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 The two central-ignition head cases showed improvement in ISFC when 

SOI changed from more homogeneous cases (SOI >100 degrees BTDC) to more 

stratified cases, around 70 degrees BTDC.  In this range of SOI, with less mixing 

time, average 0-10% burn duration decreased.  For all engine configurations, the 

0-10% burn durations exhibited minima, where decreasing EOI led to increased 

0-10% burn duration.   

 The two dual-side-ignition heads showed different performance.  The 

dual-side-ignition head with the 5H injector, benefiting from two spark plugs, 

reduced 0-10% burn by 6 degrees at SOI > 180 degrees when compared to the 

central injection head.  The burn duration improved as SOI decreased and 

mixing times decreased, until SOI reached 40 degrees.  The 3+3H injector had a 

maximum 10-90% burn rate at SOI = 115 degrees BTDC, which corresponded to 

the highest fuel consumption for that hardware.  From an SOI of 70 degrees 

BTDC, progressively later injection timing resulted in progressively shorter time 

required for 0-10% burn.  Presumably, this performance was due to 

progressively richer mixtures close to the spark plugs, a hypothesis that was 

examined in more detail with optical engine measurements.   

 Although a correlation between burn rate and thermal efficiency might be 

expected, Figures 6.5 and 6.6 show that this correlation is not always entirely 

straightforward.  Figure 6.5 shows ITE plotted against 0-10% burn duration.  

When the single-central-ignition cylinder head was used, efficiency improved, in 

general, when 0-10% burn duration decreased.  However, when the dual-side-

ignition cylinder head was used, the correlation was much less direct. 
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Figure 6.5:  Correlation between 0-10% burn rate and efficiency; dual-
side-ignition cylinder head (left) and single-central-ignition cylinder 

head (right). 

 
Figure 6.6:  Correlation between 10-90% burn rate and efficiency. 
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In Figure 6.6, net ITE is shown as a function of 10-90% burn duration.  

The correlation between 10-90% burn duration and efficiency is not 

straightforward in three of the four cases shown, the lone exception being the 

5H injector when paired with the dual-side-ignition cylinder head.  

 
Figure 6.7:  Combustion stability as a function of injection timing. 
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Figure 6.8:  Summary of combustion statistics and NOx production for 
five injection timings for the 3+3H injector with dual-side-ignition 

cylinder head. 
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transfer to the cylinder wall could have a significant impact on fuel efficiency, 

and further analysis is warranted.  

Figures 6.9-6.11 show some of the high-speed pressure data taken for the 

results shown in Figure 6.8.  The data are shown for five injection timings, 

corresponding to the conditions shown in Figure 6.8.  Figure 6.9 shows pressure 

as a function of crank angle.  The same pressure information is plotted as a 

function of cylinder volume in Figure 6.10.  Significant burn rate changes can be 

seen, suggesting combustion is highly stratified as injection timing approaches 

TDC.  At the longest mixing times/earliest injection timing of SOI = 144, the 

peak pressure is significantly reduced compared to the less advanced SOIs.  At 

the shortest mixing times/latest injection timing of SOI = 20, ignition is retarded 

several degrees later than the other SOI conditions.   

 
Figure 6.9:  Pressure data as a function of crank angle for the EOI 
timings of Figure 6.8 (listed in degrees BTDC) for the dual-side-

ignition/3+3H engine configuration. 

-60 -40 -20 0 20 40 60 80 100
0

10

20

30

40

50

60

Crank Angle (deg ATDC)

P
re

ss
ur

e 
(b

ar
)

 

 

SOI = 144

SOI = 94

SOI = 84
SOI = 54

SOI = 20



106 

 

 
Figure 6.10:  Pressure/volume time histories of selected EOI timings 
(listed in degrees BTDC) for the dual-side-ignition/3+3H engine 

configuration.  The data correspond to the results presented in Figure 
6.9. 
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both burn rate and NOx were quite high, indicating high temperatures in cylinder.  

However, overall efficiency was low and expansion pressure was low, indicating 

high combustion losses to the cylinder wall.  

 
Figure 6.11:  Pressure/volume time histories comparing earliest 

injection to latest injection for the dual-side-ignition/3+3H engine 
configuration. 
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Figure 6.12:  Comparison of pV diagrams for EOI = 120 degrees (near-

homogeneous) and EOI = 60 degrees (best observed efficiency). 

 
Figure 6.13:  Comparison of pV diagrams for EOI = 60 degrees (best 

observed efficiency) and EOI = 18 degrees (highly stratified). 
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6.3.2 Effects of Engine Speed and Fuel Injector Orientation 

 Effects of engine speed and the orientation of the fuel injector were also 

investigated for the two cylinder head configurations and two fuel injector 

geometries.  Only the results of the 3+3H injector and dual side ignition are 

presented here.  The indicated thermal efficiency for the 3+3 injector and the 

dual side ignition at 3000 RPM, φ = 0.4, and injector nozzle angle β = 0 (nozzles 

pointed towards ignition) is repeated in Figure 6.14 as a function of SOI.  Also 

shown are the results for 3000 RPM, φ = 0.4 and β = 90 (nozzles pointed 

perpendicular to the ignition axis), and the results for 1500 RPM, φ = 0.4 and β 

= 0.  The efficiency of the 3000 RPM and β = 90 condition shows the expected 

inverted-U shape.  The efficiency of the 1500 RPM and β = 0 condition is not 

what is traditionally seen.  There is a local maxima at approximately SOI = 90 

degrees, a local minima when SOI = 63 degrees, the global maxima at SOI = 38 

degrees, and the local minima when SOI = 28 degrees.  Both the 1500 RPM/β = 

0 and the 3000 RPM/β = 0 have two distinct maxima of efficiency; but the global 

maxima occur at earlier SOI for the 3000 RPM and at later SOI for the 1500 RPM 

case.  
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Figure 6.14:  Thermal efficiency as a function of start of injection for 

different engine speeds and fuel injector orientations. 

 Figure 6.15 shows the correlation between 0-10% burn duration and SOI 
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Figure 6.15:  0-10% burn duration as a function of SOI. 

 

 
Figure 6.16:  10-90% burn duration as a function of SOI. 
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Figure 6.17 presents the combustion stability data for the different engine 

speed and fuel injector orientations.  For the 1500 RPM/β = 0 conditions, there is 

a distinct maxima in instability at 66 degrees SOI.  For 3000/β = 90, the latest 

injection timings show the highest instabilities.  All other conditions showed good 

combustion stability.   

 
Figure 6.17:  Combustion stability (COV of IMEP, % basis) as a function 

of SOI. 

When considering the combustion statistics of Figure 6.17, some points 

are slightly vexing.  At 1500 RPM/β = 0, some of the latest injection timings 

combine good combustion stability with superior burn rate, (for both 0-10% and 

10-90% burn durations), yet have poor efficiency relative to similar conditions.  

The high NOx at this condition, coupled with the poor efficiency, suggests high 

temperature and proportionately large heat transfer to the cylinder walls.   

Figure 6.18 shows the exhaust runner temperature as a function of SOI.  

None of the trends are strictly monotonic.  At 1500 RPM/β = 0, there is a local 

-200 -180 -160 -140 -120 -100 -80 -60 -40
0

1

2

3

4

5

6

IM
E

P
 C

O
V

 (
%

)

Start of Injection (deg BTDC)

 

 

3+3, β = 0, 3000 RPM
3+3, β = 0, 1500 RPM
3+3, β = 90, 3000 RPM



113 

 

maxima of heat rejection into the exhaust at 63 degrees SOI.  At 3000 RPM/β = 

90, there is a local maxima at 85 degrees SOI, and an uptick at 55 degrees SOI.  

For the other two conditions, last few points with the latest SOI conditions show 

level EGT as a function of SOI.   

 
Figure 6.18:  Exhaust runner temperature as a function of start of 

injection. 
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case of the 1500 RPM/ β = 0, relatively constant heat rejection between 90 and 

30 degrees SOI.  

 
Figure 6.19:  Increase in coolant temperature as a function of start of 

injection. 
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90% burn duration, show large improvements (with much shorter burn 

durations; on the order of a factor of 3) with the new combustion system.  The 

results also indicate that, possibly as a result of the small boundary layers/low 

quenching distance of hydrogen, heat transfer plays a large role in differentiating 

engine efficiency as a function of fuel injector nozzle design, ignition location(s), 

and fuel injection timing.  The combustion stability was good for all operating 

conditions, and the range of stable operation was improved with the new 

combustion system.   

The engine performance was a strong function of the SOI for each 

hardware configuration.  Earlier SOI presumably yields more time for mixing and 

hence more homogeneous H2/air mixtures.  Reducing the mixing time by using 

later SOI timing, leads to more stratified mixtures.  The burn rates, NOx 

emissions, and exhaust runner temperatures all suggest the bulk of the fuel is 

combusted in stratified (relatively) rich zones.   Optical engine studies, presented 

in the following chapter, provide further insight into the mixing processes 

important in determining the magnitude and mechanisms of the hydrogen fuel 

distribution. 
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Chapter 7 

Optical Characterization of Fuel Distribution in the 

Dual Zone Combustion System 

7.1 Introduction 

 The performance of the dual zone combustion system has been shown to 

vary considerably with phasing of fuel injection.  Some conditions, namely 3000 

RPM and 85 degree SOI, combine short burn durations, high efficiency and low 

NOx emissions.  When the fuel is injected much later, less than 30 degrees 

BTDC, burn durations remain short, but efficiency is poor.  Moreover, the decline 

between best and worst efficiency is not monotonic, but rather is characterized 

by local maxima and minima.  This interesting behavior warranted optical 

characterization of the hydrogen fuel distribution. 

7.2 Optical Engine Experimental Setup 

 All optical experiments were conducted at the Sandia National 

Laboratories in Livermore, California.  This work was the result of a collaboration 

between Ford Motor Company, Sandia National Lab, and Westport Innovations.  

All optical experiments were conducted in collaboration with Victor Salazar. 

The engine, dynamometer, and associated equipment used has been the 

test bed for many hydrogen fueled experiments over the past seven years [8], 

[19], [20], [23–25], [35–38]. 
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7.2.1 Engine Hardware 

  The engine specifications are shown in Table 7.1 and are contrasted with 

the specifications of the metal H2 IC engine at Ford Motor Company used for the 

studies presented in Chapters 3-6.   

 
Table 7.1:  Comparison of Metal Engine and Optical Engine. 

 For all the optical experiments conducted at Sandia, the fuel distribution 

was characterized without ignition.  The engine, complete with quartz liner and 

quartz piston, are shown in Figure 7.2 together with a schematic.  Since the 

optical studies that will be shown in this chapter are all recorded without ignition, 

the cylinder head could be considered an approximation of either the single or 

dual ignition cylinder head presented previously.  All tests shown in this chapter 

were completed with the same 3+3 injector used for experiments in chapter 6, 

shown again in Figure 7.2.   

  Detailed specifications of the experimental setup and analytical process 

are given in [20] and are briefly summarized here.   

  

Location Sandia
Engine Type Optical

Max Engine Speed 1500 RPM
Combustion Chamber Pentroof

Valvetrain DOHC 4V
Compression Ratio 11

Bore 92 mm
Stroke 78 95 85 mm

Displacement 486 592 565 cc

89

Pentroof
DOHC 4V
10.4-15.7

Ford
Metal
6000
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to approximately 160 mJ.  After passing through the prism, the laser entered a 

passive-cavity beam stretcher via a translucent mirror with an R/T of 37/63.  The 

passive cavity beam stretcher distributed the energy of excitation in order to 

maximize energy while avoiding component (i.e. cylinder liner) damage.  In the 

passive cavity beam stretcher, two lenses, with focal lengths of 1000mm and -

750mm, were employed to re-collimate the laser beam.  In total, the passive 

cavity stretcher reduced the peak instantaneous energy of the laser by a factor 

of 2.5.[20]  A half-wave attenuator allowed further fine-tuning of laser energy to 

the desired total output of approximately 125 mJ.  A  cylindrical (planar) lens 

with a focal length of -300mm transformed the laser from a column of light to a 

sheet of light.  A lens of focal length 1500 mm served two purposes.  First, the 

lens focused the sheet of light on the experiment, reducing the thickness of the 

sheet of light to approximately 600 µm.  Second, a intentionally introduced small 

deviation from perpendicularity enabled a small amount of light to be reflected 

towards a Coherent LabMax TOP (J25-MUV-193 sensor) energy meter.  The 

energy meter recorded the relative energy of each laser pulse, which was later 

used in post-processing to normalize each image's recorded fluorescence to the 

total laser energy transmitted to the experiment.  Two apertures were employed, 

both after the 1500mm lens and before the energy meter, in order to minimize 

aberrant light.  A periscope was used to align the laser with the plane of 

measurement desired.   

 Images were recorded with a Princeton Instruments PIXIS 1024B, which 

used an unintensified back-illuminated CCD to record fluorescent intensity.  For 

horizontal images, a 85mm lens with an aperture of f/1.4 was used with an 

auxiliary close-focusing lens, as is shown in Figure 7.3.  For vertical images, a 

55mm f/1.2 lens was substituted and of course the camera orientation and 

cylindrical lens orientation were changed.   



  

Figure 7.

Figure 7.
horizontal (right) images.  Figure courtesy Victor Salazar.

Figure 7.3:  Schematic of Laser Setup for Imaging 

Figure 7.4:  Test Setup Schematics and example
horizontal (right) images.  Figure courtesy Victor Salazar.
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Two images were then acquired of the fuel distribution to be characterized.  The 

referencing process was then repeated to acquire a second set of ‘span’ and 

‘zero’, followed by two more characterization images.  This process was repeated 

50 times for a total of 200 images, and is shown graphically in Figure 7.7.  

Between each of the 200 images, 4 engine cycles were run without imaging, in 

order to allow the laser and camera to appropriately sync with the engine speed.  

All tests were conducted without ignition of the fuel mixture.   

 
Figure 7.7:  Timeline for 2 sets of four images taken.  Process was 

repeated until a total of 200 images were taken. 

7.3 Test Matrix 

 The optical engine was limited to a maximum engine speed of 1500 RPM.  

The metal engine results for indicated thermal efficiency for 1500 RPM as a 

function of start of injection timing at an equivalence ratio of φ= 0.4 are shown 

in Figure 7.8 and contrasted with the results at 3000 RPM.  The approximate 

local minima and maxima for the 1500 RPM β= 0 condition were found at 90 

degrees…, 63°, 38°, and 28° BTDC.  These inflection points were chosen for the 

optical engine study.  For β= 90°, SOI timings of 90 degrees…, 63°, and 38° 

were selected.  Due to concerns of combustion stability, 28° SOI was not 

investigated for β= 90.  Metal-engine tests were not conducted with β= 90° at 

1500 RPM at Ford Motor Company.  Nevertheless, data at 3000 RPM and data 

taken in conjunction with Argonne National Labs suggest that operation at 

SOI=90° has good efficiency and is characterized by NOx levels similar to that of 

homogeneous operation.  Similar data and inferences suggest that β= 90° and 
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SOI=38° is unlikely to have good efficiency.  At β= 90° and SOI =63°, the 

efficiency of the engine is very sensitive to minor changes in injection timing.  

Additionally, minor differences in bore and stroke can substantially affect fuel 

distribution at MBT, and thus no general claims as to the efficiencies of fuel 

distributions at these conditions are made.  

 
Figure 7.8:  Efficiency as a function of Injection Phasing. 

 The test matrix of vertical and horizontal images taken is shown in Table 

7.3.  Both vertical and horizontal images were taken at regular intervals and at 

the ignition timing.   In order to be able to characterize fuel penetration 

immediately after injection, finer steps were used after injection in the vertical 

plane.  In total, images were taken for 255 different combinations of injector 

nozzle orientation, injection timing, imaging timing, and image plane. 
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Table 7.3:  Matrix of Tests Conducted for optical imaging studies. 

Vertical Vertical
Vertical a ab b c d e Vertical a ab b c d e

SOI Image CA
25
24
23
22
21
20
15
11
4
1

35
34
33
32
31
30
25
20
15
11
4
-1

61
60
59
58
57
56
55
48
45
40
35
30
25
20
15
11

88
87
86
85
84
83
82
80
78
76
75
72
68
65
60
55
40
45
30
25
20
15
11

Data
No Data

Impracticable

Configuration
Image Plane

Legend

90

63

38

28

Horizontal Horizontal
β = 90β = 0
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7.4 Experimental Results 

7.4.1 Injection Direction (β) = 0° 

 As was previously noted, efficiency is at a local maxima with β = 0° and 

SOI = 90° BTDC.  The fuel distribution, characterized in horizontal planes, is 

shown in Figure 7.10 for a range of injection timings.  Note that the values 

corresponding to maximum mole fractions in the images gradually decrease from 

0.4 to 0.25.  (The scale used in each case is noted at the bottom of the cylinder 

in each image stack.  For reference, the conversion between equivalence ratio 

and molar fraction is shown in Figure 7.9.)  The shift in scale improves the 

resolution of the relative fuel stratification over the widely changing local 

conditions.  At the ignition timing of 11° BTDC, the images indicate a relatively 

homogeneous distribution, with some more lean locations towards the edges of 

the horizontal images.   

 
Figure 7.9:  Equivalence Ratio as a function of Molar Fraction. 

The vertical images that correspond to these conditions are superimposed 

upon the horizontal images in Figure 7.11.  Under these conditions, the fuel 
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Figures 7.16 and 7.17 show the fuel distribution resulting from a SOI of 
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being slightly biased towards the intake valves.  This bias is thought to be due to 
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the fuel distribution is close to homogeneous.  
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7.4.5 Vertical Imaging:  β = 0° and β = 90° 

A summary of all vertical images for SOI = 90° is shown in Figure 7.27.  

In figures 7.9, 7.10, 7.17 and 7.18 the fuel distribution was shown to be 

relatively homogeneous for both injector orientations.  Figure 7.27 indicates that 

the path the fuel takes to achieve that homogeneity is quite different for the two 

injector orientations.   
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7.4.6 RMS and Mean Molar Fraction, Highest Horizontal Plane 

 In order to determine the magnitude of cycle to cycle fluctuations of fuel 

distributions, the RMS of the fuel distribution was generated for all images.  

Perhaps most critical is the fuel distribution nearest the ignition locations, i.e. the 

highest of the horizontal planes.  Figures 7.31 and 7.32 show the images that 

correspond to the ignition timings of the β = 0° and β = 90° cases, respectively.  

As can be seen, all of these cases show relatively little fluctuation in the areas 

closest to the ignition location.  All of the fuel mole fraction images in this section 

are scaled to a common maximum molar fraction of 0.35, and all of the RMS 

images in this section are scaled to a common mole fraction of approximately 

0.14. 

 The fuel distribution is relatively homogeneous when the SOI is 90°, 

regardless of whether β = 0° or β = 90°.  The fuel distribution for β = 0° and 

SOI = 38° is somewhat similar to the distribution seen at β = 90° and SOI = 

63°.  The fuel distribution that can be seen at β = 0° and SOI = 28° is 

somewhat similar to the distribution seen at β = 90° and SOI = 38°.   
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ilar to the global mole fraction of 0.144 (equivalence ratio 0.4), and the RMS 

mole fraction is quite low.  The metal engine experiment shows stable 

combustion but relative low performance.  At a SOI of 63°, the average fuel 

sites was quite low compared to global fuel 
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distribution.  Moreover, the RMS of molar fraction was high.  Correspondingly, 

the indicated thermal efficiency was low and the combustion was not stable.  

At SOI of 38°, the average fuel distribution near the ignition sites was 

0.22, which is moderately high compared to global fuel distribution.  Even 

though the RMS of molar fraction was high, the combustion was quite stable in 

the metal engine and the indicated efficiency was quite high.  Temperatures in 

the cylinder are likely to remain low; the adiabatic flame temperature at a molar 

fraction of 0.22 is roughly 1900K; furthermore, the areas analyzed outside the 

near-ignition sites have low molar fractions as well.    

At SOI of 28°, the average fuel distribution near the ignition sites was 

stoichiometric, which is quite high compared to global fuel distribution.  The RMS 

of mole fraction was reduced compared to the distribution seen at a SOI of 38°.  

The combustion stability seen on the metal engine was quite stable.  However, 

the overall efficiency seen on the metal engine was quite low.  Temperatures in 

the cylinder are likely to be high; for reference, adiabatic flame temperature at 

stoichiometry is roughly 2400K.  Exacerbating this problem is the large zones of 

stratified near-stoichiometric charge that will likely be further compressed by 

burned gases before combustion, raising the temperatures further.  
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performance) of SOI = 63° showed a rich zone in the center of the combustion 

chamber, away from the spark plugs, explaining the long burn duration and poor 

combustion stability of the corresponding metal engine testing.  A SOI of 90° 

yielded near-homogeneous fuel distribution, and the overall efficiency for SOI = 

90o was between the two extremes in performance and image characteristics of 

SOI – 38o and 63o.  At a SOI of 28°, the mixture near the spark plugs was 

slightly richer than stoichiometric.  The high flame temperatures that would 

result from this rich mixture explain the high heat release rates, high NOx 

emissions, and presumably large amount of heat transferred to the cylinder 

walls.   

Metal engine experiments were not conducted at Ford or Sandia at 1500 

RPM with a nozzle orientation of β = 90°.  The optical engine results suggest 

that the near-homogenous condition at 90° SOI would perform in roughly an 

equivalent manner to the near-homogenous β =0° and 90° SOI.  At a SOI of 

38°, the fuel distribution is similar to that at β =0° and a SOI of 28°; in other 

words, with too much stratification for efficient operation.  At a SOI of 63°, the 

fuel distribution is similar to that at β =0° and a SOI of 38°; and is anticipated to 

produce efficient operation. 

The cylinder heads that were used in the metal and optical engine 

experiments were designed with the anticipation, based on prior work, that the 

low quench distance and high flame speeds of hydrogen would make a large 

amount of charge motion unnecessary and potentially undesirable.  While 

beyond the scope of this work, experiments which enhance mixing, heat 

transfer, and turbulence/chemistry interactions through increased swirl and 

tumble have academic value towards understanding the fundamental 

mechanisms important in hydrogen combustion systems.  This would be a good 

area for future metal and optical engine studies.  
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  In summary, the imaging results indicate similar performance can be 

achieved using either fuel injector orientation.  In general, a fuel distribution 

should be characterized by a well-mixed charge near the ignition location of 

approximately 0.6 phi.  When the charge is relatively homogeneous globally, 

burn durations are too long, and when the local equivalence ratio exceeds 0.8 

phi, temperatures rise rapidly and heat transfer to the cylinder walls becomes 

high.  
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Chapter 8 

Summary, Conclusions, and Future Work 

8.1 Summary   

 There are many means to increase the efficiency of any engine, and the 

advantageous properties of hydrogen, particularly the wide flammability limits 

and the sensitivity of flame speed to equivalence ratio, allow for a greater range 

of freedom compared to conventional fuels.  In this study, a large parametric 

space was explored and many experiments were conducted to characterize 

methods to improve system efficiencies for a hydrogen internal combustion 

engine.  Direct improvement of combustion efficiency and indirect methods such 

as minimizing NOx, increasing engine load, and decreasing engine friction and 

pumping losses were explored and characterized using quantitative metrics. 

 In general, for premixed fuel distributions, the highest thermal efficiencies 

were observed for φ ≅ 0.4.  Net indicated thermal efficiency (ITE) increased by 

about 0.3% of the lower heating value (LHV) of hydrogen (0.7% relative 

improvement) per 1000 RPM for engine speeds in the range of 2000-4000 rpm.  

A smaller bore to stroke ratio (B/S = 0.94 compared to 1.13) improved efficiency 

by 2% of LHV (4.5% relative improvement).  Increasing manifold pressure at  φ 

= 0.4 improved gross indicated efficiency by 0.2% of LHV per bar of net 

indicated mean effective pressure (IMEP, 0.45% relative improvement) over the 

range of intake pressures tested (from 0.35 to 2 bar).  A compression ratio of CR 

= 13.7:1 was close to optimum from a brake thermal efficiency standpoint, and 

improved net ITE by 1.3% (3% relative improvement). 
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 The best direct injection designs, like the 5H and 3+3H injectors, 

improved efficiency by 1.4% and 1.7% of LHV, respectively, compared to pre-

mixed operation.  When combined with a dual-side ignition cylinder head, 

efficiency improved by another 0.9%.  Best performance of the H2 engine 

designs considered in this study was 47.7% Net ITE and was achieved using the 

3+3 fuel injector at 12.5:1 CR, at 3000 RPM, with 100 kPa manifold pressure, 

yielding 200 ppm of NOx emissions.  With a slightly earlier injection timing, 

efficiency decreased by 0.1%, but NOx decreased from 200 ppm to 60 ppm.  

Efficiency is anticipated to increase further with higher manifold pressures and 

higher compression ratios. 

 The fuel distribution produced by the 3+3 was characterized using an 

optically accessible engine.  The conditions that corresponded to the highest 

efficiency resulted in mixtures near the ignition location(s) with an equivalence 

ratio of about  φ = 0.6.  This was true for both fuel injector orientations (β = 0o 

and β = 90o), and for both central ignition and dual-side ignition cylinder heads. 

The ability of water injection to improve NOx emissions was tested, both 

on a port injection (PI) fueled engine and a direct injection (DI) fueled engine.  

The PI fueled engine, coupled with DI water injection, reduced NOx emissions by 

85% without a penalty in fuel consumption.  The DI fueled engine, coupled with 

PI water, reduced NOx emissions by 87% with only a 2% fuel consumption 

penalty; exceeding the performance of multiple injection strategies.   

8.2 Conclusions 

Detailed conclusions have been provided in the corresponding chapters of 

the thesis.  Three critical outcomes of the work are summarized here.   

1.  Hydrogen IC engine strategies must use stratification of lean fuel/air 

mixtures to optimize engine performance.  Fuel air charges which were 
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relatively homogeneous globally produced burn durations which were 

too long, and when the local equivalence ratio exceeded φ = 0.8, 

temperatures in the cylinder increased, producing unacceptable levels 

of NOx and poor efficiency.  Global equivalence ratios of φ = 0.4, with 

local equivalence ratio near the ignition location of φ = 0.6, produced 

the highest efficiencies observed.  Fuel injector nozzle design clearly 

had large impact on stratification, and there were multiple fuel injector 

tip geometries that achieved advantageous stratification conditions. 

2. Water injection strategies were very effective at reducing NOx 

emissions with small penalties in fuel consumption. The injection of 

water into the intake charge (PI H2O injection) of a DI H2 engine 

decreased NOx emissions by 87%.  The injection of water into the 

combustion cylinder (DI H2O injection) of a PI H2 engine decreased 

NOx emissions by 95%.   

3. The best hydrogen engine net indicated thermal efficiency 

demonstrated in this work was 47.7%.  Although the ITE is quite high, 

the penalties of converting methane to hydrogen (both in terms of 

economic costs and energy losses) are likely to make such a 

conversion unwarranted for ground transportation purposes based on 

the high efficiency alone.  However, other factors drive research and 

application of hydrogen engine technology.  For example, tailpipe CO2 

emissions are near-zero for H2 engines; production methods for 

hydrogen could change and eliminate methane as the primary source 

of hydrogen, and hydrogen engine technology can (and is) being 

applied to weight-critical aerospace applications. 

The intent of the work was to evaluate the mechanisms and methods of 

improving the efficiency of a hydrogen internal combustion engine and to 
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quantify the engine response to such changes.  Many methods were evaluated, 

including varying the: 

1. Compression Ratio, 

2. Engine Speed, 

3. Manifold Pressure, 

4. Equivalence Ratio, 

5. Amount, location, and phasing of water injection, 

6. Phasing of fuel injection timing 

7. Design of injector nozzle pattern, and 

8. Location/Number of Ignition Sites  

As expected, all these parameters had significant impact on the overall efficiency 

of the engine.  In total, the results indicate that compression ratios near 14:1 

optimize the tradeoff between fundamental thermodynamic advantages and 

mechanical friction disadvantages.  Increases in engine speed improve the net 

thermal efficiency substantially, but come with a commensurate friction loss as 

well.  Increased manifold pressure in a manner simulating turbocharging 

improved efficiency at the conditions tested.  No knock limit or other practical 

limit was found.  Equivalence ratio was optimized at Φ = 0.4.  Water injection 

allowed the overall load limit of a NOx-regulated engine to increase by up to 

26.7%, depending upon assumptions.  In terms of combustion chamber design, 

the interaction between nozzle design, injection timing, and ignition location was 

found to be critical. 
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8.3 Future Work 

 This work has done much to document and analyze the efficiency benefits 

of H2 engines and how to successfully achieve those benefits over the wide 

range of operating conditions expected in IC engine applications.  This work also 

points towards how more efficiency benefits can be gained.  For example, the 

3+3 injector yielded very good efficiency at compression ratios close to 12:1.  

The analysis indicated that a gain of 1% ITE should be quite feasible at a 

compression ratio of about 14:1.  Similarly, water injection was never combined 

with the 3+3 injector.  As the fuel distribution is now known from the results of 

the optical engine studies, the nozzles of the water injector could be used to 

selectively cool areas presumed to burn at higher temperatures, reducing NOx 

emissions.  Finally, simulated turbocharging was found to improve absolute 

efficiency, and when combined with a smaller engine design, would minimize 

engine pumping or sub-optimal cam phasing.  No experiments were conducted 

combining the best of all of these attributes, which may diminish the overall 

returns.  A wide map of engine performance with the presumed optimal design 

would be useful to evaluate the viability of a hydrogen engine for a given 

application. 

Design changes not considered in this work may further improve efficiency 

substantially.  Hydrogen engines are well disposed to utilize bottoming cycles; 

the fuel is expensive, the engines are not anticipated to require aftertreatment, 

and the Nusselt, Prandtl, and Reynolds numbers of the exhaust are generally 

favorable in terms of heat extraction when compared to gasoline engines.  These 

advantages may be able to overcome the disadvantage (compared to gasoline 

engines) of low temperature exhaust.  Insulated pistons and cylinder heads could 

transfer more energy into the piston and the exhaust facilitating bottoming 

cycles and further efficiency gains. 
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 Of late, the attention of industry for gaseous fuels has focused on natural 

gas.  As the designs presented in this document represent some of the highest 

efficiencies known in automotive-sized engines, some questions as to the 

applicability of similar designs to compressed natural gas (CNG) or methane are 

inevitable.  Unfortunately, methane has inferior properties compared to 

hydrogen, particularly in terms of the sensitivity and response between 

equivalence ratio and flame speed.  Some advantages might be found in certain 

stratified conditions that otherwise would not be operable, but large gains in 

maximum efficiency are not anticipated from the 3+3 injector operating with 

methane.  Of course, the overall engine efficiency would improve based on the 

dual-ignition cylinder head alone.  Further, it is unlikely that a dual CNG + H2 

system would be economically feasible for transportation applications in the near 

term.  Nevertheless, designs that use the 3+3 injector to preferentially stratify 

hydrogen near the ignition locations in a premixed methane/air mixture would 

likely be quite efficient and research on the system certainly would be both 

worthwhile and enlightening. 
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Appendix A Injectors/Combustion Chamber/Tests 

Conducted Matrix 

 
Figure A.1:  Injectors/Combustion Chamber/Tests Conducted, part 1. 

 

Stroke
Piston

Injection
Ignition

CR
Config #

Engine Speed kRPM 1.5 2 3 1.5 2 3 1.5 2 3

Phi Sweep

12H 40, 
12H 50, 

13H, 
17H 1.0, 
17H 1.4, 

PFI, 

12H 40, 
13H, 

17H 1.0, 
17H 1.4, 

PFI, 

12H 40, 
13H, 

17H 1.0, 
17H 1.4, 

PFI, 

12H 40, 
13H, 

12H 40, 
13H, 

12H 40, 
13H, 

12H 50, 
13H, 

17H 1.4, 

12H 50, 
13H, 

13H, 

EOI Sweep at 0.4 Phi

12H 40, 
13H, 

17H 1.0, 
17H 1.4, 

13H, 
13H, 

17H 1.4, 

12H 50, 
13H, 

17H 1.4, 

EOI Sweep at 0.6 Phi

12H 40, 
13H, 

17H 1.0, 
17H 1.4, 

13H, 
12H 40, 

13H, 
17H 1.4, 

12H 50, 
13H, 

17H 1.4, 

70% Fuel/Spark/30% Fuel, 0.4 Phi Tot
50% Fuel/Spark/50% Fuel, 0.6Phi Tot 17H 1.4, 17H 1.4, 

60% Fuel/Spark/40% Fuel, 0.6Phi Tot 12H 40, 12H 40, 12H 40, 

70% Fuel/Spark/30% Fuel, 0.6Phi Tot
12H 40, 

13H, 
17H 1.4, 

12H 40, 
13H, 

12H 40, 
13H, 

17H 1.4, 
12H 50, 

80% Fuel/Spark/20% Fuel, 0.6Phi Tot
13H, 

17H 1.4, 
17H 1.4, 

50% Fuel/50% Fuel/Spark, 0.4Phi Tot

70% Fuel/30% Fuel/Spark, 0.4Phi Tot

80% Fuel/20% Fuel/Spark, 0.4 Phi Tot

50% Fuel/50% Fuel/Spark, 0.6Phi Tot

70% Fuel/30% Fuel/Spark, 0.6Phi Tot

80% Fuel/20% Fuel/Spark, 0.6Phi Tot 17H 1.4, 13H, 13H, 

T
E

S
T

 T
Y

P
E

79 millimeters
mod 10.4 mod 12.2

11.7

Central
Central

10.4 12.6

Dual Side

18 19 20

FSF 70 generally a better compromise
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Figure A.2:  Injectors/Combustion Chamber/Tests Conducted, part 2. 

 

Stroke
Piston

Injection
Ignition

CR
Config #

Engine Speed kRPM 1.5 2 3 1.5 2 3 1.5 2 3

Phi Sweep 17H 1.4, 17H 1.4, 17H 1.4, 
13H, 3+3 
90, PFI, 

Siemens, 

13H, 3+3 
90, PFI, 

13H, 3+3 90, 
PFI, 

Siemens, 

EOI Sweep at 0.4 Phi 17H 1.4, 17H 1.4, 
17H 
1.4, 

17H 
1.4, 

17H 
1.4, 

13H, 3+3 
90, 

Siemens, 

13H, 3+3 90, 
Siemens, 

EOI Sweep at 0.6 Phi 3+3 90, 13H, 3+3 90, 

70% Fuel/Spark/30% Fuel, 0.4 Phi Tot 3+3 90, 

50% Fuel/Spark/50% Fuel, 0.6Phi Tot

60% Fuel/Spark/40% Fuel, 0.6Phi Tot

70% Fuel/Spark/30% Fuel, 0.6Phi Tot 3+3 90, 3+3 90, 

80% Fuel/Spark/20% Fuel, 0.6Phi Tot Siemens, 

50% Fuel/50% Fuel/Spark, 0.4Phi Tot 3+3 90, 

70% Fuel/30% Fuel/Spark, 0.4Phi Tot
3+3 90, 

Siemens, 

80% Fuel/20% Fuel/Spark, 0.4 Phi Tot Siemens, 

50% Fuel/50% Fuel/Spark, 0.6Phi Tot 3+3 90, 

70% Fuel/30% Fuel/Spark, 0.6Phi Tot

80% Fuel/20% Fuel/Spark, 0.6Phi Tot Siemens, 

T
E

S
T

 T
Y

P
E

95 millimeters
flat ACP flat top

Central
12.5 13.9 11.6

Dual Side Central

22 2321

FSF 70 generally a better compromise

Poor

Poor

Poor
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Figure A.3:  Injectors/Combustion Chamber/Tests Conducted, part 3. 

 

Stroke
Piston

Injection
Ignition

CR
Config #

Engine Speed kRPM 1.5 2 3 1.5 2 3 1.5 2 3

Phi Sweep
13H, 

17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 

13H, 
17H 1.4, 

13H, 
17H 1.4, 

EOI Sweep at 0.4 Phi
13H, 

17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 13H, 17H 1.4, 
13H, 

17H 1.4, 

EOI Sweep at 0.6 Phi
13H, 

17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 
13H, 

17H 1.4, 
13H, 

70% Fuel/Spark/30% Fuel, 0.4 Phi Tot 3+3 90, 

50% Fuel/Spark/50% Fuel, 0.6Phi Tot

60% Fuel/Spark/40% Fuel, 0.6Phi Tot

70% Fuel/Spark/30% Fuel, 0.6Phi Tot
13H, 

17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 

80% Fuel/Spark/20% Fuel, 0.6Phi Tot

50% Fuel/50% Fuel/Spark, 0.4Phi Tot
13H, 3+3 

90, 

70% Fuel/30% Fuel/Spark, 0.4Phi Tot
17H 1.4, 
3+3 90, 

13H, 
17H 1.4, 
3+3 90, 

13H, 

80% Fuel/20% Fuel/Spark, 0.4 Phi Tot 3+3 90, 

50% Fuel/50% Fuel/Spark, 0.6Phi Tot

70% Fuel/30% Fuel/Spark, 0.6Phi Tot 3+3 90, 

80% Fuel/20% Fuel/Spark, 0.6Phi Tot 13H, 

T
E

S
T

 T
Y

P
E

95 millimeters
Wendy

Central
Dual Side

12.5 13.4 11.4

MACP

24 25 26

FSF 70 generally a better compromise
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Figure A.3:  Injectors/Combustion Chamber/Tests Conducted, part 3. 

 

Stroke
Piston

Injection
Ignition

CR
Config #

Engine Speed kRPM 1.5 2 3 1.5 2 3 1.5 2 3

Phi Sweep 3+3, 3+3, 3+3, 

EOI Sweep at 0.4 Phi
13H, 

17H 1.4, 

13H, 
17H 1.4, 

3+3, 
3+3, 3+3, 

3+3, 
3+3 
90, 

EOI Sweep at 0.6 Phi 3+3, 3+3, 

70% Fuel/Spark/30% Fuel, 0.4 Phi Tot
50% Fuel/Spark/50% Fuel, 0.6Phi Tot

60% Fuel/Spark/40% Fuel, 0.6Phi Tot

70% Fuel/Spark/30% Fuel, 0.6Phi Tot

80% Fuel/Spark/20% Fuel, 0.6Phi Tot 17H 1.4, 

50% Fuel/50% Fuel/Spark, 0.4Phi Tot

70% Fuel/30% Fuel/Spark, 0.4Phi Tot
17H 1.4, 

3+3, 

80% Fuel/20% Fuel/Spark, 0.4 Phi Tot 3+3, 

50% Fuel/50% Fuel/Spark, 0.6Phi Tot

70% Fuel/30% Fuel/Spark, 0.6Phi Tot

80% Fuel/20% Fuel/Spark, 0.6Phi Tot 17H 1.4, 
17H 1.4, 

3+3, 

T
E

S
T

 T
Y

P
E

95 millimeters
flat top

Central
11.6 11.6

Central
TitaniumCap

Dual Side
flat top

11.6
28 2927

FSF 70 generally a better compromise

Poor

Poor

Poor



166 

 

 
Figure A.4:  Injectors/Combustion Chamber/Tests Conducted, part 4. 

 

Stroke
Piston

Injection
Ignition

CR
Config #

Engine Speed kRPM 1.5 2 3 1.5 2 3 1.5 2 3

Phi Sweep
3+3, 
PFI, 

PFI+w, 

3+3, 
PFI, 

3+3, 
PFI, 

PFI, PFI, PFI, PFI+w, 
PFI, 

PFI+w, 
PFI, 

PFI+w, 

EOI Sweep at 0.4 Phi 3+3, 3+3, 3+3, 

EOI Sweep at 0.6 Phi

70% Fuel/Spark/30% Fuel, 0.4 Phi Tot
50% Fuel/Spark/50% Fuel, 0.6Phi Tot

60% Fuel/Spark/40% Fuel, 0.6Phi Tot

70% Fuel/Spark/30% Fuel, 0.6Phi Tot

80% Fuel/Spark/20% Fuel, 0.6Phi Tot

50% Fuel/50% Fuel/Spark, 0.4Phi Tot

70% Fuel/30% Fuel/Spark, 0.4Phi Tot 3+3, 

80% Fuel/20% Fuel/Spark, 0.4 Phi Tot

50% Fuel/50% Fuel/Spark, 0.6Phi Tot

70% Fuel/30% Fuel/Spark, 0.6Phi Tot

80% Fuel/20% Fuel/Spark, 0.6Phi Tot 3+3, 
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Figure A.5:  Injectors/Combustion Chamber/Tests Conducted, part 5. 
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