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Abstract 

Internal combustion (IC) engines fueled by hydrogen are among the most 

efficient means of converting chemical energy to mechanical work.  The exhaust 

has near-zero carbon-based emissions, and the engines can be operated in a 

manner in which pollutants are minimal.  In addition, hydrogen engines have 

potential for efficiencies higher than fuel cells and are likely to have a small 

increase in engine costs compared to conventionally fueled engines.  However, 

there are challenges to using hydrogen in IC engines.  In particular, efficient 

combustion of hydrogen in engines produces nitrogen oxides (NOx) that 

generally cannot be treated with conventional three-way catalysts.   

 This work presents the results of numerous experiments which consider 

changes in hydrogen engine design and/or operating strategy to improve engine 

performance, consisting primarily of engine efficiency and NOx emissions. 

Several piston and cylinder head configurations were considered.  Engine speeds, 

equivalence ratios, intake pressures, compression ratios, and injector nozzle 

designs were evaluated for some of the hardware configurations.  A gain of 2% 

of lower heating value (LHV) was found in increasing stroke from 79 mm to 95 

mm.  A gain of 1.2% of LHV was found in increasing compression ratio from 12.0 

to 13.7:1. Gains of (simulated) turbocharging were found, yielding about 0.2% of 

LHV per bar of NMEP.   

 Three research areas were considered in greater detail to reduce NOx 

emissions and improve hydrogen engine efficiencies.  The first effort focused on 

injecting liquid water into the cylinder filled with a premixed fuel-air charge.  The 
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amount of water injected was varied, as was the phasing of the water injected.  

The results were compared against expectations for a conventionally operated 

hydrogen engine.  Using this approach of direct injection of water into the 

cylinder, NOx emissions were reduced by 95% with an 8% fuel consumption 

penalty, and NOx emissions were reduced by 85% without any fuel consumption 

penalty. At a threshold of 100 ppm of NOx, peak load possible increased by 

17.3%.   

 The second research area considered injecting water into the intake air 

charge.  The hydrogen fuel was directly injected into the cylinder.  The amount 

of water injected into the intake charge, the amount of fuel injected, the phasing 

of the fuel injection, the number of fuel injection events, and the ignition timing 

were all varied.  Again, the results were compared with expectations for a 

conventionally operated hydrogen engine.  With water injection into the intake 

air charge, the NOx emissions were reduced by 87% with a 2% penalty in fuel 

consumption.  At a threshold of 90 ppm of NOx, peak load possible increased by 

23.9%. 

 Finally, experimental data were generated and analyzed for a combustion 

chamber with two spark plugs.  An injector was designed to preferentially stratify 

the fuel towards the ignition sites.  Results from a metal engine and an optically 

accessible engine are presented.  Based on the metal engine data, the new 

cylinder head design produced a remarkable 47.7% net indicated thermal 

efficiency (ITE) while producing only 51 ppm of NOx.  For the experiments 

conducted on the optically accessible engine, the fuel was seeded with acetone 

and laser induced fluorescence was used to visualize the fuel distribution during 

non-firing operation.  The most optimal injection conditions (based on the metal 

engine results) showed a fuel distribution of approximately Φ= 0.65 near the 

ignition locations. 
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Chapter 1 

Introduction 

 When used in internal combustion (IC) engines, hydrogen has inherent 

advantages over hydrocarbon fuels – fast burn rates, low radiation losses, high 

knock resistance, low fuel weight, and zero fuel-based carbon emissions [1].  

The fast burn rate, low radiation loss, and high knock resistance allow engine 

designs that have high mechanical energy output relative to fuel energy content.  

The low fuel mass combined with high mechanical conversion efficiency results in 

low brake specific fuel consumption.   

 However, there are several challenges that have prevented large scale 

usage of hydrogen in IC engines.  Hydrogen is expensive compared to 

conventional fuels.  The fuel storage occupies a large volume relative to 

hydrocarbon fuels.  Efficient combustion of hydrogen in engines produces 

nitrogen oxides (NOx) that generally cannot be treated with conventional three-

way catalysts.  Nevertheless, the readily available technology and high efficiency, 

which may be able to exceed that of fuel cells, makes hydrogen engine research 

a worthwhile effort[2]. 

 The majority of hydrogen engine research conducted to date has 

attempted to increase engine efficiency while maintaining acceptable engine 

output and emissions compliance.  This work focuses on the same goals.   

1.1 Scientific Background 

 Hydrogen has properties that vary widely from conventional fuels, see for 

example Figure 1.1 [1].  Some of the key characteristics and differences are 
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shown in Table 1 [1], [3].  Of particular note are the low quench distance, wide 

flammability limits, extremely low ignition energy, and high diffusivity of H2.  The 

flammability limits, shown with respect to temperature in Figure 1.2, are 

generally quoted as 4-75% at standard temperature and pressure (STP), and the 

limits expand even further at high temperatures [3][4].  The autoignition 

temperature, 585 °C, is higher than most other fuels.  The empirical "research 

octane number" (RON) is commonly reported to be greater than 130 [3].   

When compared to more conventional fuels, the wide flammability limits 

of H2 allow operation at leaner equivalence ratios, which can eliminate throttling 

losses.  Specifically, IC engine operation below φ = 0.2 is possible, and operation 

at φ = 0.08 has been observed by the author in limited circumstances.  

Operation below φ = 0.2-0.3 is problematic, however, with burn rates slowing 

dramatically.  Figure 1.1 compares the laminar flame speeds of hydrogen, iso-

octane, and methane as a function of the inverse equivalence ratio, λ = 1/ φ, in 

the range of φ = 0.5 - 1.25 (λ = 2 – 0.8).  At stoichiometric conditions, hydrogen 

burns over 5 times faster than the hydrocarbon fuels.  At lean conditions, λ = 2 

(φ = 0.5), the H2 flame speed is still 50% faster than iso-octane at stoichiometric 

conditions.  The fast laminar flame speed can mitigate losses due to combustion 

delays.  Since low global equivalence ratios will reduce pumping losses, and high 

local equivalence ratios will reduce combustion losses, a good combustion 

system design will target relatively-rich pockets of fuel localized in the 

combustion chamber generally near the spark plug during the start of 

combustion. 
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 Heat transfer can be problematic as well.  The low quench distance and 

high temperatures possible can result in higher heat transfer to the walls of the 

combustion chamber, which can reduce engine efficiency.  Owston et al. 

concluded that heat transfer from a stoichiometric hydrogen flame into the 

engine was roughly twice that of gasoline engines [10].   

 The net result is that hydrogen-fueled engines can tolerate very high 

compression ratios; but a great deal of care must be taken in order to control the 

temperatures in the chamber.  Additionally, imperfections from the cylinder 

manufacturing process should be corrected, and oil ingress into the chamber 

should be minimized.  

1.2 Hydrogen Engine Studies External to Ford/University of 

Michigan 

1.2.1 Jet Development 

 Although port-injection (PI) H2 engines have been shown to be quite 

efficient, a large amount of research has been conducted over the past decade 

to understand and improve the combustion in the cylinder through the use of 

direct in-cylinder fuel injection.   

 Some of the research that has been conducted has improved the 

understanding of jets sprayed into a chamber under conditions similar to those 

experienced in direct-injection (DI) engines.  Roy et al. [11] tested spray through 

a single 1.0 mm orifice into a constant chamber volume, while varying fuel 

pressure and ambient pressure.  As expected, the penetration increased when 

fuel pressure increased, and decreased when chamber pressure increased.  In 

addition, ambient pressure was found to have an effect on the structure of the 

fuel jet.  Similarly, Petersen et al. [12], [13] conducted Schlieren work 
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1.2.3 Dilution Strategies  

Stoichiometric operation of hydrogen engines is desirable, as it enables 

the use of conventional 3-way catalysts and increases the maximum power 

density of the engine.  However there are fundamental limitations that restrict 

the maximum equivalence ratio that can be practically used in an H2 IC engine.  

The fast combustion speed of hydrogen can result in a rate of pressure rise that 

exceeds the limits of conventional engine design.  The quench distance of 

hydrogen flames is small, and the adiabatic flame temperature of hydrogen at 

stoichiometric conditions and atmospheric pressure (2383 K) is higher than that 

of iso-octane (2210 K).  As a result, hydrogen engines operating at near 

stoichiometric conditions can produce large amounts of NOx, transfer a large 

amount of energy to chamber walls, and can impact engine durability negatively.    

 In order to reduce the severity of these problems, most hydrogen engines 

are designed to operate with the combustion charge diluted with excess air.  

Some typical results are shown in Figure 1.10, where the equivalence ratio varies 

from 0.22 to 0.72 and excess air ranges from 355% to 38%.   

Unfortunately, the threshold of NOx level that is acceptable for automotive 

applications is generally reached between φ = 0.4 and 0.5.  Most proposed 

strategies have suggested a maximum equivalence ratio of approximately φ = 

0.45.  These strategies will indirectly increase friction losses when the engine 

size is increased to meet peak power requirements.   
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Figure 1.10:  Typical NMEP, ISFC, NOx, H2, and pressure rise rate 

performance of an unthrottled PI engine at 3000 RPM (work conducted 
as part of this dissertation study). 
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maintaining acceptable NOx emissions.  Nande et al. [26] at ANL expanded the 

water injection research using the same water injectors and similar hardware to 

the equipment used in this study.  Nande et al. [26] investigated the tradeoff 

between NOx and engine output while injecting smaller amounts of water than 

used in this study.  In the work by Nande et al. [26], injecting water resulted in a 

27% reduction in NOx with a 1% reduction in efficiency, which was over 11 times 

more effective than a similar attempt to reduce NOx through retarding spark (for 

the conditions tested).   

 In addition to excess air dilution and water dilution, dilution via exhaust 

gas recirculation (EGR) and valve timing strategies to trap more internal exhaust 

residual have also been attempted.  For example, Bleechmore et al. [27] 

compared a water injection strategy with both uncooled EGR  and cooled EGR at 

stoichiometric conditions.  When compared to a baseline strategy of operation at 

φ = 0.4, efficiency was reduced for all strategies tested.  Compared to φ = 0.4, 

fuel consumption was increased by 9% for cold EGR and 12% for hot EGR.  For 

water injection, fuel consumption increased by about 15% in the study by 

Bleechmore et al. [27].  

1.2.4 Vehicle-level Efficiency  

Cumulatively, the advantages of H2 combustion result in vehicle-level 

efficiencies that approach and perhaps improve upon fuel cell efficiencies in 

automotive applications.  As seen in Figure 1.11, the results of the analysis by 

Rosseau et al. show fuel consumption of PI H2 engines (circa 2008) is 

approximately 1.24 times that of current fuel cells [27,28].  With improvements 

to the combustion system, in particular DI mixture formation, turbocharging, 

slightly improved friction, and split hybrid operation, the H2 DI ‘future’ engine 

was projected to use approximately 20% less fuel than current fuel cells.  These 

improvements were believed to be achievable with additional research to 
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author's research, designs were chosen to concentrate hydrogen in the center of 

the chamber in order to avoid large heat losses to the chamber walls.   

 

  
Table 1.4:  Various injectors tested at Ford. 

1.3.2 H2 DI studies done at Ford Motor Company by the author 

 Upon reviewing the DI hydrogen literature and prior studies conducted at 

Ford Motor Company, the author found that key parameters for controlling the 

efficiencies of H2 IC engines (as with gasoline DI engines) are the fuel injector 

design, including the nozzle geometry and injector orientation in the combustion 

chamber, coupled with the combustion chamber geometry, which includes the 

piston and cylinder head design. 
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chamber. 
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2
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2
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Of course, with 2 cylinder heads, 6 pistons, 8 injectors, and several 

compression ratios, a full factorial design of experiments is daunting, even before 

considering each configuration was generally tested at 3-5 engine speeds with 8-

20 different tests.  For this study, 12 combinations of cylinder head, piston and 

compression ratio were selected for testing.  Appendix A presents an abbreviated 

list of the configurations used and the tests conducted. 

1.4 Research Objectives and Summary of Dissertation 

 The primary objective of this research is to demonstrate improvements in 

the efficiency and emissions control of a hydrogen-fueled IC automotive engine.  

Specifically, the intent of this work is to characterize engine performance of 

various permutations of injectors, cylinder heads, pistons, and compression ratios 

and interpret the data in terms of fundamental understanding of H2 mixing, 

ignition, and combustion phenomena.  The effects of varying parameters that 

impact fuel distribution (namely, injection timing and nozzle design) and engine 

dilution (via excess air and/or water injection) are documented and analyzed.  

 In Chapter 2, the experimental setup at Ford Motor Company is described.  

Details of the single-cylinder research engine and associated instrumentation are 

presented, and the margin of error of pertinent measurements is reviewed. 

 In Chapter 3, experimental results for several injector nozzle designs are 

reviewed for a variety of compression ratios.  The NOx emissions, combustion 

statistics, and a breakdown of some efficiency losses are compared for a variety 

of hardware iterations. 

 In Chapter 4, the performance of the engine operated with auxiliary liquid 

water introduced into the engine cylinder is reviewed.  Fuel is delivered via the 

intake port.  The reduction in emissions is compared against values without 

water injection.   
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 In Chapter 5, the engine is again operated with water injection, but in 

contrast to Chapter 4, the water is injected into the intake port.  The fuel is 

delivered directly into the cylinder.  The impact of phasing the water injection in 

relation to combustion is reviewed, and the reduction in emissions is compared 

to expected and predicted values. 

 In Chapter 6, experimental results of the dual-side-ignition cylinder head 

and the dual-zone 3+3H injector are introduced and contrasted with those of the 

conventional cylinder head and 5H injector.    

 In Chapter 7, the results of optical engine studies at Sandia National 

Laboratories are reviewed, including a description of the planar laser induced 

fluorescence (PLIF) diagnostic used.  The PLIF test matrix is defined, and the 

results of the tests are summarized. 

 In Chapter 8, a brief summary of the work and conclusions are presented.  

Areas of future work are also discussed.   
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Chapter 2 

Experimental Setup:  Metal Engine 

 The dynamometer cells at Ford Motor Company's Research and 

Innovation Center have been designed to test a wide variety of internal 

combustion engines at all conditions experienced in an automotive drive cycle.  

The performance metrics measured include the mechanical output of the engine, 

the amount of fuel consumed, the composition of the exhaust gas emissions, and 

important temperatures and pressures during operation.  In order to minimize 

measurement variation, all metal-engine tests in this study were conducted in a 

single dynamometer cell, shown in Figure 2.1. 

2.1 Dynamometer 

A 300 horsepower A/C dynamometer was used to control engine speed 

and absorbed torque.  The A/C motor floated on an oil film in order to reduce 

friction; reaction torque from the energy absorbed was transmitted through a 

load cell and then absorbed by the cell floor.  Absorbed power was then 

calculated through the length of the torque arm, the measured force, and the 

measured dynamometer speed.  



 

2.2 Safety Measures

 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

with complete air turnover in the 

placed above the hydrogen supply line and were coupled directly to hydrogen 

shut

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.  

 

Figure 2.

2.2 Safety Measures

 Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

with complete air turnover in the 

placed above the hydrogen supply line and were coupled directly to hydrogen 

shut-off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.  

Intake 

Damping 

Drum

Figure 2.1: The H2 IC engine dynamome

2.2 Safety Measures

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

with complete air turnover in the 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.  

Intake 

Damping 

Drum 

: The H2 IC engine dynamome
Company used for this study.

2.2 Safety Measures 

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

with complete air turnover in the 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.  

23 

: The H2 IC engine dynamome
Company used for this study.

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

with complete air turnover in the cell every minute.  Hydrogen sensors were 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.  

: The H2 IC engine dynamometer test cell at Ford Motor 
Company used for this study.

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

cell every minute.  Hydrogen sensors were 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagn

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

was analyzed to determine if leaks were present.   

ter test cell at Ford Motor 
Company used for this study. 

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

cell every minute.  Hydrogen sensors were 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

camera monitored engine operation and provided a diagnostic for potential 

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

A/C Dynamo

meter Not 

Camshafts

Crankshaft

ter test cell at Ford Motor 

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

cell every minute.  Hydrogen sensors were 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

ostic for potential 

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

Engine 

Exhaust 

Damping 

Drum 

A/C Dynamo-

meter Not 

Camshafts 

Crankshaft 

 
ter test cell at Ford Motor 

Additional safety measures were specifically implemented for the 

hydrogen IC engine studies.  The dynamometer test cell was heavily ventilated, 

cell every minute.  Hydrogen sensors were 

placed above the hydrogen supply line and were coupled directly to hydrogen 

off valves.  As hydrogen combustion is not always readily visible, an infrared 

ostic for potential 

hydrogen flames.  The integrity of the fuel system was checked each day.  

Hydrogen was introduced in steps of increasing pressure, and the pressure decay 

 

Exhaust 

Damping 

 

 



24 

 

2.3 Instrumentation 

 Some of the instrumentation used to test the performance of the engine is 

shown in Table 2.1.  Fuel flow was measured with a coriolis flow meter with a 

specified accuracy of ±0.1% of measurement.  Intake air was metered by 

pressurizing air and directing the flow through choked nozzles.  Pulsations 

resulting from single-cylinder operation were dampened by flowing the intake air 

through drums of approximately 25 liters each.  

 
Table 2.1:  H2 IC engine instrumentation. 

 

Manuf. Model Full Scale Error

1% IMEP

0.3% Linearity

1% Peak Pressure

2% IMEP

0.5% Linearity

1% Peak Pressure

Intake

Exhaust

Druck 2 bar, 5 bar 0.5% FS

Thermocouples Various K-type 1250 1.1 degree or 0.4%

1500 kg/hr 0.5% of Meas.

5 kg/hr 1% of Meas.

20 kg/hr 1% of Meas.

Interface  1110CBX-300 300 lbs 0.02% FS

CO2* +/- 0.87% FS*

THC* +/- 0.87% FS*

CO (H)* +/- 0.87% FS*

CO (L)* +/- 0.87% FS*

NOx  (H) 10000 ppm +/- 0.87% FS*

NOx  (L) 100 ppm +/- 0.87% FS*

O2 25% +/- 0.87% FS*

H2 V & F H-Sense >30,000 ppm +/- 3% FS

250 bar

Cylinder AVL GU21C 250 bar

Ford Proprietary

Low Speed Pressure Transducers

Micromotion 
Coriolis

High Speed Pressure 
Transducers

Fuel Flow: Coriolis Meter

Brake Torque Load Cell

Aux. Cylinder Kistler 6125B

Kistler 4045 2 bar 0.3% FS

Emissions
Horiba

MEXA-7100 
EGR

Air Flow:  Critical Nozzles

Water Flow:  Coriolis Meter
Emerson
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All in-cylinder pressure measurements were acquired using piezoelectric 

pressure transducers with matched amplifiers (see Table 2.1 for model 

specifications).  The cylinder pressure signal was correlated with a high-speed 

pressure sensor located in the intake port for every cycle of engine data.  With 

the central ignition/central injection combustion chamber, the cylinder head had 

enough space to add an auxiliary cylinder pressure sensor to improve 

measurement accuracy. 

Crank angle was measured with a 720 slot rotary encoder and laser 

mounted at the rear of the engine.  The angle corresponding with top dead 

center (TDC) was initially determined using a capacitive probe and compared to 

pressure sensor data.  Afterward, TDC timing was determined using measured 

thermodynamic loss angle.  As a general rule for gasoline engines, an error of 

one degree in determining crankshaft angle can result in an error of up to 10% 

in indicated mean effective pressure (IMEP) [30].  Since hydrogen engines have 

a wide range of pressure rise rates, the IMEP error introduced from incorrect 

crankshaft angle determination may vary widely as well.  As such, it is instructive 

to introduce artificial error into test data of crankshaft angle/volume 

measurements and analyze the resultant change in predicted IMEP. 

 The results of such an analysis are shown in Figure 2.2.  The data were 

taken from a test conducted at 3000 RPM and an equivalence ratio of ɸ = 0.4.  

The IMEP error shown is the average of +1 and -1 degree shifts in the assumed 

crankshaft angle.  The error peaks at a pressure rise rate of approximately 2 

bar/degree.  At points lower than 2 bar/degree, the burn durations are quite 

long, with 10-90% taking 40 degrees or more.  At these conditions, minor 

changes in estimated volume have a relatively small effect on IMEP.  Conversely, 

at high pressure rise rates, combustion is near constant-volume, with 10-90% 

burn taking approximately 6 degrees.  As such, with a slider-crank mechanism, 

the velocity of the piston is low during the entire combustion event, and the 
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error resulting from incorrect crankshaft angle determination is reduced.  It is 

expected that the error in determining actual crankshaft angle is less than 0.2%.  

The error in reporting IMEP is expected to be less than 1.4%.  The 

manufacturers of the pressure transducers expect errors in IMEP determination 

due to inaccurate pressure to be less than 1.0%, and actual errors tend to be 

less than 0.5% [31].   These combined independent sources of error result in an 

overall measurement uncertainty in IMEP of 1.7%  

 
Figure 2.2:  Net IMEP change resulting from a change in crankshaft 
angle determination of ±1 degree, shown as a function of maximum 

pressure rise rate in the cycle. 

 Indicated thermal efficiency (ITE) was determined using the measured 

fuel consumption and in-cylinder pressure time histories.  The inaccuracy in ITE 

is estimated at ±2.5%, where the uncertainty is due to the uncertainty in the 

volume measurements (±1.4%), the pressure measurements (±1.0%), and the 

fuel flow measurement (±0.1%).   
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 Emissions were measured with an exhaust gas analyzer (Horiba MEXA-

7100 EGR).  The emissions bench was calibrated daily, and measurement error is 

specified by the manufacturer to be less than 0.5%.  The maximum drift of both 

the zero and span in an eight hour time period are both specified as 0.5%; as 

well.  The total expected error is assumed to be under 0.87%.  Carbon-based 

emissions resulting from the burning of oil were measured and recorded.  For all 

tests these emissions levels were quite low and are not reported in this work. 

2.4 Hydrogen  

The hydrogen used during testing was high purity, as the delivery system 

was originally designed for fuel cells that specified operation with >99.9% purity 

H2.  The hydrogen was liquefied, both to reduce volume and eliminate impurities.  

During operation, the hydrogen was boiled and then compressed, using oil-less 

compressors specifically designed to minimize impurities for fuel cell usage.  The 

hydrogen was then regulated until pressure reached 115 bar (absolute).  The 

fuel was then allowed to flow to the test cell.  For DI experiments, 110 bar 

(absolute) was maintained at the fuel rail.  For PI experiments, the fuel pressure 

was regulated down to 4 bar (absolute). 

2.5 Engine Design 

 Some of the major engine design specifications are shown in Table 2.2.  

The single-cylinder engine was designed with the crankcase assembly separate 

from the cylinder assembly; shims could be inserted between the two in order to 

vary the deck height and compression ratio of the engine.   
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Table 2.2:  Engine dimensions and specifications. 

2.6 Experimental Procedure 

In general, the effect of changing the H2/air mixing time was investigated 

by incrementally decreasing the mixing time allowed between fuel injection and 

ignition, which was characterized by the timing of the start of injection (SOI) or 

the end of injection (EOI).  Equivalence ratio was chosen based on prior 

experience in order to maximize efficiency, minimize NOx emissions, and 

maintain reasonable pressure rise rates.  For many experiments, the equivalence 

ratio was set at ɸ = 0.4.   

For each injection timing condition the following procedure was used.  Air 

flow was controlled to establish the desired intake manifold pressure (generally 

100 kPa), and torque was monitored in real time.  Spark timing was then varied 

to maximize the observed IMEP.  Once optimal ignition timing was determined, 

the engine was allowed to stabilize for approximately two minutes.  After 

stabilization, slow-speed data (e.g., temperatures, pressures, engine torque, fuel 

flow, etc.) were recorded for 60 seconds at 10 Hz and then averaged.  High 

speed data (e.g. cylinder pressures, intake manifold and exhaust manifold 

pressures, and ignition and injection waveforms) were recorded for 300 engine 

cycles.  After acquiring the engine data for the targeted EOI, the mixing time 

was then reduced by changing the injection phasing incrementally from EOI = 

Bore 89 mm
Stroke 95 mm

Cylinder Displacement 592 cc
Connecting Rod Length 169.1 mm

Intake Valve Diameter 35 mm
Exhaust Valve Diameter 30 mm

Intake Duration 230 deg
Intake Centerline 100 deg ATDC
Exhaust Duration 230 deg

Exhaust Centerline 105 deg BTDC
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Chapter 3 

Performance of Conventional PI and DI Hydrogen 

Engines 

3.1 Introduction 

Most recent hydrogen research has focused on optimizing fuel distribution 

through direct in-cylinder injection for improved combustion.  However, obtaining 

optimal efficiency, in general, is a tradeoff of many design and operating 

parameters.  Both port injection (PI) and direct injection (DI) engines can be 

optimized in terms of the bore/stroke ratio, the compression ratio, the intake 

manifold pressure, the equivalence ratio, and the engine speed.  The efficiency 

of DI engines is also strongly a function of the parameters used to influence fuel 

distribution, such as nozzle design and injection timing.  To that end, several 

experiments were conducted and are the results are described in this chapter.  

The efficiency, burn characteristics, and NOx emissions are compared across a 

range of engine design parameters and operating parameters. 

3.2 PI Engine Efficiency as a Function of Engine Speed and 

Bore/Stroke Ratio 

 In general, as engine speeds increase, engine friction, flow losses, and 

combustion losses will disproportionately increase.  Conversely, as engine speeds 

decrease, heat losses to the cylinder walls will disproportionately increase.  

Similarly, as bore/stroke ratio increases, friction will decrease, but the reduction 
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in friction will often be accompanied by poor combustion chamber geometry and 

heat losses.  

 It is clear that both bore/stroke ratio and engine speed must be optimized 

in a system-level design that considers the constraints of friction, heat losses, 

and combustion losses.  This type of optimization is heavily dependent upon the 

application in which it would be used, and is therefore outside the scope of this 

work.  Nevertheless, some of the general trends of efficiency and combustion 

statistics are presented here to provide insight into such an optimization. 

 The specifications for engine design and operation for these tests are 

shown in Table 3.1.  Engine speed was varied from 800 to 4000 RPM, and 

equivalence ratio varied between φ = 0.2 and 0.7.  Tests were conducted at 

crankshaft strokes of 79 mm and 95 mm.  The same cylinder head was used 

throughout these tests; the compression ratio remained roughly constant by 

changing the deck height of the engine. 

  
Table 3.1:  Engine Design and Operating Parameters for PI Engine 

Speed and Stroke Studies. 

 The indicated thermal efficiency (ITE) is shown in Figures 3.1 through 3.3.  

Figure 3.1 shows gross ITE as a function of equivalence ratio for the different 

stroke and engine speeds studied.  It is clear that higher engine speeds, and 

presumably lower heat transfer into the cylinder walls, result in progressively 

Unit
Engine Speed RPM

Intake Manifold Pressure kPa
Exhaust Manifold Pressure kPa

Equivalence Ratio Phi
Bore mm

Stroke 79 95 mm
Bore/Stroke 1.127 0.937

Compression Ratio 11.7 11.6
Ignition
Injection Intake Runner

Value

100
0.2-0.7
89.04

Central

800-4000
100
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higher gross ITE.  With an engine stroke of 79 mm, peak efficiency increased 

from 40.8% at 800 RPM and φ = 0.37 to 43.7% at 4000 RPM and φ = 0.4.  With 

an engine stroke of 95 mm, peak efficiency increased from 45.0% at 2000 RPM 

and φ = 0.3 to 45.6% at 3000 RPM and φ = 0.3.  

 
Figure 3.1:  Gross ITE as a function of equivalence ratio for several 

engine speeds and two crankshaft strokes. 

Figure 3.2 shows the indicated thermal efficiency including the effects of 

pumping losses.  As engine speed increased, pumping losses from flow 

restrictions became a greater portion of the total energy loss, which negated 

some of the advantage in increasing engine speed.  This is demonstrated in 

Figure 3.3, where the results are shown for an equivalence ratio of φ = 0.4 

(interpolated from the results shown in Figures 3.1 and 3.2).  The improvement 

in gross ITE above 2000 RPM was approximately 0.8% per 1000 RPM for both 

the 79 mm stroke and the 95 mm stroke.  Below 2000 RPM, the improvement 

was approximately 2.1% per 1000 RPM.  When the effects of pumping losses 
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were incorporated, the efficiency gain above 2000 RPM was reduced to 

approximately 0.3% per 1000 RPM.  

 
Figure 3.2:  Net ITE as a function of equivalence ratio for several 

engines speeds and two crankshaft strokes. 

 
Figure 3.3:  Comparison of gross and net indicated thermal efficiency 

as a function of engine speed for Φ = 0.4. 
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 Figure 3.4 shows the 10-90% burn duration for the speed and stroke 

data.  Combustion durations were dramatically shorter for higher equivalence 

ratios, and were somewhat smaller for lower engine speeds.  The results 

correlate with expectations based on laminar flame speeds, where higher 

equivalence ratios will yield higher flame speeds.  Higher engine speeds are also 

associated with higher turbulence levels which may further increase flame 

speeds. 

 
Figure 3.4:  Burn duration as a function of equivalence ratio. 

 Although the coolant flow rate was not recorded, pump settings for each 

experiment were fixed at constant values throughout testing, and coolant flow 

rates were not expected to vary dramatically.  As a consequence, the 

temperature change of the coolant flow in and out of the engine can be 

informative about the heat transfer for the different engine operating conditions.  
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rise across the engine increased dramatically with higher equivalence ratios and 

engine speed.   

 
Figure 3.5:  Increase in coolant temperature as a function of 

equivalence ratio. 

 The pumping losses (presented as the pumping mean effective pressure, 

PMEP) for the engine speed and stroke tests are shown in Figure 3.6.  PMEP was 

determined using the in-cylinder pressure time histories in the manner described 

in Section 2.7.  The total mass flow rate into the engine of air and hydrogen for 

the corresponding data is presented in Figure 3.7.  The pumping losses increased 

dramatically with engine speed and showed a slight dependence on equivalence 

ratio.  This dependence is anticipated to be primarily due to the slightly lower 

total mass flow rates at higher equivalence ratios, as seen in Figure 3.8.   
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Figure 3.6:  PMEP as a function of equivalence ratio.   

 

 
Figure 3.7:  Total mass flow rate into engine as a function of 

equivalence ratio. 
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Figure 3.8:  PMEP as a function of total mass flow rate into engine. 

 

 
Figure 3.9:  FMEP as a function of equivalence ratio. 
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 In Figure 3.9, the friction mean effective pressure (FMEP) of the single 

cylinder engine is shown as a function of equivalence ratio.  Recall, the FMEP 

was determined by subtracting the observed brake mean effective pressure from 

the net IMEP.  The FMEP was approximately constant with equivalence ratio, but 

varies dramatically with engine speed.  For all engine speeds, the friction was 

high due to the single-cylinder balancing mechanism, and as such the friction 

should not be considered indicative of a multiple-cylinder implementation.  

 
 Figure 3.10:  NOx as a function of equivalence ratio. 

 Figure 3.10 presents the NOx data for the different engine speed and 

stroke tests.  The NOx emissions increase by over two orders of magnitude as a 

function of equivalence ratios.  As the in-cylinder temperature varies widely with 

large changes in equivalence ratio, the amount of NOx emitted was strongly a 

function of equivalence ratio.  In the range of φ = 0.35 to 0.6, the logarithm of 

NOx has a roughly linear trend with equivalence ratio.  There was some reduction 
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3.3 PI Engine Efficiency as a function of Compression Ratio  

 With a high autoignition temperature, hydrogen-fueled engines are 

expected to use higher compression ratios than similar gasoline engines.  The 

efficiency of a fuel-air cycle with constant-volume combustion is shown for 

varying compression ratios and equivalence ratios in Figure 3.11.  Equilibrium 

chemistry and gas properties were predicted using the Canterra software 

package and the GRI 3.0 reaction mechanism as published by Smith et al. [33].    

Although the reaction rate coefficients for that software package were optimized 

for natural gas, the instantaneous combustion shown here would be unaffected. 

The efficiency at any given compression ratio decreases as equivalence ratio 

increases; primarily due to the inferior ratio of specific heats encountered at 

higher temperatures.   

 
Figure 3.11:  Efficiency of theoretical Otto-cycle engine with varying 

equivalence ratios and compression ratios. 
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In such an analysis, higher compression ratios will unequivocally prove 

superior; however, in actual implementation, factors such as autoignition limits, 

combustion chamber geometry, engine friction, and engine mechanical 

constraints will all limit the highest practical compression ratio.  In order to 

understand some of these limits, several experiments were conducted where the 

compression ratio was varied by changing the deck height of the engine.  Details 

of the engine configuration and operating parameters are shown in Table 3.2. 

 
Table 3.2:  Engine Design and Operating Parameters for PI 

Compression Ratio Studies. 

The ideal thermal efficiency is contrasted with the observed gross 

indicated thermal efficiency in Figure 3.12.  The expected theoretical efficiency 

gain from increasing compression ratio from 12.0:1 to 13.7:1 or from 13.7:1 to 

15.7:1 is approximately 1.5%.  However, at φ = 0.4, increasing from a 

compression ratio of 12.0:1 to 13.7:1 improved the observed ITE by 1.2%.  

Increasing the compression ratio from 13.7:1 to 15.7:1 improved the observed 

ITE by 0.5%.   

Value Unit
Engine Speed 2000 RPM

Intake Manifold Pressure 100 kPa
Exhaust Manifold Pressure 100 kPa

Equivalence Ratio 0.2-0.6 Phi
Bore 89.04 mm

Stroke 95 mm
Compression Ratio 12-15.7

Ignition Dual Side
Injector PFI
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Figure 3.12:  Comparison of ideal and actual data for thermal efficiency 
gains with increasing compression ratio as a function of equivalence 

ratio. 

Figures 3.13 and 3.14 present the combustion phasing (crank angle timing 

of 50% burn) and 10-90% burn duration, respectively.  At the conditions tested, 

the 12.0:1 and 13.7:1 engines were not knock limited, and the 15.7:1 engine 

was only knock limited at higher equivalence ratios.  In addition to the issues 

that were listed above, some of the other factors that cause the efficiency gain 

to be less than ideal are poorer combustion phasing at higher compression ratio, 

shown in Figure 3.13, and slower burn rate, shown in Figure 3.14.  Higher 

equivalence ratios result in faster burn rates, and the higher pressures associated 

with higher compression ratios result in slower burn rates.  The sub-optimal 

combustion phasing at higher compression ratios occurs when spark timing is 

retarded in order to avoid autoignition. 
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Figure 3.13:  Crank angle of 50% burn as a function of equivalence 

ratio. 

  
Figure 3.14:  10-90% burn duration as a function of equivalence ratio.   
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Figure 3.15 shows the effect of pumping on the indicated efficiency by 

comparing the gross and net ITE.  The experiments used unthrottled air, and the 

pumping losses varied from approximately 1.5% to 2.5%.    

 
Figure 3.15:  Gross and Net Indicated Thermal Efficiency as a function 

of Equivalence Ratio. 
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expected to increase with the higher compression ratios.  As the balancing 
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ratio having slightly superior BTE when compared to a 15.7:1 engine, even 

though the ITE of the 13.7:1 engine was slightly inferior. 

 
Figure 3.16:  Brake thermal efficiency as a function of equivalence 

ratio. 

  
Figure 3. 17:  FMEP as a function of equivalence ratio. 
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3.4 DI Engine Efficiency of as a function of Intake Manifold 

Pressure 

 Maximizing specific power will allow smaller displacements and the 

reduction in friction that accompanies engine downsizing.  If the inlet pressure is 

increased, the ratio of surface area to cylinder charge mass is improved as well, 

which minimizes heat transfer to the cylinder wall.  Since hydrogen engines have 

very high autoignition temperatures, they are particularly well suited to 

turbocharged operation.   

In these experiments the effects of varying intake manifold pressure are 

presented.  The engine design and operating parameters are shown in Table 3.3. 

The engine speed was fixed at 3000 RPM.  Intake manifold pressure varied from 

35 to 200 kPa, and exhaust manifold pressure varied from 100-200 kPa.  All 

pressures above atmospheric resulted from artificial pressurization of the intake 

system or artificial restriction of the exhaust system.  For all of the tests in this 

section, the 13H direct in-cylinder injector was used to fuel the engine. 

 
Table 3.3:  Engine Design and Operating Parameters for DI Boosting 

Studies. 

 The operating conditions tested were separated into three groups, which 

are shown in Figure 3.18.  In order to generate low intake manifold pressures, 

the engine was heavily throttled.  Above 100 kPa, two pressure schedules were 

tested.  In the first, referred to as the 'high backpressure (BP) turbo', a standard 

Value Unit
Engine Speed 3000 RPM

Intake Manifold Pressure 35-200 kPa
Exhaust Manifold Pressure 100-200 kPa

Equivalence Ratio 0.4 Phi
Bore 89.04 mm

Stroke 79 mm
Compression Ratio 11.7

Ignition Central
Injector 13H
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turbocharger was approximated, and the intake manifold pressure was equal to 

exhaust manifold pressure.  In the second, referred to as the 'low backpressure 

(BP) turbo', a variable geometry turbocharger was approximated, and the 

exhaust backpressure imposed on the engine was 20 kPa less than the intake 

manifold pressure imposed.  Near atmospheric pressures, this schedule is 

optimistic, but at higher loads it approximates the results seen on a 2.3L 

turbocharged engine with variable geometry turbine (VGT). 

 
Figure 3.18:  Pressure schedule used in boosting studies of DI 

hydrogen engine. 

 The results for gross and net ITE are shown in Figure 3.19.  With the 
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pressure improved the gross thermal efficiency of the engine by approximately 

0.21% per bar IMEP.   

 
Figure 3.19:  Gross and net ITE as a function of IMEP. 

 The 10-90% combustion duration data are shown in Figure 3.20.  The 
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hydrogen reacts with oxygen in a three-term, slower reaction.  The peak 

pressures, including average peak pressure and the sum of the peak pressure 

and three standard deviations, are shown in Figure 3.21.  Peak pressure 

increased from 18 bar at a 35 kPa inlet pressure, to 105 bar with a 200 kPa inlet 

pressure.  
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Figure 3.20:  Burn duration as a function of IMEP. 

 
Figure 3.21:  Peak pressure as a function of IMEP. 

 

2 3 4 5 6 7 8 9 10 11 12 13 14

26

28

30

32

34

36

IMEP (bar)

1
0

-9
0

%
 B

u
rn

 D
u

ra
tio

n
 (

d
e

g
)

 

 

High BP Turbo
Low BP Turbo
Throttled

2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

120

140

IMEP (bar)

P
ea

k 
P

re
ss

ur
e

 (
b

a
r)

 

 

High BP Turbo Peak Pressure
High BP Turbo Peak Pressure + 3 StdDev
Low BP Turbo Peak Pressure
Low BP Turbo Peak Pressure + 3 StdDev
Throttled Peak Pressure
Throttled Peak Pressure + 3 StdDev



51 

 

3.5 Theoretical Potential for Pneumatic Recovery in a DI 

Hydrogen Engine  

Many implementations of hydrogen engines are envisioned to store the 

hydrogen in a high-pressure tank.  Late injection of fuel into the cylinder can 

allow for some conversion of the energy stored pneumatically in the fuel tank 

into shaft work.  The tests conducted in this work never exceeded an injection 

pressure of 120 bar, and tests were generally conducted at 110 bar.  At 110 bar, 

the energy that could be extracted by an ideal turbine is 2.7% of the LHV of the 

fuel.  Although the magnitude of the pressure recovery effect is expected to be 

smaller than the advantage found in controlling fuel distribution via optimal 

injection timing, it would still be instructive to separate and compare the 

efficiency gain due to the two effects.   

It is difficult, however, to experimentally determine the magnitude of the 

pressure recovery effect.  The timing of the fuel injected affects the local fuel 

distribution and local temperature of the mixture.  Fuel injection timing also 

affects the work done on the mixture by the piston during the compression 

stroke.  These factors, in turn, affect combustion speed, combustion 

temperature, and pressure during the expansion stroke. 

 To provide a preliminary understanding of these effects, a model was 

created of the engine cycle to determine the maximum expectation of pressure 

recovery.  As the model was intended to be interpretive, rather than predictive, 

many simplifying assumptions were invoked.  The equivalence ratio assumed 

was φ = 0.4.  Injection was treated as adiabatic (i.e. Joule-Thomson expansion) 

and no consideration was given to mixing time – i.e. the fuel-air charge was 

assumed to instantaneously mix to a homogeneous condition.   

 Combustion was modeled as a constant volume process.  For the purpose 

of estimating pneumatic recovery, there was negligible difference between a 
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model of complete combustion, a model of reaching chemical equilibrium at each 

timestep, and a model which reached equilibrium at TDC only and maintained 

species concentration through the expansion stroke.  The results shown here 

modeled equilibrium at TDC only.   

 Engine dimensions, when required, were set to those in the experimental 

engine.  Injection pressure and temperature of the hydrogen was 110 bar and 

298 K, respectively.  Although these assumptions are not adequate for a 

predictive model, they are of sufficient fidelity to approximate the maximum 

recoverable pneumatic energy.   

 
Figure 3.22:  pV diagrams for theoretical constant volume combustion 

with direct injection of hydrogen at different injection timings. 

 Three pressure-volume (p-V) diagrams correlating to these assumptions 
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the fuel is injected at 90 BTDC, with an expansion ratio of a little less than 2, the 

efficiency only rises to 52.8%.  In other words, at typical compression ratios, the 

pneumatic energy of the hydrogen injected has a maximum effect on ITE of 

approximately 2% in absolute efficiency units. 

3.6 Overview of the Effects of Nozzle Design on DI Engine 

Efficiency 

Of course, the energy benefit from pneumatic recovery is accompanied by 

advantages in fuel distribution and combustion characteristics.  Tests were 

designed to quantify the effects of combustion characteristics via changes in fuel 

injection timing.  The engine design and operating parameters are shown in 

Table 3.4.  All experiments were conducted at approximately 11.7:1 compression 

ratio.  The injection pressure remained constant at 110 bar.  The equivalence 

ratio was varied from φ = 0.2 to 0.6.  Two crankshaft strokes were tested: 79 

mm and 95 mm. 

 
Table 3.4:  Engine design and operating parameters for DI studies of 

the effects of hydrogen injector nozzle design. 

 The design features of the hydrogen fuel injector nozzles considered are 

provided in Table 3.5.  The number of holes varied from 5 to 17.  The total flow 

area was either 1.0 mm2 or 1.4 mm2.   

Value Unit
Engine Speed 3000 RPM

Intake Manifold Pressure 100 kPa
Exhaust Manifold Pressure 100 kPa

Equivalence Ratio 0.2-0.6 Phi
Bore 89.04 mm

Stroke 79, 95 mm
Injection Pressure 110 bar

Injector Varies
Compression Ratio 11.7

Ignition Central
Injector Varies
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Figure 3.24:  Net ITE as a function of start of injection for different H2 

fuel injector designs.   

 
Figure 3.25:  Net ITE as a function of piston distance from TDC for 

different H2 fuel injector designs. 
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 The expected maximum pneumatic recovery of the engine at 90 degrees 

BTDC injection was expected to be 0.6% (see Figure 3.23).  For the 13H 

injector, the difference in efficiency seen near BDC and that seen at 90 degrees 

BTDC is 1.12%.  The fuel distribution is expected to be advantageous at the 90 

degrees BTDC condition.  Similarly, for the 5H injector, the difference observed 

experimentally, 1.25%, is higher than predicted solely based on pneumatic 

recovery. 

 The fast decline in efficiency after 90 degrees BTDC can be explained in 

part by the combustion stability observed.  Figure 3.26 shows the coefficient of 

variation (COV) of IMEP as a function of injection timing.  Combustion was quite 

stable when injection began before 90 degrees BTDC.  After 90 degrees BTDC, 

the fuel distribution was presumably poorly mixed and/or poorly located in the 

combustion chamber, causing a decrease in ITE. 

 
Figure 3.26:  Combustion stability as a function of injection timing. 
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3.7 Summary 

The performance results for a single cylinder engine with many iterations of 

engine design were presented in this chapter.  Fuel injection strategies included 

port and direct fuel injection and 6 different DI nozzles.  Engine efficiency data 

were determined for two crankshaft strokes and three compression ratios.  The 

results for engine efficiency for a range of equivalence ratios, injection timings, 

and engine speeds were also reported.  In general, it was found that: 

• The highest net thermal efficiency was found at lean fuel-to-air 

equivalence ratio conditions of φ ≅ 0.4 

• Net ITE increased with increasing engine speed by 0.3% of LHV per 1000 

RPM from 2000 to 4000 RPM 

• A 95 mm stroke compared to a 79 mm stroke improved efficiency by 

approximately 2% of LHV 

• Efficiency was improved by 1.2% of LHV when increasing compression 

ratio from 12.0:1 to 13.7:1 (out of a maximum anticipated gain of 1.5%) 

• Efficiency was improved by 0.5% of LHV when increasing compression 

ratio from 13.7 to 15.7 (out of maximum anticipated gain of 1.5%) 

• While operating at φ = 0.4, increasing manifold pressure improved 

efficiency by 0.2% of LHV per bar of net IMEP 

• With DI injectors, maximum efficiency was reached when injecting 

between 70 degrees and 120 degrees before TDC 

• At the best injection timing of about 90 degrees, efficiency with DI 

injectors improved by approximately 1.4% of LHV over near-BDC injection 
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• At an injection timing of 90 degrees and an equivalence ratio of 0.4, the 

theoretical efficiency gain due to pneumatic recovery is expected to be 

0.6% of LHV 

 

 These results for engine performance and for the sensitivity of the H2 

engine to operating conditions and combustion chamber design are the baseline 

for the results of the studies presented in the subsequent chapters of this thesis.  

The lessons learned from the metal engine studies dictated the best practices for 

improving H2 engine performance (Chapter 6), for minimizing NOx emissions with 

water injection strategies (Chapters 4 and 5) and motivated the optical engine 

studies (Chapter 7) to provide direct information on the fuel/air mixing properties 

at conditions relevant to the metal engine studies.  
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Chapter 4 

Direct In-cylinder Injection of Water into a PI 

Hydrogen Engine 

4.1 Introduction 

In order to maximize the hydrogen engine efficiency over a broad range, 

as for a traditional automobile engine, it is likely that the entire operating regime 

will remain at equivalence ratios much leaner than stoichiometric.  As has been 

shown, operation at these loads is characterized by high concentrations of both 

oxygen and NOx. The NOx may be difficult to reduce to acceptable levels without 

increased cost and/or increased fuel consumption; for example, eliminating 50% 

of NOx through retarding combustion phasing via ignition invokes a 3% fuel 

consumption penalty. 

As engine displacement and corresponding friction are often scaled by the 

maximum specific power of an engine, highly loaded regions have an indirect 

effect on efficiency throughout the operating range of the engine.  Since highly 

loaded points are rarely reached in normal customer operation, increasing 

maximum load possible, even with a fuel penalty at that load, can decrease 

overall fuel consumption.  For example, Blaxill, et al., estimated that a 20% 

reduction in engine friction would result in a 4% improvement in EU drive-cycle 

fuel consumption [34].   The amount of fuel burned at over 90% of full engine 

load is typically much less than 5% and as such any minor change in fuel 



61 

 

efficiency at high loads can be negligible.  Thus, increasing the maximum load 

possible by 10% would improve drive-cycle fuel consumption by roughly 2%. 

In order to allow this type of equivalence ratio increase, the NOx emitted 

must be mitigated by some means.  One potential strategy is to inject liquid 

water into the cylinder of an engine.  There are several means through which 

water injection may improve the NOx emissions of the engine: 

1. The water has a large thermal inertia, due to both the evaporative 

cooling of the water and the large specific heat of water.  

2.  If the water is injected late into the intake stroke, the evaporation 

of water will cool the intake charge, which in turn will allow draw 

more air into the cylinder and further dilute the charge.   

3. In addition, there is potential chemical energy storage, as water 

may decompose at high temperatures and pressures.   

A quick analysis of the third subject shows that, at expected pressures and 

temperatures (2100 K and 50 bar), the dissociation of water at equilibrium is 

small – with an equivalence ratio of φ = 0.4, the Canterra program predicts that 

the OH radical will be 0.13% of the mixture.  All other radicals are anticipated to 

be several orders of magnitude less abundant.  As a consequence, this work 

assumes the effect of water dissociation is small and is ignored.  The potential of 

water injection to reduce combustion temperatures, NOx emissions, peak cylinder 

pressures, and cylinder pressure maximum rise rates is considered in this work. 

4.2 Overview of Experiments 

4.2.1 Injectors 

For these experiments, hydrogen was injected into the intake port and 

water was injected directly into the combustion chamber.  Some details of the 
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hardware used are shown in Table 4.1.  The hydrogen injector operated at 40 

PSI and the water injector was operated at 100 bar. 

Table 4.1:  Cylinder head, piston, fuel and water injectors used in in-
cylinder water injection studies. 

4.2.2 Equivalence Ratio  

As was previously discussed, hydrogen engines are usually limited to a 

maximum equivalence ratio much lower than stoichiometric. The actual 

equivalence ratio reached is generally dictated by NOx production, peak cylinder 

pressure, pressure rise rates, and (the possibility of) anomalous combustion.  

Current PI hydrogen engines commonly operate at an equivalence ratio at or 

below φ = 0.45.  This operating condition combines minimum fuel consumption 

and acceptable levels of NOx, which can be seen in Figures 4.1 and 4.2.  

Unfortunately, this limits the engine to a net IMEP of approximately 5.3 bar, as 

can be seen in Figure 4.3.  This is a low maximum load when compared with 

conventional gasoline engines, and many hydrogen-fueled engine designs 

incorporate large displacement and/or boost systems to improve the MEP.   

Higher equivalence ratios would likely require NOx aftertreatment to meet 

automotive emissions standards.  In order to determine whether operation at 

higher equivalence ratios without aftertreatment would be possible, the engine 

was operated with hydrogen injected into the intake port at φ = 0.50.  As can be 

Cylinder Head Piston Hydrogen Injector Water Injector
Dual Side Ignition,

Central Water Injection
15.7:1 with slight dome Port Injector

Six Hole Symmetric,
 Direct In-Cylinder
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seen in Figures 4.1 and 4.2, this strategy would consume roughly 64.9 

grams/kW-hr (indicated) of fuel and would emit approximately 730 ppm of NOx. 

 
Figure 4.1:  Efficiency tradeoff for PI H2 operation:  no water injection. 

 
Figure 4.2:  NOx produced during PI H2 operation:  no water injection. 
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Figure 4.3:  Net IMEP as a function of Equivalence Ratio:  no water 

injection. 

4.2.3 Experimental Procedure 
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calculations for combustion characteristics do not take into account the 

introduction of water into the system.  The small amount of water (4% of total 

cylinder mass) is anticipated to have a small effect on the calculations.   

4.3 Experimental Results 

The performance of the system was strongly dependent on the timing of 

the water injection into the combustion chamber.  Figure 4.4 and 4.5 present the 

results for the NOx production and net indicated thermal efficiency (ITE) as a 

function of the timing for water injection.  As is expected, water injection had the 

largest impact when it was injected prior to combustion.   When water was 

injected during the intake stroke or compression stroke, particularly during the 

latter parts of the intake stroke, there was a substantial impact on NOx and ITE.    

When water was injected during the compression stroke, the NOx reduction was 

relatively unaffected by small changes in injection timing. When the water was 

injected between 45 and 180 degrees ATDC, the majority of the NOx had already 

been generated and the effect of water injection on NOx emissions was minimal.  

Fuel consumption at these points was relatively unaffected as well.  When fuel 

was injected later in the exhaust stroke (after 270 degrees ATDC), the amount of 

NOx produced decreased.  This suggests that a substantial portion of the water 

remains in the residual gas fraction of the next engine cycle, and decreases NOx 

generated in the next engine cycle.  

 At 21 mg/cycle, the NOx production was reduced to a minimum of 34 ppm 

when the injection timing was 220 deg BTDC of combustion, suggesting that this 

injection timing allowed a reasonably homogenous charge of water, fuel, and air 

when ignition occurred.  The net indicated thermal efficiency associated with this 

point was found to be 43.1%.   At 35 mg/cycle, the NOx production was 

reduced even further to approximately 13 ppm.  The net indicated thermal 

efficiency associated with this point was 44.5%. 
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Figure 4.4:  NOx production and net indicated specific fuel consumption 

as a function of water injection timing. 

 
Figure 4.5:  Net ITE as a function of H2O injection angle. 
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water mass injected into the system.  As the spark timing was optimized, the 

phasing penalty of water injection was substantially reduced and the location of 

50% burn was reduced from 22 deg ATDC to 10 deg ATDC.  At this condition the 

specific fuel consumption was reduced to the best observed during the study, 

but NOx emissions increased slightly. 

 
Figure 4.6:  CA50 as a function of water injection timing. 

 
 Figure 4.7:  Burn duration as a function of water injection timing. 
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4.4 Analysis and Normalization 

Although comparison of these results to similar points without water 

injection would be enlightening, the small changes in average IMEP with water 

injection makes it tedious to test all necessary points for direct comparison.  The 

challenge is highlighted in Figure 4.8, in which the specific fuel consumption is 

charted as a function of IMEP for the conditions previously shown, and is 

contrasted with a sweep of equivalence ratio when no water was injected.  The 

use of water injection generally reduces IMEP from 6.2 bar to as low as 5.8 bar.  

Also note that ITE decreases by 0.7 – 4.5 %, depending upon the injection 

phasing, spark timing, and mass of water injected. 

 
Figure 4.8:  Net ITE vs. Net IMEP, comparison of Water Injection and 

Non-Water Injection. 
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Figure 4.10:  NOx as a function of IMEP for conditions without the use 
of water injection (logarithmic scale).  Symbols are experimental data.  

Solid line is the fit of Equation 4.1. 

 
Figure 4.11:  NOx as a function of IMEP for conditions without the use 
of water injection (linear scale).  Symbols are experimental data.  Solid 

line is the fit of Equation 4.1. 
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was optimized show almost no penalty in specific fuel consumption.  The least 

fuel-efficient points used approximately 11% more fuel than would be predicted 

for combustion without water injection. 

 
Figure 4.13:  Net ISFC as a function of Net IMEP. 
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Figure 4.14:  Estimated effects of water injection on NOx  and fuel 

consumption. 

 
Figure 4.15:  Normalized fuel consumption as a function of injection 
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Figure 4.16:  Normalized NOx as a function of injection timing. 
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Figure 4.17:  NOx as a function of Net IMEP. 
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Figure 4.19:  Timing of peak pressure (relative to TDC = 0o) as a 

function of water injection phasing. 
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Figure 4.20: Peak pressure as a function of net IMEP. 

 
Figure 4.21:  Time in CAD of peak pressure as a function of net IMEP. 
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The advantages of peak cylinder pressure and disadvantages of burn rate 

are summarized in Figure 4.22 and Figure 4.23.  These figures show the pV 

diagram and cylinder pressure for three conditions:  as a function of crank angle 

for the reference case with no water injection, a water injection case with the 

same ignition time as the reference case, and the water injection case with re-

optimized spark timing.  The optimized water injection condition lowers peak 

pressure, but at the expense of slower burn rates. 

 
Figure 4.22:  Pressure as a function of crank angle. 
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Figure 4.23:  pV Diagram. 
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NMEP developed by 17.3%.  If the threshold was reduced to 13 ppm, water 

injection would improve maximum NMEP by 26.7%.   

As such, direct water injection can be expected to increase the specific 

power of emissions-controlled hydrogen engine applications and enable a 

reduction in engine displacement.  The reduction in friction associated with the 

smaller engine is anticipated to improve system-level fuel efficiency in a normal 

automotive drive cycle.   
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Chapter 5 

Water Injection into the Intake Port of a DI 

Hydrogen Engine 

5.1 Introduction 

 In Chapter 4 the justifications and purposes for testing water injection 

were introduced.  Water injection, when combined with hydrogen combustion, 

can allow operation at higher equivalence ratios, which in turn can allow engine 

downsizing and an associated benefit in engine friction.  Chapter 4 introduced 

experiments done on a PI hydrogen engine with DI water injection.  Although 

the results were promising, fueling via PI has several drawbacks when compared 

to DI fueled engines.  Among the disadvantages is a greater possibility of 

aberrant combustion, increased fuel consumption at a given load, and lower 

peak load.  DI operation eliminates the possibility of pre-intake-valve-closing 

(IVC) autoignition, and the short mixing time often drastically decreases the 

possibility of post-IVC autoignition as well.  Further, by injecting fuel directly in 

the chamber, fuel temperature at top dead center (TDC) can be controlled, 

controlling NOx emissions.  Optimizing the injection timing also allows for a 

degree of fuel distribution control, which in turn allows DI engines to reach 

higher loads than PI engines.  The drawbacks to DI operation include economic 

considerations and injector durability concerns.  The many advantages of DI 

operation motivate the study of water injection to further improve DI hydrogen 

engines.  Specifically, the work in this chapter evaluates PI water injection 

combined with DI fuel injection. 
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injection to improve the maximum load possible with DI H2, all points for this 

study were conducted at φ = 0.6.  For each test, the engine was operated at a 

constant speed of 1500 RPM.  Manifold pressure for all data was 100 kPa. 

 
Figure 5.1:  Tradeoff between NOx and ISFC for φφφφ = 0.6 single and split 

injection strategies. 
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engine performance and NOx production is shown in Table 5.2.  In total, there 

were five mechanisms through which fuel consumption, NOx emissions, and 

engine performance in general were optimized.   

 
Table 5.2:  Water injection parameters studied. 

5.3 Experimental Results: Fuel Consumption and NOx 
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(ISFC) results of the PI water injection experiments.  As can be seen, the 
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were conducted at 27 mg/cycle, 54 mg/cycle, and 81 mg/cycle of water.  It can 

quickly be seen that, at equivalent NOx, using a single fuel charge resulted in 

improved fuel consumption when compared to splitting the fuel injection into two 

charges.  The minimum level of NOx seen, approximately 30 ppm, could be 

expected to achieve emissions compliance depending on vehicle level 

Low Limit High Limit Unit

1 Spark Timing MBT-7 MBT+3 deg BTDC

2 Total Water Injected 0 81 mg/inj

3 EOI of initial H2 Injection 55 70 deg BTDC

4 EOI of second H2 Injection 0 10 deg ATDC

5 Percent of fuel in first injection 70 100 %
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assumptions.   

 
Figure 5.2:  NOx as a function of ISFC for PI water injection and DI H2 

injection. 

 
Figure 5.3:  NOx as a function of ISFC, fixed injection time. 
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Figure 5.4:  Tradeoff between NOx and ISFC, summary of best points 

among all points tested. 
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consumption for a given amount of NOx.  As can be seen, a single-pulse injection 

with no additional water has the best efficiency but produces 4500 ppm of NOx.  

If lower NOx is required, then single charge fuel injection with H2O produces the 
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strategy reduces NOx by approximately 75% compared to a multiple injection 
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Error was minimized when A was set to -0.127, B was set to 1.234, and C was 

set to 40.84.   These values resulted in an R2 value of 0.99.  The effects of PI 

water injection on ISFC are shown in Figure 5.6.  As is expected, the strategies 

used to mitigate NOx have a corresponding penalty in fuel consumption.  In the 

cases tested, the penalty varied between 2% and 12%. 

 
Figure 5.7: Comparison of ISFC as a function of IMEP for water 

injection and baseline (no water injection) conditions. 
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Figure 5.8:  Normalized NOx mitigation as a function of fuel 

consumption penalty. 

 The tradeoff between fuel consumption and NOx is presented in Figure 

5.8.  The three strategies all reduce NOx substantially.  With a 2% fuel 

consumption penalty, the split fuel-injection case without water injection 

decreases NOx by 68%.  Single fuel injection with water injection decreases NOx 

by 83%, and split injection combined with single injection reduces NOx by 87%.  

When the fuel consumption penalty is 10%, NOx production is reduced by over 

96%.  

 The NOx mitigation methods also reduce the peak cylinder pressure, which 

is shown in Figure 5.9.  All NOx mitigation strategies reduce peak cylinder loads 

by at least 5 bar, and in some cases cylinder pressures are reduced by 30 bar.   
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Figure 5.9:  Peak pressure as a function of IMEP. 

 Figure 5.10 shows the extent to which water injection reduces peak 

pressure rise rate.  The conditions with minimal increase in fuel consumption 
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bar/deg to 0.8 bar/deg. 
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Figure 5.10:  Maximum pressure rise rate as a function of IMEP. 
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cycle that complies with emissions regulations.  In contrast, the multiple injection 

strategies tested were not able to reduce NOx below 125 ppm. 

  A strategy including water injection can be expected to increase the 

specific power of emissions-controlled applications.  At a threshold emissions 

level of 90 ppm of NOx, water injection is able to increase Net IMEP by 23.9%.     

The addition of water injection, in an appropriately downsized engine, is 

expected to reduce fuel consumption in a normal automotive drive cycle.   
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Chapter 6 

Dual Zone Combustion System:  Metal Engine 

Experimental Results 

6.1 Introduction 

Although the efficiencies of combustion systems tested to this point have 

been promising, the high fuel costs of operating an engine on hydrogen warrant 

attempts to reduce the combustion and heat transfer losses further.  It was 

hypothesized that using two ignition sites, on the side of the chamber, would 

help reduce the losses due to combustion delay.  Furthermore, a dedicated 

injector, designed to direct fuel towards the spark plugs while entraining air, was 

designed and tested.   

6.2 Experimental Setup 

All tests were conducted on the single cylinder engine at Ford Motor 

Company discussed in Chapter 2.  The cylinder heads used for these experiments 

are shown again in Table 6.1, and the injectors chosen for this study are shown 

in Table 6.2.  The 5H injector was chosen because it had shown superior 

efficiency to all other injectors tested to date. 
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Table 6.1:  Cylinder heads and injectors tested. 

  
Table 6.2:  Fuel injector nozzle designs tested. 

Although many tests were conducted using this hardware (detailed in 

Appendix A) the results shown here were conducted at φ = 0.4.  The injection 

timing was varied to determine the manner in which the fuel distribution and 

mixing time affected the performance of the engine.  

 

 

Name Single Central Ignition Head Dual Side Ignition Head

Injector Location Central Central

Spark Plug Location Central Dual Side

Designer "Production" Younkins/Boyer

Pattern 5H 3+3
Spray Angle 0/35 45/70

Nozzle Diameter (mm) 0.597 0.545

Nozzle Area (mm
2
) 0.280 0.233

Total Flow Area (mm
2
) 1.4 1.4
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6.3 Experimental Results and Discussion 

6.3.1 Comparison of 5H and 3+3H Injectors operated with central 

ignition and dual-side-ignition spark plugs for fixed engine speed 

 Figure 6.1 compares the fuel consumption and NOx production of the four 

cylinder head and injector configurations.   

 
Figure 6.1:  Indicated specific fuel consumption and NOx emissions as a 

function of SOI. 
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 When the baseline 5H injector was paired with the baseline Gen III 

central ignition cylinder head, the best thermal efficiency observed was 

45.7% at an SOI timing of 95 degrees.   

 The NOx production at that condition was 115 ppm.   

 More mixing time (yielding presumably more homogenous combustion 

conditions) decreased NOx, but decreased efficiency. 

 When injection timing was advanced past 80 degrees, combustion stability 

suffered, specific fuel consumption increased, and data were not taken. 

 

 When the 3+3H injector was paired with the baseline central ignition 

cylinder head, efficiency increased to 46.1% at an SOI timing of 95 

degrees. 

 The NOx production at that condition was 190 ppm.  

 The range of stable combustion was increased; data were taken until SOI 

reached 70 degrees BTDC. 

 

 When the 5H injector was paired with the new dual-side-ignition head, the 

efficiency increased to 46.2% at an SOI timing of 37 degrees. 

 However, at this highly stratified condition there was a substantial NOx 

penalty, exceeding 1100 ppm.  

 Stability immediately improved at all points and data were taken until the 

SOI timing reached 35 degrees BTDC.   
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 Throughout most of the injection timings, the thermal efficiency 

decreased slightly to consumption increased slightly when compared to 

either of the previous two cases.   

 

 When the 3+3 injector was paired with the dual plug cylinder head, 

efficiency improved to 47.8 at 83 degrees SOI. 

 The NOx production at this condition was 208 ppm. 

 Increasing the mixing time slightly to 94 degrees decreased efficiency to 

47.7% but also decreased NOx to 52 ppm. 

 Decreasing mixing time further decreased efficiency until a local maximum 

was found at 70-64 degrees BTDC.  This NOx was found to have local 

maxima. 

 Decreasing mixing time to 60-50 degrees BTDC resulted in local minima of 

NOx and local maxima of efficiency. 

 Mixing times below 50 degrees reduced efficiency and increased NOx 

production. 

 Figure 6.2 plots the NOx emissions as a function of fuel consumption for 

the data of Figure 6.1.  When compared to the baseline central-ignition/5H 

pairing, the dual-side-ignition/5H and central-ignition/3+3H pairings made minor 

improvements in fuel consumption with substantial NOx penalties.  When the 

3+3H was paired with the dual-side-ignition head, improvements were made in 

both fuel consumption and NOx simultaneously.  For example, at 47.7% ITE, only 

51 ppm of NOx was produced. 
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Figure 6.2:  NOx production as a function of fuel consumption for the 

different cylinder head and fuel injector combinations. 

In Figures 6.3 and 6.4, data for the crank-angle duration of 10 to 90% 

burn and 0 to 10% burn are shown.  The central ignition with 5H injector 
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rate improved somewhat with the central ignition/3+3H injector, with burn 

duration taking between 38 and 41 degrees.  The improvement was more 

dramatic when either fuel injector was paired with the dual-side-ignition cylinder 

head.  In particular, the dual-side-ignition/3+3H with late injection timing 

reduced 10-90% burn duration to 8 degrees.  Over the entire range of operating 

conditions, the 3+3H 10-90% burn rate results were equivalent or improved 

when compared to the 5H results. 
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Figure 6.3:  10-90% burn duration as a function of end of injection 
timing for the different cylinder head and fuel injector combinations. 

 
Figure 6.4:  0-10% burn duration as a function of end of injection 

timing for the different cylinder head and fuel injector combinations. 
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