a process which now bears his name [214]. In addition

to the Weibel instability, several other phenomenologically similar mechanisms can

also cause filamentation of the charged particle flow [77, 22], all of which can lead

to the formation of strong magnetic fields. Deflection of charged particles from the

small-scale magnetic fields created by the Weibel instability have been suggested as

the origin of the late-time emission (afterglow) of the gamma ray burst radiation

spectrum [155, 154, 183].

The process can be understood as follows. Assume equal fluxes of electron travel-

ing in the ±x̂ directions and a stationary proton background, yielding global charge

neutrality and a net current of zero. The electrons will respond to an infinitesi-
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Figure 6.1:
An initially uniform flux of electrons flowing in the x direction will tend
to form current sheets at locations I and II in the presence of a magnetic
field B. From Ref. [155].

mal magnetic field fluctuation of the form B = ẑBzcos(ky) via the Lorenz force,

F = −e/c(v×B). With reference to Fig. 6.1, electrons traveling in the +x̂ direction

will be deflected, as shown by the dashed arrows. The electrons bunch into sheets,

indicated by I and II, which serve to enhance the magnetic field. By similar analysis,

electron motion along ŷ tends to quench the process, while motion in ẑ does not

contribute to the instability as it is depicted (though the perpendicular component of

velocity can contribute to stabilization of Weibel instabilities, as described by Su et

al. [199]). Initially filaments grow at wavelengths on the order of the skin depth c/ωp,

where c is the speed of light and ωp is the plasma frequency. The instability progresses

as co-propagating currents attract and coalesce, increasing the local electron density

and furthering the anisotropy.

Numerous sources report on variations to the fully-kinetic, relativistic treatment

of the Weibel instability, and are summarized in the review by Tautz and Lerche

[203]. As alluded to previously, there are a multitude of related instabilities that

have been identified; these arise from subtly different conditions and compete with
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(or reinforce) the Weibel instability. Equation 6.4 (a) quotes the maximum growth

rate for the Weibel instability, along with those of the two-stream (ts), oblique (o),

and filamentation (f) instabilities [23]:

ωW =

(
nb
n0γ

)1/2

ωp, (6.1)

ωts ∝ (nb/n0)1/3γ−1 (6.2)

ωo ∝ (nb/n0)1/3γ−1/3 (6.3)

ωf ∝
√

(nb/n0)/γ. (6.4)

In each case, γ is the relativistic factor, nb is the beam electron density, and no is the

background electron density. All of the instabilities grows faster for low energy, high

density beams. This set of growth rates is presented to show the similarity between

the instabilities, and because in most experiments, including the one detailed later

in this chapter, it is not possible to distinguish the specific mechanism that leads to

beam filamentation.

In addition to aiding in understanding the radiation signatures of astrophysical

objects, the physics of electron beams is also relevant to the fast ignition concept

of inertial confinement fusion. In this scheme, the heating of the fuel is separated

from the process of fuel compression (isochoric heating). This differs from so-called

“hot-spot” (or, isobaric) ignition (described in Chap. VII), when these steps are

performed at the same time. In fast ignition (FI), a capsule of DT fuel is compressed

to high density, either by x-ray ablation or direct laser irradiation. When the fuel

is near maximum compression, a pulse of charged particles is provided to create the

“spark” needed to reach fusion conditions. In principle, FI relaxes the stringent

requirements on the symmetry of the spherically compressed fuel and thereby lessens

the detrimental effects of Rayleigh-Taylor instabilities (see Chap. VII).
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Fast ignition is not without stability issues, however, and suffers from breakup of

the particle beam intended to spark fusion. This is ameliorated, in part, by the intro-

duction of a cone into the capsule, providing an avenue free of plasma for the beam

to reach to the dense fuel [164, 126, 208]. Despite this, deposition of energy in the

dense fuel remains challenging, and the same beam instabilities present in electrons

streaming through the ISM also serve to filament and disperse the energy of the FI

heater beam. To investigate the physics of relativistic electron beam propagation,

a source of energetic electrons is needed. Laser wakefield acceleration of electrons

provides such a beam.

6.2 Laser Wakefield Acceleration

In a process called laser wakefield acceleration (LWFA), electron bunches can be

accelerated to relativistic energies by “surfing” on electron-plasma waves generated by

an ultra-intense laser pulse as it propagates through a low-density plasma [148, 80, 67].

This was proposed conceptually in 1979 [200], but was not realized until several

years later when the necessary laser intensities could be reached. In particular the

invention of chirped pulse amplification (CPA), where a frequency dependent delay is

introduced to a short laser pulse prior to amplification [198], led to gain increases of

several orders of magnitude in ultra-fast pulses. The development of CPA enabled the

construction of several high-intensity lasers during the 1990’s, and aided by progress

in parallelized particle-in-cell (PIC) code development, laser wakefield acceleration

has been a prolific area of research in the last two decades.

The process of LWFA relies on the focusing of an intense laser into a plume

of neutral gas. As the leading edge of the laser ionizes the gas, the high electric

field gradients expel the electrons via the ponderomotive force, leaving behind a

bare ion cavity. The resulting electron density profile resembles a near-spherical

“bubble” following the laser pulse. The space-charge separation at the rear of the
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bubble can produce electric fields of tens or hundreds of GeV/m and can be used to

accelerate trapped electrons to near the speed of light. These electric field strengths

are significantly higher than those used in traditional radio-frequency cavities, and

for this reason, laser wakefield accelerators are a promising avenue in the search for

next-generation accelerators.

To achieve the greatest energy gain, it is necessary to increase the length of the

accelerating region, maximizing the distance over which electrons can extract energy

from the driving laser pulse. However, as the laser pulse propagates it continuously

loses energy to the plasma in generating the wakefield. The length over which the

laser pulse can sustain a wakefield is given by the pump depletion length. In the

non-linear 3D regime, this is given as Lpd = (ncr/n0)cτp, where ncr = ω2
0meε0/e

2 is

the critical density for a laser of angular frequency ω0, τp is the pulse duration, and

n0 is the unperturbed plasma electron density [146]. This length is shown in Figure

6.2, along with several other important points along the plasma channel.

Laser	  

Laser	  
evolu+on	  

Electron	  
accelera+on	  

Electron	  beam	  propaga+on,	  
erosion,	  and	  filamenta+on	  

Lpd	  (linear)	  
for	  ne	  =	  1019	  

0.5 1235

Nozzle Diameters Measured in this experiment (mm) 

Electron	  injec+on	  
begins	  

Pump	  deple+on	  

Figure 6.2:
The stages of electron beam formation and propagation are shown on an
interferogram of the plasma channel.
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If the length of the gas target used exceeds the pump depletion length, the electron

beam will subsequently propagate through an approximately uniform, quasineutral

plasma, instead of the bare ion channel generated by the plasma bubble. As well as

driving its own wakefield [34], the electron beam may be susceptible to filamentation

and propagation instabilities. Weibel [214] first discovered that an electron distribu-

tion with an anisotropic temperature can lead to the growth of self-excited transverse

electro-magnetic waves. A related transverse instability for relativistic electron beams

is the current filamentation instability [29], which occurs when the magnetic field gen-

erated by the beam causes an initial seed modulation in the transverse current profile

to be amplified by the Lorentz force, j×B. The evolving current filaments produced

by these instabilities leads to a densely tangled magnetic field structure that serves

to “jitter” the electrons. In astrophysics, observations of gamma-ray bursts can be

characterized by the spectra of the long-duration afterglow, which may be the result

of such jitter radiation [154, 163].

6.3 Electron Beam Filamentation Experiments

To investigate current filamentation, we conducted experiments using the 30 fs,

λ0 = 0.8 µm HERCULES laser at the University of Michigan [221] to generate rela-

tivistic electron beams. The laser wave front was corrected using a deformable mirror,

and the beam was focused to approximately 10 µm FWHM spot size using an f/ 10

off-axis parabola. Shots were taken with 28 ± 3 TW peak power with a focused in-

tensity of 4 × 1019 W/cm2, resulting in a normalized vector potential a0 = 4.4. The

pulse was focused onto the front edge of an expanding helium gas plume created

by the flow of gas through a supersonic conical nozzle. To vary the length of the

plasma channel a range of gas nozzles were used, with diameters of 0.5, 1, 2 , 3, and

5 mm. The set of nozzles were shot on sequential shot days, during which the laser

parameters and major alignment remained the same. The repeatability of the pulse

98



was checked by imaging the laser immediately before beginning the experiment. The

backing pressure was varied during each shot cycle, with electron densities ranging

from 1×1019 - 2.6×1019 during the experiment.

Main	  beam	  F/10	   Gas	  Jet	  

Removable	  
sector	  magnet	  

0.8T	  

e-‐	  spectrometer	  	  
imaging	  screen	  

Orthogonal	  probe	  beam	  

e-‐	  beam	  profile	  
imaging	  screen	  

80 cm 
(gas jet to profile screen) 

Figure 6.3:
Diagram of the laser wakefield accelerator geometry and electron imaging
diagnostics (not to scale).

To measure electron density and image the plasma channel structure, we employed

a transverse interferometer beam orthogonal to the main laser pulse direction. The

length of the plasma column was measured directly from a calibrated image, while

the density measurement was made via Abel inversion of the interferometer image.

The error associated with the Abel inversion process was estimated by dividing the

interferometer image along the laser axis and separately mirroring the top and bottom

images using image processing software. For the cylindrically symmetric Abel calcu-

lation, the pair of mirrored images should produce equal results, and the maximum

density values produced in this way were seen to agree to within ten percent.

The energy of the electron beam was measured with a spectrometer using a 0.8 T

sector magnet placed in the path of the electron beam. The magnet served to disperse
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the beam onto a scintillator screen, which was imaged with a high-resolution camera.

When the magnet was removed from the beam path a beam profile image was recorded

by a second screen, placed on-axis approximately 90 centimeters beyond the gas

nozzle, providing a measure of the electron beam divergence. A removable optical

imaging system was in place to monitor the laser light after passing through the

plasma. This confirmed that the laser pulse was self-focused through the gas jet and

did not filament in a manner that would affect the observed electron beam.

a) b) c)

d)
e) 10 mrad

Figure 6.4:
Representative electron beam profile images in the transverse (x2 − x3,
horizontal-vertical) plane. a) 500µm nozzle: single, localized filament. b)
1 mm nozzle: generally a single beam, with larger divergence than the
500 µm nozzle. c) 2 mm nozzle: beam divergence increased d) 3 mm
nozzle: significantly divergent beam e) 5 mm nozzle: beam is non-local
and heavily filamented. The spatial scale shown applies in both vertical
and horizontal axes, and is equal for all subfigures.

Reconstructed density maps confirmed the increasing plasma interaction length as

the nozzle diameter increased. The narrowest nozzle used was 500 µm and produced a

plasma channel of nearly 380 µm. At this length a single electron beam with a broad

energy between 20 and 50 MeV was consistently produced (51 of 62 shots). The

100



beam was elliptical and showed no evidence of multiple bunches (Fig. 6.4a). At this

length beam-loading has not yet occurred and injection at the back of the bubble is

continuous, resulting in the broad energy spectrum observed [149]. From the scalings

described previously, the plasma channel is too short for maximum acceleration and

the electron population does not rotate in phase space, explaining the low maximum

energy achieved with this nozzle.

Using a 1 mm conical nozzle to lengthen the plasma channel, electron beams were

often produced with broad spectra, though monoenergetic beams were also observed.

The channel was sustained for 880 µm, which was long enough to accelerate the

electron beam to approximately 190 MeV. These high-energy beams are the result

when electrons have gained maximum energy from the laser-sustained plasma wave,

but before dephasing slows and spreads the beam.

The 2 mm nozzle produced a plasma channel of approximately 1800 µm. The

electron spectrometer reveals quasi-monoenergetic or dual-peaked spectra with ini-

tial signs of transverse beam spread. Figure 6.5c) shows an energy spectrum from this

plasma length. Although little off-axis signal is observed on the spectrometer images,

the profile images show either one or two beam main filaments surrounded by a dis-

perse ‘halo’ (Fig. 6.4 c-e). Because these electrons are not seen on the spectrometer,

they are likely below 20 MeV and thus outside of the spectrometer energy detection

range. The pump depletion length can be estimated at 1.1 mm for an electron den-

sity of 1.4×1019 cm−3, which was the density observed for this nozzle. Consequently,

significant charge at higher energies was not observed for lengths longer than this

nozzle in this experiment.

At 3 mm, both the profile and spectra images showed increased beam divergence

(Fig 6.4 d and 6.5 d). Beams were created consistently, but no mono-energetic spectra

were recorded. It is expected that after propagation through this length of gas target

the laser pulse is depleted far below the the intensity necessary to drive a wake. As
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a)

b)

c)

d)

e)

506080100

Beam driven!
electrons

20 mrad

Figure 6.5:
Representative electron spectrometer images. Energy increases from right
to left, and is indicated in MeV by the vertical bars. Tother axis is the
angular distribution in the x2 direction. The spatial scale shown is equal
for all subfigures. The spectra are from: a) 500µm nozzle, b) 1 mm nozzle,
c) 2 mm nozzle, d) 3 mm nozzle, e) 5 mm nozzle. The maximum energy
shown in frame b is approximately 190 MeV.
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a result, the profile images showed a ‘halo’ on all shots. This effect is evident in the

spectrometer images as well, where filaments with nearly equal energy are displaced

in space (vertical separation in Fig. 6.5 d-e). In this case, the leading electron bunch

is propagating through the He plasma and begins to drive its own plasma wake. It

subsequently starts to become susceptible to current filamentation instabilities as the

fast electron beam is neutralized by upstream electrons. There is also evidence of

small bunches of electrons with energies near 200 MeV, consistent with beam driven

acceleration of a small portion of the rear of the bunch or trapping of secondary

bunches [210].
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Figure 6.6:
Plot of total charge, localized charge, and number of filaments per image.
Localized charge is defined as integrated intensity when electrons outside
of filament bunches (as identified algorithmically based on intensity) are
excluded. The charge in the beam shows an inflection around the 2 mm
length, while the number of filaments and the charge in the halo both
increase with plasma length.

The largest diameter nozzle used was 5 mm, and yielded a plasma channel of

nearly 4500 µm. The beam profile at this stage is highly filamented, with multiple

bunches evident in the beam profile, Fig. 6.4e. Integrating the total charge collected
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on the profile LANEX suggests a saturation in the number of electrons injected (Fig

6.6). This was quantified by integrating the charge on the profile LANEX in the

regions identified as primary beams. This analysis shows the effect of beam erosion,

as indicated by the halo and decrease in localized charge, at plasma lengths beyond the

dephasing length. In addition, there are a large number of small filaments observed

in the beam profile for this propagation length, qualitatively different from structures

seen in the shorter plasma lengths. Modifications to the plasma channel profile at

this length affected electron production, but beam filamentation was evident whenever

electrons were observed, regardless of the details of the plasma profile.

The main filament is not susceptible to the instability as it is both very relativistic,

γb > 100, and has small transverse extent compared with c/ωp. However, for the

‘halo’, which has particle energies below 20 MeV, a larger divergence and a beam

density not far below the background density, the growth-rate can be estimated, for

γ = 16 and nb/np = 1/100, as Γ = ωp/40. The length propagated to achieve 8

e-foldings, corresponding to a gain of 3000, is 50 · 2πc/ωp, or 500 µm for a density of

1.1×1019 cm−3. This 1D estimate suggests that filamentation is qualitatively feasible

given the parameters of this experiment. However, 3D effects and saturation of the

instability will affect the quantitative degree of growth measured in experiment.

6.4 Simulations

Computer modeling of relativistic particle beams proceeds in a fundamentally

different way than the radiation hydrodynamic simulations described in Chap. VII.

Instead of calculating the properties of a “large” fluid element as it convects through

the system, simulations of LWFA experiments solve Maxwell’s equations for the fields

and resultant motions of individual particles. In particular, in addition to Maxwell’s
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equations, the motion of each particle j is described by the equation set

drj
dt

= vj (6.5a)

dvj
dt

=
qj
mj

(
E +

vj ×B

c

)
(6.5b)

ρe =
∑
j

qjδ(rj − r) (6.5c)

J =
∑
j

qjvjδ(rj − ρ), (6.5d)

where E, B, and J are the electric field, magnetic field, and charge density, respec-

tively. The process is iterated through cycles depicted by [63]

{rj,vj} → (ρe,J)→ (E,B)→ {rj,vj} → etc.. (6.6)

This type of simulation is known as particle-in-cell (PIC), indicative of the strat-

egy of following individual particles through the computational mesh [45]. Only the

negligible effects of quantum mechanical corrections and particle collsions are omit-

ted from the self-consistent PIC calculations, making these codes potentially very

accurate [70]. However, individual particle tracking quickly becomes computationally

expensive, and modern PIC codes rely on massive parallelization in modeling fully

3D systems.

One widely-used PIC code is the OSIRIS, developed by researchers at the Insituto

Superior Tecnico, University of California, Los Angles, and the University of Southern

California. Version 2.0 of the code was employed by Dr. Alec Thomas to model the

conditions in the experiment described in §6.3. Two simulations were run. The first,

denoted as “Simulation 1”, modeled the propagation of gaussian laser pulse with pulse

duration 29 fs FWHM, beam waist w0 = 10 µm and normalized vector potential of

a0 = 4 in a helium plasma with a fully ionized electron density of 0.005nc. The density

profile consisted of a vacuum region followed by a short linear ramp of length 63.7 µm
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and then a region of constant density. This simulation was run using 2 particles per

cell with a resolution of 6π cells per λ0 in the propagation direction (x1) and 2π/3

cells per λ0 in both directions perpendicular to propagation (x2 and x3).

Fig. 6.7(a-b) shows the longitudinal current density in a window moving at c,

after propagation of (a) 0.84 mm and (b) 2.9 mm of the laser. In (a), the laser pulse

drives a region of strong electron cavitation, forming an accelerating bubble structure.

Significant electron charge is self-trapped and accelerated in the bubble to an energy

exceeding 300 MeV in a quasi-monoenergetic peak with a broad energy spread. De-

pletion of the laser driver occurs subsequently, and after 2.9 mm propagation (b) the

laser no longer generates a wakefield. However, the electron beam driver itself now

generates its own wakefield through space-charge repulsion [34]. This serves to accel-

erate of a small group of electrons from the rear of the electron bunch to energies in

excess of 400 MeV. Simultaneously, erosion of the electron beam driver head occurs,

the latter resulting in a lower energy and more diffuse cloud of electrons, as seen in

the experiments. The beam driven wakefield is unstable to the electron beam hosing

instability in an ion channel [49, 47], which ultimately results in filamentation and

destruction of the beam structure.

By 3.5 mm the beam structure is sufficiently fragmented and/or eroded to such

an extent that the beam charge profile is indistinguishable from noise, as the den-

sity has fallen to below the background level. Phase-spaces indicate that there is

a significant population of the original beam in the diffuse cloud with an average

forward momentum distribution below 20 MeV. To model the behavior of this low

energy ‘halo,’ “Simulation 2” was run without a laser pulse, with a resolution of π/3

cells per λ0 in x1 and π cells per λ0 in x2, x3. An initially spatially uniform elec-

tron beam of density 0.0005nc with a Gaussian temporal profile of duration 150/ω0

average momentum px1 = 20mec, and a thermal distribution with ∆px1 = 20mec,

∆px2,3 = 2mec was propagated in a uniform plasma of density n = 0.005nc. The
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Figure 6.7:
Isosurface plots from 3D Osiris 2.0 [70] simulations in a window moving
at c with side panels displaying slices through the center of the box. (a-b)
The longitudinal current density in simulation 1 after laser propagation
of (a) 0.84 mm and (b) 2.9 mm. Isosurfaces are at (blue, green) 10% and
2% of minimum and (red, orange) 25% and 50% of maximum current. (c)
Final charge density of the electron beam of simulation 2, with isosurfaces
at 75%, 70%, 65% and 50% maximum.
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Figure 6.8:
The corresponding pz − x phase spaces of the frames shown in Fig. 6.7.
They correspond to propagation lengths of: a) 1 mm, b) 2 mm, c) 3 mm,
d) 3 mm, with intensity adjusted to show beam-driven electron popula-
tion, and e) 5 mm.

beam density and temporal profile was taken to be similar to those observed in sim-

ulation A at 3.5 mm. Being a separate population from the background electrons

allowed the easy identification of structures formed in the beam from filamentation

instabilities. After 1.9 mm of beam propagation the instability had saturated, and

the area A of the filaments projected onto a 2D grid were analyzed using a threshold

image at half maximum intensity. Their diameter, defined as d = 2
√
A/π was found

to vary between 0.57c/ωp and 1.74c/ωp with a mean of 1.07c/ωp, consistent with the

current filamentation instability.

These experiments were motivated by recent theories regarding the radiation sig-

natures from gamma-ray bursts. At the longer gas target lengths, this work demon-

strates a potential test bed for such laboratory astrophysics research. However, the

sensitivity of the electron beam properties to the plasma conditions in the shorter

length nozzles highlight the narrow range of parameter space one must work in to
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achieve a consistent electron beam. Before a full-scale laboratory astrophysics exper-

iment can be realized, instabilities like hosing and filamentation must be controlled,

and then made to grow in a manner well-scaled to the astrophysical system. Finally,

we note encouraging results from X-ray measurements under these conditions [125],

which showed an increase in x-ray flux for up to a 10 mm nozzle, beyond the point

where betatron radiation from the wakefield would be expected. This indicates ra-

diation generation in the filamented region, and motivates further investigation into

the radiation produced by relativistic charged particle beams in the laboratory and

in astrophysics.
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CHAPTER VII

Radiative Rayleigh Taylor instabilities

7.1 Background

As alluded to in Chap. I, the ICF capsule implosion process is hampered by

instability growth, primarily the Rayleigh-Taylor instability (RTI). Rayleigh-Taylor

is the mechanism by which layers of fluids of differing densities minimize potential

energy in the presence of a pressure gradient. The instability is characterized by

“bubbles” and “spikes” of interpenetrating fluids, and was first described by Lord

Rayleigh in 1900 and later by Geoffrey Taylor in 1950 [173, 206]. In addition to

its effect on ICF capsule implosion, as described below, RTI can also occur at the

contact surfaces in exploding stars and may be responsible for the mixing observed

in the ejecta from supernova 1987A [61, 99].

During capsule implosion, opposing pressure and density gradients occur at two

stages, both of which are prone to RTI. “Acceleration phase” RT occurs during ab-

lative acceleration, at which time perturbations on the outer surface of the capsule

may seed RT growth. Later, “deceleration phase” RT can occur when the pressure

gradient in the compressed, low-density fuel opposes the dense, incoming shell. This

stagnation event proceeds over ≈ 200 ps, during which time the fuel-shell interface is

susceptible to Rayleigh-Taylor growth [145].

This latter configuration has been studied as it pertains to ICF both numerically
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[7, 189] and experimentally [25, 151, 124, 182]. Additional experiments, designed to

be relevant to astrophysics, also provide data on deceleration phase RTI [136, 135, 84].

The work of Kuranz et al. explores deceleration phase-like RTI in a hydrodynamic

context 1. However, the conditions in an ICF capsule are not purely hydrodynamic,

and radiation in particular plays a significant role in the dynamics.

To understand the mechanisms by which radiation can stabilize a Rayleigh-Taylor

unstable system, it is useful to work from the non-radiative Rayleigh Taylor growth

rate. A simple derivation of the linear, inviscid, non-radiative, uniform fluid Rayleigh-

Taylor growth rate follows. Beginning the conservation equations for mass and mo-

mentum:

∂ρ

∂t
+ u ·∇ρ = 0 (7.1)

ρ
∂u

∂t
+ ρu ·∇u = −∇p+ ρg (7.2)

where g is the effective acceleration, taken to be in the -ẑ direction, as shown in

Fig 7.1. In laboratory experiments, however, the acceleration is rarely gravity, but

instead a gradient in pressure. In this geometry p = p(z) and ρ = ρ(z). Perturbing

the system slightly takes this quantities from the rest values to p = p0+p1, ρ = ρ0+ρ1,

and u = u1, where the subscript 1 denotes a small value (the system is initially at

rest, u0 = 0).

To linearize, we substitute the perturbed quantities into equations 7.1-7.2 and

discard terms that are second order in smallness. Doing this, and using the incom-

1While the design and subsequent analysis of these experiments assumed a purely hydrodynamic
system, this is under further investigation. It is thought that some structure observed in data
suggests the presence of magnetic fields, a result of the Biermann-Battery effect, which play a role in
the density profile of the spikes. This is under investigation in ongoing experiments by Di Stefano.
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Figure 7.1:
System for RT analysis. The perturbed interface is shown as dashed
variation from the solid, unperturbed interface.

pressibility condition ∇ · u = 0:

∂

∂t
(ρ0 + ρ1) + u ·∇(ρ0 + ρ1) = 0 (7.3)

∂ρ1

∂t
+ u ·∇ρ = 0 (7.4)

and

(ρ0 + ρ1)
∂u

∂t
+ (ρ0 + ρ1)u ·∇u = −∇(p0 + p1) + ρg (7.5)

ρ0
∂u

∂t
= −∇p1 + ρ1g (7.6)

From Fig. 7.1, one can evaluate the derivatives of these equations along the orthogonal

velocity vectors shown. Dropping the subscript on non-perturbation terms for brevity,

Eqn. 7.4 becomes

∂ρ1

∂t
+ w · ∂ρ

∂z
= 0 (7.7)
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and Eqn. 7.6 has components:

ρ
∂u

∂t
= −∂p1

∂x
(7.8)

ρ
∂v

∂t
= −∂p1

∂y
(7.9)

ρ
∂w

∂t
= −∂p1

∂z
− ρ1g (7.10)

(7.11)

With these equations we look for waves with represent surface waves in x and y,

growing in time with growth exponent γ. Notably, this modification of this growth

rate is the primary metric for our experimental design of a radiative RT system.

Assuming a form proportional to exp(ikxx+ ikyy + γt) for u, ρ1, and p1, we have:

γρ1 = −w∂ρ
∂z

(7.12)

γρu = −ikxp1 (7.13)

γρv = −ikyp1 (7.14)

γρw = −∂p1

∂z
− ρ1g (7.15)

With the notation k2 ≡ k2
x + k2

y one has

γρ(ikxu+ ikyv) = k2p1. (7.16)

Applying the incompressibility condition, Eqn 7.16 can then be written

−γρ∂w
∂z

= k2p1.. (7.17)
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Use of Eqn. 7.12 in Eqn. 7.15 gives

γρw = −∂p1

∂z
+
gw

γ

∂ρ

∂z
, (7.18)

and the quantity p1 can be solved by taking a derivative of 7.17, yielding

∂p1

∂z
=
−γ
k2

∂

∂z

(
ρ
∂w

∂z

)
. (7.19)

One then has the set of equations:

γρw =
γ

k2

∂

∂z

(
ρ
∂w

∂z

)
+
gw

γ

∂ρ

∂z
, (7.20)

ρ =
1

k2w

∂

∂z

(
ρ
∂w

∂z

)
+

g

γ2

∂ρ

∂z
, (7.21)

k2wρ− k2gw

γ2

∂ρ

∂z
=

∂

∂z

(
ρ
∂w

∂z

)
. (7.22)

Although u and w are continuous at z=0 (in order for the fluid on either side to

remain in contact), other quantities need not be. To derive jump conditions at the in-

terface, we must difference and integrate equations 7.17 and 7.18, respectively. These

quantities are continuous and differentiable everywhere except z=0, and thus can be

described by the sum of two functions multiplied by the Heavyside step function Θ(z)

at the interface. Taking the bounds of the integral to be vanishingly small increments

above and below the interface yields a non-zero integral only in cases where the inte-

grand is described by Θ(z) With the notation ∆f ≡ f(0)+− f(0)−, where subscripts

indicated approaching the interface from the positive and negative directions, then

across the interface Eqn. 7.17 becomes

k2∆p1 = −γ∆

(
ρ
∂w

∂z

)
(7.23)

114



and integration of Eqn. 7.18 gives

∆p1 =
g

γ
∆(wρ) (7.24)

where the first term in Eqn. 7.18 is zero because w is continuous across the interface,

as described above. These can be combined to form the jump condition:

k2g∆(wρ) = −γ2∆

(
ρ
∂w

∂z

)
. (7.25)

The simplest case one can analyze are two different, uniform density fluids. In

this case, Eqn. 7.22 becomes:

k2w =
∂2w

∂z2
(7.26)

which is easily solved with

w = Aekz +Be−kz (7.27)

where A and B are constants. Enforcing that w = 0 as z → ±∞ and requiring

continuity at the interface leads to:

w1(z) = Aekz (z < 0)

w2(z) = Ae−kz (z > 0)

(7.28)

where the subscripts are the same as those given for ρ in Fig. 7.1. The fact that these

solutions decay as |z| increases will be utilized below in our description of ablative

stabilization of a Rayleigh Taylor unstable front. For the non-ablative case, using

this solution for w(z) in the jump condition 7.25, and noting that w1(0) = w2(0) = 1,
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gives

k2g (w2(z)ρ2 − w1(z)ρ1)
∣∣∣
z=0

= −γ2

(
ρ2
∂w2

∂z+

− ρ1
∂w1

∂z−

)
(7.29)

k2g(ρ2 − ρ1) = −γ2(ρ2(−k)− ρ1k) (7.30)

or, rearranging:

γ =

√
kg

(
ρ2 − ρ1

ρ2 + ρ1

)
=
√
Ankg. (7.31)

The Atwood number, An = (ρ2 − ρ1) / (ρ2 + ρ1), is a measure of the magnitude of

the density jump. From 7.31 one can see that the solutions for w and ρ, assumed

to be proportional to exp(γt), are unstable for ρ2 > ρ1. This is the linear Rayleigh-

Taylor growth rate solution for uniform fluids, which can be modified to include effects

from viscosity, density gradients, ablation, and several other mechanisms affecting RT

growth.

Radiation in particular has been investigated as a means of controlling instability

growth in ICF. One effect of radiation in the context of RTI is to ablate material

from the unstable surface. Extensive work has been performed to study ablatively

stabilized Rayleigh-Taylor growth, much of which has been framed in the context of

an applied heat source in the form of a laser or thermal x-ray source [121]. In seminal

work on ICF, Nuckolls and Bodner described RT instabilities on the outer surface

of the capsule which are ablatively stabilized by temperature gradients in a process

deemed “fire-polishing” [165, 18, 17]. More recently, numerous experiments have

investigated ablative RT in a variety of geometries [86, 85, 182, 124, 25, 92, 8, 196].

Accompanying the experimental effort, a fully self-consistent theoretical model

of radiative stabilization has been developed by Betti, Goncharov, and others,which

includes thermal conduction and radiation transport through the ablation surface
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[189, 218, 91, 90, 16, 145, 190, 90, 60]. The applicability of these theories to a given

experiment depends on the details of the hydrodynamic profiles and energy fluxes

in the system. While exploring the full breadth of ablative RT theory is beyond

the scope of both this document and often experimental analysis, Eqn. 7.31 can

be modified in a systematic way to capture the physics at work in the experiment

described hereafter.

An version of Eqn. 7.31 was proposed by Takabe in 1985, and is often referred to

as the Takabe RT growth rate [201, 132]. Slightly modified from this original form,

the radiatively stabilized RT growth rate is given by:

γ = α

√
kg

1 + kLm
− βkva. (7.32)

It is also noted that this form of γ has been shown to be an appropriate simplification

of the full Betti-Goncharov treatment in cases where the Froude number (given by

v2
a/(gL), the ablation velocity squared on acceleration times scale length) is low and

one limits analysis to long wavelengths (kL << 1).

A phenomenological description of the modifications to the simple
√
Akg growth

rate captured by Eqn. 7.32 was given by Kilkenny [121]. The first term reflects the

dependancies of the linear growth rate, except that the Atwood number has been

modified to reflect a gradient in densities between the materials. Approximating the

shape of this interface by e−kLm and taking kLm << 1, then to first order the effective

Atwood number can be expressed as (1 + kLm)−1. The density gradient scale length

Lm quantifies this effect. This expansion of the interface will occur at very small scales

for common systems that form an abrupt density jump, but can have a significant

stabilizing effect when radiation is being deposited near the interface.

The second stabilizing effect of energy deposition at the unstable interface cap-

tured in Eqn. 7.32 is to effectively “move” the interface, via ablation, to a region
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where the instability is less pronounced. This effect can be understood by recalling

that RT waves are surface waves which decay away from the interface as e−k|z|. If

one thinks of ablation–whether it be from x-rays or another source–as a mechanism

that moves the interface at the ablation velocity va, then the position of the interface

after some time δt is vaδt. Thus, the amount of RT growth after a given time is

exp(γδt − kvaδt), which motivates the ablatively-stabilized growth rate given Eqn.

7.32.

7.2 Proposed Experiment

As cited previously, numerous experiments have been conducted to measure the

stabilizing effects of radiation in a Rayleigh-Taylor unstable system. However, none

of these experiments has produced an embedded, unstable interface which is being

heated by an upstream, self-generated radiation source. To investigate the stabiliza-

tion of RT growth in such a system, an experiment has been designed for the National

Ignition Facility (NIF).

The NIF is uniquely suited to perform such an experiment as it is capable of

launching a shock fast enough to produce observable radiative effects in materials

dense enough to be diagnosed with x-ray diagnostics [133]. The pressure pulse used

to launch the driving shock will be created using a hohlraum–a cylinder of high atomic

number material with open ends, into which the laser beams of the NIF are pointed.

The beams irradiate the interior walls, heating the walls and creating a high-Z (often

gold) plasma which radiates into the hohlraum. Hohlraums have been shown to be

relatively efficient converters of laser light to near-Planckian thermal radiation, and

these thermal x-rays are used to ablatively drive the experiment.

In order to use the thermal x-rays created in the hohlraum to drive a planar target,

a section of the cylindrical hohlraum wall is removed and a target is attached. The

target consists of a 180 µm thick polyimide (PI) ablator disk, followed by a 10 µm
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Rippled CH(I) package

X-ray!
drive

Ablatora)

Backligher!
x-rays

Foam

Detectorb)

Hohlraum

Figure 7.2:
a) Experimental target consists of a plastic (CH) ablator strip followed
by an iodine-doped tracer layer with machined perturbations to seed RT
growth. this is mated to a low density foam. b) The target is mounted
to a NIF hohlraum, where thermal x-rays are used to drive the system.
Adapted from Kuranz et al. [133]

thick gold layer to provide shielding from gold M-band x-ray radiation (2 - 5 keV)

from the hohlraum drive. Adjoining is a 150 µm PI disk with a 75 µm thick inset strip

of iodine-doped plastic (CHI) at nearly the same density, approximately 1.4 g/cm3.

This iodinated plastic tracer provides a high-opacity material to attenuate diagnostic

x-rays at the center of the target, essentially specifying what region of the target is

being imaged. On the CHI/polyimide face a 2-D sinusoidal ripple with peak-to-valley

amplitude of 7 µm and wavelength of 100 µm is machined to seed RT growth. Mated

to the rippled surface is 20 mg/cm3 SiO2 foam, which fills the remaining several

millimeters of the shock tube.

The x-ray irradiance from the hohlraum which creates the ablative pressure pulse

scales as the hohlraum blackbody temperature to the fourth power. Thus, varying

the maximum temperature reached by the hohlraum has a significant effect on the

strength of the shock which is launched into the polyimide. The temperature is a

function of hohlraum size, laser-wall coupling efficiency, and input laser energy, the

latter of which can be easily changed in the design of an experiment [144]. Referred to

as “drive temperature” in this work, hohlraum blackbody spectra have been recorded
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up to TR ≈ 325 eV on the National Ignition Facility, representing an upper limit for

practical experimental designs in the present context [133, 88].

As the shock front passes through the interface between the higher density PI and

lower density foam, Richtmyer-Meshkov [184, 156] and Rayleigh-Taylor instabilities

occur. At the seed perturbation wavelength of 100 µm, Rayleigh-Taylor growth is

expected to be stabilized by both finite density gradient scale lengths and ablative

stabilization. Simulations were performed to understand the density and pressure

profiles for a range of drive temperatures.

7.3 Simulations

The specific regime of applicability of ablative Rayleigh Taylor theory is deter-

mined by the experimental conditions. In particular, the dimensionless Froude num-

ber Fr is significant. With the ablation front width defined as the minimum value of

the density gradient scale length [16], Lm = ρ/∇ρ, each of the parameters needed to

calculate Fr can be found from numerical simulations over a range of hohlraum drive

temperatures.

Simulations were performed in 1D with the radiation hydrodynamics code HY-

DRA [152]. Multigroup radiation diffusion was used with tabulated EOS values and

opacities generated from the LLNL opacity libraries. Although the RT instability in

a physical system is a 2/3D effect, one can extract parameters from a 1D simulation

which inform the degree of instability (as discussed in Sec. 7.4). In light of this, the

speed of 1D simulations facilitate large parameter scans, motivating their use as a

tool for initial experimental design.

One-dimensional HYDRA simulations were initiated with a time-dependent ra-

diation temperature (TR) profile produced by a 2D HYDRA simulation. This 2D

simulation employed implicit Monte Carlo radiation transport, allowing for a non-

Planckian energy distribution. This was converted to a time-dependent Planckian
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Figure 7.3:
Density and electron temperature profiles for various conditions. The time
for each was selected to align the shock to the same position down the
tube, approximately 1850 µm. a) Material density and temperature from
high (325 eV) and low (250 eV) drive simulations, at 12 and 21.5 ns after
the drive begins, respectively. b) The same parameters for simulations
with artificially high and low CHI tracer strip opacities. Note that the
red curves in (a) and (b) are identical.
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spectrum with equal total energy, and the resulting TR profile was used to drive the

1D simulations. This profile was in good agreement with measurements made during

a previous test of the hohlraum for this experiment. In this experiment, 600 kJ of

laser energy was used to irradiate the hohlraum. The radiation temperature profile

was measured with the soft x-ray diagnostic DANTE [48] and was seen to reach a

peak temperature of 325 eV [133].

For a 325 eV drive temperature, simulations show that a pressure pulse exceeding

200 Mbar is launched into the polyimide. Figure 7.3(a) shows the material density

and electron temperature for the high and low drive cases, 325 eV and 250 eV,

respectively. The results are plotted at different times, chosen such that the shock

front has progressed an equal distance into the foam (as measured from the irradiated

plastic surface) in both cases. In addition to the shock front, located at nearly 1850

µm in each case, there are two significant spatial points of reference. The first is the

steep density transition, located at ≈1600 µm in Fig. 7.3(a). Specifically, the point

behind the shock where the scale length Lm is a minimum is maximally unstable

to Rayleigh Taylor. The second spatial point of note is the 1D material interface,

indicated by the vertical dashed line in Fig. 7.3. This interface separates the SiO2

foam from the CHI, which do not mix in the simulation. In the undriven target the

density transition and material interface position coincide, but after the shock has

passed through this point, the density transition lags behind the material interface.

The degree of separation between these features is dependent on the strength of the

shock and resultant radiation and material temperatures, as described below.

Examining first the electron temperature, the low drive case shows a rapid heating

at the shock front relative to the cold, upstream foam. This temperature is approxi-

mately constant in the foam, and cools at the dense plastic layer, as is necessary to

maintain a continuous pressure profile across the interface. The high-drive case shows

a local temperature spike (a “Zel’dovich spike”) at the shock [224]. The temperature
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decreases slowly toward the dense plastic, where it cools as in the previous case. Up-

stream of the shock the temperature remains high and only gradually decreases. This

upstream region is heated by the radiation streaming forward from the shock front,

forming a radiatively heated precursor.

The difference in drive temperature between the cases results in markedly different

density profiles. The increased energy deposited in the plastic in the high drive case

ablates material from the dense surface. This decreases the magnitude of the density

jump, which is quantified by an increased density gradient scale length Lm. In the

high-drive simulation of Fig. 7.3(a), the material interface, indicated by the vertical

dashed line, has advanced away from the density transition. The rate at which the

point of minimum density gradient recedes from the material interface is the ablation

velocity used to calculate Fr in Table 7.1, and in subsequent calculations.

To understand the effects of radiation on the dense, unstable plastic layer, simu-

lations were performed with unphysically high and low tracer strip opacity. In each

case, the peak in electron temperature reaches the same value at the shock front.

However, in the artificially high opacity case (blue curves in Fig. 7.3(b)), radiation

couples very strongly to the material and is absorbed over a short distance at the plas-

tic/foam interface. It is then re-radiated ahead of the interface without significantly

lengthening Lm. In the artificially low case (black curves in Fig. 7.3(b)), radiation

reaching the plastic-foam interface from the shock streams through the plastic without

depositing significant energy (note the spike in Te is seen at ∼1500 µm in the figure,

in the plastic drive disk material, which is modeled with a realistic opacity). The

point of maximum density gradient remains closer to the interface than the realistic

case, as the decreased radiation coupling lessens the ablative effects. The simulations

performed with a realistic tracer strip opacity show the longest gradient in material

temperature at the interface, and an increased density gradient scale length.
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7.4 Growth Rate Parameters

From Table 7.1 it is seen that the geometry of the proposed experiments leads

to relatively low ablation velocity and long density gradient scale lengths, resulting

in Fr < 1. For the initial design of an experiment with a unique geometry, the

simplified Betti-Goncharov treatment discussed in section 7.1 and given by Eqn. 7.32

is appropriate.
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Figure 7.4:
Instantaneous growth rates for high and low drive cases, as calculated
from the simplified Betti-Goncharov model (Eqn. 7.32). Parameters used
were inferred from the 1D simulations for the time at which the shock
progressed an equal distance, approximately 1600 microns.

From the 1D simulations all of the parameters needed to evaluate Eqn. 7.32 can

be calculated. The instantaneous growth rate γ is shown for low and high drive cases

in Fig. 7.4. They are compared at 21.5 ns for the 250 eV drive case and 11.5 ns for

325 eV, when the interface is approximately in the middle of the experimental field of

view, as in Table 7.1. The curve labeled “classic RT” shows (kg)1/2 growth, where the

Atwood number had been taken to be unity, expressing the maximal possible growth

rate. The density gradient stabilized term reflects Eqn. 7.32 with β = 0 (no ablative

stabilization), while the final curve reflects this same equation with β = 1 (both use
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α = 1). The high-drive conditions are seen to have a significantly higher instanta-

neous growth rate, while wavelengths below a few tens of microns are predicted to

be stabilized. It is noted that for small wavelengths the simplifying assumptions of

Eqn. 7.32 are not strictly valid, and the growth rate must be modified [91]. However,

in the proposed experiment using a doped tracer strip and a seeded, long-wavelength

perturbation, high-wavenumber modes will not be diagnosable and the details of their

evolution in the presence of a strongly radiative shock are left as future work.

Although the growth will be strongly non-linear at the time of observation, cal-

culation of the growth exponent is often still a useful parameter [57]. Defined by the

integration of the the instantaneous growth rate,

G =

t∫
t0

γ(t′)dt′, (7.33)

the growth exponent is the number of e-folding by which initial perturbations would

grow if the system remained in the linear regime. Performing this integral numerically

for the experimentally-relevant 100 µm wavelength yields G250eV = 2.5 and G325eV =

1.6 after each interface has reached 1600 µm. This suggests approximately a factor

of 2.5 larger amplitude growth for the 250 eV drive experiment than the 325 eV drive

case. Although this is a simplified analysis, this predicted growth matches well to

2D simulations performed for this system. In these simulations the half-width spike

length at the same 1600 µm interface position in high drive case was 42 µm, compared

to 87 µm in the low drive case, corresponding to a growth ratio of 2.1.

These simulations serve to aid in understanding the basic physics mechanisms in

the upcoming Rayleigh-Taylor experiment on the National Ignition Facility. The novel

conditions of the experiment—a strongly radiative shock crossing a plastic-foam in-

terface, with ablation occurring from the upstream side of the unstable interface—will

test the applicability of the simplified RT growth rate formula (Eqn. 7.32) for this set
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of conditions. Upon performing the experiment, measurements of spike growth should

provide data needed to inform selection of α and β in Eqn. 7.32. Additionally, mea-

surements will inform future work investigating the stabilization mechanisms which

may play a role in RT growth of this unique system, including the possible coupling

of unstable modes at the shock front with those at the ablating material interface

[60]. Such efforts will likely also require 2 or 3-D simulations and additional experi-

ments, and should result in improved models for radiatively stabilized Rayleigh-Taylor

growth in a variety of cases.
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CHAPTER VIII

Conclusions and future directions

This document describes several laboratory-based, astrophysically-relevant exper-

iments that I have played a leading role in. All of these projects – the investigation of

radiative shocks with x-ray Thomson scattering on the OMEGA laser, the exploration

of electron beam formation, acceleration, and filamentation on the HERCULES laser,

and the design of radiative Rayleigh-Taylor experiments to be performed at the Na-

tional Ignition Facility – are somewhat different from one another. However, each

is motivated by the desire to bring an important astrophysical phenomenon into the

laboratory where the scientific method can be brought to bear. Each project was

conducted in previously unexplored regimes or configurations, and each provides a

clear point from which to move forward. A brief summary and future direction for

the central topics are provided below.

8.1 Astrophysical Radiative Shocks

The experiments performed using shocked xenon gas represent the most complex

atomic structure yet probed with x-ray Thomson scattering. This work was under-

taken not as a test of the diagnostic principle, but in an effort to better understand a

specific system of interest. During this process, advances were made in plasma mod-

eling, experimental design, and diagnostic capabilities. The work of the author was
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devoted largely to experimental design and data analysis, a year-by-year summary of

which is provided in Tbls. 8.1-8.3. The most recent designs illustrate the difficulty of

applying XRTS to the xenon radiative shock system, but also provides a framework

from which to design future experiments.

In particular, the successful application of XRTS to low-density, high-Z systems

requires complete mitigation of low-Z contributions to scattering. For the xenon

radiative shock system at the University of Michigan, this may involve replacing the

narrow shock tube with a gas cell, or allowing the shock to expand into a cavity

where no low-Z material is present. This certainly requires one to revisit the analysis

of Chap. III, and would likely result in a different set of plasma conditions than

those described here. Additionally, measurement of free electron fraction in a hot,

high-Z material necessitates an as yet unachieved detector resolution and dynamic

range. Despite these challenges, XRTS allows for the measurement of parameters

of crucial importance to understanding radiative shocks. Continued improvement in

x-ray sources, detectors, driver facilities, and experimental design will all contribute

to the successful application of XRTS to radiative shock systems in the future.

8.2 Current Filamentation instabilities

The past two decades have seen tremendous advances in laser technology, with

the advent of laser chirped-pulse amplification of specific importance for ultra-intense

laser physics. This has led to an explosion of research in the field of ultrafast laser-

plasma interaction, including the realization of laser wakefield acceleration. The

LWFA technique has great potential, and has been proposed as the driving mecha-

nism for next generation particle colliders [28]. Additionally, the relativistic charged

particle beams produced via LWFA are central to fast-ignition ICF concepts [172],

and have also been used as a generating mechanism for bright, coherent x-ray sources

[125]. However, the motivation of the experiment detailed here – to compare the
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2010

Key Features Results and Conclusions

· First attempt at XRTS in Xe.

· Two equal-angle zinc x-ray sources to
increase input photon count.

· Same-shot measurements with flat-
crystal zinc spectrometer and x-ray
streak camera

· Laser-cut gold shields for highly accu-
rate scattering volume

· Recored scattered zinc spectrum,
including detailed source spectrum.

· First use of streak camera to measure
shock position and acceleration of Xe
system

· Unexpectedly high x-ray flux on detec-
tor

· Evidence of line emission from uniden-
tified materials made fitting difficult, but
unexpectedly high elastic scattering was
clear.

Table 8.1: Summary of 2010 Xe x-ray Thomson scattering experiments.

2011

Key Features Results and Conclusions

· Thicker shielding (100 µm) to decrease
background

· Additional shielding added to limit the
extent of the input x-ray source

· Slightly off-perpendicular x-ray streak
camera

· Pair of ZSPEC instruments: primary
with curved crystal and monitor with
flat crystal

· Curved crystal allowed for us to
determine the location of secondary
sources, in addition to scattering from
the scattering volume

· Scattering from an undriven target
was compared to full data, to isolate
scattering from the scattering volume

· Reduced data is well fit by xenon with
anomalously-high Zfree fraction, but
also by scattering from polyimide (shock
tube) at reasonable conditions

· Despite seeming to function properly, no
shock observed with streak camera

Table 8.2: Summary of 2011 Xe x-ray Thomson scattering experiments.
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2012

Key Features Results and Conclusions

· Fielded the imaging x-ray Thomson
scattering (ixts) spectrometer with
toroidally-bent crystal

· Single x-ray source was collimated with
300 µm-diameter laser-cut aperture

· Gold shielding was coated in plastic to
mitigate hot electrons

· Scattering slit made much narrower
than the shock tube, to exclude the
strongest scattering from plastic

· The familiar structure of the Xe ra-
diative shock system is seen in the 1D
imaging of the ixts

· Extra sources were completely isolated
from the data of interest

· Undriven target used to subtract
background from the driven-target mea-
surement

· Comparison of the reduced data to the
inverse model, through the xrts code, is
in good agreement

· The small inelastic peak precludes a
temperature measurement of the system

Table 8.3: Summary of 2012 Xe x-ray Thomson scattering experiments.
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observed radiation signature from gamma-ray bursts to the radiation produced by

relativistic electrons under controlled conditions in the laboratory – remains a novel

use of the technology.

The experiments of Chap. VI entailed a systematic varying the gas jet length and

measuring the effect on the electron beam. The measurements are well-supported

by analytic and computational predictions for the plasma conditions of the exper-

iment, and may be used to optimize LWFA electron beams in future experiments.

Additionally, beam filamentation was directly observed. This is thought to occur in

gamma-ray bursts, mediated by Weibel or other current filamentation instabilities,

and lead to the observed signal from these astrophysical explosions. Building on the

work described here, an experiment with a moderate-energy electron beam made to

pass through extended lengths of neutral gas (beyond the longest, 5 mm nozzle used

here) may allow measurement of the filamentation growth rate and discrimination

of the specific mechanism at work. The addition of a broadband x-ray spectrometer

would enable direct comparison between the radiation produced by these electrons

and the forward-directed “jitter radiation” that has been proposed in the literature.

Finally, if such a testbed can be produced, it may be possible to create a configura-

tion with more direct applicability to the astrophysical system. Interesting conditions

would include colliding beams, beam-clump interactions, or beam interactions with

imposed magnetic fields.

8.3 Radiative Rayleigh Taylor Instability

The radiative Rayleigh-Taylor experiment detailed in Chap. VII represents un-

explored regime of hydrodynamics and radiation transport in a near-solid density

material. Only on the National Ignition Facility can such an experiment be per-

formed [133], and as such it marks the first of many experiments that will touch

novel parameter space using this new scientific tool. The work presented here was
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undertaken both to aid in the design of the experiment, but also to establish an un-

derstanding of this unique system before the observations are made. Upon completion

of the experiment, the comparison of data to the quantitative and qualitative con-

clusions developed here will provide a roadmap for future efforts. In the end, beyond

code development and experimental design improvements, the best possible outcome

would be that the experiment will raise new questions about the physics at work in

the system.
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APPENDIX A

The Thomas-Fermi model

Several methods have been developed for solving the many-body problems that
arise naturally in plasma physics. In particular, the problem of solving for the poten-
tial resulting from a complex system of ions and electrons has been addressed many
ways. The simplest common method is the Debye-Hückel model (DH), which begins
with the Poisson equation and assumes a Boltzmann distribution for the electrons and
ions. The resulting potential is exponentially decreasing, V (r) ∝ (1/r) exp[−r/λD],
and the Debye screening length λD arises naturally from the calculation. The use of
Boltzmann statistics in DH is only appropriate for weakly coupled plasmas, making
these results the limiting behavior for Γ� 1.

One method developed treat systems high-Z, moderately coupled systems that
goes beyond the DH theory is the venerable Thomas-Fermi (TF) model. The TF
model is widely used, owing to the fact that it is analytically tractable, can be mod-
ified for many special cases of interest, and agrees well with calculations from more
complicated Hartree-Fock simulations [158]. It is one example of a broad set of mod-
els called ion sphere models, which establish around each ion a set volume and impose
that the potential at and beyond the boundary of the volume exactly cancel. This
condition requires charge neutrality within the volume, implying that the nuclear
charge ZA is equal to the bound and free charge ZA = ZB + ZF , all of which re-
side within the ion sphere. More advanced ion sphere models solve the Schrödinger
or Dirac equations and thus take into account the atomic structure of the atoms, a
feature which is lacking in the TF model. Despite this, a the Thomas-Fermi model il-
lustrates several important features of strongly-coupled plasma descriptions. A short
description is given here (following Salzmann [188] and More [158]) to complement
the discussions of Chap. IV and motivate the estimates of ionization used in several
chapters.

As J.D. Jackson taught us, most problems involving potential begin with the
Poisson equation,

∇2V (r) = −4πe[Zδ(r)− ne(r)]. (A.1)
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The goal here is to solve for the potential V (r) created by the electrons with density
n(r)e and the point-like ions of charge Z. The potential can be separated into a
ion (nuclear) contribution VN(r) = Ze/r and an electronic contribution that itself
satisfies the Poisson equation:

∇2Ve(r) = 4πene(r). (A.2)

Jackson also showed us the solution to Eqn. A.2, given by [116]:

Ve(r) = −
∫
V

e ne(r)

|r− r′|
d3r′ (A.3)

As stated previously, one assumption of the TF model is an isotropic electron distri-
bution within the ion sphere. This removes the vector dependance of ne in Eqn. A.3,
allowing the denominator of the integrand to be expanded into Legendre polynomials
as

1

|r− r′|
=
∞∑
k=0

rk<
rk+1
<

Pk(cos θ) (A.4)

where r < (r >) is the smaller (larger) of r and r′. The electronic part of the potential
is then

Ve(r) = −e
∞∑
k=0

∞∫
0

r′2dr′
π∫

0

sin θdθ

2π∫
0

dφne(r
′)
rk<
rk+1
<

Pk(cos θ) (A.5)

= −2πe
∞∑
k=0

2δk,0

∞∫
0

r′2dr′ne(r
′)
rk<
rk+1
<

(A.6)

= −4πe

∞∫
0

ne(r
′)
r′2dr′

r>
(A.7)

= −4π

1

r

r∫
0

ne(r
′)r′2dr′ +

Ri∫
r

ne(r
′)r′dr′

 (A.8)

where we have made use of the orthogonality of Legendre polynomials to perform the
integration over θ:

π∫
0

dθ sinθ Pk(cos θ) =

1∫
−1

dx Pk(x) =

1∫
−1

dxPk(x)P0(x) =
2

2k + 1
δk,0 = 2δk,0. (A.9)

(A.10)
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In Eqn. A.8 we have introduced the ion sphere radius Ri, and for r = Ri the second
integral in this equation is zero and Ve(Ri) = −Ze/Ri This exactly opposes the
nuclear potential at r = Ri, ensuring the potential is zero at the boundary.

On the question of the electron density ne, the TF model departs from the DH
theory and accounts for degenerate electrons through the use of Fermi-Dirac statis-
tics. This extends the range of validity to strongly coupled plasmas, where DH fails
to apply. The electron density is found by integration of the Fermi-Dirac electron
momentum distribution

fe(r, p)dp =
1

π2~2

p2dp

1 + exp ([p2/2m− eV (r)− µ]/Te)
(A.11)

over all momentums. Note that the electron distribution includes the chemical poten-
tial µ (equal to the Fermi energy, Eqn. 4.3, for degenerate systems), and for µ→ −∞
the Fermi-Dirac distribution reduces to the Maxwell-Boltzmann distribution used in
DH theory. Also, the momentum distribution explicitly includes the local microfield
V (r), making the resulting potential self-consistent in V (r).

Denoting the chemical and potential energies together as y = [eV (r)+µ]/Te (using
Te in energy units) and replacing the momentum with x = p2/(2mTe), the density is
found from

ne(r) =

∫
dp fe(r, p) (A.12)

=
(2mTe)

3/2

2π2~3

∞∫
0

x1/2 dx

1 + exp(x− y)
(A.13)

=
1

2π2

(
2mc2Te
~2c2

)3/2

F1/2

(
µ+ eV (r)

Te

)
. (A.14)

Here F1/2 is the Fermi integral, which has the general form F (φ) =
∫∞

0
xn[exp(x −

φ) + 1]−1dx. The set of TF equations is completed by ensuring charge neutrality
within the ion sphere,

Z =

Ri∫
0

ne(r, µ)d3r. (A.15)

Solving the system can be done numerically and results in values for V (r), n(e), and
µ. These estimates from the TF theory have proven remarkably robust over a wide
range plasma parameter space.

An additional feature of the TF model is its capacity to calculate an average ion-
ization. This is not done directly because electrons are never explicitly separated into
bound and free contributions, and it is also worth repeating that atomic structure
(quantum shells, explicit binding energies, etc) are not part of the TF theory. How-
ever, the electron distribution function defines a range of energies, and electrons with
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energy greater than the local binding potential can be considered free:

p2

2m
− eV (r) ≥ 0. (A.16)

The density of these free electrons is given by

ne,f (r) =
1

2π2

(
2mc2Te
~2c2

)3/2

F1/2

(
µ+ eV (r)

Te
;

∣∣∣∣eV (r)

Te

∣∣∣∣) . (A.17)

Similar to the Fermi-Dirac integral except in the lower limit of integration, this equa-
tion has the form of the incomplete Fermi-Dirac integral : F (φ; β) =

∫∞
β
xn[exp(x −

φ) + 1]−1dx. The bound electron population is, expectedly, the rest of them, and
given by

ne,b(r) =
1

2π2

(
2mc2Te
~2c2

)3/2 [
F1/2

(
µ+ eV (r)

Te

)
− F1/2

(
µ+ eV (r)

Te
;

∣∣∣∣eV (r)

Te

∣∣∣∣)]
(A.18)

To calculate a per-ion free electron value, the electron density from Eqn. A.17 need
only be integrated over the ion sphere volume,

Z̄(Te, ni) =

∫
V

ne,f (r, µ)d3r. (A.19)

A useful algorithm for calculation of Z̄ was developed by R. More and is given in
Ref. [158]. This algorithm that was used for the calculations of polyimide ionization
in Chap. 5.3.2, and is presented below as a vectorized Matlab function, useable as is
or easily converted to one’s language of choice.
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1 %% Thomas Fermi numerical solver.
2 % Based on work by R. More (1981), accurate to a few
3 % percent over a large range or T and rho
4 function [ionize] = TF(rho, T, Z, AtomicNum)
5 if ¬all(size(T) == size(rho))
6 error('Temperature and density can be matrices, but must be ...

the same shape!')
7 else
8 R = rho /(Z * AtomicNum);
9 T0 = T / Zˆ(4/3);

10

11 alpha = 14.3139;
12 beta = 0.6624;
13 a1 = 3.323E−3;
14 a2 = 0.971832;
15 a3 = 9.26148E−5;
16 a4 = 3.10165;
17 b0 = −1.7630;
18 b1 = 1.43175;
19 b2 = 0.315463;
20 c1 = −0.366667;
21 c2 = 0.983333;
22

23 f = inline('x ./ (1 + x + sqrt(1 + 2*x))');
24

25 if T == 0
26 x = alpha * R .ˆ beta;
27 ionize = f(x) .* Z;
28

29 elseif T > 0
30 T F = T0 ./ (1 + T0);
31 A = a1 * T0.ˆ a2 + a3 * T0.ˆ a4;
32 B = −exp(b0 + b1* T F + b2* T F.ˆ7);
33 C = c1 * T F + c2;
34 Q1 = A .* R.ˆB;
35 Q = (R.ˆC + Q1 .ˆ C) .ˆ (1./C);
36 x = alpha * Q .ˆ beta;
37 ionize = f(x) * Z;
38

39 else
40 error('Enter a positive temperature.')
41 end
42 end
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APPENDIX B

Omega shot day critique forms

After each shot day on the OMEGA or OMEGA EP laser, the facility requests that
the principle investigator for complete a shot critique form. This is an opportunity
for PIs to describe problems encountered, compliment work well done, and generally
provide feedback regarding his or her experience. The shot critique form for each shot
day is provided here.
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Experimental Critique Sheet
Laboratory for Laser Energetics, University of Rochester

Week of: March 16, 2009

Experiment Date: March 18, 2009

Principle Investigator: R. P. Drake, S. Glenzer, J. Knauer, C.C Kuranz, C.M.
Huntington

Experimental series: NLUF Radiative Gas Thomson Scattering

Primary diagnostics: Gated Thomson Scattering spectrometer, XRFC 1, XRFC
3

Primary objectives: This experimental series was intended to build on a 2008
shot series by improving the resolution of incoherent Thomson scattering signal from
radiative shocks in argon. Additional objectives for the day included using tin L-shell
and the He-like chlorine lines for radiographic backlighting, both new techniques
for our group. The final configuration was an initial attempt at imaging Thomson
scattered light for shock density measurements.

• Problems encountered:

– Laser Software issues and laser problems, resulted in the delay of the first
shot.

– Experimental diagnostics

∗ Target debris broke through blast shields on 3 shots, damaging a
XRFC on one of the shots.

∗ A software problem during shot 53949 prevented the primary diag-
nostic, XRFC 1, from triggering. No data primary data was recorded
from this shot.

∗ The nosecone installed for shot 53946 was not correct. The SRF for
this shot specified a 6X-16, but a 2X-16 was installed. This resulted
in the wrong magnification for that shot and a minor delay while the
nose cone was changed and the camera was repointed.

– Experimental problems (including design)
Significant shrapnel was produced by the Thomson scattering and tin flag
backlighter targets designs. Shrapnel twice damaged the front filter of the
Thomson Scattering diagnostic and also damaged the MCP in XRFC 3
during shot 53948.

– Target problems
The target metrology and reticle calculation procedure for several of the
targets was flawed. This resulted in difficult alignments and the need to
modify the target alignment procedure on shot day.
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• Suggestions for improvements
Discussions have been had between our group and Jim Knauer regarding the
target design and how to prevent debris from damaging diagnostics. In the
future targets will be designed with the intention of creating minimal debris, or
with careful consideration to the direction of component normal vectors. The
metrology procedure that lead to the shot-day errors is also being investigated
here at Michigan so as to not repeat these mistakes.

• Positive feedback
Good area radiographic images were obtained. Also, the first data from imaging
Thompson Scattering was obtained. Jack Armstrong and the ESO team pro-
vided excellent support throughout the day. On the shots that the blast shields
were damaged, the Omega team was helpful in looking for solutions so that we
could continue with our experiments.
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Experimental Critique Sheet
Laboratory for Laser Energetics, University of Rochester

Week of: March 8, 2010

Experiment Date: March 11, 2010

Principle Investigator: R. P. Drake, S. Glenzer, J. Knauer, C.C Kuranz, C.M.
Huntington

Experimental series: NLUF Radiative Gas Thomson Scattering

Primary diagnostics: SSC-A streak camera, ZSpec spectrometer, Henway

Primary objectives: For each shot, we hoped to collect incoherent Thomson
scattered signal and use the SSC to record absolute shock position and velocity.

• Problems encountered:

– Laser
At one point a laser cluster was subdivided, with the intention of PLAS
delaying the subgroups individually. When this was done, the resulting
SRF default called for DPRs to be inserted, whereas, they were previously
specified as out. This introduced an additional component into the optical
path, which changed the pointing of 4 beams. These beams were off target
by several millimeters, and minimal data was collected for the associated
diagnostic. Thankfully, the intended target was a large area backlighter,
and x-ray pinhole images confirmed that the beams did intersect some
part of the target, causing no damage to the facility. The subtle change
in the setup was overlooked by everyone in the process, including the shot
director, beam operators, and PI, who signed off on the modified RID.

– Experimental diagnostics

∗ SSC: Collecting timing fiducials for the streak camera was important
for each streak sweep speed used. However, the position of the fiducial
marks interfered with our data, so the fiducials needed to be collected
on separate shots, when no experimental data was collected. On one
shot where we intended to forgo SSC data, we requested the fiducials
be run. The fiber optic was correctly in place, but the driver for the
beam was not initialized. There were no other shots where we could
forgo data collection, so no fiducials were collected for this sweep speed.

∗ ZSpec: The spectrometer was imaged onto a 4-strip MCP, namely
XRFC 4. It was only discovered by us, though it had been noted
previously at LLE, that one strip could not be biased above 200 V.
Thus, for strong signals, including our spectrometer calibration shots,
this strip was completely saturated.
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– Experimental problems (including design)
The main target was gas-filled and required a pressure readout, as noted
in the SRF. However, the incorrect TIM TPS (one that did not have a
pressure readout) was loaded. This TIM TPS needed to be removed and
the correct one loaded. Once the correct TIM TPS was loaded there was
a short. After some troubleshooting, the problem was corrected.

– Target problems
One set of our targets was designed and built incorrectly, and only realized
too late in the process to correct the problem. They required a new align-
ment procedure, and were only able to be shot because of their exceedingly
simple geometry (flat foils at TCC). We appreciate these being supported
(see Positive Feedback below).

• Suggestions for improvements
A method for PIs to access LLE notes, like the observation that XRFC 4 had
a broken strip, may eliminate some surprises that have been overlooked.

It is unclear to me at what stage it could be implemented, but it may be useful
to have some equivalent of an SRF change auditor which highlights changes
from previous shots, to catch errors like the DPR default.

• Positive feedback
This was a very complicated experiment, with many changes made shot-to-
shot based on the data collected immediately previous. Aside from the noted
concerns, this was accommodated quickly and efficiently.

We appreciate the help of Jack Armstrong in the days leading up to the exper-
iment to support targets which differed from the proposed geometry.

Many discussions regarding debris mitigation with Jim Knauer and Chuck Sorce
in the design phase resulted in a design which, though massive, was relatively
well controlled and presented no major risks to the facility.

Essential to the collection of good streak camera data was a tutorial provided to
me by Ray Bahr. This was a new diagnostic for these experiments and excellent
data was collected. It also has great potential for future experiments and will
likely be employed for future experiments.
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Experimental Critique Sheet
Laboratory for Laser Energetics, University of Rochester

Week of: April 18, 2011

Experiment Date: April 20, 2011

Principle Investigator: C. Kuranz, RP Drake, C Sorce, SH Glenzer, CM Hunting-
ton

Experimental series: 2011 NLUF Radiative Shock experiments

Primary diagnostics: Two zinc spectrometers, imaging SSC

Primary objectives: Collect simultaneous x-ray Thomson scattering and streaked
radiography from radiatively-collapsed xenon shock system.

• Problems encountered:

– Laser
After several shots we dropped one beam (66) which passed close to a piece
of gold shielding, on the chance that it was striking the gold and creating
the background seen on the zinc spectrometer diagnostic. Dropping the
beam made no observable difference in the recorded spectra.

Additionally, it was realized during the day (approximately 13:00, shot 5)
that beam 30 was striking the housing of the Zspec in TIM 3, and was
dropped on all subsequent shots. This interference does appear in the
documentation for the ZSpec, but is not flagged by the SRF auditor.

– Experimental diagnostics
At the beginning of the day, the primary ZSpec was recording significant
background signal. Despite trying to maximize shielding of this instru-
ment, the problem persisted until we changed from a flat crystal to a
curved crystal, which afforded us a higher signal with some spatial resolu-
tion.

– Experimental problems (including design)
Images recorded on the streak camera showed insufficient contrast. We
believe that this is a result of a slightly-non-orthogonal view of the shock
tube axis, off of orthogonal by approximately 8 degrees. In target design
this was not expected to be as significant an issue as it appears to have
been.

– Target problems
During the shot day, additional shielding was added to the target in at-
tempt to reduce the background recorded on the TIM 1 zinc spectrometer.
The added shielding did not have the desired effect, and was not continued.
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• Suggestions for improvements
This experiment will benefit from new diagnostics (currently under development
by UM, LANL, and LLE), which will offer spatial and spectral resolution. This
may decrease the need for such substantial shielding, which is a major challenge
in this design. Additionally, the proposed reconfiguration of driver legs to allow
SSD to be run on a single, advanced leg and backlight with the remaining two
legs will be a major advantage for this experiment.

• Positive feedback
Having the ability to change from a flat to curved crystal in the primary (TIM 1)
ZSpec during the shot day was an important modification. Also, in response to
the data we were seeing, numerous additional changes to beam groups and spot
sizes during the day, not all of which were explicit in the SRFs. These were
accommodated, and lead to a better understanding of what we were seeing.
Finally, having access to the lab space in DSDL again proved essential both for
our gas-fill operations and also when target modifications needed to be made,
and we appreciate the continued support of our group using that space.
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Experimental Critique Sheet
Laboratory for Laser Energetics, University of Rochester

Week of: March 19, 2012

Experiment Date: March 20, 2012

Principle Investigator: Channing Huntington, Eliseo Gamboa

Experimental series: Other

Primary diagnostics: LANL Imaging X-ray Thomson Spectrometer (IXTS)

Primary objectives: The goal of this experimental day was to use the IXTS
to measure the spatial temperature profile of shocks in two different materials. One
portion of the day used several beams to irradiate a sample of low density carbon
foam, launching a shock. A second set of beams struck a nickel foil, creating the
x-ray source for the Thomson scattering diagnostic. The second system probed was a
radiative shock in xenon gas. This experiment was similar to earlier campaigns, but
again focused on using the new diagnostic to capture the spatial temperature profile.

• Problems encountered:

– Laser
No issues were encountered with the laser system.

– Experimental diagnostics
The ZSpec (zinc spectrometer) was used as a secondary diagnostic on the
xenon gas experiment. Several pointing changes were made to try to im-
prove the focusing of the x-ray signal. This was expected and discussed
before the shot, and was the result of using a nickel x-ray source (8 keV)
with a diagnostic designed for zinc (9 keV). The data is not directly com-
parable with previous shot days (which did use zinc), but the diagnostic
did prove useful as a secondary monitor of the scattered x-ray signal.

– Experimental problems (including design)
The design of this experiment proved largely successful, especially with
respect to the primary diagnostic. The data collected was of high quality,
and will inform future experiments. As it was designed, some improve-
ments could have been made to the use of secondary diagnostics on this
day. The film-based imager had an insufficient field of view to capture the
desired views of the target, which lead to some confusion during shot day
(as mentioned below, help from Chuck Sorce was appreciated in under-
standing this).

– Target problems
One target design (shocked carbon foam) produced significant shrapnel,
which required frequent replacement of blast shields and filters. It will be
redesigned for future shot days with the goal of minimizing spall.
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The second design, investigating the shock in a xenon gas tube, resulted
in very high (saturating) background levels from the beryllium drive disk.
This was observed on the first shot, at which time shielding was added to
the target and the high levels of background were suppressed.

• Suggestions for improvements
The XOP operators indicated that the YTVS camera is preferred for alignment
as the XTVS camera has a vertical offset error. If this is a rigorously examined
issue at LLE, it would be beneficial to convey this to PIs before the shot day,
as target alignment is a priority and such surprises are disconcerting.

• Positive feedback
We are thankful for the support from LLE with respect to the gas fill operation
that is necessary to field the xenon experiments. Additionally, it was very
useful on this shot day to be able to modify our targets (specifically, to add
shielding) in response to the data collected. Having both capabilities required
a significant time commitment from Sallee Klein at Michigan and the safety
personnel, namely Douglas Jacobs-Perkins and Milton Shoup, at LLE. Their
efforts are appreciated.
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APPENDIX C

2010 Target Drawings
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APPENDIX D

2011 Target Drawings
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APPENDIX E

2012 Target Drawings
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APPENDIX F

2011 Data

Raw data is shown here for each shot taken in the 2011 OMEGA campaign. Links
in the shot number and SRF number provide access to the specific setup and results
of each shot through the LLE Omega User website (LLE login required).
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Zinc disk target
Shot 61968, TIM 3

(a) TIM 3

Shot 61968, TIM 1

(b) TIM 1

Figure F.1: Raw MCP data.
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Figure F.2: Lineouts from selected regions.
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Target: 16, 400 µm slit
SRF 35382
Shot 61969

Notes:
Target images: Target: 16

Shot 61969, TIM 3

(a) TIM 3

Shot 61969, TIM 1

(b) TIM 1

Figure F.3: Raw MCP data.
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Figure F.4: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35382
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61969
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_16.pdf


Target: 23, 400 µm slit
SRF 35123
Shot 61970

Notes: Drive and Zn only (no SSC)
Target images: Target: 23

Shot 61970, TIM 3

(a) TIM 3

Shot 61970, TIM 1

(b) TIM 1

Figure F.5: Raw MCP data.
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Figure F.6: Lineouts from selected regions.

173

http://omegaops.lle.rochester.edu/srf?hrid=35123
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61970
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_23.pdf


Target: 44, 150 µm slit
SRF 35384
Shot 61971

Notes: All beams fired
Target images: Target: 44

Shot 61971, TIM 3

(a) TIM 3

Shot 61971, TIM 1

(b) TIM 1

Figure F.7: Raw MCP data.
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Figure F.8: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35384
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61971
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_44.pdf


Target: 21, 150 µm slit
SRF 35385
Shot 61972

Notes: Added shielding, Zn only (no drive, no SSC)
Target images: Target: 21

Shot 61972, TIM 3

(a) TIM 3

Shot 61972, TIM 1

(b) TIM 1

Figure F.9: Raw MCP data.
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Figure F.10: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35385
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61972
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_21.pdf


Target: 24, 150 µm slit
SRF 35386
Shot 61973

Notes: Added shielding, SSC only (no Zn)
Target images: Target: 24

Shot 61973, TIM 3

(a) TIM 3

Shot 61973, TIM 1

(b) TIM 1

Figure F.11: Raw MCP data.

7500 8000 8500 9000 9500 10000
0

0.5

1

Energy [keV]

In
te

n
si

ty
[a

.u
.]

 

 
61973 t3
61973 t1

Figure F.12: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35386
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61973
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_24.pdf


Target: 36, 150 µm slit
SRF 35387
Shot 61974

Notes: Added shielding, Drive and Zn only (no SSC)
Target images: Target: 36

Shot 61974, TIM 3

(a) TIM 3

Shot 61974, TIM 1

(b) TIM 1

Figure F.13: Raw MCP data.
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Figure F.14: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35387
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61974
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_36.pdf


Target: 22, 150 µm slit
SRF 35348
Shot 61976

Notes: Extra shielding added, drive and Zn only (no SSC)
Target images: Target: 22

Shot 61976, TIM 3

(a) TIM 3

Shot 61976, TIM 1

(b) TIM 1

Figure F.15: Raw MCP data.
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Figure F.16: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35348
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61976
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_22.pdf


Target: 19, 400 µm slit
SRF 35488
Shot 61977

Notes: Curved crystal, no added shielding, drive and Zn source (no SSC)
Target images: Target: 19

Shot 61977, TIM 3

(a) TIM 3

Shot 61977, TIM 1

(b) TIM 1

Figure F.17: Raw MCP data.
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Figure F.18: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35488
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61977
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_19.pdf


Target: 17, 400 µm slit
SRF 35489
Shot 61978

Notes: Curved crystal, drive and Zn source (no SSC)
Target images: Target: 17

Shot 61978, TIM 3

(a) TIM 3

Shot 61978, TIM 1

(b) TIM 1

Figure F.19: Raw MCP data.
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Figure F.20: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35489
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61978
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_17.pdf


Target: 40, 150 µm slit
SRF 35490
Shot 61979

Notes: Zn only (no drive, no SSC). Target did not hold gas well
Target images: Target: 40

Shot 61979, TIM 3

(a) TIM 3

Shot 61979, TIM 1

(b) TIM 1

Figure F.21: Raw MCP data.
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Figure F.22: Lineouts from selected regions.
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http://omegaops.lle.rochester.edu/srf?hrid=35490
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=61979
https://ctools.umich.edu/access/content/group/4bfd5e23-2346-4e06-8b15-86d5db32c398/Omega%20Shot%20Campaigns/Chan%20spring%202011/dossiers/CMH_40.pdf


Zinc disk target
Shot 61980, TIM 3

(a) TIM 3

Shot 61980, TIM 1

(b) TIM 1

Figure F.23: Raw MCP data.
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Figure F.24: Lineouts from selected regions.
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APPENDIX G

2012 Data

Raw data is shown here for each shot taken in the 2012 OMEGA campaign. Links
in the shot number and SRF number provide access to the specific setup and results
of each shot through the LLE Omega User website (LLE login required).
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Target: 45
SRF 37404
Shot 65404

Notes: Null shot (undriven). Saturated by the Be plume emission.

Shot 1 − 65404
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http://omegaops.lle.rochester.edu/srf?hrid=37404
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65404


Target: 15
SRF 38917
Shot 65406

Notes: Null shot (undriven)

Shot 2 − 65406
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http://omegaops.lle.rochester.edu/srf?hrid=38917
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65406


Target: 28
SRF 39035
Shot 65409

Notes:

Shot 3 − 65409

186

http://omegaops.lle.rochester.edu/srf?hrid=39035
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65409


Target: 33
SRF 39036
Shot 65411

Notes:

Shot 4 − 65411
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http://omegaops.lle.rochester.edu/srf?hrid=39036
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65411


Target: 19
SRF 39033
Shot 65412

Notes:

Shot 5 − 65412
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http://omegaops.lle.rochester.edu/srf?hrid=39033
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65412


Target: 16
SRF 39034
Shot 65413

Notes:

Shot 6 − 65413
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http://omegaops.lle.rochester.edu/srf?hrid=39034
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65413


Target: 38B
SRF 39037
Shot 65414

Notes:

Shot 7 − 65414
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http://omegaops.lle.rochester.edu/srf?hrid=39037
http://omegaops.lle.rochester.edu/lir?singleReport=Admin_Summary&shotnumber=65414
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B. A. Hammel, A. L. Kritcher, O. L. Landen, R. W. Lee, D. D. Meyerhofer,
D. H. Munro, R. Redmer, S. P. Regan, S. Weber, and S. H. Glenzer. X-
ray Thomson-scattering measurements of density and temperature in shock-
compressed beryllium. Physical Review Letters, 102(11):115001, 2009.

[142] Edison Liang and Katherine Keilty. An analytic approximation to radiative
blast wave evolution. The Astrophysical Journal, 533(2):890, 2000.

[143] J. D. Lindl. Inertial Confinement Fusion. AIP Press, Springer, New York, 1998.

[144] John Lindl. Development of the indirect-drive approach to inertial confine-
ment fusion and the target physics basis for ignition and gain. Phys. Plasmas,
2(11):3933–4024, 1995.

[145] V. Lobatchev and R. Betti. Ablative stabilization of the deceleration phase
Rayleigh-Taylor instability. Phys. Rev. Lett., 85(21):4522–4525, Nov. 2000.

[146] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca,
and L. O. Silva. Generating multi-gev electron bunches using single stage laser
wakefield acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams,
10(6):061301, Jun 2007.

[147] B. Maddox. Characterization of image plate detectors for quantitative high
energy density x-ray radiography experiments.

[148] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier,
A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A.
Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup,
B. R. Walton, and K. Krushelnick. Monoenergetic beams of relativistic electrons
from intense laser-plasma interactions. Nature, 431(7008):535–538, Sept. 2004.

[149] S. P. D. Mangles, A. G. R. Thomas, O. Lundh, F. Lindau, M. C. Kaluza,
A. Persson, C.-G. Wahlström, K. Krushelnick, and Z. Najmudin. On the stabil-
ity of laser wakefield electron accelerators in the monoenergetic regime. Phys.
Plasmas, 14(5):056702, 2007.

[150] G. F. Marani, R. J. Nemiroff, J. Norris, and J. T. Bonnell. On Similarities
among GRBs. In American Astronomical Society Meeting Abstracts #190,
vol. 29 of Bulletin of the American Astronomical Society, p. 839, May 1997.

205



[151] M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, K. S.
Budil, S. W. Haan, R. E. Tipton, and J. D. Kilkenny. Nonlinear Rayleigh-
Taylor evolution of a three-dimensional multimode perturbation. Phys. Rev.
Lett., 80(20):4426–4429, May 1998.

[152] M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W.
Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace. Three-
dimensional simulations of nova high growth factor capsule implosion experi-
ments. Phys. Plasmas, 3(5):2070–2076, 1996.

[153] R. G. McClarren, R. P. Drake, J. E. Morel, and J. P. Holloway. Theory of radia-
tive shocks in the mixed, optically thick-thin case. Phys. Plasmas, 17(9):093301,
2010.

[154] M. V. Medvedev, D. Lazzati, B. C. Morsony, and J. C. Workman. Jitter ra-
diation as a possible mechanism for gamma-ray burst afterglows: spectra and
light curves. Astrophys J., 666, 2007. JILA Pub. 8044.

[155] Mikhail V. Medvedev and Abraham Loeb. Generation of magnetic fields in
the relativistic shock of gamma-ray burst sources. The Astrophysical Journal,
526(2):697, 1999.

[156] E. E. Meshkov. Instability of the interface of two gases accelerated by a shock
wave. Sovient Fluid Dynamics, 4:101–104, 1969.

[157] P. Meszaros and M. J. Rees. Optical and Long-Wavelength Afterglow from
Gamma-Ray Bursts. Astrophys J., 476:232, Feb. 1997.

[158] R.M. More. Atomic physics in interial confinement fusion. Technical Report
LLNL-Report UCRL-84991, Academic Press, Mar. 1981.

[159] J. Myatt, W. Theobald, J. A. Delettrez, C. Stoeckl, M. Storm, T. C. Sangster,
A. V. Maximov, and R. W. Short. High-intensity laser interactions with mass-
limited solid targets and implications for fast-ignition experiments on omega
ep. Phys. Plasmas, 14(5):056301, 2007.

[160] P. Neumayer, B. Aurand, M. Basko, B. Ecker, P. Gibbon, D. C. Hochhaus,
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