Novel Modulators of Rho Transcriptional Signaling in Cancer

by

Jessica L. Bell

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2012

Research Professor Scott D. Larsen, Co-Chair
Professor Richard R. Neubig, Co-Chair
Associate Professor George A. Garcia
Associate Professor Jason E. Gestwicki
Assistant Professor Matthew B. Soellner
To my mom, whose hard work, dedication, and unwavering love and support have helped make me the woman I am today.
Acknowledgements

First and foremost, I want to thank my husband and best friend Matt Bell. I could not have done this without all of your love and encouragement. I’m eternally grateful and so lucky to have you in my life. I can’t wait to see what the future holds for us both.

Thank you to my parents Michelle McDonald and Jack Miklovich and my step-parents Wayne McDonald and Sherry Miklovich for their love, support, and encouragement. To my sisters Katie and Kim, I love you, and I hope that I’ve been a good role model for you both. To my stepsisters Carmin, Jake, and Michelle and their families, thanks for all of the crazy times. To Ken and Michele Bell and my Bell siblings Nick, Michelle, Liz, Brandon, Katie, and Luke and to the extended Bell family, thank you for welcoming me into your family and loving me like I was your own.

A big thanks to all of my Med Chem friends, but especially to my friend Elizabeth Girnys. I would never have been able to survive grad school without you. Thank you for being such a caring and giving person and for teaching me how to become a more generous person. I’ll miss all of our outings, especially the happy hours!

To my lab mates Bryan Yestrepsky and Scott Barraza—thanks for all of the silly videos, drawings, and for all the laughs. To my lab and cubby mate Janice Sindac, thanks for the coffee breaks, lunches, pie breaks, encouragement, and of course all of our “conspiracies.” Also, a big thank you to Michael Wilson for his patience, chemistry knowledge, and mentorship, and to Jenny Ryu who synthesized the initial compounds for our project and trained me when I first entered the lab.

I would also like to acknowledge members of the Neubig lab—former member Dr. Chris Evelyn and current member Susan Wade for testing all of my compounds. Thank you to Andrew Haak for all your tireless hard work and excitement for the project. A huge thank you to Martha Larsen in the Center for Chemical Genomics and to Paul Kirchhoff for performing our high-throughput screens and triages. A major thanks to all of the labs that borrowed me chemicals and allowed me to use their equipment, especially
the Mosberg lab. Thank you for allowing me to use the LC/MS, and thanks to Elizabeth Girnys for repeatedly assisting me with it, even when you probably had other things to do. Thank you to the Showalter lab for your constant supply of chemicals, advice, and feedback.

Finally, I would like to acknowledge my committee members, Drs. Richard Neubig, George Garcia, Jason Gestwicki, Matthew Soellner, and especially my advisor Scott Larsen. Thank you for agreeing to serve on my committee and for your invaluable advice and feedback. Finally, I would like to extend a world of thanks to Dr. Larsen, who was always willing to share his enthusiasm for drug discovery and his vast chemistry knowledge. Thank you for being a great mentor.
Table of Contents

Dedication .. ii
Acknowledgements ... iii
List of Figures .. viii
List of Tables ... x
List of Schemes ... xii
List of Equations ... xiv

Chapter 1 Introduction .. 1
 G Protein-Coupled Receptors (GPCRs) ... 1
 GPCRs and Cancer ... 2
 Rho GTPases .. 3
 RhoA TRANSCRIPTIONAL SIGNALLING PATHWAY ... 4
 RhoA TRANSCRIPTIONAL SIGNALLING AND CANCER ... 6
 Rho-associated Kinase (ROCK) ... 7
 MKL1/ SRF TRANSCRIPTIONAL REGULATION .. 8
 Targeting the RhoA TRANSCRIPTIONAL SIGNALLING PATHWAY 8
 My Work .. 9

Chapter 2 Linker Modifications ... 11
 Preliminary Data ... 11
 Bioisosteric Replacement of the Carboxamides .. 13
 Conformational Restriction ... 17
 Preliminary Data ... 18
 Stable Cell Line Development ... 23
 PC-3 Prostate Cancer Cell Invasion .. 31
Chapter 3 Aromatic Modifications ... 35
 Preliminary Data ... 35
Library Selection ... 36
Physicochemical Properties ... 49
Chiral Recognition ... 50
 Preliminary Data ... 52
 Further Exploration of Stereochemical Recognition .. 52
Further Exploration of 203971 ... 55
 Future Direction for 203971 ... 57
Future Direction: Third Point of Diversity .. 57
Chapter 4 Photoaffinity Reagents ... 60
Affinity Matrices ... 61
 Preliminary Results ... 62
 Affinity Linker SAR .. 63
Biotinylated Reagents .. 65
Tag-free Photoaffinity Probes ... 68
 Benzophenone Probes .. 70
 Azide Probes ... 76
Preliminary Photoaffinity Labeling Experiments ... 79
 Chemical Validation of Photolabeling Experiment .. 82
Future Direction: Photolabeling ... 83
Chapter 5 Expanded Screening Effort .. 84
Introduction to Virtual Screening ... 84
Pharmacophore Model Generation .. 85
Virtual Screen .. 92
High-throughput Screen ... 95
Future Direction ... 101
List of Figures

Figure 1.1. Basic Rho GTPase Cycle... 4
Figure 1.2. RhoA-initiated MKL1/SRF Transcriptional Regulation Pathway 6
Figure 1.3. Chemical Structure of Fasudil .. 8
Figure 1.4. High-throughput Lead 1423 .. 9
Figure 1.5. Inhibition of SRE-L (Firefly) and TK-Renilla Transcription Reporters by 1423.. 9
Figure 2.1. Examples of Conformationally Restricted Analogs of 100594 18
Figure 2.2. Correlation of Matrigel Invasion and SRE.L Expression Inhibition in PC-3 Cells ... 33
Figure 3.1. Modifications of Aromatic Rings A and B of 100602 37
Figure 3.2. Acid Library Topological Polar Surface Area versus Potency 42
Figure 3.3. Acid Library CLogP versus Potency ... 42
Figure 3.4. Aniline Library Topological Polar Surface Area versus Potency 46
Figure 3.5. Aniline Library Calculated LogP versus Potency 46
Figure 3.6. Easson-Stedman Three-point Attachment Model 51
Figure 3.7. Scratch Assay Using PC-3 Prostate Cancer Cells 56
Figure 4.1. Active and Inactive CCG-1423 Analogs Selected for Use in Affinity Reagents ... 64
Figure 4.2. Active and Inactive Affinity Matrices Based on 100602 and 100686 65
Figure 4.3. Biotinylated Reagents 203602 and 203600 66
Figure 4.4. Tag-free Photoprobes for Target Identification in Whole Cell 69
Figure 4.5. Photoaffinity Labeling Steps Using Benzophenone 71
Figure 4.6. Click Chemistry for Appending Cy5.5 Dye to Photolabeled Protein 80
Figure 4.7. SDS-PAGE Gel of Photo Affinity Labeling Experiment 82
Figure 5.1. Potent and Low Toxicity Pharmacophore Model with Structural Overlay 88
Figure 5.2. Potent and Low Toxicity Pharmacophore Model with Distances from Aromatic Feature 3 .. 88
Figure 5.3. Potent and Low Toxicity Pharmacophore Model with Distances from Hydrogen Bond Acceptor Feature 2 ... 89
Figure 5.4. Potent and Low Toxicity Pharmacophore Model with Distances from Hydrophobic/Aromatic Feature 4 ... 89
Figure 5.5. Potent and Toxic Pharmacophore Model with Structural Overlay 91
Figure 5.6. Potent and Toxic Pharmacophore Model with Distances from Hydrophobic Feature 1 .. 91
Figure 5.7. Potent and Toxic Pharmacophore Model with Distances from Hydrophobic Feature 4 .. 92
Figure 5.8. Potent and Toxic Pharmacophore Model with Distances from Hydrogen Bond Donor Feature 5 .. 92
Figure 5.9. High-throughput Screen Triage Funnel ... 96
Figure 5.10. Structures of the Top 3 Compounds for Follow Up from High-throughput Screen of 54K Library .. 96
List of Tables

Table 2.1. Effects of Tether Composition and Length on Transcription and Cytotoxicity in Transfected PC-3 Cells ... 13

Table 2.2. Effects of Amide Bioisosteric Replacement on Transcription and Cytotoxicity in Transfected PC-3 Cells ... 16

Table 2.3. Preliminary Data on Effects of Conformation Restriction on Transcription and Cytotoxicity in Transfected PC-3 Cells .. 19

Table 2.4. Effects of Conformational Restriction on Transcription and Cytotoxicity in Transfected PC-3 Cells .. 22

Table 2.5. Previously Synthesized Compounds Tested Using HEK293 SRE.L Stable Cell Line ... 24

Table 2.6. Newly Synthesized Analogs Tested Using HEK293 SRE.L Stable Cell Line 30

Table 2.7. Effects of New Analogs on Cell Invasion and Cytotoxicity 32

Table 3.1. Preliminary Effects of Aromatic Substitution on Transcription and Cytotoxicity in Transfected PC-3 Cells ... 36

Table 3.2. Effects of Benzamide Substitution on Transcription and Cytotoxicity in Transfected PC-3 Cells .. 40

Table 3.3. Effects of Aniline Substitution on Transcription and Cytotoxicity in Transfected PC-3 cells ... 44

Table 3.4. Effects of Additional Substitutions on Transcription and Cytotoxicity in Transfected PC-3 Cells .. 48

Table 3.5. Classifications for Solubility and Permeability ... 49

Table 3.6. Physicochemical Property Data for Top Analogs .. 50

Table 3.7. Effects of Chirality on Transcription and Cytotoxicity in Transfected PC-3 Cells .. 52

Table 3.8. Effects of Single Enantiomers on Transcription and Cytotoxicity in Transfected PC-3 Cells ... 55
Table 4.1. Affinity Linker SAR .. 64

Table 4.2. Effects of Benzophenone Photoaffinity Models and Probes on Transcription and Cytotoxicity in PC-3 Cells .. 76

Table 4.3. Effects of Aryl Azide Photoaffinity Models and Probes on Transcription and Cytotoxicity in PC-3 Cells .. 79

Table 5.1. Potent and Low Toxicity (PaLT) Analogs in PC-3 Prostate Cancer Cells 87

Table 5.2. Potent and Toxic (PaT) Analogs in PC-3 Prostate Cancer Cells 90

Table 5.3. Pharmacophore 3D and 2D Analysis ... 95

Table 5.4. Previously Tested Compounds with Greater than 70% Similarity to 58146... 97

Table 5.5. Preliminary SAR for CCG-58146.. 100

Table 5.6. Comparison of 58146 and Analog 112019 ... 100

Table 5.7. Preliminary SAR for CCG-86769.. 101
List of Schemes

Scheme 2.1. General Acylation and EDC/HOBt Amidation Conditions 12
Scheme 2.2. Synthesis of Monoamine 101425 .. 14
Scheme 2.3. Synthesis of Regioisomeric Monoamine 102585 ... 14
Scheme 2.4. Synthesis of 203003 .. 14
Scheme 2.5. Synthesis of Triazoles 203001 and 203017 ... 15
Scheme 2.6. Synthesis of 101433 .. 20
Scheme 2.7. Synthesis of Ring-expanded 203005 .. 21
Scheme 2.8. Synthesis of Cyclic Analog 203606 .. 26
Scheme 2.9. Preparation of Cyclic Analog 203845 ... 26
Scheme 2.10. Synthesis of Cyclic Analog 203850 ... 27
Scheme 2.11. Synthesis of Analog 203851 .. 27
Scheme 2.12. Synthesis of Monoamine 203853 .. 28
Scheme 2.13. Synthesis of Cyclic Monoamines 203854 and 203855 29
Scheme 3.1. Synthesis of Acid Library .. 38
Scheme 3.2. Synthesis of Aniline Library .. 38
Scheme 3.3. Enantiomeric Synthesis of Analog 203606 ... 53
Scheme 3.4. Synthesis of Mosher Amides ... 54
Scheme 3.5. Proposed Synthesis for Third Point of Diversity Using 100602 Template .. 59
Scheme 4.1. Synthesis of Biotinylated Reagent 203602 ... 67
Scheme 4.2. Synthesis of Model Benzophenone Probes 206117 and 206118 72
Scheme 4.3. Synthesis of Benzophenone Photoaffinity Probe 206454 73
Scheme 4.4. Synthesis of Benzophenone Photoaffinity Probe 206558 Containing an Extended Linker Unit... 74

Scheme 4.5. Synthesis of Ring B Benzophenone Model Analog 206448 75

Scheme 4.6. Synthesis of Ring B Benzophenone Photoaffinity Reagent 206559 75

Scheme 4.7. Aryl Azide Activation ... 77

Scheme 4.8. Synthesis of Aryl Azide Precursor Analog 206449 78

Scheme 4.9. Synthesis of Aryl Azide Photoaffinity Probe 206452 78

Scheme 4.10. Synthesis of "Inactive" Probe 208797 ... 81

Scheme 4.11. Attempted Chemical Validation of Photolabeling Experiment.......... 83
List of Equations

Equation 2.1. Gibbs Energy of Binding .. 17
Equation 5.1. Percent Yield of Actives (%Y) .. 93
Equation 5.2. Percent Ratio of Actives (%A) .. 93
Equation 5.3. Enrichment (or Enhancement, E) ... 93
Equation 5.4. Goodness of Hit List (GH) ... 93
G Protein-Coupled Receptors (GPCRs)

The G Protein-Coupled-Receptors comprise a superfamily of integral membrane proteins of which there are more than 1,000 known. GPCRs are essential components of cellular communication, conveying extracellular messages through interaction with cytokines, hormones, odorants, peptides, small molecules, and neurotransmitters just to name a few. Their multitude and diversity make them highly-desirable targets for the pharmaceutical industry, capturing almost 50% of the current therapeutics market. However, despite their diversity, all GPCRs are composed of seven transmembrane helices that contain an extracellular N-terminal tail and an intracellular C-terminal tail and are connected by three extracellular and three intracellular loops. The GPCRs are coupled to a heterotrimeric intracellular G protein composed of \(\alpha, \beta, \) and \(\gamma \) subunits. Following receptor activation, guanosine diphosphate (GDP) of the inactive G-protein is exchanged for guanosine triphosphate (GTP), thus activating the G protein. After exchange, the \(\alpha \) and \(\beta\gamma \) subunits dissociate and interact with their downstream effectors, producing a myriad of signaling events resulting in physiological processes such as inflammatory response, cellular differentiation, and neurotransmission.

The downstream effectors activated by a GPCR are dependent on the heterotrimeric G protein it is coupled to. The large variety of \(\alpha, \beta, \) and \(\gamma \) subunits provide a multitude of possibilities, often leading to a simplified categorization based on the type of Ga subunit it couples to. The G proteins include four subfamilies: Ga\(_s\), Ga\(_i\), Ga\(_q\), and Ga\(_{12/13}\) that are classified based on the signaling pathway controlling second messenger production and gene expression they activate (or inactivate). Ga\(_s\) and Ga\(_i\) affect adenylyl cyclase (AC) production, which in turn affects cyclic adenosine 3',5'-monophosphate (cAMP) levels. Ga\(_s\) stimulates AC production and which increases cAMP levels, whereas Ga\(_i\) inhibits AC production, thus decreasing cAMP. Stimulation and inhibition of AC
regulates Ca\(^{2+}\) and K\(^{+}\) ion channels. G\(\alpha_{q}\) activation results in the stimulation of phospholipase C\(\beta\) (PLC\(\beta\)), an enzyme that cleaves phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) to afford messengers inositol 1,4,5-triphosphate (IP\(_3\)) and diacylglycerol (DAG).

Lastly, the G\(\alpha_{12}\) protein family, which includes G\(\alpha_{12}\) and G\(\alpha_{13}\), regulate the small GTPase RhoA subfamily\(^7\), which includes RhoA, B, and C, and is the focus of the work contained in this dissertation.

At least 25 receptors have been implicated in coupling with the G\(\alpha_{12}\) family, either with G\(\alpha_{12}\), G\(\alpha_{13}\), or both. These receptors have also been found to couple with other G proteins such as G\(\alpha_{i}\) and G\(\alpha_{q}\).\(^8\) This finding, in conjunction with their ubiquity in almost all tissues, allows the receptors to regulate multiple biological processes such as cellular growth, proliferation, cell-cell adhesion, apoptosis, migration, and invasion, just to name a few.\(^6\)

GPCRs and Cancer

As G protein Coupled Receptors exert control over a variety of cellular processes, especially those related to growth, proliferation, migration, invasion, and apoptosis, several have been shown to play a significant role in cancer and metastasis. One such example is the protease-activated receptors (PARs), which are activated by thrombin.\(^4\) Even-Ram, et al. demonstrated that highly invasive breast cancer carcinoma cell lines MDA-435 and MDA 231 correlated with the level of overexpression of thrombin receptor, a member of the PAR family.\(^9\) A study by Chay, et al. confirmed that both VCaP, a bone-derived prostate cancer cell line, as well as PC-3 prostate cancer cells, maintain increased expression of PAR1.\(^10\) Additionally, studies have demonstrated that increased expression of PAR1 is found in aggressive and metastatic prostate cancers, potentially leading to resistance to apoptotic signals, stimulation of angiogenic factors, and promotion of invasion. Thrombin has also been shown to promote this invasion in a Rho-dependent fashion.\(^11\)

A second GPCR family that has been linked to cancer progression is bombesin, which includes receptor types BB\(_1\), BB\(_2\), and BB\(_3\). Findings by Cuttitta, et al. show that human small-cell lung cancer (SCLC) produces bombesin-like proteins (BLP) that can function as autocrine growth factors for SCLC tumors.\(^12\) Corral and colleagues observed that bombesin stimulation of poorly aggressive colon carcinoma (Caco-2) cells leads to
swift induction of Cox-2 as well as enhancement of the invasiveness of Caco-2 cells.13 Bombesin has also been shown to enhance migration and invasion of prostate cancer cells in a RhoA-dependent fashion.14 Finally, while bombesin has been shown to be a growth factor for tumors, it has also been shown to promote angiogenesis in SK-N-SH neuroblastoma cells15 in addition to metastatic prostate cancer.16

A third GPCR family with a well-established role in cancer is the lysophosphatidic acid (LPA) receptors, which include LPA\textsubscript{1}, LPA\textsubscript{2}, and LPA\textsubscript{3}. It has been determined that LPA takes on many roles in ovarian cancer, including enhancement of the migration of SK-OV3 cells17 and as a major tumor-promoting factor in ovarian cancer.4, 18 Recent evidence using human MDA-B02 breast carcinoma cells points to the role of LPA in promoting the secretion of cytokines and growth factors, leading to the establishment and progression of bone metastases.19 Finally, LPA has also been observed to enhance the migration of Caov-320 and invasiveness of PC-3 prostate cancer cells21 using a RhoA-dependent mechanism.

Rho GTPases

The Rho family of GTPases is a subset of the Ras superfamily and is comprised of more than 20 signaling proteins.22-24 Of these greater than 20 proteins, the most thoroughly investigated members are RhoA (consisting of isoforms RhoA, RhoB, and RhoC), Cdc42, and Rac.25 Rho GTPases are ubiquitously expressed and are responsible for the dynamic rearrangement of the actin cytoskeleton. Such rearrangement is necessary for biological processes including cell motility, migration, proliferation, etc. RhoA, Cdc42, and Rac form stress fibers; filopodia; and lamellipodia in addition to membrane ruffling, respectively22, 26, which are crucial for these processes.

Rho GTPases function as molecular switches for signal transduction that originate extracellularly through the activation of many processes, including activation of GPCR by ligands such as LPA26, thrombin4, and bombesin.12, 15 Their activation is tightly controlled using spatio-temporal regulation.27 These switches cycle between a guanosine diphosphate (GDP)-bound inactive state and a guanosine triphosphate (GTP)-bound active state.28-31 The tight regulation is afforded through regulator proteins that include (1) guanine nucleotide exchange factors (GEFs); (2) GTPase activating proteins (GAPs)24, 26, 32; and (3) guanine nucleotide dissociation inhibitors (GDIs).23, 25 A
schematic of the basic RhoGTPase cycle can be found in Figure 1.1. RhoGEFs catalyze the exchange of GDP for GTP, therefore activating the cycle. GAPs enhance the hydrolysis of GTP to GDP, thereby accelerating inactivation and terminating the signaling pathway. GDIs sequester the GTPases in the cytoplasm to prevent their activation and plasma membrane association.

Figure 1.1. Basic Rho GTPase Cycle

Activation of the RhoGTPase cycle is dependent on RhoGEFs, and greater than 70 have been identified in humans. A vast majority of the GEFs are composed of a Dbl homology (DH) domain and a plekstrin homology (PH) domain that catalyze GDP/GTP exchange and therefore activation. While PH domains boost the catalytic activity of the DH domains, additional evidence shows that the PH domain may facilitate localization of the DH domain to the plasma membrane. Aside from the traditional DH and PH domains, GEFs that initiate RhoA activation through the $G_{\alpha_{12}}$ coupled GPCRs also contain regulator of G protein signaling (RGS) domains, known as RGS homology (RH) domains. Four members comprise this family, including PDZ-RhoGEF, p115-RhoGEF, lymphoid blast crisis (Lbc)-RhoGEF, and leukemia-associated RhoGEF (LARG), which has been the primary focus of the work performed in the Neubig laboratory.

RhoA Transcriptional Signaling Pathway

In addition to the well-documented effects on the actin cytoskeleton, RhoGTPases also activate signaling pathways that maintain transcriptional regulation.
shows a cartoon depiction of the RhoA-initiated MKL1/SRF transcriptional regulation pathway. The pathway is initiated by the binding of a ligand to its respective GPCR, thus activating the G\textsubscript{a}12 family of proteins, which continue on to activate GEFs such as LARG. LARG catalyzes the exchange of GDP for GTP, thus activating Rho, which acts on downstream effectors such as Rho-kinase (ROCK) and mammalian homologue of the Drosophila gene Diaphanous1 (mDia1). These effectors contribute to the polymerization of monomeric, free G-actin into polymeric F-actin through inhibition of actin disassembly and catalysis of polymerization, respectively. The decrease in free G-actin due to polymerization releases transcriptional co-activator megakaryoblastic leukemia 1 (MKL1, MAL, MRTF-A), which translocates into the nucleus. In concert with serum response factor (SRF), MKL1 can induce serum response factor (SRF)-mediated gene transcription through interaction with the serum response element (SRE) promoter.
RhoA Transcriptional Signaling and Cancer

With the significant effects that members of the RhoA family exert on gene expression in addition to dynamic cytoskeletal functions, it is no surprise that they also play significant roles in cancer. No cancer-associated mutations have been observed in RhoA; however, aberrant regulation (generally through up-regulation/overexpression) contributes to cancer progression and metastasis. Two well-characterized members of this family, Cdc42 and Rac, have been implicated in malignant transformation, tumor growth, migration, and invasion of breast, gastric, and testicular cancers.

Figure 1.2. RhoA-initiated MKL1/SRF Transcriptional Regulation Pathway.
Activation of the GPCR by its respective ligand activates RhoGEFs through the Gα12 family of proteins, which in turn activates Rho signaling. Rho activates Rho kinase (ROCK) and mDia1, which facilitate the polymerization of free monomeric G-actin into polymeric F-actin. This in turn releases transcriptional co-activator megakaryoblastic leukemia 1 (MKL1), which translocates into the nucleus to interact with serum response factor (SRF) to stimulate gene expression.
Members of the RhoA subgroup, including RhoA, RhoB, and RhoC, play significant roles in multiple cancers. RhoA and RhoC, which are the focus of this dissertation, contribute to the progression of a myriad of cancers. Unlike RhoA/C, RhoB is often down-regulated and has been suggested to be a tumor suppressor in several cancers and its overexpression can inhibit migration, invasion, and metastasis.

RhoA and RhoC were once thought of as functionally identical, but evidence has pointed to distinct differences in cellular control and effects on cellular morphology. RhoA over-expression has been observed in a vast majority of cancers and at almost every stage. Contrarily, RhoC over-expression is observed in aggressive and metastatic tumors, such as prostate cancer, where it’s necessary for invasion; breast cancer, where it’s required for metastasis; pancreatic carcinoma cells, where it’s needed to promote motility and invasion; and in melanoma, where it’s essential for metastasis. It is obvious that RhoA and RhoC, are crucial for cancer progression, and are therefore highly desirable drug targets.

Rho-associated Kinase (ROCK)

Following activation, Rho GTPases have the ability to bind more than 60 proteins. Rho-associated kinase (ROCK) is a well-documented effector of RhoA/C that enhances motility through formation of stress fibers and focal adhesions and stabilizes F-actin via inhibition of LIM-kinases that promote breakdown of actin filaments. Due to ROCK’s significant effects on motility and cytoskeletal functions, it has also been implicated in multiple malignancies, including invasion of rat ascites hepatoma (MM1), high tumor grade in renal cell carcinoma, high tumor grade in testicular cancer, and invasion and metastasis of bladder cancer. Despite their significant effects on the cytoskeleton and thus cancer, only one ROCK inhibitor (Fasudil, Figure 1.3) has been clinically approved. Approval occurred in Japan in 1995; however, it has not been clinically approved for use in the United States.
MKL1/SRF Transcriptional Regulation

While much has been documented regarding RhoGTPases and their effects on the actin cytoskeleton, the regulation of gene transcription via MKL1 and SRF, as well as their roles in cancer, are poorly understood. MKL1 is a co-activator of the transcription factor SRF, which in concert activates the serum response element (SRE) that modulates gene transcription of several genes necessary for cellular growth, migration, and differentiation. Medjkane and colleagues demonstrated that signaling through MKL1/SRF was critical for invasion and metastasis in both breast cancer and melanoma. A recent study by Muehlich, et al. found that MKL1/2 is necessary for cell motility upon the loss of tumor suppressor Deleted in Liver Cancer 1 (DLC1).

Targeting the RhoA Transcriptional Signaling Pathway

Due to the lack of specific and direct inhibitors of Rho GTPases and the Rho pathway, the Neubig lab implemented a high-throughput screen to identify novel small molecule inhibitors of the RhoA signaling pathway. As described in Evelyn, et al., human embryonic kidney (HEK)293 cells were transiently transfected with Rho-specific serum response element luciferase (SRE.L) and thymidine kinase (TK) Renilla luciferase reporter plasmids, and the dual-luciferase assay was used to identify two structurally similar compounds. The more potent compound, 1423 (Figure 1.4), was shown to block RhoA and RhoC-dependent gene transcription with an IC_{50} of ~1 µM (Figure 1.5). Additionally, 1423 was found to inhibit the proliferation of cancer cell lines showing increased RhoA/C expression, as well as inhibiting Matrigel matrix invasion by PC-3 (Table 2.7), a highly invasive human prostate cancer line. A xenograft study was also carried out using 1423 to inhibit the growth and/or metastasis of A375M2 melanoma.

Figure 1.3. Chemical Structure of Fasudil
cells *in vivo*. While a reduction in tumor size was observed, the toxicity of the compound led to decreased survival in the mice (Wade and Neubig, unpublished).

![Chemical Structure]

Figure 1.4. High-throughput Lead 1423

![Graph]

Figure 1.5. Inhibition of SRE-L (Firefly) and TK-Renilla Transcription Reporters by 1423

My Work

This leads me to the work presented here, which aims to synthesize and identify novel modulators of the RhoA transcriptional signaling pathway. These small molecules will serve as potential lead compounds for further development into anti-metastatic therapeutics, as well as to further probe the pathway to determine the macromolecular target(s) of our compounds. We undertook four general approaches toward the identification of such modulators that included: (1) traditional medicinal chemistry approaches to lead compound **1423**, including modifications to the linker and aromatic regions; (2) development of 2D and 3D pharmacophore models; (3) an expanded high-throughput screen to identify new leads; and (4) development of affinity reagents to identify the macromolecular target(s) in the signaling pathway. New compounds were evaluated using a cell-based Rho-specific SRE.L-luciferase reporter assay as previously described.\(^{63}\)
Through modifications of lead 1423, we were able to develop several analogs with low micromolar potencies and improved selectivity and toxicity profiles. Furthermore, we identified analog 203971, a modestly active compound (IC$_{50}$ of 6.7 µM, Table 3.2), that has nevertheless shown exciting results in PC-3 prostate cancer cells as well as several melanoma cell lines and has reduced acute toxicity relative to 1423. Finally, through the use of an affinity reagent containing a benzophenone moiety, we were able to photolabel a 24kD protein of interest for further identification as a potential target within the signaling pathway. Identification of this protein would provide vital information that would allow us to prepare improved cancer therapies targeting the RhoA pathway.
Chapter 2
Linker Modifications

Although 1423 (Figure 1.4) is a potent inhibitor of SRE-Luciferase gene transcription, it exhibits modest acute cellular toxicity toward PC-3 prostate cancer cells at 24 h, as non-specific inhibition of gene expression (Thymidine kinase (TK)-Renilla) with a concomitant decrease in WST-1 cell viability were noted (data not shown). Therefore, we set out to improve the potency and/or selectivity of lead 1423 while mitigating its cytotoxicity through modifications of three structural features contained in the “tether” region between the two aromatic rings. First, the N-O bond between the two carboxamides can allow 1423 to non-selectively modify proteins that contain cysteine or to be cleaved by glutathione. Second, the two carboxamides can create a barrier to passive diffusion across the apical and basal membranes into the cell, thereby limiting potency.64,65 Finally, the flexible acyclic tether region may not be optimal for potency and selectivity.66 Furthermore, molecular rigidity has been correlated with increased oral availability.67 Our initial structure-activity relationship (SAR) analysis focused on (1) removal of the N-O bond; (2) bioisosteric replacement of the carboxamides68; and (3) conformational restriction66 of the tether region.

Preliminary Data

Jenny Ryu executed the synthesis of initial analogs exploring the composition and length of the tether region between the two aromatic rings. Scheme 2.1 depicts the synthetic route used and shows a general procedure for a variety of amino acids 1. Initial acylation using 3,5-bis(trifluoromethyl)benzoyl chloride was performed under basic or anhydrous conditions to afford mono(amides) 2. The carboxylic acids of 2 were coupled with 4-chloroaniline via \textit{N}-(3-dimethlaminopropyl)-\textit{N}'-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxybenzotriazole (HOBt) mediated amidation to afford bis(amides) 3.
The effects of the synthesized analogs on Rho-mediated gene transcription, non-specific gene expression, and cytotoxicity were determined in transiently transfected PC-3 cells. Data were collected for both potency and maximal efficacy, as it was observed that compounds could maintain equivalent potencies against SRE.L but differ in their maximal responses (efficacies) as shown in subsequent tables. This could be due to several reasons, including differences in maximum cellular permeability, degree of efflux from cells, or different profiles of Rho-pathway target(s) being affected. Because such effects contribute to in vivo activity, we considered both potency and efficacy when selecting lead compounds in our SAR analysis. The effects on TK-Renilla and WST-1 at 10 and 100 µM concentrations are included to illustrate selectivity and cytotoxicity. Analogs with low potency prevented IC\textsubscript{50} values from being calculated and are therefore designated as >100 µM.

Table 2.1 summarizes the impact of modifications to the composition and linker length of the tether region between the aromatic rings, as synthesized by Jenny Ryu. For compounds in which IC\textsubscript{50}s are greater than 100 µM and efficacy and cytotoxicity were calculated, dashes are used. For compounds in which data were not determined, ND is used. Our compounds typically show errors that fall between 1.5- to 2.0-fold the IC\textsubscript{50}. Removing the methyl group (100596) causes only a small decrease in potency and selectivity. Replacing the oxygen with a carbon (100594) significantly diminishes cytotoxicity and increases selectivity, but also reduces efficacy and reduces potency 20-fold. Shortening or lengthening the carbon chain of the tether by one or two carbons (100600 and 100597, respectively) affects minor changes in activity and selectivity. However, extending to a four-carbon chain (100686) abolishes all activity.
Table 2.1. Effects of Tether Composition and Length on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>L</th>
<th>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></th>
<th>% inh SRE.L (10, 100 µM)<sup>b</sup></th>
<th>% inh pRL-TK (10, 100 µM)<sup>c</sup></th>
<th>% inh WST-1 (10, 100 µM)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1423</td>
<td>-OCH(CH<sub>3</sub>)<sup>-</sup></td>
<td>1.5</td>
<td>74, ND<sup>e</sup></td>
<td>48, ND<sup>e</sup></td>
<td>44, ND<sup>e</sup></td>
</tr>
<tr>
<td>100596</td>
<td>-OCH<sub>3</sub><sup>-</sup></td>
<td>4.7</td>
<td>71, 100</td>
<td>53, 89</td>
<td>42, 91</td>
</tr>
<tr>
<td>100594</td>
<td>-CH<sub>2</sub>CH<sub>2</sub>-</td>
<td>38</td>
<td>38, 64</td>
<td>0, 22</td>
<td>0, 10</td>
</tr>
<tr>
<td>100600</td>
<td>-CH<sub>3</sub>-</td>
<td>33</td>
<td>45, 85</td>
<td>15, 25</td>
<td>0, 30</td>
</tr>
<tr>
<td>100597</td>
<td>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-</td>
<td>21</td>
<td>37, 79</td>
<td>5, 42</td>
<td>0, 12</td>
</tr>
<tr>
<td>100686</td>
<td>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-</td>
<td>>100</td>
<td>0, 12</td>
<td>0, 10</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

*aFor assay descriptions, refer to Ref. 63.
*bInhibition of Rho-pathway selective serum response element-luciferase reporter.
*cInhibition of control pRL-thymidine kinase Renilla luciferase reporter.
*dInhibition of mitochondrial metabolism of WST-1.
*eNot determined.

Bioisosteric Replacement of the Carboxamides

Due to its moderate decrease in potency and significant reduction in cytotoxicity, compound 100594 was utilized as a template for further exploration of the tether region. Analogs aimed at increasing permeability through the removal of hydrogen bond donors and acceptors using bioisosteric replacement of the carboxamide moieties can be found in Table 2.2. Scheme 2.2-Scheme 2.5 summarize the synthetic routes for bioisosteric replacement analogs.

Synthesis of N-methylanilide 101435 and benzylamide 203009 followed similar conditions as depicted in Scheme 2.1 using N-methyl-4-chloroaniline and 4-chlorobenzylamine, respectively, in the final amidation step. Preparation of thiazole 102445 and ether 102447 occurred by acylation of commercially available starting amines with 3,5-bis(trifluoromethyl)benzoyl chloride. Condensation of 3-bromopropylamine 4 with excess 4-chloroaniline⁶⁹ followed by simple acylation using 3,5-bis(trifluoromethyl)benzoyl chloride provided monoamine 101425 (Scheme 2.2). Construction of regioisomeric amine 102585 took place through acylation of 4-chloroaniline using 3-bromopropionyl chloride 6 to afford 7 which was further utilized in the alkylation of 3,5-bis(trifluoro)benzylamine (Scheme 2.3). Refluxing Borane-THF complex reduced 100594 to provide diamine analog 102532 (Table 2.2).
Finally, we explored cyclic bioisosteres. Cycloaddition of the nitrile-oxide formed from oxime 9 in combination with 1-N-(4-chlorophenyl)but-3-enamide afforded isoxazoline 203003 as shown in Scheme 2.4. We attempted further oxidation to the isoxazole using DDQ; (diacetoxy)iodobenzene; manganese(IV) oxide; nitrile oxide 1,3-dipolar cycloaddition; and bromination/dehydrobromination. However, the isoxazole could not be generated. Diazotization/azidation of 3,5-bis(trifluoromethyl)aniline (14) and 4-chloroaniline (16) followed by copper-catalyzed Click chemistry with alkynes 11 and 13, respectively, yielded triazoles 203011 and 203017 (Scheme 2.5).

Scheme 2.2. Synthesis of Monoamine 101425

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{Br} \quad \text{+HBr} \quad \xrightarrow{a} \quad \text{H}_2\text{N} & \quad \text{N} \quad \text{H} \\
4 & \quad \rightarrow & \quad 5 & \quad \rightarrow & \quad 101425 \\
\end{align*}
\]

Reagents and conditions: (a) 4-ClPhNH_2, PhMe, reflux; (b) 3,5-bis(CF_3)PhCOOH, HO_2, EDC, DIPEA, THF

Scheme 2.3. Synthesis of Regioisomeric Monoamine 102585

\[
\begin{align*}
\text{Br} & \quad \text{O} \quad \text{Cl} \quad \xrightarrow{a} \quad \text{Br} & \quad \text{O} \quad \text{N} \quad \text{H} \quad \text{Cl} \\
6 & \quad \rightarrow & \quad 7 & \quad \rightarrow & \quad 102585 \\
\end{align*}
\]

Reagents and conditions: (a) 4-ClPhNH_2, MeCN, reflux; (b) 3,5-bis(CF_3)PhCH_2NH_2, MeCN, reflux

Finally, we explored cyclic bioisosteres. Cycloaddition of the nitrile-oxide formed from oxime 9 in combination with 1-N-(4-chlorophenyl)but-3-enamide afforded isoxazoline 203003 as shown in Scheme 2.4. We attempted further oxidation to the isoxazole using DDQ; (diacetoxy)iodobenzene; manganese(IV) oxide; nitrile oxide 1,3-dipolar cycloaddition; and bromination/dehydrobromination. However, the isoxazole could not be generated. Diazotization/azidation of 3,5-bis(trifluoromethyl)aniline (14) and 4-chloroaniline (16) followed by copper-catalyzed Click chemistry with alkynes 11 and 13, respectively, yielded triazoles 203011 and 203017 (Scheme 2.5).

Scheme 2.4. Synthesis of 203003

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{CHO} \quad \xrightarrow{a} \quad \text{F}_3\text{C} & \quad \text{CHNOH} \\
8 & \quad \rightarrow & \quad 9 & \quad \rightarrow & \quad 203003 \\
\end{align*}
\]

Reagents and conditions: (a) HONH_2_HCl, MeOH, reflux; (b) 1-N-(4-chlorophenyl)but-3-enamide, NaOCl, DCM, 0°C to RT
Table 2.2 summarizes bioisosteric modifications of the secondary amides. The simplest bioisosteric replacement of a secondary amide with a tertiary amide by N-methylation of the 4-chloroaniline (101435), resulted in a complete loss of activity. Similarly, replacement of one anilide with a benzyl amide (203009) was detrimental to activity. Reduction of one or both of the amide moieties significantly increased potency and efficacy against Rho-dependent gene transcription. Analog 101425 exhibited potency similar to that of aminooxyacetic acid 100596 and maintained the modest selectivity and cytotoxicity of 100594, which made it the most interesting analog of this series. While monoamine 102585 and diamine 102532 exhibited increases in potencies, they maintained poor selectivity versus non-specific gene expression and introduced significant and undesirable cytotoxicity. Further exploration of monoamide replacement (102445, 102447, and 203003), while showing increases in potency in comparison with 100594, reduced selectivity and/or increased cytotoxicity. Disappointingly, triazoles 203011 and 203017 were completely inactive, which may suggest poor permeability.
Table 2.2. Effects of Amide Bioisosteric Replacement on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></th>
<th>% inh SRE.L (10, 100 µM)<sup>a</sup></th>
<th>% inh pRL-TK (10, 100 µM)<sup>a</sup></th>
<th>% inh WST-1 (10, 100 µM)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>100594<sup>b</sup></td>
<td></td>
<td>38</td>
<td>38, 64</td>
<td>0, 22</td>
<td>0, 10</td>
</tr>
<tr>
<td>101435<sup>c</sup></td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203009</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101425</td>
<td></td>
<td>5.1</td>
<td>70, 80</td>
<td>37, 35</td>
<td>0, 11</td>
</tr>
<tr>
<td>102585</td>
<td></td>
<td>8.1</td>
<td>64, 100</td>
<td>13, 91</td>
<td>0, 92</td>
</tr>
<tr>
<td>102532</td>
<td></td>
<td>9.1</td>
<td>65, 100</td>
<td>6, 90</td>
<td>0, 89</td>
</tr>
<tr>
<td>102445</td>
<td></td>
<td>4.1</td>
<td>50, 45</td>
<td>39, 38</td>
<td>0, 0</td>
</tr>
<tr>
<td>102447</td>
<td></td>
<td>8.9</td>
<td>55, 86</td>
<td>28, 65</td>
<td>0, 38</td>
</tr>
<tr>
<td>203003</td>
<td></td>
<td>4.2</td>
<td>70, 84</td>
<td>51, 60</td>
<td>0, 38</td>
</tr>
<tr>
<td>203011</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203017</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^aSee Table 2.1 for assay descriptions
^bSynthesized by Nicole Harzdorf
^cSynthesized by Kamali Sripathi
Conformational Restriction

Passive diffusion is one of the main contributions to oral bioavailability. A study by Veber et al. demonstrated that the number of rotatable bonds present in a molecule decreases passive diffusion, and therefore limits oral bioavailability.67 We wanted to incorporate conformational restriction to increase passive permeability and thus oral bioavailability. Furthermore, we wanted to examine its effects on affinity and/or selectivity of restricted analogs. Binding affinity follows the Gibbs energy of binding,

\textbf{Equation 2.1. Gibbs Energy of Binding}

\[K_a = e^{\Delta G/RT} \]

with \(\Delta G \) being comprised of both enthalpic and entropic contributions. Variations of these enthalpic and entropic contributions can produce the same \(\Delta G \), consequently yielding the same binding affinity. While enthalpic optimization can lead to increased binding affinity and selectivity versus entropic optimization, it is often more difficult to achieve.77 We chose to investigate conformational restriction as a means to maintain favorable solvation entropy while minimizing conformational degrees of freedom lost and hence conformational entropy loss upon binding. Increasing affinity could also result in an increase in selectivity of our analogs.

Again using 100594 as a template, we explored the multiple ways we could restrain the molecule in 5- or 6-membered rings, several of which can be found in Figure 2.1. The numbers within brackets refer to the atoms of 100594 that have been connected, and the constraining bonds are denoted with a dashed line.
Preliminary Data

Jenny Ryu executed the initial chemistry, using the general synthetic route shown in Scheme 2.1, and the results are shown in Table 2.3. She prepared initial analog 100602, which constrained 100594 in a 6-membered ring by connecting bonds 2 and 4. The compound exhibits improved potency and efficacy while maintaining similar cytotoxicity to that of 100594. Compound 100690, the isonipecotic isomer, shows similar potency and efficacy to nipecotic analog 100602. However, it introduces moderate cytotoxicity, which is undesirable. Analog 100692 is a highly-constrained 5-membered ring with only one carbon between the two amides. This constraint proved to be detrimental to potency.

Figure 2.1. Examples of Conformationally Restricted Analogs of 100594
Table 2.3. Preliminary Data on Effects of Conformation Restriction on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC₅₀ SRE.L (µM)</th>
<th>% inh SRE.L (10, 100 µM)</th>
<th>% inh pRL-TK (10, 100 µM)</th>
<th>% inh WST-1 (10, 100 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100594ᵇ</td>
<td></td>
<td>38</td>
<td>38, 64</td>
<td>0, 22</td>
<td>0, 10</td>
</tr>
<tr>
<td>100602ᶜ</td>
<td></td>
<td>9.8</td>
<td>37, 78</td>
<td>20, 34</td>
<td>0, 14</td>
</tr>
<tr>
<td>100690ᶜ</td>
<td></td>
<td>16</td>
<td>17, 87</td>
<td>0, 17</td>
<td>0, 39</td>
</tr>
<tr>
<td>100692ᶜ</td>
<td></td>
<td>69</td>
<td>23, 83</td>
<td>12, 27</td>
<td>0, 22</td>
</tr>
</tbody>
</table>

ᵃSee Table 2.1 for assay descriptions
ᵇSynthesized by Nicole Harzdorf
ᶜSynthesized by Jenny Ryu

We synthesized additional analogs to further examine conformational restriction with results shown in Table 2.4. First, we explored the tether region containing a benzene moiety with the 4-chloroanilide in a para- position (101329) compared to a meta- (101343) and ortho- position (101433). Scheme 2.1 depicts the chemistry employed. However, the preparation of 101433 did not yield the desired product directly (Scheme 2.6). Instead, intermediate 20 was isolated and was treated with 4-chloroaniline and DMAP to facilitate ring-opening/coupling to the desired analog.
We also synthesized compounds 102443, 102526, and 203001 (Table 2.4) utilizing the chemistry shown in Scheme 2.1. Assembly of conformationally restricted lactam 203005 required a multi-step synthesis as found in Scheme 2.7. Deprotection of commercially available N-(Boc)-4-piperidinone 21 followed by acylation with 3,5-bis(trifluoromethyl)benzoyl chloride afforded benzamide 22. Generation of the oxime (23) followed by Beckmann rearrangement yielded the 7-membered diazepinone 24.78 N-arylation of the lactam using 4-iodochlorobenzene under Buchwald conditions afforded the ring-expanded final compound.79,80
Table 2.4 summarizes the impact of conformational restriction of the tether region between the two carboxamides of \textbf{100594} as a way to improve potency and selectivity. We see an increase in potency upon comparison of cyclic \textbf{102443} with corresponding acyclic analog \textbf{101435} (Table 2.2) and cyclic compounds \textbf{203001} and \textbf{203015} compared with \textbf{100594}. Unfortunately, the restricted analogs did not offer any increase in selectivity over their acyclic counterparts. Analogs containing an aromatic ring in the linker with substituents in the \textit{para}- and \textit{ortho}- positions (\textbf{101329} and \textbf{101433}, respectively) were inactive. Interestingly, however, the \textit{meta}- version (\textbf{101343}) was significantly more potent and efficacious than \textbf{100594}. Unfortunately, its cytotoxicity at 10 \(\mu\)M prevented further testing at higher concentrations.
Table 2.4. Effects of Conformational Restriction on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC50 SRE.L (µM)a</th>
<th>% inh SRE.L (10, 100 µM)a</th>
<th>% inh pRL-TK (10, 100 µM)b</th>
<th>% inh WST-1 (10, 100 µM)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>100594b</td>
<td></td>
<td>38</td>
<td>38, 64</td>
<td>0, 22</td>
<td>0, 10</td>
</tr>
<tr>
<td>101329</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101343</td>
<td></td>
<td>1.7</td>
<td>80, NDc</td>
<td>0, NDc</td>
<td>38, NDc</td>
</tr>
<tr>
<td>101433</td>
<td></td>
<td>>100</td>
<td>34, NDc</td>
<td>0, NDc</td>
<td>0, NDc</td>
</tr>
<tr>
<td>102443</td>
<td></td>
<td>13</td>
<td>15, 40</td>
<td>0, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>102526</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203001</td>
<td></td>
<td>9.5</td>
<td>33, 86</td>
<td>0, 62</td>
<td>0, 14</td>
</tr>
<tr>
<td>203005</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203015</td>
<td></td>
<td>16</td>
<td>30, 100</td>
<td>8, 78</td>
<td>0, 67</td>
</tr>
</tbody>
</table>

aSee Table 2.1 for assay descriptions
bSynthesized by Nicole Harzdorf
cNot determined
Stable Cell Line Development

The Neubig lab attempted to establish an optimized HEK293 cell line stably expressing the SRE and Renilla Luciferase reporter vectors. This line was intended to decrease labor-intensiveness and reduce cell assay variability. Unfortunately, incorporation of the Renilla Luciferase vector could not be achieved. However, several of the previously synthesized compounds were tested in the HEK293 cell line stably expressing SRE.Luc for comparison (Table 2.5). Several newly synthesized compounds were also tested in the stable line assay, as shown in Table 2.6. The IC50 values are also shown in the PC-3 prostate cancer cell line for comparison.
Table 2.5. Previously Synthesized Compounds Tested Using HEK293 SRE.L Stable Cell Line

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC<sub>50</sub> SRE.L (µM), PC-3<sup>a</sup></th>
<th>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></th>
<th>% inh SRE.L (10, 100 µM)<sup>b</sup></th>
<th>% inh WST-1 (10, 100 µM)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1423</td>
<td></td>
<td>1.5</td>
<td>6.0</td>
<td>66, 98</td>
<td>56, 79</td>
</tr>
<tr>
<td>101425</td>
<td></td>
<td>5.1</td>
<td>10</td>
<td>30, 73</td>
<td>22, 38</td>
</tr>
<tr>
<td>100692</td>
<td></td>
<td>69</td>
<td>32</td>
<td>0, 74</td>
<td>0, 48</td>
</tr>
<tr>
<td>100602<sup>b</sup></td>
<td></td>
<td>9.8</td>
<td>11</td>
<td>9, 55</td>
<td>5, 34</td>
</tr>
<tr>
<td>101329</td>
<td></td>
<td>>100</td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101343</td>
<td></td>
<td>1.7</td>
<td>3.2</td>
<td>66, 84</td>
<td>57, 53</td>
</tr>
<tr>
<td>101433</td>
<td></td>
<td>>100</td>
<td>95</td>
<td>0, 42</td>
<td>0, 36</td>
</tr>
<tr>
<td>102443</td>
<td></td>
<td>13</td>
<td>19</td>
<td>0, 13</td>
<td>0, 5</td>
</tr>
<tr>
<td>102526</td>
<td></td>
<td>>100</td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203001</td>
<td></td>
<td>9.5</td>
<td>15</td>
<td>7, 65</td>
<td>0, 41</td>
</tr>
<tr>
<td>203005</td>
<td></td>
<td>>100</td>
<td>30</td>
<td>0, 23</td>
<td>0, 6</td>
</tr>
<tr>
<td>203015</td>
<td></td>
<td>16</td>
<td>19</td>
<td>13, 96</td>
<td>0, 71</td>
</tr>
</tbody>
</table>

^aSee Table 2.1 for assay descriptions

^bSynthesized by Jenny Ryu
The older analogs proved to have increased cytotoxicity in the HEK cell line when compared to previous testing in the transiently transfected PC-3 cell line. Potencies were similar in comparison, with the exceptions of 100692 and 203005, which showed increased potency in the HEK line. Finally, efficacies were reduced in a majority of the compounds in the stable transfection. Analog 100602 demonstrated more comparable potency to 1423 in HEK cells than in the PC-3 cells with a modest decrease in efficacy and a significant reduction in cytotoxicity at both concentrations, further indicating its promise for optimization.

Exploration of additional conformationally restricted analogs continued with the synthesis of pyrrolidone analog 203606 and related compounds, shown in Scheme 2.8. Itaconic acid (25) was heated with 4-chloroaniline neat to afford intermediate acid 26, which was treated with diphenylphosphoryl azide (DPPA) to induce Curtius rearrangement to the corresponding isocyanate. The isocyanate was trapped with various substituted alcohols to afford carbamates 203007, 203065, and 203604. In the case of amide 203606, the isocyanate was trapped with tert-butanol to afford Boc-protected amine 27. The amine was deprotected and acylated to afford the final 5-membered rigid structure 203606. Preparation of 203846 followed similar conditions using 3,5-difluorobenzoyl chloride to acylate intermediate 28. Compound 203848 examined the reverse amide of 203606 and was prepared using 3,5-bis(trifluoromethyl)aniline and standard EDC/HOBt amidation of carboxylic acid intermediate 26.
Analogs 203845, 203850, and 203851 explored additional conformational restriction of 100594 as depicted in Figure 2.1. Scheme 2.9 shows the chemistry used to prepare cyclic analog 203845. Starting 5-chloro-2-nitrobenzaldehyde (29) was converted to the aminopropionic acid 30, which was acylated using 3,5-bis(trifluoromethyl)benzoyl chloride to afford intermediate acid 31. Reduction of the nitro group to the amine and concomitant cyclization was achieved using iron(II) sulfate heptahydrate to afford final compound 203845.

Scheme 2.9. Preparation of Cyclic Analog 203845

Reagents and conditions: (a) CHCO$_2$H, CH$_2$(COOH)$_2$, NH$_4$HCO$_2$, conc. HCl; (b) 3,5-bis(CF$_3$)PhCOCl; 2M NaOH (aq) (c) FeSO$_4$, H$_2$O, 10% NH$_4$OH, EtOH, 100 °C

Scheme 2.10 provides the synthesis of analog 203850. Cyclopropyl cyano ester 32 was heated directly with 4-chloroaniline neat and underwent a ring-opening/recyclization to afford nitrile 33. Reduction of the nitrile was achieved using Raney Nickel in a Parr reactor to afford intermediate amine 34, which was then acylated with 3,5-bis(trifluoromethyl)benzoyl chloride to afford 203850.
Compound **203851** was synthesized as shown in Scheme 2.11. 5-Chloroindolin-2-one (35) underwent Vilsmeier formylation in DMF. Following completion of the first step, the reaction was cooled and quenched with aqueous ammonia to yield enamine 36. Acylation of the enamine afforded **203851**. Several attempts to reduce the double bond were undertaken, including hydrogenation with 5% Pd/C in ethanol; reduction using sodium cyanoborohydride; reduction employing triethylsilane and trifluoroacetic acid; and atmospheric hydrogenation utilizing 10% Pd/C in ethyl acetate. However, none of the attempts proved successful.

Scheme 2.10. Synthesis of Cyclic Analog 203850

Reagents and conditions: (a) 4-ClPhNH₂, neat, 140 °C; (b) Raney Ni, H₂, 40 psi, 1M Methanolic ammonia; (c) 3,5-bis(CF₃)PhCOCl, TEA, DCM, RT

Scheme 2.11. Synthesis of Analog 203851

Reagents and conditions: (a) i.) DMF, POCl₃, 45 °C; ii.) NH₃/NH₄OH, 0°C to RT; (b) 3,5-bis(CF₃)PhOCl, TEA, DCM
Analogs 203059 and 203063 incorporated a solubilizing pyridine moiety with the nitrogen in the 3- or 2-position, respectively, into the 101425 template. Compound 203061 replaced the bis(trifluoromethyl) moieties with fluorines. The chemistry followed the preparation of 101425 (Scheme 2.2) and proceeded by condensation of 3-bromopropylamine 4 with excess of the desired pyridyl aniline or 4-chloroaniline followed by simple acylation using 3,5-bis(trifluoromethyl)benzoyl chloride or 3,5-difluorobenzoyl chloride.

Analogs 203853 and 203855 explored replacing one of the amides with an amine in the 6- and 5-membered conformationally restricted analogs (Scheme 2.12 and Scheme 2.13, respectively) similar to that of 101425. Compound 203853 was synthesized by EDC/HOBt mediated amidation of piperidin-3-yl-methanol (37) with 3,5-bis(trifluoromethyl)benzoic acid followed by a Parikh-Doering oxidation91,92 to afford aldehyde 39. Reductive amination93 of 39 with 4-chloroaniline afforded the final compound. Compound 203855 (Scheme 2.13) was prepared via arylation94 of 3-(\textit{tert}-butoxycarbonylamino)pyrrolidine with 1-chloro-4-iodobenzene to afford intermediate 203854, which was also submitted for testing. Deprotection followed by acylation afforded final compound 203855. Analog 203847 (Table 2.6) evaluated reduction of both amides of 100602 to the conformationally restricted diamine, which was achieved using LAH reduction.

Scheme 2.12. Synthesis of Monoamine 203853

\[
\begin{align*}
\text{37} & \xrightarrow{a} \text{38} & \text{38} & \xrightarrow{b} \text{39} \\
\text{c} & & & \text{203853}
\end{align*}
\]

Reagents and conditions: (a) 3,5-bis(CF\textsubscript{3})PhCO\textsubscript{2}H, EDC, HOBt, DIPEA, THF, RT; (b) Pyr\textsubscript{•}SO\textsubscript{3}, DMSO, DIPEA, DCM, 0 °C to RT; (c) 4-ClPhNH\textsubscript{2}, NaBH(OAc)\textsubscript{3}, DCE, 0 °C to RT
Table 2.6 summarizes the effects of newly synthesized analogs on Rho-mediated gene transcription and cytotoxicity in the HEK293 stably transfected cell line. Examination of the 5-membered conformationally restricted lactams shows that carbamate analogs with no substitution (203007) or difluoro substitution (203604) on the benzyl are inactive. The same trend is seen with the corresponding amide series. Carbamate 203065 and amide 203606, both containing bis(trifluoromethyl) substituents, show similar potencies and efficacies. Differences in potencies based on the substitution pattern may indicate that a minimum level of lipophilicity is necessary for activity (see Chapter 3). Analog 203848 reverses the amide bond position of 203606. While the compound maintains potency and demonstrates excellent efficacy, it is significantly more cytotoxic.

While conformational restriction has shown success, compounds 203845, 203850, and 203851 were completely inactive. Upon further exploration of acyclic analogs of 101425, we find that compounds 203061, with difluoro-substitution, and 203059, with a pyridyl nitrogen in the 3-position, show slight decreases in potency with a significant increase in efficacy, perhaps due to better solubility at the higher concentrations. Unfortunately, the compounds also show a significant increase in cytotoxicity. Compound 203063, with the pyridyl nitrogen in the 2-position, was completely inactive.

Compounds 203853 and 203855 explore monoamines of the 6- and 5-membered conformationally restricted analogs, respectively. Unfortunately, both molecules, in
addition to intermediate 203854, show complete loss of activity. Conversely, diamine 203847 demonstrates similar activity and cytotoxicity in comparison with 100602 (Table 2.5), but shows higher overall efficacy.

Table 2.6. Newly Synthesized Analoges Tested Using HEK293 SRE.L Stable Cell Line

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC50 SRE.L (µM)a</th>
<th>% inh SRE.L (10, 100 µM)a</th>
<th>% inh WST-1 (10, 100 µM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>203007</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203065</td>
<td></td>
<td>16</td>
<td>16, 62</td>
<td>17, 29</td>
</tr>
<tr>
<td>203604</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203606</td>
<td></td>
<td>17</td>
<td>17, 54</td>
<td>4, 14</td>
</tr>
<tr>
<td>203846</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203848</td>
<td></td>
<td>8.6</td>
<td>65, 99</td>
<td>55, 75</td>
</tr>
<tr>
<td>203845</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203850</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203851</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203061</td>
<td></td>
<td>35</td>
<td>0, 96</td>
<td>0, 73</td>
</tr>
<tr>
<td>203059</td>
<td></td>
<td>24</td>
<td>0, 95</td>
<td>0, 65</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></td>
<td>% inh SRE.L (10, 100 µM)<sup>a</sup></td>
<td>% inh WST-1 (10, 100 µM)<sup>a</sup></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>203063</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203853</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203847</td>
<td></td>
<td>19</td>
<td>1, 70</td>
<td>21, 32</td>
</tr>
<tr>
<td>203854</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>203855</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions

The progression of 100594 to 100602 demonstrates that an increase in activity and efficacy with retention of modest selectivity and cytotoxicity is possible by employing conformational restriction. Compound 100602 remained the best performing analog in this series. The more rigid 5-membered analog (203606) showed similar potency and efficacy with reduced cytotoxicity. Disappointingly, it demonstrated solubility issues as evidenced by visible precipitation in the cellular assays. The 3,5-bis(trifluoromethyl)benzyl ester 203065 maintains similar activity and potency with modest cytotoxicity and does not appear to precipitate in the assays. Analogs 203606 and 203065 hold potential as new scaffolds for optimization.

PC-3 Prostate Cancer Cell Invasion

In their original publication, the Neubig lab showed that 1423 selectively inhibited spontaneous PC-3 prostate cancer cell invasion through a Matrigel matrix, but had no effect on G_αi-dependent SKOV-3 ovarian cancer cell invasion in vitro. Consequently, we screened several of the newly synthesized analogs for their ability to inhibit PC-3 prostate cancer cell invasion. We compared the selectivity for invasion versus cytotoxicity (measured using WST-1) with that of 1423. Table 2.7 presents the results for our selected compounds. In general, we observed a correlation between inhibition of invasion and inhibition of SRE.L in PC-3 cells. Conformationally restricted
analogs 100602, 100690, and 100692 demonstrated roughly equivalent efficacies against SRE.L at 10 and 100 µM. Their activities in the Matrigel followed a similar trend. Compound 100602 lacked cytotoxicity at 10 µM and showed 72% inhibition of invasion with modest cytotoxicity at 100 µM. While 1423 maintained 71% invasion at 10 µM, it was significantly cytotoxic. Analog 100602 maintains a more favorable efficacy:toxicity profile at 100 µM when compared with 1423 at just 10 µM. We also found a correlation between selectivity for SRE.L:cytotoxicity and invasion:cytotoxicity in monoamines 101425 and 102585 and diamine 102532. Although monoamine 101425 shows lower efficacy than 1423 at 10 µM in the invasion assay, it does so without any cytotoxicity. At 100 µM, 101425 exceeds the efficacy of 1423 with half of the cytotoxicity. Analogs 102585 and 101532 demonstrate no cytotoxicity at the lower concentration. However, we see no selectivity in invasion:cytotoxicity at the higher concentration, a trend that is also seen in efficacy versus cytotoxicity in the transfected PC-3 cellular assay (Table 2.2).

Table 2.7. Effects of New Analogs on Cell Invasion and Cytotoxicity

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>% inh invasion (10 µM)</th>
<th>% inh WST-1 (10 µM)</th>
<th>% inh invasion (100 µM)</th>
<th>% inh WST-1 (100 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1423</td>
<td>71</td>
<td>54</td>
<td>ND²</td>
<td>ND²</td>
</tr>
<tr>
<td>100594</td>
<td>13</td>
<td>0</td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>100600</td>
<td>14</td>
<td>0</td>
<td>75</td>
<td>38</td>
</tr>
<tr>
<td>100597</td>
<td>6</td>
<td>0</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>100686</td>
<td>15</td>
<td>0</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>100602</td>
<td>20</td>
<td>0</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td>100690</td>
<td>14</td>
<td>0</td>
<td>79</td>
<td>36</td>
</tr>
<tr>
<td>100692</td>
<td>12</td>
<td>0</td>
<td>78</td>
<td>44</td>
</tr>
<tr>
<td>101343</td>
<td>63</td>
<td>31</td>
<td>86</td>
<td>70</td>
</tr>
<tr>
<td>101329</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>102443</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100596</td>
<td>50</td>
<td>14</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>101425</td>
<td>54</td>
<td>0</td>
<td>84</td>
<td>27</td>
</tr>
<tr>
<td>102585</td>
<td>47</td>
<td>0</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>102532</td>
<td>30</td>
<td>0</td>
<td>86</td>
<td>97</td>
</tr>
<tr>
<td>102445</td>
<td>18</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>102447</td>
<td>3</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>102441</td>
<td>18</td>
<td>0</td>
<td>56</td>
<td>0</td>
</tr>
</tbody>
</table>

¹Refer to Table 2.1 for assay descriptions
²Not determined
Figure 2.2 presents correlation graphs between the average inhibition in the PC-3 Matrigel invasion assay versus the average inhibition of SRE.L expression in transiently transfected PC-3 cells at both 10 and 100 µM concentrations. Data show a positive correlation at both concentrations. However, outliers are present that strongly inhibit SRE.L without significant effects on invasion. The data also suggest that a threshold of approximately 50% of inhibition of SRE.L must be reached before inhibition of invasion is detectable.

In summary, we executed an expanded SAR survey of an inhibitor of Rho-mediated gene transcription (1423) aimed at improving potency and/or selectivity while minimizing cytotoxicity. To this end, we employed three strategies: (1) removal of the labile N-O bond; (2) bioisosteric replacement of the secondary carboxamides to improve cell permeability; and (3) conformational restriction to improve activity and/or selectivity. These strategies generated analogs with improved selectivity and cytotoxicity profiles. Unfortunately our best compounds show a 5- to 10-fold reduction in potency. Our most interesting compounds include nipecotic amide 100602, monoamine 101425, and 5-membered ring analogs 203606 and the presumably more soluble 203065. These compounds inhibit SRE.L expression with similar efficacies to 1423 with significant reductions in cytotoxicity. Additionally, for the first time, we have demonstrated a clear
correlation between inhibition of Rho-mediated gene transcription and cell invasion using a Matrigel matrix model of metastasis.
Chapter 3
Aromatic Modifications

Through replacement of the potentially labile N-O bond and conformational restriction of the flexible tether region between the two aromatic rings, we arrived at our lead compound, nipecotic amide 100602, which offered an improved biological profile over compound 1423. Although there was a 10-fold decrease in activity, it maintained inhibition of Gα12QL-stimulated SRE.L-luciferase expression with similar efficacy to 1423, but with greatly reduced cytotoxicity. Unfortunately, despite the improved biological profile, compound 100602 exhibits poor physicochemical properties, including low solubility and low permeability (Table 3.6).

One of the main issues we’ve continuously encountered in our SAR campaign is solubility. Lead compound 100602 displays low solubility (Table 3.6), and precipitation is visible in our cellular assays. However, we selected 100602 due to its equivalent efficacy and diminished toxicity to further explore diversity at each of the terminal aromatic rings with the additional goal of improving solubility.

Preliminary Data

Our initial survey of aromatic substitution was conducted on the more potent aminoacetic acid template to magnify the changes in activity, as shown in Table 3.1. Compounds were synthesized using simple acylation of 2-(aminooxy)acetic acid followed by EDC/HOBt mediated amidation (Scheme 2.1). Table 3.1 summarizes the brief preliminary survey of aromatic substitution. Moving the chloro group from the para- (100596) to the meta-position (101200) has no effect. Contrarily, completely removing it (100703) negatively affects potency as well as efficacy. Removing one of the trifluoromethyl groups (101202 and 100723) also negatively affects potency and efficacy, and removing both completely abolishes all activity (100701). Swapping the position of the two aromatic rings in 100691 affords a compound with similar potency and overall efficacy with a reduction in cytotoxicity. The results of this brief survey indicate that a
certain level of lipophilicity provided by aromatic substitution is essential for activity, perhaps due to differences in cellular permeability. We utilized 100602 as a template for an expanded analysis of aromatic substituent structure-activity relationships.

Table 3.1. Preliminary Effects of Aromatic Substitution on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC_{50} SRE.L (µM)^a</th>
<th>% inh SRE.L (10, 100 µM)^a</th>
<th>% inh pRL-TK (10, 100 µM)^a</th>
<th>% inh WST-1 (10, 100 µM)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>100596^b</td>
<td></td>
<td>4.7</td>
<td>71, 100</td>
<td>53, 89</td>
<td>42, 91</td>
</tr>
<tr>
<td>101200</td>
<td></td>
<td>5.9</td>
<td>65, 100</td>
<td>51, 89</td>
<td>49, 97</td>
</tr>
<tr>
<td>100703^b</td>
<td></td>
<td>36</td>
<td>13, 65</td>
<td>33, 59</td>
<td>0, 37</td>
</tr>
<tr>
<td>101202</td>
<td></td>
<td>27</td>
<td>25, 86</td>
<td>5, 19</td>
<td>0, 58</td>
</tr>
<tr>
<td>100723^b</td>
<td></td>
<td>29</td>
<td>26, 91</td>
<td>6, 0</td>
<td>0, 56</td>
</tr>
<tr>
<td>100701^b</td>
<td></td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100691^b</td>
<td></td>
<td>8.6</td>
<td>58, 100</td>
<td>19, 87</td>
<td>0, 39</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions
^bSynthesized by Jenny Ryu

Library Selection

In order to systematically modify the aromatic substituents, we first explored ring A of compound 100602, as shown in Figure 3.1. Paul Kirchhoff, a computational chemist in the Hans W. Vahlteich Medicinal Chemistry Core (VMCC) at the University of Michigan, assisted with monomer selection. We utilized the MScreen program of the Center for Chemical Genomics (CCG) at the University of Michigan to screen the Sigma-Aldrich “Selected Structure Sets” for commercially available meta-substituted benzoic acids with desirable physicochemical properties. We chose only meta-substitutions, as we
expect that they would have greater potential to interact with various areas in the active site than would ortho- or para- substituents. We utilized Molecular Operating Environment (MOE) software to compute lipophilicity (SLogP) and molecular weight properties based on the parent structure with salt removed. We intended to select diverse carboxylic acids with a calculated SLogP less than that of our 3,5-bis(trifluoromethyl)benzoic acid starting material (2.71) and that would result in a final compound molecular weight of 550 or less. Similarly, we explored ring B, again using MScreen to identify commercially available meta-substituted anilines with SLogP less than that of 4-chloroaniline (1.92) and that would result in final compound molecular weights of 550 or less. In choosing only starting acids and anilines with lower SLogP, we hoped to decrease the overall SLogP of our new analogs to enhance solubility.

Figure 3.1. Modifications of Aromatic Rings A and B of 100602

The synthetic routes to new analogs of 100602 are presented in Scheme 3.1 and Scheme 3.2. For the acid library (ring A, Scheme 3.1), the starting nipecotic acid 42 was Boc-protected, and the resulting acid (43) was coupled to 4-chloroaniline using EDC/DMAP-mediated amidation. Following deprotection, the resulting piperidine was coupled with various commercially available m-substituted benzoic acids. The resulting compounds were purified using Amberlyst-15 resin to remove excess aniline, followed by a water wash to remove residual DMF to afford final acid library analogs. This synthesis afforded 20 compounds with yields between 39 and 100% with purities greater than 90%. For the aniline library (ring B, Scheme 3.2) the starting nipecotate 46 was acylated with 3,5-bis(trifluoromethyl)benzoyl chloride followed by saponification to afford the free acid 48. The acid was then coupled with the commercially available m-anilines. Compounds were purified by either aqueous workup or aqueous workup followed by chromatography to afford final aniline library analogs. Synthesized analogs afforded yields between 32 and 100% with purities ranging between 81 to greater than 95%.
The effects on Rho-mediated gene transcription and cytotoxicity of all newly synthesized analogs were determined in transiently transfected PC-3 cells at an initial concentration of 100 µM. For compounds showing greater than 50% inhibition at 100 µM, a full dose-response curve (DRC) was generated. Table 3.2 summarizes the effects of benzamide analogs of 100602. Replacement of the bis(trifluromethyl) groups with a substituent in the meta-position afforded analogs with little to no cytotoxicity, with the exception of 206115. A majority of the analogs had lower potency than the lead 100602.
However, analogs 203971 and 203972 show a slight increase in potency and similar efficacies.

Upon comparing similar analogs, we see that adding a carbon between the amide bond and the aromatic ring (100602 vs 203960) has little effect on potency and toxicity. Analog 203973 adds a nitrogen to the furan ring of 203971, affording a less active oxazole. This substitution increases the topological polar surface area (TPSA) of 203973 to 71Å and decreases the calculated LogP (CLogP) to 3.46 versus a TPSA of 59Å and CLogP of 4.88 exhibited by 203971, which may account for the reduced activity. A similar trend is observed when examining compounds 203968, 203979, and 203963. Double-bond analog 203968 maintains modest potency (33 µM) and good efficacy (84%) with a TPSA of 49Å and a CLogP of 4.33. Thioether 203963 has the same TPSA and a similar CLogP (4.26) as 203968 and maintains similar potency with a slight decrease in efficacy. However, moving from the thioether to an ether (203979) increases TPSA to 59Å and lowers CLogP to 3.82. The analog lost activity with a significant reduction in efficacy. We then explored the relationships between TPSA and activity as well as CLogP and activity for the acid library. We found that TPSA and potency have a weak correlation (Figure 3.2, $r^2 = 0.32$), whereas CLogP has a moderate correlation with potency (Figure 3.3, $r^2 = 0.78$).

Benzophenone-containing 203972 is one of the most promising analogs in our library. It maintains good activity, confirming that the benzophenone moiety may be suitable for future use as a photoaffinity reagent for determining the molecular target(s) of our compounds. 203971 shows a two-fold increase in potency and a slight increase in efficacy without cytotoxicity, making it our best compound in the acid-substituted series.
Table 3.2. Effects of Benzamide Substitution on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC<sub>50</sub> SRE.L (μM)<sup>a</sup></th>
<th>% inh SRE.L (100 μM)<sup>a</sup></th>
<th>% inh WST-1 (100 μM)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>100602<sup>b</sup></td>
<td></td>
<td>9.8</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>203971</td>
<td></td>
<td>6.4</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>203972</td>
<td></td>
<td>9.9</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>203960</td>
<td></td>
<td>13</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>206115</td>
<td></td>
<td>27</td>
<td>92</td>
<td>32</td>
</tr>
<tr>
<td>203966</td>
<td></td>
<td>26</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>203968</td>
<td></td>
<td>33</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>203975</td>
<td></td>
<td>33</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td>203977</td>
<td></td>
<td>35</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>203963</td>
<td></td>
<td>35</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>203973</td>
<td></td>
<td>43</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>203967</td>
<td></td>
<td>51</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>203969</td>
<td></td>
<td>67</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></td>
<td>% inh SRE.L (100 µM)<sup>b</sup></td>
<td>% inh WST-1 (100 µM)<sup>b</sup></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>203974</td>
<td></td>
<td>78</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>203979</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>203962</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>203965</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>203961</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>203970</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>203978</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>203964</td>
<td></td>
<td>>100<sup>f</sup></td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions
^bSynthesized by Jenny Ryu
^cFull DRC not generated—tested only at 100 µM
The effects of aromatic substitution R_2 on ring B are summarized in Table 3.3. As with the acid-substituted library, most compounds demonstrated low to no cytotoxicity, with the exception of amine 206123, which had significant cytotoxicity of 51% at 100 µM. Our best analogs 206114 and 206108 show a 10-fold increase in potency with a slight decrease in efficacy. Pyridine 206124 showed a similar increase in potency while maintaining modest efficacy. Analogs 206109, 206244, 206102, 206248, 206243, and 206241 all show similar or slight increases in potency.
Although there was very weak to no correlation overall between potency and TPSA as well as potency versus CLogP (Figure 3.4 and Figure 3.5), trends were observed between subsets of similar compounds. Analogs **206105** appends a ketone to **206102**, which increases TPSA, decreases CLogP, and significantly decreases potency. The 5-membered amine **206103** is inactive and highly toxic. The 6-membered morpholine, on the other hand, demonstrates moderate potency and efficacy without toxicity. Analogs **206012, 206248, and 206242** show a similar trend as observed in the acid library (Table 3.2) in that the vinyl (**206248**) and ethyl (**206102**), which share similar TPSA and CLogP, also have similar potencies and efficacies. However, the ether analog (**206242**), with increased TPSA and decreased CLogP, maintains less activity. This is also observed between analogs **206114, 206108, and 206111**. Compounds **206114, 206108, and 206124** were the most potent analogs in this series and are therefore of greatest interest.

Although we had intended to select only compounds with limited CLogP to enhance solubility, we mistakenly purchased starting materials that exceeded our target. Therefore, we synthesized analogs with CLogP values as high as 6.68. While this is obviously undesirable, it was actually fortuitous, as the compounds with the highest CLogP (**206114 and 206108**) were our most potent analogs. The added lipophilicity appeared to increase the permeability of the compounds, as demonstrated in our parallel artificial membrane permeability assay (PAMPA), as shown in Table 3.6.
Table 3.3. Effects of Aniline Substitution on Transcription and Cytotoxicity in Transfected PC-3 cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC<sub>50</sub> SRE.L (µM)<sup>b</sup></th>
<th>% inh SRE.L (100 µM)<sup>a</sup></th>
<th>% inh WST-1 (100 µM)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>100602<sup>b</sup></td>
<td></td>
<td>9.8</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>206114</td>
<td></td>
<td>1.5</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>206108</td>
<td></td>
<td>1.6</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>206124</td>
<td></td>
<td>2.3</td>
<td>82</td>
<td>5</td>
</tr>
<tr>
<td>206109</td>
<td></td>
<td>5.6</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>206244</td>
<td></td>
<td>6.1</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>206102</td>
<td></td>
<td>8.1</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>206248</td>
<td></td>
<td>11</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>206243</td>
<td></td>
<td>12</td>
<td>87</td>
<td>9</td>
</tr>
<tr>
<td>206241</td>
<td></td>
<td>12</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>206110</td>
<td></td>
<td>26</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>206242</td>
<td></td>
<td>30</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>206104</td>
<td></td>
<td>32</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>IC<sub>50</sub> SRE.L (µM)<sup>a</sup></td>
<td>% inh SRE.L (100 µM)<sup>a</sup></td>
<td>% inh WST-1 (100 µM)<sup>a</sup></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>206247</td>
<td></td>
<td>32</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>206103</td>
<td></td>
<td>66</td>
<td>65</td>
<td>9</td>
</tr>
<tr>
<td>206105</td>
<td></td>
<td>76</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>206123</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>94</td>
<td>51</td>
</tr>
<tr>
<td>206112</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>206240</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>206111</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>206245</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>206113</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>206125</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>206107</td>
<td></td>
<td>>100<sup>b</sup></td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions
^bSynthesized by Jenny Ryu
^cFull DRC not generated—tested only at 100 µM
Based on the results from the acid- and aniline-substituted libraries, three series of follow-up analogs were examined, as found in Table 3.4. First, we examined additional substitutions of 100602. Analog 206455 replaced the furan of 203971 with a thiophene, which slightly increased potency and maintained low cytotoxicity. Analog 206119 moved the furan of 203971 from the meta- to the para-position, which caused a small loss in potency with introduction of minimal cytotoxicity. Analog 206122 reversed the furan from ring A to ring B, which led to a loss of potency and efficacy. Compounds 208798
and 206681 shortened the length between the pyridyl ether of 206124 (Table 3.3) by one and two carbons, respectively. Shortening the tether by one carbon reduced potency 3-fold and introduced modest cytotoxicity. Shortening by two carbons reduced potency almost 5-fold with a moderate loss in efficacy without cytotoxicity. Analogs 206101, 206106, and 206682 looked at pyridyl moieties with the nitrogen in the 2-, 3-, and 4-positions, respectively, which all showed losses in potency compared with 100602, with 206106 showing significant cytotoxicity.

Next, we examined “hybrid” analogs of our most promising compounds, which maintained the furan moiety on ring A, as found in 203971 (Table 3.2). Compound 206683 blended analog 203963 (Table 3.2), which offered little increase in activity. Analog 206460 combined 203971 and 206106, which led to a significant decrease in potency with a moderate increase in cytotoxicity. Compound 206120 hybridized 203606 (Table 2.6) with 203971, which led to a decrease in potency and efficacy; however, it did not demonstrate cytotoxicity. Compounds 206451 and 206450 combined 203971 with 206114 and 206108, our most potent analogs of the aniline library (Table 3.3), with IC$_{50}$s of 1.5 and 1.6 µM, respectively. Disappointingly, these “hybrid” compounds resulted in a complete loss of activity.
Table 3.4. Effects of Additional Substitutions on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC₅₀ SRE.L (μM)ᵃ</th>
<th>% inh SRE.L (100 μM)ᵃ</th>
<th>% inh WST-1 (100 μM)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>206455</td>
<td></td>
<td>4.7</td>
<td>81</td>
<td>4</td>
</tr>
<tr>
<td>206119</td>
<td></td>
<td>9.2</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>206122</td>
<td></td>
<td>21</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>206683</td>
<td></td>
<td>10</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>208798</td>
<td></td>
<td>7.4</td>
<td>79</td>
<td>15</td>
</tr>
<tr>
<td>206681</td>
<td></td>
<td>10</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>206101</td>
<td></td>
<td>>100</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>206106</td>
<td></td>
<td>31</td>
<td>88</td>
<td>25</td>
</tr>
<tr>
<td>206682</td>
<td></td>
<td>84</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>206460</td>
<td></td>
<td>45</td>
<td>88</td>
<td>10</td>
</tr>
<tr>
<td>206120</td>
<td></td>
<td>54</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>206451</td>
<td></td>
<td>>100</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>206450</td>
<td></td>
<td>>100</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>

ᵃRefer to Table 2.1 for assay descriptions
Physicochemical Properties

We selected six lead compounds from our completed SAR to examine the effects of structural modification on solubility and permeability. Detailed solubility and permeability assay conditions can be found in the experimentals described in Chapter 6. These six analogs (100594, 203971, 206108, 206114, 206455, and 203606) were compared to initial hit 1423 and lead 100602 (Table 3.6). Compound 1423 showed moderate solubility (between 18.6 and 11.9 µg/mL). Unfortunately, kinetic solubilities of all the remaining analogs, including 100602, were binned as low solubility (<10 µg/mL, Table 3.5). We also evaluated the analogs using PAMPA as an estimate of passive permeability (Table 3.5) using the PAMPA Explorer Kit (pION). Only analogs 206108, 206114, and 203606 demonstrate moderate permeability in the assay (Table 3.6). The remaining compounds exhibited low permeability. Compounds 206108, 206114, and 203606 have calculated partition coefficients (CLogP) of 6.0 or greater (as determined by ChemBioDraw Ultra 12.0), which reflects lipophilicity. It is possible that the increased potency of these lead compounds may be attributed to increased lipophilicity, as higher lipophilicity generally correlates with greater cell permeability. When conducting experiment utilizing a single pH, the PAMPA software utilizes a “two-way flux equation.” While retention in the membrane is not considered using the two-way flux equation, the PAMPA analysis software runs a modified version that factors in the amount of sample lost to the membrane. While lipophilicity can correlate with greater cell permeability, compounds with a LogP greater than 5 are more likely to become lodged in the membrane. Several of our compounds returned non-detectable results. It is possible that our standard 4 hour incubation period is not long enough to allow the compounds to move through the multiple bilayered-membrane. Further investigation and optimization of incubation time should be explored.

Table 3.5. Classifications for Solubility and Permeability

<table>
<thead>
<tr>
<th>BIN</th>
<th>SOLUBILITY (µg/mL)a</th>
<th>Log P_eff (cm/s)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td><10</td>
<td><5</td>
</tr>
<tr>
<td>MODERATE (MOD)</td>
<td>10-60</td>
<td>-5 to -4</td>
</tr>
<tr>
<td>HIGH</td>
<td>>60</td>
<td>>-4</td>
</tr>
</tbody>
</table>

aKinetic solubility, ranges found in Ref96
bLog of effective permeability, ranges found in Ref97
Table 3.6. Physicochemical Property Data for Top Analogs

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>Solubility (µg/mL)(^a)</th>
<th>CLogP(^b)</th>
<th>Log P(_{\text{eff}}) (cm/s)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1423</td>
<td></td>
<td>18.6-11.9 (MOD)</td>
<td>5.01</td>
<td>-8.8 ± 2.3 (LOW)</td>
</tr>
<tr>
<td>100594</td>
<td></td>
<td>3.45-2.21 (LOW)</td>
<td>5.40</td>
<td>-10 ± 0.00 (LOW)</td>
</tr>
<tr>
<td>100602</td>
<td></td>
<td>7.99-4.50 (LOW)</td>
<td>5.55</td>
<td>-10 ± 0.00 (LOW)</td>
</tr>
<tr>
<td>203971</td>
<td></td>
<td>3.09-4.26 (LOW)</td>
<td>4.88</td>
<td>-8.3 ± 2.3 (LOW)</td>
</tr>
<tr>
<td>206455</td>
<td></td>
<td>2.41-1.36 (LOW)</td>
<td>5.37</td>
<td>-10 ± 0.00 (LOW)</td>
</tr>
<tr>
<td>206108</td>
<td></td>
<td>3.85-1.89 (LOW)</td>
<td>6.65</td>
<td>-4.7 ± 0.05 (MOD)</td>
</tr>
<tr>
<td>206114</td>
<td></td>
<td>4.30-3.22 (LOW)</td>
<td>6.68</td>
<td>-5.1 ± 0.40 (MOD-LOW)</td>
</tr>
<tr>
<td>203606</td>
<td></td>
<td>3.21-1.81 (LOW)</td>
<td>6.07</td>
<td>-7.6 ± 2.8 (MOD-LOW)</td>
</tr>
</tbody>
</table>

\(^a\)Kinetic solubility
\(^b\)Calculated LogP (ChemBioDraw Ultra 12.0)
\(^c\)Log of effective permeability (cm/s) as determined by PAMPA Explorer. Measurements are at minimum N=3.

Chiral Recognition

Chirality is a fundamental component of nature. Proteins are composed of primarily L-amino acids and exhibit specificity for complex molecules. These complex molecules often contain one or more stereocenters.\(^{98,99}\) In the early 1930s, Easson and Stedman offered the three-point attachment model to describe the stereospecificity of drug receptors for their substrates\(^{100}\) as depicted in Figure 3.6.\(^{101}\) The model describes the
stereochmical recognition of enantiomers for a simple molecule containing only one chiral center and assumes, although not explicitly stated in the original paper, approach from only one side of the binding site.

The diagrams in Figure 3.6 illustrate the surface of the receptor (IV) and the possible enantiomers (I and II), as well as an achiral molecule (III). The Easson-Stedman model predicts that in order to achieve maximal effect, the enantiomer must interact with the receptor so that A, B, and C of the drug molecule bind to A’, B’, and C’ of the receptor, respectively. Only enantiomer I can do so in this case. As depicted in Figure 3.6, enantiomer II can only form 1 interaction between B and B’. Achiral compound III contains A, B, and C in the proper configuration to bind with the receptor, and should be able to do so with equal activity to I according to the proposed model. The shaded face of achiral molecule III also contains points A, B, and C; however they are not aligned to form three interactions needed for maximal effect.

Affinities for each enantiomer can be calculated and compared to yield a ‘eudismic ratio’ to describe the pharmacological activity between two enantiomers of a drug. The enantiomer exhibiting highest affinity and therefore the highest level of complementarity to the binding site, is known as the ‘eutomer.’ The lowest affinity enantiomer with the poorest degree of complementarity is known as the ‘distomer.’ Pfeiffer demonstrated that a decrease in the ratio of activity of eutomer:distomer (eudismic ratio) was correlated with a decrease in drug potency and an increase in the total dosage of racemate necessary to elicit a response. In summary, Pfeiffer’s Rule states
that in general a greater eudismic ratio is associated with greater potency of drug response at the desired receptor.105

Preliminary Data

In order to determine if eudismic ratios were detectable in our series, Jenny Ryu synthesized enantiomers of 100602 using commercially available (S)- and (R)-nipecotic acid affording analogs 100687 and 100688, respectively. Unfortunately, these enantiomers showed no apparent stereorecognition by the molecular target.

Table 3.7. Effects of Chirality on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC\textsubscript{50} SRE.L (\textmu M)a</th>
<th>% inh SRE.L (100 \textmu M)a</th>
<th>% inh WST-1 (100 \textmu M)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>100602</td>
<td></td>
<td>9.8</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>100687</td>
<td></td>
<td>9.8</td>
<td>78</td>
<td>5</td>
</tr>
<tr>
<td>100688</td>
<td></td>
<td>9.7</td>
<td>90</td>
<td>7</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions

Further Exploration of Stereochemical Recognition

We decided to further explore stereochemical recognition by synthesizing enantiomers of the more rigid five-membered ring analog 203606 (Table 2.6). The enantiomeric synthesis is summarized in Scheme 3.3. Synthesis began with (R)-hydroxypyrrolidin-2-one (49) which underwent a modified Goldberg reaction106 to afford amidation product 50 which was then converted to the tosylate (51) and displaced by azide to yield sterochemically inverted azide 52. Conversion to the mesylate followed by azide displacement was also explored. However, elimination products were observed immediately and were the major products found. The tosylate still afforded an approximately 1:1 ratio of eliminated:desired product. However, purification methods effected separation of the two materials. Palladium catalyzed hydrogenation at
atmospheric pressure provided amine 53. Close monitoring of hydrogenation was necessary, as lengthy hydrogenation reduced the chloro moiety. Acylation of the free amine with 3,5-bis(trifluoromethyl)benzoyl chloride afforded the desired enantiomeric product 206684. The other enantiomer was prepared analogously.

In order to confirm chiral integrity, we prepared Mosher amides107 using each enantiomer of amine 53 to prepare analogs 208802 and 208805 (Scheme 3.4). We then examined each by proton and fluorine NMR, which confirmed only one enantiomer was present in each sample.

Scheme 3.3. Enantiomeric Synthesis of Analog 203606

![Chemical diagram]

Reagents and conditions: (a) 4-CIPhI, Cul, K₂PO₄, trans-1,2-diaminocyclohexane, Dioxane, 110°C; (b) TsCl, Pyr, RT; (c) NaN₃, DMSO, RT; (d) 10% Pd/C, H₂, atm, MeOH, RT; (e) 3,5-bis(CF₃)PhOCl, DIPEA, DCM, RT
Additionally, we determined the eudismic ratio of enantiomers of 203971. Compounds 206116 were synthesized using the same chemistry as used in the preparation of the acid libraries (Scheme 3.1) starting with (R)- and (S)-nipecotic acid, respectively. Furthermore, pharmacophore modeling (Chapter 5) suggested that due to the similarity of the aromatic rings, our compounds have the potential to flip orientation in the binding pocket. Therefore, we investigated the enantiomers of the more unsymmetrical analog 206114. The synthesis also followed that in Scheme 3.1 using the appropriate enantiomer of the starting acid.

Table 3.8 summarizes the effects of the synthesized enantiomers of 203606, 203971, and 206114. In each of the comparisons, a very small chiral preference was found. For enantiomers of 203606 (206684 and 206685) and 203971 (206116, lots 380445 and 380439), preference was shown towards the (S)-enantiomer. For enantiomers of 206114 (206686 and 206687), slight preference was shown for the (R)-enantiomer. However, the eudismic ratios were all well below 10, consistent with the relatively low potencies (micromolar) of the racemates, and perhaps indicating that the overall binding affinity is poor or that less than three points of attachment are being made with the receptor.
Further Exploration of 203971

Analog 203971, the best performing analog of the acid library series, showed two-fold activity improvement as well as a slight increase in efficacy with no cytotoxicity in PC-3 prostate cancer cells. We examined the effect of 203971 (Table 3.2) on the migration of PC-3 prostate cancer cells in comparison to less active analog 100594 (Table 2.1), with the results shown in Figure 3.7. Detailed scratch assay conditions can be found in the experimentals described in Chapter 6. Panel A shows the scratch assay at time 0 h and 24 h using DMSO as a control. Compounds 203971 and 100594 were applied at 10 μM concentrations. As illustrated by the graph in panel B, significantly inhibits migration in PC-3 prostate cancer cells following 24 h treatment. We also intend to perform the scratch assay on the remaining compounds found in Table 3.6.

Table 3.8. Effects of Single Enantiomers on Transcription and Cytotoxicity in Transfected PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC$_{50}$ SRE.L (µM)a</th>
<th>% inh SRE.L (100 µM)a</th>
<th>% inh WST-1 (100 µM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>206685</td>
<td></td>
<td>11</td>
<td>66</td>
<td>3</td>
</tr>
<tr>
<td>206684</td>
<td></td>
<td>8.2</td>
<td>74</td>
<td>3</td>
</tr>
<tr>
<td>206116 Lot 380445</td>
<td></td>
<td>8.2</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>206116 Lot 380439</td>
<td></td>
<td>14</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>206686</td>
<td></td>
<td>4.0</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>206687</td>
<td></td>
<td>2.9</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions
Upon the initial discovery of 1423, the Neubig laboratory also observed that it had an effect on the RhoC-overexpressing melanoma cell lines A375M2 and SK-Mel-147. Therefore, we also tested 203971 in the RhoC-SRE.L assay using transiently transfected SK-Mel-147 cells. We observed similar results to the PC-3 cell line, with 203971 displaying an IC_{50} of 5.3 µM and no WST-1 cytotoxicity (data not shown), exhibiting its potential as an inhibitor of metastatic melanoma. The compound has also shown promise in other RhoC-overexpressing cancer targets, which will be disclosed in future publications.

Unfortunately, initial compound 1423 displayed significant \textit{in vitro} and \textit{in vivo} cytotoxicity (Table 2.1) and was therefore too toxic to use in \textit{in vivo} studies. On the other hand, acid library analog 203971 demonstrated single-digit micromolar potency without any cytotoxicity up to 100 µM concentration (Table 3.2). Therefore, we conducted preliminary toxicity studies using the less toxic compound 203971. A 5-day chronic dosing study was conducted with compound administration at 10, 20, 50, and 100 mg/kg.

\textbf{Figure 3.7. Scratch Assay Using PC-3 Prostate Cancer Cells.} Panel (A) shows cells at time 0 h and the migration of cells following 24 h incubation using DMSO, 10 µM 203971, and 10 µM 100594. Panel (B) graphically depicts the migration after 24 h, as determined by pixel count.
dissolved in 50 µL of dimethyl sulfoxide (DMSO) per day using 3 mice per dose. Following sacrifice on the 8th day, the mice were weighed and blood samples were collected. Dissection was performed, and the internal organs were weighed and examined for abnormalities. Weight was maintained over the course of the study, with the only abnormality observed being a slight increase in liver weight. All mice survived the 5-day study without any noted abnormal behavior, indicating tolerability. The serum samples were also submitted for determination of drug levels. A single intraperitoneal (IP) dose of 100 mg/kg provided maximum serum levels 3 to 5 times higher than the in vitro IC₅₀, indicating its potential use for further in vivo studies.

Future Direction for 203971

Based on the positive tolerability results, we are currently assessing standard pharmacokinetic parameters as well as the relative bioavailability of 203971. These results will dictate the feasibility of further in vivo exploration such as assessment of treatment regimen as well as the optimal method of administration. Our lab has also recently established an assay to examine metabolic stability. We intend to examine our lead compounds, including 203971, in our metabolic assay. If further in vivo testing is viable, we will move into melanoma xenograft studies.

Future Direction: Third Point of Diversity

Our investigation of the enantiomers of 100602, 203606, 203971, and 206114 resulted in compounds with low micromolar potencies and no apparent stereorecognition by the macromolecular target. The poor potencies and lack of stereo-differentiation may indicate less than three points of attachment are being made with the receptor. Therefore, we intend to pursue installation of a third point of diversity to provide the necessary third interaction. We intend to use conformationally restricted analog 203971 to further probe this third point of diversity.

We envision the synthesis proposed in Scheme 3.5. Our progress to date is summarized here. First, 3,5-pyridinedicarboxylic acid is esterified to provide diester 56, which is then treated with potassium hydroxide to form monoacid 57. The acid then undergoes Curtius rearrangement to the isocyanate, which is trapped by t-butanol to afford Boc-protected intermediate 58. Ester 58 is saponified to afford free acid 59.
which is then hydrogenated using Rhodium on Alumina to afford a single diastereomer (presumably cis-) 60.111 Acylation with 3-(furan-2-yl)benzoyl chloride followed by amidation with 4-chloroaniline under standard EDC/HOBt-mediated coupling conditions provides intermediate 62.

We anticipate that deprotection of the primary amine will provide key common intermediate amine 63, and that various functional groups can then be added via acylations, sulfonylations, reductive aminations, etc. Because only one diastereomer is afforded using the above hydrogenation conditions (presumably cis-), it will be necessary to independently prepare the trans-isomer for further exploration.
Scheme 3.5. Proposed Synthesis for Third Point of Diversity Using 100602 Template

Reagents and conditions: (a) SOCl₂, EtOH; (b) KOH, EtOH, CHCl₃; (c) DPPA, TEA, t-BuOH; (d) NaOH, MeOH, RT; (e) Rh–Al₂O₃, H₂O, NH₄OH, H₂, 40 psi, 72h; (f) m-FuranylPhCOCl, TEA, DCM; (g) 4-CIPhNH₂, EDC, HOBt, DIPEA, DCM; (h) TFA, DCM, -10 °C
Chapter 4
Photoaffinity Reagents

In 2007, the Neubig lab identified small molecule 1423 as an inhibitor of RhoA transcriptional signaling in HEK293 cells using a high-throughput screening assay. Mechanistic analysis demonstrated that 1423 acts downstream of RhoA and targets MKL/SRF-dependent transcriptional activation. However, the exact mechanism of action has not yet been deciphered. Their findings suggest that 1423 could affect the functions of MKL1 in various ways, including preventing its release from actin; blocking translocation from the cytoplasm to the nucleus; repressing transcription via increasing sumoylation; disrupting the interaction between MKL1 and its transcoactivator SRF, or inhibiting its coactivator function. 62 Due to the multitude of effectors activated by the RhoA family, determining the exact role of the signaling cascade in cancer is convoluted. However, discovery of 1423 as an inhibitor of Rho-mediated gene transcription and our further optimization into more potent and specific analogs with low cytotoxicity may allow us to probe its mechanism of action and identify its macromolecular target(s).

Identification of the macromolecular target(s) of our small bioactive molecules would allow us to employ rational and structure-based drug design to create more potent and selective therapeutics for the treatment of RhoA-related cancers. There are several methodologies one can use to identify target proteins. Our interests focus on three such strategies that include affinity matrices, biotinylated reagents, and tag-free photoaffinity probes. Each approach has advantages and disadvantages, which will be discussed in subsequent sections. Following the isolation and purification of a target protein, its identity can be determined using immunohistochemical analysis, peptide microsequencing, or modern degradative mass spectrometry. 112 These techniques will not be discussed in detail. However, we plan to employ mass spectrometry for protein identification.
Affinity Matrices

The preparation of affinity matrices is the simplest method for protein identification and is achieved by the attachment of modified lead compounds to a solid support. These supports are usually agarose or sepharose beads that can contain various functional groups for easy ligand attachment. The support is then incubated with cellular lysate to allow protein binding. Following incubation, the resin and bound protein are isolated (simple filtration) and are washed repeatedly using aqueous buffer. The washing steps remove any nonbinding proteins, affording only proteins that are bound to the desired ligand or nonspecifically to the matrix. Binding proteins can then be eluted from the resin through incubation with free ligand or under denaturing conditions. The protein can then be isolated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to various techniques for identification.

Solid supports such as agarose and sepharose are designed to prevent nonspecific binding of hydrophobic or charged proteins. However, such nonspecific interactions still occur with the matrix. Therefore control matrices should be used to help determine binding specificity. Construction of a control matrix can be executed using a resin-only control or an inactive compound control. A resin-only control can be prepared by using a resin-appropriate blocking agent to cover any activated sites following ligand loading. This leads to charge minimization, which minimizes nonspecific protein interactions. An inactive compound control provides a better comparison for specificity and should be constructed by immobilizing a compound on the resin that is similar to the active ligand, but is inactive itself. The optimal molecule would be an inactive enantiomer of the lead compound; however, structurally similar compounds can work. The gels are then compared, and proteins appearing in both would be considered nonspecific binders.

Another control experiment to determine specificity of binding is a competition experiment in which excess free ligand is incubated with the lysates and ligand-bound affinity matrix. The excess free ligand binds the target protein, preventing it from interacting with the resin. Therefore, upon comparing gels, certain protein bands would no longer be present, indicating a specific interaction with the small molecule.

There are several limitations to using affinity matrices. One significant limitation is the inability to determine ligand binding ability after it has been attached to the solid-
phase resin. To address this issue, hydrophilic polyethylene glycol (PEG) linkers have been utilized to attach the ligand to the resin. Activity can then be estimated following installation of a model PEG linker to ensure binding potential is not lost. Additionally, the hydrophilicity of the PEG linker minimizes nonspecific binding, and the spacer projects the ligand away from the resin. This spacer distance has been shown to be crucial for reducing steric hindrance as well as providing conformational flexibility for binding.

Another limiting factor for affinity matrices is the affinity of the ligand for its target. It is best to use a potent molecule with presumably high affinity and selectivity for the target. High binding affinity is necessary to preserve protein binding interactions during extensive washing steps required for removal of nonbinding proteins. Therefore, this is a major consideration when determining the proper isolation method.

Preliminary Results

Due to our lack of knowledge regarding the cellular target(s) of the series and their respective binding affinities, we decided to explore all three affinity methods previously mentioned, starting with affinity matrices. As previously discussed, a spacer unit is necessary to minimize the potential interference of the solid support on binding of the ligand. Most importantly, the spacer must be positioned on the small molecule in a manner that would permit retention of reasonable biological activity. Determination of these potential positions can be done in one of two ways. One, SAR data can provide information regarding the areas that are tolerant to modifications. However, this may require a large amount of prior analog synthesis. We employed a second option that utilized active analogs to append functionality that mimics the spacer unit at various locations on the molecule. Compounds that retained a majority of their activity were then to be used as scaffolds for the preparation of affinity reagents.

In preliminary work, Jenny Ryu synthesized a limited number of analogs of (Table 2.1) to determine what potential linking functionality could be appended to the chloro-substituted aromatic ring without loss of activity. The groups extending from the aromatic ring explored included –NHAc and –COHNEt, –EtSMe, and –COCH₂OMe, and –OMe (data not shown). Only the aromatic methoxy group retained
activity. These observations were then incorporated into the design of our affinity reagents.

Affinity Linker SAR

In order to prepare our active affinity reagent, we selected 100602 to perform preliminary SAR exploring methoxy substitution. While 100602 is less potent than 1423, it is more selective and less cytotoxic. We observed that placing the methoxy group in the para-position on the aromatic ring is superior to the meta-position in terms of selectivity over nonspecific gene transcription (pRL-TK Renilla) inhibition (Table 4.1). Therefore, our active affinity matrix was based on 101331.

Following identification of the active ligand, we wanted to select a similar “inactive compound” to function as a negative control. While the ideal inactive molecule would be the distomer of an enantiomeric pair, 100602 maintained a low eudismic ratio, showing no stereochemical recognition. Therefore, we opted to investigate a highly similar acyclic compound 100686, which differs only by one bridging methylene unit and lacks significant biological activity up to 100 µM (Table 4.1, Figure 4.1). Appending a methoxy group in either the para- or meta-position reintroduces a small amount of activity. However, we opted to base our affinity reagents on 101339, the least active compound with the methoxy in the para-position.
Table 4.1. Affinity Linker SAR

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>L</th>
<th>R1</th>
<th>R2</th>
<th>IC$_{50}$ SRE.L (µM)a</th>
<th>% inh SRE.L (10, 100 µM)a</th>
<th>% inh pRL-TK (10, 100 µM)a</th>
<th>% inh WST-1 (10, 100 µM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>100602b</td>
<td>-Cl</td>
<td>-H</td>
<td>9.8</td>
<td>38, 78</td>
<td>20, 34</td>
<td>0, 14</td>
<td></td>
</tr>
<tr>
<td>101331</td>
<td>-OMe</td>
<td>-Cl</td>
<td>6</td>
<td>28, 28</td>
<td>4, 6</td>
<td>0, 0</td>
<td></td>
</tr>
<tr>
<td>101341</td>
<td>-Cl</td>
<td>-OMe</td>
<td>5</td>
<td>29, 42</td>
<td>15, 15</td>
<td>0, 0</td>
<td></td>
</tr>
<tr>
<td>100686a</td>
<td>-NHCH$_2$CH$_2$CH$_2$-</td>
<td>-Cl</td>
<td>-H</td>
<td>-</td>
<td>0, 11</td>
<td>0, 14</td>
<td>0, 0</td>
</tr>
<tr>
<td>101337</td>
<td>-NHCH$_2$CH$_2$CH$_2$-</td>
<td>-Cl</td>
<td>-OMe</td>
<td>10</td>
<td>18, 46</td>
<td>0, 20</td>
<td>0, 10</td>
</tr>
<tr>
<td>101339</td>
<td>-NHCH$_2$CH$_2$CH$_2$-</td>
<td>-OMe</td>
<td>-Cl</td>
<td>20</td>
<td>3, 22</td>
<td>0, 14</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

aSee Table 2.1 for assay descriptions

bSynthesized by Jenny Ryu

Figure 4.1. Active and Inactive CCG-1423 Analogs Selected for Use in Affinity Reagents

(A) Active compound 100602 shows good inhibition of SRE.L (Firefly), low cytotoxicity (blue), and modest selectivity of SRE.L versus TK-Renilla (green); (B) Inactive compound 100686 shows no activity (SRE.L) up to 100 M; (C) Structures of active analog (100602) and inactive acyclic analog (100686)
Initial affinity matrix experiments were carried out by Andrew Haak in the Neubig lab. Agarose beads functionalized with 1,1′-carbonyl diimidazole were coupled through a carbamate bond with active ligand amine 203883 (prepared in Scheme 4.1) to afford the “active” affinity matrix 64 (Figure 4.2). By a precisely analogous route, “inactive” control matrix 65 was prepared starting with 5-aminopentanoic acid instead of nipecotic acid (Scheme 4.1). A third set of blank beads was also used. The remaining active sites on each set of beads were blocked using ethanolamine. Approximately 30 milligrams of total cytosolic and nuclear protein were isolated from roughly 100 million prostate cancer cells. Ten milligrams of protein were incubated with approximately 150 µL of each set of beads. Following incubation, each batch was centrifuged, and the lysate was removed. The beads were then washed with a combination of high and low NaCl buffered solution to removed nonspecific binding. Proteins were then eluted from the solid phase using Laemmli buffer, and samples were run on an SDS page gel. The gel was stained using Coomassie for visualization.

The active ligand sample generated a protein band. Unfortunately, this band was also observed in both the inactive compound as well as the blank control, indicating a nonspecific binding interaction. Due to the modest potency of our compound (9.8 µM, Table 4.1) coupled with the extensive washing steps, we do not believe this is the optimal technique for target identification. Therefore, we made no additional attempts to optimize our affinity matrix experiments.

Biotinylated Reagents

The second technique we were interested in is the use of biotinylated reagents for target identification. Biotinylated reagents offer one major advantage over matrices – they are soluble. Binding of target proteins to a soluble probe may be more facile than binding to a resin-bound probe. Following incubation of reagent with cell lysates, the
probe containing the binding partner(s) can be isolated using a streptavidin resin. Furthermore, incorporation of biotin allows visualization through the use of antibodies against biotin or the use of labeled streptavidin.112

Despite significant advantages, there are drawbacks to biotinylated probes. One drawback is that incorporation of biotin likely decreases cell permeability, which prevents their use in whole cells. Furthermore, their incorporation often requires the use of high-boiling solvents due to the poor solubility of biotin in organic solvents. However, this can be overcome by attachment late in probe synthesis.112

Based on the previous affinity linker SAR (Table 4.1), we set out to make the biotinylated reagents shown in Figure 4.3. We again incorporated the PEG linker for the same reasons as described above for the affinity matrices and utilized 100602 and 100686 to generate “active” (203602) and “inactive” (203600) probes, respectively.

Scheme 4.1 provides the synthesis of active biotinylated reagent 203602. Synthesis began with nipecotic acid 42, which was acylated with 3,5-(bistrifluoromethyl)benzoyl chloride to afford acid 48. Amidation of 48 with 66 was achieved using CDI-mediated coupling119 to afford amide 67. The phenol of 67 was alkylated120 using mesylate 68121 to install the hydrophilic linker, yielding 69. Deprotection followed by biotinylation afforded final affinity reagent 203602. Inactive probe 203600 was prepared following the same synthetic scheme starting with 5-aminopentanoic acid instead of nipecotic acid.

The final active and inactive probe molecules were submitted to the Neubig lab for testing. However, due to the lack of success with the affinity matrices and our compounds’ potentially poor affinity, we decided not to pursue this technique for target identification at this time.
Scheme 4.1. Synthesis of Biotinylated Reagent 203602

Reagents and conditions: (a) 3,5-bis(CF₃)PhCOCl, 2M NaOH; (b) CDI, THF, RT to 62 °C; (c) Cs₂CO₃, DMF, 75 °C; (d) TFA, DCM, RT; (e) Biotin-OSu, DMF, RT
Tag-free Photoaffinity Probes

As previously mentioned, a high binding affinity of a small molecule ligand for its target is vital to achieving isolation following repeated washing procedures. Because we do not know the affinities of our compounds for their target(s) and because we were unable to successfully isolate specifically bound proteins, we cannot discount loss of binding interaction as being responsible. However, maintenance of such interactions can be permanently achieved through incorporation of cross-linkable functionality into our proposed affinity reagents. Current literature provides multiple examples of successful applications of such reagents incorporating photolabile functionalities such as azides, diazirines, and benzophenones.

Figure 4.4 summarizes how tag-free photoprobes can be utilized in whole cells for target identification. The colors used in the cartoon correlate with the colors used in the molecular structures. First, a photolabile group is appended to a desired active ligand, as depicted in blue. Additionally, a low-molecular weight reactive handle is attached to complete the photoprobe. In this instance, the handle is an acetylene, as shown in purple. After confirming its activity, the photoprobe is incubated with whole cells, allowing the small molecule to interact with its target (light green) under physiological conditions. Following binding, UV irradiation is applied that converts the photolabile group into a highly reactive species that can covalently link the probe to its target. This irreversible modification will allow the application of extensive washings without the fear of losing the interaction between the small molecule and the target protein. The cells are lysed, and the handle can then be used with Click-chemistry to append biotin for streptavidin-mediated isolation or to append a fluorophore for visualization. The desired protein can then be isolated and determined using mass spectroscopy.
Figure 4.4. Tag-free Photoprobes for Target Identification in Whole Cell
The selection of cross-linking functionality and its distance from the small molecule ligand are also crucial for the outcome of an affinity isolation experiment. Based on their synthetic ease, we initially examined two different photolabile groups, an azide and a benzophenone. As previously described for the other affinity reagents, we prepared the active reagents based on compound 100602 and inactive reagent based on acyclic 100686. Compound 203972 (Table 3.2), as prepared in the acid library, contains a modification to 100602 that includes a benzophenone moiety. Analog 203972 was one of the most active analogs in our library, confirming its potential as a photoaffinity reagent.

Benzophenone Probes

The use of benzophenones for target identification is advantageous for several reasons. One advantage is their superior stability that allows their use under ambient light, unlike aryl azides and diazirines. Furthermore, activation of benzophenones is achieved at around 350 nm. This prevents damage to most proteins, which absorb ultraviolet radiation only at wavelengths less than 300 nm. Finally, benzophenones insert into unreactive C-H bonds, both in aqueous media and in the presence of nucleophiles. These properties afford efficient labeling of C-H bonds within 3.1 Å that is site specific.

Figure 4.5 provides the accepted mechanism for benzophenone photochemistry. Upon irradiation with ultraviolet light, the benzophenone containing ligand (70) forms a diradical species (71) that abstracts a hydrogen from a nearby protein to generate a ketyl radical and a protein radical (72). The pair of radicals can then recombine to form a cross-linked C-C bond that irreversibly labels the protein (73).
In order to determine potential activity of our desired probes, we synthesized model molecules that installed a methoxy group to function as a propargyloxy mimic. Both the model probes (black) and completed photoaffinity probes (blue) are shown in Table 4.2. We utilized 203972 as a template to explore various aspects of our probes. First, we examined the optimal position of the chloro group on the aromatic ring by preparing para- (206117) and meta-chloro (206118) analogs. Second, we positioned the benzophenone on ring B (Figure 3.1) as shown by 206448. Finally, we examined the linker length between the low molecular weight reactive propargyl group (206558) to provide a spacer region for application of Click chemistry following labeling.

Scheme 4.2 provides the synthesis of benzophenone precursor probes 206117 and 206118, which examine the position of the chloro moiety. Synthesis was carried out starting with Boc-protected nipecotic acid (43) and the desired aniline isomer (74 or 75), which were subjected to standard amidation conditions to afford amides 76 and 77, respectively. Deprotection followed by amidation with 3-benzoylebenzoic acid afforded final model analogs 206117 and 206118, respectively.

Figure 4.5. Photoaffinity Labeling Steps Using Benzophenone. Probe-containing ligand 70 is photolyzed to form a diradical (71) that abstracts a hydrogen from a nearby protein to form a ketyl and a protein radical (72). The pair of radicals recombine to form cross-linked protein 73.

![Photoaffinity Labeling Steps Using Benzophenone](image-url)
Table 4.2 summarizes the data for the benzophenone analogs. Models 206117 and 206118 both retained activity. Model 206117, with the chloro group in the para-position was slightly more potent and efficacious. Therefore we synthesized the benzophenone photoaffinity probe 206454 with the chloro moiety in the para-position with the propargyl ether in the meta-position as shown in Scheme 4.3. First, 5-amino-2-chlorophenol was Boc-protected to afford intermediate 81, which was then alkylated using propargyl bromide to afford propargyloxy 82. Following deprotection of 82, aniline 83 was coupled with Boc-protected nipecotic acid 43 to afford intermediate 84. Deprotection followed by coupling with 3-benzoylebenzoic acid afforded final probe 206454.
Additionally, we synthesized a benzophenone photoaffinity probe with a longer linker unit (206558) to minimize steric hindrance if the Click chemistry step does not afford a good yield. The synthesis can be found in Scheme 4.4, which begins with tosylation of 2-(prop-2-yn-1-yl)oxyethanol (86), which was received from Bryan Yestrepsky. Alkylation of phenol 81 using 87, followed by TFA deprotection afforded intermediate aniline 89, which was then coupled with acid 43. Boc-deprotection followed by standard EDC/DMAP-mediated coupling conditions with 3-benzoylbenzophenone afforded final compound 206558. Fortuitously, both affinity reagents 206454 and 206558 were actually more potent than initial benzophenone 203972 and methoxy model analog 206117 (Table 4.2).
In the aniline library (Chapter 3), we explored benzophenone placement on ring B (206111). Despite its inactivity (Table 3.3, Table 4.2), we synthesized precursor molecule 206448, which placed a methoxy in the meta-position on ring A. The executed route to precursor 206448 is shown in Scheme 4.5. Starting aniline 91 was coupled with acid 43 under standard EDC/DMAP-mediated coupling conditions to afford intermediate 92. After Deprotection, amine 93 was coupled with 3-methoxy-5-trifluoromethylbenzoic acid (94) to afford 206448. The model analog regained activity, showing an IC50 of 5.3 µM. Therefore, we continued with the synthesis of full photoaffinity reagent (206559), which can be found in Scheme 4.6. Starting acid 100 was esterified to produce methyl ester 101. The phenol was alkylated with propargyl bromide to afford ester 102, which was then saponified to afford free acid 103. The acid was then coupled with amine 98 under standard amidation conditions to afford final probe molecule 206559. As is reflected in Table 4.2, 206559 is also active, allowing the benzophenone placement to be manipulated if additional optimization is necessary.
Scheme 4.5. Synthesis of Ring B Benzophenone Model Analog 206448

Reagents and conditions: (a) 43, EDC, DMAP, DCM; (b) TFA, DCM, -10 °C; (c) EDC, DMAP, DCM

Scheme 4.6. Synthesis of Ring B Benzophenone Photoaffinity Reagent 206559

Reagents and conditions: (a) SOCl₂, MeOH, 0 °C to RT; (b) BrCH₂CCH, Cs₂CO₃, DMF, 70 °C; (c) NaOH, MeOH, H₂O; (d) 93, EDC, DMAP, DCM
Table 4.2. Effects of Benzophenone Photoaffinity Models and Probes on Transcription and Cytotoxicity in PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC$_{50}$ SRE.L (μM)a</th>
<th>% inh SRE.L (100 μM)a</th>
<th>% inh WST-1 (100 μM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>203972</td>
<td></td>
<td>9.9</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>206117</td>
<td></td>
<td>8.3</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>206118</td>
<td></td>
<td>11</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>206454</td>
<td></td>
<td>6.6</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>206558</td>
<td></td>
<td>5.0</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>206111</td>
<td></td>
<td>>100</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>206448</td>
<td></td>
<td>5.3</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>206559</td>
<td></td>
<td>2.7</td>
<td>58</td>
<td>0</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions. Final probes are colored blue.

Azide Probes

Next we explored probes containing aryl azides. There are several advantages to utilizing azides for labeling. An azide is relatively small and its incorporation provides minimal structural change to the starting compound. Furthermore, azides can afford greater solubility in comparison to other modifications. On the other hand, while many laboratories have exploited aryl azide chemistry, it has been noted that crosslinking efficiency is rather low.112,124 Complexities and poor efficiency arise from the activation of such azides as depicted in Scheme 4.7.123,124,127,128 Irradiation at wavelengths shorter than 280 nm produces formation of a singlet nitrene (100), which can intersystem cross (ISC) to the triplet ground state (103). However, at low temperatures (i.e. 77K), the
energy barrier necessary for this conversion is high and only the singlet is produced.124 The singlet \textbf{100} undergoes rearrangement and ring expansion into ketenimine \textbf{101} that can be attacked by a nucleophilic nitrogen or oxygen of a protein to afford an azepine-labeled protein (\textbf{102}).128 An additional complexity of utilizing azides for labeling is that the activation wavelength can cause damage of biological systems, which is undesirable.

\textbf{Scheme 4.7. Aryl Azide Activation}

Similar to the preparation of the benzophenone analogs, we synthesized model and photoaffinity reagents using aryl azides, and the results can be found in Table 4.3. One model compound incorporating a methoxy substituent on ring A was prepared (206449). Scheme 4.8 provides the chemistry employed. Due to the sensitivity of aryl azides, all chemistry on azide-containing intermediates was executed in the dark. Synthesis began with the acylation of 4-chloro-3-nitroaniline (\textbf{106}) to provide intermediate \textbf{107}. The nitro group was then reduced using iron and hydrochloric acid to afford aniline \textbf{108}. The azido group was introduced by diazotization/azidation of \textbf{108}. Deacetylation with potassium hydroxide afforded aniline \textbf{110}, which was then coupled with \textbf{43} (Scheme 3.1) using standard amidation conditions. Deprotection of \textbf{111} followed by coupling with acid \textbf{94} afforded 206449. As shown in Table 4.3, 206449 maintained activity in PC-3 prostate cancer cells. Therefore, the synthesis of aryl azide photoaffinity probe 206569 (Table 4.3) was carried out through coupling azide \textbf{112} (Scheme 4.8) with acid \textbf{98} (Scheme 4.6) under EDC/DMAP-mediated amidation conditions. Additionally, we investigated installation of the azide in ring A (206452). The synthetic route can be found in Scheme 4.9. Introduction of the azide in \textbf{114} was accomplished via diazotization/azidation of \textbf{113} followed by standard coupling conditions with \textbf{85} (Scheme
4.3) to afford final aryl azide photoprobe 206452. As with aryl azide 206569, photoaffinity probe 206452 retained activity (Table 4.3). However, it was the least potent of all of the photoaffinity reagents.

Scheme 4.8. Synthesis of Aryl Azide Precursor Analog 206449

Reagents and conditions: (a) Ac₂O; (b) Fe/HCl, EtOH/H₂O; (c) NaNO₂, NaN₃, H₂O/HCl; (d) KOH 30%; (e) 43, EDC, DMAP, DCM; (f) TFA, DCM, -10 °C; (g) 94, EDC, DMAP, DCM

Scheme 4.9. Synthesis of Aryl Azide Photoaffinity Probe 206452

Reagents and conditions: (a) NaNO₂, NaN₃, H₂O/HCl, 0 °C; (b) 85, EDC, DMAP, DCM
Table 4.3. Effects of Aryl Azide Photoaffinity Models and Probes on Transcription and Cytotoxicity in PC-3 Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC$_{50}$ SRE.L (μM)a</th>
<th>% inh SRE.L (100 μM)a</th>
<th>% inh WST-1 (100 μM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>206449</td>
<td></td>
<td>7.0</td>
<td>77</td>
<td>13</td>
</tr>
<tr>
<td>206569</td>
<td></td>
<td>11</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>206452</td>
<td></td>
<td>17</td>
<td>54</td>
<td>2</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions

Preliminary Photoaffinity Labeling Experiments

We selected benzophenone photoaffinity probe 206559 (Table 4.2) to perform preliminary photoaffinity labeling (PAL) experiments based on its potency in PC-3 prostate cancer cells (2.7 μM). Initial PAL experiments were executed in the Neubig lab by Yihan Sun as follows. Parental PC-3 cells were grown to confluence in medium containing 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin. The medium was removed, and the cells were washed with phosphate buffered saline (PBS). Cells were then incubated in PBS with 0.3 μM 206559 for 30 minutes. A competition experiment was also performed by incubating cells in PBS with 0.3 μM 206559 and 10 μM 203971 (Table 3.2) for 30 minutes. UV irradiation was applied for 30 minutes at room temperature. Cells were then lifted, and the cell suspension was transferred and centrifuged to recover the cell pellet, which was resuspended in lysis buffer and sonicated. Click chemistry was performed using and Invitrogen™ Click-iT® Reaction Buffer Kit to attach Cy5.5 dye for visualization, as shown in Figure 4.6.
Figure 4.6. Click Chemistry for Appending Cy5.5 Dye to Photolabeled Protein

Reagents and conditions: (a) Invitrogen Click-IT Protein Reaction Buffer Kit
Electrophoresis was performed for both the cross-linked probe as well as the competition experiment, using 10 or 20 µg of protein (Figure 4.7). Lane one contains 0.3 µM 206559 with 30 minute UV treatment. Lane two contains the competition experiment using 0.3 µM 206559 with 10 µM 203971 with 30 minute UV treatment. Lane three contains 0.3 µM 206559 without UV treatment.

One band was visualized at approximately 24kD (as indicated by the white box in Figure 4.7) that was present with the UV irradiated photoaffinity probe (lane 1). Upon treatment with 10 µM 203971 (lane 2), the band appears to be competed off, suggesting it is a specific binding interaction. Furthermore, the band is not visible in the non-UV treated lane (lane 3). Based on these results, we investigated making an inactive probe for comparison. The “inactive” probe 208797 was synthesized as found in Scheme 4.10.

Unfortunately, appending the propargyl ether restored its activity, making it unsuitable as an inactive nonspecific labeling control.

Scheme 4.10. Synthesis of "Inactive" Probe 208797

![Scheme 4.10. Synthesis of "Inactive" Probe 208797](image)

Reagents and conditions: (a) 91, EDC, DMAP, DCM; (b) TFA, DCM, -10 ºC; (c) 98, EDC, DMAP, DCM
Chemical Validation of Photolabeling Experiment

We attempted to confirm that our probe molecule retains structural integrity during the photolysis process by attempting to capture a generic amino acid. Therefore, we employed **206454** (Scheme 4.11) in capture experiments using N-acetyl glycine methyl ester (**118**) to mimic a peptide-bound amino acid residue in the protein. We monitored the progress of the photolysis experiments by HPLC and TLC, allowing them to run up to 12 hours. The small peaks that grew in were examined by LC/MS. However, the molecular weights did not correlate with our desired product (**119**) or any potential side products.
Future Direction: Photolabeling

Identification of the band discovered in the PAL experiment has not yet occurred, but we are planning to do so in the future. Because our molecules contain an acetylene handle, we can also utilize Click chemistry to append biotin to the cross-linked protein-containing probes to capture with streptavidin. We can then isolate the desired protein(s) for identification and further exploration.
Chapter 5
Expanded Screening Effort

Introduction to Virtual Screening

Virtual screening (VS) methods encompass three-dimensional (3D) methodologies such as high-throughput docking (HTD) and pharmacophore searching (PS), as well as two-dimensional (2D) techniques such as structural similarity searching and quantitative structure-activity relationship (QSAR) models. While such predictive techniques are not 100% accurate, their predictions can provide an “enrichment” in selecting potentially biologically active molecules versus random selection of compounds from a library.\(^{129}\)

VS techniques can be divided into two main approaches. Structure-based techniques require a 3D structure of the macromolecular target and do not necessarily require known active ligands. Ligand-based techniques require known active ligands but do not necessarily require that the target be known. Furthermore ligand-based techniques may use 2D or 3D methods. Given that the macromolecular target is not known for this project, ligand-based approaches will have to be employed to conduct virtual screening.

Ligand-based 2D methods are often simpler and quicker than 3D methods and can be employed when little structural information or SAR data is available.\(^{130, 131}\) The basis for such 2D models is that compounds with similar structures often have similar properties and should therefore have similar activities.\(^{132}\) Therefore, similarity searching at a high level should produce compounds with similar activities. This basic premise is also employed in 2D-QSAR analysis, which utilizes molecular properties to evaluate the biological activity of a compound. These properties are converted to molecular descriptors that are used to predict what analogs are likely to have similar activities based on given properties and their overall contribution to activity.

One 3D ligand-based technique is to generate a pharmacophore model based on ligands which appear to elicit a desired biological response and use that model to search
for other potentially active ligands. A key component of PS is that only a small subset of compounds need be tested to generate a computational pharmacophore model.133 In the situation where the binding conformations for the active ligands are not known, 3D overlays of the active ligands are generated. A computer program simultaneously minimizes the conformational energies of each of the individual structures while maximizing the overlap between the structures based on features like hydrogen bond donors/acceptors, aromatic rings, hydrophobic groups, etc. Once the overlays are completed, 3D pharmacophore models can then be generated on the features common to the active ligands.134

Once a pharmacophore model has been generated, it generally undergoes iterations of validation and refinement. After optimization, it can be employed in virtual screens to survey chemical databases. The model is used to identify ligands that contain similar features in the same spatial alignment to those used to construct the model. This search may retrieve compounds of similar structure to the active ligands, or it may supply novel scaffold structures, known as “scaffold-hopping,”134, 135 which can expand medicinal chemistry efforts into novel chemical space.

Pharmacophore Model Generation

Because we have not yet identified the macromolecular target(s) of our small molecules, we enlisted the help of Paul Kirchhoff to perform virtual screening of a new 100,000 compound library in the CCG. First, we selected a training set of 11 of our most active conformationally restricted analogs (with the exception of 100601) in transfected PC-3 prostate cancer cells from a test set of 106 ligands. We chose a conformationally restricted training set to minimize the number of conformations the ligands could adopt and thus produce less error during minimization. Ligand overlays were created based on active structures with IC\textsubscript{50} <15 µM that showed low toxicity of <10% inhibition of WST-1 reduction at 100 µM (Table 5.1). The two most active compounds (102445 and 203971) were used to create the initial overlay. MOE defaults for flexible alignment were used with the addition of an aromatic center to the scoring function. After inputting the two structures into MOE, the program simultaneously minimized the conformational energies of each of the individual structures while maximizing the overlap between the structures based on features like hydrogen bond donors/acceptors, aromatic rings, hydrophobic
groups, etc. The resulting coordinates were then frozen, and the next most active structure was added, and the program was re-executed. The process was repeated with each additional structure moving from most potent to least potent, creating the overlay shown in Figure 5.1.

Multiple pharmacophore models were generated from the overlays and tested against the 106 test ligands as part of the pharmacophore validation and refinement. The goal was to find a pharmacophore model which would select the most potent structures while avoiding those which were also toxic. The pharmacophore model chosen is shown in Figure 5.1-Figure 5.4 and was named the “Potent and Low Toxicity (PaLT)” pharmacophore. This model showed some selectivity toward the more potent compounds but failed to discriminate against those that were also toxic.
Table 5.1. Potent and Low Toxicity (PaLT) Analogs in PC-3 Prostate Cancer Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC_{50} SRE.L (^a) (µM)</th>
<th>% inh WST-1 (^a) (100 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102445</td>
<td></td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>203971</td>
<td></td>
<td>8.2</td>
<td>0</td>
</tr>
<tr>
<td>100688</td>
<td></td>
<td>9.7</td>
<td>6.7</td>
</tr>
<tr>
<td>100687</td>
<td></td>
<td>9.8</td>
<td>4.5</td>
</tr>
<tr>
<td>203972</td>
<td></td>
<td>9.9</td>
<td>0</td>
</tr>
<tr>
<td>100602</td>
<td></td>
<td>9.9</td>
<td>7.3</td>
</tr>
<tr>
<td>102441</td>
<td></td>
<td>10.8</td>
<td>0</td>
</tr>
<tr>
<td>203606</td>
<td></td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>203960</td>
<td></td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>102443</td>
<td></td>
<td>13.2</td>
<td>0</td>
</tr>
<tr>
<td>100601</td>
<td></td>
<td>13.8</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\)Refer to Table 2.1 for assay descriptions

The model considers the four features shown as essential—the two aromatic rings (F1, F3; green), the hydrophobic/aromatic atom (F4; cyan), and the hydrogen bond acceptor (F2; red) as shown in the structural overlay in Figure 5.1. Figure 5.2 through Figure 5.4 show the distances in Angstroms between each essential feature.
Figure 5.1. Potent and Low Toxicity Pharmacophore Model with Structural Overlay

Figure 5.2. Potent and Low Toxicity Pharmacophore Model with Distances from Aromatic Feature 3
Figure 5.3. Potent and Low Toxicity Pharmacophore Model with Distances from Hydrogen Bond Acceptor Feature 2

Figure 5.4. Potent and Low Toxicity Pharmacophore Model with Distances from Hydrophobic/Aromatic Feature 4
A second pharmacophore model was constructed using 9 active compounds with IC$_{50}$<15 µM that showed significant WST-1 toxicity of >60% inhibition at 100 µM (Table 5.2) and was labeled “Potent and Toxic (PaT).” The idea here is that this model could be used to eliminate toxic compounds identified by a virtual screen with the PaLT model. Note that the training set was not restricted to rigid analogs. The PaT model considers five features shown as essential for potent and toxic compounds—two aromatic rings (F2, F3; green), the hydrophobic atoms (F1, F4; black), and the hydrogen bond donor (F5, fuchsia) as shown in the structural overlay in Figure 5.5. The model was constructed analogously to the PaLT pharmacophore. The two most toxic compounds (101200 and 100691) were used to create the initial high toxicity model parameters using MOE. The resulting coordinates were then frozen, and the next most toxic structure was added, and the program was re-executed. The iterative process continued moving from most to least toxic, resulting in the PaT pharmacophore shown in Figure 5.5-Figure 5.8.

Table 5.2. Potent and Toxic (PaT) Analogs in PC-3 Prostate Cancer Cells

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC$_{50}$ SRE.La (µM)</th>
<th>% inh WST-1a (100 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101200</td>
<td></td>
<td>5.9</td>
<td>96.8</td>
</tr>
<tr>
<td>100691</td>
<td></td>
<td>8.6</td>
<td>95.6</td>
</tr>
<tr>
<td>100689</td>
<td></td>
<td>2.4</td>
<td>92.5</td>
</tr>
<tr>
<td>102585</td>
<td></td>
<td>8.1</td>
<td>91.8</td>
</tr>
<tr>
<td>100596</td>
<td></td>
<td>4.7</td>
<td>90.8</td>
</tr>
<tr>
<td>102532</td>
<td></td>
<td>9.1</td>
<td>89.4</td>
</tr>
<tr>
<td>100721</td>
<td></td>
<td>9.9</td>
<td>87.8</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>IC$_{50}$ SRE.La (µM)</td>
<td>% inh WST-1a (100 µM)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>100745</td>
<td></td>
<td>11</td>
<td>78.1</td>
</tr>
<tr>
<td>203848</td>
<td></td>
<td>8.6</td>
<td>75.2</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions
bTested in HEK293 cell line

Figure 5.5. Potent and Toxic Pharmacophore Model with Structural Overlay

Figure 5.6. Potent and Toxic Pharmacophore Model with Distances from Hydrophobic Feature 1
Virtual Screen

We were interested in virtually screening a new 100K library recently added to the CCG-collection. Before performing the screen, we needed to determine whether our models were capable of enriching the hit rate. Therefore, we tested our pharmacophore models retrospectively based on the results from our prior 54K high-throughput screen using five methodologies. Table 5.3 summarizes the results of each model using Güner and Henry’s metrics for analyzing pharmacophores. The labels are as follows: hit list \((H_i)\) represents the number of compounds that the model identifies as active, and the hit
list actives \((H_a)\) describes the number of actual actives within the hit list. \(D\) represents the total number of compounds in the database, in this case 54,161 and \(A\) is the number of confirmed active compounds in the library, in this case 103 (see Figure 5.9 and discussion).

The calculations found in Table 5.3 are determined as follows\(^{136}\): the percent yield of actives \((\%Y)\) is calculated as:

Equation 5.1. Percent Yield of Actives \((\%Y)\)

\[
\%Y = \frac{H_a}{H_t} \times 100
\]

and the percent ratio of actives \((\%A)\) in the hit list is given by:

Equation 5.2. Percent Ratio of Actives \((\%A)\)

\[
\%A = \frac{H_a}{A} \times 100
\]

The enrichment (or enhancement, \(E\)) is determined by:

Equation 5.3. Enrichment (or Enhancement, \(E\))

\[
E = \frac{H_a}{H_t} = \frac{H_a \times D}{H_t \times A}
\]

The overall goodness of hit list \((GH)\) is given as:

Equation 5.4. Goodness of Hit List \((GH)\)

\[
GH = \left(\frac{H_a(3A+H_t)}{4H_tA}\right) \times \left(1 - \frac{H_t-H_a}{D-A}\right)
\]

We examined each of the models for their ability to enrich the hit rate over the actual hit rate of the entire high-throughput screen. The first model employed our potent and low toxicity pharmacophore (Pharma PaLT). The model retrieved 7376 compounds it considered active, however only 20 of those were actually active, affording a poor percent yield of actives. This also afforded a low percent ratio of actives. In the ideal situation, these should be maximized and equal to one another. When they are not, the goodness of hit list suffers. This score ranges from 1 (best) to 0 (worst), and calculates the balance between the maximum yield and maximum percent of actives retrieved.
Secondly, we utilized our potent and toxic pharmacophore (Pharma PaT) to remove any toxic compounds from pharmacophore PaLT (Table 5.3), which afforded a hit list of 7339. However, while this removed 37 compounds, it did not enhance enrichment over the PaLT model, again yielding disappointing results.

Next, we examined 2D calculations, first using a similarity search of greater than 65% similarity to the eleven compounds originally used in our potent and low toxicity model. Although it only retrieved one active compound, the similarity search afforded the best results in terms of enrichment, with 9 times enrichment versus random selection from the library. A QSAR model using the same PaLT compounds was also explored, with an activity cutoff of 10^{-6} M. A second QSAR model removing compounds with toxicity greater than 30% (QSAR PaT (30%)) was also employed. Both yielded slight enrichment of around 3 times over random selection. The 2D methods appeared to actually outperform the 3D methods. This is likely due to our lack of knowledge of the actual binding conformation. We selected our training set from conformationally restricted analogs. The forced rigidity in combination with lacking knowledge regarding the actual binding pose may have further complicated the use of a 3D pharmacophore. Furthermore, the algorithm used for conformational energy minimization may introduce additional error into our 3D model. A study conducted by Venkatraman, et al. arrived at a similar conclusion and prefaced that virtual screening results are strongly influenced by the target family, the structure and conformation of the query, and the types of ligand sets used. While 2D models can be more efficient virtual screening methods, they can nevertheless be problematic. The overall 3D shape is critical for binding interactions with the active site, which cannot be predicted using 2D models. Additionally, only 3D models are well-suited for scaffold hopping for exploration of new chemical space.

Disappointingly, our 3D pharmacophore models did not provide any significant enrichment versus random selection. While our 2D similarity search yielded the best results, it did not achieve a high enough level of enrichment to be useful, i.e. it would not be predicted to select a small enough subset of the CCG collection to make screening cost-effective. In all of our pharmacophore models, we achieved a poor GH score, ranging from 0.02 to 0.05. Therefore, we decided not to perform a virtual screen of the new 100K library housed in the CCG.
Table 5.3. Pharmacophore 3D and 2D Analysis

<table>
<thead>
<tr>
<th></th>
<th>3D Pharma PaLT<sup>a</sup></th>
<th>3D Pharma PaT<sup>b</sup></th>
<th>2D 65%+ Similarity PaLT<sup>c</sup></th>
<th>2D QSAR PaLT (6)<sup>d</sup></th>
<th>2D QSAR PaT (30%)<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hit List(H<sub>l</sub>)</td>
<td>7376</td>
<td>7339</td>
<td>57</td>
<td>3907</td>
<td>3844</td>
</tr>
<tr>
<td>Hit List Actives(H<sub>a</sub>)</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>% Yield Actives(%Y)</td>
<td>0.27</td>
<td>0.27</td>
<td>1.75</td>
<td>0.56</td>
<td>0.55</td>
</tr>
<tr>
<td>% Ratio Actives (%A)</td>
<td>19.42</td>
<td>19.42</td>
<td>0.97</td>
<td>21.36</td>
<td>20.39</td>
</tr>
<tr>
<td>Enrichment (E)</td>
<td>1.43</td>
<td>1.43</td>
<td>9.23</td>
<td>2.96</td>
<td>2.87</td>
</tr>
<tr>
<td>Goodness of Hit (GH)</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

^aApplication of potent and low toxicity pharmacophore, IC₅₀ <15 µM; WST-1 toxicity <10%
^bResults following subtraction of potent and toxic pharmacophores IC₅₀ <15 µM; WST-1 toxicity >60%
^c65% Similarity search using potent and low toxicity pharmacophore, IC₅₀ <15 µM; WST-1 toxicity >10%
^dQSAR model using potent and low toxicity pharmacophore, IC₅₀ <15 µM; WST-1 toxicity <10% with an activity cutoff of 10⁻⁶ M.
^eQSAR model subtracting toxic pharmacophores from potent and low toxicity model with an activity cutoff of 10⁻⁶ M and WST-1 toxicity >30%.

High-throughput Screen

In 2007, a primary high-throughput screen (HTS) similar to the HTS that discovered lead compound 1423⁶² was conducted on a 54,161 compound screening collection. The collection was tested at 10 µM concentration in an SRE.L assay performed at the CCG at the University of Michigan. Due to testing limitations at the time, the primary screening data were not followed up on as completely as is now possible.

Figure 5.9 provides the HTS triage funnel for the 54K screen in our reevaluation of the 2007 data. The primary assay conducted at 10 µM in HEK293 cells afforded 2547 active compounds, which were triaged to eliminate compounds that were luciferase inhibitors, promiscuous, or contained structural alerts to afford 1500 compounds for confirmation. The primary screen was repeated at 10 µM concentration for the 1500 active compounds, which yielded 170 confirmed actives (11.3% confirmation rate). Dose response confirmation was performed on the 170 confirmed actives (original DMSO stock), which provided 107 titrating compounds (62.9% titration rate). Four compounds were also eliminated at this step, as they were found to be luciferase inhibitors. This provided 103 small molecules for follow up.
Due to budgetary constraints, we purchased 61 commercially available fresh powders from ChemDiv. We selected representative compounds from individual clusters to avoid selecting highly similar compounds, maintaining diversity in our analog set. The 61 fresh powder samples were tested in two assays, each at a single dose of 10 µM and 100 µM concentrations using SRE.L and WST-1 assays in transiently transfected PC-3 prostate cancer cells. This secondary assay was performed by Sue Wade in the Neubig laboratory. Compounds with >50% SRE.L inhibition and <20% WST-1 inhibition afforded 30 compounds for follow up dose response. Of these 30 compounds, we selected 3 top compounds with nanomolar potencies for further study. The structures and IC$_{50}$s of the 3 small molecules can be found in Figure 5.10.

![54,161 Compound Screening Collection Diagram](image)

Figure 5.9. High-throughput Screen Triage Funnel

![58146 (390 nM) | 5677 (260 nM) | 86769 (17 nM) Structures](image)

Figure 5.10. Structures of the Top 3 Compounds for Follow Up from High-throughput Screen of 54K Library
We were interested in preliminary elucidation of SAR for the three confirmed actives of greatest interest. The CCG library contained data on compounds that had already been tested in the original HTS SRE.L assay in HEK293 cells at 10 µM with greater than 70% similarity to 58146. Table 5.4 illustrates the compounds previously tested. Analog 58150 removes the meta-methyl and provides 2,4-dichloro groups, which maintains activity. Shortening the tether region 1 carbon, and installing an ester (96396 and 8610) significantly reduces activity, with a longer ester length corresponding with even less activity. Much of the remaining analogs tested are completely inactive and are indicative of the narrow SAR of this series.

Table 5.4. Previously Tested Compounds with Greater than 70% Similarity to 58146

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>% inh SRE.L (10 µM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>58146</td>
<td></td>
<td>91.2</td>
</tr>
<tr>
<td>58150</td>
<td></td>
<td>84.2</td>
</tr>
<tr>
<td>96396</td>
<td></td>
<td>26.2</td>
</tr>
<tr>
<td>8610</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>98080</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>57251</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>96527</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>58218</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>% inh SRE.L (10 μM)a</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>58128</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>96486</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>77601</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>61321</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>80725</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>94779</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>58148</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>59646</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>23366</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>62445</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>57227</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>61317</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>16688</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>61319</td>
<td>[Structure Image]</td>
<td>NAb</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Structure</td>
<td>% inh SRE.L (10 µM)a</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>58292</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>19867</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>20321</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>43678</td>
<td></td>
<td>NAb</td>
</tr>
<tr>
<td>7173</td>
<td></td>
<td>NAb</td>
</tr>
</tbody>
</table>

aRefer to Table 2.1 for assay descriptions

bNo activity

The Neubig laboratory obtained samples from the CCG library for a limited number of analogs for each of the three small molecules and performed an SRE.L/Renilla dual-luciferase assay as well as monitored WST-1 cytotoxicity for each in PC-3 prostate cancer cells. These samples were from a new collection that was not included in the original high-throughput screen. Preliminary SAR for 58146 (Table 5.5) shows that replacing the methyl group with an electron withdrawing, lipophilic chlorine (123851) significantly reduces potency and decreases selectivity over TK-Renilla. Replacement of the 3-methylphenyl with a benzyl moiety (123857) somewhat reduces potency and greatly reduces efficacy. Amazingly, shortening the tether region between the thiol and acid moieties by a single carbon (123860) abolishes activity. No cytotoxicity was observed in the analogs tested.
Table 5.5. Preliminary SAR for CCG-58146

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC_{50} SRE.L^a (µM)</th>
<th>% inh SRE.L^a (0.03, 10 µM)</th>
<th>% inh pRL-TK^a (0.03, 10 µM)</th>
<th>% inh WST-1^a (0.03, 10 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58146^b</td>
<td>![Structure]</td>
<td>0.20</td>
<td>56, 91</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>123851</td>
<td>![Structure]</td>
<td>1.3</td>
<td>30, 84</td>
<td>16, 14</td>
<td>0, 0</td>
</tr>
<tr>
<td>123857</td>
<td>![Structure]</td>
<td>0.58</td>
<td>6, 30</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>123860</td>
<td>![Structure]</td>
<td>NC^c</td>
<td>20, 30</td>
<td>6, 4</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions.
^bN = 2
^cCould not be calculated

Table 5.6 compares a single analog (112019) with compound 5677. Replacement of the methyl group with the chloro group reduces potency slightly, increases efficacy, and has little effect on selectivity at 10 µM. Neither compound shows any cytotoxicity.

Table 5.6. Comparison of 58146 and Analog 112019

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Structure</th>
<th>IC_{50} SRE.L^a (µM)</th>
<th>% inh SRE.L^a (0.03, 10 µM)</th>
<th>% inh pRL-TK^a (0.03, 10 µM)</th>
<th>% inh WST-1^a (0.03, 10 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5677^b</td>
<td>![Structure]</td>
<td>0.12</td>
<td>40, 55</td>
<td>11, 45</td>
<td>0, 0</td>
</tr>
<tr>
<td>112019</td>
<td>![Structure]</td>
<td>0.30</td>
<td>40, 68</td>
<td>0, 49</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

^aRefer to Table 2.1 for assay descriptions
^bN = 1

Preliminary SAR for remaining compound 86769 can be found in Table 5.7. Removal of the methyl group (186414) significantly reduces activity and selectivity. Removal of the chloro group (186447) significantly reduces potency, but improves selectivity versus TK-Renilla. Moving the sulfonamide from the para-position to the meta-position and adding a methyl substituent to the center aromatic ring (186528) is
detrimental to potency and efficacy. As with the other scaffolds, none of the analogs in this series demonstrates cytotoxicity.

Table 5.7. Preliminary SAR for CCG-86769

| Cmpd No | Structure | IC\textsubscript{50} SRE.L (µM)
% inh SRE.L (0.03, 10 µM)	% inh pRL-TK (0.03, 10 µM)	% inh WST-1 (0.03, 10 µM)		
86769b	0.10	40, 62	20, 87	0, 0
186414	2.4	33, 69	16, 97	0, 0
186447	3.1	37, 60	0, 50	0, 0
186528	14	15, 50	39, 88	0, 0

aRefer to Table 2.1 for assay descriptions
bN = 1

Future Direction

The observed SAR for 58146 indicates that modifications can be made to this highly potent structure with retention of activity, but that the SAR is narrow, which can be indicative of a well-defined binding site. As a low molecular weight molecule, it is ideal for further derivatization. The Neubig lab is currently performing functional assays to ensure that the compound is inhibiting Rho-mediated gene transcription and is not a luciferase inhibitor. Our triage should have eliminated this possibility; however before purchasing additional analogs or executing extensive synthesis, we would like to confirm the basis of its activity.
Chapter 6
Conclusions

Despite the well-documented role for the RhoA transcriptional signaling pathway in the progression and metastasis of multiple cancers, there are few chemical inhibitors of the pathway. Much of the effort has focused on modifications of RhoGTPases as well as on the downstream effectors of Rho GTPases, such as ROCK. Targeting ROCK, while showing great promise, fails to target the RhoA pathway in its entirety, as the effector acts through only one portion of the pathway (Figure 1.2).

Previous work by Chris Evelyn indicates that compound 1423 inhibits downstream of RhoA, but distinct from the interaction of the serum response factor (SRF) with the serum response element (SRE). Results suggest that the compound interferes with SRF/MKL1-dependent transcriptional activation; however, the exact mechanism could not be elucidated. Evidence suggests that effects on MKL1/SRF function, such as affecting nuclear translocation/efflux, recruitment, posttranslational modification, or the interaction of MKL with SRF or the transcriptional machinery are likely.62

To our knowledge, 1423 and its analogs are uniquely targeting the RhoA transcriptional signaling pathway by acting on an aspect of MKL1-related function. Furthermore, 1423 and its analogs are the only known compounds specifically targeting the RhoA pathway in this manner. A recent paper has further demonstrated the ability of 1423 to prevent nuclear accumulation of MKL1, and therefore block the stimulation of SRF-dependent transcription. The Patti lab has recently demonstrated that patients with type 2 diabetes (T2D) as well as insulin-resistant subjects with normal insulin levels and a family history (FH+) of T2D maintain increased expression levels of MKL1 and SRF target genes. Furthermore, upregulation of STriated muscle Activator of Rho Signaling (STARS), which activates SRF, was also discovered in these subjects. Upregulation of STARS correlates with insulin resistance, which is often associated with T2D.
Pharmacological inhibition of MKL1-dependent SRF transcriptional activation using 1423 led to increased glucose uptake and glucose tolerance in mice. Specifically targeting MKL1-dependent SRF activation may provide an additional therapeutic avenue for type 2 diabetes.138

There are three significant goals for moving this project forward. The first goal is to identify the protein band discovered using our photoaffinity labeling experiment. Identification of the band could provide a novel target(s) which could lead to identification of the mechanism of action. Due to the modest potency of our probes and the possibility that the target is in low abundance, we will also explore using Stable Isotope Labeling by Amino Acids (SILAC)139 as a more global and sensitive method for detecting the binding target for our compounds. Discovery of the target and/or mechanism of action could allow us to pursue more rational, structure-based drug design.

Second, we would like to identify and optimize a new scaffold. Synthesis of the libraries exploring aromatic modifications provided little improvement in the potency of our analogs. Although analog 203971 demonstrated a modest IC\textsubscript{50} of 6.4 µM, it has shown significant anti-migratory properties in PC-3 prostate cancer cells. Recent evidence has shown that efficacy may be more important than potency in determining the effects on migration (Haak, Neubig, unpublished). However, after synthesizing our small libraries, we feel we have exhausted potential SAR using the current scaffold. We hope that one of our newly identified compounds from the recent HTS follow up will provide a novel more potent lead for optimization.

Finally, we are interested in continued testing of 203971. We are interested in determining the pharmacokinetic parameters as well as the relative bioavailability to determine the feasibility of further \textit{in vivo} exploration. If further \textit{in vivo} testing appears viable, we will explore the metabolic stability of the analog, as well as move into melanoma xenograft studies.
Chapter 7
Experimental

All starting materials were obtained from commercial suppliers and were used without purification. All reactions involving air- or moisture-sensitive compounds were performed under an N₂ atmosphere. NMR spectra were recorded on a Bruker instrument at 500 MHz, Bruker instrument at 300 MHz, or a Varian instrument at 400 MHz for ¹H. Chemical shift values are recorded in δ units (ppm). Mass spectra were recorded on a Waters Corporation LCT Time-of-Flight mass spectrometer or on an Agilent Technologies LC/MS system using a 1200 Series LC and 6130 Quadrupole LC/MS (Agilent Technologies, Santa Clara, CA, USA) in positive mode with 5–10 µL injection volume and a linear gradient of 10% Solvent D (0.02% TFA and 0.1% acetic acid in acetonitrile) in Solvent C (0.02% TFA and 0.1% acetic acid in water) to 90% Solvent D in Solvent C over 6 min with a hold at 90% for 7 min, as indicated. HPLC retention times were recorded using an Agilent 1100 Series employing an Agilent ZORBAX Eclipse Plus C18 column (4.6 x 75 mm, 3.5 µm). Retention times were collected using Gradient A (10-90% Acetonitrile/Water over 13 minutes) or Gradient B (50-90% Acetonitrile/Water over 13 minutes) as indicated.

General Procedure for Acylation of Amine (Procedure A). Amine (1.42 mmol) was dissolved in 2M NaOH (2.36 mL) and was treated with desired acyl chloride (1.18 mmol). The reaction was allowed to stir overnight at room temperature. The resulting solution was washed with DCM (15 mL), and the aqueous layer was acidified to pH 2 using 2M HCl. The aqueous layer was extracted with EtOAc (2 x 20 mL). The combined extracts were washed with brine (20 mL), dried (MgSO₄), and concentrated to afford title compounds that were used without further purification unless indicated.
General Procedure for Acylation of Amine (Procedure B). Dichloromethane (11.2 mL) was added to a flask containing desired amine (1.18 mmol) and was treated with desired acyl chloride (1.18 mmol) and TEA (1.18 mmol). The mixture was allowed to stir at room temperature overnight. The mixture was concentrated and then partitioned between 2M HCl (10 mL) and EtOAc (10 mL). The aqueous layer was extracted a second time with EtOAc (10 mL). The organics were combined, washed with brine (20 mL), dried (MgSO₄), and concentrated to afford title compounds that were used without further purification unless indicated.

General Procedure for Amide Coupling (Procedure C). Anhydrous THF (0.3 M) was added to a flask containing starting acid (1.18 mmol), and was treated with corresponding amine (1.18 mmol), followed by HOBt (1.42 mmol), EDC (1.42 mmol), and DIPEA (1.42 mmol). The solution was allowed to stir overnight at room temperature and was then diluted with EtOAc (15 mL) and was washed with saturated NaHCO₃ (20 mL), followed by 1M HCl (20 mL) and then brine (20 mL). The organics were dried (MgSO₄) and concentrated to afford crude product.

General Procedure for Amide Coupling (Procedure D). Anhydrous DCM (1.0 mL) was added to flask containing aniline (0.10 mmol) and was treated with EDC (0.15 mmol) followed by DMAP (0.15 mmol), and corresponding acid (0.11 mmol). The solution was allowed to stir overnight at room temperature and was then diluted with DCM (4 mL) and was washed with 1M HCl (2.5 mL), followed by saturated NaHCO₃ (2.5 mL). The organics were dried (MgSO₄) and concentrated to afford crude product.

Chapter 2

3-(3,5-bis(trifluoromethyl)benzamido)propanoic acid (2a). Prepared according to Procedure A to afford 0.384 g (1.17 mmol, 99% yield) of title compound as a white crystalline solid. TOF MS-ESI m/z [M-H]⁻ 328.1. ¹H NMR (500 MHz, DMSO-d₆): δ 12.30 (bs, 1H), 9.09-9.05 (m, 1H), 8.49 (s, 2H), 8.32 (s, 1H), 3.53-3.45 (m, 2H), 2.58-2.53 (m, 2H).
N-((3-(4-chlorobenzyl)amino)-3-oxopropyl)-3,5-bis(trifluoromethyl)benzamide (203009). Compound was prepared using 2a (0.104 g, 0.316 mmol) and 4-Chlorobenzylamine (0.049, 0.348 mmol) according to Procedure C. Crude material was purified using column chromatography (80-90% EtOAc/Hex) to afford 0.084 g (0.186 mmol, 59% yield) of title compound as a white solid. TLC Rf: (80% EtOAc/Hex): 0.24. TOF MS-ESI m/z [M+H]+ 453.0; [M+Na] 474.9. HPLC (gradient A): ret time = 7.25 min; purity = 99%. 1H NMR (500 MHz, DMSO) δ 9.12 (t, J = 5.6 Hz, 1H), 8.49 (s, 2H), 8.33 (s, 1H), 7.26-7.20 (m, 4H), 4.25 (d, J = 5.9 Hz, 2H), 3.54 (q, J = 6.5 Hz, 2H), 2.52-2.46 (m, 2H).

N-((2-(4-chlorophenyl)thiazol-4-yl)methyl)-3,5-bis(trifluoromethyl)benzamide (102445). Prepared according to Procedure B using [2-(4-Chlorophenyl)-1,3-thizol-4-yl]methanamine hydrochloride and 2 eq of TEA. Reaction was re-dissolved in EtOAc (10 mL) and washed with saturated NaHCO₃ (10 mL) followed by brine (10 mL). Organic layer was dried (MgSO₄) and concentrated to afford 0.153 g (0.329 mmol, 89% yield) of title compound as a yellow solid. TOF MS-ESI m/z [M+H]+ 464.9; [M+Na] 486.9. HPLC (gradient A): ret time = 8.69 min; purity = 99%. 1H NMR (500 MHz, DMSO-d₆): δ 9.6 (t, J = 5.6 Hz, 1H), 8.58 (s, 2H), 8.35 (s, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.64 (s, 1H), 7.57 (d, J = 8.4 Hz, 2H), 4.68 (d, J = 5.6 Hz, 2H).

N-(3-(4-chlorophenoxy)propyl)-3,5-bis(trifluoromethyl)benzamide (102447). Prepared according to Procedure B using 3-(4-chlorophenoxy)propan-1-amine hydrochloride and 2 eq of TEA to afford 0.471 g (1.11 mmol, 94% yield) of title compound as a yellow solid. TOF MS-ESI m/z [M+H]+ 426.0; [M+Na] 448.0. HPLC (gradient A): ret time = 8.51 min; purity = 99%. 1H NMR (500 MHz, DMSO-d₆): δ 9.05 (t, J = 5.5 Hz, 1H), 8.49 (s, 2H), 8.32 (s, 1H), 7.32 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 4.07-4.03 (m, 2H), 3.48 (dd, J = 12.6 Hz, 6.5 Hz, 2H), 2.01 (p, J = 6.4 Hz, 2H).

*N*₁-(4-chlorophenyl)propane-1,3-diamine (5). A solution of 4-Chloroaniline (0.536 g, 4.20 mmol) in toluene (4.2 mL) was treated with 3-Bromopropylamine hydrobromide (4) (0.306 g, 1.40 mmol) and was heated at reflux for 30 minutes. After cooling, precipitate
was collected and treated with aqueous 2M NaOH (5 mL), and the aqueous layer was extracted with DCM (2 x 20 mL). Combined extracts were washed with water (5 mL), dried (MgSO₄), and concentrated to afford a light brown oil. Crude material was purified by flash chromatography (0-10% Methanolic ammonia/DCM) to afford 0.099 g (0.536 mmol, 38% yield) of title compound as a yellow oil. TLC Rf (10% Methanolic ammonia/DCM): 0.39. ¹H NMR (500 MHz, DMSO-d₆): 7.14-7.10 (m, 2H), 6.56-6.52 (m, 2H), 3.19 (t, J = 6.8 Hz, 2H), 2.87 (t, J = 6.7 Hz, 2H), 1.78 (p, J = 6.7 Hz, 2H), 1.50 (bs, 2H).

N-(3-((4-chlorophenyl)amino)propyl)-3,5-bis(trifluoromethyl)benzamide (101425).

Prepared using 5 according to Procedure C. Crude material was purified by flash chromatography (33% EtOAc/Hex) to afford 0.073 g (0.172 mmol, 45% yield) of title compound as a light brown solid. TLC Rf (33% EtOAc/Hex): 0.38. TOF MS-ESI m/z [M+H]⁺ 425.1; [M+Na] 447.1. HPLC (gradient A): ret time = 7.60 min; purity = 99%. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (s, 1H), 7.21-7.11 (m, 2H), 6.74-6.66 (m, 1H), 6.64-6.56 (m, 2H), 3.67 (q, J = 6.4 Hz, 2H), 3.29 (t, J = 6.3 Hz, 2H), 1.98 (p, J = 6.3 Hz, 2H).

N-(3-((4-chlorophenyl)amino)propyl)-3,5-bis(trifluoromethyl)benzamide hydrochloride (101425 B2). Compound 5 (0.104 g, 0.245 mmol) was dissolved in a 1.05 M methanolic HCl solution (2 mL), and the reaction was allowed to stir at room temperature for 4 hours. The solvent was removed in vacuo and the resulting solid was sonicated in ether and dried in vacuo to afford 0.111 g (0.241 mmol, 98% yield) of title compound as a white solid. Elemental Analysis: C = 46.62%, H = 3.24%, N = 5.94%, consistent with desired HCl salt. HPLC (gradient A): ret time = 7.61 min; purity = 97%. TOF MS-ESI m/z [M+H]⁺ 424.9. ¹H NMR (500 MHz, CDCl₃): δ 11.35 (s, 2H), 8.61 (s, 1H), 8.49 (s, 2H), 8.01 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 3.67 (s, 2H), 3.40 (s, 2H), 2.29 (s, 2H).

N¹-(3,5-bis(trifluoromethyl)benzyl)-N³-(4-chlorophenyl)propane-1,3-diamine (102532). Compound 100594 (0.050 g, 0.114 mmol) was dissolved in anhydrous THF (5.0 mL), cooled to 0 °C, and treated with Borane-THF complex (0.400 mL, 4.08 mmol).
Reaction was then refluxed for 14 h and was then cooled to room temperature and quenched by the addition of 1N HCl (15 mL). The mixture was refluxed for 1 h and was cooled to 0 °C. The pH was adjusted to 10 using 2M NaOH and was extracted with EtOAc (3 x 25 mL). The combined organics were washed with brine (25 mL), dried (MgSO₄), and concentrated. Crude material was purified using flash chromatography (1-5% Methanolic ammonia/DCM) to afford 0.027 g (0.066 mmol, 58% yield) of title. TLC Rf (1% Methanolic ammonia/DCM): 0.11. TOF MS-ESI m/z [M+H]+ 410.9. HPLC (gradient A): ret time = 6.32 min; purity = 96%. ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 2H), 7.78 (s, 1H), 7.17-7.05 (m, 2H), 6.57-6.45 (m, 2H), 3.92 (s, 2H), 3.20 (t, J = 6.6 Hz, 2H), 2.79 (t, J = 6.5 Hz, 2H), 1.83 (p, J = 6.5 Hz, 2H).

3-bromo-N-(4-chlorophenyl)propanamide (7). ¹⁴⁰ 4-Chloroaniline (0.151 g, 1.18 mmol) was dissolved in hot acetonitrile (5.60 mL). The solution was treated with 3-bromopropionyl chloride (0.183 mL, 1.82 mmol) in acetonitrile (1.0 mL) over several minutes. The reaction was heated at reflux for 3h. The reaction was cooled, concentrated, and re-dissolved in EtOAc (20 mL). The organic layer was washed with saturated NaHCO₃ (20 mL) followed by 1N HCl (20 mL) and then brine (20 mL). It was then dried (MgSO₄) and concentrated to afford 0.291 g (1.11 mmol, 94% yield) of title compound as a white solid. ¹H NMR (500 MHz, DMSO-d₆): δ 10.20 (s, 1H), 7.6 (d, J = 8.9 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H), 3.73 (t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H).

3-((3,5-bis(trifluoromethyl)benzyl)amino)-N-(4-chlorophenyl)propanamide (102585). ¹⁴⁰ Compound 7 was dissolved in acetonitrile (0.65 mL) and was treated with 3,5-bis(trifluoromethyl)benzyl amine (0.171 g, 0.704 mmol). The solution was heated at reflux for 6 hour and 40 minutes. Upon cooling, the solution was diluted with water (5 mL), and the pH was adjusted to 10. The solution was extracted with DCM (3 x 10 mL), and the combined extracts were washed with saturated NaHCO₃ (10 mL) followed by brine (10 mL). Organics were dried (MgSO₄) and concentrated to afford 0.084 g (0.198 mmol, 104% yield). TOF MS-ESI m/z [M+H]+ 424.9; [M+Na] 446.9. HPLC (gradient A): ret time = 6.18 min; purity = 95%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.56 (s, 1H),
7.78 (s, 3H), 7.44 (d, $J = 8.7$ Hz, 2H), 7.27 (d, $J = 8.7$ Hz, 2H), 3.96 (s, 2H), 3.11-2.94 (m, 2H), 2.62-2.48 (m, 2H).

3,5-bis(trifluoromethyl)benzaldehyde oxime (9). Hydroxylamine hydrochloride (0.073 g, 1.05 mmol) was dissolved in Methanol (1.0 mL) and was treated with 3,5-Bis(trifluoromethyl)benzaldehyde (0.165 ml, 1.00 mmol) added dropwise. The reaction mixture was refluxed for 5 hours, was allowed to cool to room temperature, and was poured into ice water. Formed precipitate was filtered and washed with water. The solid was then dried *in vacuo* to afford 0.176 g (0.684 mmol, 68% yield) of title compound as a white solid. Compound was used without further purification. 1H NMR (500 MHz, DMSO-d_6): δ 11.85 (s, 1H), 8.8 (s, 1H), 8.25 (s, 2H), 8.12 (s, 1H).

N-(4-chlorophenyl)but-3-enamide. But-3-enoic acid (0.170 ml, 2.00 mmol) was dissolved in dichloromethane (3.20 mL) and placed under N$_2$. DMAP (0.008 g, 0.065 mmol) and 4-chloroaniline (0.510 g, 4.00 mmol) were added, and the mixture was cooled to 0-5 °C. EDC (0.383 g, 2.00 mmol) was added and the solution was stirred for 10 minutes. The solution then stirred at RT for an additional 6 hours. After stirring, DCM (10 mL) was added. Organics were washed with 10% HCl (10 mL) followed by saturated NaHCO$_3$ (10 mL). Reaction was concentrated to yield 0.343 g (1.75 mmol, 88% yield) of title compound as an off-white solid. 1H NMR (500 MHz, DMSO-d_6): δ 10.11 (s, 1H), 7.65-7.60 (m, 2H), 7.39-7.30 (m, 2H), 6.03-5.88 (m, 1H), 5.22-5.11 (m, 2H), 3.13 (dd, $J = 6.9$ Hz, 0.9 Hz, 2H).

2-(3-(3,5-bis(trifluoromethyl)phenyl)-4,5-dihydroisoxazol-5-yl)-N-(4-chlorophenyl)acetamide (203003). Compound 9 (0.075 g, 0.292 mmol) was added to a stirring solution of N-(4-chlorophenyl)but-3-enamide (0.039 g, 0.200 mmol) in DCM (2.1 ml), and the reaction was cooled to 0 °C. Sodium hypochlorite (1.134 g, 0.800 mmol) was added dropwise over 20 minutes and the resulting mixture was stirred and allowed to warm to ambient temperature. The solution continued to stir overnight. Water (5 mL) was added to the solution, and the product was extracted using DCM (3 x 5 mL). Combined organics were dried (MgSO$_4$) and concentrated to afford 0.094 g (0.209 mmol, 104%
yield) of title compound as an off-white solid. No further purification was performed.

TOF MS-ESI m/z [M+H]^+ 451.0; [M+Na] 473.0. HPLC (gradient B): ret time = 6.37 min; purity = 82%. ^1^H NMR (500 MHz, DMSO-d$_6$): δ 10.22 (s, 1H), 8.28 (s, 2H), 8.24 (s, 1H), 7.63 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 5.25-5.17 (m, 1H), 3.77-3.68 (m, 1H), 3.46-3.39 (m, 1H), 2.85-2.69 (m, 2H).

1-azido-3,5-bis(trifluoromethyl)benzene (15).^{141}

N-(4-chlorophenyl)pent-4-ynamide (11). Compound was prepared according to Procedure C using 1.1 eq of 4-Chloroaniline to afford 0.129 g (0.621 mmol, 83% yield) of title compound as a tan solid. TOF MS-ESI m/z [M+Na] 230.0. ^1^H NMR (500 MHz, CDCl$_3$): δ 7.47 (d, J = 8.8 Hz, 2H), 7.42 (s, 1H), 7.28 (d, J = 8.8 Hz, 2H), 2.68-2.55 (m, 4H), 2.08-2.06 (m, 1H).

3-(1-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)-N-(4-chlorophenyl)propanamide (203011).^{76} Compound 15 (0.050 g, 0.196 mmol) and compound 11 (0.041 g, 0.197 mmol) were suspended in a 1:1 mixture of t-Butanol (0.392 mL) and Water (0.392 mL). L-Ascorbic acid (0.020 ml, 0.020 mmol) was added, followed by copper(II) sulfate pentahydrate (6.53 µl, 1.96 µmol). The heterogeneous mixture was stirred vigorously overnight and was then diluted with water (2 mL), cooled in ice, and the brown solid was collected by filtration. The precipitate was washed with cold water (2 x 10 mL) and was dried in vacuo. Crude material was purified using column chromatography (35-50% EtOAc/Hex) to afford 0.017 g (0.037 mmol, 19% yield) of title compound as a colorless oil. TLC R$_f$: (50% EtOAc/Hex): 0.30. TOF MS-ESI m/z [M+H]^+ 463.0; [M+Na] 484.9. ^1^H NMR (500 MHz, CDCl$_3$): δ 8.21 (s, 2H), 7.99 (s, 1H), 7.93 (bs, 1H), 7.65 (bs, 1H), 7.45 (d, J = 8.8 Hz, 2H), 7.29-7.25 (m, 2H), 3.32-3.19 (m, 2H), 2.99-2.86 (m, 2H).

N-(but-3-yn-1-yl)-3,5-bis(trifluoromethyl)benzamide (13). 3-Butyn-1-amine hydrochloride (12) (0.053 g, 0.500 mmol) was suspended in DCM (5.0 mL) and was treated with 3,5-bis(trifluoromethyl)benzoyl chloride (0.099 ml, 0.550 mmol), followed
by triethylamine (0.150 ml, 1.07 mmol). The reaction was stirred vigorously overnight at room temperature. The yellow solution was concentrated in vacuo to afford 0.150 g (0.485 mmol, 97% yield) of title compound as a yellow oil. The compound was used without further purification. TOF MS-ESI m/z [M+H]+ 463.0; [M+Na] 484.9. ¹H NMR (500 MHz, CDCl₃): δ 8.23 (s, 2H), 8.02 (s, 1H), 6.67 (s, 1H), 3.70-3.63 (m, 2H), 2.62-2.54 (m, 2H), 2.11-2.07 (m, 1H).

1-azido-4-chlorobenzene (17).¹⁴²

N-(2-(1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)ethyl)-3,5-bis(trifluoromethyl)benzamide (203017).⁷⁶ Compound 17 (0.023 g, 0.150 mmol) and compound 13 (0.046 g, 0.150 mmol) were suspended in a 1:1 mixture of t-Butanol (0.300 mL) and Water (0.300 mL). L-Ascorbic acid (0.015 ml, 0.015 mmol) was added, followed by Copper(II) sulfate pentahydrate (0.010 mL, 0.003 mmol). The heterogeneous mixture was stirred vigorously for 48 h and was then diluted with water (2 mL), cooled in ice, and the brown solid was collected by filtration. The precipitate was washed with cold water (2 x 10 mL) and was dissolved in EtOAc. The filtrate was extracted with EtOAc (2 x 2 mL) and the organics were combined with the dissolved precipitate. Combined organics were washed with brine (5 mL), dried (MgSO₄) and concentrated in vacuo. Crude material was purified using a Biotage (30-60% EtOAc/Hex) to afford 0.006 g (0.037 mmol, 28% yield) of title compound as an off-white solid. TLC Rf (50% EtOAc/Hex): 0.34. TOF MS-ESI m/z [M+H]+ 463.0; [M+Na] 485.0. HPLC (gradient A): ret time = 7.83 min; purity = 99%. ¹H NMR (500 MHz, CDCl₃): δ 8.29 (s, 2H), 8.00 (s, 1H), 7.84 (s, 1H), 7.70-7.61 (m, 2H), 7.55 (s, 1H), 7.59-7.44 (m, 3H), 3.96-3.91 (m, 2H), 3.17-3.12 (m, 2H).

4-(3,5-bis(trifluoromethyl)benzamido)benzoic acid (2b). Prepared according to Procedure B to afford 0.432 g (1.15 mmol, 98% yield) of title compound as a white solid. TOF MS-ESI m/z [M-H]- 375.9. ¹H NMR (500 MHz, DMSO-d₆): δ 12.81 (s, 1H), 10.91 (s, 1H), 8.64 (d, J = 12.2 Hz, 2H), 8.65-8.40 (m, 1H), 8.00-7.90 (m, 4H).
N-(4-((4-chlorophenyl)carbamoyl)phenyl)-3,5-bis(trifluoromethyl)benzamide (101329). Prepared using 2b according to Procedure C. Crude material was triturated with EtOAc to afford 0.201 g (0.413 mmol, 36% yield) of title compound as a light yellow solid. TLC R_f (50% EtOAc/Hex): 0.62. TOF MS-ESI m/z [M+H]^+ 487.0; [M+Na] 509.0. HPLC (gradient A): ret time = 8.46 min; purity = >95%. ^1H NMR (500 MHz, DMSO) δ 10.9 (s, 1H), 10.5 (s, 1H), 8.65 (s, 2H), 8.2 (s, 1H), 8.11-8.01 (m, 2H), 8.01-7.91 (m, 2H), 7.90-7.81 (m, 2H), 7.51-7.37 (m, 2H).

3-(3,5-bis(trifluoromethyl)benzamido)benzoic acid (2c). Prepared according to Procedure B to afford 0.429 g (1.14 mmol, 96% yield) of title compound as a white solid. TOF MS-ESI m/z [M-H]^- 375.9. ^1H NMR (500 MHz, DMSO-d_6): δ 10.81 (s, 1H), 8.66 (s, 2H), 8.39-8.38 (m, 2H), 8.08 (d, J = 7.5 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.55-7.45 (m, 1H).

N-(3-((4-chlorophenyl)carbamoyl)phenyl)-3,5-bis(trifluoromethyl)benzamide (101343). Prepared using 2c according to Procedure C. Crude material was purified using Combiflash (33-66% EtOAc/Hex) to afford 0.222 g (0.437 mmol, 38% yield) of title compound as a brown solid. TLC R_f (50% EtOAc/Hex): 0.66. TOF MS-ESI m/z [M+H]^+ 487.0; [M+Na] 509.0. HPLC (gradient A): ret time = 8.44 min; purity = >95%. ^1H NMR (500 MHz, DMSO-d_6): δ 10.86 (s, 1H), 8.78 (s, 2H), 8.31-8.28 (m, 1H), 8.08 (s, 1H), 7.93-7.89 (m, 1H), 7.79-7.77 (m, 1H), 7.64-7.60 (m, 1H).

2-(3,5-bis(trifluoromethyl)phenyl)-4H-benzo[d][1,3]oxazin-4-one (20). Prepared according to Procedure C. Desired product was actually N-(2-((4-chlorophenyl)carbamoyl)phenyl)-3,5-bis(trifluoromethyl)benzamide. Crude material was triturated with DCM to afford 0.103 g of title compound as a white solid. ^1H NMR (500 MHz, DMSO-d_6): δ 8.78 (s, 2H), 8.31-8.28 (m, 1H), 8.08 (s, 1H), 7.93-7.89 (m, 1H), 7.79-7.77 (m, 1H), 7.64-7.60 (m, 1H).
N-(2-((4-chlorophenyl)carbamoyl)phenyl)-3,5-bis(trifluoromethyl)benzamide (101433). Compound 20 (0.050 g, 0.139 mmol) and 4-Chloroaniline (0.035 g, 0.278 mmol) were added to a tube and were treated with DMAP (0.017 g, 0.139 mmol) dissolved in Pyridine (1.0 mL) and stirring began. Additional Pyridine (1.0 mL) was added, and solution was heated to 80 °C for 34 h. Solution was then acidified to pH ~2 using conc. HCl. Resulting white solid was filtered and then washed with water. Crude material was purified using flash chromatography (33% EtOAc/Hex) to afford 0.036 g (0.074 mmol, 53% yield) of title compound as a white solid. TOF MS-ESI m/z [M+Na] 509.0. HPLC (gradient A): ret time = 9.35 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): δ 11.27 (s, 1H), 10.59 (s, 1H), 8.49 (s, 2H), 8.40 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.65-7.61 (m, 1H), 7.42-7.36 (m, 3H).

N-(3-(5-chloroindolin-1-yl)-3-oxopropyl)-3,5-bis(trifluoromethyl)benzamide (102443). Prepared using 2a according to Procedure C. Crude material was triturated with EtOAc to afford 0.034 g (0.073 mmol, 7% yield) of title compound as a white solid. TOF MS-ESI m/z [M+H]+ 465.0; [M+Na] 487.0. HPLC (gradient A): ret time = 8.10 min; purity = 99%. 1H NMR (500 MHz, DMSO-d6): δ 11.27 (s, 1H), 10.59 (s, 1H), 8.49 (s, 2H), 8.40 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.65-7.61 (m, 1H), 7.42-7.36 (m, 3H).

N-((1R,2S)-2-((4-chlorophenyl)carbamoyl)cyclopentyl)-3,5-bis(trifluoromethyl)benzamide (102526). Prepared using 2d according to Procedure C. Crude material was triturated with DCM to afford 0.085 g (0.178 mmol; 35% yield) of title compound as a white solid. TOF MS-ESI m/z [M+Na] 509.0. HPLC (gradient A): ret time = 9.35 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): δ 12.0 (s, 1H), 8.81 (d, J = 7.9 Hz, 1H), 8.44 (s, 2H), 8.31 (s, 1H), 4.65-4.52 (m, 1H), 3.02-2.95 (m, 1H), 2.09-1.74 (m, 5H), 1.62-1.46 (m, 1H).
title compound as a white solid. MS-ESI m/z [M+Na] 500.0. HPLC (gradient A): ret time = 8.16 min; purity = 99%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): \(\delta\) 9.96 (s, 1H), 8.83 (d, \(J = 8.2\) Hz, 1H), 8.21 (s, 1H), 8.21 (s, 1H), 8.19 (s, 2H), 7.50-7.47 (m, 2H), 7.21-7.17 (m, 2H), 4.76-4.64 (m, 1H), 3.15 (q, \(J = 7.8\) Hz, 1H), 2.12-1.78 (m, 5H), 1.59-1.49 (m, 1H).

2-(1-(3,5-bis(trifluoromethyl)benzoyl)piperidin-2-yl)acetic acid (2e). 2-(piperidin-2-yl)acetic acid hydrochloride (0.259 g, 1.44 mmol) was added to a flask, followed by 2M NaOH (2.4 ml) and dichloromethane (2.4 ml). The reaction mixture was stirred vigorously, and 3,5-bis(trifluoromethyl)benzoyl chloride (0.216 ml, 1.20 mmol) was added via syringe. The reaction mixture was stirred vigorously overnight. After stirring overnight the DCM layer was removed and aqueous layer was acidified to ~pH 2 and was extracted using EtOAc (2 x 20 mL). The combined organics were washed with brine (20 mL), dried (MgSO\(_4\)), and were concentrated. Crude material was purified by flash chromatography (4:6:0.5 EtOAc/Hex/AcOH) to afford 0.091 g (0.237 mmol, 20% yield) of title compound as a yellow oil. TLC R\(_f\) (4:6:1 EtOAc/Hex/AcOH): 0.30. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 11.61 (s, 1H), 7.92 (s, 1H), 7.85 (s, 2H), 5.28-2.48 (m, 5H), 1.91-1.40 (m, 6H).

2-(1-(3,5-bis(trifluoromethyl)benzoyl)piperidin-2-yl)-N-(4-chlorophenyl)acetamide (203001). Prepared using 2e according to Procedure C. Reaction molarity was 0.24 M, and reaction was diluted with EtOAc (10 mL), and washing steps utilized 15 mL each. Crude material was purified using flash chromatography (1-1.5% Methanolic ammonia/DCM) to afford 0.030 g (0.059 mmol, 25% yield) of title compound as a yellow oil. TLC R\(_f\) (1.5% Methanolic ammonia/DCM): 0.21. HPLC (gradient A): ret time = 8.11 min; purity = 99%. TOF MS-ESI m/z [M+Na] 514.9. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.88 (s, 1H), 7.93 (s, 1H), 7.78 (s, 2H), 7.51 (d, \(J = 7.8\) Hz, 2H), 7.23 (d, \(J = 8.6\) Hz, 2H), 3.48-3.40 (m, 1H), 3.33-3.22 (m, 1H), 3.06-2.94 (m, 1H), 2.80-2.63 (m, 1H), 1.94-1.44 (m, 6H).

Piperidin-4-one, TFA salt (21a). tert-Butyl 4-oxopiperidine-1-carboxylate (0.448 g, 2.25 mmol) was dissolved in DCM (17.4 mL), cooled to 0 °C, and treated with TFA (8.6
mL, 112 mmol). Reaction was allowed to stir overnight and was concentrated to afford 0.602 g (2.82 mmol, 126% yield) of title compound as a yellow oil. 1H NMR (500 MHz, DMSO-d_6): δ 9.12 (bs, 2H), 3.44 (s, 4H), 2.60-2.53 (m, 4H).

1-(3,5-bis(trifluoromethyl)benzoyl)piperidin-4-one (22). Compound 21a (0.233 g, 1.10 mmol) was dissolved in DCM (2.2 mL) and was treated with 3,5-bis(trifluoromethyl)benzoyl chloride (0.242 mL, 1.33 mmol) and TEA (0.460 mL, 3.30 mmol). The reaction was stirred overnight at room temperature. Mixture was then diluted with DCM (2.0 mL) and was washed with saturated NaHCO$_3$ (20 mL) followed by aqueous 1N HCl (20 mL) and then brine (20 mL). Organic layer was dried (MgSO$_4$) and concentrated. Crude material was purified by flash chromatography (50% EtOAc/Hex) to afford 0.109 g (0.321 mmol, 29% yield) of title compound as a yellow oil. TLC R_f (50% EtOAc/Hex): 0.36. 1H NMR (500 MHz, DMSO-d_6): δ 7.99 (s, 1H), 7.69 (s, 2H), 4.13-3.65 (m, 4H), 2.75-2.40 (m, 4H).

(3,5-bis(trifluoromethyl)phenyl)(4-(hydroxyimino)piperidin-1-yl)methanone (23). To a solution of 22 (0.345 g, 1.02 mmol) in pyridine (2.8 mL) was added molecular sieves (3Å, 8-12 mesh, 0.34 g), and the mixture was stirred at room temperature for 10 minutes, followed by the addition of hydroxylamine hydrochloride (0.177 g, 2.55 mmol). The reaction was allowed to stir overnight at room temperature. Reaction mixture was filtered through celite and was rinsed with additional pyridine. The filtrate was diluted with water (10 mL) and was extracted with EtOAc (30 mL). Organic layer was dried (MgSO$_4$) and concentrated to afford 0.190 g (0.536 mmol, 53% yield) of title compound as a white solid. 1H NMR (500 MHz, CDCl$_3$): δ 7.97 (s, 1H), 7.91 (s, 2H), 3.89 (bs, 2H), 3.53 (bs, 2H), 2.81 (bs, 1H), 2.66 (bs, 1H), 2.56 (bs, 1H), 2.38 (bs, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-1,4-diazepan-5-one (24). Compound 23 (0.190 g, 0.536 mmol) was suspended in acetone (2.3 ml) and was treated with sodium carbonate (0.171 g, 1.61 mmol) in water (0.531 ml), and the mixture was stirred for 10 minutes. A solution of p-toluenesulfonyl chloride (0.153 g, 0.805 mmol) in acetone (0.574 ml) was added slowly while stirring. The mixture stirred for 3 hours. The acetone was then
removed from the mixture, and additional water (10 mL) was added. The aqueous mixture was extracted with dichloromethane (3 x 20 mL). Combined organics were dried (MgSO$_4$) and concentrated. Crude material was purified by flash chromatography (5% Methanolic ammonia/DCM) to afford 0.116 g (0.327 mmol, 61% yield) of title compound as a pale yellow solid. TLC R_f: (5% Methanolic ammonia/DCM): 0.21. TOF MS-ESI m/z [M+H]$^+$ 355.0; [M+Na] 377.0. 1H NMR (500 MHz, CDCl$_3$) δ 7.98 (s, 1H), 7.87 (s, 2H), 6.25 (s, 1H), 4.10-3.20 (m, 6H), 2.86-2.54 (m, 2H).

1-(3,5-bis(trifluoromethyl)benzoyl)-4-(4-chlorophenyl)-1,4-diazepan-5-one (203005).80,144 1-chloro-4-iodobenzene (0.239 g, 1.00 mmol) was dissolved in dioxane (1.0 mL) and was treated with 24 (0.027 g, 0.076 mmol), Copper(I) iodide (3.0 mg, 0.016 mmol), cesium carbonate (0.048 g, 0.147 mmol), and N,N-dimethylethylenediamine (1.7 µl, 0.016 mmol). The tube was evacuated and backfilled with nitrogen two times. The reaction was then heated to 100 °C and capped. The reaction was allowed to stir at 100 °C for 24 hours. The mixture was allowed to cool to room temperature and was filtered through a 2 x 0.5 cm pad of silica gel eluting with 10 mL of ethyl acetate. The EtOAc was evaporated. Crude material was purified using column chromatography (50-66% EtOAc/Hex) to afford 0.017 g (0.037 mmol, 48% yield) of title compound as a colorless oil. TLC R_f: (66% EtOAc/Hex): 0.29. TOF MS-ESI m/z [M+H]$^+$ 465.0; [M+Na] 487.0. HPLC (gradient A): ret time = 7.40 min; purity = 99%. 1H NMR (500 MHz, CDCl$_3$): δ 7.99 (s, 1H), 7.90 (s, 2H), 7.37 (d, J = 6.2 Hz, 2H), 7.15 (bs, 2H), 4.20-3.55 (m, 6H), 3.06-2.78 (m, 2H).

tert-butyl 3-((4-chlorophenyl)carbamoyl)pyrrolidine-1-carboxylate. Prepared using N-Boc-β-proline (0.108 g, 0.500 mmol) and 4-chloroaniline (0.070 g, 0.550 mmol) according to Procedure C to afford 0.129 g (0.397 mmol, 79% yield) of title compound as an amber oil. Crude material was used without any further purification. TOF MS-ESI m/z [M+Na] 347.1. 1H NMR (500 MHz, CDCl$_3$): δ 7.49 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H), 3.78-3.49 (m, 3H), 3.45-3.33 (m, 1H), 3.00 (s, 1H), 2.36-2.11 (m, 2H), 1.49 (s, 9H).
N-(4-chlorophenyl)pyrrolidine-3-carboxamide. tert-butyl 3-((4-chlorophenyl)carbamoyl)pyrrolidine-1-carboxylate (0.129 g, 0.397 mmol) was dissolved in dichloromethane (3.45 ml). The solution was then cooled to 0 °C, and trifluoroacetic acid (1.04 ml, 13.50 mmol) was added dropwise. The solution stirred at room temperature for 2 hours and then the solvent was removed *in vacuo* to afford 0.050 g (0.223 mmol, 56% yield) of title compound as a sticky brown oil. 1H NMR (500 MHz, CDCl$_3$): δ 9.37 (s, 1H), 8.53 (s, 1H), 7.84 (s, 1H), 7.45-7.40 (m, 2H), 7.35-7.28 (m, 2H), 3.75-3.63 (m, 2H), 3.60-3.45 (m, 3H), 2.55-2.42 (m, 1H), 2.40-2.30 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(4-chlorophenyl)pyrrolidine-3-carboxamide (203015). Compound was prepared using N-(4-chlorophenyl)pyrrolidine-3-carboxamide (0.050 g, 0.148 mmol), 3,5-bis(trifluoromethyl)benzoyl chloride (0.029 mL, 0.162 mmol), and triethylamine (0.046 mL, 0.325 mmol) according to Procedure B. Crude material was purified using a Biotage (45% EtOAc/Hex) to afford 0.018 g (0.039 mmol, 26% yield) of title compound as a clear oil. TOF MS - ESI m/z [M+H]$^+$ 465.0; [M+Na] 486.9. HPLC (gradient A): ret time = 7.69 min; purity = 99%. 1H NMR (500 MHz, CDCl$_3$): δ 8.27-8.08 (m, 1H), 8.03-7.98 (m, 2H), 7.97-7.93 (m, 1H), 7.48 (d, J = 8.6, 1H), 7.43 (d, J = 8.6, 1H), 7.30-7.20 (m, 2H), 4.03-3.45 (m, 4H), 3.23-3.04 (m, 1H), 2.41-2.28 (m, 1H), 2.26-2.15 (m, 1H).

1-(4-chlorophenyl)-5-oxopyrrolidine-3-carboxylic acid (26). A neat mixture of 4-chloroaniline (0.511 g, 4.01 mmol) and itaconic acid (0.521 g, 4.00 mmol) was heated at 110 °C for 2 h. Crude material was re-crystallized from water/ethanol to yield 0.353 g (1.47 mmol, 37% yield) of title compound as a tan solid. TOF MS-ESI m/z [M-H]$^-$ 238.0. 1H NMR (500 MHz, DMSO-d_6): δ 12.83 (s, 1H), 7.69 (d, J = 9.0 Hz, 2H), 7.43 (d, J = 9.0 Hz, 2H), 4.06-3.94 (m, 2H), 2.79-2.68 (m, 2H).

tert-butyl (1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)carbamate (27). Compound 26 (0.076 g, 0.317 mmol) was suspended in toluene (5.29 mL) and to the mixture were added t-butanol (0.090 mL, 0.951 mmol), triethylamine (0.067 mL, 0.476 mmol), and DPPA (0.082 mL, 0.381 mmol). The mixture was refluxed overnight, cooled, and
concentrated in vacuo. Crude material was purified using a CombiFlash system (30% EtOAc/Hex) to afford 0.038 g (0.122 mmol, 39% yield) of title compound as a white solid. TLC R_f (50% EtOAc/Hex): 0.31. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): \(\delta\) 7.72-7.63 (m, 2H), 7.50-7.36 (m, 3H), 4.20 (s, 1H), 4.06 (dd, \(J = 10.0, 7.0\) Hz, 1H), 3.59 (dd, \(J = 10.1, 3.8\) Hz, 1H), 2.83 (dd, \(J = 17.1, 8.2\) Hz, 1H), 2.42 (dd, \(J = 17.1, 4.6\) Hz, 1H), 1.39 (s, 9H).

4-amino-1-(4-chlorophenyl)pyrrolidin-2-one (28).

Compound 27 (0.038 g, 0.122 mmol) was dissolved in DCM (0.815 mL) and was cooled to 0 °C. TFA (0.408 mL) was slowly added to the stirring solution, and the reaction continued stirring at 0 °C for 1 hr 45 min. The solution was slowly added to 10 mL of cooled 1M NaOH. The mixture was then extracted with DCM (2 x 5 mL) and was concentrated in vacuo to afford 0.023 g (0.071 mmol, 58% yield) of title compound. Compound was used without further purification. \(^1\)H NMR (500 MHz, CDCl\(3\)): \(\delta\) 7.58-7.53 (m, 2H), 7.34-7.29 (m, 2H), 4.01 (dd, \(J = 9.6, 6.6\) Hz, 1H), 3.86-3.79 (m, 1H), 3.50 (dd, \(J = 9.8, 4.0\) Hz, 1H), 2.88 (dd, \(J = 17.1, 7.3\) Hz, 1H), 2.38 (dd, \(J = 17.0, 4.8\) Hz, 1H), 1.49 (s, 2H).

\(N\)-(1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,5-bis(trifluoromethyl)benzamide (203606).

Compound 28 (0.023 g, 0.109 mmol) was dissolved in DCM (0.218 mL). To the stirring solution was added 3,5-bis(trifluoromethyl)benzoyl chloride (0.022 mL, 0.120 mmol) followed by Triethylamine (0.031 mL, 0.218 mmol). The reaction mixture was stirred at room temperature overnight. The mixture was diluted with 10 mL of DCM and was washed with 1M aq HCl (5 mL) followed by a wash with sat. aq. NaHCO\(3\) (5 mL) and brine (5 mL), and was dried (MgSO\(4\)) and concentrated in vacuo. Crude material was triturated with DCM to afford 0.021 g (0.047 mmol, 43% yield) of title compound as a white solid. TOF MS-ESI m/z [M+H]+: 451.0; [M+Na] 473.0. HPLC (50-90% Acetonitrile/Water over 6 minutes): ret time = 4.20 min; purity = >90%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): \(\delta\) 9.37 (d, \(J = 6.7\) Hz, 1H), 8.52 (s, 2H), 8.34 (s, 1H), 7.81-7.71 (m, 2H), 7.51-7.41 (m, 2H), 4.76-4.68 (m, 1H), 4.26 (dd, \(J = 10.4, 6.9\) Hz, 1H), 3.83 (dd, \(J = 10.4, 2.9\) Hz, 1H), 3.06 (dd, \(J = 17.4, 8.5\) Hz, 1H), 2.64 (dd, \(J = 17.5, 3.3\) Hz, 1H).
N-(1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,5-difluorobenzamide (203846). 3,5-difluorobenzoic acid (0.014 g, 0.085 mmol) was dissolved in DCM (0.4 mL). DMAP (0.217 mg, 1.780 µmol) was added, followed by 28 (0.015 g, 0.071 mmol), and then EDC (0.014 g, 0.071 mmol). The solution was stirred at room temperature overnight. DCM (2 mL) was then added. The solution was washed with 1N HCl (2 mL) followed by saturated NaHCO$_3$ (2 mL). The solvent was concentrated *in vacuo*. Crude material was purified by column chromatography (50-60% EtOAc/Hex) to afford 0.012 g (0.034 mmol, 48% yield) of title compound as a white solid. TLC R_f (50% EtOAc/Hex): 0.26. TOF MS-ESI m/z [M-H]$^-$ 349.0. 1H NMR (500 MHz, DMSO) δ 9.08 (d, $J = 6.6$ Hz, 1H), 7.76-7.69 (m, 2H), 7.63-7.58 (m, 2H), 7.49 (tt, $J = 9.3$, 2.4 Hz, 1H), 7.46-7.40 (m, 2H), 4.70-4.61 (m, 1H), 4.25-4.20 (m, 1H), 3.76 (dd, $J = 10.4$, 3.0 Hz, 1H), 3.01 (dd, $J = 17.3$, 8.4 Hz, 1H), 2.59 (dd, $J = 17.4$, 3.5 Hz, 1H).

N-(3,5-bis(trifluoromethyl)phenyl)-1-(4-chlorophenyl)-5-oxopyrrolidine-3-carboxamide (203848).145 To a stirring solution of 26 (0.050 g, 0.209 mmol) and 3,5-bis(trifluoromethyl)aniline (0.039 ml, 0.250 mmol) in DMF (0.417 ml) was added EDC (0.048 g, 0.250 mmol). The reaction was stirred overnight at room temperature. After stirring overnight, the DMF was removed *in vacuo*. Water was then added (10 mL), and the aqueous layer was extracted with EtOAc (3 x 10 mL), and the combined organic layers were washed with brine (10 mL), dried (MgSO$_4$), and concentrated *in vacuo*. Crude material was triturated with DCM to afford 0.045 g (0.100 mmol, 48% yield) of title compound as a white crystalline solid. TOF MS-ESI m/z [M-H]$^-$ 449.0. 1H NMR (500 MHz, DMSO-d$_6$) δ 10.87 (s, 1H), 8.28 (s, 2H), 7.80 (m, 1H), 7.72 (d, $J = 8.7$ Hz, 2H), 7.45 (dd, $J = 8.8$, 1.8 Hz, 2H), 4.16-4.02 (m, 2H), 3.53-3.45 (m, 1H), 2.94-2.76 (m, 2H).

Benzyl (1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)carbamate (203007).81 Compound 26 was suspended in toluene (17.0 mL) and was treated with benzyl alcohol (0.312 mL, 3.00 mmol), TEA (0.259 mL, 1.86 mmol), and DPPA (0.209 mL, 0.967 mmol). Reaction was refluxed for 6 h, and the solution was concentrated. Crude material was purified by flash chromatography (33-60% EtOAc/Hex) to afford 0.232 g (0.673 mmol, 67% yield)
to afford title compound as a white solid. TLC R\textsubscript{f} (50% EtOAc/Hex): 0.21. 1H NMR (500 MHz, DMSO-\textit{d}\textsubscript{6}): \(\delta\) 7.88 (d, \(J = 6.4\) Hz, 1H), 7.68 (d, \(J = 8.9\) Hz, 2H), 7.46-7.03 (m, 7H), 5.04 (s, 2H), 4.30-4.23 (m, 1H), 4.13-4.05 (m, 1H), 3.64 (dd, \(J = 10.1\) Hz, 3.6 Hz, 1H), 2.88 (dd, \(J = 17.2\) Hz, 8.2 Hz, 1H), 2.44 (dd, \(J = 17.1\) Hz, 4.4 Hz, 2H).

3,5-difluorobenzyl (1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)carbamate (203604).81 Compound 26 (0.030 g, 0.125 mmol) was suspended in toluene (2.09 mL) and to the mixture were added 3,5-difluorobenzyl alcohol (0.043 mL, 0.376 mmol), triethylamine (0.026 ml, 0.188 mmol), and DPPA (0.032 mL, 0.150 mmol). Reaction mixture was refluxed for 6 hours. The reaction was cooled to room temperature and concentrated in vacuo. Crude material was purified using a CombiFlash system (18-45% EtOAc/Hex) to afford 0.039 g (0.102 mmol, 82% yield) of title compound as a clear oil. TLC R\textsubscript{f} (50% EtOAc/Hex): 0.19. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 7.55-7.43 (m, 2H), 7.32-7.20 (m, 2H), 6.90-6.80 (m, 2H), 6.78-6.68 (m, 1H), 5.77-5.62 (m, 1H), 5.12-5.00 (m, 2H), 4.53-4.35 (m, 1H), 4.15-4.00 (m, 1H), 3.79-3.59 (m, 1H), 2.96 (dd, \(J = 17.5, 8.3\) Hz, 1H), 2.51 (dd, \(J = 17.5, 4.3\) Hz, 1H).

3,5-bis(trifluoromethyl)benzyl (1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)carbamate (203065).81 Compound 26 (0.050 g, 0.209 mmol) was suspended in toluene (3.5 ml) and to the mixture were added 3,5-bis(trifluoromethyl)benzyl alcohol (0.154 g, 0.631 mmol), triethylamine (0.044 ml, 0.313 mmol), and DPPA (0.054 ml, 0.250 mmol). Mixture was refluxed for 6 hours. The reaction was cooled to room temperature and concentrated in vacuo. Crude material was purified using CombiFlash system (25-40% EtOAc/Hex) followed by trituration with CHCl\textsubscript{3} to afford 0.049 g (0.102 mmol, 49% yield) of title compound as an off-white solid. TLC R\textsubscript{f} (50% EtOAc/Hex): 0.43. HPLC (gradient A): ret time = 7.98 min; purity = 99%. TOF MS-ESI \(m/\ell\) [M+H]+ 480.9; [M+Na] 502.9. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 7.82 (m, 3H), 7.50 (d, \(J = 6.2\) Hz, 2H), 7.35-7.10 (m, 3H), 5.64 (s, 1H), 5.21 (s, 2H), 4.48 (s, 1H), 4.18-4.08 (m, 1H), 3.75 (d, \(J = 8.8\) Hz, 1H), 3.03-2.93 (m, 1H), 2.58-2.46 (m, 1H).
3-amino-3-(5-chloro-2-nitrophenyl)propanoic acid (30). A mixture of 5-chloro-2-nitrobenzaldehyde (29) (0.200 g, 1.078 mmol), formic acid (0.165 ml, 4.31 mmol), and malonic acid (0.146 g, 1.401 mmol) was heated to 45 °C with stirring and was then treated with ammonium formate (0.170 g, 2.69 mmol). The temperature was increased to 70 °C and held for one hour. The temperature was then increased to 95 °C. After 4 hours, concentrated HCl (0.400 mL) was added and heating continued for 1 hour. The mixture was then cooled and diluted with water (1 mL), followed by extraction with methyl isobutyl ketone (3 x 2 mL). The aqueous layer was separated and its pH was adjusted to approximately 4 by addition of 50% KOH solution. The precipitate was collected and dried in vacuo to afford 0.098 g (0.401 mmol, 37% yield) of title compound as a yellow solid. No further purification was performed. ¹H NMR (500 MHz, DMSO-d₆): δ 7.97 (d, J = 2.4 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.58 (dd, J = 8.7, 2.3 Hz, 1H), 6.27 (bs, 2H), 4.61 (dd, J = 8.8, 5.0 Hz, 1H), 2.64-2.56 (m, 1H).

3-(3,5-bis(trifluoromethyl)benzamido)-3-(5-chloro-2-nitrophenyl)propanoic acid (31). Compound 30 (0.041 g, 0.168 mmol) was dissolved in 2M NaOH (0.335 ml) and then treated with 3,5-bis(trifluoromethyl)benzoyl chloride (0.033 ml, 0.184 mmol). The mixture was stirred overnight at room temperature under nitrogen. The basic mixture was acidified to pH ~2 using 2M HCl. The acidic mixture was then filtered, and the resulting solid was rinsed with water. The solid was dried in vacuo to afford 0.050 g (0.103 mmol, 62% yield) of title compound as a fluffy white solid. No further purification was performed. ¹H NMR (500 MHz, DMSO-d₆) δ 12.62 (s, 1H), 9.55 (d, J = 6.8 Hz, 1H), 8.49-8.42 (m, 4H), 8.37 (s, 1H), 8.05-8.01 (m, 1H), 7.85-7.83 (m, 1H), 7.66-7.62 (m, 1H), 5.84-5.77 (m, 1H), 3.04-2.96 (m, 1H), 2.93-2.87 (m, 1H).

N-(6-chloro-2-oxo-1,2,3,4-tetrahydroquinolin-4-yl)-3,5-bis(trifluoromethyl)benzamide (203845). Compound 31 (0.021 g, 0.043 mmol) was heated with iron(II) sulfate heptahydrate (0.120 g, 0.433 mmol) at 100 °C for 1 hour in 10% NH₄OH (0.722 ml) and Ethanol (0.722 ml). The reaction was cooled and additional ethanol was added. The mixture was filtered, then extracted using ethyl acetate (3 x 5 mL). The organic layer was dried (MgSO₄) and concentrated to yield 0.022 g of an off-
white residue. The residue was then triturated with chloroform to afford 0.007 g (0.016 mmol, 37% yield) of title compound as a white solid. TOF MS-ESI m/z [M-H] -435.0. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta\) 10.45 (s, 1H), 9.42 (d, \(J = 7.4\) Hz, 1H), 8.55 (s, 2H), 8.35 (s, 1H), 7.37-7.31 (m, 2H), 6.96 (d, \(J = 8.4\) Hz, 1H), 5.39 (q, \(J = 7.2\) Hz, 1H), 2.88-2.68 (m, 2H).

1-(4-chlorophenyl)-2-oxopyrrolidine-3-carbonitrile (33).\(^85\) A mixture of ethyl 1-cyanocyclopropanecarboxylate (32) (0.186 ml, 1.437 mmol) and 4-chloroaniline (0.183 g, 1.437 mmol) was heated at 140 °C overnight. The mixture was cooled and the crude material was purified using a CombiFlash system (25-50% EtOAc/Hex) to afford 0.034 g of title compound as a brown solid. A second purification was performed using a CombiFlash system (15% EtOAc/Hex) to afford an additional 0.043 g of title compound as a brown solid, totaling 0.077 g (0.349 mmol, 24% yield). TLC \(R_f\) (50% EtOAc/Hex): 0.38. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.58-7.49 (m, 2H), 7.40-7.32 (m, 2H), 3.98-3.85 (m, 2H), 3.80-3.73 (m, 1H), 2.71-2.60 (m, 1H), 2.57-2.45 (m, 1H).

3-(aminomethyl)-1-(4-chlorophenyl)pyrrolidin-2-one (34).\(^86\) Compound 33 (0.038 g, 0.172 mmol) was dissolved in 1M methanolic ammonia (3.5 ml), and to the solution was added a spatula tip of Raney nickel catalyst. The mixture was placed on a Parr shaker at ~34 psi at room temperature for 2 hours. The mixture was filtered through a plug of celite topped with MgSO\(_4\). The celite was rinsed repeatedly with MeOH, and the filtrate was concentrated in vacuo. The compound was then triturated and filtered to afford 0.025 g (0.111 mmol, 65% yield) of brown solid.

\(N\)-((1-(4-chlorophenyl)-2-oxopyrrolidin-3-yl)methyl)-3,5-bis(trifluoromethyl)benzamide (203850). Prepared according to Procedure B using 34 (0.015 g, 0.067 mmol), 3,5-bis(trifluoromethyl)benzoyl chloride (0.014 ml, 0.080 mmol), and TEA (0.011 ml, 0.080 mmol). Crude material was purified by column chromatography (20-50% EtOAc/Hex) to afford 0.010 g (0.020 mmol, 30% yield) of title compound as a crystalline white solid. TLC \(R_f\) (50% EtOAc/Hex): 0.33. TOF MS-ESI m/z [M-H] -463.0. HPLC (gradient A): ret time = 8.07 min; purity = 99%. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.58-7.49 (m, 2H), 7.40-7.32 (m, 2H), 3.98-3.85 (m, 2H), 3.80-3.73 (m, 1H), 2.71-2.60 (m, 1H), 2.57-2.45 (m, 1H).
MHz, CDCl$_3$) δ 8.29 (s, 2H), 8.01 (s, 1H), 7.96-7.91 (m, 1H), 7.62-7.49 (m, 2H), 7.42-7.30 (m, 2H), 4.20-4.09 (m, 1H), 3.92-3.76 (m, 2H), 3.54-3.47 (m, 1H), 3.00-2.92 (m, 1H), 2.50-2.38 (m, 1H), 2.03-1.93 (m, 1H).

3-(aminomethylene)-5-chloroindolin-2-one (36). DMF (0.878 ml, 11.34 mmol) and phosphorus oxychloride (0.061 ml, 0.649 mmol) were heated up to 45 °C using an oil bath. 5-Chlorooxindole (0.100 g, 0.597 mmol) was added to the mixture, and the temperature was held at 45 °C for 1 hr. The reaction was then cooled to 0 °C, and to the cooled mixture was added ammonium hydroxide (17.55 ml, 496 mmol). The mixture was warmed to room temperature and allowed to stir for 30 minutes. Reaction mixture was then extracted with EtOAc (3 x 20 mL), dried (MgSO$_4$), and concentrated in vacuo.

Crude oil was triturated with DCM to afford 0.020 g (0.100 mmol, 17% yield) of a greenish solid. Filtrate was concentrated and triturated a second time with DCM to yield 0.030 g (0.154 mmol, 26% yield) of a mustard yellow solid. Filtrate was concentrated and triturated a third time with dichloromethane to yield 0.009 g (0.046 mmol, 8% yield) of title compound as a mustard yellow solid. NMR showed a mixture of isomers in batch 1 of solid. Batch 2 appeared to only the E-isomer, as found by NOE. **Batch 1:** 1H NMR (500 MHz, DMSO-d_6): δ 10.25 (Isomer 2, s, 1H), 10.04 (Isomer 1, s, 1H), 8.37 (Isomer 2, dd, $J = 15.1, 4.1$ Hz, 1H), 8.22-8.13 (Isomer 2, m, 2H), 7.94 (Isomer 2, dd, $J = 15.0, 7.6$ Hz, 1H), 7.86 (Isomer 1, s, 1H), 7.74 (Isomer 1, d, $J = 2.0$ Hz, 1H), 7.59-7.49 (Isomer 1, m, 1H), 7.44 (Isomer 2, d, $J = 2.1$ Hz, 1H), 7.42-7.34 (Isomer 1, m, 1H), 6.94 (Isomer 1, dd, $J = 8.2, 2.0$ Hz, 1H), 6.89 (Isomer 2, dd, $J = 8.1, 2.1$ Hz, 1H), 6.74 (Isomers 1 and 2, dd, $J = 11.4, 8.2$ Hz, 2H). **Batch 2:** 1H NMR (500 MHz, DMSO-d_6): δ 10.25 (s, 1H), 8.45-8.30 (m, 2H), 8.24-8.11 (m, 2H), 7.94 (dd, $J = 15.1, 7.6$ Hz, 1H), 7.44 (d, $J = 2.2$ Hz, 1H), 6.89 (dd, $J = 8.2, 2.1$ Hz, 1H), 6.75 (d, $J = 8.2$ Hz, 1H).

N-((5-chloro-2-oxoindolin-3-ylidene)methyl)-3,5-bis(trifluoromethyl)benzamide (203851). Compound 36 batch 2 (.010 g, 0.051 mmol) was suspended in DCM (0.150 mL), and to the stirring mixture was added 3,5-bis(trifluoromethyl)benzoyl chloride (10.18 µl, 0.057 mmol) followed by TEA (0.010 mL, 0.071 mmol). The reaction mixture was allowed to stir at room temperature overnight. The mixture was concentrated in
vacuo and was redissolved in EtOAc (10 mL). The organic layer was washed with NaHCO$_3$ (5 mL) followed by 1M HCl (5 mL) and then brine (5 mL). The organic layer was then dried (MgSO$_4$) and concentrated in vacuo. The solid was triturated with hexanes to yield solid, which was dried and triturated with DCM to afford 0.009 g (0.020 mmol, 39% yield) of title compound. TOF MS-ESI m/z [M-H]$^-$ 433.0. 1H NMR (500 MHz, DMSO-d_6): δ 12.44 (d, J = 10.5 Hz, 1H), 11.02 (s, 1H), 8.69 (d, J = 10.4 Hz, 1H), 8.53 (s, 1H), 8.49 (s, 2H), 7.98 (d, J = 2.3 Hz, 1H), 7.21 (dd, J = 8.1, 2.2 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H).

N^1-(6-chloropyridin-3-yl)propane-1,3-diamine. 2-Chloro-5-aminopyridine (0.088 g, 0.685 mmol) was dissolved in Toluene (0.700 mL) and treated with 3-Bromopropylamine hydrobromide (4) (0.050 g, 0.228 mmol). Mixture was heated at reflux for 40 minutes. After cooling, precipitate was collected and treated with aqueous 15% aq NaOH (1 mL), and the aqueous layer was extracted with DCM (3 x 2 mL). Combined extracts were washed with water (2 mL), dried (MgSO$_4$), and concentrated to afford a purple oil. Crude material was purified by flash chromatography (10-14% Methanolic ammonia/DCM) to afford 0.013 g (0.070 mmol, 31% yield) of title compound as a yellow oil. TLC R_F (10% Methanolic ammonia/DCM): 0.20. 1H NMR (500 MHz, CDCl$_3$): δ 7.75 (d, J = 3.0 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 6.86 (dd, J = 8.6 Hz, 3.1 Hz, 1H), 4.51 (bs, 1H), 3.20 (t, J = 6.5 Hz, 2H), 2.88 (t, J = 6.5 Hz, 2H), 1.77 (p, J = 6.5 Hz, 2H), 1.35 (bs, 2H).

N-(3-((6-chloropyridin-3-yl)amino)propyl)-3,5-bis(trifluoromethyl)benzamide (203059). Compound was prepared using N^1-(6-chloropyridin-3-yl)propane-1,3-diamine (0.013 g, 0.070 mmol) and 3,5-bis(trifluoromethyl)benzoic acid (0.020 g, 0.077 mmol) according to Procedure C. Crude material was purified using column chromatography (30-50% EtOAc/Hex) to afford 0.018 g (0.042 mmol, 60% yield) of title compound as a yellow solid. TLC R$_F$ (50% EtOAc/Hex): 0.37. HPLC (gradient A): ret time = 7.42 min; purity = 99%. TOF MS-ESI m/z [M+H]$^+$ 425.9; [M+Na] 447.9. 1H NMR (500 MHz, CDCl$_3$) δ: 7.75 (d, J = 3.0 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 6.86 (dd, J = 8.6, 3.1 Hz,
1H), 3.20 (t, J = 6.6 Hz, 2H), 2.88 (t, J = 6.5 Hz, 2H), 1.77 (p, J = 6.5 Hz, 2H), 1.35 (s, 2H).

N\(^1\)-(5-chloropyridin-2-yl)propane-1,3-diamine.\(^{146}\)

\(N\)-(3-((5-chloropyridin-2-yl)amino)propyl)-3,5-bis(trifluoromethyl)benzamide (203063). Compound was prepared using \(N\(^1\)-(5-chloropyridin-2-yl)propane-1,3-diamine (0.025 g, 0.135 mmol) and 3,5-bis(trifluoromethyl)benzoic acid (0.038 g, 0.148 mmol) according to Procedure C. Crude material was purified by column chromatography (50% EtOAc/Hex) to afford 0.033 g (0.078 mmol, 58% yield) of title compound. TLC R\(_f\) (50% EtOAc/Hex): 0.38. TOF MS-ESI m/z [M+H]\(^+\) 425.9; [M+Na] 447.9. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.36 (s, 2H), 8.24 (t, J = 6.5 Hz, 1H), 8.04 (s, 1H), 7.96 (d, J = 2.5 Hz, 1H), 7.40-7.34 (m, 1H), 6.42 (d, J = 8.8 Hz, 1H), 4.82 (t, J = 6.9 Hz, 1H), 3.60-3.55 (m, 4H), 1.92-1.80 (m, 2H).

\(N\)-(3-((4-chlorophenyl)amino)propyl)-3,5-difluorobenzamide (203061).\(^{69}\) Compound was prepared according to Procedure C, with slight modification. 3,5-difluorobenzoic acid (0.047 g, 0.298 mmol) was dissolved in THF and was treated with HOBt and EDC, and was allowed to stir for 20 minutes. DIPEA was added and stirring continued for 10 minutes. Compound 5 (0.050 g, 0.271 mmol) was then added. Crude material was purified using column chromatography (25-36% EtOAc/Hex) to afford 0.032 g (0.099 mmol, 36% yield) of title compound as an off-white solid. HPLC (gradient A): ret time = 6.50 min; purity = 97%. TOF MS-ESI m/z [M+H]\(^+\) 325.0. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.24 (d, J = 5.0 Hz, 2H), 7.18-7.04 (m, 2H), 7.00-6.89 (m, 1H), 6.81-6.69 (m, 1H), 6.61-6.48 (m, 2H), 4.05 (bs, 1H), 3.55 (q, J = 6.4 Hz, 2H), 3.20 (t, J = 6.4 Hz, 2H), 1.89 (p, J = 6.5 Hz, 2H).

(3,5-bis(trifluoromethyl)phenyl)(3-(hydroxymethyl)piperidin-1-yl)methanone (38). Prepared using 1.05 eq (1.05 mmol) 3,5-bis(trifluoromethyl)benzoic acid according to Procedure C. Crude material was purified by flash chromatography (40-50% EtOAc/Hex) to afford 0.272 g (0.766 mmol, 77% yield) of title compound as a crystalline, off-white
solid. TLC R$_f$ (50% EtOAc/Hex): 0.18. 1H NMR (500 MHz, CDCl$_3$): δ 7.93 (s, 1H), 7.87 (s, 2H), 4.50-4.15 (m, 1H), 3.76-3.36 (m, 3H), 3.34-3.17 (m, 1H), 3.00 (dt, $J = 38.8$, 10.3 Hz, 1H), 2.14-1.63 (m, 4H), 1.55-1.29 (m, 2H).

1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carbaldehyde (39).91,92 To a stirring solution of 38 (0.051 g, 0.144 mmol) and DIPEA (0.163 ml, 0.933 mmol) in DCM (0.167 ml) at 0 °C was added sulfur trioxide pyridine complex (0.075 g, 0.474 mmol) in anhydrous DMSO (0.571 mL). The reaction was stirred at 0 °C for 20 minutes and was then warmed to room temperature. Reaction was stirred for 2.5 hours and was quenched with water (3 mL). The aqueous layer was extracted with DCM (3 x 3 mL). Combined organics were washed with 1N HCl (3 mL) followed by brine (3 mL). Organics were then dried (MgSO$_4$) and concentrated in vacuo. Crude material was purified using a CombiFlash system (60% EtOAc/Hex) to afford 0.040 g (0.113 mmol, 79% yield) of title compound as an off-white solid. TLC R$_f$ (60% EtOAc/Hex): 0.25. 1H NMR (500 MHz, CDCl$_3$): 1:1 mixture of rotamers, δ 9.79 (rotamer 1, s), 9.60 (rotamer 2, s, 1H), 7.97-7.80 (m, 3H), 4.49-3.04 (m, 4H), 2.80-2.40 (m, 1H), 2.22-1.45 (m, 4H).

(3,5-bis(trifluoromethyl)phenyl)(3-(((4-chlorophenyl)amino)methyl)piperidin-1-yl)methanone (203853).93 4-Chloroaniline (0.004 g, 0.031 mmol) and 39 (0.017 g, 0.047 mmol) in DCE (0.105 ml) was cooled to 0 °C and was treated with sodium triacetoxyborohydride (0.013 g, 0.063 mmol). The reaction was stirred overnight at room temperature. The mixture was diluted with EtOAc (2 mL) and was quenched with DI water (1 mL). Additional EtOAc (2 mL) was added, and the pH of the aqueous layer was adjusted to 10 using saturated NaHCO$_3$ and 2M NaOH. The organic layer was removed, dried (MgSO$_4$), and concentrated in vacuo. Crude material was purified by column chromatography (15-30% EtOAc/Hex) to afford 0.012 g (0.026 mmol, 82% yield) of title compound as a clear oil. TLC R$_f$ (30% EtOAc/Hex): 0.29. TOF MS-ESI m/z [M+H]$^+$ 465.1; [M+Na] 487.1. HPLC (gradient A): ret time = 8.39 min; purity = 99%. 1H NMR (500 MHz, CDCl$_3$): δ 7.93 (s, 1H), 7.84 (d, $J = 9.4$ Hz, 2H), 7.20-7.00 (m, 2H), 6.56 (d, $J = 8.4$ Hz, 1H), 6.38 (s, 1H), 4.58-4.38 (m, 1H), 4.04-3.35 (m, 2H), 3.26-2.78 (m, 4H), 2.14-1.63 (m, 4H), 1.55-1.29 (m, 2H).
2.05-1.95 (m, 1H), 1.94-1.78 (m, 1H), 1.77-1.67 (m, 1H), 1.56-1.44 (m, 1H), 1.38 (h, \(J = 7.8, 6.8 \) Hz, 1H).

tert-butyl (1-(4-chlorophenyl)pyrrolidin-3-yl)carbamate (203854). A solution of racemic BINAP (4.61 mg, 0.016 mmol) and tris(dibenzylideneacetone)dipalladium(0) (7.37 mg, 8.05 \(\mu \)mol) in toluene (4.0 mL) was stirred under nitrogen at 90 °C for 10 minutes and was cooled to 40 °C. 3-(tert-Butoxycarbonylamino)-pyrrolidine (0.075 g, 0.403 mmol), 1-chloro-4-iodobenzene (0.106 g, 0.443 mmol), and sodium tert-butoxide (0.062 g, 0.644 mmol) were added, and the mixture was stirred at 40 °C under nitrogen for 18 h. The reaction was then heated to 85 °C for five hours. The reaction mixture was cooled to room temperature, diluted with EtOAc (7 mL), and was filtered through a plug of celite. The filtrate was then concentrated *in vacuo*. Crude material was purified using a CombiFlash system (10% EtOAc/Hex) to afford 0.007 g (0.024 mmol, 6% yield) of title compound as an amber oil. TLC \(R_f \) (10% EtOAc/Hex): 0.15. \(^1H \) NMR (500 MHz, CDCl\(_3\)) \(\delta \): 7.20-7.12 (m, 1H), 6.51-6.40 (m, 2H), 4.71 (s, 1H), 4.36 (s, 1H), 3.53 (dd, \(J = 9.6, 5.9 \) Hz, 1H), 3.42-3.36 (m, 1H), 3.29 (td, \(J = 8.8, 5.3 \) Hz, 1H), 3.18-3.07 (m, 2H), 2.28 (dq, \(J = 13.8, 7.0 \) Hz, 1H), 1.98-1.91 (1, 2H), 1.45 (s, 9H).

1-(4-chlorophenyl)pyrrolidin-3-amine (41). Compound 203854 (0.021 g, 0.071 mmol) was dissolved in DCM (0.472 ml) and was cooled 0 °C. TFA (0.236 ml) was slowly added and the solution continued to stir at 0 °C. After 45 minutes, crude material was added to cooled 2M NaOH (5 mL). The mixture was then extracted with DCM (4 x 5 mL). The combined organic layers were dried (MgSO\(_4\)) and concentrated *in vacuo* to afford 0.012 g (0.061 mmol, 86% yield) of title compound as a yellow solid. No further purification was performed. \(^1H \) NMR (500 MHz, CDCl\(_3\)): \(\delta \): 7.18-7.12 (m, 2H), 6.47-6.41 (m, 2H), 3.71 (p, \(J = 5.8 \) Hz, 1H), 3.51-3.39 (m, 2H), 3.33-3.23 (m, 2H), 2.98 (dd, \(J = 9.3, 4.7 \) Hz, 1H), 2.27-2.18 (m, 1H), 1.85-1.76 (m, 1H).

N-(1-(4-chlorophenyl)pyrrolidin-3-yl)-3,5-bis(trifluoromethyl)benzamide (203855). Compound 41 (0.012 g, 0.061 mmol) was dissolved in DCM (0.610 mL), and to the stirring solution was added 3,5-bis(trifluoromethyl)benzoyl chloride (0.012 ml, 0.067
mmol) followed by TEA (0.026 ml, 0.183 mmol. The reaction was stirred under nitrogen at room temperature overnight. The reaction mixture was concentrated in vacuo, and the solid was partitioned between saturated aqueous NaHCO$_3$ (5 mL) and EtOAc (10 mL). The aqueous layer was extracted a second time with EtOAc (10 mL), and the combined organics were washed with brine (10 mL), dried (MgSO$_4$), and concentrated in vacuo.

Solid was triturated with DCM to afford 0.005 g (0.011 mmol, 18% yield) of title compound as a white solid. TOF MS-ESI m/z [M-H]$^-$ 435.0. 1H NMR (500 MHz, DMSO-d_6): δ 9.12 (d, $J = 6.7$ Hz, 1H), 8.52 (s, 2H), 8.33 (s, 1H), 7.23-7.17 (m, 2H), 6.60-6.54 (m, 2H), 4.71-4.62 (m, 1H), 3.63-3.56 (m, 1H), 3.47-3.356 (m, 1H), 3.47-3.23 (m, 1H), 3.29-3.23 (m, 1H), 2.34-2.27 (m, 1H), 2.16-2.06 (m, 1H).

N-((1-(3,5-bis(trifluoromethyl)benzyl)piperidin-3-yl)methyl)-4-chloroaniline (203847). To a stirring solution of JR-1-012 (0.050 g, 0.104 mmol) in anhydrous tetrahydrofuran (2.1 ml) was added LAH (0.313 ml, 0.313 mmol), and the reaction was stirred at 75 °C overnight. The reaction mixture was cooled to 0 °C and water (0.285 mL) was added dropwise, followed by a 15% aqueous NaOH solution (0.285 mL), followed by water (0.855 mL). The mixture was then filtered and washed with additional THF. The solution was then concentrated in vacuo. Crude material was purified by column chromatography (15-25% EtOAc/Hex) to afford 0.014 g (0.031 mmol, 30% yield) of title compound as a yellow oil. TLC R$_f$ (50% EtOAc/Hex): 0.71. TOF MS-ESI m/z [M-H]$^-$ 449.0. 1H NMR (500 MHz, CDCl$_3$) δ 7.81-7.75 (m, 3H), 7.12-7.06 (m, 2H), 6.52-6.45 (m, 2H), 3.76-3.49 (m, 3H), 3.01 (s, 2H), 2.82 (d, $J = 6.3$ Hz, 1H), 2.72-2.62 (m, 1H), 2.13-2.05 (m, 1H), 1.99-1.88 (m, 2H), 1.87-1.77 (m, 1H), 1.76-1.66 (m, 1H), 1.63-1.59 (m, 1H), 1.17-1.03 (m, 1H).

Chapter 3

Kinetic solubility assay. Working compound solutions were prepared by dissolving compound in DMSO to afford 25 mM solutions. Solubility testing was conducted at room temperature in a 96-well NUNC-F plate using pH 7.4 PBS buffer. PBS buffer (199 µL) was added to wells A1-A5; B1-12; C1-12; and D1-12. DMSO (1 µL) was added to wells A1-A5 to serve as blanks. DMSO (50 µL) was added to wells E2-12; F2-12; and G2-12,
and 100 µL of working test compound solution was added to E1; F1; and G1. A series of 2-fold dilutions was prepared using the working stock solutions in E, F, and G1, respectively. Following dilution, 1 µL aliquots were transferred from dilution wells to corresponding test wells (E1 to B1, F1 to C1, G1 to D1, etc.) The 96-well plate was then loaded into the UV/Vis plate reader and was shaken for 5 cycles. Using SoftMax software, wells A1-A5 were labeled as “blank,” and each replicate was given its own respective label. Each replicate was plotted logarithmically using concentration versus absorbance value. Data from each replicate was combined, averaged, and graphed logarithmically. The point at which the absorbance begins to increase was identified, and the point of inflection between no absorbance and the point where it begins to rise was considered to be the solubility of the compound.

Parallel Artificial Membrane Permeability Assay. The PAMPA assay was conducted using the PAMPA Explorer kit from pION at a single pH of 7.4. Due to low compound solubility, the system solution was prepared by adding System Solution concentrate (6.75 mL), followed by Milli-Q water (75 mL), acetonitrile (50 mL), and additional Milli-Q water (118.75 mL) while stirring. The pH of the solution was adjusted to 7.4 using freshly prepared 0.5 M NaOH (aq).

A blank plate was prepared by transferring 150 µL of the pH adjusted system solution to a UV plate. The blank was read using pION software to ensure no microbial growth was present. A deep well plate containing the working solutions was prepared by transferring 5 µL of a 10 mM stock solution of desired compound to a corresponding well. This was done in quadruplicate for each compound. Each well was then diluted with 1000 µL of pH adjusted system solution. A reference plate was then prepared by transferring 150 µL of the working solutions from the deep well plate into a UV plate. The plate was then read as the “reference plate” using pION software.

The PAMPA sandwich plate was then prepared using a donor plate and an acceptor plate. The donor plate was prepared by transferring 200 µL of working solutions from the deep well plate to the donor plate. The acceptor plate containing the membrane was inverted and 5 µL of lipid was dispensed on each membrane. The acceptor plate was then inverted and 200 µL of system solution was added to each well. The acceptor plate
was added to the top of the donor plate, establishing the sandwich plate, which was incubated for 4 hours.

Following incubation, the sandwich was separated, and 150 µL from the acceptor wells were transferred to a UV plate and was read as “acceptor plate” using pION software. The same was performed for the donor plate, which was read as “donor plate” using pION software. The pION software then computed permeability, providing a bin of low, medium, or high permeability based on the pION standard ranking system.

Scratch Assay. PC-3 prostate cancer cells in 10% FBS DMEM media were plated into a 12-well plate (~400,000 cells per well) and were incubated for at 37 °C for 24 hours to form a confluent monolayer. A vertical scratch was made across the monolayer using a 200 µL pipette tip. The 10% FBS DMEM buffer was removed and replaced with 0.5% FBS DMEM buffer, and an initial image was captured. Compound or control DMSO was then added to each well, affording a final 0.1% DMSO concentration. The cells were then incubated at 37 °C for 24 hours, and a final image was capture. The scratch area was then analyzed using ImageJ software.

2-((3,5-bis(trifluoromethyl)benzamido)oxy)acetic acid (2f). Prepared according to Procedure A to afford 0.371 g (1.12 mmol, 95% yield) of title compound as a white solid. TOF MS-ESI m/z [M+H]^+ 332.1. ^1^H NMR (500 MHz, DMSO-d_6): δ 8.39 (s, 2H), 8.33 (s, 1H), 4.55 (s, 2H).

N-(2-((3-chlorophenyl)amino)-2-oxoethoxy)-3,5-bis(trifluoromethyl)benzamide (101200). Prepared using 2f according to Procedure C. Crude material was purified by flash chromatography (20-30% EtOAc/hexanes) to afford 0.027 g (0.061 mmol, 5% yield) of title compound. Waters TOF MS-ESI m/z [M+H]^+ 441.1; [M+Na] 463.0. HPLC (gradient A): ret time = 8.10 min; purity = 99%. ^1^H NMR (500 MHz, DMSO-d_6): δ 12.70 (bs, 1H), 10.61 (s, 1H), 8.42 (s, 1H), 8.34 (s, 1H), 7.86 (s, 1H), 7.52 (d, J = 10 Hz, 1H), 7.38 (t, J = 10 Hz, 1H), 7.17 (d, J = 10 Hz, 1H), 4.68 (s, 2H).
2-((3-(trifluoromethyl)benzamido)oxy)acetic acid (2g). Prepared according to Procedure A to afford 0.228 g (0.866 mmol, 73% yield) of title compound as a white solid. TOF MS-ESI m/z [M+H]^+ 263.0; [M+Na] 287.0. \(^1\)H NMR (500 MHz, DMSO-d\(_6\)): δ 8.25-7.65 (m, 5H), 4.25 (s, 2H).

N-(2-((4-chlorophenyl)amino)-2-oxoethoxy)-3,5-bis(trifluoromethyl)benzamide (101202). Prepared using 2g according to Procedure C. Crude material was purified by flash chromatography (50-65% EtOAc/Hex) to afford 0.102 g (0.027 mmol, 32% yield) of title compound as a yellow solid. TLC R\(_f\) (50% EtOAc/Hex): 0.11. Waters TOF MS-ESI m/z [M+H]^+ 373.1; [M+Na] 395.0.

1-(tert-butoxycarbonyl)piperidine-3-carboxylic acid (43). Nipecotic acid (42) (0.200 g, 1.549 mmol), and sodium hydroxide (1.703 ml, 1.703 mmol) were stirred in a solution of dioxane (3.40 mL) and water (1.70 mL). The solution was cooled to 0 °C and di-tert-butyl dicarbonate (0.395 ml, 1.703 mmol) was added. The reaction mixture was then warmed to room temperature and was stirred overnight. The solution was concentrated in vacuo to approximately 2 mL and was cooled in an ice bath, covered with ~3 mL of ethyl acetate, and acidified with a dilute solution of KHSO\(_4\) (10% solution) to pH~2. The aqueous phase was extracted with EtOAc (4 x 15 mL). The organics were combined, washed with brine (20 mL), dried (MgSO\(_4\)), filtered, and concentrated to afford 0.349 g (1.52 mmol, 96% yield) of title compound as a white solid. No further purification was performed. \(^1\)H NMR (500 MHz, DMSO-d\(_6\)): δ 12.38 (s, 1H), 4.03-3.76 (m, 1H), 3.75-3.60 (bs, 1H), 2.87-2.78 (m, 1H), 2.35-2.25 (m, 1H), 1.95-1.85 (m, 1H), 1.66-1.57 (m, 1H), 1.56-1.46 (m, 1), 1.42-1.28 (m, 11H).

tert-butyl 3-((4-chlorophenyl)carbamoyl)piperidine-1-carboxylate (44). 4-
Chloroaniline (0.179 g, 1.407 mmol) was dissolved in dichloromethane (9.4 mL), and to the stirring solution was added EDC (0.270 g, 1.407 mmol) followed by DMAP (0.172 g, 1.407 mmol) and 43 (0.215, 0.938 mmol). The mixture was stirred at room temperature under nitrogen overnight. The dichloromethane layer was removed in vacuo and the residue was partitioned between water (25 mL) and ethyl acetate (25 mL). The aqueous
layer was extracted with ethyl acetate (3 x 10 mL). Combined organics were washed with 1N HCl (25 mL) followed by saturated NaHCO$_3$ (25 mL), and brine (25 mL). The organics were dried (MgSO$_4$), filtered, and concentrated in vacuo to yield 0.440 g of an amber oil. Oil was partitioned between 1N HCl (20 mL) and ethyl acetate (20 mL). The aqueous layer was extracted with additional ethyl acetate (3 x 10 mL). The organic layers were combined, washed with brine (25 mL), dried (MgSO$_4$), filtered, and concentrated to afford 0.315 g (0.930 mmol, 99% yield) of title compound an amber oil. No further purification was performed.

1H NMR (500 MHz, DMSO-d_6): δ 10.15 (s, 1H), 7.66-7.60 (m, 2H), 7.38-7.32 (m, 2H), 3.95-3.80 (m, 2H), 2.84-2.70 (m, 1H), 2.49-2.40 (m, 1H), 1.97-1.90 (m, 1H), 1.75-1.56 (m, 2H), 1.47-1.30 (m, 1H).

N-(4-chlorophenyl)piperidine-3-carboxamide (45). Compound 44 (1.28 g, 3.78 mmol) was dissolved in dichloromethane (25 mL), and the solution was cooled to approximately -10 °C. To the cooled stirring solution was added TFA (12.5 mL). The reaction mixture continued stirring at -10 °C for 1.5 h and then was poured into 100 mL of cooled 2M NaOH. The cooled basic solution was extracted with dichloromethane (3 x 30 mL), and the combined organics were dried (MgSO$_4$), filtered, and concentrated to afford 0.754 g (3.15 mmol, 84% yield) of title compound as a tan solid. No further purification was performed.

1H NMR (500 MHz, CDCl$_3$): δ 10.75 (s, 1H), 7.57-7.51 (m, 2H), 7.27-7.24 (m, 2H), 3.33-3.23 (m, 1H), 3.15-3.05 (m, 1H), 2.93 (dd, $J = 5$, 10 Hz, 1H), 2.80-2.70 (m, 1H), 2.60-2.53 (m, 1H), 2.10-2.03 (m, 1H), 2.00-1.91 (m, 2H), 1.83-1.70 (m, 2H), 1.63-1.53 (m, 1H).

Ethyl 1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylate (47). Ethyl piperidine-3-carboxylate (42) (0.466 ml, 3.00 mmol) was dissolved in dichloromethane (12.0 mL) and to the stirring solution was added triethylamine (0.502 ml, 3.60 mmol) followed by 3,5-bis(trifluoromethyl)benzoyl chloride (0.595 ml, 3.30 mmol). The reaction mixture was stirred overnight at room temperature under nitrogen. The reaction was diluted with 50 mL of dichloromethane and was washed with NaHCO$_3$ (2 x 30 mL) followed by 1M aq HCl (30 mL) and then brine (30 mL). Combined organics were then
dried (MgSO\(_4\)) and concentrated \textit{in vacuo} to afford 1.44 g of a yellow oil. Crude material was purified by to afford 0.990 g (2.49 mmol, 83% yield) of title compound as a clear oil. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.22 (s, 1H), 8.18-8.07 (m, 2H), 4.50-3.45 (m, 4H), 3.4-3.23 (under water peak, 1H), 3.18-3.00 (m, 1H), 2.78-2.63 (m, 1H), 2.15-1.87 (m, 1H), 1.85-1.40 (m, 3H), 1.28-1.00 (m, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylic acid (48). Prepared according to Procedure A to afford 0.310 g (0.840 mmol, 70% yield) of title compound as a white solid OR 47 was dissolved in tetrahydrofuran (3.35 mL) and water (6.70 mL) and to the stirring solution was added lithium hydroxide hydrate (1.044 g, 24.87 mmol). The mixture was stirred at room temperature for 1.5 hours and then was diluted with water (20 mL) and washed with diethyl ether (20 mL). The aqueous layer was removed and its pH was adjusted to ~2 using 2M HCl (aq). The aqueous layer was then extracted with ethyl acetate (3 x 40 mL). The combined organics were washed with brine (40 mL), dried (MgSO\(_4\)), and concentrated to afford 0.817 g of title compound as a white solid. No further purification was performed. Waters TOF MS-ESI \(m/z\) [M-H]\(^-\) 368.0. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 12.50 (s, 1H), 8.21 (s, 1H), 8.13 (s, 2H), 4.55-3.73 (m, 1H), 3.50-3.35 (m, 2H), 3.15-2.95 (m, 1H), 2.65-2.54 (m, 1H), 2.08-1.40 (m, 5H).

General procedure for acid library.\(^95\)

The following procedure was performed in a parallel reaction format. To each 8 mL vial was added N-(4-chlorophenyl)piperidine-3-carboxamide (0.150 mmol), followed by a 0.500 mL of a solution containing EDCI (0.3M) and DMAP (0.3M) in dichloromethane, varied carboxylic acid (0.10 mmol), anhydrous DMF (0.150 mL), and dichloromethane (0.250 mL). The solution was sonicated between each addition. The reaction mixture was capped and allowed to stir 48 hours at room temperature on an orbital shaker at 2,500 rpm. The reaction solution was diluted with dichloromethane (5 mL), and Amberlyst-15 (~300 mg) was added. The reaction mixture was allowed to stir on an orbital shaker 3,000 rpm overnight. The mixture was then filtered and concentrated. Water (3 mL) and dichloromethane (3 mL) were added to the vial. The vial was shaken and the layers allowed to separate for 30 minutes. The aqueous layer was then removed,
and the remaining organic layer was washed a second time with water (3 mL), and the layers were again allowed to separate for 30 minutes. The dichloromethane layer was removed and transferred to a clean vial and concentrated. The water wash and organic isolation was repeated. Organics were concentrated to afford title compounds below.

ESI-MS was performed in positive mode on an Agilent Technologies LC/MS system using a 1200 Series LC and 6130 Quadrupole LC/MS (Agilent Technologies, Santa Clara, CA, USA) in positive mode with 5–10 µL injection volume and a linear gradient of 10% Solvent D (0.02% TFA and 0.1% acetic acid in acetonitrile) in Solvent C (0.02% TFA and 0.1% acetic acid in water) to 90% Solvent D in Solvent C over 6 min with a hold at 90% for 7 min.

N-(4-chlorophenyl)-1-(3-(furan-2-yl)benzoyl)piperidine-3-carboxamide (203971). 32 mg (0.078 mmol, 78% yield) of title compound as an orange-brown oil. ESI(+) m/z [M+H]+ 409.0; [M+Na] 434.0; HPLC (gradient A): ret time = 7.52 min; purity = >95%. ¹H NMR (500 MHz, DMSO-d₆): 1.5:1.0 mixture of rotamers, δ 10.2 (rotamer 1, s), 9.9 (rotamer 2, s, 1H), 7.85-7.24 (m, 9H), 7.05 (s, 1H), 6.62 (s, 1H), 4.63-4.20 (m, 1H), 3.73-3.49 (m, 1H), 3.17-2.91 (m, 2H), 2.68-2.56 (m, 1H), 2.01 (d, J = 9.1 Hz, 1H), 1.93-1.63 (m, 2H), 1.46 (s, 1H).

1-(3-benzoylbenzoyl)-N-(4-chlorophenyl)piperidine-3-carboxamide (203972). 31 mg (0.069 mmol, 69% yield) of title compound as a light brown oil. ESI(+) m/z [M+H]+ 447.0; [M+Na] 469.0; HPLC (gradient A): ret time = 7.46 min; purity = >95%. ¹H NMR (500 MHz, DMSO-d₆): 1.5:1.0 mixture of rotamers, δ 10.17 (rotamer 1, s), 9.99 (rotamer 2, s, 1H), 7.88-7.21 (m, 13H), 4.58-4.13 (m, 1H), 3.75-3.53 (m, 1H), 3.19-2.93 (m, 2H), 2.64-2.54 (m, 1H), 2.01 (s, 1H), 1.89-1.61 (m, 2H), 1.57-1.33 (m, 1H).

1-(2-(3,5-bis(trifluoromethyl)phenyl)acetyl)-N-(4-chlorophenyl)piperidine-3-carboxamide (203960). 41 mg (0.083 mmol, 83% yield) of title compound as an amber glass. ESI(+) m/z [M+H]+ 493.0; [M+23] 515.0; HPLC (gradient A): ret time = 8.19 min; purity = >95%. ¹H NMR (500 MHz, DMSO-d₆): δ 10.12 (d, J = 10.2 Hz, 2H), 8.02-7.88 (m, 3H), 7.69-7.55 (m, 2H), 7.40-7.32 (m, 2H), 4.46-4.16 (m, 1H), 4.10-3.95 (m, 3H),
3.16-3.06 (m, 1H), 2.82-2.70 (m, 1H), 2.45-2.38 (m, 1H), 2.09-1.91 (m, 1H), 1.83-1.63 (m, 2H), 1.50-1.30 (m, 1H).

N-(4-chlorophenyl)-1-(3-(thiazol-2-yl)benzoyl)piperidine-3-carboxamide (206115).
40 mg (0.094 mmol, 94% yield) as a light brown oil. ESI(+) m/z [M+H]+ 426.1; [M+23] 448.1; HPLC (gradient A): ret time = 6.88 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.27 (rotamer 1, s), 10.07 (rotamer 2, s, 1H), 8.08-7.91 (m, 3H), 7.85 (s, 1H), 7.74-7.46 (m, 4H), 4.62-4.15 (m, 1H), 3.75-3.52 (m, 1H), 3.17-2.95 (m, 2H), 2.69-2.59 (m, 1H), 2.02 (d, J = 10.2 Hz, 1H), 1.93-1.66 (m, 2H), 1.58-1.36 (m, 1H).

N-(4-chlorophenyl)-1-(3-(3,3-dimethylbutanamido)benzoyl)piperidine-3-carboxamide (203966). 38 mg (0.083 mmol, 83% yield) of title compound as a light brown solid. ESI(+) m/z [M+Na] 456.0; HPLC (gradient A): ret time = 7.35 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): δ 10.26-9.86 (m, 2H), 7.75 (s, 1H), 7.70-7.44 (m, 3H), 7.42-7.20 (m, 4H), 7.03 (d, J = 7.5 Hz, 1H), 4.57-4.23 (m, 1H), 3.77-3.50 (m, 1H), 3.13-2.89 (m, 2H), 2.19 (s, 2H), 2.01 (s, 1H), 1.89-1.58 (m, 3H), 1.43 (s, 1H), 1.02 (s, 9H).

N-(4-chlorophenyl)-1-(3-vinylbenzoyl)piperidine-3-carboxamide (203968). 34 mg (0.071 mmol, 71% yield) of title compound as an off-white foam. ESI(+) m/z [M+H]+ 369.0; [M+Na] 391.0; HPLC (gradient A): ret time = 7.31 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.5:1.0 mixture of rotamers, δ 10.19 (rotamer 1, s), 10.00 (rotamer 2, s, 1H), 7.71-7.17 (m, 8H), 6.75 (s, 1H), 5.89 (d, J = 17.6 Hz, 1H), 5.38-5.25 (m, 1H), 4.60-4.20 (m, 1H), 3.72-3.43 (m, 1H), 3.13-2.90 (m, 2H), 2.62-2.53 (m, 1H), 2.07-1.57 (m, 4H), 1.43 (s, 1H).

N-(4-chlorophenyl)-1-(3-(2-methylthiazol-4-yl)benzoyl)piperidine-3-carboxamide (203975). 17 mg (0.039 mmol, 39% yield) of title compound as an off-white solid. ESI(+) m/z [M+H]+ 440.0; [M+Na] 462.0; HPLC (gradient A): ret time = 7.20 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.22
(rotamer 1, s), 10.00 (rotamer 2, s, 1H), 8.12-7.24 (m, 9H), 4.67-4.19 (m, 1H), 3.74-3.53 (m, 1H), 3.18-2.90 (m, 2H), 2.72 (s, 3H), 2.66-2.55 (m, 1H), 2.11-1.94 (m, 1H), 1.93-1.63 (m, 2H), 1.55-1.35 (m, 1H).

N-(4-chlorophenyl)-1-(3-methylbenzoyl)piperidine-3-carboxamide (203977). 40 mg (0.112 mmol, 112% yield). ESI(+) m/z [M+H]+ 357.0; [M+Na] 379.0; HPLC (gradient A): ret time = 7.26; purity = >90%. 1H NMR (500 MHz, DMSO-d6): 2.0:1.0 mixture of rotamers, δ 10.22 (rotamer 1, s), 10.04 (rotamer 2, 1H), 7.80-7.44 (m, 2H), 7.44-7.11 (m, 5H), 6.60-6.56 (m, 1H), 4.60-4.16 (m, 1H), 3.70-3.50 (m, 1H), 3.13-2.91 (m, 2H), 2.40-2.24 (m, 3H), 2.07-1.61 (m, 3H), 1.51-1.30 (m, 1H).

N-(4-chlorophenyl)-1-(3-methylthio)benzoyl)piperidine-3-carboxamide (203963). 32 mg (0.082 mmol, 82% yield) of title compound as a off-white oil. ESI(+) m/z [M+H]+ 389.0; [M+Na] 411.0; HPLC (gradient A): ret time = 7.26 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.20 (rotamer 1, s), 10.02 (rotamer 2, s, 1H), 7.73-7.06 (m, 8H), 4.60-4.20 (m, 1H), 3.70-3.45 (m, 1H), 3.14-2.90 (m, 2H), 2.10-1.62 (m, 3H), 1.55-1.35 (m, 1H).

N-(4-chlorophenyl)-1-(3-(oxazol-5-yl)benzoyl)piperidine-3-carboxamide (203973). 28 mg (0.068 mmol, 68% yield) of title compound as a yellowish solid. ESI(+) m/z [M+H]+ 410.0; [M+Na] 432.0; HPLC (gradient A): ret time = 6.53 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.21 (rotamer 1, s), 9.98 (rotamer 2, s, 1H), 8.53-7.19 (m, 10H), 4.63-4.17 (m, 1H), 3.70-3.48 (m, 1H), 3.17-2.93 (m, 2H), 2.66-2.54 (m, 1H), 2.01 (d, J = 12.9 Hz, 1H), 1.91-1.61 (m, 2H), 1.46 (s, 1H).

N-(4-chlorophenyl)-1-(3-(N,N-diethylsulfamoyl)benzoyl)piperidine-3-carboxamide (203967). 34 mg (0.071 mmol, 71% yield) of title compound as a light brown oily solid. ESI(+) m/z [M+H]+ 478.0; [M+Na] 500.0; HPLC (gradient A): ret time = 7.24 min; purity = >95%. 1H NMR (500 MHz, DMSO-d6): 1.2:1.0 mixture of rotamers, δ 10.02 (rotamer 1, s), 10.03 (rotamer 2, s, 1H), 7.92-7.81 (m, 1H), 7.78-7.60 (m, 4H), 7.58-7.49 (m, 1H), 7.34 (dd, J = 17.9, 9.4 Hz, 2H), 4.55-4.18 (m, 1H), 3.58-3.38 (m, 1H), 3.26-2.95 (m, 1H).
Methyl 3-((4-chlorophenyl)carbamoyl)piperidine-1-carbonylbenzoate (203969). 30 mg (0.075 mmol, 75% yield) of title compound as a light brown oil. ESI(+) m/z [M+H]+ 401.0; [M+Na] 423.0; HPLC (gradient A): ret time = 6.86 min; purity = >90%. 1H NMR (500 MHz, DMSO-d$_6$): 1.4:1.0 mixture of rotamers, δ 10.19 (rotamer 1, s), 9.96 (rotamer 2, s, 1H), 8.12-7.24 (m, 8H), 4.60-4.13 (m, 1H), 3.87 (s, 3H), 3.65-3.45 (m, 1H), 3.20-2.95 (m, 2H), 2.13-1.61 (m, 3H), 1.59-1.33 (m, 1H).

N-(4-chlorophenyl)-1-(3-(5-methyl-1,2,4-oxadiazol-3-yl)benzoyl)piperidine-3-carboxamide (203974). 36 mg (0.085 mmol, 85% yield) of title compound as a light brown solid. ESI(+) m/z [M+H]+ 425.0; [M+Na] 447.0; HPLC (gradient A): ret time = 6.89 min; purity = >90%. 1H NMR (500 MHz, DMSO-d$_6$): 1.5:1.0 mixture of rotamers, δ 10.22 (rotamer 1, s), 9.97 (rotamer 2, s, 1H), 8.17-7.20 (m, 8H), 4.62-4.10 (m, 1H), 3.73-3.49 (m, 1H), 3.19-2.95 (m, 1H), 2.73-2.55 (m, 4H), 2.05-1.95 (m, 1H), 1.93-1.64 (m, 2H), 1.58-1.35 (m, 1H).

N-(4-chlorophenyl)-1-(3-methoxybenzoyl)piperidine-3-carboxamide (203979). TOF MS-ESI m/z [M+H]$^+$ 373.0; [M+Na] 395.0. HPLC (gradient A): ret time = 6.99 min; purity = >95%. 1H NMR (500 MHz, DMSO-d$_6$): 1.6:1.0 mixture of rotamers, δ 10.22 (rotamer 1, s), 10.03 (rotamer 2, s, 1H) 7.70 (m, 2H), 7.35 (s, 3H), 7.01 (s, 1H), 6.92 (d, J = 7.7 Hz, 1H), 6.90-6.87 (m, 1H), 4.59-4.21 (m, 1H), 3.77 (s, 3H), 3.67-3.47 (m, 1H), 3.12-2.87 (m, 2H), 2.07-1.61 (m, 3H), 1.55-1.31 (m, 1H).

N-(4-chlorophenyl)-1-(3-(methoxymethyl)benzoyl)piperidine-3-carboxamide (203962). 37 mg (0.096 mmol, 96% yield) of title compound as an off-white foam. ESI(+) m/z [M+H]+ 387.0; [M+Na] 409.0; HPLC (gradient A): ret time = 6.76 min; purity = >95%. 1H NMR (500 MHz, DMSO-d$_6$): 1.4:1.0 mixture of rotamers, δ 10.20 (rotamer 1, s), 10.02 (rotamer 2, s, 1H) 7.72-7.24 (m, 8H), 4.60-4.20 (m, 3H), 3.70-3.48
(m, 1H), 3.30-3.23 (m, 3H), 3.13-2.88 (m, 2H), 2.63-2.53 (m, 1H), 2.08-1.62 (m, 3H), 1.55-1.32 (m, 1H).

N-(4-chlorophenyl)-1-(3-methylsulfonamido)benzoyl)piperidine-3-carboxamide (203965). 36 mg (0.083 mmol, 83% yield) of title compound as an off-white solid.

ESI(+) m/z [M+H]+ 436.0; [M+Na] 458.0; HPLC (gradient A): ret time = 6.2 min; purity = >95%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): 1.2:1.0 mixture of rotamers, \(\delta\) 10.19 (rotamer 1, s), 9.99 (s, 1H), 9.93 (rotamer 2, s, 1H), 7.76-7.07 (m, 8H), 4.57-4.23 (m, 1H), 3.75-3.47 (m, 1H), 3.01 (s, 5H), 2.61-2.54 (m, 1H), 2.02 (s, 1H), 1.88-1.63 (m, 2H), 1.44 (s, 1H).

N-(4-chlorophenyl)-1-(3-cyanobenzoyl)piperidine-3-carboxamide (203961). 22 mg (0.060 mmol, 60% yield) of title compound as an off-white oil.

ESI(+) m/z [M+H]+ 368.0; [M+Na] 390.0; HPLC (gradient A): ret time = 6.68 min; purity = >95%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): 1.2:1.0 mixture of rotamers, \(\delta\) 10.22 (rotamer 1, s), 9.99 (rotamer 2, s, 1H), 8.02-7.23 (m, 8H), 4.58-4.14 (m, 1H), 3.60-3.40 (m, 1H), 3.16-2.93 (m, 2H), 2.65-2.52 (m, 1H), 2.00 (d, \(J = 8.1\) Hz, 1H), 1.91-1.64 (m, 2H), 1.47 (s, 1H).

N-(4-chlorophenyl)-1-(3-(methylsulfonyl)benzoyl)piperidine-3-carboxamide (203970). 39 mg (0.093 mmol, 93% yield) of title compound as a yellowish-brown oil.

ESI(+) m/z [M+H]+ 421.0; [M+Na] 443.0; HPLC (gradient A): ret time = 6.25 min; purity = >95%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): 1.4:1.0 mixture of rotamers, \(\delta\) 10.20 (rotamer 1, s), 9.99 (rotamer 2, s, 1H), 8.06-7.87 (m, 2H), 7.79-7.47 (m, 4H), 7.42-7.27 (m, 2H), 4.59-4.19 (m, 1H), 3.64-3.42 (m, 1H), 3.31 (s, 3H), 3.19-2.95 (m, 2H), 2.67-2.52 (m, 1H), 2.02 (s, 1H), 1.91-1.37 (m, 3H).

1-(3-acetamidobenzoyl)-N-(4-chlorophenyl)piperidine-3-carboxamide (203964). 27 mg (0.068 mmol, 68% yield) of title compound as an off-white solid. ESI(+) m/z [M+H]+ 400.0; [M+Na] 422.0; HPLC (gradient A): ret time = 6.08 min; purity = >95%. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)): \(\delta\) 10.29-9.93 (m, 2H), 7.72 (s, 1H), 7.69-7.49 (m, 3H), 7.35 (bs,
3H), 7.02 (d, J = 7.6 Hz, 1H), 4.60-4.24 (m, 1H), 3.75-3.49 (m, 1H), 3.10-2.89 (m, 2H), 2.13-1.60 (m, 6H), 1.43 (s, 1H).

General procedure for aniline library

The following procedure was performed in a parallel reaction format. To each 8 mL vial was added varied aniline (0.100 mmol), followed by a 0.500 mL of a solution containing EDCI (0.3M) and DMAP (0.3M) in dichloromethane, 1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylic acid (0.055 g, 0.150 mmol), and anhydrous dichloromethane (0.500 mL). The solution was sonicated between each addition. The reaction mixture was capped and allowed to stir 48 hours at room temperature on an orbital shaker at 2,500 rpm. The reaction solution was diluted with dichloromethane (3 mL) and washed with saturated NaHCO₃ (2 mL). The vial was shaken and the layers allowed to separate for 30 minutes. The aqueous layer was then removed, and the remaining organic layer was washed 1M aqueous Hydrochloric acid (2 mL), and the layers were again allowed to separate for 30 minutes. The dichloromethane layer was removed and transferred to a clean vial and concentrated. Organics were dried (MgSO₄) and concentrated to afford title compounds below.

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-phenoxyphenyl)piperidine-3-carboxamide (206114). 52 mg (0.097 mmol, 97% yield) of title compound as a white solid. ESI(+) m/z [M+H]+ 537.2; [M+Na] 559.2. HPLC (gradient A): ret time = 8.44 min; purity = 89%. ¹H NMR (400 MHz, DMSO-d₆): 1.1:1.0 mixture of rotamers, δ 10.02 (rotamer 1, s), 9.80 (rotamer 2, s, 1H), 8.29-7.91 (m, 4H), 7.52-7.07 (m, 7H), 6.91 (d, J =

N-(3-benzylphenyl)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206108). 56 mg (0.105 mmol, 105% yield) of title compound as a light purple solid. ESI(+) m/z [M+H]+ 535.2; [M+Na] 557.2. HPLC (gradient A): ret time = 8.52 min; purity = 91%. ¹H NMR (400 MHz, DMSO-d₆): 1.2:1.0 mixture of rotamers, δ 10.02 (rotamer 1, s), 9.80 (rotamer 2, s, 1H), 8.29-7.91 (m, 4H), 7.52-7.07 (m, 7H), 6.91 (d, J =
16.7 Hz, 1H), 4.58-4.06 (m, 1H), 3.97-3.81 (m, 2H), 3.55-3.35 (m, 1H), 3.22-2.93 (m, 2H), 2.06-1.38 (m, 5H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(2-(pyridin-2-yl)ethoxy)phenyl)piperidine-3-carboxamide (206124). 18 mg (0.032 mmol, 32%) of title compound as a white solid. ESI(+) m/z [M+H]+ 566.2; [M+Na] 588.2. HPLC (gradient A): ret time = 6.13 min; purity = >95%. 1H NMR (400 MHz, DMSO-d6): 1.2:1.0 mixture of rotamers, δ 10.02 (rotamer 1, s), 9.79 (rotamer 2, s, 1H), 8.54-8.47 (m, 1H), 8.27-8.14 (m, 1H), 4.58-4.05 (m, 3H), 3.57-3.36 (m, 2H), 3.23-2.98 (m, 4H), 2.70-2.53 (m, 1H), 2.06-1.95 (m, 1H), 1.86-1.64 (m, 2H), 1.59-1.39 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(pyrrolidin-1-ylsulfonyl)phenyl)piperidine-3-carboxamide (206109). 54 mg (0.094 mmol, 94% yield) of title compound as a yellow solid. ESI(+) m/z [M+H]+ 578.2; [M+Na] 600.2. HPLC (gradient A): ret time = 7.65 min; purity = 94%. 1H NMR (400 MHz, DMSO-d6): 1.1:1.0 mixture of rotamers, δ 10.02 (rotamer 1, s), 10.22 (rotamer 2, s, 1H), 8.37-7.39 (m, 7H), 4.59-4.01 (m, 1H), 3.71-3.37 (m, 2H), 3.13 (s, 5H), 2.78-2.53 (m, 2H), 2.14-1.98 (m, 1H), 1.92-1.42 (m, 6H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(2-methylthiazol-4-yl)phenyl)piperidine-3-carboxamide (206244). 22 mg (0.041 mmol, 41% yield) of title compound as a white solid. ESI(+) m/z [M+H]+ 542.0; [M+Na] 564.0. HPLC (gradient A): ret time = 7.63 min; purity = >95%. 1H NMR (400 MHz, DMSO-d6): 1.1:1.0 mixture of rotamers, δ 10.17 (rotamer 1, s), 9.94 (rotamer 2, s, 1H), 8.28-8.02 (m, 4H), 7.87-7.75 (m, 1H), 7.64-7.44 (m, 2H), 7.38-7.22 (m, 1H), 4.58-4.04 (m, 1H), 3.57-3.34 (m, 1H), 3.21-2.96 (m, 2H), 2.76-2.52 (m, 4H), 2.01 (d, J = 10.9, 1H), 1.87-1.35 (m, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-ethylphenyl)piperidine-3-carboxamide (206102). 51 mg (0.108 mmol, 70% yield) of title compound as a light brown solid. ESI(+) m/z [M+H]+ 473.2; [M+Na] 495.1. HPLC (gradient A): ret time = 8.15 min; purity = 92%. 1H NMR (500 MHz, DMSO-d6): 1.0:1.0 mixture of rotamers, δ 10.02
(rotamer 1, s), 9.80 (rotamer 2, s, 1H), 8.27-8.16 (m, 1H), 8.12 (s, 2H), 7.55-7.25 (m, 2H), 7.18 (dt, J = 29.5, 7.9 Hz, 1H), 6.95-6.82 (m, 1H), 4.54-4.05 (m, 1H), 3.55-3.38 (m, 1H), 3.25-2.99 (m, 2H), 2.68-2.52 (m, 3H), 2.06-1.97 (m, 1H), 1.73-1.38 (m, 3H), 1.15 (dq, J = 15.0, 7.4 Hz, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-vinylphenyl)piperidine-3-carboxamide (206248). ESI(+) m/z [M+H]+ 471.0; [M+Na] 493.0. HPLC (gradient A): ret time = 6.05 min; purity = 82%. 1H NMR (400 MHz, DMSO-d6): 1.2:1.0 mixture of rotamers, δ 10.07 (rotamer 1, s), 9.85 (rotamer 2, s, 1H), 8.26-7.91 (m, 3H), 7.76-7.06 (m, 4H), 6.75-6.57 (m, 1H), 5.80-5.60 (m, 1H), 5.30-5.13 (m, 1H), 4.55-4.00 (m, 1H), 3.52-3.34 (m, 1H), 3.21-2.94 (m, 2H), 2.66-2.51 (m, 1H), 2.05-1.93 (m, 1H), 1.81-1.40 (m, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-oxazol-5-yl)phenyl)piperidine-3-carboxamide (206243). ESI(+) m/z [M+H]+ 512.0; [M+Na] 534.0. HPLC (gradient A): ret time = 7.19 min; purity = >95%. 1H NMR (400 MHz, DMSO-d6): 1.2:1.0 mixture of rotamers, δ 10.23 (rotamer 1, s), 10.09 (rotamer 2, s, 1H), 8.47-7.28 (m, 9H), 4.59-3.98 (m, 1H), 3.55-3.35 (m, 1H), 3.25-2.96 (m, 2H), 2.68-2.52 (m, 1H), 2.07-1.94 (m, 1H), 1.86-1.61 (m, 2H), 1.59-1.38 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(methylthio)phenyl)piperidine-3-carboxamide (206241). 19 mg (0.039 mmol, 39% yield) of title compound as a clear oil. ESI(+) m/z [M+H]+ 491.0; [M+Na] 512.9. HPLC (gradient A): ret time = 7.93 min; purity = 81%. 1H NMR (400 MHz, CDCl3): 8.20-7.60 (m, 4H), 7.30-7.20 (m, 2H), 7.01 (d, J = 6.3 Hz, 1H), 4.60-4.20 (m, 1H), 3.82 (s, 1H), 3.70-3.25 (m, 2H), 2.67 (s, 1H), 2.48 (s, 3H), 2.25-1.50 (m, 4H).

Methyl 3-(1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamido)benzoate (206110). 36 mg (0.072 mmol, 72% yield) of title compound as a light purple solid. ESI(+) m/z [M+H]+ 503.1; [M+Na] 525.2. HPLC (gradient A): ret time = 7.63 min; purity = 90%. 1H NMR (400 MHz, DMSO-d6): 1.1:1.0 mixture of rotamers, δ 10.33 (rotamer 1, s), 10.09 (rotamer 2, s, 1H, 8.39-8.16 (m, 2H), 8.12 (s, 2H), 7.91-7.70 (m,
1H), 7.70-7.57 (m, 1H), 7.44 (dq, J = 14.3, 7.6 Hz, 1H), 4.60-4.00 (m, 1H), 3.90-3.79 (m, 3H), 3.51-3.38 (m, 1H), 3.29-2.97 (m, 2H), 2.76-2.60 (m, 1H), 2.10-1.98 (m, 1H), 1.88-1.65 (m, 2H), 1.63-1.43 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-methoxyphenyl)piperidine-3-carboxamide (206242). 29 mg (0.061 mmol, 61% yield) of title compound as an amber oil. ESI(+) m/z [M+H]+ 475.0; [M+Na] 497.0. HPLC (gradient A): ret time = 7.59 min; purity = 80%.

1H NMR (400 MHz, DMSO-d$_6$): 1.1:1.0 mixture of rotamers, δ 10.07 (rotamer 1, s), 9.85 (rotamer 2, s, 1H), 8.30-8.17 (m, 1H), 8.11 (s, 2H), 8.09-7.96 (m, 1H), 7.38-6.97 (m, 3H), 6.61 (dd, J = 18.4, 6.8 Hz, 1H), 4.58-4.06 (m, 1H), 3.77-3.66 (m, 3H), 3.56-3.38 (m, 1H), 3.24-2.97 (m, 2H), 2.08-1.95 (m, 1H), 1.86-1.26 (m, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-cyanophenyl)piperidine-3-carboxamide (206104). 62 mg (0.132 mmol, 132% yield) of title compound as a light brown foam. ESI(+) m/z [M+H]+ 470.1; [M+Na] 492.1. HPLC (gradient A): ret time = 7.43 min; purity = 93%.

1H NMR (500 MHz, DMSO-d$_6$): 1.0:1.0 mixture of rotamers, δ 10.07 (rotamer 1, s), 10.25 (rotamer 2, s, 1H), 8.31-7.44 (m, 7H), 4.60-3.97 (m, 1H), 4.02 (s, 1H), 3.62-3.39 (m, 2H), 3.17-3.03 (m, 1H), 2.73-2.55 (m, 1H), 2.08-1.97 (m, 1H), 1.88-1.66 (m, 2H), 1.63-1.42 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(morpholinomethyl)phenyl)piperidine-3-carboxamide (206247). 31 mg (0.057 mmol, 57% yield) of title compound as a white solid. ESI(+) m/z [M+H]+ 544.1; [M+Na] 566.1. HPLC (gradient A): ret time = 5.96 min; purity = >95%. 1H NMR (400 MHz, DMSO-d$_6$): 1.1:1.0 mixture of rotamers, δ 10.08 (rotamer 1, s), 9.85 (rotamer 2, s, 1H), 8.30-8.16 (m, 1H), 8.12 (s, 2H), 7.64-7.37 (m, 2H), 7.22 (dt, J = 15.7, 7.4 Hz, 1H), 6.96 (dd, J = 17.8, 6.7 Hz, 1H), 4.59-4.05 (m, 1H), 3.56 (bs, 4H), 3.40 (d, J = 17.6 Hz, 3H), 3.25-2.97 (m, 2H), 2.74-2.59 (m, 1H), 2.45-2.23 (m, 4H), 2.09-1.95 (m, 4H), 1.89-1.63 (m, 1H), 1.63-1.38 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-nitrophenyl)piperidine-3-carboxamide (206103). 59 mg, (0.121 mmol, 121% yield) of title compound as an amber oil. ESI(+) m/z [M+H]+ 490.1; [M+Na] 512.1. HPLC (gradient A): ret time = 7.62 min; purity =
>95%. 1H NMR (500 MHz, DMSO-d_6): 1.1:1.0 mixture of rotamers, δ 10.60 (rotamer 1, s), 10.35 (rotamer 2, s, 1H), 8.73-8.53 (m, 1H), 8.28-8.16 (m, 1H), 8.12 (s, 2H), 7.99-7.77 (m, 2H), 7.59 (dt, J = 30.8, 7.7 Hz, 1H), 4.60-3.95 (m, 1H), 3.62-3.38 (m, 2H), 3.17-3.04 (m, 1H), 2.73-2.56 (m, 1H), 2.11-1.97 (m, 1H), 1.88-1.64 (m, 2H), 1.64-1.43 (m, 1H).

N-(3-acetylphenyl)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206105). 57 mg (0.117 mmol, 117% yield) of title compound as a light brown foam. ESI(+) m/z [M+H]+ 487.1; [M+Na] 509.1. HPLC (gradient A): ret time = 7.25 min; purity = 92%. 1H NMR (500 MHz, DMSO-d_6): 1.1:1.0 mixture of rotamers, δ 10.1 (rotamer 1, s), 10.07 (rotamer 2, s, 1H), 8.47-8.07 (m, 5H), 7.93-7.60 (m, 2H), 7.50-7.38 (m, 1H), 4.60-4.05 (m, 1H), 3.58-3.38 (m, 1H), 3.27-3.02 (m, 2H), 2.71-2.52 (m, 4H), 2.09-2.00 (m, 1H), 1.87-1.41 (m, 4H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(pyrrolidin-1-ylmethyl)phenyl)piperidine-3-carboxamide (206123). ESI(+) m/z [M+H]+ 528.2; [M+Na] 550.2. HPLC (gradient A): ret time = 6.05 min; purity = >95%. 1H NMR (400 MHz, DMSO-d_6): 1.2:1.0 mixture of rotamers, δ 10.01 (rotamer 1, s, 1H), 9.79 (rotamer 2, s), 8.21 (rotamer 1, s, 1H), 8.15 (rotamer 2, s), 8.08 (s, 2H), 7.65-7.33 (m, 2H), 7.25-7.10 (m, 1H), 7.00-6.88 (m, 1H), 4.60-4.00 (m, 1H), 3.60-3.35 (m, 4H), 3.20-2.95 (m, 2H), 2.70-2.55 (m, 1H), 1.98 (d, J = 9.5, 1H), 1.85-1.60 (m, 6H), 1.60-1.35 (m, 1H).

Methyl 5-(3-(1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamido)phenyl)furan-2-carboxylate (206112). 25 mg (0.044 mmol, 44% yield) of title compound as a white solid. ESI(+) m/z [M+H]+ 569.2; [M+Na] 591.2. HPLC (gradient A): ret time = 8.00 min; purity = >95%. 1H NMR (400 MHz, DMSO-d_6): 1.0:1.0 mixture of rotamers, δ 10.31 (rotamer 1, s), 10.07 (rotamer 2, s, 1H), 8.28-7.06 (m, 9H), 4.61-4.07 (m, 1H), 3.85 (s, 7H), 3.58-2.99 (m, 3H), 2.77-2.56 (m, 1H), 2.11-1.98 (m, 1H), 1.92-1.66 (m, 2H), 1.64-1.46 (m, 1H).

N-(3-(allyloxy)phenyl)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206240). 37 mg (0.074 mmol, 74% yield) of title compound as an orange oil. ESI(+) m/z
[M+H]$^+$ 501.0; [M+Na] 523.0. HPLC (gradient A): ret time = 7.96 min; purity = 79%.

TOF MS-ESI m/z [M+H]$^+$ 501.0; [M+Na] 523.0. 1H NMR (400 MHz, DMSO-d_6):
1.2:1.0 mixture of rotamers, δ 10.03 (rotamer 1, s), 9.81 (rotamer 2, s, 1H), 8.28-7.93 (m, 3H), 7.41-6.93 (m, 3H), 6.64-6.52 (m, 1H), 6.08-5.90 (m, 1H), 5.43-5.28 (m, 1H), 5.26-5.16 (m, 1H), 4.53-4.40 (m, 2H), 4.15-3.33 (m, 2H), 3.21-2.94 (m, 2H), 1.97 (m, 1H), 1.82-1.40 (m, 3H).

N-(3-benzoylphenyl)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206111). 41 mg (0.075 mmol, 75% yield) of title compound as a light brown solid.

ESI(+) m/z [M+H]$^+$ 549.2; [M+Na] 571.2. HPLC (gradient A): ret time = 8.13 min; purity = 90%.

1H NMR (400 MHz, DMSO-d_6): 1.2:1.0 mixture of rotamers, δ 10.06 (rotamer 1, s), 10.10 (rotamer 2, s, 1H), 8.29-7.33 (m, 12H), 4.60-4.05 (m, 1H), 3.48-3.35 (m, 1H), 3.24-2.98 (m, 2H), 2.75-2.60 (m, 1H), 2.08-1.97 (m, 1H), 1.88-1.65 (m, 2H), 1.65-1.40 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(4-methyl-4H-1,2,4-triazol-3-yl)phenyl)piperidine-3-carboxamide (206245). 29 mg (0.055 mmol, 55% yield) of title compound as a white solid. ESI(+) m/z [M+H]$^+$ 528.2; [M+Na] 550.2. HPLC (gradient A): ret time = 7.02 min; purity = 94%.

1H NMR (500 MHz, DMSO-d_6): 1.1:1.0 mixture of rotamers, δ 10.28 (rotamer 1, s), 10.06 (rotamer 2, s, 1H), 8.58-8.51 (m, 1H), 8.26-8.14 (m, 1H), 8.09 (s, 2H), 8.05-7.89 (m, 1H), 7.79-7.59 (m, 1H), 7.51-7.33 (m, 2H), 4.52-4.05 (m, 1H), 3.82-3.61 (m, 2H), 3.47-3.35 (m, 1H), 3.22-3.00 (m, 2H), 2.69-2.53 (m, 1H), 2.07-1.97 (m, 1H), 1.84-1.63 (m, 2H), 1.59-1.40 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(2-oxopyrrolidin-1-yl)phenyl)piperidine-3-carboxamide (206113). 29 mg (0.055 mmol, 55% yield) of title compound as a white solid. ESI(+) m/z [M+H]$^+$ 528.2; [M+Na] 550.2. HPLC (gradient A): ret time = 7.02 min; purity = 94%.

1H NMR (500 MHz, DMSO-d_6): 1.1:1.0 mixture of rotamers, δ 10.28 (rotamer 1, s), 10.06 (rotamer 2, s, 1H), 8.25-8.13 (m, 1H), 8.11-7.88 (m, 3H), 7.77-7.58 (m, 1H), 7.51-7.33 (m, 2H), 4.57-4.03 (m, 1H), 3.77-3.65 (m, 2H), 3.47-3.35 (m, 1H), 3.22-3.00 (m, 2H), 2.69-2.53 (m, 1H), 2.07-1.97 (m, 1H), 1.84-1.63 (m, 2H), 1.59-1.40 (m, 1H).
3.23-3.00 (m, 2H), 2.69-2.30 (m, 2H), 2.07-1.97 (m, 1H), 1.83-1.64 (m, 2H), 1.59-1.42 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)phenyl)piperidine-3-carboxamide (206125). 42 mg (0.066 mmol, 66% yield) of title compound as a white solid. ESI(+) m/z [M+H]+ 640.1. HPLC (gradient A): ret time = 8.70 min; purity >95%. 1H NMR (400 MHz, DMSO-d6): 1.1:1.0 mixture of rotamers, δ 10.27 (rotamer 1, s), 10.05 (rotamer 2, s, 1H), 8.59 (s, 1H), 8.55-8.46 (m, 1H), 8.27-8.15 (m, 1H), 8.13-8.07 (m, 2H), 7.67-7.53 (m, 1H), 7.47-7.23 (m, 4H), 6.92 (dd, J = 18.2, 6.1 Hz, 1H), 4.58-3.95 (m, 1H), 3.55-3.36 (m, 3H), 3.29-2.97 (m, 3H), 3.29-2.97 (m, 4H), 2.69-2.53 (m, 1H), 2.07-1.96 (m, 2H), 1.84-1.39 (m, 7H).

tert-butyl 3-(1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamido)benzoate (206107). 47 mg (0.086 mmol, 86% yield) of title compound as a white solid. ESI(+) m/z [M+Na]+ 567.2. HPLC (gradient A): ret time = 8.52 min; purity = 87%. 1H NMR (400 MHz, DMSO-d6): 1.1:1.0 mixture of rotamers, δ 10.28 (rotamer 1, s), 10.05 (rotamer 2, s, 1H), 8.59 (s, 1H), 8.55-8.46 (m, 1H), 8.27-8.15 (m, 1H), 8.13-8.07 (m, 2H), 7.67-7.53 (m, 1H), 7.47-7.23 (m, 4H), 6.92 (dd, J = 18.2, 6.1 Hz, 1H), 4.58-3.95 (m, 1H), 3.55-3.36 (m, 3H), 3.29-2.97 (m, 4H), 2.69-2.53 (m, 1H), 2.07-1.96 (m, 2H), 1.84-1.39 (m, 7H).

N-(4-chlorophenyl)-1-(3-(thiophen-2-yl)benzoyl)piperidine-3-carboxamide (206455). 29 mg (0.068 mmol, 93% yield) as an amber glass. ESI(+) m/z [M+H]+ 425.0; [M+23] 447.0; HPLC (gradient A): ret time = 7.66 min; purity >95%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.25 (rotamer 1, s), 10.06 (rotamer 2, s, 1H), 7.99-7.11 (m, 11H), 4.64-4.19 (m, 1H), 3.75-3.51 (m, 1H), 3.18-2.93 (m, 2H), 2.68-2.54 (m, 1H), 2.12-1.64 (m, 3H), 1.59-1.36 (m, 1H).

N-(4-chlorophenyl)-1-(4-(furan-2-yl)benzoyl)piperidine-3-carboxamide (206119). 31 mg (0.076 mmol, 76% yield). ESI(+) m/z [M+H]+ 409.1; [M+23] 431.1; HPLC (gradient A): ret time = 7.38 min; purity = 99%. 1H NMR (500 MHz, DMSO-d6): 1.4:1.0 mixture of rotamers, δ 10.23 (rotamer 1, s), 10.06 (rotamer 2, s, 1H), 7.88-7.50 (m, 5H), 7.44 (d, J
= 8.3 Hz, 2H), 7.35 (bs, 2H), 7.04 (s, 1H), 6.63 (s, 1H), 4.60-4.20 (m, 1H), 3.78-3.53 (m, 1H), 3.15-2.90 (m, 2H), 2.63-2.53 (m, 1H), 2.01 (s, 1H), 1.89-1.62 (m, 2H), 1.46 (s, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(furan-2-yl)phenyl)piperidine-3-carboxamide (206122). 23 mg (0.045 mmol, 45% yield) of title compound as a white solid. ESI(+) \text{m/z} [M+H]^+ 511.1; [M+Na] 533.1. HPLC (gradient A): ret time = 8.10 min; purity = 91%. 1H NMR (400 MHz, CDCl$_3$): δ 8.40-7.76 (m, 5H), 7.55-7.30 (m, 4H), 6.67 (s, 1H), 6.46 (s, 1H), 4.30-4.20 (m, 1H), 3.85-3.25 (m, 3H), 2.70 (s, 1H), 2.27-1.50 (m, 4H).

tert-butyl 3-((3-(methylthio)phenyl)carbamoyl)piperidine-1-carboxylate. Prepared using 43 according to Procedure D to afford 0.030 g (0.086 mmol, 86% yield) of title compound. No further purification was performed.

N-(3-(methylthio)phenyl)piperidine-3-carboxamide. tert-butyl 3-((3-(methylthio)phenyl)carbamoyl)piperidine-1-carboxylate (0.028 g, 0.080 mmol) was dissolved in DCM (0.540 mL) and the solution was cooled to -10 °C. TFA (0.270 mL) was added to the cooled, stirring solution. The reaction mixture continued stirring at -10 °C for 45 minutes. The solution was added to a cooled 2M NaOH solution (10 mL). The mixture was then extracted with DCM (3 x 5 mL). The combined organics were dried (MgSO$_4$) and concentrated in vacuo to afford 0.010 g (0.040 mmol, 50% yield) of title compound as a brown oil. No further purification was performed.

1-(3-(furan-2-yl)benzoyl)-N-(3-(methylthio)phenyl)piperidine-3-carboxamide (206683). Prepared using N-(3-(methylthio)phenyl)piperidine-3-carboxamide according to Procedure B to afford 0.013 g (0.031 mmol, 77% yield) of title compound as a tan solid. No further purification was performed. ESI(+) \text{m/z} [M+H]^+ 421.0; [M+Na] 442.9. HPLC (gradient A): ret time = 7.35 min; purity = >90%. 1H NMR (400 MHz, DMSO-d_6): 1.4:1.0 mixture of rotamers, δ 10.08 (rotamer 1, s), 9.88 (rotamer 2, s, 1H), 7.80-7.15 (m, 8H), 7.04 (s, 1H), 6.93 (s, 1H), 6.62 (s, 1H), 4.65-4.20 (m, 1H), 3.74-3.49 (m, 3H), 2.70 (s, 1H), 2.27-1.50 (m, 4H).
2.96 (m, 2H), 2.64-2.54 (s, 1H), 2.44 (bs, 3H), 2.07-1.95 (m, 1H), 1.91-1.66 (m, 2H), 1.47 (s, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(pyridin-2-ylmethoxy)phenyl)piperidine-3-carboxamide. (206681). Prepared using 3-(pyridin-2-ylmethoxy)aniline and 48 according to Procedure D. Crude material was purified using a Biotage FlashMaster Personal+ system (2.5% Methanolic ammonia/DCM) to afford 0.007 g (0.013 mmol, 13% yield) of title compound as a clear glass. ESI(+) m/z [M+H]+ 537.9; [M+Na] 559.8. HPLC (gradient A): ret time = 7.51 min; purity = >95%. 1H NMR (400 MHz, DMSO-d6): 1.1:1:1 mixture of rotamers, δ 10.17 (rotamer 1, s), 9.95 (rotamer 2, s, 1H), 8.27-8.12 (m, 2H), 8.10 (s, 2H), 7.90-7.81 (m, 1H), 7.56-7.22 (m, 3H), 7.14 (s, 1H), 7.07-6.95 (m, 1H), 6.87-6.72 (m, 1H), 4.58-4.07 (m, 1H), 3.55-3.35 (m, 1H), 3.21-2.96 (m, 2H), 2.69-2.53 (m, 1H) 2.06-1.96 (m, 1H), 1.87-1.39 (m, 3H).

2-((3-nitrophenoxy)methyl)pyridine.147

3-(pyridin-2-ylmethoxy)aniline.148 2-((3-nitrophenoxy)methyl)pyridine (0.050 g, 0.217 mmol), iron powder (0.050 g, 0.890 mmol), and ammonium chloride (0.014 g, 0.261 mmol) were combined in a solution of methanol (1.41 mL), tetrahydrofuran (1.41 mL), and water (0.470 mL), and was refluxed for 3 hours. The resulting mixture was cooled to room temperature, diluted with methanol (5 mL), and filtered through a pad of celite. The filtrate was concentrated and triturated with dichloromethane. The triturated solid was discarded, and the filtrate was concentrated in vacuo to afford 0.035 g of title compound as a brown oil. No further purification was performed. 1H NMR (400 MHz, DMSO-d6): δ 8.56 (d, J = 4.5 Hz, 1H), 7.82 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.38-7.28 (m, 1H), 6.89 (dd, J = 8.7, 7.4 Hz, 1H), 6.21 (d, J = 1.7 Hz, 1H), 6.18-6.12 (m, 2H), 5.06 (s, 4H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-(pyridin-2-ylmethoxy)phenyl)piperidine-3-carboxamide (208798). Prepared using 3-(pyridin-2-ylmethoxy)aniline and 48 according to Procedure D. Crude material was purified using a Biotage FlashMaster Personal+
system (1-15% Methanolic ammonia/DCM) to afford 0.019 g (0.034 mmol, 27% yield) of title compound as an orangish-brown solid. ESI(-) m/z [M-H]^− 550.0. HPLC (gradient A): ret time = 6.36 min; purity = >95%. 1H NMR (400 MHz, DMSO-d_6): 1:1:1:0 mixture of rotamers, δ 10.06 (rotamer 1, s), 9.83 (rotamer 2, s, 1H), 8.57 (s, 1H), 8.27-8.15 (m, 1H), 8.10 (s, 2H), 7.83 (t, J = 6.4, 1H), 7.54-7.00 (m, 5H), 6.70 (d, J = 7.2, 1H), 5.13 (d, J = 13.8, 2H), 4.55-4.05 (m, 1H), 3.55-2.95 (m, 3H), 2.65-2.55 (m, 1H), 2.06-1.95 (m, 1H), 1.88-1.38 (m, 3H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(5-chloropyridin-2-yl)piperidine-3-carboxamide (206101). Only base wash was performed. The crude material was purified using Biotage with 1% Methanolic ammonia in DCM to afford 19 mg (0.040 mmol, 40% yield) of title compound as a white solid. TLC R_f (5% Methanolic ammonia/DCM): 0.63. ESI(+)/m/z [M+H]^+ 480.1; [M+Na] 502.1. HPLC (gradient A): ret time = 7.81 min; purity = >95%. 1H NMR (500 MHz, DMSO-d_6): 1:1:1:0 mixture of rotamers, δ 10.86 (rotamer 1, s), 10.62 (rotamer 2, s, 1H), 8.47-7.99 (m, 5H), 7.97-7.82 (m, 1H), 4.55-3.98 (m, 1H), 3.63-3.37 (m, 2H), 3.31-3.05 (m, 2H), 2.89-2.66 (m, 1H), 2.10-1.93 (m, 1H), 1.90-1.63 (m, 2H), 1.58-1.37 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(6-chloropyridin-3-yl)piperidine-3-carboxamide (206106). 28 mg (0.058 mmol, 58% yield) of title compound. ESI(+)/m/z [M+H]^+ 480.1. HPLC (gradient A): ret time = 7.40 min; purity = >95%. 1H NMR (500 MHz, DMSO-d_6) 1.1:1:0 mixture of rotamers, δ 10.46 (rotamer 1, s), 10.22 (rotamer 2, s, 1H), 8.70-8.48 (m, 1H), 8.31-7.91 (m, 4H), 7.46 (dd, J = 28.4, 8.7 Hz, 1H), 4.61-4.00 (m, 1H), 3.61-3.00 (m, 1H), 2.75-2.55 (m, 2H), 2.10-2.00 (m, 1H), 1.88-1.65 (m, 2H), 1.61-1.41 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(pyridin-4-yl)piperidine-3-carboxamide (206682). Pyridin-4-amine (0.021 g, 0.220 mmol) was dissolved in DCM (2.00 mL) and was treated with EDC (0.058 g, 0.300 mmol), followed by DMAP (0.037 g, 0.300 mmol) and 48 (0.074 g, 0.200 mmol). The suspension was stirred overnight at room temperature. The reaction was then diluted with DCM to a volume of 10 mL and was washed with
saturated NaHCO₃ (5 mL). Organics were dried (MgSO₄) and concentrated in vacuo. Crude material was purified using a CombiFlash Retrieve system (0-5% Methanolic ammonia/DCM) to afford 0.028 g (0.063 mmol, 31% yield) of title compound as a clear glass. TLC Rᶠ (5% Methanolic ammonia/DCM): 0.23. ESI(+) m/z [M+H]⁺ 445.9. HPLC (gradient A): ret time = 5.70 min; purity = >90%. ¹H NMR (400 MHz, DMSO-d₆): 1.0:1.0 mixture of rotamers, δ 10.5 (rotamer 1, s), 10.21 (rotamer 2, s, 1H), 8.47-8.33 (m, 2H), 8.27-8.15 (m, 1H), 8.10 (s, 2H), 7.59 (s, 1H), 7.46 (s, 1H), 4.60-3.97 (m, 1H), 3.60-3.36 (m, 1H), 3.29-3.00 (m, 2H), 2.62-2.54 (m, 1H), 2.09-1.99 (m, 1H), 1.90-1.64 (m, 2H), 1.61-1.40 (m, 1H).

\(N-(6\text{-chloropyridin}-3\text{-yl})-1-(3\text{-(furan}-2\text{-yl)benzoyl})\text{piperidine}-3\text{-carboxamide (206460).} \) 42 mg (0.102 mmol, 44% yield) of title compound as a light brown solid. Agilent ESI(+) m/z [M+Na] 432.0. HPLC (gradient A): ret time = 6.75 min; purity = >95%. ¹H NMR (400 MHz, DMSO-d₆): 1.4:1.0 mixture of rotamers, δ 10.44 (rotamer 1, s), 10.21 (rotamer 2, s, 1H), 8.75-8.43 (m, 1H), 8.20-7.93 (m, 1H), 7.77 (bs, 2H), 7.67 (s, 1H), 7.48 (bs, 2H), 7.28 (d, \(J = 7.4 \) Hz, 1H), 7.04 (s, 1H), 6.62 (s, 1H), 4.65-4.15 (m, 1H), 3.75-3.49 (m, 1H), 3.21-2.89 (m, 2H), 2.70-2.55 (m, 1H), 2.09-2.00 (m, 1H), 1.92-1.65 (m, 2H), 1.47 (s, 1H).

\(\text{tert\text{-butyl 3-((3-chloro-4-methoxyphenyl)carbamoyl)piperidine-1-carboxylate (206120).} \) Prepared using 28 according to Procedure D. Crude material was triturated with DCM to afford 0.009 g (0.024 mmol, 22% yield) of title compound as a white solid. ESI(+) m/z [M+Na] 403.1. HPLC (gradient A): ret time = 7.11; purity = >95%. ¹H NMR (400 MHz, DMSO-d₆): δ 3.80 (d, \(J = 10.8 \) Hz, 1H), 3.01 (dd, \(J = 17.8, 8.5 \) Hz, 1H), 2.64 (d, \(J = 17.9 \) Hz, 1H).

\(\text{1-(3-(furan}-2\text{-yl)benzoyl)-N-(3-phenoxyphenyl)piperidine-3-carboxamide (206451).} \) 20 mg (0.043 mmol, 67% yield) of title compound as a white solid. Agilent ESI(+) m/z [M+H]⁺ 467.1. HPLC (gradient A): ret time = 8.00 min; purity = >90%. ¹H NMR (400 MHz, DMSO-d₆): 1.4:1.0 mixture of rotamers, δ 10.14 (rotamer 1, s), 9.94 (rotamer 2, s,
1H), 7.77 (s, 2H), 7.67 (s, 1H), 7.53-6.94 (m, 12H), 6.75-6.58 (m, 2H), 4.65-4.18 (m, 1H), 3.70-3.48 (m, 1H), 3.15-2.88 (m, 2H), 2.65-2.53 (m, 1H), 2.07-1.93 (m, 1H), 1.89-1.63 (m, 2H), 1.44 (bs, 1H).

N-(3-benzylphenyl)-1-(3-(furan-2-yl)benzoyl)piperidine-3-carboxamide (206450). 15 mg (0.032 mmol, 67% yield) of title compound as a white solid. Agilent ESI(+) m/z [M+H]+ 465.1; [M+Na] 487.1. HPLC (gradient A): ret time = 8.04 min; purity = >90%.

1H NMR (400 MHz, DMSO-d6): 1.6:1.0 mixture of rotamers, δ 10.00 (rotamer 1, s), 9.80 (rotamer 2, s, 1H), 7.82-7.65 (m, 3H), 7.54-7.11 (m, 10H), 7.05 (s, 1H), 6.92 (s, 1H), 6.61 (s, 1H), 4.62-4.20 (m, 1H), 3.98-3.80 (m, 2H), 3.71-3.48 (m, 1H), 3.15-2.85 (m, 2H), 2.65-2.55 (m, 1H), 2.10-1.93 (m, 1H), 1.88-1.62 (m, 2H), 1.44 (s, 1H).

(R)-1-(4-chlorophenyl)-4-hydroxypyrrolidin-2-one (50a). 106 (R)-4-hydroxypyrrolidin-2-one 49a (0.102 g, 1.01 mmol) was added to a pressure tube containing Copper(I) iodide (0.032 g, 0.168 mmol), potassium phosphate (0.356 g, 1.68 mmol), and a stir bar. 1-chloro-4-iodobenzene (0.200 g, 0.839 mmol) dissolved in 1,4-dioxane (8.4 mL) was added, and the tube was purged with nitrogen. trans-1,2-diaminocyclohexane (0.030 mL, 0.252 mmol) was added to the pressure tube, and the tube was purged with nitrogen. The pressure tube was capped and stirred at 110 °C overnight. Crude material was combined with a two additional reactions and was purified by column chromatography (75-100% EtOAc/Hex) to afford 0.444 g (2.10 mmol, 63% yield) of title compound as a brown solid. TLC Rf (80% EtOAc/Hex): 0.23. 1H NMR (400 MHz, DMSO-d6): δ 7.70 (m, 2H), 7.42 (m, 2H), 5.37 (d, J = 3.8, 1H), 4.42-4.35 (m, 1H), 4.04 (dd, J = 10.5, 5.1, 1H), 3.61-3.55 (m, 1H), 2.84 (dd, J = 17.1, 6.1, 1H), 2.30 (dd, J = 17.1, 1.4, 1H).

(R)-1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl 4-methylbenzenesulfonate (51a).

Compound 50a (0.410 g, 1.94 mmol), pyridine (3.13 mL, 38.7 mmol), and p-toluenesulfonyl chloride (1.11 g, 5.81 mmol) were mixed, and the reaction was allowed to stir overnight at room temperature under nitrogen. Water (30 mL) was added, and the water layer was extracted with ether (3 x 30 mL). The combined ether layers were then washed with water (2 x 30 mL), followed by saturated NaHCO3 (2 x 30 mL), and then
brine (30 mL). The ether layer was dried (MgSO₄) and concentrated in vacuo to afford 0.643 g (1.76 mmol, 91% yield) of title compound as a brown solid. No further purification was performed. ¹H NMR (400 MHz, DMSO-d₆): δ 7.90-7.82 (m, 2H), 7.68-7.59 (m, 2H), 7.55-7.47 (m, 2H), 7.48-7.39 (m, 2H), 5.25 (ddt, J = 6.8, 5.4, 1.7 Hz, 1H), 4.21 (dd, J = 11.9, 5.2 Hz, 1H), 3.92-3.84 (m, 1H), 3.01 (dd, J = 17.9, 6.4 Hz, 1H), 2.54-2.46 (m, 1H), 2.44 (s, 3H).

(S)-4-azido-1-(4-chlorophenyl)pyrrolidin-2-one (52a). Compound 51a (0.641 g, 1.75 mmol) was dissolved in DMSO (2.19 mL), and to the stirring solution was added sodium azide (0.570 g, 8.76 mmol). The mixture was stirred at room temperature for 5 hours. The mixture was diluted with water (25 mL) and was extracted with DCM (3 x 25 mL). Combined organics were washed with water (25 mL), dried (MgSO₄), and concentrated in vacuo. Crude material was purified using a Biotage SP1 system (7-40% EtOAc/Hex) to afford 0.073 g (0.308 mmol, 18% yield) of title compound as an amber oil. TLC Rf (30% EtOAc/Hex): 0.18. ¹H NMR (400 MHz, DMSO-d₆): δ 7.71-7.64 (m, 2H), 7.48-7.40 (m, 2H), 4.59 (tt, J = 5.9, 2.6 Hz, 1H), 4.17 (dd, J = 10.9, 5.8 Hz, 1H), 3.77 (dd, J = 10.9, 2.1 Hz, 1H), 3.00 (dd, J = 17.3, 7.0 Hz, 1H).

(S)-4-amino-1-(4-chlorophenyl)pyrrolidin-2-one (53a). Compound 52a (0.071 g, 0.300 mmol) and Pd-C (6.39 mg, 6.00 µmol) were added to a flask, and the flask was evacuated and backfilled with nitrogen 3 times. Sparged methanol (1.50 mL) was then slowly added. A blanket of hydrogen was provided, and the reaction was stirred for 5 h. The reaction was then filtered through a plug of celite and was flushed using additional methanol. Organics were concentrated in vacuo to afford 0.059 g (0.280 mmol, 93% yield) of title compound as a brown opaque oil. No further purification was performed. ¹H NMR (400 MHz, DMSO-d₆): δ 7.71-7.64 (m, 2H), 7.48-7.40 (m, 2H), 4.59 (tt, J = 5.6, 2.6 Hz, 1H), 4.17 (dd, J = 10.9, 5.9 Hz, 1H), 3.77 (dd, J = 10.9, 2.1 Hz, 1H), 3.00 (dd, J = 17.3, 7.1 Hz, 1H), 2.54-2.47 (m, 1H).

(S)-N-(1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,5-bis(trifluoromethyl)benzamide (206684). Compound 53a (0.020 g, 0.095 mmol) was suspended in DCM (0.950 mL)
and was treated with DIPEA (0.025 ml, 0.142 mmol) followed by 3,5-bis(trifluoromethyl)benzoyl chloride (0.019 mL, 0.104 mmol). Upon treatment with the acid chloride, a sample was removed for HPLC, and the reaction appeared to have completed instantaneously. Therefore, the solution was diluted with DCM to a volume of 5 mL, and the organic layer was washed with 1 N HCl (5 mL) followed by NaHCO₃ (5 mL) and was then dried (MgSO₄) and concentrated \textit{in vacuo} to afford 0.028 g of title compound as a white solid. No further purification was performed. ESI(+) \textit{m/z} [M+H]⁺ 450.9; [M+Na] 472.8. HPLC (gradient A): ret time = 7.84 min; purity \(>95\%\). \(^1\text{H NMR}\) (400 MHz, DMSO-\text{d}₆): \(\delta\) 9.36 (d, \(J = 6.6\) Hz, 1H), 8.51 (s, 2H), 8.33 (s, 1H), 7.78-7.69 (m, 2H), 7.49-7.40 (m, 2H), 4.72 (qt, \(J = 7.0, 3.8\) Hz, 1H), 4.25 (dd, \(J = 10.4, 7.0\) Hz, 1H), 3.83 (dd, \(J = 10.4, 2.8\) Hz, 1H), 3.06 (dd, \(J = 17.4, 8.5\) Hz, 1H), 2.64 (dd, \(J = 17.4, 3.4\) Hz, 1H).

(S)-1-(4-chlorophenyl)-4-hydroxypyrrolidin-2-one (50b). (S)-4-hydroxypyrrolidin-2-one (49b) (0.102 g, 1.01 mmol) was added to a pressure tube containing copper(I) iodide (0.032 g, 0.168 mmol), potassium phosphate (0.356 g, 1.68 mmol), and a stir bar. 1-chloro-4-iodobenzene (0.200 g, 0.839 mmol) dissolved in 1,4-dioxane (8.4 mL) was added, and the tube was purged with nitrogen. \textit{trans}-1,2-diaminocyclohexane (0.030 mL, 0.252 mmol) was added to the pressure tube, and the tube was purged with nitrogen. The pressure tube was capped and stirred at 110 °C overnight. Crude material was combined with a two additional reactions and was purified using a Biotage SP1 system (60-82% EtOAc/Hex) to afford 0.427 g (2.02 mmol, 60% yield) of title compound as a brown solid. TLC \(R_f\) (80% EtOAc/Hex): 0.23. \(^1\text{H NMR}\) (400 MHz, DMSO-\text{d}₆): \(\delta\) 7.70-7.63 (m, 2H), 7.42-7.35 (m, 2H), 5.34 (d, \(J = 3.8\) Hz, 1H), 4.34 (dtt, \(J = 5.7, 3.8, 1.8\) Hz, 1H), 4.00 (dd, \(J = 10.5, 5.1\) Hz, 1H), 3.54 (d, \(J = 10.6\) Hz, 1H), 2.79 (dd, \(J = 17.1, 6.1\) Hz, 1H), 2.31-2.23 (m, 1H).

(S)-1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl 4-methylbenzenesulfonate (51b). Compound 50b (0.425 g, 2.01 mmol), Pyridine (3.25 mL, 40.2 mmol), and \(p\)-toluenesulfonyl chloride (1.15 g, 6.02 mmol) were mixed, and the reaction was allowed to stir overnight at room temperature under nitrogen. Water (35 mL) was added, and the
water layer was extracted with ether (3 x 35 mL). The combined ether layers were then washed with water (2 x 35 mL), followed by saturated NaHCO₃ (2 x 35 mL), and then brine (35 mL). The ether layer was dried (MgSO₄), filtered, and concentrated in vacuo. Crude material was purified using a Biotage SP1 system (12-45% EtOAc/Hex) to afford 0.244 g (0.667 mmol, 33% yield) of title compound as an amber oil. TLC R_f (50% EtOAc/Hex): 0.36. \(^1\)H NMR (400 MHz, DMSO-\textit{d}_6): \(\delta\) 7.90-7.82 (m, 2H), 7.68-7.59 (m, 2H), 7.51 (d, \(J = 7.9\) Hz, 2H), 7.48-7.39 (m, 2H), 5.29-5.20 (m, 1H), 4.21 (dd, \(J = 11.9, 5.2\) Hz, 1H), 3.88 (d, \(J = 11.9\) Hz, 1H), 3.01 (dd, \(J = 17.9, 6.3\) Hz, 1H), 2.54-2.65 (m, 1H), 2.44 (s, 3H).

\((R)-4\text{-azido-1-(4-chlorophenyl)pyrrolidin-2-one (52b)}\). Compound 51b (0.242 g, 0.662 mmol) was dissolved in DMSO (0.827 mL), and to the stirring solution was added sodium azide (0.215 g, 3.31 mmol). The mixture was stirred at room temperature for 5 h. The mixture was diluted with water (20 mL) and was extracted with DCM (3 x 20 mL). Combined organics were washed with water (20 mL), dried (MgSO₄), and concentrated in vacuo. Crude material was purified using a Biotage SP1 system (7-40% EtOAc/Hex) to afford 0.073 g (0.308 mmol, 47% yield) of title compound as an amber oil. TLC R_f (30% EtOAc/Hex): 0.18. \(^1\)H NMR (400 MHz, DMSO-\textit{d}_6): \(\delta\) 7.68-7.59 (m, 2H), 7.45-7.36 (m, 2H), 4.55 (ddt, \(J = 7.0, 5.5, 2.6\) Hz, 1H), 4.13 (dd, \(J = 10.9, 5.9\) Hz, 1H), 2.97 (dd, \(J = 17.3, 7.0\) Hz, 1H), 2.51-2.43 (m, 1H).

\((R)-4\text{-amino-1-(4-chlorophenyl)pyrrolidin-2-one (53b)}\). Compound 52b (0.071 g, 0.300 mmol) and Pd-C (6.39 mg, 6.00 µmol) were added to a flask, and the flask was evacuated and backfilled with nitrogen 3 times. Sparged methanol (1.50 mL) was then slowly added. A blanket of hydrogen was provided, and the reaction was stirred for 5 h. The reaction was then filtered through a plug of celite and was flushed using additional methanol. Organics were concentrated in vacuo to afford 0.059 g (0.280 mmol, 93% yield) of title compound as a brown opaque oil. No further purification was performed. \(^1\)H NMR (400 MHz, DMSO-\textit{d}_6): \(\delta\) 12.44 (s, 1H), 8.17 (s, 1H), 8.09 (s, 2H), 4.50-3.70-
3.76 (m, 1H), 3.45-3.31 (m, 2H), 3.11-2.90 (m, 1H), 2.58-2.50 (m, 1H), 2.03-1.84 (m, 1H), 1.78-1.43 (m, 3H).

(R)-N-(1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,5-bis(trifluoromethyl)benzamide (206685). Compound 53b (0.011 g, 0.052 mmol) was suspended in DCM (0.525 mL) and was treated with DIPEA (0.014 mL, 0.078 mmol) followed by 3,5-bis(trifluoromethyl)benzoyl chloride (10.35 µl, 0.057 mmol). Upon treatment with the acid chloride, a sample was removed for HPLC, and the reaction appeared to have completed instantaneously. Therefore, the solution was diluted with DCM to a volume of 5 mL, and the organic layer was washed with 1 N HCl (5 mL) followed by NaHCO$_3$ (5 mL) and was then dried (MgSO$_4$) and concentrated in vacuo to afford 0.015 g of title compound as a white solid. No further purification was performed. ESI(+) m/z [M+H]$^+$ 450.9; [M+Na] 472.8. HPLC (gradient A): ret time = 7.85 min; purity >90%. 1H NMR (400 MHz, DMSO-d_6): δ 9.36 (d, J = 6.7 Hz, 1H), 8.51 (s, 2H), 8.33 (s, 1H), 7.79-7.69 (m, 2H), 7.49-7.40 (m, 2H), 4.78-4.66 (m, 1H), 4.25 (dd, J = 10.4, 6.9 Hz, 1H), 3.83 (dd, J = 10.5, 2.7 Hz, 1H), 3.06 (dd, J = 17.4, 8.5 Hz, 1H), 2.64 (dd, J = 17.4, 3.4 Hz, 1H).

(S)-N-((S)-1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,3,3-trifluoro-2-methoxy-2-phenylpropanamide (208802).107 Compound 53a (0.017 g, 0.081 mmol) was suspended in DCM (0.805 mL) and was treated with DIPEA (0.021 ml, 0.121 mmol) followed by (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride (0.015 ml, 0.081 mmol). A sample was removed for HPLC, and the reaction appeared to have completed instantaneously. Therefore, the solution was diluted with DCM to a volume of 5 mL and the organic layer was washed with 1 N HCl (5 mL) followed by NaHCO$_3$ (5 mL) and was then dried (MgSO$_4$) and concentrated in vacuo to afford 0.015 g (0.035 mmol, 44% yield) of title compound as a white solid. HPLC (gradient A): ret time = 7.44 min; purity >90%. ESI(+) m/z [M+H]$^+$ 426.9; [M+Na] 448.9. 1H NMR (400 MHz, DMSO-d_6): δ 8.98 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 9.0 Hz, 2H), 7.56-7.37 (m, 7H), 4.62 (s, 1H), 4.17 (dd, J = 10.1, 7.6 Hz, 1H), 3.71 (dd, J = 10.3, 3.7 Hz, 1H), 3.43 (s, 3H), 2.89 (dd, J = 17.3, 8.8 Hz, 1H), 2.44 (dd, J = 17.3, 4.5 Hz, 1H). 19F NMR (400 MHz, DMSO): δ 68.51.
(S)-N-((R)-1-(4-chlorophenyl)-5-oxopyrrolidin-3-yl)-3,3,3-trifluoro-2-methoxy-2-phenylpropanamide (208805). Prepared identically to 208802 using 53b. ESI(+): m/z [M+H]+ 426.9; [M+Na] 448.9. HPLC (gradient A): retention time = 7.41 min; purity = >90%.

\(^{1}\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 8.98 (d, \(J = 7.1\), 1H), 7.73-7.67 (m, 2H), 7.55-7.40 (m, 7H), 4.63 (qt, \(J = 8.4\), 4.3, 1H), 4.18 (dd, \(J = 10.2\), 7.7 Hz, 1H), 3.72 (dd, \(J = 10.2\), 3.9 Hz, 1H), 3.44 (s, 3H), 2.90 (dd, \(J = 17.3\), 8.7 Hz, 1H), 2.45 (dd, \(J = 17.4\), 4.6 Hz, 1H).

(19)F NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 68.50.

(S)-1-(tert-butoxycarbonyl)piperidine-3-carboxylic acid.

(S)-tert-buty 3-((4-chlorophenyl)carbamoyl)piperidine-1-carboxylate. Prepared according to Procedure C, but using 1.0 eq of (S)-1-(tert-butoxycarbonyl)piperidine-3-carboxylic acid and 1.1 eq of 4-chloro aniline to afford 0.054 g (0.159 mmol, 61% yield) of title compound. No further purification was performed. \(^{1}\)H NMR (500 MHz, DMSO-d\(_6\)): \(\delta\) 10.1 (s, 1H), 7.66-7.59 (m, 2H), 7.38-7.31 (m, 2H), 3.86 (d, \(J = 12.7\) Hz, 1H), 3.12-2.72 (m, 1H), 2.43 (tt, \(J = 10.9\), 3.9 Hz, 1H), 1.96-1.89 (m, 2H), 1.70 (d, \(J = 12.7\) Hz, 1H), 1.61 (qd, \(J = 11.9\), 3.6 Hz, 1H), 1.43-1.28 (m, 10H).

(S)-N-(4-chlorophenyl)piperidine-3-carboxamide, TFA salt. (S)-tert-buty 3-((4-chlorophenyl)carbamoyl)piperidine-1-carboxylate (0.054 g, 0.159 mmol) was dissolved in DCM (1.30 mL), and to the stirring solution was added TFA (0.325 mL). Reaction was stirred for 45 minutes. Solution was concentrated \textit{in vacuo} to afford 0.066 g (0.187 mmol, 117% yield) of title compound as a yellow oil. No further purification was performed. \(^{1}\)H NMR (500 MHz, DMSO-d\(_6\)): \(\delta\) 10.31 (s, 1H), 8.60 (s, 2H), 7.65-7.59 (m, 2H), 7.41-7.34 (m, 2H), 3.33 (d, \(J = 12.3\) Hz, 1H), 3.20 (d, \(J = 12.4\) Hz, 1H), 3.06 (tt, \(J = 11.6\), 5.8 Hz, 1H), 2.98-2.87 (m, 1H), 2.85-2.75 (m, 1H), 2.08-1.97 (m, 1H), 1.89-1.78 (m, 1H), 1.72-1.59 (m, 2H).

(S)-N-(4-chlorophenyl)-1-(3-(furan-2-yl)benzoyl)piperidine-3-carboxamide (206116, Lot 380445). Prepared using (S)-N-(4-chlorophenyl)piperidine-3-carboxamide, TFA salt and 3-(furan-2-yl)benzoic acid according to Procedure C, but using 2.1 eq DIPEA. Crude
material was purified using a CombiFlash system (35-50% EtOAc/Hex) to afford 0.021 g (0.051 mmol, 27% yield) of title compound as a yellow oil. TLC R_f (50% EtOAc/Hex): 0.29. ESI(+) m/z [M+H]+ 409.1; [M+23] 431.1. HPLC (gradient A): ret time = 7.50; purity = >95%. 1H NMR (400 MHz, DMSO-d6): 1.6:1.0 mixture of rotamers, δ 10.22 (rotamer 1, s), 10.01 (rotamer 2, s, 1H), 7.85-7.20 (m, 9H), 7.05 (s, 1H), 6.62 (s, 1H), 4.62-4.18 (m, 1H), 3.73-3.48 (m, 1H), 3.18-2.89 (m, 2H), 2.59 (s, 1H), 2.08-2.01 (m, 1H), 1.93-1.35 (m, 3H).

(R)-1-((tert-butoxycarbonyl)piperidine-3-carboxylic acid.149

(R)-tert-butyl 3-((4-chlorophenyl)carbamoyl)piperidine-1-carboxylate. Prepared according to Procedure C, but using 1.0 eq of (R)-1-((tert-butoxycarbonyl)piperidine-3-carboxylic acid and 1.1 eq of 4-chloro aniline to afford 0.054 g (0.159 mmol, 61% yield) of title compound. No further purification was performed. 1H NMR (500 MHz, DMSO-d6): δ 10.13 (s, 1H), 7.66-7.60 (m, 2H), 7.38-7.32 (m, 2H), 3.95-3.80 (m, 2H), 2.84-2.70 (m, 1H), 2.49-2.38 (m, 1H), 1.97-1.88 (m, 1H), 1.75-1.56 (m, 2H), 1.45-1.27 (m, 11H).

(R)-N-(4-chlorophenyl)piperidine-3-carboxamide, TFA salt. (R)-tert-butyl 3-((4-chlorophenyl)carbamoyl)piperidine-1-carboxylate (0.056 g, 0.165 mmol) was dissolved in DCM (1.30 mL), and to the stirring solution was added TFA (0.325 mL). Reaction was stirred for 45 minutes. Solution was concentrated in vacuo to afford 0.059 g (0.167 mmol, 101% yield) of title compound as a yellow oil. No further purification was performed. 1H NMR (500 MHz, DMSO): δ 10.31 (s, 1H), 8.63 (bs, 2H), 7.65-7.57 (m, 2H), 7.41-7.35 (m, 2H), 3.33 (d, J = 12.5 Hz, 1H), 3.20 (d, J = 12.2 Hz, 1H), 3.11-3.02 (m, 1H), 2.92 (d, J = 6.3 Hz, 1H), 2.85-2.75 (m, 1H), 2.06-1.98 (m, 1H), 1.89-1.78 (m, 1H), 1.72-1.58 (m, 2H).

(R)-N-(4-chlorophenyl)-1-((3-(furan-2-yl)benzoyl)piperidine-3-carboxamide (206116, Lot 380439). Prepared using (R)-N-(4-chlorophenyl)piperidine-3-carboxamide, TFA salt and 3-(furan-2-yl)benzoic acid according to Procedure C, but using 2.1 eq DIPEA. Crude material was purified using a CombiFlash system (35-50% EtOAc/Hex) to afford 0.006 g
(0.015 mmol, 9% yield) of title compound as an opaque oil. TLC \(R_f \) (50% EtOAc/Hex): 0.29. ESI(+) \(m/z \) [M+H]+ 409.1; [M+23] 431.1. HPLC (gradient A): ret time = 7.50; purity = >90%. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 9.23 (s, 1H), 7.79-7.13 (m, 9H), 6.67 (d, \(J = 3.3 \) Hz, 1H), 6.49 (dd, \(J = 3.2, 1.8 \) Hz, 1H), 4.06 (s, 1H), 3.61-3.39 (m, 2H), 2.75-2.65 (m, 1H), 2.35-2.20 (m, 1H), 1.89 (s, 2H), 1.67-1.45 (m, 2H).

\((S)\)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylic acid. Prepared according to Procedure A to afford 0.402 g (1.09 mmol, 70% yield) of title compound as a white solid. \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) 12.44 (s, 1H), 8.17 (s, 1H), 8.09 (s, 2H), 4.50-3.70 (m, 1H), 3.45-3.31 (m, 2H), 3.11-2.90 (m, 1H), 2.58-2.50 (m, 1H), 2.03-1.84 (m, 1H), 1.78-1.43 (m, 3H).

\((S)\)-1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-phenoxyphenyl)piperidine-3-carboxamide (206686). \((S)\)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylic acid (0.074 g, 0.200 mmol) was dissolved in THF (0.667 mL) and was treated with EDC (0.042 g, 0.220 mmol) followed by HOBT (0.034 g, 0.220 mmol), and was then stirred for 10 minutes. 3-phenoxyaniline (0.037 g, 0.200 mmol) was then added and stirring continued overnight at room temperature. The reaction was then diluted with EtOAc (10 mL) and was washed with saturated NaHCO\(_3\) (5 mL), followed by a wash with 1N HCl (5 mL) and then brine (5 mL). Organics were dried (MgSO\(_4\)) and concentrated in vacuo. Crude material was purified using a Biotage Flashmaster Personal+ system (25% EtOAc/Hex) to afford 0.021 g (0.039 mmol, 20% yield) of title compound as an off-white solid. TLC \(R_f \) (50% EtOAc/Hex): 0.43. ESI(+) \(m/z \) [M+H]+ 536.9; [M+Na] 558.8.

HPLC (gradient A): ret time = 8.36 min; purity = >95%. \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)): 1.1:1.0 mixture of rotamers, \(\delta \) 10.13 (rotamer 1, s), 9.91 (rotamer 2, s, 1H), 8.26-8.15 (m, 1H), 8.09 (s, 2H), 7.49-7.18 (m, 5H), 7.15 (t, \(J = 6.6 \) Hz, 1H), 7.08-6.92 (m, 2H), 6.75-6.63 (m, 1H), 4.59-4.04 (m, 1H), 3.57-3.34 (m, 1H), 3.20-2.93 (m, 2H), 2.65-2.55 (s, 1H), 2.05-1.94 (m, 1H), 1.85-1.60 (m, 2H), 1.48 (s, 1H).

\((R)\)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxylic acid. Prepared using Procedure A using 1.25 eq of amine to afford 0.310 g (1.14 mmol, 74% yield) of title
compound as a white solid. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.44 (s, 1H), 8.17 (s, 1H), 8.09 (s, 2H), 4.50-3.70 (m, 1H), 3.49-3.30 (m, 2H), 3.10-2.90 (m, 1H), 2.60-2.50 (m, 1H), 2.03-1.83 (m, 1H), 1.80-1.48 (m, 3H).

\((R)-1-(3,5\text{-bis(trifluoromethyl)benzoyl})-N-(3\text{-phenoxyphenyl})\text{piperidine-3-carboxamide (206687)}\). \((R)-1-(3,5\text{-bis(trifluoromethyl)benzoyl})\text{piperidine-3-carboxylic acid (0.074 g, 0.200 mmol)}\) was dissolved in THF (0.670 mL) and was treated with EDC (0.042 g, 0.220 mmol) followed by HOBt (0.034 g, 0.220 mmol) and was then stirred for 10 minutes. 3-phenoxyaniline (0.037 g, 0.200 mmol) was then added and stirring continued overnight at room temperature. The reaction was then diluted with EtOAc (10 mL) and was washed with saturated \(\text{NaHCO}_3\) (5 mL) followed by a wash with 1N HCl (5 mL) and then brine (5 mL). Organics were dried (\(\text{MgSO}_4\)) and concentrated \(\text{in vacuo}\).

Crude material was purified using a Biotage Flashmaster Personal\(^+\) system (25% EtOAc/Hex) to afford 0.027 g (0.050 mmol, 25% yield) of title compound as a white solid. TLC \(R_f\) (50% EtOAc/Hex): 0.43. ESI(+) \(m/z\) [M+H]\(^+\) 536.9; [M+Na] 558.9. HPLC (gradient A): ret time = 8.35 min; purity = >95%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): 1.1:1.0 mixture of rotamers, \(\delta\) 10.1 (rotamer 1, s), 9.91 (rotamer 2, s, 1H), 8.27-8.15 (m, 1H), 8.09 (s, 2H), 7.47-7.20 (m, 5H), 7.15 (t, \(J = 7.1\) Hz, 1H), 7.09-6.92 (m, 2H), 6.77-6.62 (m, 1H), 4.59-4.05 (m, 1H), 3.59-3.35 (m, 1H), 3.21-2.94 (m, 2H), 2.65-2.55 (m, 1H), 2.06-1.94 (m, 1H), 1.88-1.61 (m, 2H), 1.59-1.38 (m, 1H).

Diethyl 3,5-Pyridinedicarboxylate (56).\(^{108}\)

3-carboxy-5-(ethyloxycarbonyl)pyridinium chloride (57).\(^{109}\)

5-\(\text{tert-Butoxycarbonylamino-nicotinic acid ethyl ester (58).}\(^{110}\)

5-\(\text{tert-Butoxycarbonylamino-nicotinic acid (59).}\(^{110}\)

\((3\text{R,5S)}\)-5-((\(\text{tert-butoxycarbonyl} \)amino)piperidine-3-carboxylic acid (60). To a Parr reactor containing rhodium on aluminum oxide (0.065 g, 0.032 mmol), water (20.9 mL),
and ammonia (2.33 mL, 1.08 mmol) was 59 (0.279 g, 1.18 mmol). The mixture was placed on the Parr shaker at room temperature at ~40 psi for ~72 hours. The reaction was then filtered through a plug of celite and rinsed with water. The solvent was then removed in vacuo to afford 0.255 g (1.04 mmol, 89% yield) of title compound as a white solid. 1H NMR (400 MHz, D$_2$O): δ 3.96−3.77 (m, 1H), 3.63−3.45 (m, 1H), 3.42−3.04 (m, 1H), 2.80−2.65 (m, 1H), 2.40−2.90 (m, 1H), 1.98−1.87 (m, 1H), 1.70−1.35 (m, 10H).

Chapter 4

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-chloro-4-methoxyphenyl)piperidine-3-carboxamide (101331). Prepared using 48 according to Procedure C. Crude material was triturated using EtOAc to afford 0.201 g (0.413 mmol, 36% yield) of title compound as a light yellow solid. TOF MS-ESI m/z [M+H]$^+$ 509.0; [M+Na] 531.0. HPLC (gradient A): ret time = 7.72 min; purity = 99%. 1H NMR (500 MHz, DMSO-d_6) 1:2:1.0 mixture of rotamers, δ 10.08 (rotamer 1, s), 9.85 (rotamer 2, s, 1H), 8.26-8.17 (m, 1H), 8.11 (s, 2H), 7.85-7.67 (m, 1H), 7.51-7.30 (m, 1H), 7.52-7.28 (m, 1H), 7.17-7.04 (m, 1H), 4.58-4.05 (m, 1H), 3.87-3.76 (m, 3H), 3.65-3.38 (m, 2H), 3.29-2.97 (m, 1H), 2.68-2.56 (m, 1H), 2.06-2.00 (m, 1H), 1.93-1.63 (m, 2H), 1.62-1.39 (m, 1H).

5-(3,5-bis(trifluoromethyl)benzamido)pentanoic acid. Prepared according to Procedure A to afford 0.392 g (1.10 mmol, 93% yield) of title compound as a white crystalline solid. TOF MS-ESI m/z [M-H]$^- 356.1. 1H NMR (500 MHz, DMSO-d_6): δ 12.05 (bs, 1H), 8.97 (t, J = 5.4 Hz, 1H), 8.50 (s, 2H), 8.32 (s, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.9 Hz, 2.5 Hz, 1H), 1.57 (s, 4H).

N-(5-((3-chloro-4-methoxyphenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (101339). Prepared using 5-(3,5-bis(trifluoromethyl)benzamido)pentanoic acid according to Procedure C. Crude material was triturated using EtOAc to afford 0.179 g (0.360 mmol, 34% yield) of title compound as a solid. TOF MS-ESI m/z [M+Na] 518.9. HPLC (gradient A): ret time = 7.62 min; purity = 99%. 1H NMR (500 MHz, DMSO-d_6): δ 9.90 (s, 1H), 8.98 (t, J = 5.4 Hz, 1H), 8.50 (s, 2H), 8.32 (s, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.9 Hz, 2.5 Hz, 1H), 8.50 (s, 2H), 8.32 (s, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.9 Hz, 2.5 Hz, 1H), 1.57 (s, 4H).
7.08 (d, J = 9.0 Hz, 1H), 3.80 (s, 3H), 3.38-3.31 (m, 2H), 2.33 (t, J = 7.1 Hz, 2H), 1.74-1.53 (m, 4H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(4-chloro-3-methoxyphenyl)piperidine-3-carboxamide (101341). Prepared using 48 according to Procedure C. Crude material was purified Combiflash (25-60% EtOAc/Hex) to afford 0.207 g (0.407 mmol, 49% yield) of title compound. TLC Rf (50% EtOAc/Hex): 0.23. TOF MS-ESI m/z [M-H]− 375.9. HPLC (gradient A): ret time = 7.93 min; purity = 99%. ¹H NMR (500 MHz, DMSO-d₆): 1.1:1.0 mixture of rotamers, δ 10.23 (rotamer 1, s), 10.00 (rotamer 2, s, 1H), 8.28-8.18 (m, 1H), 8.12 (s, 2H), 7.60-7.46 (m, 1H), 7.40-7.00 (m, 2H), 4.60-4.00 (m, 1H), 3.90-3.75 (m, 3H), 3.55-3.00 (m, 3H), 2.72-2.58 (m, 1H), 2.09-2.00 (m, 1H), 1.90-1.64 (m, 2H), 1.62-1.42 (m, 1H).

N-(5-((4-chloro-3-methoxyphenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (101337). Prepared using 5-(3,5-bis(trifluoromethyl)benzamido)pentanoic acid according to Procedure C. Crude material was triturated using EtOAc to afford 0.104 g (0.209 mmol, 20% yield) of title compound as a light brown solid. TOF MS-ESI m/z [M+Na]+ 518.9. HPLC (gradient A): ret time = 7.78 min; purity = 99%. ¹H NMR (500 MHz, DMSO-d₆): δ 10.04 (s, 1H), 8.99 (t, J = 5.4 Hz, 1H), 8.51 (s, 2H), 8.32 (s, 1H), 7.53 (d, J = 2.1 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.16 (dd, J = 8.6 Hz, 2.2 Hz, 1H), 3.81 (s, 3H), 3.39-3.35 (m, 2H), 2.37 (t, J = 7.1 Hz, 2H), 1.63 (m, 4H).

tert-butyl (2-(2-(2-hydroxyethoxy)ethoxy)ethyl)carbamate.¹²¹

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-chloro-4-hydroxyphenyl)piperidine-3-carboxamide (67). N,N-Carbonyldiimidazole (CDI) (0.102 g, 0.627 mmol) was dissolved in dry THF (0.780 mL) with stirring at room temperature under nitrogen. Compound 48 (0.231 g, 0.627 mmol) was carefully added and the reaction mixture was stirred for 10 minutes. After CO₂ evolution stopped, 4-amino-2-chlorophenol (0.075 g, 0.522 mmol) was added and stirring was continued for 10 minutes at room temperature.
and was then heated to 62 °C. Upon reaching temperature, nitrogen was removed and tube was capped. Heating continued overnight. 1H NMR (500 MHz, MeOD): δ 8.15-8.03 (m, 3H), 7.70-7.46 (m, 1H), 7.31-7.06 (m, 1H), 6.90-6.78 (m, 1H), 4.65-4.15 (m, 1H), 3.68-3.48 (m, 1H), 3.40-3.20 (m, 1H), 2.70-2.48 (m, 1H), 2.11-2.04 (m, 1H), 1.98-1.47 (m, 3H).

2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl methanesulfonate (68).121,150

2-chlorophenoxyethoxyethoxyethylcarbamate (69).120 Compound 68 (0.019 g, 0.058 mmol) was dissolved in DMF (1.05 mL) and to the stirring solution were added 67 (0.026 g, 0.053 mmol) and cesium carbonate (0.094 g, 0.289 mmol). The purple mixture was heated at 75 °C for 8 hours. Cesium carbonate was filtered off and rinsed with dichloromethane. Filtrate was concentrated in vacuo to afford 0.033 g (0.045 mmol, 85% yield) of title compound. Compound was used without further purification.

N-(5-(3-chloro-4-hydroxy phenyl) amino)-5-oxopentyl)-3,5-bis(trifluoromethyl) benzamide.145 To a stirring solution 5-(3,5-bis(trifluoromethyl) benzamido) pentanoic acid (0.357 g, 1.00 mmol) and 4-amino-2-chlorophenol (0.172 g, 1.20 mmol) in DMF (2.00 mL) was added EDC (0.230 g, 1.200 mmol). The mixture was allowed to stir overnight at room temperature. After stirring, DMF was removed in vacuo, and ten milliliters of water were added. The water layer was then extracted with EtOAc (3 x 30 mL). Combined organics were washed with brine (30 mL), dried (MgSO$_4$), and concentrated to afford 0.566 g of an oil. The oil was triturated with dichloromethane, and the solid was filtered and dried in vacuo to afford 0.263 g (0.545 mmol, 55% yield) of title compound as an off-white solid. 1H NMR (500 MHz, MeOD): δ 8.44 (s, 2H), 8.15 (s, 1H), 7.61-7.59 (m, 1H), 7.24-7.21 (m, 1H), 6.86-6.82 (m, 1H), 3.49-3.43 (m, 2H), 3.49-3.43 (m, 2H), 2.44-2.38 (m, 2H), 2.44-2.38 (m, 2H), 1.82-1.67 (m, 4H).

tert-Butyl (2-(2-(2-(4-(5-(3,5-bis(trifluoromethyl) benzamido) pentanamido)-2-chlorophenoxy) ethoxy) ethoxy) ethyl) carbamate. Compound 68 (0.012 g, 0.036 mmol)
and cesium carbonate (0.059 g, 0.182 mmol) were added to N-(5-((3-chloro-4-hydroxyphenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (0.016 g, 0.033 mmol) in DMF (0.663 mL). The mixture was heated at 75 °C overnight. The cesium carbonate was filtered off and the DMF was removed in vacuo to afford 0.035 g (0.049 mmol, 151% yield) of title compound. Compound was used without further purification.

1H NMR (500 MHz, MeOD) δ 8.1 (s, 2H), 8.1 (s, 1H), 7.98 (s, 1H), 7.69 (d, $J = 2.6$ Hz, 1H), 7.37 (dd, $J = 8.8$, 2.6 Hz, 1H), 7.02 (d, $J = 8.9$ Hz, 1H), 4.19-4.14 (m, 2H), 3.89-3.84 (m, 2H), 3.76-3.71 (m, 2H), 3.65-3.61 (m, 2H), 3.54-3.50 (m, 2H), 3.49-3.44 (m, 2H), 3.24-3.19 (m, 2H), 2.45-2.39 (m, 2H), 1.83-1.66 (m, 4H), 1.41 (s, 9H).

N-(5-((4-(2-(2-aminoethoxy)ethoxy)ethoxy)-3-chlorophenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (203882). A solution of DCM (0.327 mL) and TFA (0.163 mL) (2:1) was added to a vial containing tert-butyl (2-(2-(2-(4-(5-(3,5-bis(trifluoromethyl)benzamido)pentanamido)-2-chlorophenoxy)ethoxy)ethoxy)ethyl)carbamate (0.035 g, 0.049 mmol). The mixture was stirred for 1 hour and 45 minutes at room temperature and was concentrated in vacuo. Crude material was purified using a CombiFlash system (5-10% Methanolic ammonia/DCM) to afford 0.016 g (0.026 mmol, 69% yield) of title compound as a white solid. TLC R_f (10% Methanolic ammonia/DCM): 0.20. 1H NMR (500 MHz, MeOD) δ 8.44 (s, 2H), 8.14 (s, 2H), 7.75-7.65 (m, 1H), 7.45-7.29 (m, 1H), 7.09-6.95 (m, 1H), 4.23-4.07 (m, 2H), 3.96-3.85 (m, 2H), 3.82-3.62 (m, 8H), 3.50-3.42 (m, 2H), 3.17-3.03 (m, 2H), 2.47-2.37 (m, 2H), 1.84-1.63 (m, 4H).

N-(4-(2-(2-aminoethoxy)ethoxy)ethoxy)-3-chlorophenyl)-1-(3,5-bis(trifluoromethyl)benzoyl)piperidine-3-carboxamide (203883). A solution of DCM (0.716 ml) and TFA (0.358 ml) were added to a vial containing 69 (0.078 g, 0.107 mmol). The mixture was stirred for 1.5 h at room temperature and was then concentrated. Crude material was purified using a CombiFlash system (5% Methanolic ammonia/DCM) to afford 0.034 g (0.046 mmol, 43% yield) of title compound as a yellow gummy solid. TLC R_f (10% Methanolic ammonia/DCM): 0.43. 1H NMR (500 MHz, DMSO-d_6): 1.1:1.0 mixture of rotamers, δ 10.09 (rotamer 1, s), 9.86 (rotamer 2, s,
1H), 8.27-8.16 (m, 1H), 8.11 (s, 2H), 7.84-7.68 (m, 1H), 7.49-7.26 (m, 1H), 7.17-7.04 (m, 1H), 4.51 (d, J = 13.2 Hz, 1H), 4.12 (d, J = 15.6 Hz, 2H), 3.80-3.71 (m, 2H), 3.65-3.57 (m, 2H), 3.54-3.40 (m, 4H), 3.37 (s, 2H), 3.23-2.97 (m, 2H), 2.64 (s, 2H), 2.06-1.99 (m, 1H), 1.85-1.64 (m, 2H), 1.60-1.41 (m, 1H).

1-(3,5-bis(trifluoromethyl)benzoyl)-N-(3-chloro-4-(2-(2-(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)ethoxy)ethoxy)ethoxy)phenyl)piperidine-3-carboxamide (203602). Compound 203883 (0.018 g, 0.024 mmol) was dissolved in anhydrous DMF (0.600 mL), and the clear solution was stirred for 10 minutes at room temperature. Biotin-OSu (0.010 g, 0.029 mmol) was added, and the reaction solution continued stirring overnight at room temperature. The reaction was concentrated in vacuo and crude material was purified using a CombiFlash system (5-10% MeOH/DCM) to afford 0.020 g (0.023 mmol, 96% yield) of title compound as a white solid. TLC Rf (10% Methanolic ammonia/DCM): 0.31. TOF MS-ESI m/z [M+H]+ 851.9; [M+Na] 873.9.

NMR was difficult to decipher due to rotamers, therefore heat experiment was conducted, increasing temperature to 30, 40, and then 50 °C. Rotamers coalesced to show desired product. 1H NMR (500 MHz, DMSO-d6, 50 °C): δ 9.80 (s, 1H), 8.15 (s, 1H), 8.07 (s, 2H), 7.73 (s, 1H), 7.61 (s, 1H), 7.38 (s, 1H), 7.10 (d, J = 8.9 Hz, 1H), 6.21 (d, J = 11.1 Hz, 2H), 4.34-4.27 (m, 1H), 4.18-4.09 (m, 3H), 3.80-3.73 (m, 2H), 3.66-3.60 (m, 2H), 3.58-3.52 (m, 2H), 3.47-3.40 (m, 3H), 3.35-3.05 (under water peak, 2H), 2.84 (dd, J = 12.4, 5.2 Hz, 2H), 2.12-2.05 (m, 4H), 1.85-1.72 (m, 3H), 1.69-1.59 (m, 2H), 1.58-1.43 (m, 4H), 1.39-1.29 (m, 3H).

tert-butyl (2-(2-(2-(4-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)ethoxy)ethoxy)ethoxy)ethyl)carbamate.120 Cesium carbonate (0.186 g, 0.570 mmol) and N-(5-((3-chloro-4-hydroxyphenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (0.050 g, 0.104 mmol) were added to a solution of 68 (0.037 g, 0.114 mmol) in DMF (2.08 ml). The mixture was stirred for 18 h at room temperature under nitrogen. After stirring overnight, the reaction was checked by TLC, which indicated the reaction had not completed. Therefore it was heated at 75 °C for 3 hours and re-checked by TLC, which indicated the reaction was complete. The cesium
carbonate was filtered off and resulting filtrate was concentrated in vacuo to afford 0.070 g (0.098 mmol, 95% yield) of title compound. Compound was used without further purification. \(^{1}\)H NMR (500 MHz, MeOD) \(\delta\) 8.44 (s, 2H), 8.14 (s, 1H), 7.98 (s, 1H), 7.69 (d, \(J = 2.6\) Hz, 1H), 7.37 (dd, \(J = 8.8, 2.6\) Hz, 1H), 7.02 (d, \(J = 8.9\) Hz, 1H), 4.19-4.14 (m, 2H), 3.89-3.84 (m, 2H), 3.76-3.71 (m, 2H), 3.65-3.61 (m, 2H), 3.54-3.50 (m, 2H), 3.49-3.44 (m, 2H), 3.24-3.19 (m, 2H), 2.45-2.39 (m, 2H), 1.83-1.66 (m, 4H), 1.41 (s, 9H).

\(N\)-(5-((4-(2-(2-aminoethoxy)ethoxy)ethoxy)-3-chlorophenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide. A solution of dichloromethane (0.327 ml) and TFA (0.163 mL) was added to a vial containing tert-butyl (2-(2-(4-(5-(3,5-bis(trifluoromethyl)benzamido)pentanamido)-2-chlorophenoxo)ethoxy)ethoxy)ethyl)carbamate (0.035 g, 0.049 mmol). The mixture was stirred for 1 hour and 45 minutes at room temperature. The reaction was concentrated and dried using high vacuum to yield 0.035 g (0.048 mmol, 98% yield) of title compound as a yellow oil. Compound was used without further purification. \(^{1}\)H NMR (500 MHz, MeOD) \(\delta\) 8.44 (s, 2H), 8.14 (s, 2H), 7.75-7.65 (m, 1H), 7.45-7.29 (m, 1H), 7.09-6.95 (m, 1H), 4.23-4.07 (m, 2H), 3.96-3.85 (m, 2H), 3.82-3.62 (m, 8H), 3.50-3.42 (m, 2H), 3.17-3.03 (m, 2H), 2.47-2.37 (m, 2H), 1.84-1.63 (m, 4H).

\(N\)-(5-((3-chloro-4-(2-(2-(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)ethoxy)ethoxy)ethoxy)phenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (203600). \(N\)-(5-((4-(2-(2-aminoethoxy)ethoxy)ethoxy)-3-chlorophenyl)amino)-5-oxopentyl)-3,5-bis(trifluoromethyl)benzamide (0.037 g, 0.051 mmol) was dissolved in anhydrous DMF (1.3 mL) and DIPEA (0.009 mL, 0.051 mmol) was added to the stirring solution. The solution continued for 10 minutes and Biotin-OSu (0.017 g, 0.051 mmol) was added. The mixture continued stirring overnight at room temperature under nitrogen. The solution was concentrated in vacuo. Crude material was purified by column chromatography (10-15% MeOH/DCM) followed by trituration with CHCl\(_3\) to afford 0.017 g (0.020 mmol, 39% yield) of title compound as an off-white solid. TLC \(R_f\) (10% MeOH/DCM): 0.32. TOF MS-ESI \(m/z\) [M+H]\(^{+}\) 839.9; [M+Na] 861.9. \(^{1}\)H NMR (500 MHz, MeOD) \(\delta\) 8.44 (s, 2H), 8.14 (s, 1H), 7.98 (s, 1H), 7.69 (d, \(J = 2.6\) Hz, 1H), 7.37 (dd, \(J = 8.8, 2.6\) Hz, 1H), 7.02 (d, \(J = 8.9\) Hz, 1H), 4.19-4.14 (m, 2H), 3.89-3.84 (m, 2H), 3.76-3.71 (m, 2H), 3.65-3.61 (m, 2H), 3.54-3.50 (m, 2H), 3.49-3.44 (m, 2H), 3.24-3.19 (m, 2H), 2.45-2.39 (m, 2H), 1.83-1.66 (m, 4H), 1.41 (s, 9H).
MHz, DMSO-\textit{d}_6): \delta 9.91 (s, 1H), 8.98 (t, J = 5.4 Hz, 1H), 8.50 (s, 2H), 8.31 (s, 1H), 7.83 (t, J = 5.6 Hz, 1H), 7.80-7.77 (m, 1H), 7.41-7.36 (m, 1H), 7.11-7.08 (m, 1H), 6.42 (s, 1H), 6.36 (s, 1H), 4.32-4.27 (m, 1H), 4.14-4.08 (m, 3H), 3.77-3.73 (m, 2H), 3.63-3.59 (m, 2H), 3.55-3.50 (m, 2H), 3.42-3.38 (m, 2H), 3.18 (q, J = 6.0 Hz, 2H), 3.11-3.05 (m, 1H), 2.84-2.77 (m, 1H), 2.59-2.53 (m, 1H), 2.36-2.29 (m, 2H), 2.08-2.02 (m, 2H), 1.70-1.19 (m, 12H). HPLC (gradient A): ret time = 6.55 min; purity = 99%.

tert-butyl 3-((4-chloro-3-methoxyphenyl)carbamoyl)piperidine-1-carboxylate.
Prepared using \textit{43} according to Procedure D, but using 1.5 eq of aniline. Crude material was purified using a CombiFlash system (35% EtOAc/Hex) to afford 0.139 g (0.377 mmol, 86% yield) of title compound as a clear oil. TLC R_f (50% EtOAc/Hex): 0.48. \textit{1}H NMR (500 MHz, CDCl$_3$): \delta 8.61 (bs, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.28-7.23 (m, 1H), 6.93 (s, 1H), 3.89 (s, 3H), 3.83-3.18 (m, 1H), 2.52 (s, 1H), 2.12 (s, 1H), 1.90 (s, 1H), 1.63 (s, 1H), 1.47 (s, 10H).

\textit{N-}(4-chloro-3-methoxyphenyl)piperidine-3-carboxamide. tert-butyl 3-((4-chloro-3-methoxyphenyl)carbamoyl)piperidine-1-carboxylate (134 mg, 0.363 mmol) was dissolved in DCM (2.40 mL) and placed in an ice bath at approximately -5 °C. TFA (1.20 mL) was slowly added and the solution continued to stir at -5 °C for 1 hour. The solution was poured into 20 mL of cooled 2M NaOH. The mixture was extracted with DCM (3 x 20 mL), and the combined organic layers were dried (MgSO$_4$) and concentrated \textit{in vacuo} to afford 0.073 g (0.272 mmol, 75% yield) of title compound as a yellow solid. No further purification was performed. \textit{1}H NMR (500 MHz, CDCl$_3$): \delta 10.75 (s, 1H), 7.67 (d, J = 2.4 Hz, 1H), 7.28-7.23 (m, 1H), 6.94-6.82 (m, 1H), 3.92 (s, 3H), 3.36-3.22 (m, 1H), 3.13-3.05 (m, 1H), 2.95 (dd, J = 12.0, 3.2 Hz, 1H), 2.81-2.72 (m, 1H), 2.59-2.53 (m, 1H), 2.20-1.99 (m, 2H), 1.85-1.71 (m, 2H), 1.65-1.52 (m, 1H).

\textit{N-}(3-chloro-4-methoxyphenyl)piperidine-3-carboxamide (206117). Prepared using \textit{N-}(4-chloro-3-methoxyphenyl)piperidine-3-carboxamide according to Procedure D, but using 1.1 eq of EDC and DMAP. Crude material was triturated with DCM to afford 0.011 g (0.023 mmol, 17% yield) of title compound as a white solid. ESI(+) m/z [M+H]$.^+$
166

166

477.2; [M+23] 499.1. HPLC (gradient A): ret time = 7.36; purity = >95%. 1H NMR (400 MHz, DMSO-d_6): 1.3:1.0 mixture of rotamers, δ 10.21 (rotamer 1, s), 10.01 (rotamer 2, s, 1H), 7.91-7.00 (m, 12H), 4.62-4.13 (m, 1H), 3.89-3.72 (m, 3H), 3.72-3.53 (m, 1H), 3.20-2.91 (m, 2H), 2.66-2.55 (m, 1H), 2.01 (s, 1H), 1.92-1.64 (m, 2H), 1.59-1.32 (m, 1H).

$^\text{tert}$-butyl 3-((3-chloro-4-methoxyphenyl)carbamoyl)piperidine-1-carboxylate.

Prepared using 43 according to Procedure D, but using 1.5 eq of aniline. Crude material was purified using a CombiFlash system (35% EtOAc/Hex) to afford 0.139 g (0.377 mmol, 86% yield) of title compound as a clear oil. TLC R$_f$ (50% EtOAc/Hex): 0.48. 1H NMR (500 MHz, CDCl$_3$): δ 8.41 (s, 1H), 7.67 (s, 1H), 7.44 (dd, $J = 8.8, 2.6$ Hz, 1H), 6.85 (d, $J = 8.8$ Hz, 1H), 3.90-3.10 (m, 7H), 2.49 (s, 1H), 2.11 (s, 1H), 1.89 (s, 1H), 1.63 (s, 1H), 1.54-1.43 (m, 10H).

$^\text{N}$-(3-chloro-4-methoxyphenyl)piperidine-3-carboxamide. $^\text{tert}$-butyl 3-((3-chloro-4-methoxyphenyl)carbamoyl)piperidine-1-carboxylate (134 mg, 0.363 mmol) was dissolved in DCM (2.40 mL) and placed in an ice bath at approximately -5 °C. TFA (1.20 mL) was slowly added and the solution continued to stir at -5 °C for 1 hour. The solution was poured into 20 mL of cooled 2M NaOH. The mixture was extracted with DCM (3 x 20 mL), and the combined organic layers were dried (MgSO$_4$) and concentrated in vacuo to afford 0.063 g (0.234 mmol, 64% yield) of title compound as a light brown solid. No further purification was performed. 1H NMR (500 MHz, CDCl$_3$): δ 10.60 (s, 1H), 7.60 (d, $J = 2.5$ Hz, 1H), 7.50-7.48 (m, 1H), 6.87 (d, $J = 8.8$ Hz, 1H), 3.88 (s, 3H), 3.29-3.23 (m, 1H), 3.11-3.05 (m, 1H), 2.92 (dd, $J = 11.9, 3.3$ Hz, 1H), 2.73 (td, $J = 10.9, 3.1$ Hz, 1H), 2.53 (p, $J = 3.6$ Hz, 1H), 2.12-2.01 (m, 1H), 1.87 (s, 1H), 1.82-1.69 (m, 2H), 1.63-1.50 (m, 1H).

1-(3-benzoylbenezoyl)-$^\text{N}$-(3-chloro-4-methoxyphenyl)piperidine-3-carboxamide (206118). Prepared using $^\text{N}$-(3-chloro-4-methoxyphenyl)piperidine-3-carboxamide according to Procedure D, but using 1.1 eq of EDC and DMAP. Crude material was using a CombiFlash system (65% EtOAc/Hex) to afford 0.040 g (0.084 mmol, 73% yield) of title compound as a yellow solid. ESI(+) m/z [M+H]$^+$ 477.2; [M+23] 499.2. HPLC
(gradient A): ret time = 7.17; purity = >95%. 1H NMR (400 MHz, DMSO-d$_6$): 1.3:1.0 mixture of rotamers, δ 10.06 (rotamer 1, s), 9.87 (rotamer 2, s, 1H), 7.90-7.29 (m, 11H), 7.16-7.00 (m, 1H), 4.60-4.15 (m, 1H), 3.81 (s, 3H), 3.70-3.50 (m, 1H), 3.21-2.90 (m, 2H), 1.99 (bs, 1H), 1.90-1.65 (m, 2H), 1.58-1.30 (m, 1H).

tert-butyl (4-chloro-3-hydroxyphenyl)carbamate (81).

tert-butyl (4-chloro-3-(prop-2-yn-1-yloxy)phenyl)carbamate (82). To a mixture of 81 (0.144 g, 0.591 mmol) and potassium carbonate (0.245 g, 1.773 mmol) in dioxane (1.45 mL) was added 3-bromoprop-1-yn-1-yne (0.111 ml, 1.477 mmol). The reaction mixture was then heated to 80 °C for 48 h in a sealed tube. The reaction mixture was concentrated and was diluted with water (10 mL). The aqueous layer was extracted with dichloromethane (3 x 10 mL). The organics were washed with water (2 x 10 mL), dried (MgSO$_4$) and concentrated. Crude material was purified using a 12 g SiliaSep cartridge and was separated using a Biotage unit. Eight milliliter fractions were collected at 20 mL/min using a threshold of 20 mAU for collection. Gradient employed 100% Hexanes for 3 CVs; ramping 0-20% over 15 CVs; and holding at 20% for 5 CVs. Fractions 4-8 (R$_f$: 0.35 in 20% Ethyl acetate in Hexanes) were combined and concentrated to yield 0.108 g of title compound as a white solid. 1H NMR (400 MHz, DMSO-d$_6$): δ 9.51 (s, 1H), 7.44 (d, $J = 1.9$ Hz, 1H), 7.29 (d, $J = 8.7$ Hz, 1H), 7.06 (dd, $J = 8.7$, 1.9 Hz, 1H), 4.81 (d, $J = 2.3$ Hz, 2H), 3.63 (t, $J = 2.3$ Hz, 1H), 1.47 (s, 9H).

4-chloro-3-(prop-2-yn-1-yloxy)aniline (83). Compound 82 (0.105 g, 0.373 mmol) was dissolved in dichloromethane (2.50 mL) and cooled to -10 °C. TFA (1.25 mL) was added slowly to the cooled solution. The solution was stirred at -5 °C for 45 minutes and was then poured into 10 mL of cooled 2M NaOH. The cooled basic solution was extracted with dichloromethane (3 x 10 mL), and the combined organics were dried (MgSO$_4$) and concentrated to afford 0.064 g (0.352 mmol) of title compound as a yellow solid. No further purification was performed. 1H NMR (400 MHz, DMSO-d$_6$): δ 6.99 (d, $J = 8.5$ Hz, 1H), 6.38 (d, $J = 2.1$ Hz, 1H), 6.17 (dd, $J = 8.5$, 2.2 Hz, 1H), 5.29 (s, 2H), 4.75 (d, $J = 2.0$ Hz, 2H), 3.61 (s, 1H).
tert-buty1 3-((4-chloro-3-(prop-2-yn-1-yloxy)phenyl)carbamoyl)piperidine-1-carboxylate (84). Compound 83 (0.061 g, 0.336 mmol) was dissolved in dichloromethane (3.36 mL), and to the stirring solution was added EDC (0.097 g, 0.504 mmol) followed by DMAP (0.062 g, 0.504 mmol) and 43 (0.085 g, 0.369 mmol). The mixture was stirred at room temperature under nitrogen overnight. Additional dichloromethane (6.7 mL) was added to the solution, and it was washed with saturated aqueous NaHCO$_3$ (10 mL), 1M HCl (10 mL), and then brine (10 mL) and was dried (MgSO$_4$) and concentrated to afford 0.109 g (0.277 mmol, 83% yield) of title compound as a white solid. No further purification was performed. 1H NMR (400 MHz, DMSO-d_6): δ 10.16 (s, 2H), 7.60 (d, J = 1.7 Hz, 3H), 7.34 (d, J = 8.6 Hz, 2H), 7.23 (dd, J = 8.7, 1.8 Hz, 3H), 4.84 (d, J = 1.7 Hz, 6H), 4.15-3.80 (m, 2H), 3.66-3.63 (m, 1H), 3.10-2.70 (m, 2H), 2.44 (tt, J = 10.8, 3.8 Hz, 1H), 1.97-1.87 (m, 1H), 1.77-1.53 (m, 2H), 1.43-1.30 (m, 10H).

N-(4-chloro-3-(prop-2-yn-1-yloxy)phenyl)piperidine-3-carboxamide (85). Compound 84 (0.107 g, 0.272 mmol) was dissolved in dichloromethane (1.82 mL) and cooled to -5 °C. TFA (0.910 mL) was added slowly to the cooled solution. Solution was stirred at -5 °C. After 1 hour, the solution was poured into 5 mL of cooled 2M NaOH. The cooled basic solution was extracted with dichloromethane (3 x 5 mL), and the organic layers were combined, dried (MgSO$_4$), and concentrated to afford 0.050 g (0.171 mmol, 63% yield) of title compound as a white solid. No further purification was performed. 1H NMR (400 MHz, DMSO-d_6): δ 10.11 (s, 1H), 7.65-7.57 (m, 1H), 7.33 (d, J = 8.6 Hz, 1H), 7.22 (dd, J = 8.6, 1.7 Hz, 1H), 4.83 (d, J = 1.8 Hz, 2H), 3.64 (s, 1H), 3.06-2.99 (m, 1H), 2.90-2.83 (m, 1H), 2.66-2.57 (m, 6H), 2.48-2.38 (m, 2H), 1.92-1.83 (m, 1H), 1.68-1.50 (m, 2H), 1.45-1.33 (m, 1H).

1-(3-benzoylbenzoyl)-N-(4-chloro-3-(prop-2-yn-1-yloxy)phenyl)piperidine-3-carboxamide (206454). Prepared using 43 and 85 according to Procedure D. Crude material was purified using a Biotage FlashMaster Personal$^+$ system (30-100% EtOAc/Hex) to afford 0.049 g (0.098 mmol, 58% yield) of title compound as a white solid.
solid. TLC R_f (50% EtOAc/Hex): 0.18. Agilent ESI(+) m/z [M+H]+ 501.0; [M+Na] 523.0. HPLC (gradient A): ret time = 7.40 min; purity = >95%. ^1H NMR (400 MHz, DMSO-d_6): 1.4:1.0 mixture of rotamers, δ 10.22 (rotamer 1, s), 10.02 (rotamer 2, s, 1H), 7.98-7.44 (m, 10H), 7.40-7.03 (m, 2H), 4.87-4.75 (m, 1H), 4.58-4.14 (m, 1H), 3.76-3.49 (m, 2H), 3.17-2.83 (m, 2H), 1.98 (s, 1H), 1.89-1.60 (m, 2H), 1.57-1.31 (m, 1H).

1-(3-benzoylbenzoyl)-N-(4-chloro-3-(2-(prop-2-yn-1-yloxy)ethoxy)phenyl)piperidine-3-carboxamide (206558). Agilent ESI(+) m/z [M+H]+ 545.0; [M+Na] 567.0. HPLC (gradient A): ret time = 7.46 min; purity = >95%. ^1H NMR (400 MHz, DMSO-d_6): 1.4:1.0 mixture of rotamers, δ 10.16 (rotamer 1, s), 9.97 (rotamer 2, s, 1H), 7.92-7.02 (m, 12H), 4.52 (d, J = 9.5 Hz, 1H), 4.32-4.20 (m, 2H), 4.13 (bs, 2H), 3.81 (s, 3H), 3.73-3.53 (m, 1H), 3.48-3.44 (m, 1H), 3.21-2.88 (m, 2H), 2.65-2.55 (m, 1H), 2.09 (s, 1H), 1.90-1.65 (m, 2H), 1.60-1.32 (m, 1H).

N-(3-benzoylphenyl)-1-(3-methoxy-5-(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206448). Waters ESI(+) m/z [M+H]+ 511.3; [M+Na] 533.3. HPLC (gradient A): ret time = 7.71 min; purity = >95%. ^1H NMR (400 MHz, DMSO-d_6): 1.3:1.0 mixture of rotamers, δ 10.31 (rotamer 1, s), 10.10 (rotamer 2, s, 1H), 8.10-7.18 (m, 12H), 4.58-4.10 (m, 1H), 3.93-3.75 (m, 3H), 3.63-3.40 (m, 1H), 3.17-2.93 (m, 2H), 2.70-2.55 (m, 1H), 2.08-1.97 (m, 1H), 1.90-1.65 (m, 2H), 1.57-1.35 (m, 1H).

N-(3-benzoylphenyl)-1-(3-(prop-2-yn-1-yloxy)-5-(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206559). Agilent ESI(+) m/z [M+H]+ 535.1; [M+Na] 557.0. HPLC (gradient A): ret time = 7.74 min; purity = 95%. ^1H NMR (400 MHz, DMSO-d_6): 1.6:1.0 mixture of rotamers, δ 10.28 (rotamer 1, s), 10.06 (rotamer 2, s, 1H), 8.11-7.22 (m, 12H), 5.00-4.85 (m, 1H), 4.55-4.08 (m, 1H), 3.71-3.34 (m, 2H), 3.17-2.88 (m, 2H), 2.62-2.51 (m, 1H), 2.02-1.97 (m, 1H), 1.87-1.60 (m, 2H), 1.43 (s, 1H).
N-(3-azido-4-chlorophenyl)-1-(3-methoxy-5-(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206449). Agilent ESI(+) m/z [M+H]^+ 482.0; [M+Na] 504.0. HPLC (gradient A): ret time = 8.01 min; purity = >95%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)):

1.3:1.0 mixture of rotamers, \(\delta\) 10.35 (rotamer 1, s), 10.13 (rotamer 2, s, 1H), 8.00-7.66 (m, 1H), 7.50-7.12 (m, 5H), 4.58-4.00 (m, 1H), 3.90-3.77 (m, 3H), 3.63-3.69 (m, 1H), 3.09 (d, \(J = 37.6\) Hz, 2H), 2.70-2.55 (m, 1H), 2.07-1.96 (m, 1H), 1.91-1.65 (m, 2H), 1.60-1.37 (m, 1H).

Methyl 3-hydroxy-5-(trifluoromethyl)benzoate (96). 3-hydroxy-5-(trifluoromethyl)benzoic acid (95) (0.220 g, 1.067 mmol) was dissolved in methanol (1.60 mL) and was cooled to 0 °C. Thionyl chloride (0.117 ml, 1.601 mmol) was added slowly. Following addition, the bath was allowed to warm to room temperature. The reaction continued stirring at room temperature overnight. The reaction was concentrated \textit{in vacuo} and was dissolved in ethyl acetate (5 mL). The organic layer was then washed with saturated NaHCO\(_3\) (5 mL), followed by brine (5 mL). The organic layer was then dried (MgSO\(_4\)), filtered, and concentrated to afford 0.193 g (0.877 mmol, 82% yield) of title compound as an off-white solid. No further purification was performed. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 10.61 (s, 1H), 7.61-7.54 (m, 2H), 7.28 (t, \(J = 2.0\) Hz, 1H), 3.84 (s, 3H).

Methyl 3-(prop-2-yn-1-yloxy)-5-(trifluoromethyl)benzoate (97). To a mixture of 96 (0.181 g, 0.822 mmol) in dioxane (2.05 mL) was added 3-bromoprop-1-yne (0.155 ml, 2.06 mmol). The reaction mixture was then heated to 80 °C in a sealed tube. After stirring overnight, the reaction mixture was concentrated and was diluted with water (10 mL). The aqueous layer was extracted with DCM (3 x 10 mL). The combined organics were washed with water (10 mL), dried (MgSO\(_4\)), and concentrated \textit{in vacuo} to afford 0.154 g (0.596 mmol, 73% yield) of title compound as a yellow oil. No further purification was performed. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.85-7.76 (m, 2H), 7.63 (t, \(J = 2.0\) Hz, 1H), 5.03 (d, \(J = 2.3\) Hz, 2H), 3.90 (s, 3H), 3.67 (t, \(J = 2.3\) Hz, 1H).
3-(prop-2-yn-1-yl oxy)-5-(trifluoromethyl)benzoic acid (98). A solution of sodium hydroxide (0.061 g, 1.521 mmol), Methanol (1.20 mL), and Water (0.400 mL) was added to a vial containing 97 (0.151 g, 0.585 mmol). The reaction was stirred for 3 hours and was then concentrated *in vacuo.* Residue was acidified using 2N HCl (5 mL). The aqueous layer was extracted with DCM (3 x 5 mL). The combined organics were dried (MgSO₄) and concentrated to afford 0.107 g (0.438 mmol, 75% yield) of title compound as a white solid. No further purification was performed. ¹H NMR (400 MHz, DMSO-d₆): δ 13.59 (s, 1H), 7.83-7.75 (m, 2H), 7.59 (t, J = 2.0 Hz, 1H), 5.01 (d, J = 2.3 Hz, 3H), 3.66 (t, J = 2.3 Hz, 1H).

*N-(4-chloro-3-nitrophenyl)acetamide (107).*¹⁵¹

*N-(3-amino-4-chlorophenyl)acetamide (108).*¹⁵¹

*N-(3-azido-4-chlorophenyl)acetamide (109).*¹⁵¹

3-azido-4-chloroaniline (110).¹⁵¹

tert-butyl 3-((3-azido-4-chlorophenyl)carbamoyl)piperidine-1-carboxylate. Compound 110 (0.075 g, 0.445 mmol) was dissolved in dichloromethane (4.45 mL), and to the stirring solution was added EDC (0.128 g, 0.667 mmol) followed by DMAP (0.082 g, 0.667 mmol) and 43 (0.112 g, 0.489 mmol). The mixture was stirred at room temperature under nitrogen overnight. Additional dichloromethane (5.55 mL) was added to the solution, and it was washed with saturated aqueous NaHCO₃ (10 mL), 1M HCl (10 mL), and then brine (10 mL). Organics were dried (MgSO₄) and concentrated to afford 0.149 g (0.392 mmol, 88% yield) of title compound as a fluffy yellow solid. No further purification was performed. ¹H NMR (400 MHz, DMSO-d₆): δ 10.28 (s, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.42 (d, J = 8.7 Hz, 1H), 7.33 (dd, J = 8.8, 2.1 Hz, 1H), 4.15-3.77 (m, 2H), 3.12-2.73 (m, 2H), 2.44 (tt, J = 10.5, 3.6 Hz, 1H), 1.97-1.88 (m, 1H), 1.77-1.54 (m, 2H), 1.39 (s, 10H).
N-(3-azido-4-chlorophenyl)piperidine-3-carboxamide (112). Compound 111 (0.148 g, 0.390 mmol) was dissolved in dichloromethane (2.60 mL) and cooled to -5 °C. TFA (1.30 mL) was added slowly to the cooled solution. Solution was stirred at -5 °C for 1 hour and was then poured into 10 mL of cooled 2M NaOH. The cooled basic solution was extracted with dichloromethane (3 x 10 mL), and the organic layers were combined, dried (MgSO₄), and concentrated *in vacuo* to afford 0.094 g (0.336 mmol, 86% yield) of title compound as an orange solid. No further purification was performed. ¹H NMR (400 MHz, DMSO-d₆): δ 10.21 (s, 1H), 7.87 (d, \(J = 1.4 \) Hz, 1H), 7.40 (d, \(J = 8.7 \) Hz, 1H), 7.33 (dd, \(J = 8.8, 2.0 \) Hz, 1H), 3.06-2.98 (m, 1H), 2.89-2.81 (m, 1H), 2.65-2.54 (m, 1H), 2.50-2.35 (m, 2H), 1.93-1.83 (m, 1H), 1.66-1.49 (m, 2H), 1.45-1.30 (m, 1H).

N-(3-azido-4-chlorophenyl)-1-(3-(prop-2-yn-1-yloxy)-5-(trifluoromethyl)benzoyl)piperidine-3-carboxamide (206569). Prepared using 112 and 98 according to Procedure D. Crude material was purified using a Biotage FlashMaster Personal+ (40% EtOAc/Hex) to afford 0.055 g (0.109 mmol, 42% yield) of title compound as a pale yellow solid HPLC (gradient A): ret time = 8.01 min; purity = >95%. ESI(+) m/z [M+Na] 527.9. ¹H NMR (400 MHz, DMSO-d₆): 1.5:1.0 mixture of rotamers, δ 10.36 (rotamer 1, s), 10.14 (rotamer 2, s, 1H), 7.90-7.72 (m, 1H), 7.51-7.12 (m, 5H), 5.06-4.88 (m, 2H), 4.63-4.06 (m, 1H), 3.73-3.35 (m, 2H), 3.20-2.92 (m, 2H), 2.65-2.52 (m, 1H), 2.09-1.99 (m, 1H), 1.90-1.64 (m, 2H), 1.47 (s, 1H).

1-(3-azido-5-(trifluoromethyl)benzoyl)-N-(4-chloro-3-(prop-2-yn-1-yloxy)phenyl)piperidine-3-carboxamide (206452). Agilent ESI(+) m/z [M+H]+ 506.0; [M+Na] 528.0. HPLC (gradient A): ret time = 7.75 min; purity = >90%. ¹H NMR (400 MHz, DMSO-d₆): 1.2:1.0 mixture of rotamers, δ 10.24 (rotamer 1, s), 10.02 (rotamer 2, s, 1H), 7.68-6.99 (m, 6H), 4.90-4.75 (m, 2H), 4.58-4.07 (m, 1H), 3.58-3.40 (m, 2H), 3.21-2.89 (m, 2H), 2.74-2.54 (m, 1H), 2.03 (s, 1H), 1.88-1.64 (m, 2H), 1.46 (bs, 1H).

tert-butyl (5-((3-benzylophenyl)amino)-5-oxopentyl)carbamate (115). 5-((tert-butoxycarbonyl)amino)pentanoic acid (0.050 g, 0.230 mmol) was dissolved in dichloromethane (2.3 mL) and was treated with EDC (0.066 g, 0.345 mmol) followed by
DMAP (0.042 g, 0.345 mmol) then (3-aminophenyl)(phenyl)methanone (0.045 g, 0.230 mmol). The reaction was stirred overnight at room temperature. The reaction was then diluted with additional DCM to a volume of 5 mL. Organics were washed with 1N HCl (5 mL) followed by saturated NaHCO₃ (5 mL) and was dried (MgSO₄) and concentrated in vacuo to afford 0.080 g of light brown solid. No further purification was performed. ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.15 (m, 9H), 3.03-2.87 (m, 2H), 2.26-2.11 (m, 2H), 1.60-1.45 (m, 2H), 1.40-1.25 (m, 2H).

5-amino-N-(3-benzoylphenyl)pentanamide (116). Compound 115 was dissolved in dichloromethane (1.35 mL) and the solution was cooled to approximately -10 °C. To the cooled stirring solution was added TFA (0.675 mL). The reaction mixture continued stirring at -7 °C for 45 minutes. The solution was added to a cooled 2M NaOH solution (10 mL). The mixture was then extracted with additional dichloromethane (3 x 5 mL). The organics were combined, dried (MgSO₄), and concentrated in vacuo to afford 0.039 g (0.132 mmol, 65% yield) of title compound. ¹H NMR (400 MHz, DMSO-d₆): δ 10.23 (s, 1H), 8.07 (s, 1H), 7.90 (d, J = 8.2, 1H), 7.76-7.65 (m, 3H), 7.60-7.33 (m, 4H), 2.72-2.60 (m, 2H), 2.38-2.29 (m, 2H), 1.68-1.57 (m, 2H), 1.54-1.40 (m, 2H).

5-amino-N-(3-benzoylphenyl)pentanamide (117). Compound 116 (0.080 g, 0.202 mmol) was dissolved in DCM (1.35 mL) and the solution was cooled to approximately -10 °C. To the cooled stirring solution was added TFA (0.675 mL). The reaction mixture continued stirring at -7 °C and the reaction's progression was monitored by TLC, which indicated completion after 45 minutes. Therefore, the solution was added to a cooled 2M NaOH solution (10 mL). The mixture was then extracted with additional DCM (3 x 5 mL). The combined organics were dried (MgSO₄) and concentrated in vacuo to afford 0.039 g (0.132 mmol, 65% yield) of title compound. ¹H NMR (400 MHz, DMSO-d₆): δ 10.23 (s, 1H), 8.07 (s, 1H), 7.90 (d, J = 8.2, 1H), 7.76-7.65 (m, 3H), 7.60-7.33 (m, 4H), 2.72-2.60 (m, 2H), 2.38-2.29 (m, 2H), 1.68-1.57 (m, 2H), 1.54-1.40 (m, 2H).

N-(5-(3-benzoylphenyl)amino)-5-oxopentyl)-3-(prop-2-yn-1-yloxy)-5-(trifluoromethyl)benzamide (208797). Prepared using 117 and 98 according to
Procedure D, but using 0.10 mmol of each to afford 0.017 g (0.033 mmol, 40% yield) of title compound as a white solid. No further purification was performed. ESI(+) m/z [M+H]+ 522.9; [M+Na] 544.9. HPLC (gradient A): ret time = 7.53 min; purity = >90%.

\[\text{ESI}^+ \text{m/z } [M+H]^+ 522.9; [M+Na] 544.9. \]

HPLC (gradient A): ret time = 7.53 min; purity = >90%.

\[\text{ESI}^+ \text{m/z } [M+H]^+ 522.9; [M+Na] 544.9. \]

\[\delta 10.13 \text{ (s, 1H)}, 8.70 \text{ (t, } J = 5.5 \text{ Hz, 1H)}, 8.01 \text{ (t, } J = 1.7 \text{ Hz, 1H)}, 7.94-7.87 \text{ (m, 1H)}, 7.80 \text{ (s, 1H)}, 7.76-7.71 \text{ (m, 3H)}, 7.71-7.65 \text{ (m, 1H)}, 7.60-7.54 \text{ (m, 2H)}, 7.52-7.44 \text{ (m, 1H)}, 7.39 \text{ (dt, } J = 7.7, 1.2 \text{ Hz, 1H)}, 4.98 \text{ (d, } J = 2.4 \text{ Hz, 2H)}, 3.64 \text{ (t, } J = 2.3 \text{ Hz, 1H)}, 3.30-3.27 \text{ (m, 2H)}, 3.22 \text{ (s, 2H)}, 2.36 \text{ (t, } J = 7.1 \text{ Hz, 2H)}, 1.69-1.52 \text{ (m, 4H)}. \]

\[\text{ESI}^+ \text{m/z } [M+H]^+ 522.9; [M+Na] 544.9. \]

\[\text{ESI}^+ \text{m/z } [M+H]^+ 522.9; [M+Na] 544.9. \]

\[\delta 10.13 \text{ (s, 1H)}, 8.70 \text{ (t, } J = 5.5 \text{ Hz, 1H)}, 8.01 \text{ (t, } J = 1.7 \text{ Hz, 1H)}, 7.94-7.87 \text{ (m, 1H)}, 7.80 \text{ (s, 1H)}, 7.76-7.71 \text{ (m, 3H)}, 7.71-7.65 \text{ (m, 1H)}, 7.60-7.54 \text{ (m, 2H)}, 7.52-7.44 \text{ (m, 1H)}, 7.39 \text{ (dt, } J = 7.7, 1.2 \text{ Hz, 1H)}, 4.98 \text{ (d, } J = 2.4 \text{ Hz, 2H)}, 3.64 \text{ (t, } J = 2.3 \text{ Hz, 1H)}, 3.30-3.27 \text{ (m, 2H)}, 3.22 \text{ (s, 2H)}, 2.36 \text{ (t, } J = 7.1 \text{ Hz, 2H)}, 1.69-1.52 \text{ (m, 4H)}. \]

\[\text{ESI}^+ \text{m/z } [M+H]^+ 522.9; [M+Na] 544.9. \]

(3,5-bis(trifluoromethyl)phenyl)(4-((4-chlorophenyl)amino)piperidin-1-yl)methanone (102441). Compound 22 (0.124 g, 0.366 mmol) was dissolved in 1,2-dichloroethane (1.3 mL) and was treated with 4-chloroaniline (0.047 g, 0.366 mmol) followed by Sodium triacetoxyborohydride (0.109 g, 0.512 mmol) and Acetic acid (0.021 mL, 0.366 mmol). The mixture was stirred overnight at room temperature. Reaction was then basified to pH ~9 using 2M NaOH and the aqueous layer was extracted with ether (3 x 10 mL). Combined extracts were washed with brine (20 mL), dried, and concentrated. Crude material was purified using flash chromatography (5-80% EtOAc/Hex) to afford 0.044 g (0.098 mmol, 27% yield) of title compound as a clear oil. TLC Rf (50% EtOAc/Hex): 0.74. TOF MS-ESI m/z [M+H]+ 451.1; [M+Na] 473.1. HPLC (gradient A): ret time = 7.96 min; purity = 99%.

\[\delta 8.22 \text{ (s, 1H)}, 8.12 \text{ (s, 2H)}, 7.08 \text{ (d, } J = 8.7 \text{ Hz, 2H)}, 6.61 \text{ (d, } J = 8.8 \text{ Hz, 2H)}, 5.74 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 4.34 \text{ (d, } J = 12.2 \text{ Hz, 1H)}, 3.55-3.05 \text{ (m, 5H)}, 2.06-1.78 \text{ (m, 2H)}, 1.45-1.28 \text{ (m, 2H)}. \]
Bibliography

42. Baugher, P. J., Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast cancer research : BCR 2005, 7 (6), R965-74.

179

