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ABSTRACT 

The causes of sporadic neurodegenerative disease in aging adults likely 

involve a complex interplay of genetics, epigenetics, and a lifetime of 

environmental exposures.  The current dissertation uses two molecular 

epidemiology studies to investigate biomarkers of environmental exposures and 

neurodegenerative outcomes.  

A major challenge of chronic disease environmental etiology research is 

the long latency between environmental exposures and the onset of disease. The 

Veteran’s Affairs Normative Aging Study is an epidemiologic cohort designed to 

prospectively measure exposures and monitor early or subclinical disease.  

Repeated levels of recent exposure to lead were measured in blood and 

cumulative exposure to lead was measured by bone K-shell X-ray fluorescence.  

Homocysteine (Hcy), a risk factor for cardiovascular and neurodegenerative 

diseases when elevated, was measured concurrently with blood lead.  Using 

repeated measures mixed effects models, this research demonstrated that an 

interquartile range higher blood Pb level (3 µg/dl) was associated with an 8.1% 

higher Hcy, compared to the percent change in Hcy with a 5-year increase in age 

(3.1%).  We also demonstrated that individuals with diets rich in vitamins B6, B9, 

and B12, mitigated the effect of Pb on Hcy.  This research suggests that 

interventions to reduce blood Pb and increase dietary B-vitamin intake would 

reduce circulating Hcy levels, potentially lowering risk for cardiovascular and 

neurodegenerative disease.   

The second study investigated the role of epigenetic regulation, through 

DNA methylation, and its potential contribution to gene expression changes in 

late-onset Alzheimer’s disease.  In two separate thesis papers, the DNA 

methylomes and transcriptomes of frontal cortex tissues from deceased patients 

with Alzheimer’s disease were mapped and compared to neuropathologically 



xi 

normal controls using genome-wide approaches and bioinformatic analyses.  In a 

proof-of-concept study, the top disease ranked DNA methylation site was 

validated for altered gene expression and protein levels.  A novel biomarker and 

potential mechanism for LOAD pathogenicity with environmental implications was 

proposed. 

This interdisciplinary thesis implemented laboratory biomarker studies, 

population exposure assessment and molecular epidemiology to approach the 

multi-faceted origins of neurological disease in aging populations. 
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CHAPTER I 

Introduction 

Alzheimer’s Disease and Environmental Exposure to Lead: The 

Epidemiologic Evidence and Potential Role of Epigenetics 

 

From: Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. 2012. Alzheimer’s 

disease and environmental exposure to lead: The epidemiologic evidence and 

potential role of epigenetics. Current Alzheimer’s Research 9: 563-73, reprinted 

with permission for educational use from Bentham Science Press. 

ABSTRACT 

Several lines of evidence indicate that the etiology of late-onset Alzheimer’s 

disease (LOAD) is complex, with significant contributions from both genes and 

environmental factors.  Recent research suggests the importance of epigenetic 

mechanisms in defining the relationship between environmental exposures and 

LOAD.  In epidemiologic studies of adults, cumulative lifetime lead (Pb) exposure 

has been associated with accelerated declines in cognition.  In addition, research 

in animal models suggests a causal association between Pb exposure during 

early life, epigenetics, and LOAD. There are multiple challenges to human 

epidemiologic research evaluating the relationship between epigenetics, LOAD, 

and Pb exposure.  Epidemiologic studies are not well-suited to accommodate the 

long latency period between exposures during early life and onset of Alzheimer’s 

disease.  There is also a lack of validated circulating epigenetics biomarkers and 

retrospective biomarkers of Pb exposure.  Members of our research group have 

shown bone Pb is an accurate measurement of historical Pb exposure in adults, 

offering an avenue for future epidemiologic studies.  However, this would not 

address the risk of LOAD attributable to early-life Pb exposures.  Future studies 
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that use a cohort design to measure both Pb exposure and validated epigenetic 

biomarkers of LOAD will be useful to clarify this important relationship.  

 

Keywords 

DNA methylation; epigenetics; epidemiology, Late-onset Alzheimer’s disease; 

lead exposure; Pb 

 

ALZHEIMER’S DISEASE 

General Alzheimer’s Disease Epidemiology 

Alzheimer’s disease (AD) is a highly prevalent, progressive, and fatal 

neurodegenerative disease associated with aging.  Clinical manifestation of AD 

includes progressive memory impairment and a gradual difficulty performing 

normal activities.  A small percentage of cases, termed early-onset AD (EOAD), 

experience disease onset prior to age 60.  EOAD cases are attributed to highly 

penetrant genetic mutations in amyloid pathway genes including amyloid 

precursor protein (APP) on chromosome 21, presenilin 1 (PSEN1) on 

chromosome 14, and presenilin 2 (PSEN2) on chromosome 1 (Bertram 2009; 

Hardy 1997).   These mutations lead to the accumulation of β-amyloid plaques, a 

pathological hallmark of AD.    

Termed late-onset AD (LOAD), the majority of AD cases are sporadic and 

symptoms manifest after age 60.  Numerous low-penetrant genetic risk factors 

conferring a modest increase in risk of disease have been identified for LOAD, 

the most studied of which is the apolipoprotein ε4 allele (APOE-ε4).  The global 

population prevalence of APOE-ε4 is 22%, while approximately 60% of LOAD 

cases carry at least one allele (Ashford 2004; Kim et al. 2009).  Large, multi-

center genome-wide association studies (GWAS) estimate the population 

attributable risk for APOE variants is 19-35% (Ertekin-Taner 2010).   GWAS have 
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identified additional polymorphisms associated with LOAD risk including genes 

for ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A, and PICALM 

(Harold et al. 2009; Hollingworth et al. 2011; Lambert et al. 2009; Naj et al. 

2011), each associated with small increases in population attributable risk (PAR) 

ranging from 2-9.3% with a combined non-APOE PAR of 31-35%.   Additional 

APOE ε4 dose adjustment reveals 50% of the PAR for LOAD is accounted for by 

known single nucleotide polymorphisms (SNPs) (Naj et al. 2011). While these 

variants are important both for risk assessment and identification of novel 

mechanisms of pathogenesis, they are neither necessary nor sufficient for the 

development of LOAD.  

Twin studies are an important epidemiologic tool for estimating the relative 

contribution of genetics and the environment in disease development.  

Incomplete twin concordance and variable age of onset supports a significant 

role for non-genetic factors in LOAD etiology.   Among monozygotic twin (MZ) 

pairs, approximately 45-67% of twin pairs are concordant for LOAD (Gatz et al. 

1997; Gatz et al. 2006; Nee and Lippa 1999).   Heritability of liability based on 

twin studies is estimated to be 58-79% (Gatz et al. 1997; Gatz et al. 2006).  

Linkage analysis reveals age at LOAD onset is partially genetically linked to 

regions on chromosomes 4 (208 cM) and 10 (139 cM) (Li et al. 2002).   However, 

among a group of MZ pairs in which both twins develop the disease, differences 

in age of onset range from 4 to 16 years (Gatz et al. 1997). Both genetic and 

environmental factors likely contribute to LOAD development.   

Association studies have identified several non-genetic risk factors for 

LOAD, including depression (Saczynski et al. 2010), hypertension (Li et al. 2011; 

Sharp et al. 2011), stroke (Savva and Stephan 2010), diabetes (Li et al. 2011), 

hypercholesterolemia (Li et al. 2011), obesity (Anstey et al. 2011), head trauma 

(Plassman et al. 2000), smoking (Almeida et al. 2002; Li et al. 2011; Rusanen et 

al. 2011), and having greater than 6 siblings (Moceri et al. 2000).  Protective 

factors, those that reduce the risk of developing LOAD or delay the onset of 

LOAD, include physical activity (Laurin et al. 2001; Lindsay et al. 2002), social 
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engagement (Fratiglioni and Wang 2007), mental activity (Fratiglioni and Wang 

2007; Stern and Munn 2010), education (via the cognitive reserve hypothesis) 

(Fratiglioni and Wang 2007; Lindsay et al. 2002), statin use (G Li et al. 2010) , 

non-steroidal anti-inflammatory drug (NSAID) use (Lindsay et al. 2002), 

moderate alcohol consumption (Larrieu et al. 2004; Lindsay et al. 2002), coffee 

consumption (Lindsay et al. 2002), past vaccinations (Verreault et al. 2001), and 

childhood residence in the suburbs relative to the city (Moceri et al. 2000).  In 

particular, nutrition may play a protective role in LOAD onset.  Consumption of 

one meal/week of fish rich in omega-3 fatty acids reduced the risk of developing 

AD by 60% in the Chicago Health and Aging Project (Morris 2009). Individuals 

with plasma vitamin E less than or equal to 21.0 µmol/L had a higher risk of 

incident dementia than individuals with plasma levels greater than or equal to 

25.5 µmol/L (Helmer et al. 2003).  The natural plant polyphenols curcumin and 

green tea epigallocatechin gallate (EGCG) have anti-oxidant and neuroprotective 

properties that may be protective against LOAD (Mandel et al. 2007).  EGCG 

reduces APP translation through modulation of the intracellular iron pool in vitro 

neuroblastoma cell culture (Reznichenko et al. 2006) and AD transgenic mice 

exposed in vivo to EGCG show reduced Aβ plaque density (Rezai-Zadeh et al. 

2005).  In an additional AD transgenic mouse model study, curcumin suppressed 

inflammation and oxidative damage in the brain and lowered levels of soluble Aβ 

and plaques (Yang et al. 2005).    Anthropometric measures of shorter adult knee 

height and arm span may reflect nutritional deficits in childhood (Jeong et al. 

2005) and women in the lowest quartile of arm span in the Cardiovascular Health 

Cognition cohort study had 1.5 times elevated risk of dementia (Huang et al. 

2008). 

Proposed environmental exposures associated with LOAD include 

aluminum (Frisardi et al. 2010; Shcherbatykh and Carpenter 2007), copper 

(Brown 2009; Shcherbatykh and Carpenter 2007), zinc (Shcherbatykh and 

Carpenter 2007), mercury (Gerhardsson et al. 2008), lead (reviewed below), iron 

(Mandel et al. 2007), pesticides (Baldi et al. 2003; Santibanez et al. 2007), 

solvents (Kukull et al. 1995), electromagnetic field (Sobel et al. 1996), and 
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particulate matter in air pollution (Calderon-Garciduenas et al. 2004).  

Environmental exposure studies have been underrepresented in the AD 

literature, likely due to the challenges of retrospective exposure assessment in 

older adults.   

 

LEAD (Pb) EXPOSURE 

Overview of Pb Exposure as a Risk Factor 

Zawia and colleagues have published a series of experimental studies on 

rodents and primates demonstrating that Pb exposure in early life results in late-

life neuropathological changes similar to those of AD (reviewed elsewhere in this 

issue of Current Alzheimer’s Research).  This work, coupled with the recognition 

that exposure to Pb in the general population until recently has been high, has 

heightened interest in the epidemiology of Pb exposure and neurodegenerative 

disease.  We discuss trends in Pb exposure and epidemiologic studies that 

provide evidence for the role of Pb as a risk factor for AD. 

Pb Exposure Epidemiology 

One of the greatest environmental health successes of our society was 

the regulatory action to reduce what had been decades of high Pb exposure in 

the US (Grosse et al. 2002).  Between 1976 and 1991, the mean blood Pb levels 

for people in the US dropped 78% from 12.8 µg/dL to 2.8 (Pirkle et al. 1994).  

Since 1991 the standard elevated blood Pb level defining the need for action 

from Pb poisoning in children has been set to 10 µg/dL.  The previously elevated 

mean blood Pb level of 12.8 µg/dL is a sobering testament to the high levels of 

Pb exposure endured by the general US population and other countries in the 

recent past. 

   However, hazardous public health impacts remain despite low mean 

population blood Pb levels.  One issue is that the general reduction in Pb 

exposure is not universal.  Pockets of high Pb exposure remain in certain sectors 
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of the US population where housing was constructed prior to 1950 and at which 

time leaded paint was used (Lanphear et al. 1998; Rabito et al. 2003), or where 

plumbing pipes and solder containing Pb have not yet been replaced (Edwards et 

al. 2009).  Fly ash from municipal waste incineration contains high levels of 

heavy metals including Pb (Jung et al. 2004).  In the high temperatures of the 

trash incineration process, Pb is converted to the volatile PbCl2 compound, which 

can contaminate surrounding areas (Jung et al. 2004).  It is estimated that the 

US has hundreds of defunct Pb battery recycling sites (Nedwed and Clifford 

1997) and Pb/zinc mines and smelters.  The surrounding soil and water of these 

industrial sites are often contaminated with high levels of Pb, leading to human 

exposure (Kaul et al. 1999), and many of these sites are designated Superfund 

sites on the National Priorities List by the US Environmental Protection Agency 

(EPA) (Lewin et al. 1999; von Lindern et al. 2003). In many developing countries 

the combustion of leaded gasoline continues and industrial emissions of Pb have 

been increasing (Meyer et al. 2008; Tong et al. 2000).  Groups of people 

continue to experience high blood Pb levels based on their occupation or 

residential proximity to these hazards. 

The pharmacodynamics of Pb in the human body makes past exposure to 

this heavy metal relevant to current and future health outcomes.  Pb dust is 

inhaled or ingested and absorbed through the lung epithelia or gastrointestinal 

tract respectively. Pb is taken up by divalent metal transporters in the gut, binds 

tightly to heme molecules, and circulates throughout the body via blood.  A small 

percentage of circulating Pb is highly toxic because it is free and bioavailable in 

the plasma (Hernandez-Avila et al. 1998).  Plasma Pb contributes to both soft 

tissue Pb as well as bone Pb deposition (Rabinowitz et al. 1976).  Pb can occupy 

both Ca2+ sites in the hydroxyapatite structure of bones (Barry and Mossman 

1970) and greater than 95% of the adult body burden of Pb is stored in bones 

(Barry and Mossman 1970).   Given that cortical bone turns over at a slow rate of 

approximately 2% per year in healthy adults, Pb can be stored for decades in 

bone (Barbosa et al. 2005; Hu et al. 1998; Rabinowitz 1991).  Storage in bone is 

not a permanent Pb detoxification mechanism as Pb can have direct effects on 
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the cellular components of bone (Pounds et al. 1991), and bone Pb can be 

mobilized in times of higher bone turnover such as during pregnancy, lactation, 

and osteoporosis (Silbergeld et al. 1988).  Individuals born in the US prior to the 

Pb phase out in the 1970s may have accumulated elevated bone Pb stores that 

become mobilized in later life.   

Biomarkers of Pb Exposure 

Whole blood Pb is the most common biomarker of Pb exposure.  The half-

life of Pb in blood is relatively short, approximately 35 days (Rabinowitz et al. 

1976).  This biomarker is best used for quantifying recent environmental 

exposures and mobilization of endogenous Pb (Silbergeld 1991).  Similarly, soft 

tissues also have relatively high turnover of Pb with a mean half-life of 

approximately 40 days, but soft tissue Pb quantification is invasive and not 

typically used for epidemiologic studies (Rabinowitz et al. 1976).   

An expert panel on adult Pb toxicity convened by the US Centers for 

Disease Control concluded that bone Pb levels were the best biomarker of 

cumulative Pb exposure (Hu et al. 2007). Spongy trabecular bone, such as that 

found in the patella, has an intermediate half-life of 5-15 years in adults (Hu et al. 

1995).  More dense cortical bone, as in the tibia, has a much longer half-life of 

10-30 years (Chettle 2005).  Thus, epidemiologic studies measuring Pb in bone 

can quantify a subject’s life history of cumulative Pb exposure.   

Bone Pb levels can be measured either in vivo using Cd109 K-shell X-ray 

Fluorescence (KXRF) (Hu et al. 2007) or by direct, chemical measurement of Pb 

in excised total joint replacement or post-mortem bone samples (Wittmers et al. 

1988).  Measurements with KXRF technology are painless and non-invasive, with 

minimal radiation exposure (Hu et al. 1995).  The KXRF instrument uses low-

level gamma radiation to provoke emission of fluorescent photons from a 

subject’s tibia and patella (Hu et al. 1989).  The photons are detected and 

quantified over a spectrum of wavelengths from which the characteristic emission 

profile of Pb can be extracted (Hu et al. 1995).  Post-mortem bone samples can 
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be acid digested and quantified for Pb levels using inductively coupled plasma 

mass spectrometry (ICP-MS) (Garcia et al. 2001). 

There are several approaches to predicting cumulative Pb exposure in the 

absence of direct bone Pb measures.  The Park model incorporates blood Pb 

and information on subject demographics, medical history, and metabolic 

parameters to predict cumulative Pb exposure (Park et al. 2009).  The Gorell 

system predicts cumulative Pb exposure based on blood Pb levels and 

physiologically based pharmacokinetic (PBPK) models incorporating industrial 

hygienist rated occupational Pb exposure for each job over the duration worked 

(Coon et al. 2006).  Both strategies have been validated with bone Pb measures.   

Pb as a Neurotoxicant and Risk Factor for LOAD 

Pb is a well-known neurotoxicant in children.  Even at relatively low 

(subclinical) levels, epidemiologic studies demonstrate that childhood Pb 

exposure affects IQ and behavior with major impacts on IQ and functioning 

(Fewtrell et al. 2004; Grosse et al. 2002).   

A growing body of toxicological and population-based research indicates 

that cumulative environmental Pb exposure is neurotoxic in adults as well 

(Toscano and Guilarte 2005). Pb exposure is a significant risk factor for 

accelerated declines in cognition (Weisskopf et al. 2004; Wright et al. 2003), an 

effect that a recent CDC panel concluded was likely causal (Shih et al. 2007).  

The Veteran’s Affairs Normative Aging Study (NAS) is a longitudinal cohort of 

men free of disease when recruited in 1963.  Based on data from repeated 

measures of bone Pb, blood Pb, and cognitive tests in the NAS, there are 

significant associations between high Pb exposure and decreased cognition.  

The cognitive domains associated with increased Pb exposure differ depending 

on the time of exposure.  In a cross-sectional analysis, higher blood Pb was 

associated with reduced ability to recall and define words, identify line-drawn 

objects, and difficulty with a perceptual comparison test (Payton et al. 1998).  

Both higher blood and bone Pb were associated with decreased spatial copying 



9 

skill (Payton et al. 1998).  Higher bone Pb was associated with reduced pattern 

memory (Payton et al. 1998).  Longitudinal analyses confirm that the Pb 

associated declines in cognitive function are greater than changes observed with 

normal aging alone (Schwartz et al. 2000).  Also in the NAS, functional genetic 

polymorphisms in the δ-aminolevulinic acid dehydratase (ALAD) and 

hemochromatosis (HFE) genes modify the association between Pb and cognition 

measured by the Mini-Mental State Exam (MMSE), where variant carriers have 

more pronounced cognitive deficits associated with Pb exposure (Wang et al. 

2007; Weuve et al. 2006). Future research may study the ecological association 

between geographic regions with elevated Pb exposure and prevalence of 

LOAD.   

Pb is also a risk factor for increased hippocampal gliosis measured by 

magnetic resonance spectroscopy in the NAS (Weisskopf et al. 2007), an 

abnormality associated with LOAD development.  Molecular epidemiology 

studies show cumulative Pb exposure is associated with an increased risk of 

amyotrophic lateral sclerosis (Kamel et al. 2005; Kamel et al. 2003; Kamel et al. 

2002) and Parkinson’s Disease (Weisskopf et al. 2010), suggesting that Pb 

exerts a significant neurodegenerative effect.   This effect may have specificity 

through epigenetic change as a pathogenic mechanism.   

Toxicological studies are consistent with the epidemiologic research.  

Early life Pb exposure in animal models is associated with latent APP pathway 

dysregulation.  Rats exposed to Pb in early life showed increased expression of 

APP mRNA and elevated Aβ aggregation without changes in α-, β-, or γ-

secretases at 20 months of age (Basha et al. 2005a; Basha et al. 2005b).  

Similarly, primates exposed to Pb during the first 2 months of life only had 

significant adverse brain changes at 23 years of age when compared to their 

unexposed counterparts (Wu et al. 2008a).  Pb exposed primates had increased 

amyloidogenesis, senile plaque deposition, and up-regulation of key proteins in 

the amyloid processing pathway, such as APP and beta-site APP-cleaving 

enzyme 1 (BACE1) (Wu et al. 2008a).   
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OVERVIEW OF EPIGENETICS 

Literally meaning “above the genome,” the epigenome comprises the 

heritable changes in gene expression that occur in the absence of changes to the 

DNA sequence itself.  Epigenetic mechanisms include chromatin folding and 

attachment to the nuclear matrix, packaging of DNA around nucleosomes, 

covalent modifications of histone tails, and DNA methylation.  The influence of 

regulatory small RNAs and micro RNAs on gene transcription is also increasingly 

recognized as a key mechanism of epigenetic gene regulation (Morris 2011).  

Epigenetic mechanisms are important in growth and cellular differentiation 

(Jones and Taylor 1980).  Epigenetic change can be stochastic (Feinberg and 

Irizarry 2010) or internally orchestrated as part of aging (Fraga and Esteller 

2007).  Longitudinal change in global and gene-specific DNA methylation clusters 

within families, suggesting that there is genetic control of methylation status 

(Bjornsson et al. 2008).  Inappropriate epigenetic changes are associated with 

many diseases including cancers (Esteller 2008), Rett syndrome (Horike et al. 

2005), Beckwith-Wiedemann syndrome (DeBaun et al. 2002) and other 

imprinting disorders.  Environmental signals can trigger epigenetic responses 

and may be an important mechanism by which environmental exposures are 

associated with disease (Faulk and Dolinoy 2011).  Furthermore, epigenetic 

mechanisms may play an important role in the developmental origins of adult 

health and disease (DOHaD) by providing a mechanism underlying the latent 

effects of adverse fetal, infant, and childhood environments on late-life chronic 

disease (Barker 2004; Hanson et al. 2011; Wadhwa et al. 2009).   

Epigenetic Epidemiology and Alzheimer’s Disease 

Epigenetic epidemiology is the study of the effects of heritable epigenetic 

changes on the occurrence and distribution of diseases in populations (Jablonka 

2004).  This research includes both trans-generational and intra-individual 

cellular epigenetic inheritance systems.  Epigenetic changes are associated with 

epidemiologic risk factors such as aging (Calvanese et al. 2009; Fraga 2009) and 

environmental exposures (Faulk and Dolinoy 2011), as well as psychiatric 
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outcomes (Sananbenesi and Fischer 2009) and neurodegeneration (Urdinguio et 

al. 2009).   

Evidence for the role of epigenetics in AD pathogenesis is found in human 

studies of various tissues, animal models, and cell culture (2010; Mastroeni et al. 

2011; Mill 2011).  Global changes associated with AD have been observed in 

DNA methylation, miRNAs, and histone modifications.  A human post-mortem 

case-control study identified global DNA hypomethylation in the entorhinal cortex 

of AD subjects by quantifying the percentage of positive 5-methylcytosine 

neuronal nuclear immunoreactivity (Mastroeni et al. 2008).  Within a single MZ 

twin pair discordant for AD, DNA from the temporal neocortex neuronal nuclei 

was hypomethylated in the AD twin compared to their cognitively normal twin 

using similar methods to the previous study (Mastroeni et al. 2009).  An AD case-

control study in the post-mortem human parietal lobe cortex revealed differential 

regulation of miRNAs including miR-204, miR-211, and miR-44691 using a 

custom µParaflo array (Nunez-Iglesias et al. 2010).  Age-matched AD cases 

have increased neuronal global phosphorylation of histone 3 relative to controls 

determined by immunolabeling in the hippocampus, a histone modification that 

suggests mitotic activation (Ogawa et al. 2003).   

Given that epigenetics play an important regulatory role in gene 

expression, epigenetic dysregulation of important AD tau and amyloid processing 

pathway genes may point to a potential mechanism for AD disease progression. 

In experiments where neuroblastoma cells were cultured under low folate and 

vitamin B12 conditions, PSEN1 and BACE1 were hypomethylated, mRNA 

expression of BACE1 and PSEN1 was significantly induced, and Aβ production 

was increased (Fuso et al. 2005).  Addition of S-adenosyl methionine (SAM) was 

able to restore BACE1 and PSEN1 expression to baseline levels, though DNA 

methylation reversal was incomplete (Fuso et al. 2005).  An additional study 

using human neuroblastoma cells and male rat brain tissue shows APP mRNA 

expression is repressed by thyroid hormone (T3) sensitive histone modifications 

(Belakavadi et al. 2011).  Treatment with T3 decreases H3K4 methylation and H3 



12 

acetylation at the APP promoter, leading to APP silencing that was reversed with 

histone deacetylase (HDAC) and histone lysine demethylase inhibitors 

(Belakavadi et al. 2011).   

There have been several candidate-gene methylation studies in LOAD 

cases and controls.  In a post-mortem brain study of 26 controls and 44 LOAD 

cases with varying degrees of disease severity, no differences were seen in DNA 

methylation in regions associated with Microtubule Associated Protein Tau 

(MAPT), PSEN1, and APP, nor were differences detected between frontal cortex 

and hippocampal DNA (Barrachina and Ferrer 2009). Investigation of 6 familial 

AD frontal cortex and cerebellum brain samples revealed no methylation at the 

APP promoter in any case in either brain region (Brohede et al. 2010).  These 

studies were limited by a candidate-gene approach and highlight the need for 

genome-wide assessment of DNA methylation. 

It is critical that epigenetic epidemiology studies of AD epigenetics 

consider age as an independent predictor of epigenetic change as age-specific 

epigenetic drift has been observed at AD related loci among healthy normal 

controls.  In a set of control parietal cortex samples, the promoter of APP was 

hypomethylated in individuals greater than 70 years of age relative to younger 

subjects (Tohgi et al. 1999a).  DNA methylation upstream of the MAPT gene also 

varied with age in the control parietal cortex and was associated with an age-

related decline in MAPT gene expression (Tohgi et al. 1999b).  Specifically, 

MAPT promoter CpG dinucleotides located in the Sp1 transcriptional activator 

binding site were hypermethylated with age, while CpG dinucleotides located 

within the GCF transcriptional repressor binding region were hypomethylated 

with age (Tohgi et al. 1999b).  Another study of post-mortem cerebral cortex in 

125 subjects ranging from 17 weeks of gestation to 104 years of age measured 

methylation by MethyLight PCR at candidate tag loci for 50 genes selected for 

their relevance to LOAD, CNS differentiation, and cancer.  CpG sites in the 

promoters of eight genes showed robust linear increases in DNA methylation 

across the lifespan (Siegmund et al. 2007).  An additional study examined 
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prefrontal cortex samples across a 30 year age range and noted that the average 

DNA methylation in promoters of MTHFR and APOE increased by 6.8% across 

the age range, while control samples decreased by 10.6% with age (Wang et al. 

2008).  Given the likely epigenetic drift, clinical samples should be carefully 

matched on age.  

Epigenetics and Heavy Metals, with a Focus on Pb 

Epigenetic alterations have been observed following exposure to 

environmental metals (Salnikow and Zhitkovich 2008), including arsenic, nickel, 

chromium, cadmium, and Pb.  Perhaps the heavy metal most studied in the field 

of cancer epigenetic epidemiology is arsenic.  In a population-based study of 351 

individuals with bladder cancer, elevated toenail arsenic measurements were 

associated with increased tumor sample promoter methylation of RASSF1A and 

PRSS3 tumor suppressor genes (Marsit et al. 2006).   Nickel, chromium, and 

cadmium epigenetics research has largely been in toxicologically based in vitro 

experiments.  A cell line of human lung bronchoepithelial cells treated with nickel 

chloride show global histone modification changes including decreased H2A, 

H2B, H3, and H4 acetylation and increased H3K9 dimethylation (Ke et al. 2006).   

When the same cell line is treated with chromium, the cells exhibit increased 

H3K9 dimethylation at the MLH1 gene promoter region, which correlates with 

decreased MLH1 mRNA expression (Sun et al. 2009).  Cadmium exposure in a 

rat liver cell line initially reduces DNA methyltransferase activity and global DNA 

methylation, but after 10 weeks of prolonged exposure, the cells show significant 

increases in DNA methyltransferase and global DNA methylation above the 

baseline (Takiguchi et al. 2003). 

Evidence suggests that Pb, in particular, may play a role in epigenetics 

throughout the life course.  In a study of 103 mother-infant pairs, maternal 

cumulative Pb exposure was inversely associated with offspring umbilical cord 

genomic DNA methylation of Alu retrotransposable elements (Pilsner et al. 

2009).  Similarly, bone Pb levels were inversely associated with peripheral blood 

genomic DNA methylation of LINE-1 retrotransposons in 517 elderly men from 
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the NAS (Wright et al. 2010).  Individuals exposed to extremely high levels of Pb 

(51-100 µg/dL blood Pb) had higher methylation in the promoter of the p16 tumor 

suppressor gene (Kovatsi et al. 2010).  Research is needed to expand this early 

epidemiologic work on global and candidate gene DNA methylation to more 

comprehensively understand specific pathways influenced by Pb exposure in 

humans.  

Animal studies have investigated the relationship between Pb exposure 

and epigenetics.  Early life exposure to Pb in primates causes dysregulation of 

biological pathways important to LOAD pathogenesis in late life and is associated 

with reduced DNA methyltransferase 1 (DNMT1) activity (Wu et al. 2008a).  Rat 

pheochromocytoma cells exposed to Pb show dose dependent decreases in 

global methylation and decreases in APP promoter methylation at 4 CpG sites 

(YY Li et al. 2010).  These changes were associated with increases in APP 

mRNA and Aβ protein levels (YY Li et al. 2010).  Toxicological and 

epidemiological studies suggest that Pb exposure may be associated with 

epigenetic change, but further research is needed. 

DATA INTEGRATING ALZHEIMER’S DISEASE, EPIGENETICS, AND Pb 

EXPOSURE 

Alzheimer’s and Pb Exposure are Associated with Changes in One-Carbon 

Metabolism, the Substrate for DNA Methylation 

De novo and maintenance DNA methylation is dependent on available 

methyl (-CH3) groups.  One-carbon metabolism reactions are reversible and 

deficiencies in methyl donors can cause DNA hypomethylation.  For example, 

mice given diets deficient in the methyl donor choline showed lower global brain 

methylation (Niculescu et al. 2006) and elevated expression of APP, consistent 

with promoter hypomethylation (Niculescu et al. 2005).  Epidemiologic studies 

indicate that AD patients have altered circulating levels of one-carbon 

metabolism members including homocysteine (HCY), SAM, folate, and vitamin 

B12.  Elevated HCY is associated with increased risk of developing AD and 
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increased rate of disease progression among individuals with the disease. 

Prospective data from the Framingham Heart Study show that each standard 

deviation increase in log transformed plasma total HCY levels was associated 

with an adjusted relative risk of dementia of 1.8 (95% CI: 1.3-2.5) eight years 

after the HCY measurement (Seshadri et al. 2002).   AD patients in the Oxford 

Project to Investigate Memory and Ageing have increased serum HCY relative to 

cognitively normal control subjects (n=164) and the individuals with the greatest 

disease progression over the subsequent three years had the highest original 

HCY levels (Clarke et al. 1998).  SAM is a methyl-donor molecule that is 

hydrolyzed to form HCY, the substrate for DNA methylation.  AD patients also 

have decreased cerebrospinal fluid SAM relative to cognitively normal controls 

(Bottiglieri et al. 1990).   

 Several proteins in the one-carbon metabolism cycle may be disturbed by 

Pb exposure because elemental Pb reacts with free sulfhydryl groups on 

proteins. HCY metabolism may be directly inhibited by Pb binding to the 

sulfhydryl group in HCY.  Furthermore, HCY is transsulfurated into cysteine by 

cystathionine β-synthase (CBS) and CBS has two sulfhydryl groups with which 

Pb can react. There is also evidence for Pb’s involvement in methionine 

processing.  Rats developmentally treated with Pb have impaired long-term 

potentiation (LTP), memory, and synaptic plasticity.  Co-treatment with SAM and 

Pb increases LTP relative to Pb treatment alone and reduces circulating blood 

Pb levels (Cao et al. 2008) .  Similarly, neuroblastoma cells exposed to Pb 

experience viability loss, glutathione antioxidant depletion, membrane lipid 

peroxidation, DNA damage, and apoptosis; pretreatment with a methionine 

derivative reduces these harmful effects (Chen et al. 2011). 

Pb exposure and HCY levels are linked in cross-sectional epidemiologic 

studies. In the Baltimore Memory and Aging Project involving greater than 1,000 

adults, higher blood Pb was associated with higher HCY (Schafer et al. 2005).  

Analyses from the 1999-2002 National Health and Nutrition Examination Survey 

(NHANES) showed HCY was strongly associated (OR=1.92) with peripheral 
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arterial disease (PAD) (Guallar et al. 2006).  Subsequent analysis showed the 

original association was actually due to confounding from smoking, blood Pb and 

cadmium levels, and impaired renal function (Guallar et al. 2006).  This suggests 

that the association between HCY and chronic disease may be driven by 

environmental exposures.  

Animal Model Studies Linking Pb Exposure, Epigenetics, and 

Amyloidogenesis 

A series of rat and primate model studies conducted by the Zawia 

research group collectively demonstrate that early life Pb exposure reduces DNA 

methyltransferase activity and specifically alters the regulation of many AD 

pathway related genes including APP and BACE1 that are known to be CpG rich.   

Rats exposed to Pb from post natal day (PND) 1 through PND 20 experienced a 

transient increase in APP mRNA expression in cortical brain tissue, which 

returned to basal levels at 1 year, and later resurged at 20 months of age in the 

absence of continued exposure (Basha et al. 2005b).  The observed late-life rise 

in APP mRNA was accompanied by elevated Aβ, suggesting that early life Pb 

exposure may have long-term effects on amyloidogenesis in late life (Basha et al. 

2005b).  In a follow-up study on the same tissues, investigators noted the effects 

on Aβ formation and aggregations were not due to changes in protein levels of 

APP processing secretases (Basha et al. 2005a).  In a third study using  the 

early-life exposed rat brain tissues, elevated oxidative DNA damage measured 

by cerebral 8-hydroxy-2’-deoxyguanosine (8-oxo-dG) was observed in the 

exposed animals (Bolin et al. 2006). Local 8-oxo-dG is associated with 

hypomethylation at adjacent CpG sites (Cerda and Weitzman 1997).  Direct 

oxidation of 5-methylcytosine to 5-hydroxymethylcytosine may be part of active 

DNA demethylation (Wu and Zhang 2010).  Analogous primate experiments by 

Zawia et al. are consistent with these rodent findings. Primates exposed in early 

life to Pb had elevated levels of the A peptide, 8-oxo-dG DNA, and mRNA from 

APP and BACE1 on autopsy 23 years later relative to controls, suggesting Pb is 

involved in LOAD-like pathology (Wu et al. 2008a).  Brain tissue from these 
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exposed primates also had 20% reduced DNA methyltransferase 1 activity (Wu 

et al. 2008a) and lower methylation at the promoter of APP (Wu et al. 2008b).  In 

vivo animal model studies spanning multiple organisms support an integrated 

role of Pb exposure and epigenetics in amyloidogenesis.  

  

CHALLENGES TO LOAD EPIDEMIOLOGIC RESEARCH INTEGRATING 

EPIGENETICS AND Pb EXPOSURE 

Human epidemiologic research integrating LOAD, environmental exposure 

to Pb, and epigenetics faces many challenges.  Clinical criteria for AD include 

progressive impairment in memory in the absence of motor, sensory, or 

coordination deficits (McKhann et al. 1984).  However, the standard of diagnosis 

for AD requires the pathologic post-mortem identification of Aβ plaques and tau 

neurofibrillary tangles.  Epidemiologic studies can take advantage of predictive 

and diagnostic biomarkers, including a panel of plasma signaling proteins (Ray et 

al. 2007), cerebrospinal fluid protein analyses (De Meyer et al. 2010), magnetic 

resonance imaging (MRI) volumetric and structural measures (Jack et al. 1992), 

and positron emission tomography (PET) neuroimaging of metabolic rate and Aβ 

pathology (Klunk et al. 2004; Minoshima et al. 1995).  However, these research 

methods require additional validation to become routine early detection methods 

(Dubois et al. 2007).   

Another concern in environmental epidemiology is that the length of time 

between exposure and disease onset. Barker first introduced the hypothesis that 

early-life conditions could be linked to late life chronic disease, otherwise known 

as the developmental origins of health and disease (DOHaD) hypothesis (Barker 

and Osmond 1986).  Fetal or childhood exposures have been associated with 

adverse health outcomes including impaired glucose tolerance (Ravelli et al. 

1998) and hypertension (Barker et al. 1990; Bergvall et al. 2007).  Indeed, 

several early life events related to growth, metabolism, and cognitive reserve 

have been associated with LOAD  (Miller and O'Callaghan 2008).  AD risk is 
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increased with limited education and income, and both factors are associated 

with poor early life environment and growth (Borenstein et al. 2006).  Middle life 

risk factors including obesity (Whitmer et al. 2005), limited physical activity (Rovio 

et al. 2005), and diabetes (Luchsinger et al. 2001) are shared between AD and 

cardiovascular disease.  Low birth weight and intrauterine growth restriction are 

related to metabolism, fat distribution, and insulin resistance at mid-life and it has 

been suggested that these early-life events may be associated with AD as well 

(Landrigan et al. 2005; Lester-Coll et al. 2006; Ross et al. 2007).  However, 

LOAD is a chronic disease of old age and a prospective developmental exposure 

study could not feasibly follow an early life cohort for 75 years with our current 

late stage diagnostic measures.  Additionally, retrospective exposure 

assessment is difficult.  The human body has efficient detoxification and 

clearance mechanisms for many toxicants and many chemicals do not 

bioaccumulate in the human body.  There is an acute need to develop 

biomarkers that correspond to prior toxicologic exposures.   

Finally, an additional roadblock is that brain specific epigenetic 

measurements are only possible post-mortem.  Molecular epidemiology research 

of toxicant induced disease is strengthened when performed with relevant tissue 

samples.  Brain tissue collection is invasive and not possible longitudinally on live 

subjects.  Model animal research and epidemiology studies of human pre-

mortem available tissues such as skin, blood, colon, etc. are necessary to fill in 

stages of disease tissue not available through end of life epidemiologic brain 

banks.   

POTENTIAL APPROACHES TO STUDY Pb EXPOSURE, EPIGENOMICS, 

AND ALZHEIMER’S DISEASE EPIDEMIOLOGY 

To best understand the relationship between Pb exposure (both early-life 

and later life) and LOAD, studies should take advantage of available biomarkers 

of Pb and technologic advances in epigenetic measurements.  Bone Pb levels 

are a strong predictor of negative health outcomes including elevated risks for 

hypertension (Cheng et al. 2001; Hu et al. 1996; Korrick et al. 1999), ischemic 
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heart disease (Jain et al. 2007), and mortality (Weisskopf et al. 2009), but the 

relationship between cumulative Pb exposure and LOAD has not been assessed.  

Cumulative Pb exposure of LOAD subjects can be measured either non-

invasively in vivo using K-x-ray fluorescence (Hu et al. 2007) or by direct 

measurement of Pb in bone samples (Wittmers et al. 1988).  At Alzheimer’s 

Disease Research Centers (ADRCs) where LOAD subjects consent to brain 

tissue donation on autopsy, it would be most ideal to directly measure Pb in 

samples of cranial bone obtained at the time of brain harvesting.  Measurement 

of Pb in the cranium is highly correlated with a weighted average of skeletal Pb 

levels, as well as the level of Pb in tibia bone (Hu et al. 1990), the latter being the 

bone most commonly measured in epidemiologic studies of chronic Pb toxicity 

(Hu et al. 2007). Sampling cranial bone Pb would make it possible to 

concurrently study LOAD epidemiology, brain tissue epigenetics and cumulative 

Pb exposure in post-mortem case-control studies. 

 Circulating epigenetic biomarkers would be useful to conduct case-control 

studies of Pb exposure (by in vivo KXRF) with live subjects.  Post-mortem 

Alzheimer’s disease brain tissue epigenetic studies are expanding, but use of this 

tissue collected at end of life is not feasible to track within individual changes 

over time as in longitudinal epidemiological aging cohort studies.  Biologically-

available biomarkers would allow for repeated epigenetic measures throughout 

the disease course.  Epigenetic markers in white blood cells (WBC) have been 

used as biomarkers in other diseases.  Global DNA methylation has been 

associated with several cancers, myelodysplastic syndrome, and schizophrenia 

and thus does not appear to be a disease specific biomarker. Gene-specific 

methylation data and risk factor methylation data are more limited and results are 

inconsistent (Terry et al. 2011).  Larger, prospective cohort studies are needed to 

determine whether WBC gene-specific epigenetics will be informative with AD 

and with Pb exposure (Figure 1.1). Upon epigenetic biomarker development, 

cohort studies could integrate and target distinct age groups.  Birth cohorts could 

investigate the role of in utero and postnatal Pb exposure on AD biomarkers to 

test the hypothesis suggested by animal research (Wu et al. 2008b) that early life 
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is a critical window for Pb’s influence on developmental reprogramming.  Mid-life 

cohorts could focus on later exposure periods and could incorporate traditional 

AD risk factors such as hypertension status and education achieved.  Late-life 

cohorts would involve the best AD and mild cognitive impairment (MCI) 

diagnostic tools and study the role of cumulative lifetime Pb exposure. 

 Finally, epidemiologic data needs to be incorporated with epigenetic 

studies on ADRC brain bank tissues.  Epigenetic changes are associated with 

age (Wang et al. 2008), sex (Anway et al. 2005), exposures (Dolinoy et al. 2007), 

and diseases (Waterland and Garza 1999).  Alzheimer’s disease specific 

epigenetic change may need to be extracted from a noisy background of age-

specific epigenetic drift, sex-specific epigenetic marks, co-morbidity disease 

changes, and a lifetime of environmental exposures. The majority of existing 

studies of brain epigenetics focus on CpG islands and the application of array-

based approaches that only cover a portion of the genome, largely in genic 

regions.  Rapid advances in technology and reduction in costs have made new 

approaches using next-generation sequencing (NGS) feasible for larger sample 

sizes.  These new approaches have been lauded as unbiased but criticized as 

relative (rather than quantitative) measures of DNA methylation.  The depth of 

genome coverage will be able to provide the large amount of information needed 

to detect subtle changes from multiple sources.  Integration of these data with 

ongoing studies of biomarkers in other neurodegenerative diseases and in non-

diseased aging populations will help elucidate the specific epigenetic changes 

associated with LOAD, providing a foundation for prevention and treatment of 

this disease.  
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FIGURES 

 

Figure 1.1. Conceptual diagram describing the relationship between 

environmental exposures, including to the heavy metal lead, with the 

development of late-onset Alzheimer’s disease. There is a complex interplay of 

genetics and epigenetic programming.  Epidemiologic cohort studies can be 

designed to study different stages in the life course leading to disease 

development.   
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CHAPTER II 

Research Chapter 1 

Lead exposure, B-vitamins, and plasma homocysteine in the VA Normative 
Aging Study 

 

ABSTRACT 

Background: Epidemiologic studies suggest that elevated circulating level of 

homocysteine (Hcy), a one-carbon metabolite, is a risk factor for cardiovascular 

and neurodegenerative diseases.  Although a few cross-sectional studies have 

evaluated the influence of environmental toxicant exposures on Hcy levels, 

longitudinal studies and studies of the interplay of environmental and dietary 

factors are lacking. 

Objectives: We examined the association of recent and cumulative exposure to 

lead with Hcy levels cross-sectionally and longitudinally.  We also determined 

whether lead exposure’s association with Hcy varied by dietary intake of nutrients 

involved in one-carbon metabolism (folate and vitamins B6 and B12). 

Methods: We followed 1,056 of the Normative Aging Study men (age 50-97 at 

visit 1) over 4 study visits (2,301 total observations) at which concurrent 

measures of blood lead and Hcy were collected.  We determined baseline 

cumulative dose of lead via Cd109 K-shell X-ray fluorescence of the tibia and 

patella bones. We estimated cross-sectional differences in Hcy across levels of 

Pb exposure measures using generalized linear models.  We also used mixed 

effects models to estimate differences in rate of change in Hcy over time 

associated with Pb exposure.   
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Results: Higher exposure to lead was associated with higher Hcy levels.  An 

interquartile range (IQR) increment in tibia bone lead concentration (14µg/g) was 

associated with 3.64% higher Hcy at visit 1 (95% CI= 1.37-5.97).  Similar results 

were found at other visits, but tibia Pb was not associated with trajectory in Hcy 

over time.  An IQR increment in blood lead concentration (3 µg/dl) was 

associated with 8.14% higher Hcy (95% CI: 6.16-10.16) at visit 1, similar to the 

results at other visits. To put these findings in context, in our data, a 5-year 

increment in age corresponded to a 3.14% increase in Hcy (95% CI=2.88-7.87).  

The association between blood lead and Hcy was significantly larger among 

participants with lower dietary intakes of vitamins B6, B12, and folate.   

Conclusion: Increasing levels of lead exposure were associated with elevated 

Hcy, and this relationship was stronger in individuals with low dietary folate, B6, 

and B12. Increased intake of folate, B6, and B12 may be an effective intervention 

on lead’s effects on Hcy.   

KEYWORDS: aging, folate, homocysteine, lead exposure 
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INTRODUCTION 

 The post-war baby boom and lengthening life spans are fueling an 

unprecedented growth in the population of older adults worldwide, with 

widespread implications for stress on public health and medical infrastructures.  

Thus, increasing numbers of older adults are at risk of chronic diseases that 

require care and monitoring over decades.  Several chronic diseases, including 

cardiovascular disease (CVD) and neurodegenerative diseases, share a 

common risk factor, elevated homocysteine (Hcy), which is measured in the 

blood or cerebrospinal fluid.  Relatively little is known about the causes of 

elevated Hcy; in particular, the potential influence of environmental toxicant 

exposures and their interplay with dietary factors.  Research on the regulation of 

Hcy may result in opportunities for intervention prior to onset of chronic disease.   

Homocysteine (Hcy) 

 Hcy is a thiol-containing amino acid that is highly reactive and thus short-

lived in the body (Jocelyn 1972).  It is an intermediate in the one-carbon 

metabolism cycle, formed in the production of methionine, an important methyl 

donor for epigenetic modifications to nucleic acids and proteins (FIGURE 2.1).  

Though physiologically normal cellular processes produce and require Hcy at low 

levels, elevated Hcy is associated with toxicity.  Accessible cysteinyl residues in 

cellular proteins can react with free Hcy, forming Hcy-protein thiol-thiol 

interactions, altering native protein conformation and function.  In addition, free 

Hcy can cleave accessible disulfide bridges, damaging native protein 

confirmations (Krumdieck and Prince 2000). Biochemical damage is based on 

the duration and concentration of exposure to Hcy.  Long-lived proteins can 

accumulate irreversible Hcy-related damages, making these mechanisms 

especially relevant to the chronic diseases and morbidity of aging.   

Elevated Hcy is a risk factor for both CVD and neurodegeneration.  In 

epidemiologic studies, moderately elevated Hcy is associated with CVD.  In a 

meta-analysis of 30 retrospective or prospective studies, reduced plasma Hcy 
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was protective against ischemic heart disease (IHD) (OR=0.89 for 25% lower 

Hcy), and stroke (OR=0.81) (Collaboration 2002).  Similarly, a 5-μmol/L increase 

in Hcy corresponded to elevated odds of IHD (OR=1.23) and stroke (OR=1.42) in 

a meta-analysis of 20 prospective studies (Wald et al. 2002). The suggested 

mechanisms linking Hcy and cardiovascular outcomes include impaired 

endothelial elasticity and the production of reactive oxygen species (Perla-Kajan 

et al. 2007).   

 Elevated Hcy is also associated with decline in multiple cognitive domains.  

In the Veteran’s Affairs Normative Aging Study (NAS) of older men, higher 

baseline Hcy was associated with reduced spatial copying and verbal recall over 

a three-year follow-up period (Tucker et al. 2005).  Data from the Oxford Health 

Aging Project show high Hcy is associated with declines in general cognitive 

function as measured by the Mini-Mental Status Exam (MMSE) over a ten-year 

period (Clarke et al. 2007).  In a two-year follow-up study in Korea, incidence of 

dementia increased across ascending quintile of Hcy at follow-up (Kim et al. 

2008).  In the Sacramento Area Latino Study on Aging, higher baseline Hcy was 

associated with increased risk of both incident dementia and cognitive 

impairment in the absence of dementia over the subsequent 4.5 years of follow-

up (Haan et al. 2007).  Hcy is also an important risk factor for Alzheimer’s 

disease (Seshadri et al. 2002).   

Circulating Hcy can be lowered with dietary interventions, primarily 

therapy with folic acid, vitamin B12, and vitamin B6  (Appel et al. 2000).  Several 

randomized control trials have evaluated the effects of these therapies on cardio- 

and cerebrovascular events, their results have been mixed.  A meta-analysis of 

seventeen trials of individuals with preexisting cardiovascular or renal disease 

showed no differences between the Hcy-lowering treatment group and control 

group with respect to coronary heart disease, stroke, cardiovascular events, or 

all-cause mortality (Mei et al. 2010).  Dietary changes can reduce Hcy, but in 

individuals with pre-existing conditions, hypothesized improvements in health 

outcome do not seem to occur with the reduction (Mei et al. 2010).   
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Lead Exposure 

 The heavy metal lead (Pb), is a well-established and ubiquitous toxicant.  

The molecular mechanisms of lead’s toxicity in the human body are numerous 

but incompletely characterized.  Pb binds free sulfhydryl groups on proteins and 

can alter protein conformation and activity (Needleman 2004). Pb can form 

protein complexes in the kidney’s proximal tube, which lead to poor blood 

pressure regulation and cardiovascular problems (Goyer 1989).  Pb can also 

compete with or replace other divalent cations including calcium and iron.  In the 

central nervous system, rodent model research indicates lead exposure reduces 

synaptic plasticity and hippocampal long-term potentiation (Toscano and Guilarte 

2005).  It also results in a cascade of molecular changes including reduced 

cAMP and protein kinase A activity, altered MAPK signaling, and disruption of 

CREB phosphorylation (Toscano and Guilarte 2005).  Pb and Hcy both 

independently exert toxicity in part by binding to free sulfhydryl groups and 

damaging proteins.   

Exposure to Pb is linked to numerous diseases and negative health 

outcomes throughout the lifespan.  In late life, lead exposure, even at low levels 

experienced in the community, is related to CVD, as measured through 

hypertension (Cheng et al. 2001), heart rate variability (Park et al. 2006), and 

clinical CVD outcomes (Navas-Acien et al. 2007).  Lead exposure is also 

associated with poor cognition and cognitive decline in aging populations (Shih et 

al. 2007; Weuve et al. 2009).  

Lead Exposure and Homocysteine 

Previous studies have demonstrated a relationship between Pb and Hcy 

at single time points.  In the Baltimore Memory Study, blood Pb and plasma Hcy 

were significantly correlated with each other (Pearson’s unadjusted r=0.27) 

(Schafer et al. 2005).  Similarly, in Pakistan, a cross-sectional survey of persons 

aged 18-60 years, an increase of 1 μg/dL log blood Pb was associated with an 

increase of 0.09 μmol/L log Hcy after multivariable adjustment (Yakub and Iqbal 
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2010).  In a third cross-sectional study, this time in Vietnam and Singapore, an 

increase of 1μg/dl log blood lead was associated with an increase of 0.04μmol/l 

log Hcy among occupationally exposed 449 workers (mean age=39; mean blood 

Pb= 22.7 μg/dl) (Chia et al. 2007).   

One reason that lead exposure and elevated Hcy are associated with 

many of the same negative health outcomes is that lead exposure elevates Hcy.  

For example, in the 1999-2002 National Health and Nutrition Examination Survey 

(NHANES), Hcy was associated with peripheral arterial disease (PAD) (OR of 

PAD in the highest quintile of Hcy relative to the lowest was 1.92, p-trend=0.004), 

however the association disappeared following adjustment for blood lead and 

calcium levels as well as kidney function (OR=0.89, p-trend=0.87) (Guallar et al. 

2006).  This research suggests the Hcy may be a marker of exposure to other 

toxicants, rather than the toxic agent itself. 

 Pb and Hcy levels may be mechanistically linked.  Several proteins in the 

homocysteine processing one-carbon metabolism cycle (FIGURE 2.1) contain 

sulfhydryl groups that may be potential reaction sites for lead (Schafer et al. 

2005).  Cystathionine β-synthase (CBS) catalyzes the breakdown of Hcy into 

cysteine.  CBS has two sulfhydryl groups that may be subject to reaction with 

lead, potentially interfering with the enzyme’s ability to transsulfurate Hcy into 

cysteine (Schafer et al. 2005).  In addition, Hcy contains a sulfhydrl group and 

lead may directly inhibit its metabolism.  There is also evidence for the protective 

effect of methionine on lead toxicity (Chen et al. 2011).  It is hypothesized that Pb 

could directly influence the levels of Hcy in the body. 

The association reported between lead and Hcy is plausible and 

supported by compelling data, but it requires further epidemiologic investigation 

in an additional population.  Thus far, only one study has tested the Pb-Hcy 

relationship in a community-exposed population of older adults.  There are 

currently no studies evaluating the relevant window of Pb exposure’s effect on 

Hcy.  Studies of cumulative Pb exposure and Hcy are needed to fill this gap.  In 
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addition, there are no data indicating whether the association of Pb exposure 

with Hcy can be mitigated (or worsened) with intake of B vitamins.   

Objectives 

 The goal of this study was to evaluate the relationship of lead exposure to 

plasma Hcy in a population of community-exposed older men.  We tested the 

hypothesis that recent exposure to Pb (meausured by blood Pb) is associated 

with concurrent Hcy levels.  Next, we evaluated whether people who have 

changes in their blood Pb over time also have corresponding changes in their 

Hcy levels.  We also tested whether those with a diet low in methyl donors 

(folate, vitamin B6, and vitamin B12) are more susceptible to the effects of Pb 

exposure on Hcy.  Finally we evaluated the relationship of cumulative Pb dose 

(tibia and patella bone Pb) and Hcy in comparison to acute/recent Pb exposure. 

METHODS 

Study Population 

In 1963, 2,280 men in the greater Boston area between the ages of 21 

and 80, and representing a range of educational and occupational backgrounds, 

were enrolled in the Veteran’s Affairs Normative Aging Study (NAS) (Bell et al. 

1972).  All participants were free of disease at the onset of the study and 

participated in health assessments every three to five years that expanded in 

scope over time.  Blood lead measurements began in 1977 and bone lead 

measurements began in 1991.  Homocysteine was first measured in 1993.  At 

each study visit, age, smoking status, medication use, physical activity, and 

dietary intake were assessed.    

In the study of Hcy, up to six repeated measures of Hcy from 1,080 men 

for a total of 2,941 observations were available.  Bone lead data was missing for 

301 individuals and there were a total of 779 subjects across 2,252 observations 

that had bone lead data and Hcy measures. Approximately three years after the 

bone lead assessment, the first Hcy was measured. Concurrent blood lead data 
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was missing from 23 participants and there were 1,056 individuals with 2,301 

observations of Hcy and blood Pb.   In an additional analysis of the changes in 

blood Pb and Hcy, a subset of the main dataset was used.  At least two repeated 

measures of blood lead and concurrent Hcy were available from 747 men for a 

total of 1,830 repeated observations. The majority of blood lead measurements 

(>99%) were made within 30 days of Hcy measurements. The Human Subjects 

Institutional Review Boards at the Harvard School of Public Health, the 

Department of Veterans Affairs Outpatient Clinic in Boston, the Brigham and 

Women’s Hospital, and the University of Michigan Medical School approved this 

study. 

Plasma Homocysteine Measures  

 Fasting blood plasma was collected during each clinic visit and frozen at 

negative 80ºC.  Samples were analyzed at the Jean Mayer US Department of 

Agriculture Human Nutrition Research Center on Aging.  Total Hcy was 

measured via fluorescence detection with high-performance liquid 

chromatography (HPLC) (Araki and Sako 1987).  Hcy detection methods have 

been previously described in detail (Tucker et al. 2005).  Plasma folate levels 

below 3 ng/mL were considered low (LSRO 1984). Plasma B6 levels at 30nmol/L 

were considered adequate (US RDA, NIH Office of Dietary Supplements).  

Plasma B12 below 250 pg/mL was considered low (US RDA, NIH Office of 

Dietary Supplements).  Participants with low nutrient status were included in the 

analysis. 

Lead Exposure Measures 

 Lead levels can be measured in various tissue types across the body to 

reflect different exposure times.  Blood lead levels indicate recent exposure (with 

a half-life of approximately 30 days) (Hu et al. 1998).  Blood lead levels included 

in this analysis were measured up to six times between 1993 and 2011 via 

graphite furnace atomic absorption with Zeeman background correction. 
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 Bone lead was measured in two bone types (tibia and patella) through 

Cd109 K-shell x-ray fluorescent (KXRF) spectroscopy using methods previously 

described (Hu et al. 1996). The half-life for lead in cortical tibia bone is estimated 

at 48.6 years in the NAS (Wilker et al. 2011).  The trabecular patella bone has a 

shorter half-life for lead (between 10-15 years) (Hu et al. 1998).  The primary 

statistical analyses were performed using tibia Pb, while patella Pb was used as 

a secondary sensitivity analysis.   

Dietary Measures 

 Annual average diet was assessed with the semi-quantitative Willett Food 

Frequency Questionnaire using methods described previously (van de Rest et al. 

2009).  Before each study visit, participants were mailed the questionnaire.  Their 

responses were checked for completeness at the study visit.  The questionnaire 

assesses frequency of consumption of 126 items on a scale ranging from never 

to ≥2 times per day. Three one-carbon metabolism dietary factors were 

measured without supplements and were used in the current study (folate, 

vitamin B6, and vitamin B12).  Nutrient quantification based on FFQs 

administered after August, 1997 were adjusted to consider folate fortification in 

the US.  Total calorie intake-adjusted nutrient residuals (Willett et al. 1997) 

(Willett et al. 1997) were calculated for each individual and included in the 

models. 

Statistical Analysis  

 All analyses were performed in R Statistical Software (version R 2.15.0).  

Univariate descriptive statistics were calculated for each variable.  We also 

estimated bivariate associations between Hcy, and the three lead exposure 

measures and additional covariates were also calculated.   

We assessed the associations between blood Pb and concurrent Hcy 

using multivariable-adjusted linear models.  Because the distribution of Hcy 

levels is skewed, we natural log-transformed the variable Hcy. Thus, the 

exponentiated parameter estimates from these models are directly interpreted as 
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the percentage difference in Hcy per unit increment in predictor.  We adjusted 

these analyses for several sets of covariates.  All analyses were adjusted for the 

following “core covariates”: age, education, smoking status, alcohol consumption, 

and body mass index (BMI) (Schafer et al. 2005).  The following plasma levels of 

one-carbon metabolism related compounds were considered the “plasma 

sensitivity covariates”: plasma PLP (a measure of vitamin B6), vitamin B12, and 

folate.  Finally, dietary measures were categorized as the “dietary sensitivity 

covariates”: intakes of total energy and calorie adjusted residuals for vitamin B6, 

vitamin B12, and folate.  We tested for non-linear trends using generalized 

additive models with penalized splines in the mgcv R package.   

Using the repeated measures of Hcy and linear mixed effects models with 

random intercepts, we compared rates of change in Hcy (as percentage change 

from baseline Hcy) by level of lead biomarker.  We modeled interaction terms 

between time and baseline age to capture the trajectories of Hcy over the follow-

up period.  Several error covariance matrices were considered, but they did not 

improve model fit, so no within-subject correlation was used. All models were 

adjusted for Core Covariates, Plasma Sensitivity Covariates, and Dietary 

Sensitivity Covariates, similar to the concurrent exposure models.  In addition, all 

models included a cross-product term between time and baseline age.  The 

inclusion of other time-covariate cross-products did not change the results. 

We used “change-change” models to assess whether change in Pb level 

over time was associated with concomitant changes in Hcy.  In these models, we 

restricted the analyses to individuals with at least two measures of Pb and Hcy 

(747 individuals, 1,830 observations).  We regressed change in blood Pb on 

change in Hcy, adjusting for the core covariates.   

To assess the potential modification of the association between Pb and 

Hcy by key nutrients, we fit models stratified by median plasma or dietary levels 

of folate and vitamins B6 and B12.  We used methods by Payton et al. (Payton et 

al. 2003) to test for differences in the effect of lead on Hcy between the high and 

low nutrient strata.  This permits other covariate-Hcy associations to vary across 
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the strata, associations that may influence the stratum-specific Pb association.  

In addition, however, we fit models, incorporating all observations that included a 

cross-product term between each Pb marker measure and nutrient measure.   

Additional analyses were performed to determine whether the effects of 

cumulative lead dose were mediated through current blood lead levels.  Our 

secondary aim was to determine whether lead-associated changes in Hcy were 

associated with recent exposure measured by blood lead or cumulative dose 

measured by tibia lead.  We used mixed effects core covariate models containing 

tibia Pb, both tibia Pb and blood Pb, and blood Pb alone as a basic mediation 

analysis.    

RESULTS 

 The univariate descriptive statistics for subjects with blood Pb levels are 

presented in Table 1.  These values are similar to those for the population with 

tibia bone lead measures.  The geometric mean Hcy level in this population was 

10.2 nmol/ml (GSD= 1.3) (TABLE 2.1).  Mean (SD) blood, tibia bone, and patella 

bone lead levels were 4.4(2.5) µg/dl, 21(13) µg/g, and 29.9(19.5) µg/g, 

respectively.  Similar to the general US population at this time, blood lead levels 

decreased across study visits.  In general, this population was elderly (age 70.9 

(7.3)), overweight (BMI 28(4)), educated (64.2% with some post-high school 

education), moderate-heavy drinkers (20.6% with more than 2 drinks per day), 

and former smokers (66.2%).   

At visit one, log(Hcy) was positively correlated with blood Pb, tibia bone 

Pb, and patella bone Pb (respectively Pearson’s r=0.28 p=2x10-16; r=0.15 

p=2x10-5; r=0.16, p=3x10-5) (Supplemental Figure 2.1).   The bivariate 

associations between Hcy and other covariates before and after age-adjustment 

at study visit 1 are listed in Table 2.2.  Hcy was positively associated with 

increasing linear trend in categories of blood Pb, tibia bone Pb, patella Pb, age, 

alcohol consumption, and smoking status.  Hcy was inversely associated with 

plasma PLP (B6), B12, folate and dietary B6 levels.  Similar associations were 
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observed at the other study visits (data not shown).  A notable exception is that 

smoking was only associated with Hcy at study visit one.   Similar results are also 

observed in the population with tibia bone Pb levels (n=774) (data not shown).  

The bivariate associations between covariates and blood Pb as well as tibia bone 

Pb are also presented in Table 2.2.  Blood Pb was positively associated with age 

and alcohol intake.  Blood Pb was negatively associated with increased 

education, plasma B6, plasma B12, plasma folate, dietary B6, and dietary B12.  

Tibia bone Pb was positively associated with smoking status (current smokers 

with higher exposure) and tibia bone Pb was negatively associated with 

increased education, plasma B6, plasma folate, and dietary B6.   

 After adjustment for age, education, alcohol, smoking, and BMI (Core 

Covariates) an IQR increment in blood Pb (3 ug/dl) at visit 1 was associated with 

an 8.0 percent increase in Hcy (95% CI: 6.0-10.0).  By comparison, a 5-year 

increment in age was associated with a 3.2 percent increase in Hcy (95% CI=2.0-

4.4) (FIGURE 2.2A).  The percent difference in Hcy at visit 1 between never 

smokers and current smokers was 14.0 (95% CI: 5.6-23.1).  The difference in 

Hcy between never smokers and former smokers was not statistically significant.    

Next we added to the model plasma factors that influence Hcy metabolism.  After 

further adjustment for the plasma sensitivity covariates (plasma PLP, B12 and 

folate), an IQR increment in blood Pb was associated with 6.4% increase in Hcy 

(95% CI: 4.5-8.3), while after further adjustment for the dietary sensitivity 

covariates (core covariates plus total energy consumption, dietary B6, B12, and 

folate), an IQR increment in blood Pb was associated with 5.6 in Hcy (95% CI: 

1.4-9.9).  These results were consistent across the 4 study visits (FIGURE 2.2A).   

Results from the mixed effects models of the repeated blood Pb and Hcy 

measures were consistent with those from the models based on single visits 

(TABLE 2.3).    Plasma B6, plasma B12, plasma folate, and dietary B6 were 

significant negative predictors of log(Hcy).  In the core model, a 3 ug/dl (IQR) 

increase in blood Pb is associated with 6.0% increase in Hcy (95% CI: 4.6-7.5).   
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The adverse association between blood Pb and Hcy was stronger among 

men whose dietary intake of vitamin plasma B6, B12, or folate fell below the 

median B6: 2.24 mg/day, B12: 6.185 mcg/day, folate: 343 mcg/day) (FIGURE 

2.4).  Results were similar albeit weaker for the plasma vitamin measures.  None 

of the blood lead estimates for men with the higher vitamin levels was 

significantly different from the corresponding estimates for men with the lower 

vitamin levels.  Data was stratified by median plasma level (B6: 64.1 nmol/L, 

B12: 447.5 pg/mL, folate: 11.4 ng/mL) or median dietary levels (B6: 2.24 mg, 

B12: 6.185 mcg, folate: 343 mcg).   However, when we modeled the interaction 

between blood Pb and the nutrients using cross-product terms, the interactions 

corresponding to dietary B6, dietary folate, and plasma folate were statistically 

significant (p-values for interaction: 9.6x10-5, 0.0016, and 0.024 respectively), 

and the interaction corresponding to dietary B12 was borderline significant (p-

value for interaction: 0.051).  

Among the 747 men with two or more measures of blood Pb and Hcy, 

blood Pb levels generally declined over time (mean) but this decline was variable 

(SD or range).  Changes in Hcy generally “tracked” changes in blood Pb, with a 

1-μg/dL drop in blood Pb corresponding to a 5% drop in Hcy, but this association 

was not statistically significant (Supplemental Tables 2.1 and 2.2).   

Higher cumulative exposure to Pb, as measured by tibia bone lead 

concentration, was also significantly associated with increased plasma Hcy.  

Using all four study visits, tibia bone Pb was a significant predictor of log(Hcy) (p-

value =0.0012) (TABLE 2.4).  Similarly, at visit 1 alone, tibia Pb predicted 

log(Hcy) (p-value=0.016).  Next we looked at each visit individually using linear 

regression with three sets of covariates.  Similar to the blood lead analysis, after 

adjusting for the Core Covariates (age, education, alcohol, smoking, and BMI) an 

IQR change in tibia bone Pb (14 ug/g) at visit 1 was associated with a 3.6 

percent increase in Hcy (95% CI: 1.4-6.0) (FIGURE 2.2B).  After further 

adjustment for plasma PLP, B12 and folate, an IQR change in tibia Pb was 

associated with 2.4 percent increase in Hcy (95% CI: 0.2-4.6).  Finally in the 
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dietary sensitivity model, an IQR change in tibia Pb was associated with 2.5% 

increase in Hcy (95% CI: -0.3-5.4).  Similar results were observed across the four 

study visits. 

While cumulative exposure to lead was associated with consistently higher 

plasma Hcy over the course of follow-up, it was not associated with the degree to 

which plasma Hcy changed over time (TABLE 2.5).  On average, Hcy levels 

increased by about 1.2% per year of follow-up.  An IQR increment in tibia Pb (14 

µg/g) corresponded to a negligible 0.02% slower percentage change in Hcy over 

time (95% CI: XX). 

There were no significant differences in the concurrent effect of bone Pb 

on Hcy between persons with low and high plasma or dietary B vitamins or folate.  

In a subset of individuals (n=221) with at least three repeated visits with dietary 

information (n=691 observations), we tested for a long term dietary influence on 

Hcy.  We averaged dietary intake of folate and vitamins B6 and B12 over three-

four visits and used mixed effects models to test for dietary associations with 

Hcy.  In this smaller set of individuals, tibia Pb was no longer a significant 

predictor of Hcy and we did not observe a long term dietary trend (Supplemental 

Table 2.3). 

To determine whether the association between cumulative exposure to Pb 

and Hcy was mediated by current exposure to Pb, we further adjusted the 

analyses of tibia Pb for blood Pb as a predictor (TABLE 2.6). Adding blood Pb to 

the model removed the association between tibia Pb and Hcy.  We see similar 

results when we restrict the dataset to just visit one and compare the linear 

multivariate models containing (1) core covariates and tibia Pb, (2) core 

covariates, tibia and blood Pb, and (3) core covariates and blood Pb 

(Supplemental Table 2.4).  Tibia Pb is an significant predictor of Hcy at visit 

one, but it drops out of the model with the addition of blood Pb.  This suggests 

that the association between tibia Pb and Hcy may be mediated by blood Pb.     

DISCUSSION 
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 This cohort study examined the association between Pb exposure and 

circulating Hcy levels in a population of elderly community-dwelling men in the 

greater Boston area.  Increased current blood Pb exposure was associated with 

greater Hcy levels.  These effects were stronger in individuals with low dietary 

vitamins B6, B12, and folate as well as plasma folate.  Greater cumulative 

exposure to Pb, measured in the tibia and patella bones, was associated with 

higher levels of Hcy.  Further analyses revealed that these results may be 

mediated through current blood Pb and that Hcy responds to acute Pb dose. 

The present finding that Pb exposure is associated with Hcy levels is 

consistent with prior epidemiological studies.  The Baltimore Memory Study 

examined the cross-sectional association between Pb and Hcy in a population of 

1,037 adults (mean age= 59) with similar blood Pb and Hcy to our study.  The 

analysis observed a 1.0 ug/dL increase in blood lead was associated with a 0.43 

μmol/L increase in Hcy in males, but no association was observed with tibia Pb 

(Schafer et al. 2005).  Among 872 adults in Pakistan age 18-60, with mean blood 

Pb 11.65± 5.5 μg/dl, an increase of 1 μg/dl log blood Pb was cross-sectionally 

associated with an increase of 0.09 μmol/l log Hcy (Yakub and Iqbal 2010).  In a 

group of 276 workers occupationally exposed to Pb in Vietnam, blood lead and 

Hcy were associated (Pearson’s correlation=0.255, p<0.01) (Chia et al. 2007).  

Our research has confirmed the association between lead exposure and Hcy 

demonstrated in the above studies.  However, these studies did not examine 

longitudinal change in Hcy and they did not assess how the association might be 

influenced by intake of folate and B-vitamins. 

 The results of this study are plausible given that Pb and Hcy share toxic 

mechanisms.  Both form stable disulfide bonds with protein cysteine residues, 

potentially altering protein function.  In particular, albumin (the dominant protein 

in blood) Cys34 has a low pKa that readily reacts with metals and Hcy (Carter 

and Ho 1994). In addition, both are associated with inflammation (Hcy through 

NF-kB activation of IL-8 and MCP-1 (Perla-Kajan et al. 2007); and Pb through 

cytokine production (Heo et al. 1996)).  Given the independent cell culture and 
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animal model evidence on each toxicant (Pb and Hcy), our epidemiological 

observations on the associations between Pb and Hcy, with interactions with B-

vitamins, are plausible.  Studies are needed to examine the health effects of 

combined exposure to Pb and these vitamins, and the degree to which they are 

mediated by Hcy. 

 The current analyses are influenced by a few limitations of the data. First, 

there may be error in the measurement of Hcy.  The time of day of blood draw for 

Hcy measures was not standardized.  In healthy individuals over a 24-hour 

period, Hcy levels showed a daily rhythm characterized by an evening peak and 

nighttime low (Bonsch et al. 2007).  Whole blood genomic DNA methylation 

varies throughout the day and is inversely correlated with Hcy levels (Bonsch et 

al. 2007).  Unstandardized Hcy collection times in our study would have biased 

our results towards the null hypothesis of no association between Hcy and Pb.  In 

addition, plasma measures of Hcy assess the pool of Hcy released after 

reduction of all disulfide bonds in the sample.  Total Hcy does not include 

homocysteine thiolacetone (a product of misincorporation of Hcy into proteins 

and subsequent error-editing) or Hcy bound to protein by an amide bond (Perla-

Kajan et al. 2007).  These Hcy groups are potentially toxic and may not be 

correlated with plasma concentrations of Hcy (Perla-Kajan et al. 2007). 

Another potential weakness of this study is the limited power to detect 

interactions.  This problem is exacerbated in our study due to missing nutrient 

data and smaller sample sizes in dietary models.  The change-change analyses 

also have limited power as participants were lost to follow-up over time.   

Epidemiologic studies that identify mediators linking exposure and 

outcome strengthen the model’s biological plausibility and potential causal 

relationship (Hafeman 2011).  In this study, we measured blood Pb as a mediator 

of tibia Pb.  Our results are based on the assumption that there are no 

unmeasured confounders of the causal effect of the mediator (blood Pb) on the 

outcome (Hcy) (Cole and Hernan 2002). With these caveats in mind, our analysis 

incorporating blood Pb and tibia Pb suggest that the influence of Pb exposure on 
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Hcy is fairly immediate and thus that recent exposure to Pb (measured in blood) 

may be driving the association between Pb and Hcy.  Despite cumulative 

exposure, interventions that lower acute blood Pb levels may be an effective 

strategy to lower Hcy. 

The current study is strengthened by the use of repeated measures of Hcy 

and blood Pb as well as repeated measures in Hcy with baseline bone Pb.  This 

allows us to look at longitudinal changes in Hcy with Pb exposure, not simply 

cross-sectional associations.  This study is the first to examine the Pb-Hcy 

relationship while examining plausible dietary interactions, namely folate and 

vitamins B6 and B12. 

Since Pb exposure is related to elevated Hcy levels, toxicology studies are 

needed to determine the mechanism and potential reversibility of Pb and 

disturbed Hcy metabolism.  Based on the current study, dietary intervention with 

folate and vitamins B6 and B12 may be a potential option to remediate elevated 

Hcy high Pb exposed individuals.   

In the 1999-2002 US National Health and Nutritional Examination Study 

(NHANES), Hcy was cross-sectionally associated with peripheral arterial disease 

(PAD), but adjustment with blood Pb, Cd, smoking, and glomerular filtration rate 

removed the Hcy association (Guallar et al. 2006).  This suggests that Pb and 

Hcy levels are related and are associated with cardiovascular effects.  Future 

research may test this association and the association with cognitive decline in 

cohort studies.   

 In conclusion, we report a significant association between blood, patella, 

and tibia Pb levels with higher levels of plasma Hcy in a group of older men.  The 

association corresponding to blood Pb was strongest, suggesting that circulating 

lead may influence circulating Hcy through its metabolism, even at very low 

levels of exposure.  The effects of chronic lead exposure are also supported by 

these results.   
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 Diet may modify the association between blood Pb and Hcy.  The adverse 

effect of blood lead on Hcy may be worse in the presence of low folate, vitamin 

B6, and vitamin B12 intake (equivalently: the adverse effect of low folate intake 

on Hcy may be worse in the presence of lead, even for very modest levels of 

lead exposure).  Altered Hcy levels, such as those observed in the range here, 

may increase risk for cardiovascular and neurodegenerative disease and 

measures should be taken to reduce blood lead levels and improve dietary 

methyl donor diet status.  
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TABLES 

Table 2.1. Univariate Statistics: Characteristics of individuals with complete Hcy and blood Pb (2234 obs, 1048 
individuals).  Mean (S.D.), except where noted. 

 All Visits Visit 1 Visit 2 Visit 3 Visit 4 

N 
1056 individuals 

(2301 observations) 
1056 747 400 98 

Parameter Mean (SD) 
N Missing 

(%) 
Mean (SD) 

N 
Miss(%) 

Mean (SD) 
N 

Miss(%) 
Mean (SD) 

N 
Miss(%) 

Mean (SD) 
N 

Miss(%) 

Homocysteine (μmol/l)
* 

10.2(1.3) 0(0) 10.1(1.3) 0(0) 10.2(1.3) 0(0) 10.5(1.3) 0(0) 10.8(1.3) 0(0) 

Blood Pb (μg/dl) 4.4(2.5) 0(0) 4.9(2.7) 0(0) 4.2(2.3) 0(0) 3.6(2.2) 0(0) 3.4(2.2) 0(0) 

Age (years) 70.9(7.3) 0(0) 69(7.4) 0(0) 71.3(6.9) 0(0) 74(6.5) 0(0) 76.4(5.9) 0(0) 

Education 
< HS [n(%)] 
HS [n(%)] 
Some college [n(%)] 
College [n(%)] 
> College [n(%)] 

 
157(6.8) 
668(29) 

630(27.4) 
449(19.5) 
397(17.3) 

0(0) 

 
80(7.6) 

303(28.7) 
288(27.3) 
202(19.1) 
183(17.3) 

0(0) 

 
48(6.4) 

219(29.3) 
204(27.3) 
151(20.2) 
125(16.9) 

0(0) 

 
24(6.0) 

118(29.5) 
107(26.8) 
79(19.8) 
72(18.0) 

0(0) 

 
5(5.1) 

28(28.6) 
31(31.6) 
17(17.3) 
17(17.3) 

0(0) 

Smoking Status 
Never [n(%)] 
Former [n(%)] 
Current [n(%)] 

 
663(28.8) 

1524(66.2) 
114(5) 

0(0) 

 
296(28.0) 
698(66.1) 

62(5.9) 

0(0) 

 
211(28.2) 
502(67.2) 

34(4.6) 

0(0) 

 
114(28.5) 
272(68.0) 

14(3.5) 

0(0) 

 
42(42.9) 
52(53.1) 

4(4.1) 

0(0) 

Alcohol Consumption 
≤ 2 drinks/day [n(%)] 
> 2 drinks/day [n(%)] 

 
1827(79.4) 
474(20.6) 

0(0) 
 

834(79.0) 
222(21.0) 

0(0) 
 

594(49.5) 
153(20.5) 

0(0) 
 

320(80.0) 
80(20.0) 

0(0) 
 

79(80.6) 
19(19.4) 

0(0) 

BMI 28(4) 0(0) 28(3.9) 0(0) 28.2(4) 0(0) 27.9(4.2) 0(0) 27.5(3.7) 0(0) 

Tibia Pb (μg/g)   21.4(13.5) 285(27)       

Patella Pb (μg/g)   30.6(20.1) 289(27.4)       

Plasma B6 (nmol/l) 93.8(92.5) 27(1.2) 87.5(87.2) 12(1.1) 97(93.7) 9(1.2) 99.2(93.5) 5(1.2) 114.9(125.5) 1(1) 

Plasma B12 (pg/ml) 490(235.8) 26(1.1) 466.4(222) 21(2) 493.4(244.1) 2(0.3) 519.9(230.5) 3(0.8) 593.4(289.4) 0(0) 

Plasma Folate (ng/ml) 14.2(11.7) 35(1.5) 11(7) 30(2.8) 14.8(12.9) 2(0.3) 19.4(15.2) 3(0.8) 22.2(14.7) 0(0) 

Total Energy Consumption 
(kcal) 

1978.3(643.
1) 

150(6.5) 
1967.4(618.

4) 
70(6.6) 

1985.3(629.
6) 

43(5.8) 
2012.7(730.

8) 
28(7) 

1898.9(626.
3) 

9(9.2) 

Dietary B6 (w/o supp) (mg) 2.4(1) 104(4.5) 2.3(0.9) 49(4.6) 2.4(0.9) 25(3.3) 2.4(1.1) 22(5.5) 2.4(1.1) 8(8.2) 

Dietary B12 (w/o supp) (mcg) 7.5(4.8) 104(4.5) 7.9(5.5) 49(4.6) 6.9(3.8) 25(3.3) 7.4(4.4) 22(5.5) 8.1(5) 8(8.2) 

Dietary Folate (w/o supp) 
(mcg) 

379.1(179) 1034(44.9) 344(150.5) 794(75.2) 356.5(164) 210(28.1) 418.5(195) 22(5.5) 451.2(218.4) 8(8.2) 

* 
Geometric Mean and Geometric Standard Deviation are reported. 
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Table 2.2. Bivariate statistics based on visit 1. Characteristics of individuals with complete Hcy and blood Pb (1056 

individuals).  

Variable Category N (%) 
Geometric 
Mean Hcy 

(GSD) 
P-trend 

Age-Adjusted 
Least Squares 

Mean Hcy 

Age-
Adjusted 
P-trend 

Mean Blood 
Pb (SD) 

P-trend 
Mean Tibia 

Pb (SD) 
P-trend 

Blood Pb (ug/dl) 

≤ 3 367(34.8) 9.3(1.3) 

7E-16 

 9.7 

5E-15 

2.4(0.8) 

4E-270 

16(8.5) 

6E-23 3<x≤5 347(32.9) 10.1(1.3)  10.4 4.4(0.5) 21.1(12.3) 

> 5 342(32.4) 11.1(1.4)  11.6 8(2.4) 27.4(16.4) 

Tibia Pb (ug/g) 

≤ 15 267(25.3) 9.5(1.3) 

3E-06 

10.0  

2E-04 

3.7(2.1) 

4E-26 

9.8(4.1) 

4E-150 
15<x≤23 248(23.5) 10.1(1.3)  10.5 4.6(2.3) 19.2(2.3) 

> 23 256(24.2) 10.7(1.3)  11.1 6.2(3.2) 35.7(13.3) 

Missing 285(27) 10.2(1.3)  10.6 4.8(2.6) NaN(NA) 

Patella Pb 
(ug/g) 

≤ 20 255(24.1) 9.7(1.3) 

6E-07 

 10.1 

4E-05 

3.8(2.1) 

4E-24 

13.4(7.1) 

9E-58 
20<x≤34 258(24.4) 9.8(1.3)  10.2 4.5(2.4) 18.6(8) 

>34 253(24) 11(1.3)  11.3 6.3(3.2) 32.5(15.6) 

Missing 290(27.5) 10.1(1.3)  10.6 4.8(2.6) 13.6(12.5) 

Age Tertile 

50-65 355(33.6) 9.8(1.4) 

2E-05 

10.6  

0.8 

4.6(2.6) 

0.03 

16.5(9.3) 

0.4 66-71 327(31) 9.9(1.3)  10.3 4.9(2.8) 21.8(12.3) 

72-97 374(35.4) 10.7(1.3)  10.8 5(2.8) 26(16.3) 

Education 

< HS 80(7.6) 9.8(1.3) 

0.9 

10.1  

0.8 

5.8(3) 

8E-06 

30.2(18.6) 

3E-15 

HS 303(28.7) 10.2(1.4)  10.7 5.2(2.9) 24.7(15.9) 

Some College 288(27.3) 10.1(1.3)  10.6 4.8(2.7) 20.3(11) 

College 202(19.1) 9.9(1.3) 10.3  4.5(2.3) 18.9(11.3) 

> College 183(17.3) 10.2(1.3)  10.7 4.4(2.8) 17(9.4) 

Smoking Status 

Never 296(28) 9.8(1.3) 

0.005 

 10.2 

0.0002 

4.8(3) 

0.1 

20(13.7) 

0.002 Former 698(66.1) 10.1(1.3)  10.6 4.8(2.6) 22(13.6) 

Current 62(5.9) 11.2(1.3)  12.0 5.8(3.2) 22.1(11.5) 

Two Drinks/Day 
No 834(79) 9.9(1.3) 

0.00007 
 10.3 

0.000006 
4.6(2.7) 

2E-07 
21.4(13.9) 

0.5 
Yes 222(21) 10.8(1.4)  11.5 5.7(2.9) 21.2(12.1) 

BMI 

< 25 216(20.5) 10.1(1.3) 

0.9 

10.4  

0.5 

4.9(2.8) 

0.5 

21.4(11.5) 

0.3 25≤x<30 574(54.4) 10.1(1.3)  10.6 4.8(2.7) 21.8(14.3) 

≥30 266(25.2) 10.1(1.3)  10.6 4.8(2.8) 20.4(13.3) 

Plasma B6 
(nmol/L) 

<30 108(10.2) 11.3(1.4) 

1E-05 

12.0  

7E-06 

5.7(3.4) 

5E-04 

27.2(14.6) 

2E-05 ≥30 936(88.6) 10(1.3)  10.4 4.7(2.6) 20.6(13.2) 

Missing 12(1.1) 9.5(1.2)  9.7 5.3(2.8) 30.7(12.4) 

Plasma B12 
(pg/mL) 

<250 82(7.8) 12.3(1.4) 

1E-10 

 13.0 

2E-11 

5.8(3.2) 

6E-04 

22.6(12.6) 

2E-01 ≥ 250 953(90.2) 9.9(1.3) 10.3  4.8(2.7) 21.2(13.5) 

Missing 21(2) 10.5(1.4)  11.2 4.9(2.4) 28.2(24.1) 
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Plasma Folate 
(ng/mL) 

< 3 24(2.3) 13.7(1.5) 

9E-08 

15.0  

1E-08 

7.2(4.2) 

3E-05 

29.1(15.2) 

4E-03 ≥ 3 1002(94.9) 10(1.3)  10.4 4.8(2.7) 21.1(13.2) 

Missing 30(2.8) 10.3(1.4)  10.8 4.7(2.2) 28.6(21.5) 

Total Energy 
Consumption 

<2300 739(70) 10.1(1.3) 

0.8 

 10.5 

0.7 

4.9(2.8) 

0.5 

21.6(13.7) 

0.6 ≥2300 247(23.4) 10.2(1.3)  10.7 4.7(2.8) 20.8(13.6) 

Missing 70(6.6) 10.1(1.3) 10.4  4.8(2.4) 21.4(10.5) 

Dietary B6 (mg) 

<1.7 774(73.3) 10(1.3) 

0.006 

10.4  

0.001 

4.7(2.7) 

0.007 

21.1(13.2) 

0.05 ≥1.7 233(22.1) 10.6(1.3)  11.2 5.3(2.8) 22.7(15) 

Missing 49(4.6) 10.1(1.4)  10.4 4.8(2.5) 20.2(10.9) 

Dietary B12 
(mcg) 

<2.4 960(90.9) 10.1(1.3) 

0.3 

 10.5 

0.2 

4.8(2.7) 

0.04 

21.3(13.6) 

0.06 ≥2.4 47(4.5) 10.6(1.4)  11.3 5.6(2.9) 25(14.7) 

Missing 49(4.6) 10.1(1.4)  10.4 4.8(2.5) 20.2(10.9) 

Dietary Folate 
(mcg) 

<400 73(6.9) 9.9(1.3) 

0.9 

10.1  

0.8 

4.1(2.2) 

0.1 

19.8(19.6) 

0.2 ≥400 189(17.9) 9.9(1.3)  10.2 4.6(2.5) 21.1(14.7) 

Missing 794(75.2) 10.2(1.3)  10.7 5(2.8) 21.6(12.5) 
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Table 2.3. Concurrent Pb exposure is associated with plasma homocysteine:  Mixed effects model, random intercept only.  

Equivalent to cross-sectional model taking into account correlated nature of observations from the same individual.  Linear 

mixed effects model of log(Hcy)t = b0 + b1[blood Pb]t + covariates.  Continuous variables have been centered so the 

intercept is interpretable. 

 
Core Model* Plasma Model** Diet Model*** 

 
2301 obs from 1056 indiv 

R2=0.10 
2240 obs from 1033 

 R2=0.16 
1241 obs from 779 indiv 

 R2=0.13 

 
Beta(SE) p-value Beta(SE) p-value Beta(SE) p-value 

(Intercept) 2.30(0.015) 0 2.30(0.014) 0 2.29(0.017) 0 

Blood Pb (per µg/dl) 0.0195(0.0023) 4E-17 0.0159(0.0023) 6E-12 0.0197(0.0035) 2E-08 

Age 0.0091(0.00084) 2E-26 0.0105(0.00085) 2E-33 0.0118(0.0012) 3E-22 

Education 
(reference>hs) 

-0.0127(0.013) 0.3 -0.0157(0.013) 0.2 0.00255(0.017) 0.9 

Alcohol 
Consumption 

0.0576(0.015) 2E-04 0.0572(0.015) 0.0002 0.0713(0.02) 0.0005 

Former Smoker 0.0176(0.017) 0.3 0.0148(0.016) 0.4 0.0123(0.019) 0.5 

Never Smoker 0.0690(0.032) 0.03 0.0646(0.031) 0.04 -0.0077(0.042) 0.9 

BMI 0.00191(0.0018) 0.3 0.00129(0.0017) 0.5 0.00326(0.0021) 0.1 

Plasma B6 
  

-0.000256(6e-05) 2E-05 
  

Plasma B12 
  

-0.000186(2.4e-05) 5E-15 
  

Plasma Folate 
  

-0.00115(0.00043) 0.008 
  

Dietary B6 Residual 
    

-0.0310(0.014) 0.03 

Dietary B12 Residual 
    

-0.00308(0.0021) 0.1 

Dietary Folate 
Residual     

3.03e-05(6.4e-05) 0.6 

Total Energy Intake 
    

-1.64e-05(1.1e-05) 0.1 

*Core model adjusts for blood Pb, age, bmi, education, smoking status, and alcohol consumption. 

**Plasma model adjusts for core model covariates and plasma B6 (PLP), B12, and folate. 

***Diet model adjusts for core model covariates and total energy adjusted dietary FFQ vitamin B6, vitamin B12, and folate.   
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Table 2.4. Cumulative exposure is associated with plasma homocysteine:  Mixed effects model, random intercept only.  

Equivalent to cross-sectional model taking into account correlated nature of observations from the same individual.  

 
Core Model 

 
Visits 1-4 Visit 1 

 
2158 observations from 777 individuals 

R2=0.6 
777 obs from 777 individuals 

R2=0.061 

 
β(SE) p-value β(SE) p-value 

(Intercept) 2.32(0.016) 0 2.29(0.02) 0 

Tibia Pb 0.00215(0.00066) 0.001 0.00256(0.00081) 0.002 

Age 0.00921(0.00094) 4E-22 0.00526(0.0015) 0.0007 

High School -0.0148(0.015) 0.3 -0.036(0.022) 0.09 

Two Drinks/Day 0.0675(0.017) 8 E-05 0.0817(0.025) 0.001 

Former Smoker 0.00934(0.019) 0.6 0.0291(0.022) 0.2 

Current Smoker 0.0422(0.035) 0.2 0.143(0.047) 0.002 

BMI 0.00113(0.002) 0.6 0.00278(0.0026) 0.3 
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Table 2.5. Longitudinal mixed effects models: Log(hcy) is outcome and tibia pb is main predictor.  Continuous covariates 

have been mean adjusted so that the intercept can be interpreted as the log(hcy) at the mean of those covariates and 

when dummy variables =0.  Four visits of tibia Pb and Hcy have been used.  Random intercept and slope. 

 Core Model* Plasma Sensitivity Model** Diet Sensitivity Model*** 

 n= 2158, R2=0.0811 n= 2106, R2=0.114 n= 1328, R2=0.098 

 β (SE) p-value β (SE) p-value β (SE) p-value 

Intercept 2.28(0.017) 0 2.25(0.019) 0 2.24(0.022) 0 

Tibia Pb 0.00255(0.00077) 0.0009 0.00254(0.00076) 0.0009 0.00214(0.001) 0.04 

Time Since Baseline 0.0123(0.0014) 2E-18 0.0149(0.0015) 1E-23 0.0178(0.0022) 6E-15 

Baseline Age 0.0049(0.0015) 0.0009 0.005(0.0014) 0.0006 0.00665(0.0021) 0.001 

Education -0.0186(0.014) 0.2 -0.0211(0.014) 0.1 -0.00374(0.018) 0.8 

Alcohol Consumption 0.0701(0.017) 4E-05 0.0684(0.017) 6E-05 0.0748(0.022) 0.0008 

Former Smoker 0.00509(0.019) 0.8 0.00736(0.018) 0.7 0.0034(0.021) 0.9 

Current Smoker 0.0301(0.036) 0.4 0.031(0.035) 0.4 -0.00147(0.045) 0.9 

BMI 0.00131(0.002) 0.5 0.000636(0.002) 0.8 0.00288(0.0024) 0.2 

Plasma B6   -0.000165(5.8e-05) 0.004   

Plasma B12   -6.4e-05(1.8e-05) 0.0005   

Plasma Folate   -0.00159(4e-04) 7E-05   

Dietary B6     -0.0284(0.014) 0.04 

Dietary B12     -0.000564(0.0018) 0.8 

Dietary Folate     7.84e-05(6.4e-05) 0.2 

Total Energy Intake     -3.03e-05(1.1e-05) 0.005 

Baseline Age * Time 0.000881(0.00022) 8E-05 0.000901(0.00022) 5E-05 0.000675(0.00031) 0.03 

Tibia Pb * Time -1.72e-05(0.00011) 0.9 -3.24e-05(0.00011) 0.8 3.77e-05(0.00015) 0.8 

*Core model adjusts for tibia Pb, baseline age, bmi, education, smoking status, alcohol consumption, time since baseline, 
baseline age*time since baseline, and tibia Pb*time since baseline. 

**Plasma model adjusts for core model covariates and plasma B6 (PLP), B12, and folate. 

***Diet model adjusts for core model covariates and total energy adjusted dietary FFQ vitamin B6, vitamin B12, and folate.   
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Table 2.6. Basic mediation analysis.  All visits main effect of tibia Pb with and without current blood Pb adjustment.  Note: 

Tibia Pb is no longer significant after adjusting for blood Pb.   Research Question:  Does cumulative exposure to Pb 

influence Hcy levels, independent of current exposure to Pb? 

 
Tibia Only Blood and Tibia Blood Only 

 
n=1766 obs, n=771 indiv n=1766 obs, n=771 indiv n=1766 obs, n=771 indiv 

 
R2=0.0711 R2=0.104 R2=0.104 

 
Beta(SE) p-value Beta(SE) p-value Beta(SE) p-value 

(Intercept) 2.3(0.017) 0 2.3(0.017) 0 2.3(0.016) 0 

Tibia Pb 0.0025(0.00069) 0.0003 0.000832(0.00072) 0.3 
  

Blood Pb 
  

0.0183(0.0028) 4E-11 0.0194(0.0026) 8E-14 

Age 0.00715(0.001) 2E-12 0.00886(0.001) 2E-17 0.00922(0.00098) 2E-20 

Education (>hs 
reference) 

-0.0148(0.015) 0.3 -0.0171(0.015) 0.3 -0.014(0.015) 0.4 

Alcohol Consumption 0.0794(0.018) 1E-05 0.0682(0.018) 0.0001 0.0676(0.018) 0.0001 

Former Smoker 0.00525(0.019) 0.8 0.0101(0.019) 0.6 0.0119(0.019) 0.5 

Current Smoker 0.0606(0.037) 0.1 0.0505(0.036) 0.2 0.0521(0.036) 0.2 

BMI 0.000694(0.0021) 0.7 0.00162(0.002) 0.4 0.00172(0.002) 0.4 
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FIGURES 

 

FIGURE 2.1. One-Carbon Metabolism Pathway.  Homocysteine can be elevated 

in conditions of low folate, low B6, or low B12. The sulfhydryl groups on several 

proteins, including Cystathionine β-synthase (CBS), in the one-carbon 

metabolism pathway are potential sites for lead’s interferences. Abbreviations 

Used: Adenosine (Ado), S-adenosylmethionine (SAM), S-adenosylhomocysteine 

(SAH), Glutathione (GSH), Glutamate (Glu), Glycine (Gly), Tetrahydrofolate 

(THF), Methionine Transferase (MT), Betaine-Homocysteine S-Methyltransferase 

(BHMT), Dimethylglycine (DMG), Methylenetetrahydrofolate Reductase (MTHFR)  
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A.

 

B. 

 

Figure 2.2. The adjusted cross-sectional association between Pb exposure and 
homocysteine.  Y-axis: With an IQR increase in Pb exposure (blood: 3 ug/dl; tibia 
Pb: 14 ug/g), corresponding percent increase in plasma Hcy.  X-axis: Visit 
number.  Results from cross-sectional multivariate linear regression models.  
Core covariates are age, blood Pb, education, smoking status, alcohol status, 
and BMI.  Plasma sensitivity covariates include the core model plus plasma PLP, 
B12, and folate.  Diet sensitivity model includes the core covariates and the total 
energy consumed and the dietary adjusted residuals for B6, B12, and folate.  (A) 
Blood Pb.  (B) Tibia Pb.    
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Figure 2.3. Longitudinal core model. Tibia Pb.  Data has been centered on the 

mean continuous variables so intercept can be interpretable. Tibia Pb exposure 

quartiles are defined at baseline: 
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Figure 2.4. Adjusted association between Pb and homocysteine stratified by 
nutrient status.  Y-axis: Percent change in Hcy with an IQR increase in Pb 
biomarker.  Analyses stratified by level of B6, B12 or folate measured in either 
plasma or dietary FFQ.  Longitudinal mixed effects regression of Pb exposure 
(either blood or tibia bone) on log(homocysteine). *High group is significantly 
different from low group (p for interaction <0.05). 
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SUPPLEMENTAL TABLES 

Supplemental Table 2.1. Visits 1-2 all samples, linear regression, split by change in blood Pb n=747 

 
No Change Blood Pb Increase in Blood Pb 

Decrease in Blood 
Pb 

All Observations 

 
n=171 n=177 n=399 n=747 

 
Beta(SE) 

p-
value 

Beta(SE) p-value Beta(SE) 
p-

value 
Beta(SE) 

p-
value 

(Intercept) -1.29(0.9) 0.15 -0.42(0.68) 0.83 0.449(0.55) 0.41 -0.0266(0.36) 0.94 

delta 
  

0.0578(0.15) 0.7 0.0995(0.11) 0.34 0.0401(0.053) 0.45 

bage.c 0.172(0.13) 0.18 0.0326(0.084) 0.7 0.0287(0.065) 0.66 0.0598(0.046) 0.2 

as.factor(hs)1 0.0937(0.45) 0.83 0.378(0.41) 0.34 -0.515(0.33) 0.12 -0.138 (0.22) 0.54 

as.factor(twodrink)1 -0.312(0.58) 0.59 0.762(0.5) 0.13 -0.147(0.38) 0.7 0.072(0.27) 0.79 

as.factor(smkcat)2 -0.628(0.49) 0.2 -0.294(0.47) 0.53 -0.285(0.36) 0.42 -0.341(0.24) 0.16 

as.factor(smkcat)3 -1.18(1.1) 0.27 -1.62(1) 0.11 -1.39(0.83) 0.095 -1.31(0.55) 0.017 

bmi.c -0.0405(0.047) 0.39 0.0123(0.053) 0.82 0.0385(0.042) 0.36 0.00542(0.027) 0.84 

timebase 0.0543(0.27) 0.047 0.0844(0.15) 0.56 0.135(0.12) 0.26 0.168(0.086) 0.051 

bage.c:timebase -0.025(0.037) 0.51 0.00439(0.023) 0.85 -0.0015(0.017) 0.93 -0.00505(0.013) 0.69 
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Supplemental Table 2.2: All visits, all samples, mixed effects.  n=747 with 1245 observations The average change in Hcy 

over the average time interval (3.9 years). 

 Delta Change from Baseline Model  Adjacent Change Model 

 N=747 indiv, n=1245 obs  N=747 indiv, n=1245 obs 

 R2=0.0482  R2=0.022 

 Beta(SE) p-value  Beta(SE) p-value 

(Intercept) 0.263(0.23) 0.26 (Intercept) 0.337(0.26) 0.2 

delta 0.133(0.042) 0.0015 d.adj.bpb 0.0475(0.045) 0.29 

bage.c 0.0125(0.023) 0.59 age.c 0.0469(0.013) 0.00043 

as.factor(hs)1 0.0286(0.19) 0.88 as.factor(hs)1 -0.0231(0.18) 0.9 

as.factor(twodrink)1 -0.163(0.24) 0.49 as.factor(twodrink)1 0.104(0.21) 0.63 

as.factor(smkcat)2 -0.557(0.23) 0.013 as.factor(smkcat)2 -0.435(0.19) 0.024 

as.factor(smkcat)3 -1.53(0.49) 0.0018 as.factor(smkcat)3 -1.35(0.45) 0.003 

bmi.c 0.00321(0.024) 0.89 bmi.c 0.0117(0.021) 0.59 

timebase.c 0.134(0.026) 1.9e-7 d.adj.time 0.0722(0.054) 0.18 

bage.c*timebase.c 0.00909(0.0036) 0.012    
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Supplemental Table 2.3: Secondary analysis, long-term dietary trend in tibia model 

 
Core Model: Just Individuals with At Lead 

3 Waves of Dietary Information 
Dietary Model on Invididuals With At Least 3 

Waves of Dietary Data 

 
n=691 obs, n=221 indiv 

R2=0.81 
n=691 obs, n=221 indiv 

R2=0.088 

Variable Beta(SE) p-value Beta(SE) p-value 

(Intercept) 2.31(0.032) 0 2.31(0.032) 0 

tib.c 0.00163(0.0012) 0.16 0.00167(0.0012) 0.15 

age.c 0.0131(0.0019) 4.4E-12 0.0135(0.0019) 1.6E-12 

as.factor(hs)1 -0.0302(0.028) 0.28 -0.0278(0.028) 0.32 

as.factor(twodrink)1 0.0364(0.033) 0.27 0.038(0.033) 0.25 

as.factor(smkcat)2 0.00264(0.035) 0.94 0.00674(0.036) 0.85 

as.factor(smkcat)3 0.0946(0.071) 0.18 0.0869(0.071) 0.22 

bmi.c 0.00527(0.0036) 0.14 0.0056(0.0037) 0.13 

b6res.lt 
  

0.0304(0.045) 0.5 

b12res.lt 
  

-0.00972(0.0067) 0.15 

folres.lt 
  

-
0.000158(0.00023) 

0.49 

calor.c 
  

-3.2e-05(1.9e-05) 0.092 

 

***note, when we subset only the people with 3 or 4 dietary measures (n=221 individuals across 691 observations), tibia lead is no longer a 

significant predictor of log(hcy).  None of the long term dietary measures are significant either. 
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Supplemental Table 2.4: Mediation analysis, visit 1. 

 
Tibia Only Blood and Tibia Blood Only 

 
n=771 n=771 n=771 

 
R2=0.066 R2=0.11 R2=0.11 

 
β(SE) 

p-
value 

β(SE) 
p-

value 
β(SE) p-value 

(Intercept) 2.27(0.02) 0 2.27(0.02) 0 2.26(0.019) 0 

Tibia Pb 0.00262(0.00081) 0.001 0.000655(0.00085) 0.4 
  

Blood Pb 
  

0.0241(0.0039) 1E-09 0.0252(0.0036) 9E-12 

Age 0.00551(0.0016) 0.0005 0.00587(0.0015) 0.0001 0.00625(0.0014) 2E-05 

Education (>hs 
reference) 

-0.0408(0.022) 0.06 -0.0495(0.021) 0.02 -0.0463(0.021) 0.03 

Alcohol 
Consumption 

0.0881(0.025) 0.0004 0.0598(0.025) 0.02 0.0588(0.025) 0.02 

Former Smoker 0.0326(0.023) 0.2 0.0403(0.022) 0.07 0.0419(0.022) 0.06 

Current Smoker 0.144(0.047) 0.002 0.134(0.046) 0.004 0.136(0.046) 0.003 

BMI 0.00282(0.0027) 0.3 0.00267(0.0026) 0.3 0.00276(0.0026) 0.3 
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SUPPLEMENTAL FIGURES 

   

Supplemental Figure 2.1. Bivariate scatterplots for the unadjusted associations 
between lead measurement and Hcy at visit 1.  Red line is the linear regression 
line of best fit and the blue lines are the 95% confidence intervals.  (A) Tibia lead 
(n=774). (B) Patella lead (n=774). (C) Blood lead (n=1048).  

 

Supplemental Figure 2.2. Blood Pb restricted plasma and diet. *Restrict 

analysis to only individuals with both plasma and dietary measures.  (Visit 1 

n=774, visit 2 n= 382, visit 3 n= 65, visit 4 n=0) 
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CHAPTER III 

Research Chapter 2 

Genome-wide DNA Methylation Differences Between Late-Onset 
Alzheimer’s Disease and Cognitively Normal Controls in the Human Frontal 

Cortex 

FROM: Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman 

AP, Albin RL, Hu H, Rozek LS. 2012. Genome-wide DNA methylation differences 

between late-onset Alzheimer’s disease and cognitively normal controls in the 

human frontal cortex. Journal of Alzheimer’s Disease. 29: 571-588, reprinted for 

educational purposes from IOS Press. 

ABSTRACT 

Evidence supports a role for epigenetic mechanisms in the pathogenesis 

of late-onset Alzheimer's disease (LOAD), but little has been done on a genome-

wide scale to identify potential sites involved in disease.  This study investigates 

human post-mortem frontal cortex genome-wide DNA methylation profiles 

between 12 LOAD and 12 cognitively normal age- and gender-matched subjects.  

Quantitative DNA methylation is determined at 27,578 CpG sites spanning 

14,475 genes via the Illumina Infinium HumanMethylation27 BeadArray.  Data 

are analyzed using parallel linear models adjusting for age and gender with 

empirical Bayes standard error methods.  Gene-specific technical and functional 

validation is performed on an additional 13 matched pair samples, encompassing 

a wider age range. Analysis reveals 948 CpG sites representing 918 unique 

genes as potentially associated with LOAD disease status pending confirmation 

in additional study populations.  Across these 948 sites the subtle mean 

methylation difference between cases and controls is 2.9%. The CpG site with a 

minimum false discovery rate located in the promoter of the gene 

Transmembrane Protein 59 (TMEM59) is 7.3% hypomethylated in cases.  
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Methylation at this site is functionally associated with tissue RNA and protein 

levels of the TMEM59 gene product. The TMEM59 gene identified from our 

discovery approach was recently implicated in Amyloid Precursor Protein post-

translational processing, supporting a role for epigenetic change in LOAD 

pathology.  This study demonstrates widespread, modest discordant DNA 

methylation in LOAD-diseased tissue independent from DNA methylation 

changes with age.  Identification of epigenetic biomarkers of LOAD risk may 

allow for the development of novel diagnostic and therapeutic targets.   

Keywords: DNA methylation, Late Onset Alzheimer’s disease, epigenetics, 

prefrontal cortex 
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INTRODUCTION 

Dementia and Alzheimer’s Disease  

  Worldwide changes in demography are leading to a rapid increase in the 

numbers of older adults at risk for dementia. Accordingly, the global prevalence 

of dementia is expected to quadruple from an estimated 35.6 million cases in 

2010 to 115.4 million cases in 2050 (International 2010).  The global financial 

burden of dementia in 2010 was $604 billion (US dollars) including direct medical 

bills, formal social care, and informal care provided by unpaid caregivers 

(International 2010).   

Alzheimer’s disease (AD), a progressive, fatal neurodegenerative disease, 

is the most prevalent form of dementia.  Less than two percent of AD cases 

represent early-onset AD (EOAD) (Bird 2005) defined by disease onset prior to 

age 60 and genetic mutations in amyloid-β precursor protein (AβPP), presenilin-1 

(PSEN-1), or presenilin-2 (PSEN-2) genes (Bertram 2009; Hardy 1997).  

Mutations in these genes dysregulate the AβPP pathway and directly lead to 

amyloid-β (Aβ) plaque accumulation, a major pathological hallmark of AD.   

The remaining vast majority of cases are sporadic, termed Late-Onset 

Alzheimer’s Disease (LOAD) because they manifest symptoms after age 60.  

Approximately 60% of LOAD cases carry at least one apolipoprotein ε4 allele 

(APOE-ε4), while the global population prevalence of the allele is only 

approximately 22% (Ashford 2004; Kim et al. 2009).  Pooled data on LOAD from 

recent, collaborative, large genome-wide association studies (GWAS) reported 

the population attributable risk for APOE variants was between 19% and 35% 

(Ertekin-Taner 2010).   GWAS also identified additional LOAD risk alleles (CLU, 

PICALM, BIN1, CR1, ABCA7, MS4A, EPHA1, CD33, CD2AP) that contribute 

added risk in population subsets (Harold et al. 2009; Hollingworth et al. 2011; 

Lambert et al. 2009; Naj et al. 2011).  These risk factor genotypes are neither 

necessary nor sufficient for LOAD development.  Twin studies revealed 

incomplete concordance (Gatz et al. 1997; Nee and Lippa 1999) and variable 
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age on onset (Li et al. 2002) even among monozygotic pairs, highlighting the 

complex etiology of LOAD.  These observations underscore the likely importance 

of non-genetic factors in LOAD etiology and spurred recent investigations of the 

epigenetics of AD.  

Epigenetics and Alzheimer’s Disease 

Epigenetics is the study of heritable changes in gene expression that 

occur without changes to the underlying DNA sequence.  Methylation (Maunakea 

et al. 2010) and hydroxymethylation (Jin et al. 2011) at the 5’ site on cytosines in 

cytosine-guanine (CpG) dinucleotides are important epigenetic modifications 

associated with gene expression in the human brain.  Specific marks distinguish 

brain regions (Hernandez et al. 2011; Ladd-Acosta et al. 2007) and epigenetic 

differences in human brain tissues have been associated with such neurological 

diseases as schizophrenia and bipolar disorder (Mill et al. 2008).  Epigenetics is 

also a mechanism by which environmental exposures can translate to human 

disease (Dolinoy and Jirtle 2008; Suter and Aagaard-Tillery 2009).  

In AD cases lacking highly penetrant genetic susceptibility, the etiology of 

amyloid dysregulation is not well understood.  Altered epigenetic regulation of tau 

and amyloid processing genes has been observed across multiple brain regions 

and is a potential mechanism for disease (Barrachina and Ferrer 2009; Tohgi et 

al. 1999a; Tohgi et al. 1999b).  Human post-mortem case-control studies 

observed global hypomethylation in the entorhinal cortex of AD subjects 

(Mastroeni et al. 2008) and in the temporal neocortex neuronal nuclei of an AD 

monozygotic twin relative to their cognitively normal twin (Mastroeni et al. 2009).  

Evidence for epigenetic involvement in AD pathogenesis spans human studies in 

various tissues, animal models, and cell culture, and was recently reviewed 

(2010; Mastroeni et al. 2011; Mill 2011).   

 Significant transcriptome-wide gene expression differences have been 

observed between brain tissues of LOAD cases and controls (Loring et al. 2001; 

Miller et al. 2008).  However, previous AD research on DNA methylation as a 
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regulator of gene expression evaluated DNA methylation at 5’ promoter regions 

of a few candidate genes selected based on a priori hypotheses about AD 

molecular mechanisms. The current research provides a semi-unbiased, 

quantitative, genome-wide discovery of locations of DNA epigenetic differences 

in human frontal cortex brain tissue between LOAD cases and controls, which 

allows for identification of novel disease-associated genes.  The gene identified 

in this study that best distinguished cases and controls was technically validated 

using an additional sensitive and quantitative method of DNA detection.  This 

mark was also validated using a second population of samples.  The functional 

significance of this DNA methylation mark was further confirmed by gene 

expression and protein quantification assays.   

MATERIALS AND METHODS 

Sample Acquisition 

 The NIA funded Michigan Alzheimer’s Disease Center (MADC) 

(P50AG008671; PI: Sid Gilman) maintains a well-clinically characterized cohort 

of Alzheimer’s disease and cognitively normal control subjects, many of which 

agreed to participate in autopsy and donated to the MADC Brain Bank. Upon 

autopsy, each left hemisphere was fixed in 10% neutral formalin for 

neuropathological diagnosis.  The right hemisphere was sectioned coronally, 

flash frozen, and archived in MADC freezers at -80ºC. Frozen tissue blocks 0.5 

cm3 (50-90 mg) in size were dissected at -20ºC from the mid-frontal gyrus of the 

frontal lobe and provided for this study.  MADC frozen tissues were previously 

used in high quality expression (Hong et al. 2008; Pan et al. 2007) and proteomic 

studies (Pan et al. 2007).    

Twelve age- and gender- matched pairs of LOAD cases (clinical diagnosis 

and Braak Score ≥ 4) and controls (clinically confirmed and Braak Score ≤ 2) 

were used for the genome-wide discovery phase of the project and for gene-

specific technical validation.  An additional thirteen matched pairs were included 

in the population validation phase, which included gene-specific DNA 
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methylation, gene expression, and protein quantification studies. The 

demographic characteristics of all 50 brains included in this study are described 

in Table 3.1.   Post-mortem intervals in hours for AD cases used in the Discovery 

Set were as follows: 3, 4, 7, 7, 7.75, 8, 8.75, 9, 11, 12, 14, 24.  Post-mortem 

intervals in hours for controls used in the Discovery Set were as follows: 6, 6, 

13.5, 14, 17, 18, 18, 18, 19.3, 20.5, 21.25, 24.5.  Gray matter for DNA 

methylation, expression, and protein analysis was excised from the tissue 

sample and used in this study and vascular lesions were avoided.   

DNA Isolation and APOE Genotyping  

DNA was extracted from all 25 matched pair samples using the Promega 

Maxwell Tissue DNA Kit (Madison, WI) according to manufacturer’s instructions.  

APOE genotyping was assayed using the Applied Biosystems TaqMan method 

(Foster City, CA) according to manufacturer’s instructions using the ABI 7900 HT 

machine (Christensen et al. 2008).    

Genome-wide DNA Methylation Discovery 

 DNA was bisulfite-treated using the Zymo EZ DNA Methylation Kit 

(Orange, CA) with a modified thermal cycling protocol (98ºC for 10 minutes, 64ºC 

for 17 hours).  Genome-wide DNA methylation was assessed with the Infinium 

HumanMethylation27 BeadArray (Illumina) performed at the University of 

Michigan DNA Sequencing Core facility in accordance with manufacturer’s 

instructions and previously published (Bibikova et al. 2009).  Six cases and six 

control samples were randomly applied to each of two 12-sample arrays to avoid 

biasing case-control differences by batch effect.  BeadArrays were imaged using 

the Illumina BeadArray Reader.  Image processing and intensity data extraction 

are standard components of the BeadScan software that is associated with the 

BeadArray Reader. The Illumina BeadStudio Software generated percent 

methylation estimates (beta values) for each probe set based on Cy3 and Cy5 

fluorescence intensities.  Data was background normalized and exported for 

further processing.   
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Statistical Methods for Bead Array 

All statistical analysis was performed with the R Statistical Software 

(version 2.10.1).  CpG sites that failed on 10% of samples were not included in 

subsequent analyses.  Linear models adjusting for age and gender were fit 

across all CpG sites using the limma package (version 3.2.3). As is standard in 

microarray analyses, empirical Bayesian variance methods were incorporated to 

site-specific moderated t-tests (Smyth 2004).  The linear model used for each 

individual CpG site was as follows:  

% Methylation = β0
 + β1(Case Status) +β2(Age) + β3(Sex) 

Top hits by case status were identified by p-values < 0.05 and false 

discovery rates were calculated.  Additional analyses were performed on the top 

hit.  We compared the basic linear model above to a model containing PMI using 

an F-test.  We also compared the R2 goodness of fit of two simple linear 

regression models containing only either PMI or Case Status as predictors.   

Samples were hierarchically clustered by the single linkage method across 

the top 26 hits by case status.  Positional gene set enrichment analysis was 

performed using Gene Set Enrichment Analysis (GSEA) to determine statistical 

over-representation of disease specific epigenetic marks within chromosomal 

cytogenic bands containing at least 15 genes (Subramanian et al. 2005).  

Enrichment in promoter and 3’UTR regulatory motifs of disease associated 

genes was determined by GSEA (Xie et al. 2005).  Biological processes and 

molecular functions associated with LOAD gene lists were established using 

Gene Ontology (Ashburner et al. 2000). 

Gene-Specific DNA Methylation Validation 

Site-specific methylation technical (of the original 12 Discovery Set 

matched pairs) and population (of an additional 13 matched pairs with an 

expanded age range) validation of the top CpG hit was determined by bisulfite-

pyrosequencing on the Qiagen Pyromark MD instrument (Valencia, CA). Using 
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Pyromark Assay Design Software, a custom pyrosequencing assay was 

designed to include the two CpG sites present on the Illumina array (Target IDs 

cg01182697 and cg20793071). This amplicon is located in the promoter of the 

gene that most statistically distinguished LOAD cases and controls on the 

Illumina array. Primers were complementary to bisulfite treated DNA in regions 

without CpG nucleotides (Table 3.2).  The region of interest was amplified by 

bisulfite-PCR with the following thermal cycling protocol: 15 minute activation at 

95ºC, 45 cycles of 30 second denaturation at 94ºC, 30 second annealing at 

55ºC, and 1 minute extension at 72 minutes, followed by a final extension for 10 

minutes at 72ºC.  Serial dilutions of 100% methylated and unmethylated controls 

were used to test for any bias in amplification for each assay.  Internal bisulfite 

conversion quality controls were incorporated at original sequence non-CpG 

cytosines by including C nucleotides in the dispensation order, which should be 

fully converted to T’s following bisulfite treatment.   

Incorporation of either a T (for an unmethylated cytosine) or C (for a 

methylated cytosine) at each CpG provides a quantitative measure for 

consecutive CpG sites throughout the region sequenced. The level of 

methylation for each CpG within the target region of analysis was quantified 

using the Pyro Q-CpG Software.  Primers and pyrosequencing assay file 

information including nucleotide dispensation orders and sequences to analyze 

are in Table 3.2.  

Gene Expression 

Functional relevance of top methylation marks distinguishing Alzheimer’s 

disease cases and controls was assessed via SYBR green Real Time PCR gene 

expression assays.  RNA was extracted from all 25 matched pair samples using 

an adjacent portion of the same gray matter sample used for DNA.  RNA was 

extracted using the Qiagen RNeasy Lipid Tissue Kit (Valencia, CA), following 

homogenization with the Qiagen Tissue Lyser instrument.  Assays were 

designed using Genscript software (Piscataway, NJ).  cDNA was generated with 

the Bio Rad iScript cDNA Synthesis Kit (Hercules, CA) and the primers are listed 
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in Table 3.3. Quantitative PCR assays were run with the iQ SYBR Green 

Supermix (Bio Rad) on the CFX96 C1000 Thermal Cycler (Bio Rad). CFX 

Manager software (Bio Rad) was used to determine the threshold cycle (CT) and 

perform inter-plate normalizations.  CT values relative to β-actin levels were used 

to compute a fold change between matched pairs. A subset of samples was 

analyzed on the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array in 

the University of Michigan Sequencing Core using standard protocols.  We 

determined that β-actin is a suitable control in these samples as gene expression 

of β-actin did not differ by case control status at any of the 6 probe sets included 

in the Affymetrix Array (p-values: 0.13, 0.18, 0.23, 0.43, 0.48, 0.77).  Gene 

expression data were evaluated for normality using R Statistical Software.  To 

determine if higher methylation values were associated with decreased 

expression of target genes, Spearman correlation coefficients were calculated 

between CpG methylation (as measured by pyrosequencing) and the expression 

level data.   

Protein Quantification 

 Adjacent portions of the same 25 matched-pair, gray matter tissue used 

for DNA were homogenized and protein extracted in Thermo Scientific RIPA 

buffer (Burlington, Ontario).  Protein concentration was quantified using the 

Thermo Scientific Pierce BSA assay (Burlington, Ontario).  Protein (25 ug) was 

loaded on 10% SDS-polyacrylamide gels for Western Blot analysis.  

Transmembrane protein 59 antibody was purchased from Novus Biologicals 

(Littleton, CO) and Transmembrane protein 59 control protein was purchased 

from OriGene (Rockville, MD).  The blots were imaged on the VersaDoc 5000MP 

instrument (Bio Rad) with Quantity One densitometry software (Bio Rad) under a 

consistent, constrained area.  The levels of Transmembrane protein 59 were 

standardized to the corresponding tubulin band. 

RESULTS 

Genome-Wide Descriptive Statistics 
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DNA was extracted from the frontal cortex of 25 age- and gender-matched 

LOAD case and control human post-mortem pairs (Table 3.1). Sixteen pairs 

were male and nine pairs were female.  LOAD cases and controls did not differ 

by age (p-value = 0.68).  The mean post-mortem interval (PMI) was 12.8 hours, 

ranging from 3-28 hours. Controls had significantly longer PMI than LOAD cases 

(p-value=0.0004).  The mean number of years in storage was 11.8, ranging from 

2-21 years.  Cases and controls did not statistically differ in the number of years 

in storage (p=0.07). 

In the Discovery Set, a randomly selected subset of 12 matched pairs 

ranging in age from 69-95 (mean age 79.8) were analyzed for genome-wide DNA 

methylation using the Illumina Infinium HumanMethylation27 BeadArray.  The 

BeadArray represented 27,578 CpG sites corresponding to 14,475 unique genes.  

The average number of CpG sites per gene was 1.9, and 92.0% of CpG sites 

were within 1000 bp of a transcription start site.  CpG sites within CpG islands 

were overrepresented on the array, as 72.5% of sites were within CpG islands.  

The average number of CpG sites per sample with Illumina detection p-values 

greater than 0.05 (considered failing) was 71.1 (range 11-360 sites).  CpG sites 

that failed on more than 2 samples (>10% samples) were not included for further 

analyses (n= 171 sites). 

  The global distribution of 5’-cytosine modifications at all CpG sites 

measured by the array was bimodal, and the distribution of methylation levels 

was very similar between cognitively normal controls (Figure 3.1A) and 

Alzheimer’s disease cases (Figure 3.1B).  There was a large cluster of sites that 

had less than 10% methylation (15,735 in controls and 15,619 in AD cases) 

based on the mean of each group of 12 samples.  A second cluster of sites was 

modified between 75% and 100% (5,226 sites in controls and 5,162 sites in AD 

cases).   

Of the 27,578 sites on the array, 25,380 sites were located in promoter 

regions as defined within 1,000 bp of a transcription start site.  Only 2,198 sites 

were outside of known promoters.  Promoter CpG sites had a median of 5.1% 
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methylation (IQR= 2.1-5.2) while non-promoter sites had a median of 59.7% 

methylation (IQR=11.0-84.0). This observation did not depend on AD case 

status.  On the array, 20,006 sites were located within CpG islands and 7,572 

sites were outside of CpG islands.  CpG island sites had a median methylation of 

3.2% (IQR = 1.7-9.6) and non-CpG island sites had 74.6% median methylation 

(IQR=45.5-85.4).  This did not depend on AD case status. Our discovery set of 

24 samples ranged in age from 69-95 years (Table 3.1), and age was an 

important predictor of methylation. There were 2,416 sites and 2,227 unique 

genes associated with age (based on a p-value of 0.05).  Of these sites, 1,294 

were hypermethylated with increasing age and 1,122 were hypomethylated with 

age.  The top 25 CpG sites associated with age among controls are listed in 

Table 3.4.  

Alzheimer’s Disease-Specific Results 

 Following age and gender adjusted linear fit models with empirical 

Bayseian standard error adjustments, 948 CpG sites representing 918 unique 

genes were significantly associated with AD case status (based on p-value of 

0.05).  Among these 948 sites, the maximum mean methylation difference 

between AD cases and controls was 19.5% at a CpG site 249 base pairs from 

the predicted TSS of C21orf56 on chromosome 21 (cases 34.8% methylated vs. 

controls 15.9% methylated).  The mean observed disease specific methylation 

difference across the 958 sites was 2.9% (IQR=0.88-4.2).   

The top 26 autosomal CpG sites distinguishing cases and controls (as 

defined by FDR) are depicted in a heatmap (Figure 3.2).  Samples clustered on 

case status with the exception of two control samples.  One of those controls was 

the oldest control subject in the study at 94 years of age.  The top 25 CpG sites 

that were significantly different by case status are outlined in Table 3.5.    

Gene ontology analysis of the top 958 disease specific sites revealed 

hypermethylation in several molecular functions and biological processes 

associated with transcription.  The top 10 molecular functions enriched for 
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hypermethylation with AD cases were RNA polymerase II transcription factor 

activity (Figure 3.3A), RNA binding, GTPase regulator activity, cytokine binding, 

DNA binding, lyase activity, ATPase activity, transcription factor activity, and 

nucleoside triphosphatase activity. Similarly, the top 10 biological processes 

associated with hypermethylation were nucleic acid metabolic process, DNA 

replication, regulation of nucleic acid metabolism, regulation of DNA dependent 

transcription, regulation of RNA metabolic process, regulation of cell cycle, DNA 

dependent transcription, positive regulation of RNA metabolic process, DNA 

metabolic process, RNA biosynthetic process, and nervous system development. 

  Hypomethylation was enriched at functions and processes related to 

membrane transport and protein metabolism.  The top 10 molecular functions 

associated with hypomethylation in AD cases are electron carrier activity, cation 

transmembrane transporter activity, metal ion transmembrane transporter 

activity, enzyme binding, rhodopsin-like receptor activity, cation channel activity, 

integrin binding, phosphoric ester hydrolase activity, G-protein coupled receptor 

activity, and peptidase activity.  The top 10 biological processes associated with 

hypomethylation in LOAD cases were carboxylic acid metabolic processes 

(Figure 3.3B), organic acid metabolic process, biosynthetic process, cation 

transport, nitrogen compound metabolic process, amine metabolic process, 

negative regulation of developmental process, programmed cell death, 

apoptosis, and anti-apoptosis.   

 Several promoter and 3’ UTR regulatory binding motifs were enriched in 

the disease associated gene list.  Hypermethylation in LOAD cases was 

observed in genes containing binding site motifs for transcription factors POU3F2 

(p-value < 0.001) and HOXA4 (p-value=0.004), and microRNAs MIR-9 (p-value = 

0.002), MIR-518C (p-value < 0.001), MIR-1 (p-value=0.025), and MIR-326 (p-

value=0.019).  Genes containing MIR-140 (p-value = 0.04) and NFE2 (p-

value=0.019) motifs were hypomethylated in LOAD cases.   

 Positional gene set analysis of the 958 disease associated CpG sites 

identified enrichment of hypomethylation at the chromosomal location19q13 
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(Normalized Enrichment Score (NES) = 1.24), in cytogenetic band region where 

the APOE gene is located (Kim et al. 2009).  In addition, hypermethylation in 

LOAD cases was seen at 19q13 (NES= -0.72), a candidate location for genetic 

linkage with LOAD (Wijsman et al. 2004).  We visually identified broad regions of 

altered methylation in AD brains compared to control brains (Figure 3.4).  These 

include the p-arm of chromosome 14 and distal q-arm of chromosome 3 

(hypomethylated in AD brains compared to control brains) and the p-arms of 

chromosomes 10 and 17 (hypermethylated in AD brains compared to control 

brains).  Chromosome 15 had the highest density of observed disease-specific 

methylation differences.   

 We checked the list of disease specific hits identified with the BeadArray 

for genes known to be associated with AD.  There were two CpG sites on the 

array corresponding to each of the following genes: ABCA7, APOE, AΒPP, 

BACE1, BDNF, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MAPT, MS4A6A, 

PICALM, PSEN2, and TOMM40.  There was one site representing PSEN1 on the 

array and this site was associated with AD (Cases mean methylation = 1.6%, 

Controls mean methylation = 2.6%; p-value=0.034; cg11490446).  Gene 

expression of the probe set for PSEN1 at exon 2 differed by case status based 

on the results of the Affymetrix gene expression array (probe 207782_s_at, p-

value = 0.0076, fdr = 0.35).  The Spearman correlation coefficient linking 

expression of this gene expression probe set and methylation measured by the 

Illumina BeadArray is -0.61 (pvalue=0.0014).  AD cases were less methylated 

and had higher expression of this probe. There was no difference gene 

expression in the other five probe sets for PSEN1.   One of the two sites 

corresponding to EPHA1 was associated with hypermethylation with age (p-value 

= 0.029; cg02376703).  One of the two sites associated with PSEN2 was 

associated with hypomethylation with age (p-value = 0.030; cg25514304).  The 

remaining CpG sites within LOAD candidate genes were not associated with 

differential methylation by case status or age. 
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 We also assessed known human imprinted genes for their association 

with AD, focusing on CpG sites located within Differentially Methylated Regions 

(DMRs) (Choufani et al. 2011).  The Illumina array contains 10 sites in the DMR 

for DIRAS3, 8 sites each for PLAGL1 and GNAS, 7 sites for ZIM2, 4 sites for 

PEG10, 3 sites for PEG3, 2 sites for MEST, and 1 site each for the genes 

GRB10, KCNQ1, and SNURF.  One of the sites in the DMR for DIRAS3 was 

more highly methylated in AD cases (43.4%) than controls (38.5%) (p-value = 

0.024; cg21808053).  One of the sites in the DMR for GNAS was hypomethylated 

with age among controls (p-value = 0.012; cg21625881) and the site for KCNQ1 

was hypermethylated with age (p-value = 0.023; cg27119222). 

Gene-Specific Results 

 After adjusting for age and sex, the highest ranking site (FDR = 0.36, p-

value = 0.000013) associated with LOAD was a CpG site upstream of 

Transmembrane Protein 59 (TMEM59).  TMEM59 is responsible for post-

translational glycosylation of AΒPP and leads to retention of AΒPP in the Golgi 

apparatus (Ullrich et al. 2010).  AD cases had 7.3% lower methylation at 

TMEM59 than controls, and this difference was more profound in older subjects 

(Figure 3.5A).  Methylation of TMEM59 was significantly associated with age in 

cases relative to controls (p-value=0.013).  In a second TMEM59 model, we 

added PMI as a predictor and compared the goodness of fit of the two nested 

models using an F-test.  PMI did not improve the model fit and PMI is not a 

statistically significant predictor of methylation at the TMEM59 site.  In a simple 

linear regression model with Case Status as the only predictor of TMEM59 

methylation, the model fit R2 was 0.597.  The model fit R2 with PMI as the only 

predictor was 0.132.   

The methylation findings were technically validated by pyrosequencing a 

single assay containing both CpG sites from the Illumina array that were 

associated with TMEM59. The CpG density 1000 bp flanking the top hit on either 

side is 1.5%.  Pyrosequencing the original 24 discovery samples confirmed the 

difference between cases and controls at TMEM59 was 2.7% (Figures 3.5B and 
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3.5D).  Methylation was again associated with age in cases relative to controls in 

the technical validation (p-value=0.0084).  Pyrosequencing of an additional 26 

matched pair samples across an expanded younger age range (61-94) confirmed 

the age-associated reduction in methylation (p-value-0.0022), and the 

association with AD case status was not statistically significant at an alpha of 

0.05  (p-value = 0.088) (Figure 3.5C). 

 We determined expression levels of TMEM59 at four points along the 8 

exon transcript (Figure 3.6A) (including the beginning, end, and two middle sites) 

to functionally validate the DNA methylation results with the TMEM59 gene.  At 

the four locations along the transcript that were assayed by real time PCR, 

controls had lower RNA expression levels than cases (Figure 3.6B).  For the first 

assay on the transcript, AD cases had 24.9% higher expression (fold change 

1.33; p-value 0.0013).  For two assays in the middle of the transcript, AD cases 

had 20.5% (fold change 1.26; p-value 0.0071) and 28.3% (fold change 1.40; p-

value 0.056) higher expression.  The assay at the end of the transcript showed 

AD cases to have 21.5% (fold change 1.27; p-value-0.0036) higher expression 

than controls.  DNA methylation and RNA expression were negatively correlated 

at TMEM59 (Spearman correlation coefficient = -0.274, p-value = 0.0083).   

 To further investigate the functional implications of the observed DNA 

methylation and gene expression differences of TMEM59, we measured the 

protein levels by Western blot in the full set of 25 case brains and 25 control 

brains.  No differences were observed for the full length 36 kDa protein (p-

value=0.68) (Figure 3.6C), but AD cases had reduced levels of a shorter protein 

that was also bound by the antibody specific for the C-terminus of TMEM59 (p-

value=0.040) (Figures 3.6C, 3.6E).  The quantity of shorter protein was 

associated with age (Figure 3.6D).   

DISCUSSION 

We performed a genome-wide, semi-unbiased quantitative comparison of 

frontal cortex DNA methylation from age- and gender-matched LOAD cases and 
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controls.  The CpG site most strongly associated with case status was located in 

the promoter region of TMEM59, a gene recently implicated in Alzheimer’s 

disease pathogenesis (Ullrich et al. 2010). This gene is involved in the post-

translational modification of Amyloid Precursor Protein (AβPP) and causes 

retention of AβPP in the Golgi apparatus (Ullrich et al. 2010).  The magnitude of 

methylation difference at this site between cases and controls was very modest 

(7.3% difference using the Illumina array), but the direction of association was 

confirmed using an alternate method of DNA methylation detection (2.7% 

difference using pyrosequencing).  In an expanded population including a higher 

number of younger cases and controls, an interaction between age and case 

status was detected.  Thus, age modifies the association between disease status 

and methylation.  There was not a primary association between case status and 

methylation when the younger population was included.  In the original sample of 

LOAD cases and controls, TMEM59 DNA methylation levels corresponded to 

functional changes in TMEM59 gene expression.  LOAD cases had lower 

methylation and higher expression of TMEM59 than control samples.  No 

differences in the level of the full length TMEM59 protein were observed between 

cases and controls; however a smaller protein that bound theTMEM59 antibody 

was significantly higher in controls. This TMEM59 protein size pattern is 

consistent with the TMEM59 control protein lysate. The shorter protein may 

represent a proteolytic product of the full length protein.  The shorter protein is 

approximately 17 kDa, which could also be consistent with translation of an 

alternative RNA transcript beginning at exon 5 of the TMEM59 gene.  The 

observed differences in protein expression levels are consistent with epigenetic 

regulation.  Further molecular research is needed to better understand the gene 

expression and protein regulation and potential role of DNA methylation at this 

site. 

Well-studied genes known to be involved in AD pathogenesis or identified 

through GWAS for genetic association with LOAD were largely not associated 

with disease-specific DNA methylation differences in this study. A notable 

exception was PSEN1, which was modestly hypomethylated in LOAD cases.  
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Consistent with previous human post-mortem tissue studies, PSEN1 showed 

very low levels of methylation in our population (Siegmund et al. 2007).  Here, 

LOAD cases had reduced DNA methylation that was associated with increased 

PSEN1 gene expression, suggesting the DNA methylation change may be 

functional at this site. Studies in mice and neuroblastoma cell lines demonstrate 

that PSEN1 gene expression is regulated by DNA methylation at specific 

promoter CpG sites and this regulation depends on B vitamin availability (Fuso et 

al. 2011).  The correlation between DNA methylation and gene expression in our 

study support the cell line and mouse model findings.  The Illumina 

HumanMethylation27 BeadArray platform used in this study also allowed for 

discovery of novel gene associations with AD.  For example, methylation change 

was observed within the DMR for the imprinted gene, DIRAS3.  Genomic 

imprinting in Alzheimer’s disease is a potential mechanism to explain 

epidemiological parent-of-origin inheritance observations(Fallin et al. 2011; 

Mosconi et al. 2011). 

Greater than 900 genes (6% of genes featured on the array) were 

differentially methylated by case status after adjusting for age and gender.  

Overall, the disease related methylation effect size (2.9%) was relatively modest, 

and the global methylation distributions of AD cases and controls were similar.  

Together these findings suggest that DNA methylation may play a role in LOAD 

and the individual effects at each CpG site may be subtle.  The magnitude and 

absolute number of DNA methylation changes observed in this study are 

consistent with previous reports in the literature performed on candidate gene 

subsets.  In a case-control study of prefrontal cortex DNA methylation of twelve 

genes, only two genes were associated with AD status and the differences in 

methylation were less than 10% (Wang et al. 2008).   

Gene set enrichment analysis revealed key patterns in the identified set of 

disease associated CpG sites. First, gene ontology analysis showed 

hypermethylation of genes involved in transcription and DNA replication, while 

membrane transporters were hypomethylated.  Second, hypermethylation was 
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enriched at genes containing POU3F2 binding motifs.  POU3F2 is a transcription 

factor critical in central nervous system development that regulates Nestin gene 

expression, a protein important for radial axon growth (Jin et al. 2009). Third, 

positional analysis showed hypomethylation with case status at 19q13 and 

hypermethylation at 19p13, cytogenic band regions genetically linked with AD 

(Kim et al. 2009; Wijsman et al. 2004).   

LOAD cases and control sample groups were similar with respect length 

of time in storage, but LOAD cases had shorter PMI then control samples (p-

value = 0.0004).  During PMI, samples may be exposed to damaging lower pH 

conditions and higher temperatures where enzymes may be active.  PMI was not 

a significant confounder at the TMEM59 site, however, PMI may be a factor at 

other specific locations throughout the DNA methylome.   

 This study measured genome-wide DNA methylation differences between 

LOAD case and control subjects aged 69 to 95.  Across this relatively short age 

range, DNA methylation was associated with age at over 2,400 CpG sites, 

representing more than 8% of the sites on the BeadArray.  Both hyper and 

hypomethylation was observed.  Previous studies have observed global 

hypomethylation with age in the brain (Pogribny and Vanyushin 2010), but gene-

specific studies of aging and methylation have noted varying patterns (Siegmund 

et al. 2007).  These results further support age as an important covariate to 

consider in statistical models of DNA methylation in late life. 

 Age is a major factor in epigenetic change in the brain (Hernandez et al. 

2011), potentially confounding or modifying disease specific associations. In a 

study of cerebral cortex DNA from gestation to 104 years of age, eight of fifty loci 

showed increases in methylation through late life and two sites presented 

changes suggestive of an acceleration of age-related change in a subset of 

samples with LOAD (Siegmund et al. 2007).  Additional evidence supports 

increased age-dependent epigenetic drift with disease.  In LOAD prefrontal 

cortex samples representing a 30 year age range, an age-specific epigenetic drift 

was more prominent among cases compared to controls.  The average 
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methylation in promoters of MTHFR and APOE increased by 6.8%, while control 

samples decreased with age by 10.6% (Wang et al. 2008).   

Cultured cells can potentially have very different epigenetic profiles than 

primary cells as an artifact of growth in culture (Smiraglia et al. 2001), and thus 

use of primary human frontal cortex tissue is a strength of this study.  DNA 

methylation is brain region specific and greater differences have been seen 

between the cerebellum and cortex regions than by sex, age, post-mortem 

interval, race, or cause of death (Ladd-Acosta et al. 2007).  This study 

consistently used frontal cortex tissue because of its role in advanced AD.  As 

with many studies of epigenomic, transcriptomic, or proteomic changes in the 

human brain, the tissue samples represented populations of mixed cell types, an 

important limitation, which may have resulted in attenuated effects.  Epigenomes 

are cell type specific (Lister et al. 2009; Maunakea et al. 2010), and brain cell 

types have different roles in AD (Selkoe 2001).  The AD brain has an active 

changing cell population including neuronal loss and glial activation (Akiyama et 

al. 2000) that may in part be responsible for the observed results. DNA 

methylation data, however, was not enriched in inflammatory mediators, which 

would have supported changes due to gliosis. This study considered brain region 

specific methylation and as epigenomic platforms require lower input DNA 

amounts, future research may be able to also consider cell type specific 

changes.   

Results from large DNA methylome and transcriptome maps of the human 

brain suggest that intragenic CpG sites rather than promoter CpG islands may 

better correlate with transcription (Maunakea et al. 2010). The genome-wide sites 

included on the Illumina Infinium HumanMethylation27 BeadArray are more likely 

to be located within promoter region CpG islands.  Important methylation events 

located elsewhere throughout the genome would be missed using this platform 

and may be included in future research utilizing alternative technologies. 

These results must be interpreted with caution because this study had a 

small sample size relative to the large number of CpG site comparisons and the 
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magnitude of observed methylation differences between LOAD cases and 

controls was moderate.  The results from the array were technically validated at 

the top CpG site, but it is not clear whether this observation will be consistent 

across populations.  While a small study, we identified modest DNA methylation 

differences as a potential event in LOAD.   
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FIGURES 

 

Figure 3.1. Mean percent methylation frequency distribution of the Discovery Set 
of 12 cognitively normal control samples (A) and 12 Alzheimer’s disease cases 
(B) across the 27,578 CpG sites on the Illumina HumanMethylation27 
BeadArray. 
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Figure 3.2. Hierarchical clustering heatmap of the Discovery Set top 26 
autosomal CpG loci associated with late-onset Alzheimer’s disease (LOAD) 
case/control status after adjusting for sex and age.  Green represents 
hypermethylation in LOAD cases and red represents hypomethylation in cases.  
Horizontal color bars at the top refer to the age, sex, and case status of the 
sample.  In the Case Status color bar, light green represents control samples and 
dark green represents LOAD cases.  For sex, female is light pink and male is 
dark blue.  In the age panel, black represents ages 91-95, darkest gray 86-90, 
medium gray 81-85, light gray 76-80, lightest gray 71-75, and white represents 
ages 66-70.  Vertical color bars on the left refer to the CpG island and promoter 
status of the CpG sites.  In the CpG island bar, dark purple represents sites 
within CpG islands and light purple represents sites outside of CpG islands.  In 
the promoter bar, dark orange represents sites within promoter regions and light 
orange represents sites outside of promoter regions. 
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Figure 3.3. Discovery Set gene set enrichment analysis plots. (A)  Genes 

associated with RNA polymerase II transcription factor activity molecular function 

were hypermethylated in LOAD cases relative to controls (p-value = 0.013).  (B) 

Genes associated with carboxylic acid metabolic biological processes were 

hypomethylated in LOAD cases relative to controls (p-value= 0.013). 
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Figure 3.4. Human chromosome ideogram in black.  Distribution of CpG sites 

featured on the Illumina HumanMethylation27 BeadArray is below the 

chromosomes in blue. Distribution of CpG sites that were significantly associated 

with late-onset Alzheimer’s disease (LOAD) in the Discovery Set are above the 

ideograms.   Green represents hypermethylation with LOAD status.  Red 

represents hypomethylation with LOAD status. 
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Figure 3.5. Methylation upstream of the TMEM59 gene.  (A) Percent methylation 
by age and case status (Late-Onset Alzheimer’s Disease cases in red; Controls 
in blue).  Data from the Illumina HumanMethylation27 BeadArray. (B) Age vs. 
percent methylation bisulfite-pyrosequencing technical validation data of original 
24 samples run in duplicate in the Discovery Set.  (C) Age vs. percent 
methylation bisulfite pyrosequencing of Discovery Set 24 samples plus 26 
additional population validation samples run in duplicate. (D) A representative 
bisulfite-pyrosequencing assay pyrogram for 2 CpG sites in the promoter of 
TMEM59. 
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Figure 3.6. Functional validation of observed DNA methylation differences for 
TMEM59, a gene involved in the post-translational modification of Amyloid 
Precursor Protein (AΒPP).  (A) TMEM59 is located on chromosome 1 and is 
transcribed on the reverse strand.  The reference sequence mRNA is yellow.  
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Predicted alternative isoforms are in blue. (B) Boxplot of TMEM59 gene 
expression by Q-PCR in the Discovery Set. Two-sample t-test between cases 
and controls were all statistically significant (exon 1 p-value=0.0013; exons 1-2 p-
value=0.0071; exons 3-4 p-value=0.0036, exons 7-8 p-value=0.0083) (C) Boxplot 
of relative protein levels of TMEM59 in the Discovery Set plus an additional 26 
validation samples.  Paired t-tests did not reflect case specific differences for the 
full length protein (p-value=0.68), while the shorter protein fragment was 
significantly lower in AD cases (p-value=0.040).  (D) Levels of the shorter 
TMEM59 protein fragment as a function of age.  (E) Representative western blot 
image of TMEM59 protein expression in controls and AD cases 1-3 representing 
identical exposures of the same gel.  No differences were detected between AD 
and controls for full length TMEM59 protein based on case status, but the levels 
of the TMEM59 shorter proteins were reduced in AD cases.  These shorter 
proteins were also observed in the TMEM59 control protein lysate.   
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TABLES 

Table 3.1. Study population mean demographics by case status.  Range is 
provided in parentheses.   

 LOAD Cases Cognitively Normal Controls 
Characteristic Discovery Set 

(n=12) 
Full Set 
(n=25) 

Discovery 
Set (n=12) 

Full Set 
(n=25) 

Neuropathological 
Diagnosis 

High 
Likelihood AD 
n=11 
Intermediate 
Likelihood 
n=1 

High 
Likelihood 
AD n=21 
Intermediate 
Likelihood 
n=4 

Control n=11 
Other n=1 

Control n=24 
Other n=1 

Braak Stage 4.7 (2-6) 4.8 (2-6)  1.3 (1-2) 1.5 (1-2) 
Age 79.6 (69-94) 78.2 (61-94) 79.9 (69-95) 78.3 ( 61-95) 
Sex 
Female 
Male 

 
6 
6 

 
9 
16 

 
6 
6 

 
9 
16 

Post Mortem 
Interval (hours) 

9.6 (3-24) 9.5 (3-27.5) 16.3 (6-24.5) 16.0 (5-28) 

Years in Storage 10.75 (5-17) 10.5 (3-18) 13.2 (3-20) 13.2 (2-21) 
Race Caucasian 

(n=12) 
Caucasian 
(n=25) 

Caucasian 
(n=12) 

Caucasian 
(n=25) 

Age of onset 69.1 (59-78)  NA NA 
MMSE 11.7 (0-28) 

missing=1 
12.9 (0-30) 
missing=2 

26.8 (25-28) 
missing=10 

26 (24-28) 
missing=16 

# Years from 
Diagnosis to 
Death 

5.1 (1-12) 5.2 (1-12) NA NA 

APOE Genotype 
  2/2 
  2/3 
  2/4 
  3/3 
  3/4 
  4/4 
  Missing 

  
2 
1 
0 
3 
5 
1 
0 

 
2 
1 
1 
7 
13 
1 
0 

 
3 
0 
0 
6 
1 
1 
1 

 
6 
1 
0 
13 
3 
1 
1 
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Table 3.2. Pyrosequencing assay information. 

Gene Sequence 5 – 3’  
TMEM59  
Forward Primer GGGTAGGTATATAGAATTATATTTGGTATT 
Reverse Primer 
Biotinylated 

AAATTTCTACACACCCCTACTACA 

Sequencing Primer AATAGATTATATTTTGTAAAAGAA 
Dispensation Order ATATCGATCGAGGATGTTGATCGAG 
Sequence to Analyze TAATAAYGAAGGGGATTTGTTTTAYGAGTTAGTATATATGGTGTAAAT 

 

 

Table 3.3. Primer sequences for gene expression QPCR assays. 

Gene Sequence 5’ – 3’ 

TMEM59 Exon 1  
Forward Primer TGACTCGGTCTTGGGTGATA 
Reverse Primer TCTTCCTTAGGGTAGGTGTGC 

TMEM59 Exons 1-2  
Forward Primer GGGCCTGTCAGTTGACCTAC 
Reverse Primer CTGCAACCTCTCTGACATGC 

TMEM59 Exons 3-4  
Forward Primer GAACAACTTATGTCCCTGATGC 
Reverse Primer CGTCATCGGCTTGAAGATAA 

TMEM59 Exons 7-8  
Forward Primer TCCTCTCGGTGATGGTATTG 
Reverse Primer TCAGCTTCTCAGAGGGAACA 

Β-actin  
Forward Primer TGCTATCCAGGCTGTGCTAT 
Reverse Primer AGTCCATCACGATGCCAGT 
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Table 3.4. CpG sites differentially methylated with age among cognitively normal controls (Discovery Set, Age 69-94).Beta 
coefficient can be interpreted as the rate of change in methylation per year across the years studied. 

Rank 
Associated 
Gene 

Beta 
Coefficient 

p-value 
Distance to 
Transcription 
Start Site 

CpG 
Island 

Chromosome Biological Description 

1 DNAI2 0.441288 1.08E-05 714 FALSE 17 
Dynein intermediate polypeptide 2; axonemal;. Function in microtubule motor 
activity. 

2 ECM2 0.453176 3.85E-05 717 FALSE 9 
Extracellular matrix protein 2 precursor. Function in integrin binding and cell-
matrix adhesion 

3 UNQ689 0.409188 1.39E-04 991 FALSE 4 hypothetical protein LOC401138 

4 C3 0.262665 1.52E-04 680 FALSE 19 
Complement component 3 precursor. Function in acylation-stimulating protein 
cleavage in innate immune response 

5 OSMR 0.25763 2.10E-04 404 TRUE 5 
oncostatin M receptor. Role in cell proliferation and cell surface linked signal 
transduction 

6 MEG3 -0.45638 2.15E-04 NA TRUE 14 Predicted gene from GNOMON 

7 GLO1 0.238369 2.36E-04 480 TRUE 6 
glyoxalase I.  Role in zinc ion binding, lyase activity in carbohydrate metabolism 
and antiapoptosis. 

8 CRNN 0.295641 2.50E-04 167 FALSE 1 Hypothetical protein LOC49860.  Tumor-related protein. 
9 SF3B2 -0.16749 2.92E-04 484 TRUE 11 splicing factor 3B subunit 2 

10 PIK3C2B 0.221434 3.22E-04 164 FALSE 1 
phosphoinositide-3-kinase; class 2; beta polypeptide.  Role in intracellular 
signaling cascade 

11 RIBC2 0.226036 3.68E-04 126 TRUE 22 RIB43A domain with coiled-coils 2.  Synonym C22orf11 
12 CCDC74B 0.230644 3.71E-04 1015 FALSE 2 hypothetical protein LOC91409 
13 C20orf77 0.622206 6.42E-04 605 TRUE 20 hypothetical protein LOC58490 
14 C9orf112 0.530497 6.84E-04 317 TRUE 9 hypothetical protein LOC92715 
15 LCE1B 0.388947 7.51E-04 1310 FALSE 1 late cornified envelope 1B Role in epidermal differentiation complex 2A 
16 SFRS11 0.36302 7.59E-04 1480 FALSE 1 Splicing factor p54. Nucleic acid binding and nuclear mRNA splicing 

17 SLC18A2 0.055023 8.92E-04 275 TRUE 10 
solute carrier family 18 (vesicular monoamine); member 2. Vesicle monoamine 
transporter type 2. 

18 PAPPA -0.21564 1.07E-03 204 FALSE 9 
pregnancy-associated plasma protein A preproprotein.  Insulin-like growth 
factor dependent IGF binding protein. 

19 FIGNL1 0.64861 1.08E-03 599 TRUE 7 fidgetin-like 1  ATP binding nucleoside-triphosphatase activity 
20 NMT1 -0.08842 1.10E-03 285 TRUE 17 N-myristoyltransferase 1 

21 VAMP5 -0.28073 1.13E-03 492 TRUE 2 
vesicle-associated membrane protein 5 (myobrevin).  Role in vesicle-mediated 
transport, myogenesis, and cell differentiation 

22 FLJ33641 0.634 1.20E-03 974 FALSE 5 hypothetical protein LOC202309 
23 DVL3 0.40801 1.21E-03 580 TRUE 3 dishevelled 3.  Kinase activity. Role in nervous system development. 
24 C20orf4 -0.15153 1.22E-03 250 TRUE 20 hypothetical protein LOC25980 
25 IGF2 0.534292 1.25E-03 NA TRUE 11 insulin-like growth factor 2 
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Table 3.5. Table of the 25 CpG sites most significantly differentially methylated by AD case status (Discovery Set). 

Rank Associated Gene 
% Methylation 
Cases 

% Methylation 
Controls 

p-value 
Distance to 
Transcription 
Start Site 

CpG Island 
Chromoso
me 

Biological Description 

1 TMEM59 63.03 70.30 1.32E-05 1339 FALSE 1 APP post-translational glycolytic processing 
2 ATG10 8.16 5.59 1.97E-04 197 TRUE 5 Autophagy 
3 C9orf138 85.53 77.88 2.08E-04 47 TRUE 9 Hypothetical Protein 
4 CPNE9 4.76 6.33 4.43E-04 549 TRUE 3 Copine-like protein 

5 RELB 36.40 45.75 5.68E-04 470 TRUE 19 
reticuloendotheliosis viral oncogene homolog 
B 

6 C9orf138 68.36 57.60 8.92E-04 406 TRUE 9 Hypothetical Protein 
7 PLA2G3 45.95 37.03 9.66E-04 488 FALSE 22 Phospholipase A2 
8 DHFRL1 6.41 4.41 1.08E-03 511 TRUE 3 Hypothetical Protein 
9 MBD3L1 16.33 11.98 1.08E-03 141 FALSE 19 Methyl-CpG binding domain protein 3-like 

10 RSN 2.37 2.85 1.37E-03 698 TRUE 12 
Restin isoform a. Intermediate filament 
associated protein 

11 OTUD5 22.39 18.53 1.53E-03 232 TRUE X Hypothetical Protein 

12 TUBB2B 7.58 10.50 1.53E-03 494 TRUE 6 
Tubulin, beta polypeptide paralog. Microtubule 
associated. 

13 NTN2L 7.63 4.97 1.59E-03 159 TRUE 16 
Netrin 2-like. Structural molecule, axon 
guidance. 

14 GPR142 90.60 88.52 1.64E-03 237 FALSE 17 Signal transduction 
15 TSCOT 55.93 62.95 1.65E-03 498 TRUE 9 Thymic stromal co-transporter 
16 IL2RG 67.12 60.80 1.70E-03 88 FALSE X Interleukin 2 receptor, gamma precursor.   

17 BNC1 39.63 48.20 1.86E-03 NA TRUE 15 
Zinc finger protein basonuclin. Metal ion 
binding.   

18 HERC5 2.57 1.43 1.91E-03 108 TRUE 4 Cyclin-E binding protein 1.   
19 SLC36A3 73.03 80.25 2.18E-03 203 FALSE 5 Proton/amino acid transporter 3 
20 DYNC2LI1 4.44 3.05 2.21E-03 24 TRUE 2 Dynein 2 light intermediate chain 
21 SLC7A3 10.20 6.88 2.32E-03 208 TRUE X Cationic amino acid transporter 
22 FGF5 4.24 5.70 2.36E-03 544 TRUE 4 Fibroblast growth factor 5 
23 CAMP 92.62 89.57 2.53E-03 284 FALSE 3 Cathelicidin antimicrobial peptide 
24 CNN1 13.81 9.18 2.59E-03 92 TRUE 19 Caloonin 1. Calmodulin binding 
25 C15orf21 87.01 88.96 2.76E-03 7 FALSE 15 Dresden prostate carcinoma 2 
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CHAPTER IV 

Research Chapter 3 

An integrated analysis of genome-wide RNA expression and DNA 
methylation in late-onset Alzheimer’s disease and neuropathological 

controls 

ABSTRACT 

Introduction: Spontaneous, neurodegenerative, late-onset Alzheimer’s disease 

(LOAD) is associated with aberrations in brain gene expression.  Recent studies 

have observed dysregulation of epigenetic mechanisms, such as DNA 

methylation, but the association of gene expression with these marks in disease 

tissue is unknown.  Gene expression analysis in conjunction with DNA 

methylation mapping provides insight into the mechanisms of LOAD. 

Research: To investigate the potential epigenetic regulation of gene expression 

in LOAD, we evaluated the human frontal cortex of 11 cases of LOAD and 12 

cognitively normal controls.  We measured genome-wide RNA gene expression 

using the Affymetrix U133A Plus 2.0 Array and DNA methylation using the 

Illumina HumanMethylation 27K BeadArray.  We performed validation of X 

specific loci. 

Results: After adjusting for age and sex, there were 176 probe sets (145 unique 

genes) distinguishing gene expression of LOAD cases and controls (FDR<0.1, p-

value<3.3x10-4).  Of these, 76.7% were down-regulated in LOAD, including the 

statistically top five genes DUSP16, ERICH1, ESF1, PTPRF, and RNBP1.  

Among the genes where expression was associated with LOAD (p-value<0.05), 

DNA methylation and gene expression were correlated at 151 genes.  Positive 

(47.7%) and inverse (52.3%) associations were observed between gene 

expression and DNA methylation.   
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Conclusions: LOAD case and control samples differed by RNA expression 

levels and relatively few (7.2%) of those differences were correlated with DNA 

methylation.  Among genes with correlated DNA methylation and gene 

expression, positive and negative associations were observed with approximately 

equal frequencies.  Integrated genome-wide analyses of DNA methylation and 

RNA gene expression provide a functional molecular signature of LOAD and 

suggest novel sites for disease biomarker development.   

Keywords: Alzheimer’s disease, epigenetics, DNA methylation, frontal cortex, 

gene expression 

 

INTRODUCTION 

Alzheimer’s disease (AD) is a fatal neurodegenerative disease that affects 

over five million people in the United States. It is the sixth leading cause of death 

across all ages and the prevalence is rising (Alzheimer's Association 2011).  AD 

is characterized by two neuropathologies: β-amyloid (Aβ) plaques and tau 

neurofibrillary tangles (NFT).  Highly penetrant genetic mutations in the Aβ 

production pathway account for approximately 2% of AD cases, termed early-

onset AD (EOAD) cases (Bird 2005).  The remaining 98% of AD cases manifest 

symptoms after age 55 and are termed late-onset AD (LOAD) cases. Genome-

wide association studies reveal genetic risk factors for LOAD that are neither 

necessary nor sufficient to cause disease.   LOAD risk is associated with 

polymorphisms in the apolipoprotein E4 (APOE ε4), ABCA7, BIN1, CD2AP, 

CD33, CLU, CR1, EPHA1, MS4A4A and PICALM genes (Harold et al. 2009; 

Hollingworth et al. 2011; Lambert et al. 2009; Naj et al. 2011).  The combined 

population attributable fraction (PAF) for these multiple genetic risk factors is 

0.50, even after adjusting for APOE ε4 dose (Naj et al. 2011).  Thus, LOAD risk 

may be conferred through an interaction of external factors with genetic risk 

factors through gene-environment interactions or epigenetic modifications.  
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In LOAD, where genetic determinants confer only partial risk, Aβ and NFT 

pathways may be dysregulated through epigenetic mechanisms.  Epigenetics 

refers to heritable changes in gene expression that do not involve changes to the 

underlying DNA sequence.  Recent evidence suggests age-related changes in 

candidate gene methylation, such as upstream of Microtubule Associated Protein 

Tau (MAPT) in post-mortem human brain tissue (Tohgi et al. 1999).  Striking 

disease-specific differences however, have not been consistently detected in 

promoter CpG island regions of Aβ and NFT candidate genes (Barrachina and 

Ferrer 2009).  Newer research investigates non-canonical disease pathways, 

including cellular protein translation.  For example, AD samples from the parietal 

and prefrontal cortex were hypermethylated in the promoter regions of nucleolar 

rRNA genes (Pietrzak et al. 2011), coinciding with reduced ribosomal activity that 

has been observed with LOAD.   

To better understand the etiology of LOAD and the pathogenic processes, 

mapping the more complete epigenetic signature of disease is an important 

emerging area of research (Bakulski et al. 2012a).  Recent work from our 

research group has broadened the targeted pathway approach to examine 

genome-wide DNA methylation in LOAD (Bakulski et al. 2012a; Bakulski et al. 

2012b).  DNA methylome studies in LOAD brain tissues suggest widespread, yet 

modest DNA methylation changes associated with both age and disease 

(Bakulski et al. 2012b).  DNA methylation change is apparent, but the functional 

implications of the observed epigenetic marks have not yet been determined.  

LOAD cases and controls have been classified based on their differential 

gene expression profiles in post-mortem brain tissues.  For example, studies of 

gene expression by brain region in AD indicate significant dysregulation beyond 

the Aβ and NFT pathways (Kong et al. 2011).  Expression levels of ceramide 

fatty acid processing genes including ASMas, NSMass2, and GALC were 

upregulated in the brains of AD subjects (Filippov et al. 2012).  Changes in gene 

expression may also be at the center of hippocampal-dependent memory and 

corresponding deficiencies in AD.  For example, hippocampal neurons derived 
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from AD transgenic mice had reduced expression of activity-induced CREB-

dependent genes, which was reversible with expression of CREB-regulated 

transcription coactivator 1 (Crtc1) (Saura 2012).  Transcriptome profiles of AD 

and controls suggest AD brain tissues have increased expression of broad 

markers of chronic inflammation, cell adhesion, cell proliferation, and protein 

synthesis, as well as downregulation of signal transduction, energy metabolism, 

stress response, synaptic vesicle synthesis and function, calcium binding, and 

structural proteins (Loring et al. 2001).  The factors responsible for these broad 

gene expression changes are not clear.  In order to understand the etiology of 

LOAD, we move upstream in the LOAD course and investigate the regulation of 

the LOAD transcriptome, controlled in part through the epigenome. 

Recent individual gene studies have underscored the strengths in 

analyzing matched epigenetic and gene expression data in AD.  The candidate 

gene, peptidyl-prolyl cis/trans isomerase (Pin1), was examined in human 

peripheral blood mononuclear cells of 60 matched LOAD and control samples 

(Arosio et al. 2012).  Pin1 promoter DNA methylation had a modest reduction 

(8%) and increased gene expression (74%) in LOAD (Arosio et al. 2012).  A 

second example involves the Aβ A4 precursor protein-binding family A member 2 

(APBA2) gene implicated in Aβ production.  In primary rat cortical neurons, 

expression of Apba2 was reduced with promoter DNA methylation at a location 

7-120 base pairs upstream of the transcription start site (TSS) (Hao et al. 2012).  

An integrated analysis of observed DNA methylation and previously published 

RNA-seq expression was performed on a human cell line expressing the 

Swedish mutation of APP (APP-sw) and it revealed three potential gene sites 

(CTIF, NXT2, and DDR2) where DNA methylation and RNA expression were 

correlated (Sung et al. 2011).  These results are promising, but cell lines have 

distinct epigenetic profiles from primary tissue (Smiraglia et al. 2001) and cell 

lines engineered with EOAD mutations are not adequate models for spontaneous 

LOAD. Previous studies show that analyses incorporating both epigenetic and 

gene expression data can be very useful (Sartor et al. 2011).  Research using 
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primary human brain tissue in LOAD is needed to characterize the connection 

between DNA methylation and gene expression on a genome-wide scale.   

Here we utilize whole genome approaches to interrogate both gene 

expression and DNA methylation profiles in LOAD cases and controls to identify 

potential functional relationships between epigenetic patterns and disease status. 

First, human post-mortem frontal cortex samples from LOAD and 

neuropathologically normal control subjects are assessed for gene expression 

profiles.  Next, we combined gene expression data with DNA methylation results 

in the same samples.  Identification of genes with disease-specific gene 

expression differences that are correlated with DNA methylation changes support 

an emerging role of epigenetics in LOAD. 

Results 

Gene expression results.  

Gene expression in the frontal cortex was measured in 11 LOAD cases 

and 12 cognitively normal controls using the Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array. The array features 54,675 probe sets representing 

20,722 unique gene ids. The mean expression level across LOAD and controls 

was 4.73 and it ranged from 1.75 to 14.25. 

After adjusting for age and sex, site-specific expression values were 

compared between cases and controls.  The DUSP16 (dual specificity 

phosphatase 16) gene transcript distinguished LOAD cases and controls with the 

greatest statistical significance (p-value= 8.85*10-7, FDR= 0.0316, log(2) fold 

change: -0.913).  DUSP16 was down-regulated in LOAD, as were the next eight 

statistically significant genes with strongest association with LOAD status (Figure 

4.1).  These top nine genes (DUSP16, ERICH1, ESF1, PTPRF, FNBP1, RBM4, 

JMJD1C, LUC7L3, and RBM25) were down-regulated in AD case samples with 

an average of -1.18 log(2) fold change.  Three of the top nine genes were RNA 

splicing regulators (RBM4, LUC7L3, RBM25).   
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The top 25 probesets that differentiated cases and controls at a false 

discovery rate of 0.033 are listed in Table 4.1.  Twenty-two of the top 25 genes 

(88%) (DUSP16, ERICH1, ESF1, PTPRF, FNBP1, RBM4, JMJD1C, LUC7L3, 

RBM25, NUPL1, TCF25, UBXN4, CDC42BPA, CCAR1, ZNF37A, BRD4, EIF5B, 

LIMA1, ZFHX4, SMARCA4 , MYO6, CHAF1A) were down-regulated in LOAD.  

Three of the top 5 genes (12%) (SYTL4, DPYSL3, and LOC100505875) were up-

regulated in LOAD.    

Overall, there were 176 probe sets (146 unique genes) distinguishing 

LOAD cases and controls at a false discovery rate of less than 0.1 (p-

value<3.2x10-4) (Supplemental Table 4.1).  The log(2)fold change between 

cases and controls in these probe sets ranged from -1.98 to 1.72.  Forty-one 

(23.9%) of these probe sets were up-regulated in LOAD, while 135 (76.7%) were 

down-regulated in LOAD. The normalized expression of the top 176 sites is 

illustrated in a heatmap of using Ward’s hierarchical clustering methods and the 

maximum distance function (Figure 4.2).  Cases and controls are separated into 

two column clusters and the probeset rows separate into two groups based on up 

and down regulation with disease.  These 176 probesets also distinguish cases 

and controls when using Principal Component Analysis.  Principal component 

analysis (PCA) is a dimension reduction tool to reduce multiple correlated 

variables to linearly uncorrelated variables.  When data were restricted to probe 

sets that were differentially expressed according to LOAD status (n=176), PCA 

was an effective visualization strategy.  The first principal component described 

67.2% of the variance and the second principal component described 9.5% of the 

variance (Figure 4.3A). PCA on the 176 probe sets associated with LOAD (FDR 

<0.1), clustered samples by LOAD case and control (Figure 4.3B).  The heatmap 

and the PCA plot illustrate that these 176 probesets together are markers of 

LOAD case/control status in these samples.   

To examine whether these differences observed between AD cases and 

controls were due to disease-specific changes in expression or changing cell-

type populations, we incorporated publicly available cell-type specific data from 
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the NCBI Gene Expression Omnibus (GEO).  We combined GEO data from 

embryonic stem cell-derived neuronal precursor cells (NPC) and astrocytes with 

our own AD case and control data.  We used a follow-up heatmap to plot the 

expression levels at the original 176 probesets we found to distinguish cases and 

controls alongside the expression at those sites in NPC and astrocyte cells 

(Supplemental Figure 4.1).  At these 176 sites, NPC and astrocyte cells were 

separated into two cell-type clusters.  NPC and astrocytes did not cluster with AD 

cases or controls however, and the embryonic stem cell-derived data displayed 

greater range in gene expression change than our data.   

To test whether there were biological patterns in the group of genes that 

were found to be different in expression between LOAD cases and controls, we 

used the software, LRpath, developed by the National Center for Integrative 

Biomedical Informatics (NCIBI) (Sartor et al. 2009).  LRpath is a program that 

runs gene set enrichment testing using logistic regression on the full list of genes 

and associated p-values.  We used LRpath to calculate overrepresentation 

among our top expression hits in gene ontology terms (biological processes and 

molecular functions), cytogenic bands, transcription factor targets, and miRNA 

targets.  We observed down-regulation of 92 gene ontology biological processes 

at p<0.01 (FDR<0.1). The top fifteen biological processes that are decreased in 

LOAD are listed in Table 4.2 and the full list is in Supplemental Table 4.2.   Nine 

processes were at false discovery rates < 0.002: synaptic transmission, 

transmission of nerve impulses, cell-cell signaling, oxidative phosphorylation, 

regulation of synaptic plasticity, regulation of transmission of nerve impulse, 

cellular respiration, regulation of neurological system process, neurotransmitter 

transport, and regulation of neuronal synaptic plasticity. Similarly, we observed 

enrichment of 348 gene ontology biological processes in the genes with 

increased expression in AD cases (p-value<0.01, FDR<0.1).  The top fifteen 

biological processes that are increased in LOAD are listed in Table 4.3 and the 

full list is in Supplemental Table 4.3.  The top nine were translational elongation, 

defense response, immune response, innate immune response, inflammatory 

response, response to biotic stimulus, response to other organism, activation of 
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immune response, and regulation of immune response at false discovery rates < 

4*10-7.   The results for gene ontology molecular functions were similar to the 

results for 77 significantly up and 79 down regulated biological processes 

(Supplemental Tables 4.4 and 4.5, respectively). 

Genes differentially expressed in LOAD were also enriched in specific 

transcription factor targets, microRNA targets, and cytogenic bands.  Reduced-

expression in LOAD was associated with 17 transcription factors (Supplemental 

Table 4.6) including the top five: NRSF_01, NMYC_01, CREB_01, 

CREBP1CJUN_01, and MEIS1BHOXA9_02.  Over-expression in LOAD was 

associated with the following six transcription factors NFKAPPAB_01, 

NKX22_01, OCT_C, PBX1_01, HOXA3_01, and CREL_01 (Supplemental 

Table 4.7).  Genes targets associated with three microRNAs were over-

expressed in LOAD (mir-506, mir-124, mir-433) and genes under-expressed in 

LOAD were enriched in binding for three microRNAs (mir-129-5p, mir-185, and 

mir-328) (Supplemental Tables 4.8 and 4.9, respectively).  Among genes with 

higher expression in LOAD, 32 cytogenic bands were enriched, including the top 

five: 7p13-p12, 17p13, 4q25, 10p12.31, and 1q25 (Supplemental Table 4.10).  

Across genes with lower expression in LOAD, 33 cytogenic bands were enriched, 

including the top five: 16p13.3, 10p11.2, 8p23, 12p12.3, 8p21.3 (Supplemental 

Table 4.11).   

Expression-Methylation 

To test the extent to which DNA methylation was associated with the 

observed LOAD gene expression differences, we linked genome-wide gene 

expression and DNA methylation data from the same samples.  DNA methylation 

data was generated using the Illumina Infinium HumanMethylation27 BeadArray 

(Bakulski et al. 2012b).  We assessed combined methylation and expression at 

2,094 Entrez gene IDs (Figure 4.4).  These 2,094 genes had RNA expression 

associated with LOAD status (p-value <0.05) and DNA methylation data was 

available. 
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Across these 2,094 genes, we tested whether DNA methylation was 

correlated with gene expression.  At 151 genes (7.2% of genes tested), DNA 

methylation and gene expression were significantly correlated (Pearson 

correlation test p-value<0.05).  Among the 151 correlated sites, 79 (52.3%) 

represented the canonical, inverse association between DNA methylation and 

gene expression.  Conversely, 72 (47.7%) represented non-canonical, positive 

correlation between DNA methylation and gene expression. Pearson correlation 

values ranged from -0.62 to 0.68 across these significantly correlated sites.  

Among the 151 DNA methylation and RNA expression correlated sites, 81 

(53.6%) genes had higher methylation in LOAD and 70 (46.4%) had lower 

methylation in LOAD (Figure 4.5A).  Similarly, 86 (57%) had higher expression in 

LOAD and 65 (43%) had lower expression (Figure 4.5B) 

Significant differences in methylation levels between LOAD cases and 

controls were observed at 24 of the 151 DNA methylation-gene expression 

correlated sites (15.9%), after adjusting for age and sex (p-value<0.05) (Table 

4.4).  These 24 sites had significant disease-specific differences in DNA 

methylation, gene expression, and correlated methylation-expression values.  

Canonical, inverse correlation was observed at the following 17 genes (70.8% of 

24 genes with significant methylation differences): ARHGAP15, PTAFR, 

FAM122C, SNX20, MKNK1, PSEN1, PMP2, CDC42EP3, PLD5, SKI, GPR34, 

TP53TG5, WWTR1, CATSPERG, PARVG, PPP1R3B, and IFI16.  Non-

canonical, positive correlation between DNA methylation and gene expression 

was observed at 7 (29.2%) of sites: TMPO, SERPINH1, PSMB2, ITGAM, 

MED12, OLFML2B, and NACC2.  The first 9 genes with significant disease-

specific differences in DNA methylation, gene expression, and correlated 

methylation-expression are illustrated in scatter plots in Figure 4.6 and the 

remaining 15 genes are in Supplemental Figure 4.2. 

To test whether the genes with correlated expression and methylation 

values shared common biological pathways, we again performed gene set 

enrichment analysis using LRpath software.   We uploaded the Pearson’s 
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correlation test p-values corresponding to the correlations between the 2,094 

genes with linked RNA expression and DNA methylation data.  We observed 

enrichment at the cytogenic bands across DNA methylation and RNA expression 

correlated genes: 17p11.2, 14q24.3, 16q22.1, 11q23.3, 6p21.2, and 19p13.3, as 

shown in the circos plot (Figure 4.7).  We also observed transcription factor 

binding site enrichment at CEBPA_01, OCT1_05, GFI1_01, EVI1_06, MEF2_02, 

OCT1_01, NCX_01, PAX4_03, USF_C, GATA1_01, HAND1E47_01, PAX3_01, 

FOXO3_01, and COUP_01.  The following microRNA targets were enriched 

among the correlated DNA methylation and RNA expression sites: mir-342-3p, 

mir-215, mir-192, mir-455-5p, mir-300, mir-488, and mir-142-3p.  171 biological 

processes were enriched, including the top ranked twelve: protein 

deubiquitination, protein modification by small protein removal, NK-kappB import 

into nucleus, regulation of NF-kappaB import into nucleus, negative regulation of 

axonogenesis, ion membrane transport, regulation of transcription factor import 

into nucleus, microtubule depolymerization, positive regulation of protein 

ubiquitination, nuclear-transcribed mRNA catabolic process, mRNA catabolic 

process, and positive regulation of ligase activity.   

Discussion 

 LOAD is a complex disease involving multiple physiological changes that 

are evident in post-mortem pathology. Known genetic risk factors are responsible 

for only approximately half of the risk of LOAD disease initiation and progression 

(Naj et al. 2011).  We interrogated the gene expression changes associated with 

disease and an epigenetic gene expression regulator.  DNA methylation changes 

have been observed in LOAD, but the function of DNA methylation as a 

biomarker or potential mechanism of disease with gene expression implications 

had not been well characterized. We compared frontal cortex genome-wide RNA 

expression and DNA methylation profiles of LOAD cases and neuropathology-

confirmed controls.   Tissues were acquired on autopsy and nucleic acid samples 

were analyzed using array-based methods. We identified genes where 

expression was correlated with DNA methylation and where there were 
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differences by disease status.  These observations support a potential functional 

role for DNA methylation in LOAD at a subset of genes.   

First, using frontal cortex tissue, we identified discordant gene expression 

in LOAD.  We identified a subset of genes that were associated with LOAD 

where expression of samples clustered by case status.   These genes also 

differentiated NPC and astrocyte cell lines, which clustered separately from post-

mortem samples.  The majority of genes altered in LOAD were repressed in the 

disease samples. Across the entire gene set, the biological processes synaptic 

plasticity and transmission of nerve impulse were down-regulated in LOAD, while 

immune-related responses were up-regulated in LOAD.  These findings are 

consistent with the current understanding of LOAD pathogenesis.  In a novel 

analysis of genes with altered expression in LOAD, we integrated gene 

expression and DNA methylation data to test the role of DNA methylation in 

disease RNA changes.  Seven percent of genes with altered expression in LOAD 

were correlated with DNA methylation levels.  Gene expression varies with 

disease and DNA methylation may regulate the expression changes at a subset 

of genes.    

A handful of identified genes have previously been implicated in LOAD 

and in cognitive changes.  Specifically, we found reduced gene expression of 

ERICH1 in LOAD.  Copy number variation within the ERICH1 gene was 

previously associated with intra-extradimensional set shifting (IED) domain on 

the CANTAB cognition test (Need et al. 2009).  We also observed 

downregulation of formin binding protein 1 (FNBP1) in LOAD samples.  FNBP1 

was previously shown to be downregulated in blood mononuclear cells of AD 

subjects (Maes et al. 2007).  FNBP1 is implicated in endocytosis and cellular 

trafficking and protein processing.  Further, we observed reduced expression of 

PTPRF.  AD pathogenesis is associated with abnormal autophagy and PTPRF 

binds PTPσ, an autophagic phosphatase (Martin et al. 2011).   
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The gene expression probe set which best distinguished LOAD cases and 

controls was associated with DUSP16 (dual specificity phosphatase 16).  

DUSP16 is a member of a family of proteins that catalyse the inactivation of 

mitogen-activated protein kinase (MAPK).   MAPK plays a role in long term 

potentiation (LTP) of neurons (English and Sweatt 1997).  The p38 MAPK 

pathway is involved in tau pathology in AD (Johnson and Bailey 2003) and has 

been targeted for AD treatment (Munoz and Ammit 2010).   In addition, RBM4 

was downregulated in LOAD in our study.  RBM4 is a splice factor that interacts 

with an intronic element for MAPT and stimulates tau exon 10 inclusion (Kar et 

al. 2006).  RMB25 and LUC7L3 are also splice factors that were downregulated 

in LOAD in our study.  Dysregulation of splicing factors could have widespread 

downstream effects for neurodegenerative disease (Licatalosi and Darnell 2006).   

Previous research has performed transcriptome array analysis on LOAD 

cases and controls in the neocortex and found a large number of genes with 

divergent disease gene expression with wide-ranging physiological functions 

(Tan et al. 2010).  Among the genes that were associated with LOAD (FDR<0.1), 

we observed 77% were down-regulated in gene expression with LOAD.  

Similarly, Maes et al. found of the 942 genes with 2-fold differential change in AD 

blood mononuclear cells relative to controls, 87% were downregulated and only 

13% were upregulated in AD (Maes et al. 2007).  Research has looked at 

genetics as a driver of gene expression differences.  A previous genome-wide 

gene expression study in Alzheimer’s disease linked SNP data with transcript 

levels (Webster et al. 2009), and found that ~5% of transcripts had correlation 

between expression profiles and genotypes that could distinguish LOAD cases 

and controls.  Results from our study suggest that a similar level of genes with a 

altered expression (7% of genes) are correlated with DNA methylation levels.  

The current paper is the first study, that we are aware of, to examine the 

association between DNA methylation and gene expression in LOAD on a 

genome-wide scale.  Future research may integrate genetics, transcriptomics, 

and epigenomics for a more complete understanding of gene regulation in LOAD.   
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A limitation of cross-sectional research, such as this, is that causal 

relationships cannot be inferred.  Later work will be able to study the time course 

of the DNA methylation and gene expression associations observed here.  

Further, LOAD is characterized by neuronal loss (Coleman and Flood 1987) and 

glial cell activation (Mattson 2004).  Changing cell type populations may be 

responsible for these observations and future work could identify the cell type 

specific DNA methylation and gene expression patterns.   

GWAS studies estimate that known genetic LOAD risk alleles confer a 

combined population attributable fraction of 0.5 (Naj et al. 2011).  Additional risk 

genotypes may be discovered, but the remaining risk likely results from 

environmental exposures and an interaction of genetic and environmental 

factors, which have been historically understudied.  Epigenetics represents an 

important intersection of genes and environment.  By identifying new candidate 

areas of epigenetic and gene expression variability with LOAD, this research 

provides the groundwork for future studies in environmental and genetic 

susceptibility to LOAD.  LOAD research may increasingly consider a combined 

gene-environment paradigm.   

Materials and Methods 

Sample ascertainment.  The Michigan Alzheimer’s Disease Center (MADC) 

(P50AG008671; PI: Henry Paulson) followed a clinically characterized cohort of 

Alzheimer’s disease and cognitively normal control subjects.  Many subjects (and 

legal care-givers) consented to autopsy and donated to the MADC Brain Bank.  

Diagnoses were neuropathologically confirmed using Braak and Reagan scoring 

in the left hemispheres.  The right hemispheres were coronally sectioned, flash 

frozen, and archived at -80ºC.  For the current study, frozen tissue blocks from 

the mid-frontal gyrus of the frontal lobe were dissected at -20ºC.  MADC frozen 

tissues were previously used in high quality DNA methylation (Bakulski et al. 

2012b), expression (Hong et al. 2008; Pan et al. 2007), and proteomic studies 

(Pan et al. 2007).   
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Samples were eligible for the current study if neuropathology confirmed 

the diagnosis and if the subjects were at least 60 years old at death.  The MADC 

Brain Bank had 98 eligible LOAD cases (Braak Score ≥ 4) and 39 controls (Braak 

Score ≤ 2). Twelve gender- and age- (+/- 2 years) matched pairs of LOAD cases 

and controls were generated randomly, without replication.  The population 

characteristics of both sets of samples used in the current study are described in 

Table 4.5.  This human subjects study was approved by the Institutional Review 

Board of the University of Michigan Medical School.   

DNA and RNA isolation.  Gray matter free of vascular lesions was selected 

from the tissue blocks. DNA and RNA were isolated from adjoining tissues in all 

25 matched pairs.  DNA was extracted according to manufacturer’s instructions 

using the Maxwell Tissue DNA Kit (Promega, AS1030).  Tissue was 

homogenized with the TissueLyser II (Qiagen, 85300) and total RNA was 

extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, 74804).   

Transcriptome-wide RNA expression.  RNA from the twelve case-control pairs 

was interrogated for genome-wide expression analysis.  RNA quality was 

assessed using the Agilent 2100 Bioanalyzer and quantified using the Thermo 

Scientific NanoDrop Spectrophotometer 2000.  Samples with RNA quality greater 

than 3.0 RNA Integrity Number (RIN) and absorbance ratios A260/A280 greater 

than 2.0 were used for further study.  One AD case sample did not meet this set 

of criteria and was not used for further RNA study.  The quality of RNA did not 

differ by LOAD cases and controls (mean RIN=6.0, p-value=0.8).  5 ug of RNA 

was used for cDNA synthesis using a T7-Oligo(dT) promoter primer.  An in vitro 

transcription (IVT) reaction produced biotin-labeled cRNA that was then 

fragmented. At the University of Michigan Affymetrix Core facility, cRNA was 

hybridized to the GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, 

900470) using the 16-hour hybridization protocol. Each sample was hybridized to 

its own chip.  The probe array was washed and stained according to the 

GeneChip Expression Wash, Stain and Scan User Manual (Affymetrix, 702731).  

The probe array was scanned using the Affymetrix Scanner 3000 instrument and 
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the image files were analyzed for probe intensities.  The GeneChip provided data 

on 20,722 unique genes using 54,675 probe sets.   

Affymetrix Data Processing.  All further data processing and statistical 

analyses were done in R Statistical Software (version 2.18).  Data was 

background corrected, log2 transformed, and quantile normalized with Robust 

Multichip Average (RMA) methods (Gautier et al. 2004).  Using the affyQCReport 

and simpleaffy packages, quality control between the chips was high.     

Gene specific differential expression and significance by AD case status 

was assessed using parallel linear models and empirical Bayesian variance 

methods at site-specific moderated t-tests (Smyth 2004).  The following parallel 

linear models were fit at each CpG site that adjusted for subject’s age and sex.   

Expression = β0
 + β1(AD Case Status) +β2(Age) + β3(Sex) 

Probesets with AD Case Status β values that are significant at false 

discovery <0.1 are listed in a table and are used for data visualization.  A 

heatmap with mean normalized expression values was used to cluster samples 

and probesets.  To further illustrate differences between gene expression profiles 

in LOAD cases and controls, principle component analysis was used.  Across all 

probes on the GeneChip, the first three principal components explain 67% of 

variance. 

For each probeset, the Entrez gene ID, corresponding AD Case Status β 

p-value, and T-test statistic for direction of association were uploaded to the 

LRpath gene set enrichment testing program (Sartor et al. 2009).  LRpath was 

used to test for enrichment in gene ontology terms, cytogenic bands, 

transcription factor binding sites, and microRNA binding sites.    

We also downloaded publicly available cell-type specific gene expression 

data from NCBI’s Gene Expression Omnibus (GEO).  Gene expression in 

embryonic stem cell derived neuronal precursor cells (GSE7178) and astrocytes 
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(GSE5080) were plotted in a heatmap alongside the top hits distinguishing LOAD 

cases and controls.    

Genome-wide DNA methylation.  One µg of DNA from the twelve case-control 

pairs in the Discovery Phase was bisulfite-treated according to manufacturer’s 

instructions with the EZ DNA Methylation Kit (Zymo, D5001).  The Illumina 

recommended extended bisulfite thermocycling protocol (98ºC 10 minutes, hold 

at 64ºC for 17 hours) was followed.  Bisulfite-treated DNA was prepped and 

applied to the Infinium HumanMethylation27 BeadArray (Illumina, WG-311-2201) 

by the University of Michigan DNA Sequencing Core facility using methods 

published by Illumina researchers (Bibikova et al. 2009).  Across 27,578 probe 

sets, the BeadChip primarily targets CpG sites in the promoter regions of 14,475 

genes and 110 miRNAs.  Batch effects can potentially bias experimental 

differences, so six cases and six control samples were randomly applied to each 

of the 12-sample BeadChips.  Fluorescent intensities were imaged using the 

Illumina BeadArray Reader and the associated BeadScan software was used for 

image processing and data extraction.  Data were background normalized and 

percent methylation estimates (beta values) were calculated for each probe set.  

Data were exported to R for further processing.   

Illumina Data Processing.  The Illumina GenomeStudio software scored CpG 

sites for individual samples as failing based on fluorescence.  CpG sites that 

failed on greater than 10% of samples (n=171 sites) were excluded from 

analyses.  Tests for differences in methylation by epidemiological characteristics 

were performed using the limma BioConductor R package.  The following parallel 

linear models were fit at each CpG site that adjusted for subject’s age and sex.   

% Methylation = β0
 + β1(AD Case Status) +β2(Age) + β3(Sex) 

Data integration and statistical methods.  We filtered the list of genes 

differentially expressed between LOAD cases and controls and selected only the 

probe sets that met an expression difference threshold of p<0.05 (n=4,063 probe 

sets).  We removed 750 probe sets that did not map to Entrez gene ID’s 



 

131 

(n=3,313). To reduce the data to a single expression value per unique gene ID, if 

greater than one probe set was differentially expressed for a given gene, we 

selected the probe with the highest expression value.  The set of unique 

Affymetrix gene ID’s that were associated with LOAD case status included 2,768 

probe sets.   

We filtered the Illumina methylation data to only include CpG sites within 

1500 bp of a transcription start site with a known Entrez gene ID (n=25,811).  In 

the case of multiple Illumina probes for a given gene ID, we selected the CpG 

site with the lowest p-value for the association between LOAD cases and 

controls (n=13,865). 

We then matched the Affymetrix expression data and the Illumina 

methylation data by Entrez gene IDs.  This yielded a total of 2,094 unique gene 

ID’s where Illumina and Affymetrix matched and where the Affymetrix probe set 

was statistically significantly associated with LOAD case status (Figure 4.4).  

The Pearson’s correlation between gene expression and DNA methylation was 

calculated for each gene.  We performed LRpath gene set enrichment analysis 

on the 2,094 gene ID’s with linked expression and methylation data. 



 

132 

FIGURES 

 
Figure 4.1. Boxplots of gene expression of the 9 top genes that differ by LOAD 
case or control status.  LOAD cases display reduced gene expression at all of 9 
of the genes. 
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Figure 4.2. Heatmap of all of the 176 sites on the Affymetrix gene expression 

array (FDR < 0.1) associated with LOAD case status.  This plot used maximum 

distance and Ward’s hierarchical clustering methods.  Data has been normalized 

to the mean expression value per probeset. 
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A.

 

B. 

 

Figure 4.3. Principal Component Analysis. (A) Principal component loading 

histogram. (B). Principal component analysis scree plot for the top 176 probesets 

(FDR < 0.1).  
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Figure 4.4. Gene-expression and DNA methylation linked data analysis pipeline. 
 

A. 

B. 

 

Figure 4.5 (A) Scatterplot of the 133 genes that displayed discordant gene 
expression and DNA methylation between LOAD cases and controls.  The top of 
the figure represents genes less expressed in AD (n=50) and the bottom of the 
figure represents genes upregulated (n=84) in LOAD.  The left of the figure 
shows genes more highly methylated in LOAD and the right shows less 
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methylation in LOAD. (B) Boxplot of the differences in methylation between AD 
and controls separated by the direction of change in expression. 
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Figure 4.6. Scatter plots of 9 genes: expression vs. methylation. 
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Figure 4.7. Circos plot: Locations of gene expression change and DNA 
methylation change. 
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TABLES 

Table 4.1. Affymetrix expression differences between LOAD cases and controls (n=25) after adjusting for age and sex. 
Rank Affymetrix ID Entrez ID Gene Symbol Gene Name Chromosome 

Location 
Average 

Expression 
Fold 

Change 
Log2 Fold 
Change 

T-test 
Statistic 

P-value Adjusted 
P-value 

1 1558740_s_at 80824 DUSP16 dual specificity phosphatase 16 12p13.2 7.11 0.531 -0.913 -6.63 8.85E-07 0.0316 

2 227016_at 157697 ERICH1 glutamate-rich 1 8p23.3 5.37 0.529 -0.917 -6.26 2.09E-06 0.0316 

3 218859_s_at 51575 ESF1 ESF1, nucleolar pre-rRNA processing protein, 
homolog (S. cerevisiae) 

20p12.1 7.72 0.393 -1.349 -6.16 2.65E-06 0.0316 

4 200635_s_at 5792 PTPRF protein tyrosine phosphatase, receptor type, F 1p34 7.35 0.488 -1.034 -6.12 2.96E-06 0.0316 

5 213940_s_at 23048 FNBP1 formin binding protein 1 9q34 7.03 0.425 -1.233 -5.87 5.33E-06 0.0316 

6 213718_at 5936 RBM4 RNA binding motif protein 4 11q13 5.86 0.537 -0.897 -5.85 5.57E-06 0.0316 

7 224933_s_at 221037 JMJD1C jumonji domain containing 1C 10q21.3 7.19 0.504 -0.990 -5.83 5.96E-06 0.0316 

8 208835_s_at 51747 LUC7L3 LUC7-like 3 (S. cerevisiae) 17q21.33 10.14 0.399 -1.327 -5.78 6.59E-06 0.0316 

9 212027_at 58517 RBM25 RNA binding motif protein 25 14q24.3 7.73 0.264 -1.919 -5.74 7.27E-06 0.0316 

10 241425_at 9818 NUPL1 nucleoporin like 1 13q12.13 5.70 0.558 -0.842 -5.73 7.60E-06 0.0316 

11 213311_s_at 22980 TCF25 transcription factor 25 (basic helix-loop-helix) 16q24.3 8.47 0.374 -1.420 -5.71 7.89E-06 0.0316 

12 212007_at 23190 UBXN4 UBX domain protein 4 2q21.3 8.97 0.421 -1.247 -5.66 8.88E-06 0.0316 

13 214464_at 8476 CDC42BPA CDC42 binding protein kinase alpha (DMPK-like) 1q42.11 8.32 0.303 -1.722 -5.64 9.27E-06 0.0316 

14 227703_s_at 94121 SYTL4 synaptotagmin-like 4 Xq21.33 6.31 2.538 1.344 5.64 9.32E-06 0.0316 

15 224736_at 55749 CCAR1 cell division cycle and apoptosis regulator 1 10q21.3 8.02 0.446 -1.165 -5.64 9.47E-06 0.0316 

16 228711_at 7587 ZNF37A zinc finger protein 37A 10p11.2 7.10 0.584 -0.775 -5.61 1.01E-05 0.0316 

17 201430_s_at 1809 DPYSL3 dihydropyrimidinase-like 3 5q32 5.01 1.937 0.954 5.61 1.01E-05 0.0316 

18 226054_at 23476 BRD4 bromodomain containing 4 19p13.1 7.45 0.538 -0.894 -5.59 1.05E-05 0.0316 

19 201026_at 9669 EIF5B eukaryotic translation initiation factor 5B 2q11.2 7.24 0.465 -1.104 -5.58 1.10E-05 0.0316 

20 230781_at 100505875 LOC100505875 uncharacterized LOC100505875 NA 4.56 2.494 1.318 5.52 1.26E-05 0.0322 

21 222457_s_at 51474 LIMA1 LIM domain and actin binding 1 12q13 5.52 0.432 -1.212 -5.51 1.28E-05 0.0322 

22 219779_at 79776 ZFHX4 zinc finger homeobox 4 8q21.11 6.64 0.627 -0.674 -5.50 1.33E-05 0.0322 

23 212520_s_at 6597 SMARCA4 SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily a, 
member 4 

19p13.2 7.19 0.427 -1.229 -5.49 1.35E-05 0.0322 

24 203215_s_at 4646 MYO6 myosin VI 6q13 7.26 0.253 -1.984 -5.47 1.41E-05 0.0322 

25 203975_s_at 10036 CHAF1A chromatin assembly factor 1, subunit A (p150) 19p13.3 4.89 0.674 -0.569 -5.45 1.51E-05 0.0330 
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Table 4.2. Among genes with lower gene expression in AD cases vs. controls, the following are the top 15 biological 
processes that are down-regulated based on LR-Path. 

Rank Name #Genes P-Value FDR SigGenes 

1 synaptic transmission 353 4.92E-12 2.92E-09 223, 5368, 627, 6529, 7425, 9379 

2 transmission of nerve impulse 411 6.52E-12 3.38E-09 223, 5368, 627, 6529, 7425, 9379 

3 cell-cell signaling 700 5.95E-07 6.03E-05 223, 4826, 5368, 627, 6529, 7425, 9379, 9547, 9636 

4 oxidative phosphorylation 94 3.10E-06 1.81E-04 155066, 4704 

5 regulation of synaptic plasticity 53 8.57E-06 4.23E-04 627, 7425 

6 regulation of transmission of nerve impulse 132 2.83E-05 1.10E-03 627, 6529, 7425 

7 cellular respiration 94 2.90E-05 1.10E-03 4704 

8 regulation of neurological system process 142 4.41E-05 1.57E-03 627, 6529, 7425 

9 neurotransmitter transport 96 5.54E-05 1.93E-03 6529, 9379 

10 regulation of neuronal synaptic plasticity 32 5.96E-05 2.06E-03 7425 

11 regulation of synaptic transmission 121 7.69E-05 0.003 627, 6529, 7425 

12 respiratory electron transport chain 59 8.08E-05 0.003 4704 

13 regulation of neurotransmitter levels 82 1.13E-04 0.003 223, 9379 

14 nucleotide-excision repair, DNA damage removal 21 1.16E-04 0.003 2073 

15 ATP synthesis coupled electron transport 51 1.89E-04 0.005 4704 
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Table 4.3. Among genes with higher gene expression in AD cases vs. controls, the following are the top 15 biological 
processes that are up-regulated based on LR-Path. 

Rank Name #Genes P-Value FDR SigGenes 

1 translational elongation 101 4.07E-20 1.69E-16 11224, 1937, 2197, 25873, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232 

2 defense response 661 1.16E-16 2.42E-13 

10219, 10410, 1050, 10581, 11326, 12, 23643, 241, 2532, 2919, 313, 3440, 3487, 
3588, 3600, 3823, 4057, 4615, 4688, 51191, 58191, 6039, 604, 60675, 6283, 7097, 
7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7305, 8519, 929, 9332, 9450 

3 immune response 660 3.86E-15 5.34E-12 

10346, 10410, 10581, 11326, 23643, 2669, 2919, 3108, 3109, 3122, 3588, 3600, 
4057, 4615, 4688, 4860, 51191, 54209, 563, 58191, 604, 6398, 7097, 7098, 710, 
7100, 712, 713, 714, 718, 719, 8519, 929, 9450 

4 response to wounding 598 1.07E-14 1.11E-11 

10219, 1050, 11326, 12, 1462, 2162, 23643, 241, 2697, 2919, 313, 3399, 3440, 
3487, 3587, 3588, 3600, 4615, 4814, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 
713, 7132, 714, 718, 719, 7423, 929, 9332, 9450 

5 innate immune response 201 8.28E-13 6.68E-10 
10410, 10581, 11326, 23643, 4615, 4688, 51191, 58191, 7097, 7098, 710, 7100, 
712, 713, 714, 718, 8519, 929, 9450 

6 inflammatory response 365 9.65E-13 6.68E-10 
10219, 1050, 11326, 12, 23643, 241, 2919, 313, 3440, 3487, 3588, 3600, 4615, 604, 
60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 929, 9332, 9450 

7 response to biotic stimulus 442 8.34E-12 3.85E-09 
10049, 10346, 10410, 10581, 11080, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 
3665, 3669, 4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 871, 929 

8 response to other organism 354 5.69E-11 2.36E-08 
10346, 10410, 10581, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669, 
4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 929 

9 activation of immune response 110 7.45E-11 2.81E-08 11326, 1997, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719 

10 regulation of immune response 245 8.89E-10 3.08E-07 11326, 1997, 3600, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719 

11 response to bacterium 213 1.42E-09 4.53E-07 1373, 23643, 3587, 4057, 6283, 7079, 7097, 7098, 7100, 7132, 929 

12 I-kappaB kinase/NF-kappaB cascade 171 2.35E-09 6.98E-07 23643, 2697, 3965, 4615, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132 

13 
regulation of toll-like receptor signaling 
pathway 9 2.97E-09 8.21E-07 7097, 7098, 7100 

14 
positive regulation of toll-like receptor 
signaling pathway 7 7.11E-09 1.85E-06 7097, 7098, 7100 

15 humoral immune response 80 8.56E-09 2.09E-06 11326, 4057, 54209, 710, 712, 713, 714, 718, 9450 
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Table 4.4. Gene expression and methylation correlation. 

Rank Entrez ID Gene Symbol Affymetrix ID Illumina ID Log2 
Expression 
Fold Change 

Expression 
Difference P-
Value 

Percent 
Difference in 
Methylation 

Methylation 
Difference P-
Value 

Pearson 
Correlation 
Coefficient 

Pearson 
Correlation 
Test P-Value 

1 7112 TMPO 209754_s_at cg23264519 0.309 0.041 0.411 0.046 0.617 0.002 

2 55843 ARHGAP15 218870_at cg23627134 0.457 0.003 -3.241 0.016 -0.614 0.002 

3 5724 PTAFR 227184_at cg18468844 0.436 0.011 -3.088 0.031 -0.591 0.003 

4 159091 FAM122C 239047_at cg16510010 -0.259 0.003 4.715 0.016 -0.586 0.003 

5 124460 SNX20 228869_at cg27081230 0.261 0.016 -4.881 0.016 -0.567 0.005 

6 8569 MKNK1 1560720_at cg15445332 0.230 0.002 -0.362 0.029 -0.540 0.008 

7 5663 PSEN1 207782_s_at cg11490446 0.430 0.008 -1.044 0.034 -0.534 0.009 

8 871 SERPINH1 207714_s_at 6.250186 0.878 0.041 1.507 0.026 0.525 0.010 

9 5375 PMP2 206826_at cg21649520 -1.124 0.000 4.849 0.024 -0.521 0.011 

10 5690 PSMB2 231323_at 3.890297 0.402 0.027 0.606 0.007 0.509 0.013 

11 3684 ITGAM 205786_s_at cg00833777 0.509 0.030 7.910 0.004 0.503 0.015 

12 10602 CDC42EP3 209288_s_at cg05469695 0.446 0.040 -1.993 0.027 -0.491 0.017 

13 200150 PLD5 1563933_a_at cg12613383 0.657 0.002 -2.358 0.042 -0.488 0.018 

14 6497 SKI 213755_s_at cg06382459 -0.263 0.032 1.217 0.011 -0.484 0.019 

15 2857 GPR34 223620_at cg22835805 0.670 0.031 -5.528 0.006 -0.464 0.026 

16 27296 TP53TG5 207482_at cg14226064 -0.407 0.029 3.634 0.006 -0.461 0.027 

17 25937 WWTR1 202133_at cg12507125 0.725 0.010 -2.123 0.004 -0.454 0.030 

18 9968 MED12 203506_s_at cg21693321 0.242 0.037 5.736 0.029 0.449 0.032 

19 57828 CATSPERG 231261_at cg18996334 -0.189 0.042 0.234 0.043 -0.448 0.032 

20 64098 PARVG 233510_s_at cg19863740 0.385 0.004 -2.099 0.035 -0.445 0.033 

21 25903 OLFML2B 213125_at cg20172280 0.242 0.043 0.803 0.022 0.443 0.034 

22 79660 PPP1R3B 222662_at cg24727203 0.601 0.004 -7.281 0.011 -0.441 0.035 

23 138151 NACC2 212993_at cg12004206 0.421 0.022 0.358 0.044 0.441 0.035 

24 3428 IFI16 208966_x_at cg21406461 0.598 0.030 -7.925 0.039 -0.438 0.036 
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Table 4.5. Study population characteristics. 

 LOAD Cases Neuropathologically 
Normal Controls 

N 11 12 

Age mean(range) 80 (69-94) 79.9 (69-95) 

Sex 
 

6 Females 
5 Males 

6 Females 
6 Males 

Ethnicity Caucasian Caucasian 

Braak Stage mean 4.75 1.33 

Years in storage mean (range) 11 (5-17) 13.2 (3-20) 
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SUPPLEMENTAL FIGURES 

 
Supplemental Figure 4.1. Heatmap of all of the 176 sites on the Affymetrix gene 
expression array (FDR < 0.1) associated with LOAD case status.  Publicly available data 
from embryonic stem cell derived neuronal precursor cells (GSE7178) and astrocytes 
(GSE5080) have been included.  This plot used maximum distance and Ward’s 
hierarchical clustering methods and normalized to the mean expression value per 
probeset.   
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Supplemental Figure 2.  Scatterplots of expression vs. methylation for the 23 genes 
significantly associated with AD via expression (p<0.05) and methylation (p<0.05), and 
methylation and expression are significantly correlated (Pearson’s p<0.05). 
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SUPPLEMENTAL TABLES 

Supplemental Table 4.1. Gene expression probesets associated with AD case vs. controls at FDR <0.1 (n=176) 
Rank Affymetrix ID Entrez ID Gene Symbol Gene Name Chromosome 

Location 
Average 

Expression 
Fold 

Change 
Log2 Fold 
Change 

T-test 
Statistic 

P-value Adjusted 
P-value 

1 1558740_s_at 80824 DUSP16 dual specificity phosphatase 16 12p13.2 7.11 0.531 -0.913 -6.63 8.85E-07 0.0316 

2 227016_at 157697 ERICH1 glutamate-rich 1 8p23.3 5.37 0.529 -0.917 -6.26 2.09E-06 0.0316 

3 218859_s_at 51575 ESF1 ESF1, nucleolar pre-rRNA processing protein, 
homolog (S. cerevisiae) 

20p12.1 7.72 0.393 -1.349 -6.16 2.65E-06 0.0316 

4 200635_s_at 5792 PTPRF protein tyrosine phosphatase, receptor type, F 1p34 7.35 0.488 -1.034 -6.12 2.96E-06 0.0316 

5 213940_s_at 23048 FNBP1 formin binding protein 1 9q34 7.03 0.425 -1.233 -5.87 5.33E-06 0.0316 

6 213718_at 5936 RBM4 RNA binding motif protein 4 11q13 5.86 0.537 -0.897 -5.85 5.57E-06 0.0316 

7 224933_s_at 221037 JMJD1C jumonji domain containing 1C 10q21.3 7.19 0.504 -0.990 -5.83 5.96E-06 0.0316 

8 208835_s_at 51747 LUC7L3 LUC7-like 3 (S. cerevisiae) 17q21.33 10.14 0.399 -1.327 -5.78 6.59E-06 0.0316 

9 212027_at 58517 RBM25 RNA binding motif protein 25 14q24.3 7.73 0.264 -1.919 -5.74 7.27E-06 0.0316 

10 241425_at 9818 NUPL1 nucleoporin like 1 13q12.13 5.70 0.558 -0.842 -5.73 7.60E-06 0.0316 

11 213311_s_at 22980 TCF25 transcription factor 25 (basic helix-loop-helix) 16q24.3 8.47 0.374 -1.420 -5.71 7.89E-06 0.0316 

12 212007_at 23190 UBXN4 UBX domain protein 4 2q21.3 8.97 0.421 -1.247 -5.66 8.88E-06 0.0316 

13 214464_at 8476 CDC42BPA CDC42 binding protein kinase alpha (DMPK-like) 1q42.11 8.32 0.303 -1.722 -5.64 9.27E-06 0.0316 

14 227703_s_at 94121 SYTL4 synaptotagmin-like 4 Xq21.33 6.31 2.538 1.344 5.64 9.32E-06 0.0316 

15 224736_at 55749 CCAR1 cell division cycle and apoptosis regulator 1 10q21.3 8.02 0.446 -1.165 -5.64 9.47E-06 0.0316 

16 228711_at 7587 ZNF37A zinc finger protein 37A 10p11.2 7.10 0.584 -0.775 -5.61 1.01E-05 0.0316 

17 201430_s_at 1809 DPYSL3 dihydropyrimidinase-like 3 5q32 5.01 1.937 0.954 5.61 1.01E-05 0.0316 

18 226054_at 23476 BRD4 bromodomain containing 4 19p13.1 7.45 0.538 -0.894 -5.59 1.05E-05 0.0316 

19 201026_at 9669 EIF5B eukaryotic translation initiation factor 5B 2q11.2 7.24 0.465 -1.104 -5.58 1.10E-05 0.0316 

20 230781_at 100505875 LOC100505875 uncharacterized LOC100505875 NA 4.56 2.494 1.318 5.52 1.26E-05 0.0322 

21 222457_s_at 51474 LIMA1 LIM domain and actin binding 1 12q13 5.52 0.432 -1.212 -5.51 1.28E-05 0.0322 

22 219779_at 79776 ZFHX4 zinc finger homeobox 4 8q21.11 6.64 0.627 -0.674 -5.50 1.33E-05 0.0322 

23 212520_s_at 6597 SMARCA4 SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily a, 
member 4 

19p13.2 7.19 0.427 -1.229 -5.49 1.35E-05 0.0322 

24 203215_s_at 4646 MYO6 myosin VI 6q13 7.26 0.253 -1.984 -5.47 1.41E-05 0.0322 

25 203975_s_at 10036 CHAF1A chromatin assembly factor 1, subunit A (p150) 19p13.3 4.89 0.674 -0.569 -5.45 1.51E-05 0.0330 

26 232595_at NA NA NA NA 3.49 1.360 0.444 5.41 1.66E-05 0.0349 

27 222628_s_at 51455 REV1 REV1 homolog (S. cerevisiae) 2q11.1-q11.2 7.19 0.530 -0.916 -5.37 1.81E-05 0.0366 

28 200842_s_at 2058 EPRS glutamyl-prolyl-tRNA synthetase 1q41 7.79 0.367 -1.444 -5.36 1.88E-05 0.0366 

29 222792_s_at 29080 CCDC59 coiled-coil domain containing 59 12q21.31 6.50 0.566 -0.822 -5.34 1.98E-05 0.0366 

30 214375_at 8496 PPFIBP1 PTPRF interacting protein, binding protein 1 (liprin 
beta 1) 

12p12.1 6.27 0.440 -1.185 -5.33 2.03E-05 0.0366 

31 220727_at 54207 KCNK10 potassium channel, subfamily K, member 10 14q31.3 6.30 0.577 -0.794 -5.30 2.16E-05 0.0366 

32 206726_at 27306 HPGDS hematopoietic prostaglandin D synthase 4q22.3 3.32 1.353 0.436 5.29 2.23E-05 0.0366 

33 242233_at NA NA NA NA 5.52 0.603 -0.730 -5.28 2.25E-05 0.0366 

34 202379_s_at 4820 NKTR natural killer-tumor recognition sequence 3p23-p21 9.16 0.476 -1.070 -5.28 2.28E-05 0.0366 
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35 214911_s_at 6046 BRD2 bromodomain containing 2 6p21.3 8.26 0.467 -1.098 -5.25 2.47E-05 0.0386 

36 216563_at 23253 ANKRD12 ankyrin repeat domain 12 18p11.22 7.50 0.389 -1.363 -5.22 2.64E-05 0.0399 

37 211993_at 65125 WNK1 WNK lysine deficient protein kinase 1 12p13.3 6.85 0.344 -1.540 -5.20 2.76E-05 0.0399 

38 219387_at 55704 CCDC88A coiled-coil domain containing 88A 2p16.1 8.08 0.286 -1.807 -5.16 3.05E-05 0.0399 

39 226176_s_at 84132 USP42 ubiquitin specific peptidase 42 7p22.1 6.36 0.510 -0.971 -5.16 3.09E-05 0.0399 

40 223185_s_at 79365 BHLHE41 basic helix-loop-helix family, member e41 12p12.1 4.14 0.464 -1.108 -5.15 3.10E-05 0.0399 

41 209945_s_at 2932 GSK3B glycogen synthase kinase 3 beta 3q13.3 5.25 0.703 -0.509 -5.14 3.19E-05 0.0399 

42 229353_s_at 64710 NUCKS1 nuclear casein kinase and cyclin-dependent kinase 
substrate 1 

1q32.1 10.51 0.526 -0.926 -5.14 3.20E-05 0.0399 

43 225041_at 54737 MPHOSPH8 M-phase phosphoprotein 8 13q12.11 8.89 0.376 -1.410 -5.14 3.24E-05 0.0399 

44 225565_at 1385 CREB1 cAMP responsive element binding protein 1 2q34 5.33 0.552 -0.857 -5.13 3.27E-05 0.0399 

45 222122_s_at 57187 THOC2 THO complex 2 Xq25-q26.3 7.11 0.462 -1.114 -5.13 3.28E-05 0.0399 

46 213298_at 4782 NFIC nuclear factor I/C (CCAAT-binding transcription 
factor) 

19p13.3 5.44 0.447 -1.161 -5.10 3.55E-05 0.0422 

47 209230_s_at 26471 NUPR1 nuclear protein, transcriptional regulator, 1 16p11.2 7.06 2.413 1.271 5.08 3.74E-05 0.0432 

48 222540_s_at 51773 RSF1 remodeling and spacing factor 1 11q14.1 8.25 0.398 -1.328 -5.07 3.79E-05 0.0432 

49 222620_s_at 64215 DNAJC1 DnaJ (Hsp40) homolog, subfamily C, member 1 10p12.31 7.29 0.385 -1.378 -5.04 4.08E-05 0.0442 

50 1569594_a_at 9147 NEMF nuclear export mediator factor 14q22 7.97 0.429 -1.221 -5.04 4.08E-05 0.0442 

51 229586_at 80205 CHD9 chromodomain helicase DNA binding protein 9 16q12.2 7.65 0.476 -1.072 -5.04 4.13E-05 0.0442 

52 208963_x_at 3992 FADS1 fatty acid desaturase 1 11q12.2-
q13.1 

7.71 0.556 -0.847 -5.00 4.52E-05 0.0467 

53 226975_at 55599 RNPC3 RNA-binding region (RNP1, RRM) containing 3 1p21 6.65 0.393 -1.346 -5.00 4.53E-05 0.0467 

54 229163_at 55450 CAMK2N1 calcium/calmodulin-dependent protein kinase II 
inhibitor 1 

1p36.12 7.38 0.567 -0.820 -4.99 4.69E-05 0.0472 

55 1555495_a_at 10283 CWC27 CWC27 spliceosome-associated protein homolog 
(S. cerevisiae) 

5q12.3 8.27 0.566 -0.820 -4.97 4.85E-05 0.0472 

56 200702_s_at 57062 DDX24 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 14q32 7.59 0.358 -1.480 -4.97 4.88E-05 0.0472 

57 225946_at 11228 RASSF8 Ras association (RalGDS/AF-6) domain family (N-
terminal) member 8 

12p12.3 6.58 1.665 0.736 4.96 5.04E-05 0.0472 

58 209376_x_at 9169 SCAF11 SR-related CTD-associated factor 11 12q12 7.02 0.468 -1.095 -4.96 5.09E-05 0.0472 

59 208994_s_at 9360 PPIG peptidylprolyl isomerase G (cyclophilin G) 2q31.1 7.81 0.406 -1.299 -4.95 5.10E-05 0.0472 

60 213850_s_at 9169 SCAF11 SR-related CTD-associated factor 11 12q12 7.86 0.460 -1.122 -4.94 5.27E-05 0.0480 

61 201183_s_at 1108 CHD4 chromodomain helicase DNA binding protein 4 12p13 7.21 0.461 -1.118 -4.93 5.35E-05 0.0480 

62 232323_s_at 55761 TTC17 tetratricopeptide repeat domain 17 11p11.2 6.38 0.469 -1.092 -4.92 5.60E-05 0.0494 

63 209088_s_at 29855 UBN1 ubinuclein 1 16p13.3 6.99 0.418 -1.257 -4.91 5.75E-05 0.0497 

64 215049_x_at 9332 CD163 CD163 molecule 12p13.3 5.22 3.284 1.715 4.90 5.85E-05 0.0497 

65 222616_s_at 10600 USP16 ubiquitin specific peptidase 16 21q22.11 6.39 0.329 -1.606 -4.89 5.92E-05 0.0497 

66 213729_at 55660 PRPF40A PRP40 pre-mRNA processing factor 40 homolog A 
(S. cerevisiae) 

2q23.3 6.87 0.460 -1.120 -4.89 5.99E-05 0.0497 

67 231061_at NA NA NA NA 5.42 0.540 -0.888 -4.88 6.11E-05 0.0499 

68 217728_at 6277 S100A6 S100 calcium binding protein A6 1q21 8.34 1.537 0.620 4.87 6.26E-05 0.0500 

69 203729_at 2014 EMP3 epithelial membrane protein 3 19q13.3 5.56 1.977 0.983 4.86 6.47E-05 0.0500 

70 227298_at 401264 FLJ37798 uncharacterized LOC401264 6p12.3 6.06 0.750 -0.414 -4.86 6.48E-05 0.0500 

71 229635_at 1.01E+08 LOC100505702 uncharacterized LOC100505702 NA 4.25 2.236 1.161 4.86 6.50E-05 0.0500 
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72 208685_x_at 6046 BRD2 bromodomain containing 2 6p21.3 8.27 0.487 -1.038 -4.84 6.73E-05 0.0511 

73 217832_at 10492 SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting 
protein 

6q14-q15 7.35 1.764 0.819 4.82 7.16E-05 0.0536 

74 208772_at NA NA NA NA 8.03 0.579 -0.788 -4.80 7.56E-05 0.0557 

75 219437_s_at 29123 ANKRD11 ankyrin repeat domain 11 16q24.3 6.84 0.376 -1.411 -4.79 7.75E-05 0.0557 

76 238595_at NA NA NA NA 5.86 0.487 -1.037 -4.79 7.77E-05 0.0557 

77 238584_at 79781 IQCA1 IQ motif containing with AAA domain 1 2q37.3 4.26 0.467 -1.099 -4.78 7.85E-05 0.0557 

78 35436_at 2801 GOLGA2 golgin A2 9q34.11 6.16 0.495 -1.015 -4.76 8.20E-05 0.0569 

79 1558965_at 51317 PHF21A PHD finger protein 21A 11p11.2 3.12 1.419 0.505 4.76 8.24E-05 0.0569 

80 241458_at NA NA NA NA 4.63 1.432 0.518 4.76 8.38E-05 0.0569 

81 220946_s_at 29072 SETD2 SET domain containing 2 3p21.31 3.30 0.550 -0.862 -4.75 8.53E-05 0.0569 

82 214843_s_at 23032 USP33 ubiquitin specific peptidase 33 1p31.1 6.00 0.600 -0.738 -4.75 8.59E-05 0.0569 

83 236869_at NA NA NA NA 4.33 0.553 -0.854 -4.74 8.74E-05 0.0569 

84 207542_s_at 358 AQP1 aquaporin 1 (Colton blood group) 7p14 6.41 2.433 1.283 4.74 8.75E-05 0.0569 

85 201914_s_at 11231 SEC63 SEC63 homolog (S. cerevisiae) 6q21 6.13 0.384 -1.380 -4.73 8.93E-05 0.0575 

86 221210_s_at 80896 NPL N-acetylneuraminate pyruvate lyase 
(dihydrodipicolinate synthase) 

1q25 3.93 2.039 1.028 4.72 9.21E-05 0.0581 

87 203181_x_at 6733 SRPK2 SRSF protein kinase 2 7q22-q31.1 9.55 0.496 -1.011 -4.71 9.43E-05 0.0581 

88 233080_s_at 55660 PRPF40A PRP40 pre-mRNA processing factor 40 homolog A 
(S. cerevisiae) 

2q23.3 6.77 0.490 -1.029 -4.70 9.70E-05 0.0581 

89 209466_x_at 5764 PTN pleiotrophin 7q33 8.46 0.411 -1.282 -4.69 9.81E-05 0.0581 

90 208663_s_at 7267 TTC3 tetratricopeptide repeat domain 3 21q22.2 8.39 0.298 -1.745 -4.69 9.98E-05 0.0581 

91 211737_x_at 5764 PTN pleiotrophin 7q33 9.37 0.445 -1.168 -4.68 1.02E-04 0.0581 

92 214314_s_at 9669 EIF5B eukaryotic translation initiation factor 5B 2q11.2 6.17 0.551 -0.861 -4.68 1.02E-04 0.0581 

93 206929_s_at 4782 NFIC nuclear factor I/C (CCAAT-binding transcription 
factor) 

19p13.3 7.19 0.499 -1.002 -4.67 1.03E-04 0.0581 

94 209127_s_at 9733 SART3 squamous cell carcinoma antigen recognized by T 
cells 3 

12q24.1 6.13 0.417 -1.260 -4.67 1.03E-04 0.0581 

95 212382_at 6925 TCF4 transcription factor 4 18q21.1 7.25 0.387 -1.371 -4.67 1.04E-04 0.0581 

96 225590_at 57630 SH3RF1 SH3 domain containing ring finger 1 4q32.3 5.92 0.595 -0.749 -4.67 1.04E-04 0.0581 

97 226782_at 253512 SLC25A30 solute carrier family 25, member 30 13q14.13 5.11 1.364 0.448 4.67 1.05E-04 0.0581 

98 204964_s_at 8082 SSPN sarcospan (Kras oncogene-associated gene) 12p11.2 6.29 0.497 -1.008 -4.66 1.06E-04 0.0581 

99 208942_s_at 7095 SEC62 SEC62 homolog (S. cerevisiae) 3q26.2 9.81 0.596 -0.746 -4.65 1.08E-04 0.0581 

100 232677_at NA NA NA NA 4.55 0.603 -0.731 -4.65 1.09E-04 0.0581 

101 208993_s_at 9360 PPIG peptidylprolyl isomerase G (cyclophilin G) 2q31.1 8.28 0.463 -1.111 -4.64 1.10E-04 0.0581 

102 208610_s_at 23524 SRRM2 serine/arginine repetitive matrix 2 16p13.3 7.99 0.326 -1.619 -4.64 1.11E-04 0.0581 

103 216520_s_at 7178 TPT1 tumor protein, translationally-controlled 1 13q14 11.68 1.383 0.468 4.64 1.12E-04 0.0581 

104 201224_s_at 10250 SRRM1 serine/arginine repetitive matrix 1 1p36.11 8.23 0.543 -0.882 -4.64 1.12E-04 0.0581 

105 225730_s_at 25917 THUMPD3 THUMP domain containing 3 3p25.3 5.40 0.463 -1.111 -4.64 1.12E-04 0.0581 

106 242916_at 11064 CNTRL centriolin 9q33.2 4.22 0.575 -0.799 -4.64 1.13E-04 0.0581 

107 212570_at 23052 ENDOD1 endonuclease domain containing 1 11q21 5.80 0.496 -1.012 -4.63 1.14E-04 0.0581 

108 215338_s_at 4820 NKTR natural killer-tumor recognition sequence 3p23-p21 7.00 0.510 -0.970 -4.61 1.20E-04 0.0609 

109 211996_s_at NA NA NA NA 10.44 0.621 -0.686 -4.60 1.24E-04 0.0615 

110 230180_at 10521 DDX17 DEAD (Asp-Glu-Ala-Asp) box helicase 17 22q13.1 5.80 0.510 -0.971 -4.60 1.24E-04 0.0615 
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111 1569302_at 85459 KIAA1731 KIAA1731 11q21 5.21 0.508 -0.976 -4.59 1.27E-04 0.0625 

112 208676_s_at 5036 PA2G4 proliferation-associated 2G4, 38kDa 12q13.2 7.93 0.718 -0.478 -4.59 1.28E-04 0.0625 

113 218659_at 55252 ASXL2 additional sex combs like 2 (Drosophila) 2p24.1 6.85 1.483 0.568 4.57 1.32E-04 0.0634 

114 211948_x_at 23215 PRRC2C proline-rich coiled-coil 2C 1q23.3 8.90 0.557 -0.843 -4.57 1.33E-04 0.0634 

115 225377_at 55684 C9orf86 chromosome 9 open reading frame 86 9q34.3 7.78 0.408 -1.293 -4.57 1.33E-04 0.0634 

116 1555913_at 54856 GON4L gon-4-like (C. elegans) 1q22 4.58 0.643 -0.636 -4.57 1.34E-04 0.0634 

117 221745_at 10238 DCAF7 DDB1 and CUL4 associated factor 7 17q23.3 5.94 0.641 -0.642 -4.56 1.36E-04 0.0635 

118 1556211_a_at NA NA NA NA 4.88 0.300 -1.737 -4.55 1.41E-04 0.0654 

119 214305_s_at 23451 SF3B1 splicing factor 3b, subunit 1, 155kDa 2q33.1 6.57 0.510 -0.971 -4.54 1.44E-04 0.0663 

120 209579_s_at 8930 MBD4 methyl-CpG binding domain protein 4 3q21.3 8.48 0.529 -0.918 -4.52 1.50E-04 0.0683 

121 228801_at 94101 ORMDL1 ORM1-like 1 (S. cerevisiae) 2q32 4.16 0.678 -0.561 -4.51 1.53E-04 0.0692 

122 239894_at 1E+08 LOC100128511 uncharacterized LOC100128511 10p12.31 3.94 0.614 -0.703 -4.51 1.55E-04 0.0694 

123 202845_s_at 10928 RALBP1 ralA binding protein 1 18p11.3 8.73 1.381 0.466 4.50 1.58E-04 0.0696 

124 201085_s_at 6651 SON SON DNA binding protein 21q22.1-
q22.2 

7.75 0.356 -1.492 -4.50 1.58E-04 0.0696 

125 206826_at 5375 PMP2 peripheral myelin protein 2 8q21.3-q22.1 10.04 0.459 -1.124 -4.47 1.70E-04 0.0739 

126 201024_x_at 9669 EIF5B eukaryotic translation initiation factor 5B 2q11.2 9.48 0.524 -0.934 -4.47 1.70E-04 0.0739 

127 203186_s_at 6275 S100A4 S100 calcium binding protein A4 1q21 5.35 1.685 0.753 4.46 1.74E-04 0.0742 

128 242835_s_at 728730 LOC728730 uncharacterized LOC728730 2p22.1 5.29 0.380 -1.395 -4.46 1.75E-04 0.0742 

129 239154_at NA NA NA NA 5.39 0.578 -0.790 -4.46 1.76E-04 0.0742 

130 232617_at 1520 CTSS cathepsin S 1q21 5.85 1.904 0.929 4.46 1.77E-04 0.0742 

131 203761_at 6503 SLA Src-like-adaptor 8q22.3-qter 6.22 1.909 0.933 4.45 1.78E-04 0.0742 

132 238893_at 338758 LOC338758 uncharacterized LOC338758 12q21.33 7.45 0.506 -0.983 -4.45 1.79E-04 0.0742 

133 204999_s_at 22809 ATF5 activating transcription factor 5 19q13.3 3.64 0.670 -0.577 -4.44 1.84E-04 0.0758 

134 241955_at 25831 HECTD1 HECT domain containing E3 ubiquitin protein ligase 
1 

14q12 5.29 0.413 -1.275 -4.43 1.89E-04 0.0770 

135 213509_x_at 8824 CES2 carboxylesterase 2 16q22.1 7.20 0.716 -0.482 -4.42 1.92E-04 0.0778 

136 218454_at 79887 PLBD1 phospholipase B domain containing 1 12p13.1 4.02 1.365 0.449 4.42 1.95E-04 0.0786 

137 209258_s_at 9126 SMC3 structural maintenance of chromosomes 3 10q25 5.46 0.386 -1.372 -4.41 2.00E-04 0.0794 

138 201730_s_at 7175 TPR translocated promoter region (to activated MET 
oncogene) 

1q25 6.69 0.426 -1.233 -4.41 2.01E-04 0.0794 

139 231729_s_at 828 CAPS calcyphosine 19p13.3 4.69 2.011 1.008 4.40 2.02E-04 0.0794 

140 1552326_a_at 220136 CCDC11 coiled-coil domain containing 11 18q21.1 4.19 1.442 0.528 4.39 2.11E-04 0.0822 

141 208095_s_at NA NA NA NA 6.95 0.353 -1.502 -4.38 2.12E-04 0.0822 

142 208879_x_at 24148 PRPF6 PRP6 pre-mRNA processing factor 6 homolog (S. 
cerevisiae) 

20q13.33 6.57 0.430 -1.218 -4.38 2.16E-04 0.0832 

143 212994_at 57187 THOC2 THO complex 2 Xq25-q26.3 6.17 0.506 -0.984 -4.37 2.22E-04 0.0850 

144 244154_at 80821 DDHD1 DDHD domain containing 1 14q21 4.89 0.722 -0.471 -4.36 2.25E-04 0.0853 

145 222020_s_at 50863 NTM neurotrimin 11q25 6.37 0.508 -0.977 -4.35 2.33E-04 0.0863 

146 204787_at 11326 VSIG4 V-set and immunoglobulin domain containing 4 Xq12-q13.3 5.92 2.774 1.472 4.34 2.35E-04 0.0863 

147 209715_at 23468 CBX5 chromobox homolog 5 12q13.13 7.32 0.564 -0.825 -4.34 2.36E-04 0.0863 

148 242974_at 961 CD47 CD47 molecule 3q13.1-q13.2 5.50 1.343 0.426 4.34 2.38E-04 0.0863 

149 214129_at 9659 PDE4DIP phosphodiesterase 4D interacting protein 1q12 6.28 1.945 0.960 4.34 2.38E-04 0.0863 

150 208930_s_at 3609 ILF3 interleukin enhancer binding factor 3, 90kDa 19p13.2 5.53 0.452 -1.147 -4.34 2.39E-04 0.0863 
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151 219507_at 51319 RSRC1 arginine/serine-rich coiled-coil 1 3q25.32 5.74 0.360 -1.473 -4.33 2.41E-04 0.0863 

152 223138_s_at 170506 DHX36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 3p13-q23 5.53 0.471 -1.085 -4.33 2.41E-04 0.0863 

153 222737_s_at 29117 BRD7 bromodomain containing 7 16q12 7.03 0.513 -0.962 -4.33 2.42E-04 0.0863 

154 1554470_s_at 29068 ZBTB44 zinc finger and BTB domain containing 44 11q24.3 4.40 1.524 0.608 4.33 2.43E-04 0.0864 

155 226416_at 90459 ERI1 exoribonuclease 1 8p23.1 5.18 1.401 0.486 4.33 2.46E-04 0.0868 

156 206167_s_at 395 ARHGAP6 Rho GTPase activating protein 6 Xp22.3 5.74 1.485 0.570 4.32 2.48E-04 0.0870 

157 204061_at 5613 PRKX protein kinase, X-linked Xp22.3 5.49 2.377 1.249 4.32 2.51E-04 0.0870 

158 202844_s_at 10928 RALBP1 ralA binding protein 1 18p11.3 7.35 0.470 -1.090 -4.32 2.51E-04 0.0870 

159 203645_s_at 9332 CD163 CD163 molecule 12p13.3 4.50 2.827 1.499 4.30 2.59E-04 0.0892 

160 224631_at NA NA NA NA 6.65 0.447 -1.162 -4.30 2.64E-04 0.0901 

161 217869_at 51144 HSD17B12 hydroxysteroid (17-beta) dehydrogenase 12 11p11.2 9.37 0.726 -0.461 -4.29 2.70E-04 0.0918 

162 235409_at 23269 MGA MAX gene associated 15q14 5.91 0.491 -1.026 -4.28 2.78E-04 0.0937 

163 224856_at 2289 FKBP5 FK506 binding protein 5 6p21.31 6.81 1.951 0.964 4.27 2.81E-04 0.0940 

164 212120_at 23433 RHOQ ras homolog family member Q 2p21 8.27 1.367 0.451 4.27 2.86E-04 0.0940 

165 241769_at NA NA NA NA 5.38 0.541 -0.888 -4.27 2.86E-04 0.0940 

166 226189_at 3696 ITGB8 integrin, beta 8 7p21.1 9.05 1.469 0.555 4.26 2.87E-04 0.0940 

167 223797_at 114224 PRO2852 uncharacterized protein PRO2852 NA 6.19 1.467 0.553 4.26 2.87E-04 0.0940 

168 208710_s_at 8943 AP3D1 adaptor-related protein complex 3, delta 1 subunit 19p13.3 8.12 0.627 -0.674 -4.26 2.91E-04 0.0946 

169 214055_x_at 23215 PRRC2C proline-rich coiled-coil 2C 1q23.3 8.85 0.553 -0.855 -4.25 2.99E-04 0.0961 

170 242728_at NA NA NA NA 4.54 1.474 0.560 4.25 2.99E-04 0.0961 

171 224605_at 401152 C4orf3 chromosome 4 open reading frame 3 4q26 8.04 0.611 -0.711 -4.25 3.00E-04 0.0961 

172 201606_s_at 11137 PWP1 PWP1 homolog (S. cerevisiae) 12q23.3 6.49 0.486 -1.040 -4.24 3.02E-04 0.0961 

173 221043_at NA NA NA NA 3.57 0.621 -0.687 -4.23 3.12E-04 0.0987 

174 213328_at 4750 NEK1 NIMA (never in mitosis gene a)-related kinase 1 4q33 6.24 0.463 -1.111 -4.23 3.16E-04 0.0987 

175 227221_at 64393 ZMAT3 zinc finger, matrin-type 3 3q26.32 6.74 1.315 0.395 4.22 3.17E-04 0.0987 

176 239946_at NA NA NA NA 4.77 1.382 0.467 4.22 3.18E-04 0.0987 
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Supplemental Table 4.2. Among genes with lower expression in Alzheimer’s, several biological processes were 

enriched. 

Rank Name #Genes P-Value FDR SigGenes 

1 synaptic transmission 353 4.92E-12 2.92E-09 223, 5368, 627, 6529, 7425, 9379 

2 transmission of nerve impulse 411 6.52E-12 3.38E-09 223, 5368, 627, 6529, 7425, 9379 

3 cell-cell signaling 700 5.95E-07 6.03E-05 223, 4826, 5368, 627, 6529, 7425, 9379, 9547, 9636 

4 oxidative phosphorylation 94 3.10E-06 1.81E-04 155066, 4704 

5 regulation of synaptic plasticity 53 8.57E-06 4.23E-04 627, 7425 

6 regulation of transmission of nerve impulse 132 2.83E-05 1.10E-03 627, 6529, 7425 

7 cellular respiration 94 2.90E-05 1.10E-03 4704 

8 regulation of neurological system process 142 4.41E-05 1.57E-03 627, 6529, 7425 

9 neurotransmitter transport 96 5.54E-05 1.93E-03 6529, 9379 

10 regulation of neuronal synaptic plasticity 32 5.96E-05 2.06E-03 7425 

11 regulation of synaptic transmission 121 7.69E-05 0.003 627, 6529, 7425 

12 respiratory electron transport chain 59 8.08E-05 0.003 4704 

13 regulation of neurotransmitter levels 82 1.13E-04 0.003 223, 9379 

14 nucleotide-excision repair, DNA damage removal 21 1.16E-04 0.003 2073 

15 ATP synthesis coupled electron transport 51 1.89E-04 0.005 4704 

16 mitochondrial ATP synthesis coupled electron transport 51 1.89E-04 0.005 4704 

17 generation of a signal involved in cell-cell signaling 178 1.92E-04 0.005 4826, 627, 7425, 9379 

18 signal release 178 1.92E-04 0.005 4826, 627, 7425, 9379 

19 oxygen transport 5 2.37E-04 0.006 3049 

20 mitochondrial electron transport, NADH to ubiquinone 37 4.13E-04 0.01 4704 

21 tRNA metabolic process 113 5.68E-04 0.013 26995, 54938, 80222 

22 cerebellar cortex formation 9 8.19E-04 0.017   

23 synaptic vesicle transport 31 1.12E-03 0.023   

24 cellular amino acid metabolic process 227 1.17E-03 0.023 10157, 2954, 54938, 80222 

25 ncRNA metabolic process 230 1.32E-03 0.026 26995, 5393, 54938, 6839, 80222 

26 cerebellar cortex morphogenesis 12 1.50E-03 0.028   

27 synaptic vesicle exocytosis 14 1.52E-03 0.029   

28 nucleobase, nucleoside and nucleotide metabolic process 551 1.55E-03 0.029 155066, 254272, 3704, 482, 56342, 79077, 8382 

29 aspartate family amino acid catabolic process 6 1.70E-03 0.03 10157 

30 negative regulation of synaptic transmission, GABAergic 7 1.91E-03 0.033 6529 

31 generation of precursor metabolites and energy 324 2.01E-03 0.033 155066, 4704, 7425 

32 cellular amino acid catabolic process 68 2.32E-03 0.037 10157, 2954 

33 neurotransmitter secretion 47 2.36E-03 0.038 9379 

34 DNA dealkylation 6 2.40E-03 0.038   

35 DNA dealkylation involved in DNA repair 6 2.40E-03 0.038   

36 regulation of megakaryocyte differentiation 14 0.003 0.039 8364, 8366 

37 fear response 18 0.003 0.039 627 

38 L-amino acid import 8 0.003 0.041 6529 

39 lysosome organization 24 0.003 0.043 53, 84067 

40 nucleoside phosphate metabolic process 529 0.004 0.049 155066, 254272, 3704, 482, 56342, 79077, 8382 

41 nucleotide metabolic process 529 0.004 0.049 155066, 254272, 3704, 482, 56342, 79077, 8382 

42 ATP hydrolysis coupled proton transport 9 0.004 0.051 155066 

43 energy coupled proton transport, against electrochemical gradient 9 0.004 0.051 155066 

44 inner cell mass cell proliferation 5 0.004 0.053 27339 

45 glutamate secretion 19 0.004 0.053 627 

46 subpallium development 11 0.004 0.053 220, 585 

47 ATP metabolic process 96 0.004 0.056 155066, 482 

48 transcription-coupled nucleotide-excision repair 5 0.004 0.057 2073 
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49 striatum development 9 0.004 0.058 220, 585 

50 cellular amine metabolic process 306 0.005 0.061 10157, 223, 2954, 54938, 80222 

51 electron transport chain 109 0.005 0.061 4704 

52 ATP synthesis coupled proton transport 38 0.005 0.061 155066 

53 energy coupled proton transport, down electrochemical gradient 38 0.005 0.061 155066 

54 ATP biosynthetic process 86 0.005 0.061 155066, 482 

55 establishment of melanosome localization 10 0.005 0.064 585 

56 RNA processing 557 0.005 0.064 23070, 26995, 27339, 5393, 56342, 6100, 6839, 85437, 9360 

57 amine metabolic process 403 0.005 0.065 10157, 223, 2954, 54938, 80222 

58 aerobic respiration 34 0.005 0.065   

59 amine catabolic process 78 0.006 0.071 10157, 2954 

60 second-messenger-mediated signaling 261 0.006 0.072 56342, 8364, 8366 

61 RNA methylation 11 0.006 0.072 23070 

62 oxidation reduction 614 0.006 0.073 10157, 220, 223, 242, 4704, 728294, 7923 

63 nucleobase, nucleoside and nucleotide biosynthetic process 290 0.007 0.077 155066, 482, 56342, 8382 

64 
nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic 
process 290 0.007 0.077 155066, 482, 56342, 8382 

65 cellular amino acid and derivative metabolic process 355 0.007 0.079 10157, 223, 2954, 54938, 80222 

66 regulation of adenylate cyclase activity 96 0.007 0.079 56342 

67 establishment of pigment granule localization 11 0.008 0.083 585 

68 amino acid activation 45 0.008 0.083 54938, 80222 

69 tRNA aminoacylation 45 0.008 0.083 54938, 80222 

70 tRNA aminoacylation for protein translation 45 0.008 0.083 54938, 80222 

71 dicarboxylic acid metabolic process 42 0.008 0.084   

72 flagellum assembly 7 0.008 0.084 585 

73 flagellum organization 7 0.008 0.084 585 

74 small molecule catabolic process 419 0.008 0.084 10157, 254272, 2954, 79077 

75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 56342, 8382 

76 cognition 115 0.008 0.084 585, 627, 6529 

77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 

78 GPI anchor biosynthetic process 33 0.009 0.087 79087, 80235 

79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 56342, 8382 

80 RNA modification 49 0.009 0.088 23070, 26995 

81 melanosome localization 14 0.009 0.088 585 

82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 

83 vesicle docking involved in exocytosis 25 0.009 0.091   

84 regulation of cytokinesis 9 0.009 0.091 585 

85 cerebellar Purkinje cell differentiation 6 0.009 0.091   

86 cerebellar Purkinje cell layer formation 6 0.009 0.091   

87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091   

88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 

89 regulation of lyase activity 99 0.01 0.095 56342 

90 cAMP biosynthetic process 113 0.01 0.096 56342 

91 regulation of cyclase activity 98 0.01 0.099 56342 

92 cerebellar cortex development 14 0.01 0.099   
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Supplemental Table 4.3. Among genes with higher expression in Alzheimer’s, several biological processes were 

enriched. 

Rank Name #Genes P-Value FDR SigGenes 

1 translational elongation 101 4.07E-20 1.69E-16 11224, 1937, 2197, 25873, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232 

2 defense response 661 1.16E-16 2.42E-13 
10219, 10410, 1050, 10581, 11326, 12, 23643, 241, 2532, 2919, 313, 3440, 3487, 3588, 3600, 3823, 4057, 4615, 4688, 51191, 
58191, 6039, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7305, 8519, 929, 9332, 9450 

3 immune response 660 3.86E-15 5.34E-12 
10346, 10410, 10581, 11326, 23643, 2669, 2919, 3108, 3109, 3122, 3588, 3600, 4057, 4615, 4688, 4860, 51191, 54209, 563, 
58191, 604, 6398, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 8519, 929, 9450 

4 response to wounding 598 1.07E-14 1.11E-11 
10219, 1050, 11326, 12, 1462, 2162, 23643, 241, 2697, 2919, 313, 3399, 3440, 3487, 3587, 3588, 3600, 4615, 4814, 604, 
60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423, 929, 9332, 9450 

5 innate immune response 201 8.28E-13 6.68E-10 10410, 10581, 11326, 23643, 4615, 4688, 51191, 58191, 7097, 7098, 710, 7100, 712, 713, 714, 718, 8519, 929, 9450 

6 inflammatory response 365 9.65E-13 6.68E-10 
10219, 1050, 11326, 12, 23643, 241, 2919, 313, 3440, 3487, 3588, 3600, 4615, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 
713, 7132, 714, 718, 719, 929, 9332, 9450 

7 response to biotic stimulus 442 8.34E-12 3.85E-09 
10049, 10346, 10410, 10581, 11080, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669, 4057, 51191, 6283, 7079, 7097, 
7098, 7100, 7132, 8519, 871, 929 

8 response to other organism 354 5.69E-11 2.36E-08 
10346, 10410, 10581, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669, 4057, 51191, 6283, 7079, 7097, 7098, 7100, 
7132, 8519, 929 

9 activation of immune response 110 7.45E-11 2.81E-08 11326, 1997, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719 

10 regulation of immune response 245 8.89E-10 3.08E-07 11326, 1997, 3600, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719 

11 response to bacterium 213 1.42E-09 4.53E-07 1373, 23643, 3587, 4057, 6283, 7079, 7097, 7098, 7100, 7132, 929 

12 I-kappaB kinase/NF-kappaB cascade 171 2.35E-09 6.98E-07 23643, 2697, 3965, 4615, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132 

13 regulation of toll-like receptor signaling pathway 9 2.97E-09 8.21E-07 7097, 7098, 7100 

14 positive regulation of toll-like receptor signaling pathway 7 7.11E-09 1.85E-06 7097, 7098, 7100 

15 humoral immune response 80 8.56E-09 2.09E-06 11326, 4057, 54209, 710, 712, 713, 714, 718, 9450 

16 positive regulation of immune response 155 9.07E-09 2.09E-06 11326, 1997, 3600, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719 

17 positive regulation of intracellular protein kinase cascade 222 1.03E-08 2.24E-06 2697, 3059, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132, 7423 

18 regulation of response to stimulus 533 1.94E-08 4.02E-06 10488, 11326, 1997, 23411, 285, 2874, 3600, 4615, 604, 6188, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423 

19 positive regulation of immune system process 268 2.77E-08 5.36E-06 11326, 1997, 3600, 4860, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 7423 

20 defense response to bacterium 96 2.84E-08 5.36E-06 4057, 6283, 7097, 7098, 7100, 7132 

21 
positive regulation of I-kappaB kinase/NF-kappaB 
cascade 115 4.25E-08 7.67E-06 2697, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132 

22 
humoral immune response mediated by circulating 
immunoglobulin 37 4.47E-08 7.73E-06 710, 712, 713, 714, 718 

23 positive regulation of response to stimulus 276 5.08E-08 8.43E-06 10488, 11326, 1997, 3600, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423 

24 complement activation 37 7.95E-08 1.24E-05 11326, 710, 712, 713, 714, 718 

25 toll-like receptor signaling pathway 22 8.06E-08 1.24E-05 7097, 7098, 7100 

26 regulation of I-kappaB kinase/NF-kappaB cascade 127 8.46E-08 1.25E-05 2697, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132 

27 regulation of cytokine production 199 9.39E-08 1.34E-05 11326, 1997, 4615, 604, 7097, 7098, 7100, 718, 719, 929 

28 innate immune response-activating signal transduction 25 1.02E-07 1.41E-05 7097, 7098, 7100 

29 pattern recognition receptor signaling pathway 24 1.11E-07 1.49E-05 7097, 7098, 7100 

30 activation of innate immune response 26 1.24E-07 1.61E-05 7097, 7098, 7100 

31 cytokine production 226 2.25E-07 2.83E-05 11326, 1997, 4615, 4860, 604, 7097, 7098, 7100, 718, 719, 929 

32 positive regulation of JNK cascade 23 2.34E-07 2.86E-05 7098 

33 positive regulation of signal transduction 275 3.05E-07 3.58E-05 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7098, 7105, 7132, 7423 

34 positive regulation of tumor necrosis factor production 14 3.11E-07 3.58E-05 7097, 7098, 929 

35 positive regulation of signaling process 280 3.59E-07 3.97E-05 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7098, 7105, 7132, 7423 

36 interleukin-6 production 44 3.63E-07 3.97E-05 4615, 7097, 7098 

37 complement activation, classical pathway 27 4.92E-07 5.24E-05 710, 712, 713, 714, 718 

38 positive regulation of cytokine production 104 5.08E-07 5.28E-05 4615, 7097, 7098, 7100, 718, 719, 929 

39 positive regulation of interleukin-6 production 23 7.62E-07 7.54E-05 4615, 7097, 7098 

40 regulation of interleukin-12 production 23 9.39E-07 9.07E-05 7097, 7098 

41 positive regulation of stress-activated protein kinase 29 1.08E-06 1.02E-04 7098 
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signaling cascade 

42 multi-organism process 772 1.17E-06 1.08E-04 
10346, 10410, 10488, 1050, 10581, 1373, 1937, 1981, 200186, 23411, 23643, 23764, 285, 3315, 3440, 358, 3587, 3600, 3665, 
3669, 4057, 4734, 51191, 5422, 5696, 6283, 6993, 7079, 7097, 7098, 7100, 7132, 8519, 929 

43 interleukin-12 production 24 1.31E-06 1.15E-04 7097, 7098 

44 positive regulation of signaling pathway 376 1.35E-06 1.15E-04 1950, 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423 

45 positive regulation of cell communication 408 1.64E-06 1.15E-04 1950, 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423 

46 response to molecule of bacterial origin 133 1.78E-06 1.15E-04 1373, 23643, 3587, 7079, 7097, 7100, 7132, 929 

47 regulation of response to stress 321 1.87E-06 1.15E-04 23411, 2874, 3600, 4615, 604, 6188, 7097, 7098, 710, 7100, 7132, 718, 7423 

48 
modulation by organism of defense response of other 
organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

49 
modulation by organism of immune response of other 
organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

50 
modulation by organism of innate immunity in other 
organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

51 modulation by symbiont of host defense response 6 1.90E-06 1.15E-04 7097, 7098, 7100 

52 modulation by symbiont of host immune response 6 1.90E-06 1.15E-04 7097, 7098, 7100 

53 modulation by symbiont of host innate immunity 6 1.90E-06 1.15E-04 7097, 7098, 7100 

54 

pathogen-associated molecular pattern dependent 
induction by organism of innate immunity of other 
organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

55 
pathogen-associated molecular pattern dependent 
induction by symbiont of host innate immunity 6 1.90E-06 1.15E-04 7097, 7098, 7100 

56 

pathogen-associated molecular pattern dependent 
modulation by organism of innate immunity in other 
organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

57 
pathogen-associated molecular pattern dependent 
modulation by symbiont of host innate immunity 6 1.90E-06 1.15E-04 7097, 7098, 7100 

58 
positive regulation by organism of defense response of 
other organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

59 
positive regulation by organism of immune response of 
other organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

60 
positive regulation by organism of innate immunity in 
other organism involved in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

61 positive regulation by symbiont of host defense response 6 1.90E-06 1.15E-04 7097, 7098, 7100 

62 positive regulation by symbiont of host immune response 6 1.90E-06 1.15E-04 7097, 7098, 7100 

63 positive regulation by symbiont of host innate immunity 6 1.90E-06 1.15E-04 7097, 7098, 7100 

64 response to host immune response 6 1.90E-06 1.15E-04 7097, 7098, 7100 

65 
response to immune response of other organism involved 
in symbiotic interaction 6 1.90E-06 1.15E-04 7097, 7098, 7100 

66 immune effector process 210 1.91E-06 1.15E-04 11326, 3600, 604, 7097, 7098, 710, 712, 713, 714, 718 

67 immunoglobulin mediated immune response 70 2.99E-06 1.77E-04 604, 710, 712, 713, 714, 718 

68 B cell mediated immunity 71 3.90E-06 2.25E-04 604, 710, 712, 713, 714, 718 

69 
activation of plasma proteins involved in acute 
inflammatory response 40 4.94E-06 2.81E-04 11326, 710, 712, 713, 714, 718 

70 regulation of interleukin-6 production 42 5.19E-06 2.91E-04 4615, 7097, 7098 

71 positive regulation of interleukin-8 production 10 5.38E-06 2.98E-04 7097, 7098, 7100 

72 regulation of transcription regulator activity 146 5.78E-06 3.16E-04 23411, 3399, 6188, 7097, 7098 

73 regulation of immune system process 424 5.94E-06 3.20E-04 11326, 1997, 3600, 4860, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 7423, 8399 

74 macrophage activation involved in immune response 10 6.04E-06 3.22E-04 7097, 7098, 7100 

75 regulation of transcription factor activity 145 6.66E-06 3.46E-04 23411, 3399, 6188, 7097, 7098 

76 
antigen processing and presentation of peptide or 
polysaccharide antigen via MHC class II 13 6.67E-06 3.46E-04 3108, 3109, 3122 

77 
modification by symbiont of host morphology or 
physiology 9 6.88E-06 3.53E-04 7097, 7098, 7100 

78 
modification of morphology or physiology of other 
organism involved in symbiotic interaction 21 7.22E-06 3.65E-04 358, 7097, 7098, 7100 
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79 regulation of innate immune response 61 7.69E-06 3.85E-04 7097, 7098, 710, 7100 

80 
regulation of vascular endothelial growth factor receptor 
signaling pathway 16 1.09E-05 5.30E-04 4734, 7423 

81 positive regulation of angiogenesis 43 1.15E-05 5.54E-04 285, 358, 7132, 718, 719, 7423 

82 symbiosis, encompassing mutualism through parasitism 64 1.17E-05 5.57E-04 358, 4734, 6993, 7097, 7098, 7100 

83 positive regulation of type I interferon production 15 1.18E-05 5.58E-04 7097, 7098 

84 microglial cell activation involved in immune response 7 1.25E-05 5.81E-04 7097, 7098, 7100 

85 positive regulation of interleukin-12 production 12 1.26E-05 5.81E-04 7097, 7098 

86 regulation of defense response 156 1.29E-05 5.90E-04 3600, 4615, 604, 7097, 7098, 710, 7100, 7132, 718 

87 cellular response to UV 6 1.31E-05 5.92E-04 358, 4734 

88 

adaptive immune response based on somatic 
recombination of immune receptors built from 
immunoglobulin superfamily domains 114 1.47E-05 6.58E-04 604, 710, 712, 713, 714, 718 

89 positive regulation of multicellular organismal process 279 1.53E-05 6.76E-04 1373, 358, 4615, 60675, 7097, 7098, 7100, 718, 719, 929, 9388 

90 cytokine production involved in immune response 22 1.60E-05 6.82E-04 604, 7097 

91 
response to defenses of other organism involved in 
symbiotic interaction 8 1.62E-05 6.82E-04 7097, 7098, 7100 

92 response to host 8 1.62E-05 6.82E-04 7097, 7098, 7100 

93 response to host defenses 8 1.62E-05 6.82E-04 7097, 7098, 7100 

94 adaptive immune response 116 1.63E-05 6.82E-04 604, 710, 712, 713, 714, 718 

95 antigen processing and presentation 50 1.69E-05 7.04E-04 3108, 3109, 3122, 563 

96 translation 394 2.07E-05 8.51E-04 11224, 1937, 1978, 1981, 2197, 25873, 283, 3315, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232, 92399 

97 
vascular endothelial growth factor receptor signaling 
pathway 22 2.21E-05 8.99E-04 4734, 7423 

98 regulation of intracellular protein kinase cascade 328 2.33E-05 9.38E-04 2697, 2874, 3059, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132, 7423 

99 regulation of type I interferon production 19 2.57E-05 1.03E-03 7097, 7098 

100 immune response-activating signal transduction 72 2.62E-05 1.04E-03 1997, 7097, 7098, 7100, 719 

101 acute inflammatory response 100 2.87E-05 1.10E-03 1050, 11326, 12, 710, 712, 713, 714, 718, 9332 

102 cellular response to light stimulus 7 2.87E-05 1.10E-03 358, 4734 

103 immune response-regulating signaling pathway 80 3.19E-05 1.20E-03 1997, 7097, 7098, 7100, 719 

104 detection of biotic stimulus 20 3.38E-05 1.27E-03 23643, 7097, 7098 

105 type I interferon production 21 3.84E-05 1.42E-03 7097, 7098 

106 
regulation of cytokine production involved in immune 
response 19 3.96E-05 1.46E-03 604, 7097 

107 interferon-beta production 17 4.07E-05 1.47E-03 7097, 7098 

108 regulation of interferon-beta production 17 4.07E-05 1.47E-03 7097, 7098 

109 positive regulation of interferon-beta production 13 4.10E-05 1.47E-03 7097, 7098 

110 I-kappaB phosphorylation 11 5.28E-05 1.86E-03 7097, 7098 

111 positive regulation of MAPKKK cascade 87 8.00E-05 0.003 7098, 7423 

112 anti-apoptosis 228 8.38E-05 0.003 1410, 23411, 25816, 26574, 3315, 4615, 57099, 60675, 7423, 81542, 8870, 9531 

113 regulation of humoral immune response 13 8.59E-05 0.003 710, 718 

114 negative regulation of cytokine production 42 8.86E-05 0.003 11326, 604, 7097 

115 intracellular protein kinase cascade 583 8.90E-05 0.003 1410, 1950, 23643, 2697, 2874, 3059, 3965, 4615, 60675, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423, 9459 

116 signal transmission via phosphorylation event 583 8.90E-05 0.003 1410, 1950, 23643, 2697, 2874, 3059, 3965, 4615, 60675, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423, 9459 

117 positive regulation of NF-kappaB import into nucleus 15 9.03E-05 0.003 7097, 7098 

118 regulation of immune effector process 103 9.09E-05 0.003 3600, 604, 7097, 710, 718 

119 negative regulation of transcription factor activity 61 9.53E-05 0.003 23411, 3399, 6188 

120 negative regulation of transcription regulator activity 61 9.53E-05 0.003 23411, 3399, 6188 

121 regulation of angiogenesis 87 9.73E-05 0.003 285, 358, 7132, 718, 719, 7423 

122 interferon-beta biosynthetic process 7 1.01E-04 0.003 7098 

123 positive regulation of interferon-beta biosynthetic process 7 1.01E-04 0.003 7098 

124 regulation of interferon-beta biosynthetic process 7 1.01E-04 0.003 7098 

125 regulation of lipid transport 40 1.05E-04 0.003 706, 8399, 9388 

126 lymphocyte mediated immunity 108 1.06E-04 0.003 604, 710, 712, 713, 714, 718 

127 cellular response to radiation 9 1.07E-04 0.003 358, 4734 
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128 type I interferon biosynthetic process 10 1.12E-04 0.003 7098 

129 tumor necrosis factor superfamily cytokine production 36 1.19E-04 0.003 7097, 7098, 929 

130 regulation of DNA binding 165 1.19E-04 0.003 23411, 3399, 6188, 7097, 7098 

131 blood vessel morphogenesis 276 1.30E-04 0.004 1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423 

132 positive regulation of protein transport 83 1.43E-04 0.004 1950, 283, 7097, 7098 

133 positive regulation of innate immune response 50 1.48E-04 0.004 7097, 7098, 7100 

134 negative regulation of immune effector process 18 1.57E-04 0.004 604, 710 

135 
regulation of production of molecular mediator of immune 
response 41 2.06E-04 0.006 604, 7097 

136 response to lipopolysaccharide 122 2.14E-04 0.006 1373, 23643, 3587, 7079, 7097, 7132, 929 

137 leukocyte mediated immunity 133 2.22E-04 0.006 604, 710, 712, 713, 714, 718 

138 myeloid leukocyte cytokine production 9 2.23E-04 0.006 604, 7097 

139 translational initiation 60 2.34E-04 0.006 1978, 1981, 3315, 6188, 6193 

140 negative regulation of DNA binding 69 2.44E-04 0.006 23411, 3399, 6188 

141 angiogenesis 234 2.45E-04 0.006 1950, 283, 285, 358, 60675, 7132, 718, 719, 7423 

142 regulation of tumor necrosis factor production 33 2.57E-04 0.007 7097, 7098, 929 

143 tumor necrosis factor production 33 2.57E-04 0.007 7097, 7098, 929 

144 response to mercury ion 9 2.60E-04 0.007 358, 5224 

145 positive regulation of intracellular transport 46 2.64E-04 0.007 1950, 4734, 7097, 7098 

146 prostaglandin metabolic process 25 2.73E-04 0.007 27306, 6916, 7132 

147 prostanoid metabolic process 25 2.73E-04 0.007 27306, 6916, 7132 

148 response to exogenous dsRNA 11 2.82E-04 0.007 7098 

149 wound healing 215 3.28E-04 0.008 2162, 2697, 3587, 3588, 4814, 710, 7423 

150 response to virus 153 3.49E-04 0.009 10346, 10410, 10581, 1937, 3315, 3440, 3600, 3665, 3669, 51191, 7098, 8519 

151 defense response to Gram-positive bacterium 29 3.51E-04 0.009 7097 

152 regulation of binding 209 3.55E-04 0.009 23411, 3399, 6188, 7097, 7098 

153 notochord development 7 3.92E-04 0.009 3399 

154 response to organic substance 886 4.14E-04 0.01 
10049, 10076, 1050, 11080, 1373, 1410, 1978, 2052, 23643, 2697, 283, 285, 3059, 3315, 3399, 358, 3587, 4615, 58191, 6402, 
7079, 7097, 7098, 7100, 713, 7132, 7913, 871, 900, 929 

155 positive regulation of phosphorylation 135 4.28E-04 0.01 1950, 283, 3059, 7423 

156 regulation of gene-specific transcription 220 4.29E-04 0.01 1050, 23411, 2874, 7097, 7098 

157 detection of molecule of bacterial origin 8 4.72E-04 0.011 23643, 7097 

158 
regulation of stress-activated protein kinase signaling 
cascade 90 4.74E-04 0.011 2874, 7098 

159 NF-kappaB import into nucleus 26 4.81E-04 0.011 7097, 7098 

160 regulation of NF-kappaB import into nucleus 26 4.81E-04 0.011 7097, 7098 

161 positive regulation of defense response 85 5.03E-04 0.012 7097, 7098, 7100, 7132, 718 

162 response to protein stimulus 115 5.26E-04 0.012 10049, 11080, 285, 3315, 3399, 7913, 871 

163 negative regulation of binding 84 5.48E-04 0.012 23411, 3399, 6188 

164 positive regulation of transmembrane transport 26 5.90E-04 0.013 7097, 7098 

165 regulation of localization 726 6.27E-04 0.014 
10076, 10488, 11037, 1410, 1950, 23411, 2697, 283, 285, 358, 4734, 58191, 5867, 604, 706, 7097, 7098, 718, 719, 7423, 8399, 
84876, 91624, 9388 

166 prostaglandin biosynthetic process 16 6.29E-04 0.014 27306, 6916 

167 prostanoid biosynthetic process 16 6.29E-04 0.014 27306, 6916 

168 protein maturation 116 6.30E-04 0.014 11326, 710, 712, 713, 714, 718, 871, 9049 

169 chemokine production 26 6.32E-04 0.014 7097, 7098 

170 regulation of cell fate commitment 9 6.61E-04 0.014 22943 

171 regulation of cell fate specification 9 6.61E-04 0.014 22943 

172 regulation of cellular response to stress 138 6.76E-04 0.015 23411, 2874, 6188, 7098 

173 interferon-alpha production 9 7.27E-04 0.015 7098 

174 regulation of interferon-alpha production 9 7.27E-04 0.015 7098 

175 positive regulation of chemokine production 16 7.36E-04 0.016 7097, 7098 

176 myeloid cell activation involved in immune response 27 7.80E-04 0.016 7097, 7098, 7100 

177 cellular response to molecule of bacterial origin 28 8.45E-04 0.018 7097, 929 

178 stress-activated protein kinase signaling cascade 122 9.49E-04 0.02 1410, 2874, 7098, 9459 
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179 blood vessel development 324 9.91E-04 0.02 1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423 

180 regeneration 86 9.98E-04 0.021 10076, 1050, 1462, 2697, 285, 4814 

181 
positive regulation of transcription factor import into 
nucleus 20 1.05E-03 0.021 7097, 7098 

182 regulation of JNK cascade 81 1.06E-03 0.022 2874, 7098 

183 negative regulation of smooth muscle cell proliferation 13 1.08E-03 0.022 283, 3600 

184 positive regulation of transport 276 1.12E-03 0.023 10488, 1950, 283, 358, 4734, 7097, 7098, 718, 8399, 84876, 9388 

185 regulation of transport 514 1.17E-03 0.023 10488, 11037, 1410, 1950, 23411, 2697, 283, 358, 4734, 5867, 706, 7097, 7098, 718, 8399, 84876, 9388 

186 response to pH 13 1.17E-03 0.023 2697, 84329 

187 
gene-specific transcription from RNA polymerase II 
promoter 161 1.21E-03 0.024 1050, 23411, 2874, 7097, 7098 

188 
regulation of gene-specific transcription from RNA 
polymerase II promoter 161 1.21E-03 0.024 1050, 23411, 2874, 7097, 7098 

189 positive regulation of cytokine biosynthetic process 53 1.35E-03 0.026 7097, 7098 

190 icosanoid metabolic process 51 1.35E-03 0.026 241, 27306, 6916, 7132, 8399 

191 positive regulation of phosphate metabolic process 138 1.44E-03 0.028 1950, 283, 3059, 7423 

192 positive regulation of phosphorus metabolic process 138 1.44E-03 0.028 1950, 283, 3059, 7423 

193 negative regulation of immune system process 90 1.45E-03 0.028 11326, 1997, 604, 710 

194 regulation of interferon-gamma production 34 1.51E-03 0.028 7098 

195 microglial cell activation 10 1.54E-03 0.029 7097, 7098, 7100 

196 positive regulation of chemokine biosynthetic process 8 1.59E-03 0.029 7098 

197 positive regulation of protein import into nucleus 25 1.64E-03 0.03 7097, 7098 

198 response to unfolded protein 65 1.68E-03 0.03 10049, 11080, 3315, 871 

199 chemokine biosynthetic process 12 1.70E-03 0.03 7098 

200 chemokine metabolic process 12 1.70E-03 0.03 7098 

201 regulation of B cell apoptosis 8 1.70E-03 0.03 604 

202 negative regulation of cell death 402 1.71E-03 0.03 1410, 23411, 25816, 26574, 3315, 358, 4615, 57099, 604, 60675, 7423, 81542, 8870, 900, 9531 

203 cellular response to xenobiotic stimulus 27 1.71E-03 0.03 6283, 9049 

204 xenobiotic metabolic process 27 1.71E-03 0.03 6283, 9049 

205 interferon-gamma production 35 1.75E-03 0.031 7098 

206 response to xenobiotic stimulus 31 1.80E-03 0.032 6283, 9049 

207 cellular defense response 51 1.80E-03 0.032 10219, 23643, 3823, 4688, 7305 

208 response to fungus 22 1.82E-03 0.032 6283, 7097 

209 negative regulation of apoptosis 391 1.83E-03 0.032 1410, 23411, 25816, 26574, 3315, 358, 4615, 57099, 604, 60675, 7423, 81542, 8870, 900, 9531 

210 S phase of mitotic cell cycle 25 1.85E-03 0.032 5422, 5424, 604, 8099, 84967 

211 regulation of mononuclear cell proliferation 93 1.85E-03 0.032 11326, 3600, 4860, 604 

212 regulation of lymphocyte proliferation 92 1.88E-03 0.032 11326, 3600, 4860, 604 

213 positive regulation of nucleocytoplasmic transport 32 1.92E-03 0.033 4734, 7097, 7098 

214 negative regulation of programmed cell death 396 1.93E-03 0.033 1410, 23411, 25816, 26574, 3315, 358, 4615, 57099, 604, 60675, 7423, 81542, 8870, 900, 9531 

215 regulation of leukocyte proliferation 94 1.95E-03 0.033 11326, 3600, 4860, 604 

216 negative regulation of lipid transport 15 1.96E-03 0.033   

217 negative regulation of multi-organism process 18 1.96E-03 0.033 7097 

218 cell migration 455 1.97E-03 0.033 10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624 

219 regulation of digestive system process 14 1.99E-03 0.033 358 

220 regulation of G2/M transition of mitotic cell cycle 9 2.00E-03 0.033 900 

221 cellular response to abiotic stimulus 13 2.02E-03 0.033 358, 4734 

222 JNK cascade 109 2.03E-03 0.033 2874, 7098, 9459 

223 macrophage activation 27 2.05E-03 0.034 7097, 7098, 7100, 8399 

224 response to peptidoglycan 11 2.09E-03 0.034 7097 

225 unsaturated fatty acid metabolic process 54 2.16E-03 0.035 241, 27306, 6916, 7132, 8399 

226 detection of external stimulus 71 2.17E-03 0.035 56925, 7097, 7098 

227 lymphocyte proliferation 122 2.40E-03 0.038 11326, 3600, 4860, 604 

228 mononuclear cell proliferation 124 2.42E-03 0.038 11326, 3600, 4860, 604 

229 regulation of cholesterol transport 23 2.43E-03 0.038 706, 9388 

230 regulation of sterol transport 23 2.43E-03 0.038 706, 9388 
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231 negative regulation of response to stimulus 122 2.47E-03 0.038 23411, 285, 2874, 604, 6188, 710 

232 vasculature development 334 2.47E-03 0.038 1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423 

233 interaction with host 39 0.003 0.039 4734, 6993, 7097, 7098, 7100 

234 cytokine biosynthetic process 89 0.003 0.04 7097, 7098 

235 cytokine metabolic process 90 0.003 0.04 7097, 7098 

236 response to glucocorticoid stimulus 97 0.003 0.04 10076, 1050, 1373, 358, 713 

237 cell activation involved in immune response 55 0.003 0.041 604, 7097, 7098, 7100 

238 leukocyte activation involved in immune response 55 0.003 0.041 604, 7097, 7098, 7100 

239 locomotion 599 0.003 0.041 10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 2919, 4478, 4734, 5355, 58191, 6036, 60675, 7097, 719, 7423, 91624 

240 
positive regulation of production of molecular mediator of 
immune response 15 0.003 0.041 7097 

241 regulation of transcription in response to stress 6 0.003 0.041 4734 

242 
regulation of transcription from RNA polymerase II 
promoter 745 0.003 0.043 100125288, 1050, 1997, 23411, 26574, 2874, 29128, 3399, 3660, 3665, 4734, 57658, 5932, 604, 7097, 7098, 7132, 7913, 79366 

243 positive regulation of lipid transport 20 0.003 0.043 8399, 9388 

244 regulation of protein secretion 63 0.003 0.043 1950, 283 

245 response to external stimulus 645 0.003 0.043 
10488, 1050, 1373, 1509, 23411, 285, 2919, 358, 4615, 5355, 56925, 58191, 6036, 604, 60675, 7097, 7098, 710, 7132, 718, 
719, 7423, 9388 

246 leukocyte proliferation 126 0.003 0.043 11326, 3600, 4860, 604 

247 leukocyte activation 336 0.003 0.043 11326, 3600, 4860, 604, 7097, 7098, 7100, 81542, 8399 

248 ribosomal large subunit biogenesis 11 0.003 0.043 6135, 6154 

249 cellular response to lipoteichoic acid 6 0.003 0.043 7097, 929 

250 response to lipoteichoic acid 6 0.003 0.043 7097, 929 

251 positive regulation of intracellular protein transport 43 0.003 0.047 1950, 7097, 7098 

252 positive regulation of ERK1 and ERK2 cascade 34 0.003 0.047 7423 

253 lymphocyte chemotaxis 9 0.003 0.047 58191 

254 protein maturation by peptide bond cleavage 81 0.003 0.047 11326, 710, 712, 713, 714, 718 

255 response to corticosteroid stimulus 104 0.003 0.047 10076, 1050, 1373, 358, 713 

256 response to dsRNA 27 0.003 0.048 7098 

257 peptidyl-tyrosine modification 112 0.003 0.049 1950, 3059, 7423 

258 RNA catabolic process 74 0.004 0.049 1763, 3669, 6036, 6039, 87178 

259 tetrahydrobiopterin biosynthetic process 6 0.004 0.049 6697 

260 cellular response to inorganic substance 11 0.004 0.05 241, 358 

261 cellular response to metal ion 11 0.004 0.05 241, 358 

262 cellular response to stress 677 0.004 0.05 
1410, 1462, 1509, 1763, 23411, 26574, 27244, 2874, 29128, 358, 3978, 4438, 4734, 5422, 5424, 5932, 604, 6188, 7098, 79677, 
83932, 900, 9459 

263 positive regulation of transcription regulator activity 88 0.004 0.05 7097, 7098 

264 
positive regulation of NF-kappaB transcription factor 
activity 58 0.004 0.051 7097, 7098 

265 negative regulation of lymphocyte apoptosis 9 0.004 0.051 604 

266 response to heat 62 0.004 0.052 11080, 1410, 3315, 929 

267 regulation of epidermis development 21 0.004 0.053 23764 

268 regulation of protein transport 145 0.004 0.053 1950, 23411, 283, 7097, 7098 

269 positive regulation of cellular component movement 138 0.004 0.053 10488, 58191, 604, 7097, 719, 7423 

270 positive regulation of transcription factor activity 87 0.004 0.055 7097, 7098 

271 establishment of mitotic spindle orientation 7 0.004 0.057 6993 

272 establishment of spindle orientation 7 0.004 0.057 6993 

273 cell activation 381 0.005 0.059 11326, 3600, 4860, 604, 7097, 7098, 7100, 81542, 8399 

274 response to abiotic stimulus 393 0.005 0.06 11080, 1410, 2697, 2766, 285, 3315, 358, 4734, 5424, 56925, 7098, 84329, 929 

275 receptor-mediated endocytosis 73 0.005 0.061 10268, 4734, 58191 

276 regulation of inflammatory response 87 0.005 0.061 4615, 604, 7097, 7098, 710, 7132, 718 

277 pancreatic juice secretion 8 0.005 0.061 358 

278 mitotic cell cycle 480 0.005 0.061 10459, 1950, 1978, 246184, 26574, 5422, 5424, 54443, 54930, 55145, 5696, 604, 6993, 8099, 81930, 84967, 900, 90293 

279 cell cycle phase 509 0.005 0.061 10459, 1950, 1978, 246184, 4438, 5422, 5424, 54443, 54930, 604, 6993, 8099, 81930, 84967, 900, 90293 

280 regulation of cytokine biosynthetic process 79 0.005 0.062 7097, 7098 
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281 protein processing 106 0.005 0.064 11326, 710, 712, 713, 714, 718 

282 regulation of gastrulation 9 0.005 0.067   

283 
positive regulation of cytokine production involved in 
immune response 11 0.005 0.067 7097 

284 regulation of lymphocyte apoptosis 15 0.006 0.067 604 

285 regulation of interleukin-8 production 21 0.006 0.067 7097, 7098, 7100 

286 regulation of response to external stimulus 187 0.006 0.069 10488, 285, 4615, 604, 7097, 7098, 710, 7132, 718, 719, 7423 

287 interferon-gamma biosynthetic process 14 0.006 0.069 7098 

288 peptidyl-tyrosine phosphorylation 110 0.006 0.069 1950, 3059, 7423 

289 complement activation, alternative pathway 14 0.006 0.069 11326, 718 

290 regulation of cell activation 189 0.006 0.07 11326, 3600, 4860, 604, 8399 

291 
positive regulation of interferon-gamma biosynthetic 
process 11 0.006 0.07 7098 

292 positive regulation of protein secretion 45 0.006 0.071 283 

293 regulation of multi-organism process 52 0.006 0.072 3600, 7097 

294 production of molecular mediator of immune response 64 0.006 0.072 604, 7097 

295 interphase of mitotic cell cycle 137 0.006 0.072 1978, 5422, 5424, 604, 8099, 84967, 900 

296 rRNA transcription 18 0.006 0.072 283 

297 positive regulation of humoral immune response 8 0.006 0.072 718 

298 transcription from RNA polymerase II promoter 900 0.006 0.073 
100125288, 1050, 1997, 23411, 23764, 26574, 2874, 29128, 29777, 3399, 3660, 3665, 4734, 57658, 5932, 604, 7097, 7098, 
7132, 7913, 79366 

299 interleukin-8 production 23 0.007 0.075 7097, 7098, 7100 

300 cell cycle process 662 0.007 0.076 10459, 1950, 1978, 246184, 27244, 4438, 5422, 5424, 54443, 54930, 5696, 604, 6993, 8099, 81930, 84967, 900, 90293 

301 regulation of establishment of protein localization 153 0.007 0.076 1950, 23411, 283, 7097, 7098 

302 mesenchyme development 81 0.007 0.077 1592, 6275 

303 regulation of leukocyte migration 40 0.007 0.077 7097, 719, 7423 

304 myeloid leukocyte activation 71 0.007 0.077 7097, 7098, 7100, 8399 

305 superoxide anion generation 14 0.007 0.079 26574, 4688 

306 regulation of chemokine production 24 0.007 0.081 7097, 7098 

307 regulation of leukocyte mediated immunity 59 0.007 0.082 604, 718 

308 tetrahydrobiopterin metabolic process 7 0.007 0.083 6697 

309 acute-phase response 44 0.008 0.083 1050, 12, 9332 

310 regulation of chemokine biosynthetic process 11 0.008 0.083 7098 

311 regulation of leukocyte activation 177 0.008 0.083 11326, 3600, 4860, 604, 8399 

312 regulation of B cell mediated immunity 24 0.008 0.083 604, 718 

313 regulation of immunoglobulin mediated immune response 24 0.008 0.083 604, 718 

314 protein secretion 94 0.008 0.084 1950, 283, 4860 

315 positive regulation of cell migration 129 0.008 0.084 10488, 58191, 7097, 719, 7423 

316 defense response to virus 41 0.008 0.084 3600, 7098 

317 tissue regeneration 30 0.008 0.084 2697, 4814 

318 regulation of body fluid levels 200 0.008 0.084 187, 2162, 358, 3587, 3588, 710 

319 positive regulation of leukocyte migration 31 0.008 0.084 7097, 719, 7423 

320 positive regulation of inflammatory response 43 0.008 0.084 7097, 7098, 7132, 718 

321 interspecies interaction between organisms 335 0.008 0.085 10346, 10488, 1050, 1981, 200186, 23411, 358, 3665, 4734, 5422, 5696, 6993, 7097, 7098, 7100, 7132 

322 cell motility 484 0.008 0.085 10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624 

323 localization of cell 484 0.008 0.085 10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624 

324 cellular response to lipopolysaccharide 25 0.008 0.085 929 

325 regulation of nucleocytoplasmic transport 84 0.008 0.085 1950, 23411, 4734, 7097, 7098 

326 positive regulation of mononuclear cell proliferation 65 0.008 0.086 3600, 4860, 604 

327 icosanoid biosynthetic process 36 0.008 0.086 241, 27306, 6916 

328 T cell proliferation 86 0.008 0.086 11326, 3600, 4860 

329 regulation of protein import into nucleus 67 0.008 0.086 1950, 23411, 7097, 7098 

330 positive regulation of lymphocyte proliferation 64 0.008 0.086 3600, 4860, 604 

331 reproductive process 791 0.009 0.087 100125288, 10149, 10488, 23411, 23764, 283, 285, 4438, 4734, 51314, 5224, 604, 60675, 6993, 7079, 7913 

332 regulation of adaptive immune response based on 51 0.009 0.088 604, 718 
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somatic recombination of immune receptors built from 
immunoglobulin superfamily domains 

333 positive regulation of leukocyte proliferation 66 0.009 0.088 3600, 4860, 604 

334 reproduction 793 0.009 0.089 100125288, 10149, 10488, 23411, 23764, 283, 285, 4438, 4734, 51314, 5224, 604, 60675, 6993, 7079, 7913 

335 interphase 146 0.009 0.091 1978, 5422, 5424, 604, 8099, 84967, 900 

336 establishment of tissue polarity 12 0.009 0.091 57216 

337 positive regulation of immune effector process 46 0.009 0.091 7097, 718 

338 negative regulation of RNA metabolic process 412 0.009 0.091 100125288, 10049, 1050, 23411, 2874, 3399, 3660, 3665, 4734, 604, 6207, 84232 

339 transepithelial transport 10 0.01 0.093 358 

340 cellular response to hypoxia 6 0.01 0.093 358 

341 cellular response to oxygen levels 6 0.01 0.093 358 

342 renal water transport 5 0.01 0.093 358 

343 regulation of phospholipase A2 activity 6 0.01 0.094 283 

344 regulation of cell proliferation 834 0.01 0.095 
10076, 10488, 1050, 11326, 138151, 1950, 2014, 23411, 2697, 27244, 283, 2919, 3059, 358, 3600, 4860, 563, 604, 6282, 648, 
7423, 8519 

345 phospholipid catabolic process 21 0.01 0.095 9388 

346 response to oxygen levels 155 0.01 0.097 1410, 283, 285, 358, 51167, 54541, 7097, 9124 

347 positive regulation of gene-specific transcription 145 0.01 0.097 1050, 7097, 7098 

348 B cell apoptosis 11 0.01 0.098 604 
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Supplemental Table 4.4. Among genes with lower expression in Alzheimer’s, 

several molecular functions were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 neuropeptide hormone activity 21 5.46E-07 1.89E-04 2922, 5368, 7425 

2 cation transmembrane transporter activity 525 1.09E-05 0.001 155066, 482, 6529 

3 inorganic cation transmembrane transporter activity 203 5.44E-05 0.005 155066, 482, 6529 

4 porin activity 6 6.50E-05 0.005 10452 

5 calmodulin-dependent protein kinase activity 20 1.14E-04 0.008   

6 ion transmembrane transporter activity 683 1.34E-04 0.009 10452, 155066, 482, 6529 

7 MAP kinase tyrosine/serine/threonine phosphatase activity 12 1.43E-04 0.009 1846, 1848 

8 MAP kinase phosphatase activity 13 1.74E-04 0.009 1846, 1848 

9 monovalent inorganic cation transmembrane transporter activity 160 2.38E-04 0.012 155066, 482, 6529 

10 nucleoside-triphosphate diphosphatase activity 6 4.97E-04 0.021 3704, 79077 

11 hydrogen ion transmembrane transporter activity 83 0.001 0.023 155066 

12 NADH dehydrogenase (quinone) activity 38 0.001 0.044 4704 

13 NADH dehydrogenase (ubiquinone) activity 38 0.001 0.044 4704 

14 NADH dehydrogenase activity 38 0.001 0.044 4704 

15 transmembrane transporter activity 859 0.002 0.055 

10452, 11182, 155066, 21, 22, 482, 
6529 

16 cis-trans isomerase activity 36 0.002 0.068 2954, 9360 

17 substrate-specific transporter activity 916 0.004 0.099 

10452, 11182, 155066, 3049, 482, 
6529 

18 SNARE binding 29 0.004 0.113   

19 mannosyltransferase activity 15 0.005 0.12 10585, 79087, 80235 

20 phosphotyrosine binding 10 0.005 0.12 53 

21 oxygen transporter activity 8 0.005 0.123 3049 

22 ATPase activity 330 0.005 0.123 155066, 21, 22, 482, 57680 

23 RNA polymerase II carboxy-terminal domain kinase activity 13 0.006 0.127   

24 sodium:potassium-exchanging ATPase activity 10 0.007 0.138 482 

25 calcium channel regulator activity 13 0.007 0.138 9379 

26 ATPase activity, coupled 266 0.007 0.138 155066, 21, 22, 482, 57680 

27 channel regulator activity 53 0.007 0.14 57730, 9379 

28 gated channel activity 296 0.008 0.141 10452 

29 ATPase activity, coupled to transmembrane movement of ions 67 0.008 0.141 155066, 482 

30 ATPase activity, coupled to transmembrane movement of substances 100 0.009 0.146 155066, 21, 22, 482 

31 oxidoreductase activity, acting on the aldehyde or oxo group of donors 32 0.009 0.146 220, 223 

32 aldehyde dehydrogenase (NAD) activity 9 0.009 0.147 220, 223 

33 voltage-gated channel activity 185 0.011 0.157 10452 

34 voltage-gated ion channel activity 185 0.011 0.157 10452 

35 O-methyltransferase activity 12 0.011 0.157 23070 

36 oxidoreductase activity 648 0.011 0.157 

10157, 220, 223, 242, 2954, 4704, 
728294, 7923 

37 hydrolase activity, acting on acid anhydrides 742 0.012 0.157 

155066, 21, 22, 3704, 4636, 482, 
57680, 585, 79077, 79132 

38 
hydrolase activity, acting on acid anhydrides, in phosphorus-containing 
anhydrides 738 0.012 0.157 

155066, 21, 22, 3704, 4636, 482, 
57680, 585, 79077, 79132 

39 calmodulin binding 140 0.012 0.157   

40 
hydrolase activity, acting on acid anhydrides, catalyzing transmembrane 
movement of substances 102 0.012 0.159 155066, 21, 22, 482 

41 GABA receptor activity 22 0.013 0.159   

42 P-P-bond-hydrolysis-driven transmembrane transporter activity 109 0.013 0.159 155066, 21, 22, 482 

43 primary active transmembrane transporter activity 109 0.013 0.159 155066, 21, 22, 482 

44 pyrophosphatase activity 735 0.013 0.16 

155066, 21, 22, 3704, 4636, 482, 
57680, 585, 79077, 79132 

45 ATPase activity, coupled to movement of substances 101 0.013 0.161 155066, 21, 22, 482 

46 RNA methyltransferase activity 27 0.014 0.164 23070 

47 active transmembrane transporter activity 324 0.014 0.165 155066, 21, 22, 482, 6529 

48 aminoacyl-tRNA ligase activity 46 0.016 0.171 54938, 80222 

49 ligase activity, forming aminoacyl-tRNA and related compounds 46 0.016 0.171 54938, 80222 

50 ligase activity, forming carbon-oxygen bonds 46 0.016 0.171 54938, 80222 

51 ion channel activity 366 0.017 0.178 10452 

52 S-adenosylmethionine-dependent methyltransferase activity 90 0.018 0.182 23070, 6839 

53 nucleoside-triphosphatase activity 706 0.019 0.192 

155066, 21, 22, 4636, 482, 57680, 
585, 79132 

54 potassium-transporting ATPase activity 12 0.02 0.193 482 
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55 glutamate receptor activity 29 0.021 0.198   

56 syntaxin-1 binding 8 0.022 0.202   

57 cation:amino acid symporter activity 11 0.023 0.21 6529 

58 2 iron, 2 sulfur cluster binding 17 0.024 0.214   

59 cation channel activity 263 0.024 0.214   

60 substrate-specific channel activity 376 0.025 0.224 10452 

61 ARF GTPase activator activity 26 0.026 0.224   

62 syntaxin binding 23 0.031 0.258   

63 aldehyde dehydrogenase [NAD(P)+] activity 5 0.032 0.262 220 

64 calcium channel activity 78 0.032 0.263   

65 antibiotic transporter activity 7 0.033 0.265   

66 metal ion transmembrane transporter activity 125 0.034 0.272 482, 6529 

67 passive transmembrane transporter activity 393 0.036 0.273 10452 

68 peptidyl-prolyl cis-trans isomerase activity 34 0.036 0.273 9360 

69 
oxidoreductase activity, acting on the aldehyde or oxo group of donors, 
disulfide as acceptor 8 0.036 0.273   

70 
oxidoreductase activity, acting on NADH or NADPH, quinone or similar 
compound as acceptor 44 0.036 0.273 4704 

71 channel activity 392 0.039 0.285 10452 

72 
oxidoreductase activity, acting on sulfur group of donors, oxygen as 
acceptor 6 0.04 0.287   

73 hormone activity 96 0.04 0.287 2922, 5368, 7425 

74 tetracycline transporter activity 6 0.041 0.292   

75 E-box binding 7 0.041 0.292 7291 

76 sodium ion transmembrane transporter activity 75 0.042 0.295 482, 6529 

77 
oxidoreductase activity, acting on the aldehyde or oxo group of donors, 
NAD or NADP as acceptor 22 0.043 0.296 220, 223 

78 beta-tubulin binding 19 0.043 0.299 2010, 585 

79 fructose binding 6 0.048 0.324   

 

Supplemental Table 4.5. Among genes with higher expression in Alzheimer’s, 

several molecular functions were enriched. 

Rank Name #Genes 
P-
Value FDR SigGenes 

1 structural constituent of ribosome 149 
1.33E-

10 0 

11224, 2197, 25873, 6135, 6154, 6173, 6176, 
6188, 6193, 6207, 6222, 6232 

2 pancreatic ribonuclease activity 10 
7.58E-

08 0 283, 6036, 6039 

3 glycosaminoglycan binding 148 
2.16E-

06 0.0005 

1462, 26577, 283, 4057, 6402, 7097, 7423, 
79625, 929, 9388 

4 endoribonuclease activity, producing 3'-phosphomonoesters 13 
2.64E-

06 0.0005 283, 6036, 6039 

5 RAGE receptor binding 7 
4.03E-

06 0.0007 6275, 6283 

6 pattern binding 163 
9.22E-

06 0.0014 

1462, 26577, 283, 4057, 6402, 7097, 7423, 
79625, 929, 9388 

7 carbohydrate binding 339 
1.31E-

05 0.0015 

10219, 1462, 26577, 283, 3823, 3965, 4057, 
6402, 7097, 7423, 79625, 929, 9388, 9936 

8 peptidoglycan binding 9 
4.14E-

05 0.0043 7097, 929 

9 
endonuclease activity, active with either ribo- or deoxyribonucleic 
acids and producing 3'-phosphomonoesters 18 

5.51E-
05 0.0048 283, 6036, 6039 

10 coreceptor activity 19 0.0001 0.0089 10268, 23643 

11 cytokine binding 113 0.0002 0.0093 1436, 2532, 3587, 3588, 5355, 7132 

12 heparin binding 110 0.0002 0.0117 26577, 283, 4057, 6402, 7423, 79625, 9388 

13 transcription regulator activity 923 0.0003 0.0138 

100125288, 10049, 10346, 10488, 1050, 
10848, 138151, 165, 1997, 23411, 27005, 
2874, 29128, 29777, 3399, 3660, 3665, 
55145, 57658, 604, 7764, 7913, 79366, 
84232, 9049, 9124 

14 lipopolysaccharide binding 13 0.0004 0.0167 23643, 7097, 929 

15 rRNA binding 24 0.0004 0.0168 283, 6135, 6222 

16 cytokine receptor binding 179 0.0006 0.024 

10488, 2919, 3440, 3600, 4615, 58191, 7100, 
7423 

17 ribonuclease activity 58 0.0022 0.0683 283, 3669, 563, 6036, 6039, 87178 

18 vascular endothelial growth factor receptor binding 6 0.0022 0.0685 7423 
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19 structural molecule activity 570 0.0024 0.0707 

1101, 11224, 1410, 2197, 24146, 25873, 
4478, 4604, 6135, 6154, 6173, 6176, 6188, 
6193, 6207, 6222, 6232, 81493, 81578, 
84617, 9499 

20 cyclic nucleotide-dependent protein kinase activity 9 0.0032 0.0915 5613 

21 water transmembrane transporter activity 12 0.0033 0.0915 358 

22 phosphate binding 13 0.0039 0.1026 10797, 4860 

23 microtubule plus-end binding 10 0.0046 0.1153 81930 

24 cytokine receptor activity 56 0.0051 0.1203 3587, 3588 

25 metalloexopeptidase activity 37 0.0059 0.1283 10269, 10404, 165 

26 death receptor activity 13 0.0066 0.1377 7132 

27 monocarboxylic acid binding 57 0.007 0.1377 1592, 241, 563, 6646, 91452 

28 glycosphingolipid binding 6 0.0072 0.1379 6402 

29 monosaccharide binding 42 0.0076 0.1402 3965 

30 proline-rich region binding 9 0.008 0.1408 4734 

31 sphingolipid binding 8 0.0085 0.1464 6402 

32 metallocarboxypeptidase activity 24 0.0088 0.1464 10404, 165 

33 I-SMAD binding 10 0.009 0.1464   

34 actin binding 315 0.0094 0.1474 

170954, 283, 4478, 4542, 4604, 54443, 
81930, 822, 91624, 9499 

35 transcription repressor activity 336 0.0104 0.1569 

100125288, 10049, 10346, 10848, 138151, 
165, 1997, 23411, 2874, 3399, 604, 7764 

36 ubiquitin binding 35 0.0106 0.1569 3315, 4734, 81930 

37 anion binding 16 0.0109 0.1569 10797, 4860 

38 IgG binding 6 0.0114 0.1569   

39 voltage-gated chloride channel activity 15 0.0115 0.1569 1192, 1193 

40 low-density lipoprotein receptor activity 11 0.012 0.1584 58191 

41 protein complex binding 238 0.0123 0.1592 1050, 1373, 2857, 3059, 3384, 7045, 7132 

42 cAMP-dependent protein kinase activity 7 0.0133 0.1602 5613 

43 carboxypeptidase activity 36 0.0144 0.1662 10404, 165, 642 

44 GDP binding 26 0.0152 0.171 2669, 5867 

45 small conjugating protein binding 36 0.0153 0.171 3315, 4734, 81930 

46 interleukin-1 receptor binding 11 0.0159 0.171 7100 

47 metalloendopeptidase inhibitor activity 10 0.0165 0.171 56925, 7079 

48 metalloenzyme inhibitor activity 10 0.0165 0.171 56925, 7079 

49 metalloenzyme regulator activity 10 0.0165 0.171 56925, 7079 

50 intramolecular oxidoreductase activity 40 0.0165 0.171 10130, 27306, 6916 

51 sugar binding 173 0.0185 0.187 10219, 1462, 3823, 3965, 6402, 9936 

52 endoribonuclease activity 39 0.0187 0.1871 283, 6036, 6039 

53 exopeptidase activity 78 0.0205 0.1975 10269, 10404, 165, 2191, 642 

54 ATPase regulator activity 7 0.0205 0.1975 10049 

55 water channel activity 11 0.0208 0.1978 358 

56 cyclic nucleotide-gated ion channel activity 6 0.0238 0.2144 358 

57 intracellular cyclic nucleotide activated cation channel activity 6 0.0238 0.2144 358 

58 scavenger receptor activity 43 0.0255 0.2238 58191, 9332 

59 RNA polymerase II transcription factor activity 236 0.0261 0.2238 1050, 29128, 29777, 3660, 3665, 7913 

60 regulatory region DNA binding 148 0.0263 0.2238 1050, 57658, 7764 

61 transcription regulatory region DNA binding 148 0.0263 0.2238 1050, 57658, 7764 

62 interferon-alpha/beta receptor binding 8 0.0306 0.2581 3440 

63 collagen binding 38 0.0314 0.2613 871 

64 peptidase inhibitor activity 141 0.032 0.2619 12, 25816, 56925, 6590, 7079, 710, 718, 871 

65 endopeptidase inhibitor activity 133 0.0341 0.272 12, 25816, 56925, 6590, 7079, 710, 718, 871 

66 tumor necrosis factor receptor activity 11 0.0355 0.2733 7132 

67 alcohol transmembrane transporter activity 7 0.0365 0.2747 358 

68 polyol transmembrane transporter activity 7 0.0365 0.2747 358 

69 transcription cofactor activity 358 0.0367 0.2747 

10346, 10488, 10848, 165, 23411, 27005, 
2874, 29777, 3399, 57658, 9049, 9124 

70 RNA polymerase binding 6 0.0387 0.2849 4734 

71 phospholipase inhibitor activity 12 0.0389 0.2849   

72 growth factor binding 111 0.0394 0.2862 3487, 3587, 3588, 4052 

73 sequence-specific DNA binding 582 0.0423 0.295 

100125288, 10488, 1050, 1997, 23764, 
55145, 57658, 604, 7764 

74 titin binding 9 0.0464 0.3166 4604 

75 tumor necrosis factor binding 12 0.0466 0.3166 7132 

76 cytokine activity 188 0.0487 0.3268 2919, 3440, 3600, 58191, 6398 

77 lipoprotein receptor activity 15 0.0499 0.3321 58191 
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Supplemental Table 4.6. Among genes with lower expression in Alzheimer’s, 

the binding motifs of several transcription factors were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 NRSF_01 418 0 0.022 10307, 23130, 26505, 401190, 57574, 627 

2 NMYC_01 330 0.001 0.049 1846, 7291, 7425 

3 CREB_01 283 0.001 0.049 148304, 1846, 9360 

4 CREBP1CJUN_01 287 0.002 0.095 124044, 23070, 7425, 8364, 8366 

5 MEIS1BHOXA9_02 231 0.004 0.13 1408, 627, 79680, 9360 

6 AREB6_03 248 0.004 0.13 124044, 155066, 83694 

7 CREB_02 137 0.005 0.13 140597, 63917, 8364, 8366 

8 CREBP1_Q2 357 0.005 0.13 54984, 81576, 8364, 8366, 9360 

9 NFY_01 22 0.01 0.225   

10 AREB6_01 161 0.011 0.225 23130, 5368, 9379 

11 ROAZ_01 326 0.024 0.384 124808, 4330, 91851 

12 RFX1_02 420 0.028 0.384 124044, 145407, 1848, 29070 

13 TAXCREB_02 267 0.03 0.384 115548, 79132 

14 ATF_01 394 0.03 0.384 8364, 8366, 9360 

15 SREBP1_01 338 0.031 0.384 140597, 26995, 57795, 627 

16 MEIS1_01 101 0.042 0.484 10307 

17 LYF1_01 99 0.045 0.495 23130, 242 

 

Supplemental Table 4.7. Among genes with higher expression in Alzheimer’s, 

the binding motifs of several transcription factors were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 NFKAPPAB_01 214 0.0020 0.0951 
11170, 1462, 24146, 27005, 2919, 3384, 56658, 56833, 57216, 
57658, 58191, 81493, 84876 

2 NKX22_01 219 0.0108 0.2252 285, 29128, 4734, 5422, 57633, 6646, 85450 

3 OCT_C 267 0.0146 0.2704 
10488, 1997, 25816, 4734, 55843, 56131, 58526, 6036, 712, 
9531 

4 PBX1_01 54 0.0300 0.3837 5166, 8334, 91947 

5 HOXA3_01 183 0.0318 0.3837 2197, 4038, 648, 84173, 85450 

6 CREL_01 274 0.0490 0.5000 1462, 23764, 2919, 55273, 56833, 57216, 57658, 58191, 84876 

 

Supplemental Table 4.8. Among genes with higher expression in Alzheimer’s, 

the binding sites of several microRNAs were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 mir-506 893 0.023 0.831 
10269, 1050, 10848, 1462, 23593, 26511, 29128, 5355, 55227, 
57658, 58526, 604, 64089, 754, 79710 

2 mir-124 890 0.035 0.831 
10269, 1050, 10848, 1462, 23593, 26511, 29128, 5355, 55227, 
57658, 58526, 604, 64089, 754, 79710 

3 mir-433 163 0.045 0.831 256435, 284370, 91947 

 

Supplemental Table 4.9. Among genes with lower expression in Alzheimer’s, 

the binding sites of several microRNAs were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 mir-129-5p 292 0.004 0.592 114034, 124808, 23251, 9379 

2 mir-185 118 0.014 0.831 81606 

3 mir-328 73 0.028 0.831 4330, 8364, 8366 
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Supplemental Table 4.10. Among genes with higher expression in Alzheimer’s, 

several cytogenic bands were enriched. 

Rank Name #Genes P-Value FDR SigGenes 

1 7p13-p12 7 8.12E-05 0.023 10268, 5224 

2 17p13 30 1.85E-04 0.036 2874, 58191, 6154 

3 4q25 26 2.08E-04 0.036 1950 

4 10p12.31 5 3.68E-04 0.046 219681 

5 1q25 21 4.45E-04 0.048 4688, 6646 

6 1q23.2 7 1.09E-03 0.086 54935, 56833 

7 1p36.3-p36.2 10 1.97E-03 0.122   

8 1p21.3 7 2.41E-03 0.129 51375 

9 17q11.2-q12 9 2.50E-03 0.129 26574 

10 5q31-q33 5 3.31E-03 0.143   

11 2p11.2 33 3.67E-03 0.152 822, 84173 

12 22q11.1 5 0.005 0.19 128954 

13 9q22 13 0.005 0.193 4814 

14 Xp21.1 13 0.005 0.193 8406 

15 1q21 78 0.006 0.193 6232, 6275, 6282, 6283 

16 1q23 16 0.008 0.227   

17 8q11 6 0.009 0.251   

18 12q 12 0.012 0.301   

19 9q33.2 15 0.012 0.301 92399 

20 3p26.2 6 0.014 0.329 57633 

21 1p31-p22 5 0.014 0.334 22802 

22 7p14 7 0.024 0.464 358 

23 6q24 8 0.025 0.478 23593 

24 14q21 7 0.026 0.48 57161 

25 5q14.3 8 0.028 0.49 1462 

26 12q24.11 24 0.033 0.541 338773, 84329 

27 3q24 12 0.034 0.546   

28 2p16.3 7 0.038 0.604 11037 

29 1p31.1 28 0.043 0.629 11080, 256435, 91624 

30 6p22.1 42 0.043 0.629 29777 

31 19q13.3 68 0.045 0.636 2014, 2828, 29998, 5424 

32 15q22.1 6 0.049 0.661 79811 

 

Supplemental Table 4.11. Among genes with lower expression in Alzheimer’s, 

several cytogenic bands were enriched. 
Rank Name #Genes P-Value FDR SigGenes 

1 16p13.3 169 1.81E-06 0.002 10573, 124093, 1877, 21, 3049 

2 10p11.2 6 7.64E-06 0.003 7587 

3 8p23 6 3.45E-04 0.046 54984 

4 12p12.3 25 9.67E-04 0.086 8364, 8366 

5 8p21.3 21 1.03E-03 0.086 10361 

6 15q25.1 11 1.81E-03 0.122 23251 

7 2q21.1 15 1.86E-03 0.122 653275 

8 7q31.3 11 2.61E-03 0.129 10157 

9 2p22.2 6 2.70E-03 0.129 10153 

10 7p14.3 8 2.83E-03 0.129 6100 

11 7p11.2 8 6.16E-03 0.203   

12 14q32.2 11 6.31E-03 0.203 57596 

13 8p23.3 5 6.66E-03 0.206 9172 

14 19q13.42 46 7.39E-03 0.221   

15 10q23.32 5 0.008 0.227   

16 9q34.11 42 0.011 0.286 26995 

17 20q11.2-q12 6 0.016 0.354 4826 

18 17p11.2 59 0.018 0.4 125170, 254272, 388341 

19 2p23.1 6 0.018 0.4 81606 

20 2q37.3 43 0.019 0.402 151176, 728294 

21 2p25.3 10 0.019 0.402   

22 14q32 16 0.021 0.416   

23 5p15.33 14 0.024 0.471 65980 

24 17q23 7 0.027 0.49 762 

25 10q24.31 9 0.029 0.509   

26 1p36.33 31 0.031 0.53 9636 

27 16q24.3 34 0.032 0.536 124044, 58189 

28 9q34 44 0.039 0.611 11182 

29 12q23.3 17 0.042 0.629 121053 

30 6p21.33 24 0.044 0.629 8364, 8366 

31 19p13.3 183 0.044 0.632 5657, 566, 84717 

32 14q11.2-q12 8 0.047 0.647   

33 14q32.33 26 0.05 0.661   
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CHAPTER V 

 

Conclusions and Future Directions 

 

OVERALL SUMMARY 

 The goals of this dissertation are to understand (1) the regulation of 

homocysteine (Hcy), a one-carbon metabolite, by the heavy metal lead (Pb) and 

(2) the role of DNA methylation and gene expression in late onset Alzheimer’s 

disease (LOAD), a spontaneous neurodegenerative disease.  First, in the 

Normative Aging Study cohort, it is demonstrated that plasma total Hcy is 

regulated by Pb exposure and dietary availability of vitamin B6, vitamin B12, and 

folate.  LOAD is associated with changes in circulating Hcy, which is involved 

with methyl-group substrate availability for DNA methylation.  Second, modest, 

widespread differences in DNA methylation were observed in the frontal cortex of 

LOAD subjects vs. controls.  A follow-up study suggests that these DNA 

methylation marks may have functional gene expression implications.  Gene 

expression and DNA methylation values at an individual gene were validated in 

additional samples. This dissertation provides the foundation for further work on 

the environmental influences on Hcy and epigenetics in LOAD. 



 

172 

SUMMARY OF HOMOCYSTEINE (HCY) AND LEAD (PB) EXPOSURE 

Hcy is a thiol-containing intermediate in the one-carbon metabolism cycle.  

It is involved in folate metabolism and corresponding nucleotide synthesis, 

methionine metabolism and corresponding methylation of DNA, RNA, and 

proteins, and finally glutathione (antioxidant) synthesis (Selhub 1999).  

Elevations in homcysteine are associated with cardiovascular disease (CVD) 

(Wald et al. 2002) and neurodegeneration (Mattson and Shea 2003), including 

AD (Seshadri et al. 2002).  This dissertation chapter shows that recent lead 

exposure (measured in blood) is cross-sectionally associated with Hcy levels 

(8.14% increase in Hcy with 3ug/dl IQR increase in blood Pb).  This association 

was modified by vitamin B6, vitamin B12, and folate dietary factors as 

determined through stratified analysis.  Cumulative exposure to lead (measured 

in tibia) was also associated with homocysteine, but this relationship disappeared 

after blood lead was included in the model, suggesting that blood lead mediates 

the association between bone lead and homocysteine. 

Strengths and Weaknesses 

The current study is strengthened by the use of repeated measures of Hcy 

and blood Pb as well as repeated measures in Hcy with baseline bone Pb.  This 

allows us to look at longitudinal changes in Hcy with Pb exposure, not simply 

cross-sectional associations.  This study is the first to examine the Pb-Hcy 

relationship while examining plausible dietary interactions, namely folate and 

vitamins B6 and B12. 

 Previous research has looked at the cross-sectional association between 

lead exposure and homocysteine (Chia et al. 2007; Schafer et al. 2005).  Other 

studies have observed changes in homocysteine with diet over time (Clarke and 

Armitage 2000).  One paper has combined lead exposure and diet in the study of 

homocysteine (Yakub and Iqbal 2010).  This study is the first (that we are aware 

of) to include repeated measures of lead exposure, Hcy, and diet.  It is 
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strengthened by multiple measures of lead exposure (tibia, patella, and blood) 

and of dietary status (plasma levels and food frequency questionnaire levels). 

 This study had limited power to detect interactions, due in part to missing 

nutrient data.  In addition, results using food frequency questionnaires (FFQ) 

have been debated in the literature largely due to the poor correlation between 

FFQ and repeated dietary recall (Byers 2001; Kristal et al. 2005).  In our study 

the consistent associations observed with concurrent measures of plasma 

nutrients validate the use of FFQ.   

Scope and Implications of the Work   

 The results of this longitudinal study suggest a strong link between 

homocysteine and lead exposure.  This dissertation did not address the 

downstream consequences of the association.  Toxicology studies are needed to 

decipher the molecular mechanisms linking homocysteine and lead exposure.  

Potentially, Pb and Hcy may work through a common mechanism of binding and 

disrupting available sulfur-containing proteins (Krumdieck and Prince 2000; 

Needleman 2004), which may suggest synergistic or additive toxicity. 

 Based on the research in this dissertation, behavioral interventions to 

reduce blood Pb and improve dietary intake of vitamins B6 and B12 and folate 

will have a protective effect by lowering Hcy.  Multiple randomized control trials 

have attempted to reduce circulating Hcy levels in people who are already ill by 

using dietary interventions (Mei et al. 2010).  These studies have been 

successful in reducing circulating Hcy, but did not produce the hypothesized 

health benefits, specifically reductions in coronary heart disease, stroke, 

cardiovascular events, or all-cause mortality. Perhaps taking a public health 

approach with interventions prior to disease onset are needed to prevent incident 

cases. 
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SUMMARY OF DNA METHYLATION IN AD 

 The second part of the dissertation observed throughout the genome 

moderate changes in DNA methylation that are associated with LOAD in the 

frontal cortex (Bakulski et al. 2012).  This study was the largest genome-wide 

DNA methylation investigation of the LOAD brain to date.  Using 12 matched-pair 

LOAD case and control frontal cortex samples, we quantitatively determined 

DNA methylation at 27,578 CpG sites.  Across 948 CpG sites that were 

statistically different between LOAD cases and controls after adjusting for age 

and sex, the mean methylation difference was 2.9%.  A CpG site in the promoter 

for the gene Transmembrane Protein 59 (TMEM59) was 7.3% hypomethylated in 

LOAD cases.  This gene is involved in post-translational modification of Amyloid 

Precursor Protein (APP), and thus β-amyloid plaque formation.  We validated the 

DNA methylation findings using a second DNA methylation detection platform 

and 13 additional matched pairs.  DNA methylation was associated with 

TMEM59 mRNA gene expression, but not with the quantity of the full-length 

protein.  This study suggests that DNA methylation may be involved in LOAD, but 

future research is needed to determine the extent. 

Strengths and Weaknesses 

A major strength of this research was the use of well pathologically 

characterized human tissue from a brain region involved in LOAD.  The majority 

of epigenetic epidemiology studies test blood DNA methylation (Foley et al. 

2009).  The association between circulating lymphocytes and brain epigenetics is 

unknown (though our research group has a funded NIEHS p30 pilot grant to 

investigate this question).  Access to post-mortem human samples via the 

Michigan Alzheimer’s Disease Center provided valuable information on the in 

vivo inaccessible tissue. 

On the other hand, a potential weakness of this research is the use of 

tissue samples made up of complex mixtures of cell types.  Changes in 

composite DNA methylation may be due to changes in the percent cell-types 
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(Houseman et al. 2012).  The data presented in this paper could be interpreted 

as actual epigenetic changes with disease, as indicators of different cellular 

mixtures, or as markers of past environmental exposures.   

At the time, the Illumina Infinium HumanMethylation27K BeadArray was 

the most comprehensive and cost efficient method available.  This technology 

queries the quantitative DNA methylation levels of 27,578 CpG sites throughout 

the genome with approximately two tag CpG sites per gene.  Previous LOAD-

DNA methylation research was based on gene-specific DNA methylation founded 

in a priori assumptions about the disease.  The Illumina array was the most 

comprehensive DNA methylation array available and our study provided the most 

un-biased assessment of the DNA methylome of LOAD.  

Genomic technology is rapidly evolving.  In retrospect, with newer array 

and next-generation sequencing technologies available, the Illumina 27K 

BeadArray represents a fraction of the potential DNA methylation information that 

is available today.  Illumina’s latest 450K array has more than fifteen times the 

number CpG sites and these sites have a less biased genomic distribution.  The 

27K array CpG sites were 92.0% in promoters and 72.5% in CpG islands.  

Potentially important non-genic regulation sites were largely not included in the 

model used in the dissertation.  Studies suggest that CpG locations in gene 

deserts may be functionally important in the brain (Maunakea et al. 2010) and 

unfortunately they were unable to be captured in our study.   

Scope and Implications of the Work   

 This research suggests DNA methylation may be involved in LOAD, but it 

is far from definitive.  The methylation changes and sample size were modest, 

and results need to be confirmed in additional studies before mechanistic 

conclusions may be drawn.  Several research groups have ongoing projects to 

investigate Alzheimer’s disease and epigenetics.  The results of those studies 

combined with our research will provide a larger body of evidence on the topic.  

In addition, the effect sizes observed were moderate and future work will want to 
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consider separating complex cell mixtures to identify changes in neurons as a 

priority.  Further, the findings at TMEM59 were validated through gene 

expression, but the full-length protein levels did not differ+ between LOAD cases 

and controls.  The functional significance of these DNA methylation markers 

across the genome is presented in the next section of the dissertation. 

 

SUMMARY OF GENE EXPRESSION AND DNA METHYLATION IN AD 

 The final section of the dissertation builds on the second experimental 

section.  Using the same LOAD and neuropathologically confirmed controls as 

above, we observed correlations between DNA methylation differences and gene 

expression differences in the frontal cortex when comparing.  Integrating 

genome-wide analyses of DNA methylation and gene expression allowed us to 

detect additional potential sites at low false discovery rates with LOAD 

associated epigenetic change.  This research suggests that DNA methylation 

differences may have functional consequences, potentially relevant in disease.    

Strengths and Weaknesses 

 The samples and the technologies used overlap between this dissertation 

chapter and the previous, therefore the strengths and weaknesses of the 

samples and the Illumina technology still apply.  In addition, combining datasets 

from two companies (Illumina and Affymetrix) with multiple probesets per gene 

proved to be methodologically challenging.  We followed a previously published 

pipeline to integrate the data (Sartor et al. 2011).  This method proved to be 

successful in identifying genes for follow-up. 

Scope and Implications of the Work  

 This research extends previous dissertation study to continue building 

case for DNA methylation in LOAD.  Integrating gene expression and DNA 

methylation analyses yielded greater numbers of CpG sites for potential follow-up 

and mechanistic investigation.  This study is an example of how DNA methylation 
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research can be enhanced when done alongside gene expression research. As 

studies increase the sample number of LOAD and control brains tested, this 

method is recommended. 

 

FUTURE DIRECTIONS 

 This dissertation provides opportunities for rich potential areas of further 

research.  Late-onset Alzheimer’s disease is an enormous public health problem 

and the burden will continue to increase (International 2010).  LOAD is 

traditionally understudied in the laboratory relative to EOAD, due to the 

availability of EOAD analogous animal models.  Despite the public health 

potential, within the LOAD literature, environmental risk factors and potential 

mechanisms of environmental toxicants are further underrepresented.  Future 

research topics, directly related to this dissertation, include testing for a human 

epidemiologic link between Pb exposure and LOAD, examination of the roles of 

additional metals in neurodegeneration, cell-type specificity in the epigenetic 

molecular epidemiology, modifications to histones, and further work on dietary 

factors and methylation.  This is a broad field of research in which could 

potentially contribute to our understanding and prevention of an insidious 

disease.   

 

Exposure to lead has negative neurological consequences in early life 

(Fewtrell et al. 2004; Grosse et al. 2002).  It is also associated with cognitive 

decline in late life (Shih et al. 2007; Weisskopf et al. 2004; Wright et al. 2003), 

potentially through increased hippocampal gliosis (Weisskopf et al. 2007).  

Though a large body of research demonstrates Pb is associated with accelerated 

declines in cognition, the hypothesized causal association between lead 

exposure and LOAD, implied in this dissertation, has not been rigorously tested. 

Potential epidemiologic studies to test this link are challenged by the current 

clinical diagnoses of AD.  Clinical diagnoses of AD from 30 ADRC’s were 



 

178 

compared to post-mortem neuropathological diagnoses, with 71-87% sensitivity 

and 44-71% specificity (Beach et al. 2012).  The ranges of clinical diagnosis of 

disease misclassification would require a large study size for environmental 

epidemiology research.   

There are recent advances in neuroimaging (Matsuda and Imabayashi 

2012) and circulating biomarkers (Chintamaneni and Bhaskar 2012; Doecke et 

al. 2012) that improve AD diagnosis and are available for research purposes.  

For example, the UM ADC utilizes positron emission tomography (PET) imaging 

methods to visualize β-amyloid in the brain and diagnose cases more accurately 

(Burke et al. 2011).  Brain scan confirmed AD cases and controls could be 

measured for lead exposure at the UM Retrospective Lead Exposure Laboratory 

using the Cd109 K-shell X-ray Fluorescence instrument.  Alternatively, post-

mortem studies with neuropathologically confirmed LOAD and control samples 

may be able to reconstruct past metals exposure history using teeth. 

Researchers have identified a layer of molar tissue with relatively low turnover 

that dates from early development that can be quantified for metals using laser-

ablation ICP-MS (Hare et al. 2011).  With method validation, a case-control 

approach may be able to accurately reconstruct past exposure history.  Finally 

the Pb-LOAD argument could be tested with brain post-mortem lead mapping.  

Demonstrating that Pb is present at the site of pathology would strengthen the 

argument.  Post-mortem soft tissue metal content can be mapped in slices using 

rapid-scanning x-ray fluorescence methods (Popescu et al. 2009).  Grants that 

propose to study the Pb-induced epigenetic changes in LOAD will need to first 

demonstrate the Pb-LOAD relationship in humans. 

 

 Several metals beyond Pb have been implicated in AD with varying 

degrees of evidence, including aluminum (Frisardi et al. 2010; Shcherbatykh and 

Carpenter 2007), iron (Mandel et al. 2007), copper (Brown 2009; Shcherbatykh 

and Carpenter 2007), zinc (Shcherbatykh and Carpenter 2007), and mercury 

(Gerhardsson et al. 2008). Many metals work through shared mechanisms in the 
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body.  For example, lead, cadmium, mercury, and nickle bind protein sulfhydryl 

groups and deplete glutathione, resulting in oxidative stress (Stohs and Bagchi 

1995).  Future LOAD research could expand to include rigorous epidemiologic 

inquiry of metals in addition to Pb, using similar methods proposed above for Pb.  

Post-mortem exposure studies utilizing ICP-MS methods are capable of 

measuring up to twelve metals simultaneously.  The half-life of each of these 

metals varies in tissues such as bone and skin, thus post-mortem exposure 

assessment for metals besides Pb may not reflect exposure prior to disease 

onset.  KXRF in vivo technologies are being developed for additional metals 

including cadmium and arsenic (personal communication, Linda Huiling Nie, 

Purdue University).  In vivo metals epidemiology studies coupled with early stage 

disease diagnosis techniques may be an effective strategy to test metals 

exposure as a risk factor for LOAD. 

 Reports have proposed pesticides (Baldi et al. 2003; Santibanez et al. 

2007), solvents (Kukull et al. 1995), electromagnetic field (Sobel et al. 1996), and 

particulate matter in air pollution (Calderon-Garciduenas et al. 2004) may be risk 

factors for LOAD.  The links between these exposures and LOAD have not been 

yet been validated.  These types of environmental exposure studies have been 

underrepresented in the AD literature, likely due to the challenges of 

retrospective exposure assessment in older adults.  Retrospective exposure 

assessment for pesticides and solvents relies heavily on questionnaire data in 

the absence of effective biomarkers.  Future work may test the association 

between additional exposures and LOAD onset using long-running large cohorts 

where exposure information has been collected over time. 

 

In addition to the influence of toxicants on one-carbon metabolism and 

epigenetics, future research may look at the direct and indirect effects of diet on 

the system.  Results from the lead and homocysteine research paper 

demonstrate that dietary B6, B9, and B12 levels modify the association between 

blood Pb and homocysteine, an important methyl-donor for DNA methylation.  
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We have shown that DNA methylation change is associated with LOAD (Bakulski 

et al. 2012).  Future research could test whether AD-associated DNA methylation 

changes are prevented with B-vitamin supplemented diet.  The study of nutrient 

toxicant interactions is an emerging field in environmental health with potential for 

public health intervention. 

 

 To understand more precise mechanisms involved in LOAD pathogenesis, 

molecular epidemiology of epigenetics will need to refine the tissues and cell 

types studied.  AD epigenetic epidemiology compared blood from AD cases and 

controls as a tissue of epidemiologic convenience (Bollati et al. 2011; Maes et al. 

2007).  Blood DNA methylation has not yet been tested as a biomarker of brain 

epigenetics.  Whole brain region epigenetics is closer to the disease site, but it 

still represents a mixture of cell types that each likely have characteristic 

epigenetic profiles.  Recent studies suggest that changes in circulating 

lymphocyte epigenetics represent shifting cell type proportions (Houseman et al. 

2012).  The DNA methylation differences observed in this dissertation in the 

human brain with LOAD may represent the understood shifting cell type 

proportions with disease.  In future research, cell types will need to be separated 

from the tissue matrix.  This is logistically challenging in frozen archived tissues 

where the cell membrane is often no longer intact.  Ongoing work in the 

laboratory (particularly by 2nd year Ph.D. student, Zishaan Farooqui) seeks to 

separate nuclei of neurons from non-neurons.  This allows for the study of 

epigenetics in neurons, and associations with environmental exposures, but it 

does not allow for RNA or protein functional validation.  Further advancements 

may make the study of specific cell types more feasible.   

 

The focus of the current research has been DNA methylation.  However, 

recent research suggests that histones may be an important target for epigenetic 

modifications in the brain.  Histone modifications play a role in memory formation 
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(Levenson et al. 2004) and HDAC inhibitor treatment increases memory 

formation (Vecsey et al. 2007).  Indeed, HDAC inhibitors have been proposed for 

human AD clinical trials (Kazantsev and Thompson 2008) .  In the male rat brain, 

App mRNA expression is repressed by thyroid hormone (T3) sensitive histone 

modifications (Belakavadi et al. 2011).  T3 Treatment decreases H3K4 

methylation and H3 acetylation at the App promoter.  This silences App, reversed 

with histone deacetylase (HDAC) and histone lysine demethylase inhibitor 

treatment (Belakavadi et al. 2011). Histone modifications are also 

environmentally sensitive (Mathers et al. 2010).  Together, these observations 

suggest that future environmental molecular epidemiology research on AD 

should target histone modification.   

  

CONCLUDING REMARKS 

 In summary, this dissertation has provided important molecular 

epidemiology insights to chronic disease.  It has demonstrated moderate DNA 

methylation differences in the LOAD brain vs. controls that may have functional 

gene expression consequences.  In addition, homocysteine may be an important 

target for lead exposure toxicity and may link lead exposure to chronic disease 

including CVD and neurodegenerative disease.  This work has implications for 

prevention and potential homocysteine intervention through lowering blood lead 

levels.  This research has also spurred multiple additional research questions at 

the intersection of Alzheimer’s disease, one-carbon metabolism, epigenetics, and 

lead exposure.     
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