LEAD EXPOSURE, HOMOCYSTEINE, DNA METHYLATION AND LATE-ONSET ALZHEIMER'S DISEASE

by

Kelly M. Bakulski

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Environmental Health Sciences) in The University of Michigan 2012

Doctoral Committee:

Professor Howard Hu, Co-Chair Assistant Professor Laura S. Rozek, Co-Chair Professor Henry L. Paulson Assistant Professor Sung Kyun Park © Kelly M. Bakulski 2012

ACKNOWLEDGMENTS

This dissertation was written by Kelly M. Bakulski, with extensive contributions by Drs. Howard Hu, Dana Dolinoy, Laura Rozek, Henry Paulson, Sung Kyun Park, Maureen Sartor, Bhramar Mukherjee, and Jennifer Weuve. I would like to thank my dissertation committee members, Howard, Laura, Hank, and Sung Kyun for the extensive time and mentorship they provided me. I would also like to acknowledge Dr. Mukherjee for serving on my preliminary committee and pointing me in the right direction from the start. Dana and Maureen also provided extremely valuable guidance and mentorship. I feel very lucky to have had this wide net of professional support.

I had the wonderful opportunity to have worked in the collaborative Hu, Dolinoy, and Rozek laboratories and I am very grateful to my many, many labmates for their assistance and advice. My Alzheimer's project was supported by the folks at the Michigan Alzheimer's Research Center, including Hank, Dr. Sid Gilman, Dr. Andrew Lieberman, Dr. Roger Albin, Dr. Bruno Giordani, Arijit Bhaumik, Sherry Teboe, and Lisa Bain. The Normative Aging Study project was mentored by Jennifer, Sung Kyun, and Dr. Kathleen Tucker.

I would like to extend special thanks to my family for their support, in particular my mom, Barbara, my dad, David, my sister, Susan, and my grandmother, Irene. I would also like to acknowledge the encouragement from my Pauline roommates through the years, including Justin, Ashley, Murph, Brenna, Heather, Lauren, Jon, and Luis.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	V
LIST OF TABLES	Vİİ
LIST OF ABBREVIATIONS	ix
ABSTRACT	Х
CHAPTER	
I. Introduction: Alzheimer's disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics	1
Abstract	1
Alzheimer's disease	2
General Alzheimer's disease epidemiology	2
Lead (Pb) exposure	5
Overview of Pb exposure as a risk factor	5
Pb exposure epidemiology	5
Biomarkers of Pb exposure	8
Pb as a neurotoxicant and risk factor for late-onset AD	8
Overview of epigenetics	10
Epigenetic epidemiology and Alzheimer's disease	10
Epigenetics and heavy metals, with a focus on Pb	13
Data integrating Alzheimer's disease, epigenetics and Pb	14
exposure	
Alzheimer's disease and Pb exposure are associated with	14
changes in one-carbon metabolism, the substrate for	
DNA methylation	
Animal model studies linking Pb exposure, epigenetics, and amyloidogenesis	16
Challenges to LOAD epidemiologic research integrating	17
epigenetics and Pb exposure	
Potential approaches to study Pb exposure, epigenomics, and	18
Alzheimer's disease epidemiology	04
Pigules	21
References	22
II. Research Chapter T. Lead exposure, D-vitamins, and plasma	29
Abstract	20
ADSILACI	39 11
Mothode	41
	40
	49

Discussion	52
Tables	57
Figures	64
References	68
Supplemental Tables	72
Supplemental Figures	76
III. Research Chapter 2: Genome-wide DNA methylation differences	77
between late-onset Alzheimer's disease and cognitively normal	
controls in the human frontal cortex.	
Abstract	77
Introduction	79
Methods	81
Results	85
Discussion	91
Figures	97
Tables	104
References	108
IV. Research Chapter 3: An integrated analysis of genome-wide RNA	115
expression and DNA methylation in late onset Alzheimer's	
disease and neuropathological controls.	
Abstract	115
Introduction	116
Results	119
Discussion	124
Methods	127
Figures	132
Tables	138
References	143
Supplemental Figures	148
Supplemental Tables	151
V. Conclusions and future directions	171
Overall summary	171
Summary of homocysteine (Hcy) and Pb exposure	172
Summary of DNA methylation in AD.	174
Summary of gene expression and DNA methylation in AD.	176
Future directions	177
Concluding remarks	181
References	182

LIST OF FIGURES

Chapte	er 1	
1.1	Conceptual diagram describing the relationship between environmental exposures, including to the heavy metal lead, with the development of late-onset Alzheimer's disease.	21
Chapte	er 2	
2.1	One-Carbon Metabolism Pathway. Homocysteine can be elevated in conditions of low folate, low B6, or low B12. The sulfhydryl groups on several proteins, including Cystathionine β - synthase (CBS), in the one-carbon metabolism pathway are potential sites for lead's interferences.	64
2.2	The adjusted cross-sectional association between Pb exposure and homocysteine.	65
2.3	Longitudinal core model. Tibia Pb. Data has been centered on the mean continuous variables so intercept can be interpretable.	66
2.4	Adjusted association between Pb and homocysteine stratified by nutrient status.	67
S 2.1	Bivariate scatterplots for the unadjusted associations between lead measurement and Hcy at visit 1.	76
S 2.2	Blood Pb restricted plasma and diet. *Restrict analysis to only individuals with both plasma and dietary measures.	76
Chapte	er 3	
3.1	Mean percent methylation frequency distribution of the Discovery Set of 12 cognitively normal control samples (A) and 12 Alzheimer's disease cases (B) across the 27,578 CpG sites on the Illumina HumanMethylation27 BeadArray.	97
3.2	Hierarchical clustering heatmap of the Discovery Set top 26 autosomal CpG loci associated with late-onset Alzheimer's disease (LOAD) case/control status after adjusting for sex and age.	98
3.3	Discovery Set gene set enrichment analysis plots.	99
3.4	Human chromosome ideogram.	100
3.5	Methylation upstream of the TMEM59 gene.	101
3.6	Functional validation of observed DNA methylation differences for <i>TMEM59</i> , a gene involved in the post-translational modification of Amyloid Precursor Protein (<i>ABPP</i>).	102

Chapter 4

4.1	Boxplots of gene expression of the 9 top genes that differ by LOAD case or control status. LOAD cases display reduced gene expression at all of 9 of the genes.	132
4.2	Heatmap of all of the 176 sites on the Affymetrix gene expression array (FDR < 0.1) associated with LOAD case status. This plot used maximum distance and Ward's hierarchical clustering methods. Data has been normalized to the mean expression value per probeset.	133
4.3	Principal Component Analysis. (A) Principal component loading histogram. (B). Principal component analysis scree plot for the top 176 probesets (FDR < 0.1).	134
4.4	Gene-expression and DNA methylation linked data analysis pipeline.	135
4.5	(A) Scatterplot of the 133 genes that displayed discordant gene expression and DNA methylation between LOAD cases and controls.	135
4.6	Scatter plots of 9 genes: expression vs. methylation.	136
4.7	Circos plot: Locations of gene expression change and DNA methylation change.	137
S 4.1	Heatmap of all of the 176 sites on the Affymetrix gene expression array (FDR < 0.1) associated with LOAD case status. Publicly available data from embryonic stem cell derived neuronal precursor cells (GSE7178) and astrocytes (GSE5080) have been included. This plot used maximum distance and Ward's hierarchical clustering methods and normalized to the mean expression value per probeset	148
S 4.2	Scatterplots of expression vs. methylation for the 23 genes significantly associated with AD via expression ($p<0.05$) and methylation ($p<0.05$), and methylation and expression are significantly correlated (Pearson's $p<0.05$).	149

LIST OF TABLES

Chapter	2	
2.1	Univariate Statistics: Characteristics of individuals with complete Hcy and blood Pb (2234 obs, 1048 individuals). Mean (S.D.), except where noted.	57
2.2	Bivariate statistics based on visit 1. Characteristics of individuals with complete Hcy and blood Pb (1056 individuals).	58
2.3	Concurrent Pb exposure is associated with plasma homocysteine: Mixed effects model, random intercept only. Equivalent to cross-sectional model taking into account correlated nature of observations from the same individual.	60
2.4	Cumulative exposure is associated with plasma homocysteine: Mixed effects model, random intercept only. Equivalent to cross- sectional model taking into account correlated nature of observations from the same individual.	61
2.5	Longitudinal mixed effects models: Log(hcy) is outcome and tibia pb is main predictor. Continuous covariates have been mean adjusted so that the intercept can be interpreted as the log(hcy) at the mean of those covariates and when dummy variables =0. Four visits of tibia Pb and Hcy have been used. Random intercept and slope.	62
2.6	Basic mediation analysis. All visits main effect of tibia Pb with and without current blood Pb adjustment. Note: Tibia Pb is no longer significant after adjusting for blood Pb	63
S 2.1	Visits 1-2 all samples, linear regression, split by change in blood Pb n=747	72
S 2.2	All visits, all samples, mixed effects n=747 with 1245 observations	73
S 2.3	Secondary analysis, long-term dietary trend in tibia model	74
S 2.4	Mediation analysis, visit 1.	75
Chapter	3	75
3.1	Study population mean demographics by case status.	104
3.2	Pyrosequencing assay information.	105
3.3	Primer sequences for gene expression QPCR assays.	105

3.4	CpG sites differentially methylated with age among cognitively normal controls (Discovery Set, Age 69-94).	106	
3.5	Table of the 25 CpG sites most significantly differentially methylated by AD case status (Discovery Set).		
Chapter	4		
4.1	Affymetrix expression differences between LOAD cases and controls (n=25) after adjusting for age and sex.	138	
4.2	Among genes with lower gene expression in AD cases vs. controls, the following are the top 15 biological processes that are down-regulated based on LR-Path.	139	
	Among genes with higher gene expression in AD cases vs. controls, the following are the top 15 biological processes that are up-regulated based on LR-Path.	140	
4.4	Gene expression and methylation correlation.		
		141	
4.5	Study population characteristics.	140	
S 4 1	Gene expression probesets associated with AD case vs. controls	142	
0 4.1	at FDR < 0.1 (n=176)	151	
S 4.2	Among genes with lower expression in Alzheimer's, several biological processes were enriched.	156	
S 4.3	Among genes with higher expression in Alzheimer's, several biological processes were enriched.	158	
S 4.4	Among genes with lower expression in Alzheimer's, several molecular functions were enriched.	166	
S 4.5	Among genes with higher expression in Alzheimer's, several molecular functions were enriched.	167	
S 4.6	Among genes with lower expression in Alzheimer's, the binding motifs of several transcription factors were enriched.	169	
S 4.7	Among genes with higher expression in Alzheimer's, the binding motifs of several transcription factors were enriched.	169	
S 4.8	Among genes with higher expression in Alzheimer's, the binding sites of several microRNAs were enriched.	169	
S 4.9	Among genes with lower expression in Alzheimer's, the binding sites of several microRNAs were enriched.	169	
S 4.10	Among genes with higher expression in Alzheimer's, several cytogenic bands were enriched.	170	
S 4.11	Among genes with lower expression in Alzheimer's, several cytogenic bands were enriched.	170	

LIST OF ABBREVIATIONS

8-oxo-dG	8-hydroxy-2'-deoxyguanosine
AD	Alzheimer's disease
ADRC	Alzheimer's disease research center
DOHad	Developmental origins of adult health and disease
EOAD	Early-onset Alzheimer's disease
EGCG	Epigallocatechin gallate
GAWS	Genome wide association study
HCY	Homocysteine
KXRF	Cd109 K-shell X-ray Fluorescence
LOAD	Late-onset Alzheimer's disease
Pb	Lead
MCI	Mild cognitive impairment
NGS	Next generation sequencing
PND	Post natal day
SAM	S-adenosyl methionine
SNP	Single nucleotide polymorphism
NAS	Veteran's Affairs Normative Aging Study
WBC	White blood cell

ABSTRACT

The causes of sporadic neurodegenerative disease in aging adults likely involve a complex interplay of genetics, epigenetics, and a lifetime of environmental exposures. The current dissertation uses two molecular epidemiology studies to investigate biomarkers of environmental exposures and neurodegenerative outcomes.

A major challenge of chronic disease environmental etiology research is the long latency between environmental exposures and the onset of disease. The Veteran's Affairs Normative Aging Study is an epidemiologic cohort designed to prospectively measure exposures and monitor early or subclinical disease. Repeated levels of recent exposure to lead were measured in blood and cumulative exposure to lead was measured by bone K-shell X-ray fluorescence. Homocysteine (Hcy), a risk factor for cardiovascular and neurodegenerative diseases when elevated, was measured concurrently with blood lead. Using repeated measures mixed effects models, this research demonstrated that an interquartile range higher blood Pb level (3 µg/dl) was associated with an 8.1% higher Hcy, compared to the percent change in Hcy with a 5-year increase in age (3.1%). We also demonstrated that individuals with diets rich in vitamins B6, B9, and B12, mitigated the effect of Pb on Hcy. This research suggests that interventions to reduce blood Pb and increase dietary B-vitamin intake would reduce circulating Hcy levels, potentially lowering risk for cardiovascular and neurodegenerative disease.

The second study investigated the role of epigenetic regulation, through DNA methylation, and its potential contribution to gene expression changes in late-onset Alzheimer's disease. In two separate thesis papers, the DNA methylomes and transcriptomes of frontal cortex tissues from deceased patients with Alzheimer's disease were mapped and compared to neuropathologically

Х

normal controls using genome-wide approaches and bioinformatic analyses. In a proof-of-concept study, the top disease ranked DNA methylation site was validated for altered gene expression and protein levels. A novel biomarker and potential mechanism for LOAD pathogenicity with environmental implications was proposed.

This interdisciplinary thesis implemented laboratory biomarker studies, population exposure assessment and molecular epidemiology to approach the multi-faceted origins of neurological disease in aging populations.

CHAPTER I

Introduction

Alzheimer's Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics

From: Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. 2012. Alzheimer's disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics. *Current Alzheimer's Research* 9: 563-73, reprinted with permission for educational use from Bentham Science Press.

ABSTRACT

Several lines of evidence indicate that the etiology of late-onset Alzheimer's disease (LOAD) is complex, with significant contributions from both genes and environmental factors. Recent research suggests the importance of epigenetic mechanisms in defining the relationship between environmental exposures and LOAD. In epidemiologic studies of adults, cumulative lifetime lead (Pb) exposure has been associated with accelerated declines in cognition. In addition, research in animal models suggests a causal association between Pb exposure during early life, epigenetics, and LOAD. There are multiple challenges to human epidemiologic research evaluating the relationship between epigenetics, LOAD, and Pb exposure. Epidemiologic studies are not well-suited to accommodate the long latency period between exposures during early life and onset of Alzheimer's disease. There is also a lack of validated circulating epigenetics biomarkers and retrospective biomarkers of Pb exposure. Members of our research group have shown bone Pb is an accurate measurement of historical Pb exposure in adults, offering an avenue for future epidemiologic studies. However, this would not address the risk of LOAD attributable to early-life Pb exposures. Future studies

that use a cohort design to measure both Pb exposure and validated epigenetic biomarkers of LOAD will be useful to clarify this important relationship.

Keywords

DNA methylation; epigenetics; epidemiology, Late-onset Alzheimer's disease; lead exposure; Pb

ALZHEIMER'S DISEASE

General Alzheimer's Disease Epidemiology

Alzheimer's disease (AD) is a highly prevalent, progressive, and fatal neurodegenerative disease associated with aging. Clinical manifestation of AD includes progressive memory impairment and a gradual difficulty performing normal activities. A small percentage of cases, termed early-onset AD (EOAD), experience disease onset prior to age 60. EOAD cases are attributed to highly penetrant genetic mutations in amyloid pathway genes including amyloid precursor protein (*APP*) on chromosome 21, presenilin 1 (*PSEN1*) on chromosome 14, and presenilin 2 (*PSEN2*) on chromosome 1 (Bertram 2009; Hardy 1997). These mutations lead to the accumulation of β -amyloid plaques, a pathological hallmark of AD.

Termed late-onset AD (LOAD), the majority of AD cases are sporadic and symptoms manifest after age 60. Numerous low-penetrant genetic risk factors conferring a modest increase in risk of disease have been identified for LOAD, the most studied of which is the apolipoprotein ε 4 allele (*APOE*- ε 4). The global population prevalence of *APOE*- ε 4 is 22%, while approximately 60% of LOAD cases carry at least one allele (Ashford 2004; Kim et al. 2009). Large, multi-center genome-wide association studies (GWAS) estimate the population attributable risk for *APOE* variants is 19-35% (Ertekin-Taner 2010). GWAS have

identified additional polymorphisms associated with LOAD risk including genes for *ABCA7*, *BIN1*, *CD2AP*, *CD33*, *CLU*, *CR1*, *EPHA1*, *MS4A*, and *PICALM* (Harold et al. 2009; Hollingworth et al. 2011; Lambert et al. 2009; Naj et al. 2011), each associated with small increases in population attributable risk (PAR) ranging from 2-9.3% with a combined non-*APOE* PAR of 31-35%. Additional *APOE* ε 4 dose adjustment reveals 50% of the PAR for LOAD is accounted for by known single nucleotide polymorphisms (SNPs) (Naj et al. 2011). While these variants are important both for risk assessment and identification of novel mechanisms of pathogenesis, they are neither necessary nor sufficient for the development of LOAD.

Twin studies are an important epidemiologic tool for estimating the relative contribution of genetics and the environment in disease development. Incomplete twin concordance and variable age of onset supports a significant role for non-genetic factors in LOAD etiology. Among monozygotic twin (MZ) pairs, approximately 45-67% of twin pairs are concordant for LOAD (Gatz et al. 1997; Gatz et al. 2006; Nee and Lippa 1999). Heritability of liability based on twin studies is estimated to be 58-79% (Gatz et al. 1997; Gatz et al. 2006). Linkage analysis reveals age at LOAD onset is partially genetically linked to regions on chromosomes 4 (208 cM) and 10 (139 cM) (Li et al. 2002). However, among a group of MZ pairs in which both twins develop the disease, differences in age of onset range from 4 to 16 years (Gatz et al. 1997). Both genetic and environmental factors likely contribute to LOAD development.

Association studies have identified several non-genetic risk factors for LOAD, including depression (Saczynski et al. 2010), hypertension (Li et al. 2011; Sharp et al. 2011), stroke (Savva and Stephan 2010), diabetes (Li et al. 2011), hypercholesterolemia (Li et al. 2011), obesity (Anstey et al. 2011), head trauma (Plassman et al. 2000), smoking (Almeida et al. 2002; Li et al. 2011; Rusanen et al. 2011), and having greater than 6 siblings (Moceri et al. 2000). Protective factors, those that reduce the risk of developing LOAD or delay the onset of LOAD, include physical activity (Laurin et al. 2001; Lindsay et al. 2002), social

engagement (Fratiglioni and Wang 2007), mental activity (Fratiglioni and Wang 2007; Stern and Munn 2010), education (via the cognitive reserve hypothesis) (Fratiglioni and Wang 2007; Lindsay et al. 2002), statin use (G Li et al. 2010), non-steroidal anti-inflammatory drug (NSAID) use (Lindsay et al. 2002), moderate alcohol consumption (Larrieu et al. 2004; Lindsay et al. 2002), coffee consumption (Lindsay et al. 2002), past vaccinations (Verreault et al. 2001), and childhood residence in the suburbs relative to the city (Moceri et al. 2000). In particular, nutrition may play a protective role in LOAD onset. Consumption of one meal/week of fish rich in omega-3 fatty acids reduced the risk of developing AD by 60% in the Chicago Health and Aging Project (Morris 2009). Individuals with plasma vitamin E less than or equal to 21.0 µmol/L had a higher risk of incident dementia than individuals with plasma levels greater than or equal to 25.5 µmol/L (Helmer et al. 2003). The natural plant polyphenols curcumin and green tea epigallocatechin gallate (EGCG) have anti-oxidant and neuroprotective properties that may be protective against LOAD (Mandel et al. 2007). EGCG reduces APP translation through modulation of the intracellular iron pool in vitro neuroblastoma cell culture (Reznichenko et al. 2006) and AD transgenic mice exposed *in vivo* to EGCG show reduced Aβ plaque density (Rezai-Zadeh et al. 2005). In an additional AD transgenic mouse model study, curcumin suppressed inflammation and oxidative damage in the brain and lowered levels of soluble A β and plagues (Yang et al. 2005). Anthropometric measures of shorter adult knee height and arm span may reflect nutritional deficits in childhood (Jeong et al. 2005) and women in the lowest guartile of arm span in the Cardiovascular Health Cognition cohort study had 1.5 times elevated risk of dementia (Huang et al. 2008).

Proposed environmental exposures associated with LOAD include aluminum (Frisardi et al. 2010; Shcherbatykh and Carpenter 2007), copper (Brown 2009; Shcherbatykh and Carpenter 2007), zinc (Shcherbatykh and Carpenter 2007), mercury (Gerhardsson et al. 2008), lead (reviewed below), iron (Mandel et al. 2007), pesticides (Baldi et al. 2003; Santibanez et al. 2007), solvents (Kukull et al. 1995), electromagnetic field (Sobel et al. 1996), and

particulate matter in air pollution (Calderon-Garciduenas et al. 2004). Environmental exposure studies have been underrepresented in the AD literature, likely due to the challenges of retrospective exposure assessment in older adults.

LEAD (Pb) EXPOSURE

Overview of Pb Exposure as a Risk Factor

Zawia and colleagues have published a series of experimental studies on rodents and primates demonstrating that Pb exposure in early life results in latelife neuropathological changes similar to those of AD (reviewed elsewhere in this issue of *Current Alzheimer's Research*). This work, coupled with the recognition that exposure to Pb in the general population until recently has been high, has heightened interest in the epidemiology of Pb exposure and neurodegenerative disease. We discuss trends in Pb exposure and epidemiologic studies that provide evidence for the role of Pb as a risk factor for AD.

Pb Exposure Epidemiology

One of the greatest environmental health successes of our society was the regulatory action to reduce what had been decades of high Pb exposure in the US (Grosse et al. 2002). Between 1976 and 1991, the mean blood Pb levels for people in the US dropped 78% from 12.8 μ g/dL to 2.8 (Pirkle et al. 1994). Since 1991 the standard elevated blood Pb level defining the need for action from Pb poisoning in children has been set to 10 μ g/dL. The previously elevated mean blood Pb level of 12.8 μ g/dL is a sobering testament to the high levels of Pb exposure endured by the general US population and other countries in the recent past.

However, hazardous public health impacts remain despite low mean population blood Pb levels. One issue is that the general reduction in Pb exposure is not universal. Pockets of high Pb exposure remain in certain sectors of the US population where housing was constructed prior to 1950 and at which time leaded paint was used (Lanphear et al. 1998; Rabito et al. 2003), or where plumbing pipes and solder containing Pb have not yet been replaced (Edwards et al. 2009). Fly ash from municipal waste incineration contains high levels of heavy metals including Pb (Jung et al. 2004). In the high temperatures of the trash incineration process, Pb is converted to the volatile PbCl₂ compound, which can contaminate surrounding areas (Jung et al. 2004). It is estimated that the US has hundreds of defunct Pb battery recycling sites (Nedwed and Clifford 1997) and Pb/zinc mines and smelters. The surrounding soil and water of these industrial sites are often contaminated with high levels of Pb, leading to human exposure (Kaul et al. 1999), and many of these sites are designated Superfund sites on the National Priorities List by the US Environmental Protection Agency (EPA) (Lewin et al. 1999; von Lindern et al. 2003). In many developing countries the combustion of leaded gasoline continues and industrial emissions of Pb have been increasing (Meyer et al. 2008; Tong et al. 2000). Groups of people continue to experience high blood Pb levels based on their occupation or residential proximity to these hazards.

The pharmacodynamics of Pb in the human body makes past exposure to this heavy metal relevant to current and future health outcomes. Pb dust is inhaled or ingested and absorbed through the lung epithelia or gastrointestinal tract respectively. Pb is taken up by divalent metal transporters in the gut, binds tightly to heme molecules, and circulates throughout the body via blood. A small percentage of circulating Pb is highly toxic because it is free and bioavailable in the plasma (Hernandez-Avila et al. 1998). Plasma Pb contributes to both soft tissue Pb as well as bone Pb deposition (Rabinowitz et al. 1976). Pb can occupy both Ca²⁺ sites in the hydroxyapatite structure of bones (Barry and Mossman 1970) and greater than 95% of the adult body burden of Pb is stored in bones (Barry and Mossman 1970). Given that cortical bone turns over at a slow rate of approximately 2% per year in healthy adults, Pb can be stored for decades in bone (Barbosa et al. 2005; Hu et al. 1998; Rabinowitz 1991). Storage in bone is not a permanent Pb detoxification mechanism as Pb can have direct effects on

the cellular components of bone (Pounds et al. 1991), and bone Pb can be mobilized in times of higher bone turnover such as during pregnancy, lactation, and osteoporosis (Silbergeld et al. 1988). Individuals born in the US prior to the Pb phase out in the 1970s may have accumulated elevated bone Pb stores that become mobilized in later life.

Biomarkers of Pb Exposure

Whole blood Pb is the most common biomarker of Pb exposure. The halflife of Pb in blood is relatively short, approximately 35 days (Rabinowitz et al. 1976). This biomarker is best used for quantifying recent environmental exposures and mobilization of endogenous Pb (Silbergeld 1991). Similarly, soft tissues also have relatively high turnover of Pb with a mean half-life of approximately 40 days, but soft tissue Pb quantification is invasive and not typically used for epidemiologic studies (Rabinowitz et al. 1976).

An expert panel on adult Pb toxicity convened by the US Centers for Disease Control concluded that bone Pb levels were the best biomarker of cumulative Pb exposure (Hu et al. 2007). Spongy trabecular bone, such as that found in the patella, has an intermediate half-life of 5-15 years in adults (Hu et al. 1995). More dense cortical bone, as in the tibia, has a much longer half-life of 10-30 years (Chettle 2005). Thus, epidemiologic studies measuring Pb in bone can quantify a subject's life history of cumulative Pb exposure.

Bone Pb levels can be measured either *in vivo* using Cd¹⁰⁹ K-shell X-ray Fluorescence (KXRF) (Hu et al. 2007) or by direct, chemical measurement of Pb in excised total joint replacement or post-mortem bone samples (Wittmers et al. 1988). Measurements with KXRF technology are painless and non-invasive, with minimal radiation exposure (Hu et al. 1995). The KXRF instrument uses lowlevel gamma radiation to provoke emission of fluorescent photons from a subject's tibia and patella (Hu et al. 1989). The photons are detected and quantified over a spectrum of wavelengths from which the characteristic emission profile of Pb can be extracted (Hu et al. 1995). Post-mortem bone samples can

be acid digested and quantified for Pb levels using inductively coupled plasma mass spectrometry (ICP-MS) (Garcia et al. 2001).

There are several approaches to predicting cumulative Pb exposure in the absence of direct bone Pb measures. The Park model incorporates blood Pb and information on subject demographics, medical history, and metabolic parameters to predict cumulative Pb exposure (Park et al. 2009). The Gorell system predicts cumulative Pb exposure based on blood Pb levels and physiologically based pharmacokinetic (PBPK) models incorporating industrial hygienist rated occupational Pb exposure for each job over the duration worked (Coon et al. 2006). Both strategies have been validated with bone Pb measures.

Pb as a Neurotoxicant and Risk Factor for LOAD

Pb is a well-known neurotoxicant in children. Even at relatively low (subclinical) levels, epidemiologic studies demonstrate that childhood Pb exposure affects IQ and behavior with major impacts on IQ and functioning (Fewtrell et al. 2004; Grosse et al. 2002).

A growing body of toxicological and population-based research indicates that cumulative environmental Pb exposure is neurotoxic in adults as well (Toscano and Guilarte 2005). Pb exposure is a significant risk factor for accelerated declines in cognition (Weisskopf et al. 2004; Wright et al. 2003), an effect that a recent CDC panel concluded was likely causal (Shih et al. 2007). The Veteran's Affairs Normative Aging Study (NAS) is a longitudinal cohort of men free of disease when recruited in 1963. Based on data from repeated measures of bone Pb, blood Pb, and cognitive tests in the NAS, there are significant associations between high Pb exposure and decreased cognition. The cognitive domains associated with increased Pb exposure differ depending on the time of exposure. In a cross-sectional analysis, higher blood Pb was associated with reduced ability to recall and define words, identify line-drawn objects, and difficulty with a perceptual comparison test (Payton et al. 1998). Both higher blood and bone Pb were associated with decreased spatial copying skill (Payton et al. 1998). Higher bone Pb was associated with reduced pattern memory (Payton et al. 1998). Longitudinal analyses confirm that the Pb associated declines in cognitive function are greater than changes observed with normal aging alone (Schwartz et al. 2000). Also in the NAS, functional genetic polymorphisms in the δ -aminolevulinic acid dehydratase (*ALAD*) and hemochromatosis (*HFE*) genes modify the association between Pb and cognition measured by the Mini-Mental State Exam (MMSE), where variant carriers have more pronounced cognitive deficits associated with Pb exposure (Wang et al. 2007; Weuve et al. 2006). Future research may study the ecological association between geographic regions with elevated Pb exposure and prevalence of LOAD.

Pb is also a risk factor for increased hippocampal gliosis measured by magnetic resonance spectroscopy in the NAS (Weisskopf et al. 2007), an abnormality associated with LOAD development. Molecular epidemiology studies show cumulative Pb exposure is associated with an increased risk of amyotrophic lateral sclerosis (Kamel et al. 2005; Kamel et al. 2003; Kamel et al. 2002) and Parkinson's Disease (Weisskopf et al. 2010), suggesting that Pb exerts a significant neurodegenerative effect. This effect may have specificity through epigenetic change as a pathogenic mechanism.

Toxicological studies are consistent with the epidemiologic research. Early life Pb exposure in animal models is associated with latent *APP* pathway dysregulation. Rats exposed to Pb in early life showed increased expression of APP mRNA and elevated A β aggregation without changes in α -, β -, or γ secretases at 20 months of age (Basha et al. 2005a; Basha et al. 2005b). Similarly, primates exposed to Pb during the first 2 months of life only had significant adverse brain changes at 23 years of age when compared to their unexposed counterparts (Wu et al. 2008a). Pb exposed primates had increased amyloidogenesis, senile plaque deposition, and up-regulation of key proteins in the amyloid processing pathway, such as *APP* and beta-site *APP*-cleaving enzyme 1 (*BACE1*) (Wu et al. 2008a).

OVERVIEW OF EPIGENETICS

Literally meaning "above the genome," the epigenome comprises the heritable changes in gene expression that occur in the absence of changes to the DNA sequence itself. Epigenetic mechanisms include chromatin folding and attachment to the nuclear matrix, packaging of DNA around nucleosomes, covalent modifications of histone tails, and DNA methylation. The influence of regulatory small RNAs and micro RNAs on gene transcription is also increasingly recognized as a key mechanism of epigenetic gene regulation (Morris 2011). Epigenetic mechanisms are important in growth and cellular differentiation (Jones and Taylor 1980). Epigenetic change can be stochastic (Feinberg and Irizarry 2010) or internally orchestrated as part of aging (Fraga and Esteller 2007). Longitudinal change in global and gene-specific DNA methylation clusters within families, suggesting that there is genetic control of methylation status (Bjornsson et al. 2008). Inappropriate epigenetic changes are associated with many diseases including cancers (Esteller 2008), Rett syndrome (Horike et al. 2005), Beckwith-Wiedemann syndrome (DeBaun et al. 2002) and other imprinting disorders. Environmental signals can trigger epigenetic responses and may be an important mechanism by which environmental exposures are associated with disease (Faulk and Dolinoy 2011). Furthermore, epigenetic mechanisms may play an important role in the developmental origins of adult health and disease (DOHaD) by providing a mechanism underlying the latent effects of adverse fetal, infant, and childhood environments on late-life chronic disease (Barker 2004; Hanson et al. 2011; Wadhwa et al. 2009).

Epigenetic Epidemiology and Alzheimer's Disease

Epigenetic epidemiology is the study of the effects of heritable epigenetic changes on the occurrence and distribution of diseases in populations (Jablonka 2004). This research includes both trans-generational and intra-individual cellular epigenetic inheritance systems. Epigenetic changes are associated with epidemiologic risk factors such as aging (Calvanese et al. 2009; Fraga 2009) and environmental exposures (Faulk and Dolinoy 2011), as well as psychiatric

outcomes (Sananbenesi and Fischer 2009) and neurodegeneration (Urdinguio et al. 2009).

Evidence for the role of epigenetics in AD pathogenesis is found in human studies of various tissues, animal models, and cell culture (2010; Mastroeni et al. 2011; Mill 2011). Global changes associated with AD have been observed in DNA methylation, miRNAs, and histone modifications. A human post-mortem case-control study identified global DNA hypomethylation in the entorhinal cortex of AD subjects by quantifying the percentage of positive 5-methylcytosine neuronal nuclear immunoreactivity (Mastroeni et al. 2008). Within a single MZ twin pair discordant for AD, DNA from the temporal neocortex neuronal nuclei was hypomethylated in the AD twin compared to their cognitively normal twin using similar methods to the previous study (Mastroeni et al. 2009). An AD casecontrol study in the post-mortem human parietal lobe cortex revealed differential regulation of miRNAs including miR-204, miR-211, and miR-44691 using a custom µParaflo array (Nunez-Iglesias et al. 2010). Age-matched AD cases have increased neuronal global phosphorylation of histone 3 relative to controls determined by immunolabeling in the hippocampus, a histone modification that suggests mitotic activation (Ogawa et al. 2003).

Given that epigenetics play an important regulatory role in gene expression, epigenetic dysregulation of important AD tau and amyloid processing pathway genes may point to a potential mechanism for AD disease progression. In experiments where neuroblastoma cells were cultured under low folate and vitamin B12 conditions, *PSEN1* and *BACE1* were hypomethylated, mRNA expression of *BACE1* and *PSEN1* was significantly induced, and A β production was increased (Fuso et al. 2005). Addition of S-adenosyl methionine (SAM) was able to restore *BACE1* and *PSEN1* expression to baseline levels, though DNA methylation reversal was incomplete (Fuso et al. 2005). An additional study using human neuroblastoma cells and male rat brain tissue shows *APP* mRNA expression is repressed by thyroid hormone (T3) sensitive histone modifications (Belakavadi et al. 2011). Treatment with T3 decreases H3K4 methylation and H3

acetylation at the *APP* promoter, leading to *APP* silencing that was reversed with histone deacetylase (HDAC) and histone lysine demethylase inhibitors (Belakavadi et al. 2011).

There have been several candidate-gene methylation studies in LOAD cases and controls. In a post-mortem brain study of 26 controls and 44 LOAD cases with varying degrees of disease severity, no differences were seen in DNA methylation in regions associated with Microtubule Associated Protein Tau (*MAPT*), *PSEN1*, and *APP*, nor were differences detected between frontal cortex and hippocampal DNA (Barrachina and Ferrer 2009). Investigation of 6 familial AD frontal cortex and cerebellum brain samples revealed no methylation at the *APP* promoter in any case in either brain region (Brohede et al. 2010). These studies were limited by a candidate-gene approach and highlight the need for genome-wide assessment of DNA methylation.

It is critical that epigenetic epidemiology studies of AD epigenetics consider age as an independent predictor of epigenetic change as age-specific epigenetic drift has been observed at AD related loci among healthy normal controls. In a set of control parietal cortex samples, the promoter of APP was hypomethylated in individuals greater than 70 years of age relative to younger subjects (Tohgi et al. 1999a). DNA methylation upstream of the MAPT gene also varied with age in the control parietal cortex and was associated with an agerelated decline in MAPT gene expression (Tohgi et al. 1999b). Specifically, MAPT promoter CpG dinucleotides located in the Sp1 transcriptional activator binding site were hypermethylated with age, while CpG dinucleotides located within the GCF transcriptional repressor binding region were hypomethylated with age (Tohgi et al. 1999b). Another study of post-mortem cerebral cortex in 125 subjects ranging from 17 weeks of gestation to 104 years of age measured methylation by MethyLight PCR at candidate tag loci for 50 genes selected for their relevance to LOAD, CNS differentiation, and cancer. CpG sites in the promoters of eight genes showed robust linear increases in DNA methylation across the lifespan (Siegmund et al. 2007). An additional study examined

prefrontal cortex samples across a 30 year age range and noted that the average DNA methylation in promoters of *MTHFR* and *APOE* increased by 6.8% across the age range, while control samples decreased by 10.6% with age (Wang et al. 2008). Given the likely epigenetic drift, clinical samples should be carefully matched on age.

Epigenetics and Heavy Metals, with a Focus on Pb

Epigenetic alterations have been observed following exposure to environmental metals (Salnikow and Zhitkovich 2008), including arsenic, nickel, chromium, cadmium, and Pb. Perhaps the heavy metal most studied in the field of cancer epigenetic epidemiology is arsenic. In a population-based study of 351 individuals with bladder cancer, elevated toenail arsenic measurements were associated with increased tumor sample promoter methylation of RASSF1A and PRSS3 tumor suppressor genes (Marsit et al. 2006). Nickel, chromium, and cadmium epigenetics research has largely been in toxicologically based in vitro experiments. A cell line of human lung bronchoepithelial cells treated with nickel chloride show global histone modification changes including decreased H2A, H2B, H3, and H4 acetylation and increased H3K9 dimethylation (Ke et al. 2006). When the same cell line is treated with chromium, the cells exhibit increased H3K9 dimethylation at the *MLH1* gene promoter region, which correlates with decreased MLH1 mRNA expression (Sun et al. 2009). Cadmium exposure in a rat liver cell line initially reduces DNA methyltransferase activity and global DNA methylation, but after 10 weeks of prolonged exposure, the cells show significant increases in DNA methyltransferase and global DNA methylation above the baseline (Takiguchi et al. 2003).

Evidence suggests that Pb, in particular, may play a role in epigenetics throughout the life course. In a study of 103 mother-infant pairs, maternal cumulative Pb exposure was inversely associated with offspring umbilical cord genomic DNA methylation of Alu retrotransposable elements (Pilsner et al. 2009). Similarly, bone Pb levels were inversely associated with peripheral blood genomic DNA methylation of LINE-1 retrotransposons in 517 elderly men from

the NAS (Wright et al. 2010). Individuals exposed to extremely high levels of Pb (51-100 μ g/dL blood Pb) had higher methylation in the promoter of the *p16* tumor suppressor gene (Kovatsi et al. 2010). Research is needed to expand this early epidemiologic work on global and candidate gene DNA methylation to more comprehensively understand specific pathways influenced by Pb exposure in humans.

Animal studies have investigated the relationship between Pb exposure and epigenetics. Early life exposure to Pb in primates causes dysregulation of biological pathways important to LOAD pathogenesis in late life and is associated with reduced DNA methyltransferase 1 (*DNMT1*) activity (Wu et al. 2008a). Rat pheochromocytoma cells exposed to Pb show dose dependent decreases in global methylation and decreases in *APP* promoter methylation at 4 CpG sites (YY Li et al. 2010). These changes were associated with increases in *APP* mRNA and A β protein levels (YY Li et al. 2010). Toxicological and epidemiological studies suggest that Pb exposure may be associated with epigenetic change, but further research is needed.

DATA INTEGRATING ALZHEIMER'S DISEASE, EPIGENETICS, AND Pb EXPOSURE

Alzheimer's and Pb Exposure are Associated with Changes in One-Carbon Metabolism, the Substrate for DNA Methylation

De novo and maintenance DNA methylation is dependent on available methyl (-CH₃) groups. One-carbon metabolism reactions are reversible and deficiencies in methyl donors can cause DNA hypomethylation. For example, mice given diets deficient in the methyl donor choline showed lower global brain methylation (Niculescu et al. 2006) and elevated expression of *APP*, consistent with promoter hypomethylation (Niculescu et al. 2005). Epidemiologic studies indicate that AD patients have altered circulating levels of one-carbon metabolism members including homocysteine (HCY), SAM, folate, and vitamin B12. Elevated HCY is associated with increased risk of developing AD and increased rate of disease progression among individuals with the disease. Prospective data from the Framingham Heart Study show that each standard deviation increase in log transformed plasma total HCY levels was associated with an adjusted relative risk of dementia of 1.8 (95% CI: 1.3-2.5) eight years after the HCY measurement (Seshadri et al. 2002). AD patients in the Oxford Project to Investigate Memory and Ageing have increased serum HCY relative to cognitively normal control subjects (n=164) and the individuals with the greatest disease progression over the subsequent three years had the highest original HCY levels (Clarke et al. 1998). SAM is a methyl-donor molecule that is hydrolyzed to form HCY, the substrate for DNA methylation. AD patients also have decreased cerebrospinal fluid SAM relative to cognitively normal controls (Bottiglieri et al. 1990).

Several proteins in the one-carbon metabolism cycle may be disturbed by Pb exposure because elemental Pb reacts with free sulfhydryl groups on proteins. HCY metabolism may be directly inhibited by Pb binding to the sulfhydryl group in HCY. Furthermore, HCY is transsulfurated into cysteine by cystathionine β -synthase (CBS) and CBS has two sulfhydryl groups with which Pb can react. There is also evidence for Pb's involvement in methionine processing. Rats developmentally treated with Pb have impaired long-term potentiation (LTP), memory, and synaptic plasticity. Co-treatment with SAM and Pb increases LTP relative to Pb treatment alone and reduces circulating blood Pb levels (Cao et al. 2008) . Similarly, neuroblastoma cells exposed to Pb experience viability loss, glutathione antioxidant depletion, membrane lipid peroxidation, DNA damage, and apoptosis; pretreatment with a methionine derivative reduces these harmful effects (Chen et al. 2011).

Pb exposure and HCY levels are linked in cross-sectional epidemiologic studies. In the Baltimore Memory and Aging Project involving greater than 1,000 adults, higher blood Pb was associated with higher HCY (Schafer et al. 2005). Analyses from the 1999-2002 National Health and Nutrition Examination Survey (NHANES) showed HCY was strongly associated (OR=1.92) with peripheral

arterial disease (PAD) (Guallar et al. 2006). Subsequent analysis showed the original association was actually due to confounding from smoking, blood Pb and cadmium levels, and impaired renal function (Guallar et al. 2006). This suggests that the association between HCY and chronic disease may be driven by environmental exposures.

Animal Model Studies Linking Pb Exposure, Epigenetics, and Amyloidogenesis

A series of rat and primate model studies conducted by the Zawia research group collectively demonstrate that early life Pb exposure reduces DNA methyltransferase activity and specifically alters the regulation of many AD pathway related genes including APP and BACE1 that are known to be CpG rich. Rats exposed to Pb from post natal day (PND) 1 through PND 20 experienced a transient increase in APP mRNA expression in cortical brain tissue, which returned to basal levels at 1 year, and later resurged at 20 months of age in the absence of continued exposure (Basha et al. 2005b). The observed late-life rise in APP mRNA was accompanied by elevated Aβ, suggesting that early life Pb exposure may have long-term effects on amyloidogenesis in late life (Basha et al. 2005b). In a follow-up study on the same tissues, investigators noted the effects on Aß formation and aggregations were not due to changes in protein levels of APP processing secretases (Basha et al. 2005a). In a third study using the early-life exposed rat brain tissues, elevated oxidative DNA damage measured by cerebral 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) was observed in the exposed animals (Bolin et al. 2006). Local 8-oxo-dG is associated with hypomethylation at adjacent CpG sites (Cerda and Weitzman 1997). Direct oxidation of 5-methylcytosine to 5-hydroxymethylcytosine may be part of active DNA demethylation (Wu and Zhang 2010). Analogous primate experiments by Zawia et al. are consistent with these rodent findings. Primates exposed in early life to Pb had elevated levels of the A β peptide, 8-oxo-dG DNA, and mRNA from APP and BACE1 on autopsy 23 years later relative to controls, suggesting Pb is involved in LOAD-like pathology (Wu et al. 2008a). Brain tissue from these

exposed primates also had 20% reduced DNA methyltransferase 1 activity (Wu et al. 2008a) and lower methylation at the promoter of *APP* (Wu et al. 2008b). *In vivo* animal model studies spanning multiple organisms support an integrated role of Pb exposure and epigenetics in amyloidogenesis.

CHALLENGES TO LOAD EPIDEMIOLOGIC RESEARCH INTEGRATING EPIGENETICS AND Pb EXPOSURE

Human epidemiologic research integrating LOAD, environmental exposure to Pb, and epigenetics faces many challenges. Clinical criteria for AD include progressive impairment in memory in the absence of motor, sensory, or coordination deficits (McKhann et al. 1984). However, the standard of diagnosis for AD requires the pathologic post-mortem identification of Aβ plaques and tau neurofibrillary tangles. Epidemiologic studies can take advantage of predictive and diagnostic biomarkers, including a panel of plasma signaling proteins (Ray et al. 2007), cerebrospinal fluid protein analyses (De Meyer et al. 2010), magnetic resonance imaging (MRI) volumetric and structural measures (Jack et al. 1992), and positron emission tomography (PET) neuroimaging of metabolic rate and Aβ pathology (Klunk et al. 2004; Minoshima et al. 1995). However, these research methods require additional validation to become routine early detection methods (Dubois et al. 2007).

Another concern in environmental epidemiology is that the length of time between exposure and disease onset. Barker first introduced the hypothesis that early-life conditions could be linked to late life chronic disease, otherwise known as the developmental origins of health and disease (DOHaD) hypothesis (Barker and Osmond 1986). Fetal or childhood exposures have been associated with adverse health outcomes including impaired glucose tolerance (Ravelli et al. 1998) and hypertension (Barker et al. 1990; Bergvall et al. 2007). Indeed, several early life events related to growth, metabolism, and cognitive reserve have been associated with LOAD (Miller and O'Callaghan 2008). AD risk is

increased with limited education and income, and both factors are associated with poor early life environment and growth (Borenstein et al. 2006). Middle life risk factors including obesity (Whitmer et al. 2005), limited physical activity (Rovio et al. 2005), and diabetes (Luchsinger et al. 2001) are shared between AD and cardiovascular disease. Low birth weight and intrauterine growth restriction are related to metabolism, fat distribution, and insulin resistance at mid-life and it has been suggested that these early-life events may be associated with AD as well (Landrigan et al. 2005; Lester-Coll et al. 2006; Ross et al. 2007). However, LOAD is a chronic disease of old age and a prospective developmental exposure study could not feasibly follow an early life cohort for 75 years with our current late stage diagnostic measures. Additionally, retrospective exposure assessment is difficult. The human body has efficient detoxification and clearance mechanisms for many toxicants and many chemicals do not bioaccumulate in the human body. There is an acute need to develop biomarkers that correspond to prior toxicologic exposures.

Finally, an additional roadblock is that brain specific epigenetic measurements are only possible post-mortem. Molecular epidemiology research of toxicant induced disease is strengthened when performed with relevant tissue samples. Brain tissue collection is invasive and not possible longitudinally on live subjects. Model animal research and epidemiology studies of human premortem available tissues such as skin, blood, colon, etc. are necessary to fill in stages of disease tissue not available through end of life epidemiologic brain banks.

POTENTIAL APPROACHES TO STUDY Pb EXPOSURE, EPIGENOMICS, AND ALZHEIMER'S DISEASE EPIDEMIOLOGY

To best understand the relationship between Pb exposure (both early-life and later life) and LOAD, studies should take advantage of available biomarkers of Pb and technologic advances in epigenetic measurements. Bone Pb levels are a strong predictor of negative health outcomes including elevated risks for hypertension (Cheng et al. 2001; Hu et al. 1996; Korrick et al. 1999), ischemic heart disease (Jain et al. 2007), and mortality (Weisskopf et al. 2009), but the relationship between cumulative Pb exposure and LOAD has not been assessed. Cumulative Pb exposure of LOAD subjects can be measured either non-invasively *in vivo* using K-x-ray fluorescence (Hu et al. 2007) or by direct measurement of Pb in bone samples (Wittmers et al. 1988). At Alzheimer's Disease Research Centers (ADRCs) where LOAD subjects consent to brain tissue donation on autopsy, it would be most ideal to directly measure Pb in samples of cranial bone obtained at the time of brain harvesting. Measurement of Pb in the cranium is highly correlated with a weighted average of skeletal Pb levels, as well as the level of Pb in tibia bone (Hu et al. 1990), the latter being the bone most commonly measured in epidemiologic studies of chronic Pb toxicity (Hu et al. 2007). Sampling cranial bone Pb would make it possible to concurrently study LOAD epidemiology, brain tissue epigenetics and cumulative Pb exposure in post-mortem case-control studies.

Circulating epigenetic biomarkers would be useful to conduct case-control studies of Pb exposure (by in vivo KXRF) with live subjects. Post-mortem Alzheimer's disease brain tissue epigenetic studies are expanding, but use of this tissue collected at end of life is not feasible to track within individual changes over time as in longitudinal epidemiological aging cohort studies. Biologicallyavailable biomarkers would allow for repeated epigenetic measures throughout the disease course. Epigenetic markers in white blood cells (WBC) have been used as biomarkers in other diseases. Global DNA methylation has been associated with several cancers, myelodysplastic syndrome, and schizophrenia and thus does not appear to be a disease specific biomarker. Gene-specific methylation data and risk factor methylation data are more limited and results are inconsistent (Terry et al. 2011). Larger, prospective cohort studies are needed to determine whether WBC gene-specific epigenetics will be informative with AD and with Pb exposure (Figure 1.1). Upon epigenetic biomarker development, cohort studies could integrate and target distinct age groups. Birth cohorts could investigate the role of *in utero* and postnatal Pb exposure on AD biomarkers to test the hypothesis suggested by animal research (Wu et al. 2008b) that early life

is a critical window for Pb's influence on developmental reprogramming. Mid-life cohorts could focus on later exposure periods and could incorporate traditional AD risk factors such as hypertension status and education achieved. Late-life cohorts would involve the best AD and mild cognitive impairment (MCI) diagnostic tools and study the role of cumulative lifetime Pb exposure.

Finally, epidemiologic data needs to be incorporated with epigenetic studies on ADRC brain bank tissues. Epigenetic changes are associated with age (Wang et al. 2008), sex (Anway et al. 2005), exposures (Dolinoy et al. 2007), and diseases (Waterland and Garza 1999). Alzheimer's disease specific epigenetic change may need to be extracted from a noisy background of agespecific epigenetic drift, sex-specific epigenetic marks, co-morbidity disease changes, and a lifetime of environmental exposures. The majority of existing studies of brain epigenetics focus on CpG islands and the application of arraybased approaches that only cover a portion of the genome, largely in genic regions. Rapid advances in technology and reduction in costs have made new approaches using next-generation sequencing (NGS) feasible for larger sample sizes. These new approaches have been lauded as unbiased but criticized as relative (rather than quantitative) measures of DNA methylation. The depth of genome coverage will be able to provide the large amount of information needed to detect subtle changes from multiple sources. Integration of these data with ongoing studies of biomarkers in other neurodegenerative diseases and in nondiseased aging populations will help elucidate the specific epigenetic changes associated with LOAD, providing a foundation for prevention and treatment of this disease.

FIGURES

Figure 1.1. Conceptual diagram describing the relationship between environmental exposures, including to the heavy metal lead, with the development of late-onset Alzheimer's disease. There is a complex interplay of genetics and epigenetic programming. Epidemiologic cohort studies can be designed to study different stages in the life course leading to disease development.

REFERENCES

- Almeida OP, Hulse GK, Lawrence D, Flicker L. 2002. Smoking as a risk factor for Alzheimer's disease: contrasting evidence from a systematic review of case-control and cohort studies. Addiction 97(1): 15-28.
- Anstey KJ, Cherbuin N, Budge M, Young J. 2011. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(501): e426-437.
- Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727): 1466-1469.
- Ashford JW. 2004. APOE genotype effects on Alzheimer's disease onset and epidemiology. J Mol Neurosci 23(3): 157-165.
- Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P. 2003. Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5): 409-414.
- Barbosa F, Jr., Tanus-Santos JE, Gerlach RF, Parsons PJ. 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113(12): 1669-1674.
- Barker DJ. 2004. The developmental origins of chronic adult disease. Acta Paediatr Suppl 93(446): 26-33.
- Barker DJ, Bull AR, Osmond C, Simmonds SJ. 1990. Fetal and placental size and risk of hypertension in adult life. BMJ 301(6746): 259-262.
- Barker DJ, Osmond C. 1986. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1(8489): 1077-1081.
- Barrachina M, Ferrer I. 2009. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68(8): 880-891.
- Barry PSI, Mossman DB. 1970. Lead concentrations in human tissues. British Journal of Industrial Medicine 27: 339-351.
- Basha MR, Murali M, Siddiqi HK, Ghosal K, Siddiqi OK, Lashuel HA, Ge YW, Lahiri DK, Zawia NH. 2005a. Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation. FASEB J 19(14): 2083-2084.
- Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. 2005b. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25(4): 823-829.

- Belakavadi M, Dell J, Grover GJ, Fondell JD. 2011. Thyroid hormone suppression of beta-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol 339(1-2): 72-80.
- Bergvall N, Iliadou A, Johansson S, de Faire U, Kramer MS, Pawitan Y, Pedersen NL, Lichtenstein P, Cnattingius S. 2007. Genetic and shared environmental factors do not confound the association between birth weight and hypertension: a study among Swedish twins. Circulation 115(23): 2931-2938.
- Bertram L. 2009. Alzheimer's disease genetics current status and future perspectives. Int Rev Neurobiol 84: 167-184.
- Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekstrom TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP. 2008. Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24): 2877-2883.
- Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F. 2006. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 20(6): 788-790.
- Borenstein AR, Copenhaver CI, Mortimer JA. 2006. Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 20(1): 63-72.
- Bottiglieri T, Godfrey P, Flynn T, Carney MW, Toone BK, Reynolds EH. 1990. Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry 53(12): 1096-1098.
- Brohede J, Rinde M, Winblad B, Graff C. 2010. A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet 24(4): 179-181.
- Brown DR. 2009. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans(21): 4069-4076.
- Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-Flores M, Solt AC, Altenburg M, Torres-Jardon R, Swenberg JA.
 2004. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6): 650-658.
- Calvanese V, Lara E, Kahn A, Fraga MF. 2009. The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8(4): 268-276.

- Cao XJ, Huang SH, Wang M, Chen JT, Ruan DY. 2008. S-adenosyl-Lmethionine improves impaired hippocampal long-term potentiation and water maze performance induced by developmental lead exposure in rats. Eur J Pharmacol 595(1-3): 30-34.
- Cerda S, Weitzman SA. 1997. Influence of oxygen radical injury on DNA methylation. Mutat Res 386(2): 141-152.
- Chen T, Li YY, Zhang JL, Xu B, Lin Y, Wang CX, Guan WC, Wang YJ, Xu SQ. 2011. Protective effect of C(60) -methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J Appl Toxicol 31(3): 255-261.
- Cheng Y, Schwartz J, Sparrow D, Aro A, Weiss ST, Hu H. 2001. Bone lead and blood lead levels in relation to baseline blood pressure and the prospective development of hypertension: the Normative Aging Study. Am J Epidemiol 153(2): 164-171.
- Chettle DR. 2005. Three decades of *in vivo* x-ray fluorescence of lead in bone. X-Ray Spectrometry 34(5): 446-450.
- Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL. 2010. Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90(4): 498-510.
- Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55(11): 1449-1455.
- Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J, Chettle D, Gorell J. 2006. Whole-body lifetime occupational lead exposure and risk of Parkinson's disease. Environ Health Perspect 114(12): 1872-1876.
- De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H, Blennow K, Shaw L, Trojanowski JQ. 2010. Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67(8): 949-956.
- DeBaun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP. 2002. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 70(3): 604-611.
- Dolinoy DC, Weidman JR, Jirtle RL. 2007. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23(3): 297-307.
- Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O'Brien J,
Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P. 2007. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8): 734-746.

- Edwards M, Triantafyllidou S, Best D. 2009. Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001-2004. Environ Sci Technol 43(5): 1618-1623.
- Ertekin-Taner N. 2010. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res Ther 2(1): 3.
- Esteller M. 2008. Epigenetics in cancer. N Engl J Med 358(11): 1148-1159.
- Faulk C, Dolinoy DC. 2011. Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6(7).
- Feinberg AP, Irizarry RA. 2010. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A 107 Suppl 1: 1757-1764.
- Fewtrell LJ, Pruss-Ustun A, Landrigan P, Ayuso-Mateos JL. 2004. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. Environ Res 94(2): 120-133.
- Fraga MF. 2009. Genetic and epigenetic regulation of aging. Curr Opin Immunol 21(4): 446-453.
- Fraga MF, Esteller M. 2007. Epigenetics and aging: the targets and the marks. Trends Genet 23(8): 413-418.
- Fratiglioni L, Wang HX. 2007. Brain reserve hypothesis in dementia. J Alzheimers Dis 12(1): 11-22.
- Frisardi V, Solfrizzi V, Capurso C, Kehoe PG, Imbimbo BP, Santamato A, Dellegrazie F, Seripa D, Pilotto A, Capurso A, Panza F. 2010. Aluminum in the diet and Alzheimer's disease: from current epidemiology to possible disease-modifying treatment. J Alzheimers Dis 20(1): 17-30.
- Fuso A, Seminara L, Cavallaro RA, D'Anselmi F, Scarpa S. 2005. Sadenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28(1): 195-204.
- Garcia F, Ortega A, Domingo JL, Corbella J. 2001. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(9): 1767-1786.

- Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, Posner SF, Viitanen M, Winblad B, Ahlbom A. 1997. Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52(2): M117-125.
- Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. 2006. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2): 168-174.
- Gerhardsson L, Lundh T, Minthon L, Londos E. 2008. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 25(6): 508-515.
- Grosse SD, Matte TD, Schwartz J, Jackson RJ. 2002. Economic gains resulting from the reduction in children's exposure to lead in the United States. Environ Health Perspect 110(6): 563-569.
- Guallar E, Silbergeld EK, Navas-Acien A, Malhotra S, Astor BC, Sharrett AR, Schwartz BS. 2006. Confounding of the relation between homocysteine and peripheral arterial disease by lead, cadmium, and renal function. Am J Epidemiol 163(8): 700-708.
- Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. 2011. Developmental plasticity and developmental origins of non-communicable disease: Theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol 106(1): 272-280.
- Hardy J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 20(4): 154-159.
- Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10): 1088-1093.

- Helmer C, Peuchant E, Letenneur L, Bourdel-Marchasson I, Larrieu S, Dartigues JF, Dubourg L, Thomas MJ, Barberger-Gateau P. 2003. Association between antioxidant nutritional indicators and the incidence of dementia: results from the PAQUID prospective cohort study. Eur J Clin Nutr 57(12): 1555-1561.
- Hernandez-Avila M, Smith D, Meneses F, Sanin LH, Hu H. 1998. The influence of bone and blood lead on plasma lead levels in environmentally exposed adults. Environ Health Perspect 106(8): 473-477.
- Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B. Heun R. Kolsch H. van den Bussche H. Heuser I. Kornhuber J. Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Dujin CM, Breteler MM, Ikram MA, Destefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouvel P, Williams J. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet.
- Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. 2005. Loss of silentchromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1): 31-40.

- Hu H, Aro A, Payton M, Korrick S, Sparrow D, Weiss ST, Rotnitzky A. 1996. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA 275(15): 1171-1176.
- Hu H, Aro A, Rotnitzky A. 1995. Bone lead measured by X-ray fluorescence: epidemiologic methods. Environ Health Perspect 103 Suppl 1: 105-110.
- Hu H, Milder FL, Burger DE. 1989. X-ray fluorescence: issues surrounding the application of a new tool for measuring burden of lead. Environ Res 49(2): 295-317.
- Hu H, Rabinowitz M, Smith D. 1998. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1): 1-8.
- Hu H, Shih R, Rothenberg S, Schwartz BS. 2007. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect 115(3): 455-462.
- Hu H, Tosteson T, Aufderheide AC, Wittmers L, Burger DE, Milder FL, Schidlovsky G, Jones KW. 1990. Distribution of lead in human bone: I. Atomic absorption measurements. Basic Life Sci 55: 267-274.
- Huang T, Carlson M, Fitzpatrick A, Kuller L, Fried L, Zandi P. 2008. Knee height and arm span: a reflection of early life environment and risk of dementia. Neurology 70(19, Part 2): 1818.
- Jablonka E. 2004. Epigenetic epidemiology. Int J Epidemiol 33(5): 929-935.
- Jack CR, Jr., Petersen RC, O'Brien PC, Tangalos EG. 1992. MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology 42(1): 183-188.
- Jain NB, Potula V, Schwartz J, Vokonas PS, Sparrow D, Wright RO, Nie H, Hu H. 2007. Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men: the VA Normative Aging Study. Environ Health Perspect 115(6): 871-875.
- Jeong SK, Kim JM, Kweon SS, Shin MH, Seo MW, Kim YH. 2005. Does arm length indicate cognitive and functional reserve? International journal of geriatric psychiatry 20(5): 406-412.
- Jones PA, Taylor SM. 1980. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20(1): 85-93.
- Jung CH, Matsuto T, Tanaka N, Okada T. 2004. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management 24(4): 381-391.

- Kamel F, Umbach DM, Hu H, Munsat TL, Shefner JM, Taylor JA, Sandler DP. 2005. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis 2(3-4): 195-201.
- Kamel F, Umbach DM, Lehman TA, Park LP, Munsat TL, Shefner JM, Sandler DP, Hu H, Taylor JA. 2003. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect 111(10): 1335-1339.
- Kamel F, Umbach DM, Munsat TL, Shefner JM, Hu H, Sandler DP. 2002. Lead exposure and amyotrophic lateral sclerosis. Epidemiology 13(3): 311-319.
- Kaul B, Sandhu RS, Depratt C, Reyes F. 1999. Follow-up screening of leadpoisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environ Health Perspect 107(11): 917-920.
- Ke Q, Davidson T, Chen H, Kluz T, Costa M. 2006. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27(7): 1481-1488.
- Kim J, Basak JM, Holtzman DM. 2009. The role of apolipoprotein E in Alzheimer's disease. Neuron 63(3): 287-303.
- Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. 2004. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55(3): 306-319.
- Korrick SA, Hunter DJ, Rotnitzky A, Hu H, Speizer FE. 1999. Lead and hypertension in a sample of middle-aged women. Am J Public Health 89(3): 330-335.
- Kovatsi L, Georgiou E, Ioannou A, Haitoglou C, Tzimagiorgis G, Tsoukali H, Kouidou S. 2010. p16 promoter methylation in Pb2+ -exposed individuals. Clin Toxicol (Phila) 48(2): 124-128.
- Kukull WA, Larson EB, Bowen JD, McCormick WC, Teri L, Pfanschmidt ML, Thompson JD, O'Meara ES, Brenner DE, van Belle G. 1995. Solvent exposure as a risk factor for Alzheimer's disease: a case-control study. Am J Epidemiol 141(11): 1059-1071; discussion 1072-1059.
- Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa

D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41(10): 1094-1099.

- Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D. 2005. Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113(9): 1230-1233.
- Lanphear BP, Byrd RS, Auinger P, Schaffer SJ. 1998. Community characteristics associated with elevated blood lead levels in children. Pediatrics 101(2): 264-271.
- Larrieu S, Letenneur L, Helmer C, Dartigues JF, Barberger-Gateau P. 2004. Nutritional factors and risk of incident dementia in the PAQUID longitudinal cohort. J Nutr Health Aging 8(3): 150-154.
- Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. 2001. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58(3): 498-504.
- Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. 2006. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis 9(1): 13-33.
- Lewin MD, Sarasua S, Jones PA. 1999. A multivariate linear regression model for predicting children's blood lead levels based on soil lead levels: A study at four superfund sites. Environ Res 81(1): 52-61.
- Li G, Shofer JB, Rhew IC, Kukull WA, Peskind ER, McCormick W, Bowen JD, Schellenberg GD, Crane PK, Breitner JC, Larson EB. 2010. Age-varying association between statin use and incident Alzheimer's disease. J Am Geriatr Soc 58(7): 1311-1317.
- Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, Yan JC, Zhou HD. 2011. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology.
- Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA, Jr., Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-Vance MA. 2002. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70(4): 985-993.

- Li YY, Chen T, Wan Y, Xu SQ. 2010. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol.
- Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I. 2002. Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156(5): 445-453.
- Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R. 2001. Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. American Journal of Epidemiology 154(7): 635.
- Mandel S, Amit T, Bar-Am O, Youdim MB. 2007. Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor proteinprocessing regulatory activities as therapeutic agents. Prog Neurobiol 82(6): 348-360.
- Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT. 2006. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27(1): 112-116.
- Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. 2008. Epigenetic changes in Alzheimer's disease: Decrements in DNA methylation. Neurobiol Aging.
- Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. 2011. Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging.
- Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. 2009. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 4(8): e6617.
- McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34(7): 939-944.
- Meyer PA, Brown MJ, Falk H. 2008. Global approach to reducing lead exposure and poisoning. Mutat Res 659(1-2): 166-175.
- Mill J. 2011. Toward an integrated genetic and epigenetic approach to Alzheimer's disease. Neurobiol Aging.
- Miller DB, O'Callaghan JP. 2008. Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism 57 Suppl 2: S44-49.

- Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. 1995. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36(7): 1238-1248.
- Moceri VM, Kukull WA, Emanuel I, van Belle G, Larson EB. 2000. Early-life risk factors and the development of Alzheimer's disease. Neurology 54(2): 415-420.
- Morris KV. 2011. The emerging role of RNA in the regulation of gene transcription in human cells. Semin Cell Dev Biol.
- Morris MC. 2009. The role of nutrition in Alzheimer's disease: epidemiological evidence. Eur J Neurol 16 Suppl 1: 1-7.
- Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, George-Hyslop PS, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, Decarli C, Dekosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet.
- Nedwed T, Clifford DA. 1997. A survey of lead battery recycling sites and soil remediation processes. Waste Management 17(4): 257-269.

- Nee LE, Lippa CF. 1999. Alzheimer's disease in 22 twin pairs--13-year follow-up: hormonal, infectious and traumatic factors. Dement Geriatr Cogn Disord 10(2): 148-151.
- Niculescu MD, Craciunescu CN, Zeisel SH. 2005. Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain. Brain Res Mol Brain Res 134(2): 309-322.
- Niculescu MD, Craciunescu CN, Zeisel SH. 2006. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 20(1): 43-49.
- Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ. 2010. Joint genomewide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One 5(2): e8898.
- Ogawa O, Zhu X, Lee HG, Raina A, Obrenovich ME, Bowser R, Ghanbari HA, Castellani RJ, Perry G, Smith MA. 2003. Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta neuropathologica 105(5): 524-528.
- Park SK, Mukherjee B, Xia X, Sparrow D, Weisskopf MG, Nie H, Hu H. 2009. Bone lead level prediction models and their application to examine the relationship of lead exposure and hypertension in the Third National Health and Nutrition Examination Survey. J Occup Environ Med 51(12): 1422-1436.
- Payton M, Riggs KM, Spiro A, 3rd, Weiss ST, Hu H. 1998. Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol 20(1): 19-27.
- Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-Garcia A, Tellez-Rojo MM, Hernandez-Avila M. 2009. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 117(9): 1466-1471.
- Pirkle JL, Brody DJ, Gunter EW, Kramer RA, Paschal DC, Flegal KM, Matte TD. 1994. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA 272(4): 284-291.
- Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D,
 Phillips C, Gau BA, Welsh-Bohmer KA, Burke JR, Guralnik JM, Breitner JC. 2000. Documented head injury in early adulthood and risk of
 Alzheimer's disease and other dementias. Neurology 55(8): 1158-1166.
- Pounds JG, Long GJ, Rosen JF. 1991. Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91: 17-32.

- Rabinowitz MB. 1991. Toxicokinetics of bone lead. Environ Health Perspect 91: 33-37.
- Rabinowitz MB, Wetherill GW, Kopple JD. 1976. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest 58(2): 260-270.
- Rabito FA, Shorter C, White LE. 2003. Lead levels among children who live in public housing. Epidemiology 14(3): 263-268.
- Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP. 1998. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351(9097): 173-177.
- Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T. 2007. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 13(11): 1359-1362.
- Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D. 2005. Green tea epigallocatechin-3gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. The Journal of neuroscience 25(38): 8807.
- Reznichenko L, Amit T, Zheng H, Avramovich Tirosh Y, Youdim M, Mandel S. 2006. Reduction of iron regulated amyloid precursor protein and amyloid peptide by (–) epigallocatechin 3 gallate in cell cultures: implications for iron chelation in Alzheimer's disease. Journal of neurochemistry 97(2): 527-536.
- Ross MG, Desai M, Khorram O, McKnight RA, Lane RH, Torday J. 2007. Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease. Curr Alzheimer Res 4(2): 213-217.
- Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M. 2005. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. The Lancet Neurology 4(11): 705-711.
- Rusanen M, Kivipelto M, Quesenberry CP, Jr., Zhou J, Whitmer RA. 2011. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171(4): 333-339.
- Saczynski JS, Beiser A, Seshadri S, Auerbach S, Wolf PA, Au R. 2010. Depressive symptoms and risk of dementia: the Framingham Heart Study. Neurology 75(1): 35-41.

- Salnikow K, Zhitkovich A. 2008. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1): 28-44.
- Sananbenesi F, Fischer A. 2009. The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biol Chem 390(11): 1145-1153.
- Santibanez M, Bolumar F, Garcia AM. 2007. Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64(11): 723-732.
- Savva GM, Stephan BC. 2010. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke 41(1): e41-46.
- Schafer JH, Glass TA, Bressler J, Todd AC, Schwartz BS. 2005. Blood lead is a predictor of homocysteine levels in a population-based study of older adults. Environ Health Perspect 113(1): 31-35.
- Schwartz BS, Stewart WF, Bolla KI, Simon PD, Bandeen-Roche K, Gordon PB, Links JM, Todd AC. 2000. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 55(8): 1144-1150.
- Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346(7): 476-483.
- Sharp SI, Aarsland D, Day S, Sonnesyn H, Ballard C. 2011. Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatry 26(7): 661-669.
- Shcherbatykh I, Carpenter DO. 2007. The role of metals in the etiology of Alzheimer's disease. J Alzheimers Dis 11(2): 191-205.
- Shih RA, Hu H, Weisskopf MG, Schwartz BS. 2007. Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3): 483-492.
- Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S. 2007. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2(9): e895.
- Silbergeld EK. 1991. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect 91: 63-70.
- Silbergeld EK, Schwartz J, Mahaffey K. 1988. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res 47(1): 79-94.

- Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC. 1996. Elevated risk of Alzheimer's disease among workers with likely electromagnetic field exposure. Neurology 47(6): 1477-1481.
- Stern C, Munn Z. 2010. Cognitive leisure activities and their role in preventing dementia: a systematic review. Int J Evid Based Healthc 8(1): 2-17.
- Sun H, Zhou X, Chen H, Li Q, Costa M. 2009. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237(3): 258-266.
- Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. 2003. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286(2): 355-365.
- Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. 2011. DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics 6(7).
- Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. 1999a. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2): 288-292.
- Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y. 1999b. The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275(2): 89-92.
- Tong S, von Schirnding YE, Prapamontol T. 2000. Environmental lead exposure: a public health problem of global dimensions. Bull World Health Organ 78(9): 1068-1077.
- Toscano CD, Guilarte TR. 2005. Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49(3): 529-554.
- Urdinguio RG, Sanchez-Mut JV, Esteller M. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8(11): 1056-1072.
- Verreault R, Laurin D, Lindsay J, De Serres G. 2001. Past exposure to vaccines and subsequent risk of Alzheimer's disease. CMAJ 165(11): 1495-1498.
- von Lindern I, Spalinger S, Petroysan V, von Braun M. 2003. Assessing remedial effectiveness through the blood lead: soil/dust relationship at the Bunker Hill Superfund Site in the Silver Valley of Idaho. The Science of The Total Environment 303(1-2): 139-170.

- Wadhwa PD, Buss C, Entringer S, Swanson JM. 2009. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27(5): 358-368.
- Wang FT, Hu H, Schwartz J, Weuve J, Spiro AS, Sparrow D, Nie H, Silverman EK, Weiss ST, Wright RO. 2007. Modifying effects of the HFE polymorphisms on the association between lead burden and cognitive decline. Environ Health Perspect 115(8): 1210-1215.
- Wang SC, Oelze B, Schumacher A. 2008. Age-specific epigenetic drift in lateonset Alzheimer's disease. PLoS One 3(7): e2698.
- Waterland RA, Garza C. 1999. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69(2): 179-197.
- Weisskopf MG, Hu H, Sparrow D, Lenkinski RE, Wright RO. 2007. Proton magnetic resonance spectroscopic evidence of glial effects of cumulative lead exposure in the adult human hippocampus. Environ Health Perspect 115(4): 519-523.
- Weisskopf MG, Jain N, Nie H, Sparrow D, Vokonas P, Schwartz J, Hu H. 2009. A prospective study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer in the Department of Veterans Affairs Normative Aging Study. Circulation 120(12): 1056-1064.
- Weisskopf MG, Weuve J, Nie H, Saint-Hilaire MH, Sudarsky L, Simon DK, Hersh B, Schwartz J, Wright RO, Hu H. 2010. Association of Cumulative Lead Exposure with Parkinson's Disease. Environ Health Perspect.
- Weisskopf MG, Wright RO, Schwartz J, Spiro A, 3rd, Sparrow D, Aro A, Hu H. 2004. Cumulative lead exposure and prospective change in cognition among elderly men: the VA Normative Aging Study. Am J Epidemiol 160(12): 1184-1193.
- Weuve J, Kelsey KT, Schwartz J, Bellinger D, Wright RO, Rajan P, Spiro A, Sparrow D, Aro A, Hu H. 2006. Delta-aminolevulinic acid dehydratase polymorphism and the relation between low level lead exposure and the Mini-Mental Status Examination in older men: the Normative Aging Study. Occupational and environmental medicine 63(11): 746.
- Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Yaffe K. 2005. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330(7504): 1360.
- Wittmers LE, Jr., Aufderheide AC, Wallgren J, Rapp G, Jr., Alich A. 1988. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health 43(6): 381-391.

- Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, Hu H, Sparrow D, Vokonas P, Baccarelli A. 2010. Biomarkers of Lead Exposure and DNA Methylation within Retrotransposons. Environ Health Perspect.
- Wright RO, Tsaih SW, Schwartz J, Spiro A, 3rd, McDonald K, Weiss ST, Hu H. 2003. Lead exposure biomarkers and mini-mental status exam scores in older men. Epidemiology 14(6): 713-718.
- Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH. 2008a. Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28(1): 3-9.
- Wu J, Basha MR, Zawia NH. 2008b. The environment, epigenetics and amyloidogenesis. J Mol Neurosci 34(1): 1-7.
- Wu SC, Zhang Y. 2010. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9): 607-620.
- Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. 2005. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7): 5892-5901.

CHAPTER II

Research Chapter 1

Lead exposure, B-vitamins, and plasma homocysteine in the VA Normative Aging Study

ABSTRACT

Background: Epidemiologic studies suggest that elevated circulating level of homocysteine (Hcy), a one-carbon metabolite, is a risk factor for cardiovascular and neurodegenerative diseases. Although a few cross-sectional studies have evaluated the influence of environmental toxicant exposures on Hcy levels, longitudinal studies and studies of the interplay of environmental and dietary factors are lacking.

Objectives: We examined the association of recent and cumulative exposure to lead with Hcy levels cross-sectionally and longitudinally. We also determined whether lead exposure's association with Hcy varied by dietary intake of nutrients involved in one-carbon metabolism (folate and vitamins B6 and B12).

Methods: We followed 1,056 of the Normative Aging Study men (age 50-97 at visit 1) over 4 study visits (2,301 total observations) at which concurrent measures of blood lead and Hcy were collected. We determined baseline cumulative dose of lead via Cd¹⁰⁹ K-shell X-ray fluorescence of the tibia and patella bones. We estimated cross-sectional differences in Hcy across levels of Pb exposure measures using generalized linear models. We also used mixed effects models to estimate differences in rate of change in Hcy over time associated with Pb exposure.

Results: Higher exposure to lead was associated with higher Hcy levels. An interquartile range (IQR) increment in tibia bone lead concentration $(14\mu g/g)$ was associated with 3.64% higher Hcy at visit 1 (95% CI= 1.37-5.97). Similar results were found at other visits, but tibia Pb was not associated with trajectory in Hcy over time. An IQR increment in blood lead concentration (3 μ g/dl) was associated with 8.14% higher Hcy (95% CI: 6.16-10.16) at visit 1, similar to the results at other visits. To put these findings in context, in our data, a 5-year increment in age corresponded to a 3.14% increase in Hcy (95% CI=2.88-7.87). The association between blood lead and Hcy was significantly larger among participants with lower dietary intakes of vitamins B6, B12, and folate.

Conclusion: Increasing levels of lead exposure were associated with elevated Hcy, and this relationship was stronger in individuals with low dietary folate, B6, and B12. Increased intake of folate, B6, and B12 may be an effective intervention on lead's effects on Hcy.

KEYWORDS: aging, folate, homocysteine, lead exposure

INTRODUCTION

The post-war baby boom and lengthening life spans are fueling an unprecedented growth in the population of older adults worldwide, with widespread implications for stress on public health and medical infrastructures. Thus, increasing numbers of older adults are at risk of chronic diseases that require care and monitoring over decades. Several chronic diseases, including cardiovascular disease (CVD) and neurodegenerative diseases, share a common risk factor, elevated homocysteine (Hcy), which is measured in the blood or cerebrospinal fluid. Relatively little is known about the causes of elevated Hcy; in particular, the potential influence of environmental toxicant exposures and their interplay with dietary factors. Research on the regulation of Hcy may result in opportunities for intervention prior to onset of chronic disease.

Homocysteine (Hcy)

Hcy is a thiol-containing amino acid that is highly reactive and thus shortlived in the body (Jocelyn 1972). It is an intermediate in the one-carbon metabolism cycle, formed in the production of methionine, an important methyl donor for epigenetic modifications to nucleic acids and proteins (**FIGURE 2.1**). Though physiologically normal cellular processes produce and require Hcy at low levels, elevated Hcy is associated with toxicity. Accessible cysteinyl residues in cellular proteins can react with free Hcy, forming Hcy-protein thiol-thiol interactions, altering native protein conformation and function. In addition, free Hcy can cleave accessible disulfide bridges, damaging native protein confirmations (Krumdieck and Prince 2000). Biochemical damage is based on the duration and concentration of exposure to Hcy. Long-lived proteins can accumulate irreversible Hcy-related damages, making these mechanisms especially relevant to the chronic diseases and morbidity of aging.

Elevated Hcy is a risk factor for both CVD and neurodegeneration. In epidemiologic studies, moderately elevated Hcy is associated with CVD. In a meta-analysis of 30 retrospective or prospective studies, reduced plasma Hcy

was protective against ischemic heart disease (IHD) (OR=0.89 for 25% lower Hcy), and stroke (OR=0.81) (Collaboration 2002). Similarly, a 5-µmol/L increase in Hcy corresponded to elevated odds of IHD (OR=1.23) and stroke (OR=1.42) in a meta-analysis of 20 prospective studies (Wald et al. 2002). The suggested mechanisms linking Hcy and cardiovascular outcomes include impaired endothelial elasticity and the production of reactive oxygen species (Perla-Kajan et al. 2007).

Elevated Hcy is also associated with decline in multiple cognitive domains. In the Veteran's Affairs Normative Aging Study (NAS) of older men, higher baseline Hcy was associated with reduced spatial copying and verbal recall over a three-year follow-up period (Tucker et al. 2005). Data from the Oxford Health Aging Project show high Hcy is associated with declines in general cognitive function as measured by the Mini-Mental Status Exam (MMSE) over a ten-year period (Clarke et al. 2007). In a two-year follow-up study in Korea, incidence of dementia increased across ascending quintile of Hcy at follow-up (Kim et al. 2008). In the Sacramento Area Latino Study on Aging, higher baseline Hcy was associated with increased risk of both incident dementia and cognitive impairment in the absence of dementia over the subsequent 4.5 years of followup (Haan et al. 2007). Hcy is also an important risk factor for Alzheimer's disease (Seshadri et al. 2002).

Circulating Hcy can be lowered with dietary interventions, primarily therapy with folic acid, vitamin B12, and vitamin B6 (Appel et al. 2000). Several randomized control trials have evaluated the effects of these therapies on cardioand cerebrovascular events, their results have been mixed. A meta-analysis of seventeen trials of individuals with preexisting cardiovascular or renal disease showed no differences between the Hcy-lowering treatment group and control group with respect to coronary heart disease, stroke, cardiovascular events, or all-cause mortality (Mei et al. 2010). Dietary changes can reduce Hcy, but in individuals with pre-existing conditions, hypothesized improvements in health outcome do not seem to occur with the reduction (Mei et al. 2010).

Lead Exposure

The heavy metal lead (Pb), is a well-established and ubiquitous toxicant. The molecular mechanisms of lead's toxicity in the human body are numerous but incompletely characterized. Pb binds free sulfhydryl groups on proteins and can alter protein conformation and activity (Needleman 2004). Pb can form protein complexes in the kidney's proximal tube, which lead to poor blood pressure regulation and cardiovascular problems (Goyer 1989). Pb can also compete with or replace other divalent cations including calcium and iron. In the central nervous system, rodent model research indicates lead exposure reduces synaptic plasticity and hippocampal long-term potentiation (Toscano and Guilarte 2005). It also results in a cascade of molecular changes including reduced cAMP and protein kinase A activity, altered MAPK signaling, and disruption of CREB phosphorylation (Toscano and Guilarte 2005). Pb and Hcy both independently exert toxicity in part by binding to free sulfhydryl groups and damaging proteins.

Exposure to Pb is linked to numerous diseases and negative health outcomes throughout the lifespan. In late life, lead exposure, even at low levels experienced in the community, is related to CVD, as measured through hypertension (Cheng et al. 2001), heart rate variability (Park et al. 2006), and clinical CVD outcomes (Navas-Acien et al. 2007). Lead exposure is also associated with poor cognition and cognitive decline in aging populations (Shih et al. 2007; Weuve et al. 2009).

Lead Exposure and Homocysteine

Previous studies have demonstrated a relationship between Pb and Hcy at single time points. In the Baltimore Memory Study, blood Pb and plasma Hcy were significantly correlated with each other (Pearson's unadjusted r=0.27) (Schafer et al. 2005). Similarly, in Pakistan, a cross-sectional survey of persons aged 18-60 years, an increase of 1 μ g/dL log blood Pb was associated with an increase of 0.09 μ mol/L log Hcy after multivariable adjustment (Yakub and Iqbal

2010). In a third cross-sectional study, this time in Vietnam and Singapore, an increase of $1\mu g/dl \log blood lead$ was associated with an increase of $0.04\mu mol/l \log Hcy$ among occupationally exposed 449 workers (mean age=39; mean blood Pb= 22.7 $\mu g/dl$) (Chia et al. 2007).

One reason that lead exposure and elevated Hcy are associated with many of the same negative health outcomes is that lead exposure elevates Hcy. For example, in the 1999-2002 National Health and Nutrition Examination Survey (NHANES), Hcy was associated with peripheral arterial disease (PAD) (OR of PAD in the highest quintile of Hcy relative to the lowest was 1.92, p-trend=0.004), however the association disappeared following adjustment for blood lead and calcium levels as well as kidney function (OR=0.89, p-trend=0.87) (Guallar et al. 2006). This research suggests the Hcy may be a marker of exposure to other toxicants, rather than the toxic agent itself.

Pb and Hcy levels may be mechanistically linked. Several proteins in the homocysteine processing one-carbon metabolism cycle (**FIGURE 2.1**) contain sulfhydryl groups that may be potential reaction sites for lead (Schafer et al. 2005). Cystathionine β -synthase (CBS) catalyzes the breakdown of Hcy into cysteine. CBS has two sulfhydryl groups that may be subject to reaction with lead, potentially interfering with the enzyme's ability to transsulfurate Hcy into cysteine (Schafer et al. 2005). In addition, Hcy contains a sulfhydrl group and lead may directly inhibit its metabolism. There is also evidence for the protective effect of methionine on lead toxicity (Chen et al. 2011). It is hypothesized that Pb could directly influence the levels of Hcy in the body.

The association reported between lead and Hcy is plausible and supported by compelling data, but it requires further epidemiologic investigation in an additional population. Thus far, only one study has tested the Pb-Hcy relationship in a community-exposed population of older adults. There are currently no studies evaluating the relevant window of Pb exposure's effect on Hcy. Studies of cumulative Pb exposure and Hcy are needed to fill this gap. In

addition, there are no data indicating whether the association of Pb exposure with Hcy can be mitigated (or worsened) with intake of B vitamins.

Objectives

The goal of this study was to evaluate the relationship of lead exposure to plasma Hcy in a population of community-exposed older men. We tested the hypothesis that recent exposure to Pb (meausured by blood Pb) is associated with concurrent Hcy levels. Next, we evaluated whether people who have changes in their blood Pb over time also have corresponding changes in their Hcy levels. We also tested whether those with a diet low in methyl donors (folate, vitamin B6, and vitamin B12) are more susceptible to the effects of Pb exposure on Hcy. Finally we evaluated the relationship of cumulative Pb dose (tibia and patella bone Pb) and Hcy in comparison to acute/recent Pb exposure.

METHODS

Study Population

In 1963, 2,280 men in the greater Boston area between the ages of 21 and 80, and representing a range of educational and occupational backgrounds, were enrolled in the Veteran's Affairs Normative Aging Study (NAS) (Bell et al. 1972). All participants were free of disease at the onset of the study and participated in health assessments every three to five years that expanded in scope over time. Blood lead measurements began in 1977 and bone lead measurements began in 1991. Homocysteine was first measured in 1993. At each study visit, age, smoking status, medication use, physical activity, and dietary intake were assessed.

In the study of Hcy, up to six repeated measures of Hcy from 1,080 men for a total of 2,941 observations were available. Bone lead data was missing for 301 individuals and there were a total of 779 subjects across 2,252 observations that had bone lead data and Hcy measures. Approximately three years after the bone lead assessment, the first Hcy was measured. Concurrent blood lead data

was missing from 23 participants and there were 1,056 individuals with 2,301 observations of Hcy and blood Pb. In an additional analysis of the changes in blood Pb and Hcy, a subset of the main dataset was used. At least two repeated measures of blood lead and concurrent Hcy were available from 747 men for a total of 1,830 repeated observations. The majority of blood lead measurements (>99%) were made within 30 days of Hcy measurements. The Human Subjects Institutional Review Boards at the Harvard School of Public Health, the Department of Veterans Affairs Outpatient Clinic in Boston, the Brigham and Women's Hospital, and the University of Michigan Medical School approved this study.

Plasma Homocysteine Measures

Fasting blood plasma was collected during each clinic visit and frozen at negative 80°C. Samples were analyzed at the Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging. Total Hcy was measured via fluorescence detection with high-performance liquid chromatography (HPLC) (Araki and Sako 1987). Hcy detection methods have been previously described in detail (Tucker et al. 2005). Plasma folate levels below 3 ng/mL were considered low (LSRO 1984). Plasma B6 levels at 30nmol/L were considered adequate (US RDA, NIH Office of Dietary Supplements). Plasma B12 below 250 pg/mL was considered low (US RDA, NIH Office of Dietary Supplements). Participants with low nutrient status were included in the analysis.

Lead Exposure Measures

Lead levels can be measured in various tissue types across the body to reflect different exposure times. Blood lead levels indicate recent exposure (with a half-life of approximately 30 days) (Hu et al. 1998). Blood lead levels included in this analysis were measured up to six times between 1993 and 2011 via graphite furnace atomic absorption with Zeeman background correction.

Bone lead was measured in two bone types (tibia and patella) through Cd¹⁰⁹ K-shell x-ray fluorescent (KXRF) spectroscopy using methods previously described (Hu et al. 1996). The half-life for lead in cortical tibia bone is estimated at 48.6 years in the NAS (Wilker et al. 2011). The trabecular patella bone has a shorter half-life for lead (between 10-15 years) (Hu et al. 1998). The primary statistical analyses were performed using tibia Pb, while patella Pb was used as a secondary sensitivity analysis.

Dietary Measures

Annual average diet was assessed with the semi-quantitative Willett Food Frequency Questionnaire using methods described previously (van de Rest et al. 2009). Before each study visit, participants were mailed the questionnaire. Their responses were checked for completeness at the study visit. The questionnaire assesses frequency of consumption of 126 items on a scale ranging from never to \geq 2 times per day. Three one-carbon metabolism dietary factors were measured without supplements and were used in the current study (folate, vitamin B6, and vitamin B12). Nutrient quantification based on FFQs administered after August, 1997 were adjusted to consider folate fortification in the US. Total calorie intake-adjusted nutrient residuals (Willett et al. 1997) (Willett et al. 1997) were calculated for each individual and included in the models.

Statistical Analysis

All analyses were performed in R Statistical Software (version R 2.15.0). Univariate descriptive statistics were calculated for each variable. We also estimated bivariate associations between Hcy, and the three lead exposure measures and additional covariates were also calculated.

We assessed the associations between blood Pb and concurrent Hcy using multivariable-adjusted linear models. Because the distribution of Hcy levels is skewed, we natural log-transformed the variable Hcy. Thus, the exponentiated parameter estimates from these models are directly interpreted as

the percentage difference in Hcy per unit increment in predictor. We adjusted these analyses for several sets of covariates. All analyses were adjusted for the following "core covariates": age, education, smoking status, alcohol consumption, and body mass index (BMI) (Schafer et al. 2005). The following plasma levels of one-carbon metabolism related compounds were considered the "plasma sensitivity covariates": plasma PLP (a measure of vitamin B6), vitamin B12, and folate. Finally, dietary measures were categorized as the "dietary sensitivity covariates": intakes of total energy and calorie adjusted residuals for vitamin B6, vitamin B12, and folate. We tested for non-linear trends using generalized additive models with penalized splines in the mgcv R package.

Using the repeated measures of Hcy and linear mixed effects models with random intercepts, we compared rates of change in Hcy (as percentage change from baseline Hcy) by level of lead biomarker. We modeled interaction terms between time and baseline age to capture the trajectories of Hcy over the follow-up period. Several error covariance matrices were considered, but they did not improve model fit, so no within-subject correlation was used. All models were adjusted for Core Covariates, Plasma Sensitivity Covariates, and Dietary Sensitivity Covariates, similar to the concurrent exposure models. In addition, all models included a cross-product term between time and baseline age. The inclusion of other time-covariate cross-products did not change the results.

We used "change-change" models to assess whether change in Pb level over time was associated with concomitant changes in Hcy. In these models, we restricted the analyses to individuals with at least two measures of Pb and Hcy (747 individuals, 1,830 observations). We regressed change in blood Pb on change in Hcy, adjusting for the core covariates.

To assess the potential modification of the association between Pb and Hcy by key nutrients, we fit models stratified by median plasma or dietary levels of folate and vitamins B6 and B12. We used methods by Payton et al. (Payton et al. 2003) to test for differences in the effect of lead on Hcy between the high and low nutrient strata. This permits other covariate-Hcy associations to vary across

the strata, associations that may influence the stratum-specific Pb association. In addition, however, we fit models, incorporating all observations that included a cross-product term between each Pb marker measure and nutrient measure.

Additional analyses were performed to determine whether the effects of cumulative lead dose were mediated through current blood lead levels. Our secondary aim was to determine whether lead-associated changes in Hcy were associated with recent exposure measured by blood lead or cumulative dose measured by tibia lead. We used mixed effects core covariate models containing tibia Pb, both tibia Pb and blood Pb, and blood Pb alone as a basic mediation analysis.

RESULTS

The univariate descriptive statistics for subjects with blood Pb levels are presented in Table 1. These values are similar to those for the population with tibia bone lead measures. The geometric mean Hcy level in this population was 10.2 nmol/ml (GSD= 1.3) (**TABLE 2.1**). Mean (SD) blood, tibia bone, and patella bone lead levels were $4.4(2.5) \mu g/dl$, $21(13) \mu g/g$, and $29.9(19.5) \mu g/g$, respectively. Similar to the general US population at this time, blood lead levels decreased across study visits. In general, this population was elderly (age 70.9 (7.3)), overweight (BMI 28(4)), educated (64.2% with some post-high school education), moderate-heavy drinkers (20.6% with more than 2 drinks per day), and former smokers (66.2%).

At visit one, log(Hcy) was positively correlated with blood Pb, tibia bone Pb, and patella bone Pb (respectively Pearson's r=0.28 p= $2x10^{-16}$; r=0.15 p= $2x10^{-5}$; r=0.16, p= $3x10^{-5}$) (**Supplemental Figure 2.1**). The bivariate associations between Hcy and other covariates before and after age-adjustment at study visit 1 are listed in **Table 2.2**. Hcy was positively associated with increasing linear trend in categories of blood Pb, tibia bone Pb, patella Pb, age, alcohol consumption, and smoking status. Hcy was inversely associated with plasma PLP (B6), B12, folate and dietary B6 levels. Similar associations were

observed at the other study visits (data not shown). A notable exception is that smoking was only associated with Hcy at study visit one. Similar results are also observed in the population with tibia bone Pb levels (n=774) (data not shown). The bivariate associations between covariates and blood Pb as well as tibia bone Pb are also presented in **Table 2.2**. Blood Pb was positively associated with age and alcohol intake. Blood Pb was negatively associated with increased education, plasma B6, plasma B12, plasma folate, dietary B6, and dietary B12. Tibia bone Pb was positively associated with smoking status (current smokers with higher exposure) and tibia bone Pb was negatively associated with increased education, plasma B6, plasma B6, plasma folate, and dietary B6.

After adjustment for age, education, alcohol, smoking, and BMI (Core Covariates) an IQR increment in blood Pb (3 ug/dl) at visit 1 was associated with an 8.0 percent increase in Hcy (95% CI: 6.0-10.0). By comparison, a 5-year increment in age was associated with a 3.2 percent increase in Hcy (95% CI=2.0-4.4) (**FIGURE 2.2A**). The percent difference in Hcy at visit 1 between never smokers and current smokers was 14.0 (95% CI: 5.6-23.1). The difference in Hcy between never smokers and former smokers was not statistically significant. Next we added to the model plasma factors that influence Hcy metabolism. After further adjustment for the plasma sensitivity covariates (plasma PLP, B12 and folate), an IQR increment in blood Pb was associated with 6.4% increase in Hcy (95% CI: 4.5-8.3), while after further adjustment for the dietary sensitivity covariates (core covariates plus total energy consumption, dietary B6, B12, and folate), an IQR increment in blood Pb was associated with 5.6 in Hcy (95% CI: 1.4-9.9). These results were consistent across the 4 study visits (**FIGURE 2.2A**).

Results from the mixed effects models of the repeated blood Pb and Hcy measures were consistent with those from the models based on single visits (**TABLE 2.3**). Plasma B6, plasma B12, plasma folate, and dietary B6 were significant negative predictors of log(Hcy). In the core model, a 3 ug/dl (IQR) increase in blood Pb is associated with 6.0% increase in Hcy (95% CI: 4.6-7.5).

The adverse association between blood Pb and Hcy was stronger among men whose dietary intake of vitamin plasma B6, B12, or folate fell below the median B6: 2.24 mg/day, B12: 6.185 mcg/day, folate: 343 mcg/day) (**FIGURE 2.4**). Results were similar albeit weaker for the plasma vitamin measures. None of the blood lead estimates for men with the higher vitamin levels was significantly different from the corresponding estimates for men with the lower vitamin levels. Data was stratified by median plasma level (B6: 64.1 nmol/L, B12: 447.5 pg/mL, folate: 11.4 ng/mL) or median dietary levels (B6: 2.24 mg, B12: 6.185 mcg, folate: 343 mcg). However, when we modeled the interaction between blood Pb and the nutrients using cross-product terms, the interactions corresponding to dietary B6, dietary folate, and plasma folate were statistically significant (p-values for interaction: 9.6x10⁻⁵, 0.0016, and 0.024 respectively), and the interaction corresponding to dietary B12 was borderline significant (p-value for interaction: 0.051).

Among the 747 men with two or more measures of blood Pb and Hcy, blood Pb levels generally declined over time (mean) but this decline was variable (SD or range). Changes in Hcy generally "tracked" changes in blood Pb, with a $1-\mu g/dL$ drop in blood Pb corresponding to a 5% drop in Hcy, but this association was not statistically significant (**Supplemental Tables 2.1 and 2.2**).

Higher cumulative exposure to Pb, as measured by tibia bone lead concentration, was also significantly associated with increased plasma Hcy. Using all four study visits, tibia bone Pb was a significant predictor of log(Hcy) (pvalue =0.0012) (**TABLE 2.4**). Similarly, at visit 1 alone, tibia Pb predicted log(Hcy) (p-value=0.016). Next we looked at each visit individually using linear regression with three sets of covariates. Similar to the blood lead analysis, after adjusting for the Core Covariates (age, education, alcohol, smoking, and BMI) an IQR change in tibia bone Pb (14 ug/g) at visit 1 was associated with a 3.6 percent increase in Hcy (95% CI: 1.4-6.0) (**FIGURE 2.2B**). After further adjustment for plasma PLP, B12 and folate, an IQR change in tibia Pb was associated with 2.4 percent increase in Hcy (95% CI: 0.2-4.6). Finally in the

dietary sensitivity model, an IQR change in tibia Pb was associated with 2.5% increase in Hcy (95% CI: -0.3-5.4). Similar results were observed across the four study visits.

While cumulative exposure to lead was associated with consistently higher plasma Hcy over the course of follow-up, it was not associated with the degree to which plasma Hcy *changed* over time (**TABLE 2.5**). On average, Hcy levels increased by about 1.2% per year of follow-up. An IQR increment in tibia Pb (14 μ g/g) corresponded to a negligible 0.02% slower percentage change in Hcy over time (95% CI: XX).

There were no significant differences in the concurrent effect of bone Pb on Hcy between persons with low and high plasma or dietary B vitamins or folate. In a subset of individuals (n=221) with at least three repeated visits with dietary information (n=691 observations), we tested for a long term dietary influence on Hcy. We averaged dietary intake of folate and vitamins B6 and B12 over three-four visits and used mixed effects models to test for dietary associations with Hcy. In this smaller set of individuals, tibia Pb was no longer a significant predictor of Hcy and we did not observe a long term dietary trend (**Supplemental Table 2.3**).

To determine whether the association between cumulative exposure to Pb and Hcy was mediated by current exposure to Pb, we further adjusted the analyses of tibia Pb for blood Pb as a predictor (**TABLE 2.6**). Adding blood Pb to the model removed the association between tibia Pb and Hcy. We see similar results when we restrict the dataset to just visit one and compare the linear multivariate models containing (1) core covariates and tibia Pb, (2) core covariates, tibia and blood Pb, and (3) core covariates and blood Pb (**Supplemental Table 2.4**). Tibia Pb is an significant predictor of Hcy at visit one, but it drops out of the model with the addition of blood Pb. This suggests that the association between tibia Pb and Hcy may be mediated by blood Pb.

DISCUSSION

This cohort study examined the association between Pb exposure and circulating Hcy levels in a population of elderly community-dwelling men in the greater Boston area. Increased current blood Pb exposure was associated with greater Hcy levels. These effects were stronger in individuals with low dietary vitamins B6, B12, and folate as well as plasma folate. Greater cumulative exposure to Pb, measured in the tibia and patella bones, was associated with higher levels of Hcy. Further analyses revealed that these results may be mediated through current blood Pb and that Hcy responds to acute Pb dose.

The present finding that Pb exposure is associated with Hcy levels is consistent with prior epidemiological studies. The Baltimore Memory Study examined the cross-sectional association between Pb and Hcy in a population of 1,037 adults (mean age= 59) with similar blood Pb and Hcy to our study. The analysis observed a 1.0 ug/dL increase in blood lead was associated with a 0.43 µmol/L increase in Hcy in males, but no association was observed with tibia Pb (Schafer et al. 2005). Among 872 adults in Pakistan age 18-60, with mean blood Pb 11.65 \pm 5.5 µg/dl, an increase of 1 µg/dl log blood Pb was cross-sectionally associated with an increase of 0.09 µmol/l log Hcy (Yakub and Iqbal 2010). In a group of 276 workers occupationally exposed to Pb in Vietnam, blood lead and Hcy were associated (Pearson's correlation=0.255, p<0.01) (Chia et al. 2007). Our research has confirmed the association between lead exposure and Hcy demonstrated in the above studies. However, these studies did not examine longitudinal change in Hcy and they did not assess how the association might be influenced by intake of folate and B-vitamins.

The results of this study are plausible given that Pb and Hcy share toxic mechanisms. Both form stable disulfide bonds with protein cysteine residues, potentially altering protein function. In particular, albumin (the dominant protein in blood) Cys34 has a low pKa that readily reacts with metals and Hcy (Carter and Ho 1994). In addition, both are associated with inflammation (Hcy through NF-kB activation of IL-8 and MCP-1 (Perla-Kajan et al. 2007); and Pb through cytokine production (Heo et al. 1996)). Given the independent cell culture and

animal model evidence on each toxicant (Pb and Hcy), our epidemiological observations on the associations between Pb and Hcy, with interactions with B-vitamins, are plausible. Studies are needed to examine the health effects of combined exposure to Pb and these vitamins, and the degree to which they are mediated by Hcy.

The current analyses are influenced by a few limitations of the data. First, there may be error in the measurement of Hcy. The time of day of blood draw for Hcy measures was not standardized. In healthy individuals over a 24-hour period, Hcy levels showed a daily rhythm characterized by an evening peak and nighttime low (Bonsch et al. 2007). Whole blood genomic DNA methylation varies throughout the day and is inversely correlated with Hcy levels (Bonsch et al. 2007). Unstandardized Hcy collection times in our study would have biased our results towards the null hypothesis of no association between Hcy and Pb. In addition, plasma measures of Hcy assess the pool of Hcy released after reduction of all disulfide bonds in the sample. Total Hcy does not include homocysteine thiolacetone (a product of misincorporation of Hcy into proteins and subsequent error-editing) or Hcy bound to protein by an amide bond (Perla-Kajan et al. 2007). These Hcy groups are potentially toxic and may not be correlated with plasma concentrations of Hcy (Perla-Kajan et al. 2007).

Another potential weakness of this study is the limited power to detect interactions. This problem is exacerbated in our study due to missing nutrient data and smaller sample sizes in dietary models. The change-change analyses also have limited power as participants were lost to follow-up over time.

Epidemiologic studies that identify mediators linking exposure and outcome strengthen the model's biological plausibility and potential causal relationship (Hafeman 2011). In this study, we measured blood Pb as a mediator of tibia Pb. Our results are based on the assumption that there are no unmeasured confounders of the causal effect of the mediator (blood Pb) on the outcome (Hcy) (Cole and Hernan 2002). With these caveats in mind, our analysis incorporating blood Pb and tibia Pb suggest that the influence of Pb exposure on

Hcy is fairly immediate and thus that recent exposure to Pb (measured in blood) may be driving the association between Pb and Hcy. Despite cumulative exposure, interventions that lower acute blood Pb levels may be an effective strategy to lower Hcy.

The current study is strengthened by the use of repeated measures of Hcy and blood Pb as well as repeated measures in Hcy with baseline bone Pb. This allows us to look at longitudinal changes in Hcy with Pb exposure, not simply cross-sectional associations. This study is the first to examine the Pb-Hcy relationship while examining plausible dietary interactions, namely folate and vitamins B6 and B12.

Since Pb exposure is related to elevated Hcy levels, toxicology studies are needed to determine the mechanism and potential reversibility of Pb and disturbed Hcy metabolism. Based on the current study, dietary intervention with folate and vitamins B6 and B12 may be a potential option to remediate elevated Hcy high Pb exposed individuals.

In the 1999-2002 US National Health and Nutritional Examination Study (NHANES), Hcy was cross-sectionally associated with peripheral arterial disease (PAD), but adjustment with blood Pb, Cd, smoking, and glomerular filtration rate removed the Hcy association (Guallar et al. 2006). This suggests that Pb and Hcy levels are related and are associated with cardiovascular effects. Future research may test this association and the association with cognitive decline in cohort studies.

In conclusion, we report a significant association between blood, patella, and tibia Pb levels with higher levels of plasma Hcy in a group of older men. The association corresponding to blood Pb was strongest, suggesting that circulating lead may influence circulating Hcy through its metabolism, even at very low levels of exposure. The effects of chronic lead exposure are also supported by these results.

Diet may modify the association between blood Pb and Hcy. The adverse effect of blood lead on Hcy may be worse in the presence of low folate, vitamin B6, and vitamin B12 intake (equivalently: the adverse effect of low folate intake on Hcy may be worse in the presence of lead, even for very modest levels of lead exposure). Altered Hcy levels, such as those observed in the range here, may increase risk for cardiovascular and neurodegenerative disease and measures should be taken to reduce blood lead levels and improve dietary methyl donor diet status.

TABLES

Table 2.1. Univariate Statistics: Characteristics of individuals with complete Hcy and blood Pb (2234 obs, 1048 individuals). Mean (S.D.), except where noted.

	All Visits		Visit 1		Visit 2		Visit 3		Visit 4	
N	1056 individuals (2301 observations)		1056		747		400		98	
Parameter	Mean (SD)	N Missing (%)	Mean (SD)	N Miss(%)	Mean (SD)	N Miss(%)	Mean (SD)	N Miss(%)	Mean (SD)	N Miss(%)
Homocysteine (µmol/l)	10.2(1.3)	0(0)	10.1(1.3)	0(0)	10.2(1.3)	0(0)	10.5(1.3)	0(0)	10.8(1.3)	0(0)
Blood Pb (µg/dl)	4.4(2.5)	0(0)	4.9(2.7)	0(0)	4.2(2.3)	0(0)	3.6(2.2)	0(0)	3.4(2.2)	0(0)
Age (years)	70.9(7.3)	0(0)	69(7.4)	0(0)	71.3(6.9)	0(0)	74(6.5)	0(0)	76.4(5.9)	0(0)
Education < HS [n(%)] HS [n(%)] Some college [n(%)] College [n(%)] > College [n(%)]	157(6.8) 668(29) 630(27.4) 449(19.5) 397(17.3)	0(0)	80(7.6) 303(28.7) 288(27.3) 202(19.1) 183(17.3)	0(0)	48(6.4) 219(29.3) 204(27.3) 151(20.2) 125(16.9)	0(0)	24(6.0) 118(29.5) 107(26.8) 79(19.8) 72(18.0)	0(0)	5(5.1) 28(28.6) 31(31.6) 17(17.3) 17(17.3)	0(0)
Smoking Status Never [n(%)] Former [n(%)] Current [n(%)]	663(28.8) 1524(66.2) 114(5)	0(0)	296(28.0) 698(66.1) 62(5.9)	0(0)	211(28.2) 502(67.2) 34(4.6)	0(0)	114(28.5) 272(68.0) 14(3.5)	0(0)	42(42.9) 52(53.1) 4(4.1)	0(0)
Alcohol Consumption ≤ 2 drinks/day [n(%)] > 2 drinks/day [n(%)]	1827(79.4) 474(20.6)	0(0)	834(79.0) 222(21.0)	0(0)	594(49.5) 153(20.5)	0(0)	320(80.0) 80(20.0)	0(0)	79(80.6) 19(19.4)	0(0)
BMI	28(4)	0(0)	28(3.9)	0(0)	28.2(4)	0(0)	27.9(4.2)	0(0)	27.5(3.7)	0(0)
Tibia Pb (µg/g)			21.4(13.5)	285(27)						
Patella Pb (µg/g)			30.6(20.1)	289(27.4)						
Plasma B6 (nmol/l)	93.8(92.5)	27(1.2)	87.5(87.2)	12(1.1)	97(93.7)	9(1.2)	99.2(93.5)	5(1.2)	114.9(125.5)	1(1)
Plasma B12 (pg/ml)	490(235.8)	26(1.1)	466.4(222)	21(2)	493.4(244.1)	2(0.3)	519.9(230.5)	3(0.8)	593.4(289.4)	0(0)
Plasma Folate (ng/ml)	14.2(11.7)	35(1.5)	11(7)	30(2.8)	14.8(12.9)	2(0.3)	19.4(15.2)	3(0.8)	22.2(14.7)	0(0)
Total Energy Consumption (kcal)	1978.3(643. 1)	150(6.5)	1967.4(618. 4)	70(6.6)	1985.3(629. 6)	43(5.8)	2012.7(730. 8)	28(7)	1898.9(626. 3)	9(9.2)
Dietary B6 (w/o supp) (mg)	2.4(1)	104(4.5)	2.3(0.9)	49(4.6)	2.4(0.9)	25(3.3)	2.4(1.1)	22(5.5)	2.4(1.1)	8(8.2)
Dietary B12 (w/o supp) (mcg)	7.5(4.8)	104(4.5)	7.9(5.5)	49(4.6)	6.9(3.8)	25(3.3)	7.4(4.4)	22(5.5)	8.1(5)	8(8.2)
Dietary Folate (w/o supp) (mcg)	379.1(179)	1034(44.9)	344(150.5)	794(75.2)	356.5(164)	210(28.1)	418.5(195)	22(5.5)	451.2(218.4)	8(8.2)
Geometric Mean and Geometric Standard Deviation are reported.										

Variable	Category	N (%)	Geometric Mean Hcy (GSD)	P-trend	Age-Adjusted Least Squares Mean Hcy	Age- Adjusted P-trend	Mean Blood Pb (SD)	P-trend	Mean Tibia Pb (SD)	P-trend
	≤ 3	367(34.8)	9.3(1.3)	7E-16	9.7		2.4(0.8)		16(8.5)	6E-23
Blood Pb (ug/dl)	3 <x≤5< td=""><td>347(32.9)</td><td>10.1(1.3)</td><td>10.4</td><td>5E-15</td><td>4.4(0.5)</td><td>4E-270</td><td>21.1(12.3)</td></x≤5<>	347(32.9)	10.1(1.3)		10.4	5E-15	4.4(0.5)	4E-270	21.1(12.3)	
	> 5	342(32.4)	11.1(1.4)		11.6		8(2.4)		27.4(16.4)	
	≤ 15	267(25.3)	9.5(1.3)		10.0	2E-04	3.7(2.1)	4E-26	9.8(4.1)	4E-150
Tibia Ph (ua/a)	15 <x≤23< td=""><td>248(23.5)</td><td>10.1(1.3)</td><td rowspan="2">3E-06</td><td>10.5</td><td>4.6(2.3)</td><td>19.2(2.3)</td></x≤23<>	248(23.5)	10.1(1.3)	3E-06	10.5		4.6(2.3)		19.2(2.3)	
Tibla Pb (ug/g)	> 23	256(24.2)	10.7(1.3)		11.1		6.2(3.2)		35.7(13.3)	
	Missing	285(27)	10.2(1.3)		10.6		4.8(2.6)		NaN(NA)	
	≤ 20	255(24.1)	9.7(1.3)		10.1		3.8(2.1)	4E-24	13.4(7.1)	9E-58
Patella Pb	20 <x≤34< td=""><td>258(24.4)</td><td>9.8(1.3)</td><td>65.07</td><td>10.2</td><td></td><td>4.5(2.4)</td><td>18.6(8)</td></x≤34<>	258(24.4)	9.8(1.3)	65.07	10.2		4.5(2.4)		18.6(8)	
(ug/g)	>34	253(24)	11(1.3)	02-07	11.3	40-05	6.3(3.2)		32.5(15.6)	
	Missing	290(27.5)	10.1(1.3)		10.6		4.8(2.6)		13.6(12.5)	
	50-65	355(33.6)	9.8(1.4)		10.6	0.8	4.6(2.6)	0.03	16.5(9.3)	0.4
Age Tertile	66-71	327(31)	9.9(1.3)	2E-05	10.3		4.9(2.8)		21.8(12.3)	
	72-97	374(35.4)	10.7(1.3)		10.8		5(2.8)		26(16.3)	
	< HS	80(7.6)	9.8(1.3)	0.9	10.1	0.8	5.8(3)	8E-06	30.2(18.6)	3E-15
Education	HS	303(28.7)	10.2(1.4)		10.7		5.2(2.9)		24.7(15.9)	
	Some College	288(27.3)	10.1(1.3)		10.6		4.8(2.7)		20.3(11)	
	College	202(19.1)	9.9(1.3)		10.3		4.5(2.3)		18.9(11.3)	
	> College	183(17.3)	10.2(1.3)		10.7		4.4(2.8)		17(9.4)	
	Never	296(28)	9.8(1.3)	0.005	10.2	0.0002	4.8(3)	0.1	20(13.7)	0.002
Smoking Status	Former	698(66.1)	10.1(1.3)		10.6		4.8(2.6)		22(13.6)	
	Current	62(5.9)	11.2(1.3)		12.0		5.8(3.2)		22.1(11.5)	
Two Drinko/Dov	No	834(79)	9.9(1.3)	0.00007	10.3	0.000006	4.6(2.7)	2E-07	21.4(13.9)	0.5
Two Drinks/Day	Yes	222(21)	10.8(1.4)		11.5		5.7(2.9)		21.2(12.1)	
	< 25	216(20.5)	10.1(1.3)	0.9	10.4	0.5	4.9(2.8)	0.5	21.4(11.5)	0.3
ВМІ	25≤x<30	574(54.4)	10.1(1.3)		10.6		4.8(2.7)		21.8(14.3)	
	≥30	266(25.2)	10.1(1.3)		10.6		4.8(2.8)		20.4(13.3)	
Plasma B6	<30	108(10.2)	11.3(1.4)		12.0	7E-06	5.7(3.4)		27.2(14.6)	
	≥30	936(88.6)	10(1.3)	1E-05	10.4		4.7(2.6)	5E-04	20.6(13.2)	2E-05
(111101/L)	Missing	12(1.1)	9.5(1.2)		9.7		5.3(2.8)		30.7(12.4)	
Disama D40	<250	82(7.8)	12.3(1.4)		13.0		5.8(3.2)		22.6(12.6)	2E-01
Plasma B12 (pg/mL)	≥ 250	953(90.2)	9.9(1.3)	1E-10	10.3	2E-11	4.8(2.7)	6E-04	21.2(13.5)	
	Missing	21(2)	10.5(1.4)		11.2		4.9(2.4)		28.2(24.1)	

Table 2.2. Bivariate statistics based on visit 1. Characteristics of individuals with complete Hcy and blood Pb (1056 individuals).

Plasma Folate (ng/mL)	< 3	24(2.3)	13.7(1.5)	9E-08	15.0	1E-08	7.2(4.2)	3E-05	29.1(15.2)	4E-03
	≥ 3	1002(94.9)	10(1.3)		10.4		4.8(2.7)		21.1(13.2)	
	Missing	30(2.8)	10.3(1.4)		10.8		4.7(2.2)		28.6(21.5)	
Total Energy Consumption	<2300	739(70)	10.1(1.3)		10.5	0.7	4.9(2.8)	0.5	21.6(13.7)	0.6
	≥2300	247(23.4)	10.2(1.3)	0.8	10.7		4.7(2.8)		20.8(13.6)	
	Missing	70(6.6)	10.1(1.3)		10.4		4.8(2.4)		21.4(10.5)	
Dietary B6 (mg)	<1.7	774(73.3)	10(1.3)		10.4	0.001	4.7(2.7)	0.007	21.1(13.2)	0.05
	≥1.7	233(22.1)	10.6(1.3)	0.006	11.2		5.3(2.8)		22.7(15)	
	Missing	49(4.6)	10.1(1.4)		10.4		4.8(2.5)		20.2(10.9)	
Dietary B12 (mcg)	<2.4	960(90.9)	10.1(1.3)	0.3	10.5	0.2	4.8(2.7)	0.04	21.3(13.6)	0.06
	≥2.4	47(4.5)	10.6(1.4)		11.3		5.6(2.9)		25(14.7)	
	Missing	49(4.6)	10.1(1.4)		10.4		4.8(2.5)		20.2(10.9)	
Dietary Folate (mcg)	<400	73(6.9)	9.9(1.3)	0.9	10.1	0.8	4.1(2.2)	0.1	19.8(19.6)	0.2
	≥400	189(17.9)	9.9(1.3)		10.2		4.6(2.5)		21.1(14.7)	
	Missing	794(75.2)	10.2(1.3)		10.7		5(2.8)		21.6(12.5)	

Table 2.3. Concurrent Pb exposure is associated with plasma homocysteine: Mixed effects model, random intercept only. Equivalent to cross-sectional model taking into account correlated nature of observations from the same individual. Linear mixed effects model of $log(Hcy)_t = b0 + b1[blood Pb]_t + covariates$. Continuous variables have been centered so the intercept is interpretable.

	Core Mod	el*	Plasma Mod	el**	Diet Model***				
	2301 obs from 1	056 indiv	2240 obs from	1033	1241 obs from 779 indiv				
	R2=0.10)	R2=0.16		R2=0.13	3			
	Beta(SE)	p-value	Beta(SE)	p-value	Beta(SE)	p-value			
(Intercept)	2.30(0.015)	0	2.30(0.014)	0	2.29(0.017)	0			
Blood Pb (per µg/dl)	0.0195(0.0023)	4E-17	0.0159(0.0023)	6E-12	0.0197(0.0035)	2E-08			
Age	0.0091(0.00084)	2E-26	0.0105(0.00085)	2E-33	0.0118(0.0012)	3E-22			
Education (reference>hs)	-0.0127(0.013)	0.3	-0.0157(0.013)	0.2	0.00255(0.017)	0.9			
Alcohol Consumption	0.0576(0.015)	2E-04	0.0572(0.015)	0.0002	0.0713(0.02)	0.0005			
Former Smoker	0.0176(0.017)	0.3	0.0148(0.016)	0.4	0.0123(0.019)	0.5			
Never Smoker	0.0690(0.032)	0.03	0.0646(0.031)	0.04	-0.0077(0.042)	0.9			
BMI	0.00191(0.0018)	0.3	0.00129(0.0017)	0.5	0.00326(0.0021)	0.1			
Plasma B6			-0.000256(6e-05)	2E-05					
Plasma B12			-0.000186(2.4e-05)	5E-15					
Plasma Folate			-0.00115(0.00043)	0.008					
Dietary B6 Residual					-0.0310(0.014)	0.03			
Dietary B12 Residual					-0.00308(0.0021)	0.1			
Dietary Folate Residual					3.03e-05(6.4e-05)	0.6			
Total Energy Intake					-1.64e-05(1.1e-05)	0.1			
*Core model adjusts for blood Pb, age, bmi, education, smoking status, and alcohol consumption.									
**Plasma model adjusts for core model covariates and plasma B6 (PLP), B12, and folate.									
***Diet model adjusts for core model covariates and total energy adjusted dietary FFQ vitamin B6, vitamin B12, and folate.									
Table 2.4. Cumulative exposure is associated with plasma homocysteine: Mixed effects model, random intercept only. Equivalent to cross-sectional model taking into account correlated nature of observations from the same individual.

		Core N	lodel				
	Visi	its 1-4	V	Visit 1			
	2158 observations R2	from 777 individuals 2=0.6	777 obs from 777 individuals R2=0.061				
	β(SE)	p-value	β(SE)	p-value			
(Intercept)	2.32(0.016)	0	2.29(0.02)	0			
Tibia Pb	0.00215(0.00066)	0.001	0.00256(0.00081)	0.002			
Age	0.00921(0.00094)	4E-22	0.00526(0.0015)	0.0007			
High School	-0.0148(0.015)	0.3	-0.036(0.022)	0.09			
Two Drinks/Day	0.0675(0.017)	8 E-05	0.0817(0.025)	0.001			
Former Smoker	0.00934(0.019)	0.6	0.0291(0.022)	0.2			
Current Smoker	0.0422(0.035)	0.2	0.143(0.047)	0.002			
BMI	0.00113(0.002)	0.6	0.00278(0.0026)	0.3			

Table 2.5. Longitudinal mixed effects models: Log(hcy) is outcome and tibia pb is main predictor. Continuous covariates have been mean adjusted so that the intercept can be interpreted as the log(hcy) at the mean of those covariates and when dummy variables =0. Four visits of tibia Pb and Hcy have been used. Random intercept and slope.

	Core Model*		Plasma Sensitivity	Model**	Diet Sensitivity Model***			
	n= 2158, R2=	0.0811	n= 2106, R2=0.	114	n= 1328, R2=0.	098		
	β (SE)	p-value	β (SE) p-value		β (SE)	p-value		
Intercept	2.28(0.017)	0	2.25(0.019)	0	2.24(0.022)	0		
Tibia Pb	0.00255(0.00077)	0.0009	0.00254(0.00076)	0.0009	0.00214(0.001)	0.04		
Time Since Baseline	0.0123(0.0014)	2E-18	0.0149(0.0015)	1E-23	0.0178(0.0022)	6E-15		
Baseline Age	0.0049(0.0015)	0.0009	0.005(0.0014)	0.0006	0.00665(0.0021)	0.001		
Education	-0.0186(0.014)	0.2	-0.0211(0.014)	0.1	-0.00374(0.018)	0.8		
Alcohol Consumption	0.0701(0.017)	4E-05	0.0684(0.017)	6E-05	0.0748(0.022)	0.0008		
Former Smoker	0.00509(0.019)	0.8	0.00736(0.018)	0.7	0.0034(0.021)	0.9		
Current Smoker	0.0301(0.036)	0.4	0.031(0.035)	0.4	-0.00147(0.045)	0.9		
BMI	0.00131(0.002)	0.5	0.000636(0.002)	0.8	0.00288(0.0024)	0.2		
Plasma B6			-0.000165(5.8e-05)	0.004				
Plasma B12			-6.4e-05(1.8e-05)	0.0005				
Plasma Folate			-0.00159(4e-04)	7E-05				
Dietary B6					-0.0284(0.014)	0.04		
Dietary B12					-0.000564(0.0018)	0.8		
Dietary Folate					7.84e-05(6.4e-05)	0.2		
Total Energy Intake					-3.03e-05(1.1e-05)	0.005		
Baseline Age * Time	0.000881(0.00022)	8E-05	0.000901(0.00022)	5E-05	0.000675(0.00031)	0.03		
Tibia Pb * Time	-1.72e-05(0.00011)	0.9	-3.24e-05(0.00011)	0.8	3.77e-05(0.00015)	0.8		
*Core model adjusts for tibia Pb, baseline age, bmi, education, smoking status, alcohol consumption, time since baseline,								
baseline age*time since baseline, and tibia Pb*time since baseline.								
**Plasma model adjusts for core model covariates and plasma B6 (PLP), B12, and folate.								
***Diet model adjusts for core model covariates and total energy adjusted dietary FFQ vitamin B6, vitamin B12, and folate.								

Table 2.6. Basic mediation analysis. All visits main effect of tibia Pb with and without current blood Pb adjustment. Note: Tibia Pb is no longer significant after adjusting for blood Pb. **Research Question: Does cumulative exposure to Pb influence Hcy levels, independent of current exposure to Pb?**

	Tibia Only		Blood and Tib	oia	Blood Only	
	n=1766 obs, n=771 indiv		n=1766 obs, n=771 indiv		n=1766 obs, n=771 indiv	
	R2=0.0711		R2=0.104		R2=0.104	
	Beta(SE)	p-value	Beta(SE) p-value		Beta(SE)	p-value
(Intercept)	2.3(0.017)	0	2.3(0.017)	0	2.3(0.016)	0
Tibia Pb	0.0025(0.00069)	0.0003	0.000832(0.00072)	0.3		
Blood Pb			0.0183(0.0028)	4E-11	0.0194(0.0026)	8E-14
Age	0.00715(0.001)	2E-12	0.00886(0.001)	2E-17	0.00922(0.00098)	2E-20
Education (>hs reference)	-0.0148(0.015)	0.3	-0.0171(0.015)	0.3	-0.014(0.015)	0.4
Alcohol Consumption	0.0794(0.018)	1E-05	0.0682(0.018)	0.0001	0.0676(0.018)	0.0001
Former Smoker	0.00525(0.019)	0.8	0.0101(0.019)	0.6	0.0119(0.019)	0.5
Current Smoker	0.0606(0.037)	0.1	0.0505(0.036)	0.2	0.0521(0.036)	0.2
BMI	0.000694(0.0021)	0.7	0.00162(0.002)	0.4	0.00172(0.002)	0.4

FIGURES

FIGURE 2.1. One-Carbon Metabolism Pathway. Homocysteine can be elevated in conditions of low folate, low B6, or low B12. The sulfhydryl groups on several proteins, including Cystathionine β-synthase (CBS), in the one-carbon metabolism pathway are potential sites for lead's interferences. Abbreviations Used: Adenosine (Ado), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), Glutathione (GSH), Glutamate (Glu), Glycine (Gly), Tetrahydrofolate (THF), Methionine Transferase (MT), Betaine-Homocysteine S-Methyltransferase (BHMT), Dimethylglycine (DMG), Methylenetetrahydrofolate Reductase (MTHFR)

Figure 2.2. The adjusted cross-sectional association between Pb exposure and homocysteine. Y-axis: With an IQR increase in Pb exposure (blood: 3 ug/dl; tibia Pb: 14 ug/g), corresponding percent increase in plasma Hcy. X-axis: Visit number. Results from cross-sectional multivariate linear regression models. Core covariates are age, blood Pb, education, smoking status, alcohol status, and BMI. Plasma sensitivity covariates include the core model plus plasma PLP, B12, and folate. Diet sensitivity model includes the core covariates and the total energy consumed and the dietary adjusted residuals for B6, B12, and folate. (A) Blood Pb. (B) Tibia Pb.

Baseline Tibia Pb Predicts Hcy Over Time

Figure 2.3. Longitudinal core model. Tibia Pb. Data has been centered on the mean continuous variables so intercept can be interpretable. Tibia Pb exposure quartiles are defined at baseline:

Figure 2.4. Adjusted association between Pb and homocysteine stratified by nutrient status. Y-axis: Percent change in Hcy with an IQR increase in Pb biomarker. Analyses stratified by level of B6, B12 or folate measured in either plasma or dietary FFQ. Longitudinal mixed effects regression of Pb exposure (either blood or tibia bone) on log(homocysteine). *High group is significantly different from low group (p for interaction <0.05).

REFERENCES

- Appel LJ, Miller ER, 3rd, Jee SH, Stolzenberg-Solomon R, Lin PH, Erlinger T, Nadeau MR, Selhub J. 2000. Effect of dietary patterns on serum homocysteine: results of a randomized, controlled feeding study. Circulation 102(8): 852-857.
- Araki A, Sako Y. 1987. Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422: 43-52.
- Bell BA, Rose C, Damon A. 1972. The Normative Aging Study: an interdisciplinary and longitudinal study of health and aging. Aging Human Develop 3: 4-17.
- Bonsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B, Reulbach U, Kornhuber J, Bleich S. 2007. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int 24(2): 315-326.
- Carter DC, Ho JX. 1994. Structure of serum albumin. Adv Protein Chem 45: 153-203.
- Chen T, Li YY, Zhang JL, Xu B, Lin Y, Wang CX, Guan WC, Wang YJ, Xu SQ. 2011. Protective effect of C(60) -methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J Appl Toxicol 31(3): 255-261.
- Cheng Y, Schwartz J, Sparrow D, Aro A, Weiss ST, Hu H. 2001. Bone lead and blood lead levels in relation to baseline blood pressure and the prospective development of hypertension: the Normative Aging Study. Am J Epidemiol 153(2): 164-171.
- Chia SE, Ali SM, Lee BL, Lim GH, Jin S, Dong NV, Tu NT, Ong CN, Chia KS. 2007. Association of blood lead and homocysteine levels among lead exposed subjects in Vietnam and Singapore. Occup Environ Med 64(10): 688-693.
- Clarke R, Birks J, Nexo E, Ueland PM, Schneede J, Scott J, Molloy A, Evans JG. 2007. Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr 86(5): 1384-1391.
- Cole SR, Hernan MA. 2002. Fallibility in estimating direct effects. Int J Epidemiol 31(1): 163-165.

- Collaboration HS. 2002. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288(16): 2015-2022.
- Goyer RA. 1989. Mechanisms of lead and cadmium nephrotoxicity. Toxicol Lett 46(1-3): 153-162.
- Guallar E, Silbergeld EK, Navas-Acien A, Malhotra S, Astor BC, Sharrett AR, Schwartz BS. 2006. Confounding of the relation between homocysteine and peripheral arterial disease by lead, cadmium, and renal function. Am J Epidemiol 163(8): 700-708.
- Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ, Mungas DM, Allen LH, Green R. 2007. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr 85(2): 511-517.
- Hafeman DM. 2011. Confounding of indirect effects: a sensitivity analysis exploring the range of bias due to a cause common to both the mediator and the outcome. Am J Epidemiol 174(6): 710-717.
- Heo Y, Parsons PJ, Lawrence DA. 1996. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol Appl Pharmacol 138(1): 149-157.
- Hu H, Payton M, Korrick S, Aro A, Sparrow D, Weiss ST, Rotnitzky A. 1996. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol 144(8): 749-759.
- Hu H, Rabinowitz M, Smith D. 1998. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1): 1-8.
- Jocelyn P. 1972. Biochemistry of the SH group: the occurrence, chemical properties, metabolism and biological function of thiols and disulphides: Academic Press.
- Kim JM, Stewart R, Kim SW, Shin IS, Yang SJ, Shin HY, Yoon JS. 2008. Changes in folate, vitamin B12 and homocysteine associated with incident dementia. J Neurol Neurosurg Psychiatry 79(8): 864-868.
- Krumdieck CL, Prince CW. 2000. Mechanisms of homocysteine toxicity on connective tissues: implications for the morbidity of aging. J Nutr 130(2S Suppl): 365S-368S.

- LSRO LSRO. 1984. Assessment of folate nutritional status of the US population based on data collected in the second National Helath and Nutrition Examination Survey 1976-1980. Federation of American Societies for Experimental Biology Bethesda, M.D.: 96.
- Mei W, Rong Y, Jinming L, Yongjun L, Hui Z. 2010. Effect of homocysteine interventions on the risk of cardiocerebrovascular events: a meta-analysis of randomised controlled trials. Int J Clin Pract 64(2): 208-215.
- Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. 2007. Lead exposure and cardiovascular disease--a systematic review. Environ Health Perspect 115(3): 472-482.
- Needleman H. 2004. Lead poisoning. Annu Rev Med 55: 209-222.
- Park SK, Schwartz J, Weisskopf M, Sparrow D, Vokonas PS, Wright RO, Coull B, Nie H, Hu H. 2006. Low-level lead exposure, metabolic syndrome, and heart rate variability: the VA Normative Aging Study. Environ Health Perspect 114(11): 1718-1724.
- Payton ME, Greenstone MH, Schenker N. 2003. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J Insect Sci 3: 34.
- Perla-Kajan J, Twardowski T, Jakubowski H. 2007. Mechanisms of homocysteine toxicity in humans. Amino Acids 32(4): 561-572.
- Schafer JH, Glass TA, Bressler J, Todd AC, Schwartz BS. 2005. Blood lead is a predictor of homocysteine levels in a population-based study of older adults. Environ Health Perspect 113(1): 31-35.
- Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346(7): 476-483.
- Shih RA, Hu H, Weisskopf MG, Schwartz BS. 2007. Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3): 483-492.
- Toscano CD, Guilarte TR. 2005. Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49(3): 529-554.

- Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A, 3rd. 2005. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr 82(3): 627-635.
- van de Rest O, Spiro A, 3rd, Krall-Kaye E, Geleijnse JM, de Groot LC, Tucker KL. 2009. Intakes of (n-3) fatty acids and fatty fish are not associated with cognitive performance and 6-year cognitive change in men participating in the Veterans Affairs Normative Aging Study. J Nutr 139(12): 2329-2336.
- Wald DS, Law M, Morris JK. 2002. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325(7374): 1202.
- Weuve J, Korrick SA, Weisskopf MG, Ryan LM, Schwartz J, Nie H, Grodstein F, Hu H. 2009. Cumulative exposure to lead in relation to cognitive function in older women. Environ Health Perspect 117(4): 574-580.
- Wilker E, Korrick S, Nie LH, Sparrow D, Vokonas P, Coull B, Wright RO, Schwartz J, Hu H. 2011. Longitudinal changes in bone lead levels: the VA Normative Aging Study. J Occup Environ Med 53(8): 850-855.
- Willett WC, Howe GR, Kushi LH. 1997. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl): 1220S-1228S; discussion 1229S-1231S.
- Yakub M, Iqbal MP. 2010. Association of blood lead (Pb) and plasma homocysteine: a cross sectional survey in Karachi, Pakistan. PLoS One 5(7): e11706.

SUPPLEMENTAL TABLES

	No Change Blood Pb		Increase in Blo	ood Pb	Decrease in Bloo Pb		All Observations	
	n=171		n=177		n=399		n=747	
	Beta(SE)	p- value	Beta(SE)	p-value	Beta(SE)	p- value	Beta(SE)	p- value
(Intercept)	-1.29(0.9)	0.15	-0.42(0.68)	0.83	0.449(0.55)	0.41	-0.0266(0.36)	0.94
delta			0.0578(0.15)	0.7	0.0995(0.11)	0.34	0.0401(0.053)	0.45
bage.c	0.172(0.13)	0.18	0.0326(0.084)	0.7	0.0287(0.065)	0.66	0.0598(0.046)	0.2
as.factor(hs)1	0.0937(0.45)	0.83	0.378(0.41)	0.34	-0.515(0.33)	0.12	-0.138 (0.22)	0.54
as.factor(twodrink)1	-0.312(0.58)	0.59	0.762(0.5)	0.13	-0.147(0.38)	0.7	0.072(0.27)	0.79
as.factor(smkcat)2	-0.628(0.49)	0.2	-0.294(0.47)	0.53	-0.285(0.36)	0.42	-0.341(0.24)	0.16
as.factor(smkcat)3	-1.18(1.1)	0.27	-1.62(1)	0.11	-1.39(0.83)	0.095	-1.31(0.55)	0.017
bmi.c	-0.0405(0.047)	0.39	0.0123(0.053)	0.82	0.0385(0.042)	0.36	0.00542(0.027)	0.84
timebase	0.0543(0.27)	0.047	0.0844(0.15)	0.56	0.135(0.12)	0.26	0.168(0.086)	0.051
bage.c:timebase	-0.025(0.037)	0.51	0.00439(0.023)	0.85	-0.0015(0.017)	0.93	-0.00505(0.013)	0.69

Supplemental Table 2.1. Visits 1-2 all samples, linear regression, split by change in blood Pb n=747

Supplemental Table 2.2: All visits, all samples, mixed effects. n=747 with 1245 observations The average change in Hcy over the average time interval (3.9 years).

	Delta Change from	Baseline Model		Adjacent Chang	e Model
	N=747 indiv, n	=1245 obs		N=747 indiv, n=1	245 obs
	R2=0.04	482		R2=0.022	2
	Beta(SE)	Beta(SE) p-value		Beta(SE)	p-value
(Intercept)	0.263(0.23)	0.26	(Intercept)	0.337(0.26)	0.2
delta	0.133(0.042)	0.0015	d.adj.bpb	0.0475(0.045)	0.29
bage.c	0.0125(0.023)	0.59	age.c	0.0469(0.013)	0.00043
as.factor(hs)1	0.0286(0.19)	0.88	as.factor(hs)1	-0.0231(0.18)	0.9
as.factor(twodrink)1	-0.163(0.24)	0.49	as.factor(twodrink)1	0.104(0.21)	0.63
as.factor(smkcat)2	-0.557(0.23)	0.013	as.factor(smkcat)2	-0.435(0.19)	0.024
as.factor(smkcat)3	-1.53(0.49)	0.0018	as.factor(smkcat)3	-1.35(0.45)	0.003
bmi.c	0.00321(0.024)	0.89	bmi.c	0.0117(0.021)	0.59
timebase.c	0.134(0.026)	1.9e-7	d.adj.time	0.0722(0.054)	0.18
bage.c*timebase.c	0.00909(0.0036)	0.012			

	Core Model: Just I 3 Waves of D	ndividuals with At Lead ietary Information	Dietary Model on Invididuals With At Least 3 Waves of Dietary Data		
	n=691 obs R2	s, n=221 indiv 2=0.81	n=691 obs, n=221 indiv R2=0.088		
Variable	Beta(SE)	p-value	Beta(SE)	p-value	
(Intercept)	2.31(0.032)	0	2.31(0.032)	0	
tib.c	0.00163(0.0012)	0.16	0.00167(0.0012)	0.15	
age.c	0.0131(0.0019)	4.4E-12	0.0135(0.0019)	1.6E-12	
as.factor(hs)1	-0.0302(0.028) 0.28		-0.0278(0.028)	0.32	
as.factor(twodrink)1	0.0364(0.033) 0.27		0.038(0.033)	0.25	
as.factor(smkcat)2	0.00264(0.035)	0.94	0.00674(0.036)	0.85	
as.factor(smkcat)3	0.0946(0.071)	0.18	0.0869(0.071)	0.22	
bmi.c	0.00527(0.0036)	0.14	0.0056(0.0037)	0.13	
b6res.lt			0.0304(0.045)	0.5	
b12res.lt			-0.00972(0.0067)	0.15	
folres.lt			- 0.000158(0.00023)	0.49	
calor.c			-3.2e-05(1.9e-05)	0.092	

Supplemental Table 2.3: Secondary analysis, long-term dietary trend in tibia model

***note, when we subset only the people with 3 or 4 dietary measures (n=221 individuals across 691 observations), tibia lead is no longer a significant predictor of log(hcy). None of the long term dietary measures are significant either.

	Tibia Only		Blood and Tib	oia	Blood Only	
	n=771		n=771		n=771	
	R2=0.066		R2=0.11		R2=0.11	
	β(SE) p- value		β(SE)	p- value	β(SE)	p-value
(Intercept)	2.27(0.02)	0	2.27(0.02)	0	2.26(0.019)	0
Tibia Pb	0.00262(0.00081)	0.001	0.000655(0.00085)	0.4		
Blood Pb			0.0241(0.0039)	1E-09	0.0252(0.0036)	9E-12
Age	0.00551(0.0016)	0.0005	0.00587(0.0015)	0.0001	0.00625(0.0014)	2E-05
Education (>hs reference)	-0.0408(0.022)	0.06	-0.0495(0.021)	0.02	-0.0463(0.021)	0.03
Alcohol Consumption	0.0881(0.025)	0.0004	0.0598(0.025)	0.02	0.0588(0.025)	0.02
Former Smoker	0.0326(0.023)	0.2	0.0403(0.022)	0.07	0.0419(0.022)	0.06
Current Smoker	0.144(0.047)	0.002	0.134(0.046)	0.004	0.136(0.046)	0.003
BMI	0.00282(0.0027)	0.3	0.00267(0.0026)	0.3	0.00276(0.0026)	0.3

Supplemental Table 2.4: Mediation analysis, visit 1.

SUPPLEMENTAL FIGURES

Supplemental Figure 2.1. Bivariate scatterplots for the unadjusted associations between lead measurement and Hcy at visit 1. Red line is the linear regression line of best fit and the blue lines are the 95% confidence intervals. (A) Tibia lead (n=774). (B) Patella lead (n=774). (C) Blood lead (n=1048).

Supplemental Figure 2.2. Blood Pb restricted plasma and diet. *Restrict analysis to only individuals with both plasma and dietary measures. (Visit 1 n=774, visit 2 n=382, visit 3 n=65, visit 4 n=0)

CHAPTER III

Research Chapter 2

Genome-wide DNA Methylation Differences Between Late-Onset Alzheimer's Disease and Cognitively Normal Controls in the Human Frontal Cortex

FROM: Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS. 2012. Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in the human frontal cortex. *Journal of Alzheimer's Disease*. 29: 571-588, reprinted for educational purposes from IOS Press.

ABSTRACT

Evidence supports a role for epigenetic mechanisms in the pathogenesis of late-onset Alzheimer's disease (LOAD), but little has been done on a genomewide scale to identify potential sites involved in disease. This study investigates human post-mortem frontal cortex genome-wide DNA methylation profiles between 12 LOAD and 12 cognitively normal age- and gender-matched subjects. Quantitative DNA methylation is determined at 27,578 CpG sites spanning 14,475 genes via the Illumina Infinium HumanMethylation27 BeadArray. Data are analyzed using parallel linear models adjusting for age and gender with empirical Bayes standard error methods. Gene-specific technical and functional validation is performed on an additional 13 matched pair samples, encompassing a wider age range. Analysis reveals 948 CpG sites representing 918 unique genes as potentially associated with LOAD disease status pending confirmation in additional study populations. Across these 948 sites the subtle mean methylation difference between cases and controls is 2.9%. The CpG site with a minimum false discovery rate located in the promoter of the gene Transmembrane Protein 59 (*TMEM59*) is 7.3% hypomethylated in cases.

Methylation at this site is functionally associated with tissue RNA and protein levels of the *TMEM59* gene product. The *TMEM59* gene identified from our discovery approach was recently implicated in Amyloid Precursor Protein posttranslational processing, supporting a role for epigenetic change in LOAD pathology. This study demonstrates widespread, modest discordant DNA methylation in LOAD-diseased tissue independent from DNA methylation changes with age. Identification of epigenetic biomarkers of LOAD risk may allow for the development of novel diagnostic and therapeutic targets.

Keywords: DNA methylation, Late Onset Alzheimer's disease, epigenetics, prefrontal cortex

INTRODUCTION

Dementia and Alzheimer's Disease

Worldwide changes in demography are leading to a rapid increase in the numbers of older adults at risk for dementia. Accordingly, the global prevalence of dementia is expected to quadruple from an estimated 35.6 million cases in 2010 to 115.4 million cases in 2050 (International 2010). The global financial burden of dementia in 2010 was \$604 billion (US dollars) including direct medical bills, formal social care, and informal care provided by unpaid caregivers (International 2010).

Alzheimer's disease (AD), a progressive, fatal neurodegenerative disease, is the most prevalent form of dementia. Less than two percent of AD cases represent early-onset AD (EOAD) (Bird 2005) defined by disease onset prior to age 60 and genetic mutations in amyloid- β precursor protein (*A* β *PP*), presenilin-1 (*PSEN-1*), or presenilin-2 (*PSEN-2*) genes (Bertram 2009; Hardy 1997). Mutations in these genes dysregulate the *A* β *PP* pathway and directly lead to amyloid- β (A β) plaque accumulation, a major pathological hallmark of AD.

The remaining vast majority of cases are sporadic, termed Late-Onset Alzheimer's Disease (LOAD) because they manifest symptoms after age 60. Approximately 60% of LOAD cases carry at least one apolipoprotein ε 4 allele (*APOE*- ε 4), while the global population prevalence of the allele is only approximately 22% (Ashford 2004; Kim et al. 2009). Pooled data on LOAD from recent, collaborative, large genome-wide association studies (GWAS) reported the population attributable risk for APOE variants was between 19% and 35% (Ertekin-Taner 2010). GWAS also identified additional LOAD risk alleles (*CLU*, *PICALM*, *BIN1*, *CR1*, *ABCA7*, *MS4A*, *EPHA1*, *CD33*, *CD2AP*) that contribute added risk in population subsets (Harold et al. 2009; Hollingworth et al. 2011; Lambert et al. 2009; Naj et al. 2011). These risk factor genotypes are neither necessary nor sufficient for LOAD development. Twin studies revealed incomplete concordance (Gatz et al. 1997; Nee and Lippa 1999) and variable

age on onset (Li et al. 2002) even among monozygotic pairs, highlighting the complex etiology of LOAD. These observations underscore the likely importance of non-genetic factors in LOAD etiology and spurred recent investigations of the epigenetics of AD.

Epigenetics and Alzheimer's Disease

Epigenetics is the study of heritable changes in gene expression that occur without changes to the underlying DNA sequence. Methylation (Maunakea et al. 2010) and hydroxymethylation (Jin et al. 2011) at the 5' site on cytosines in cytosine-guanine (CpG) dinucleotides are important epigenetic modifications associated with gene expression in the human brain. Specific marks distinguish brain regions (Hernandez et al. 2011; Ladd-Acosta et al. 2007) and epigenetic differences in human brain tissues have been associated with such neurological diseases as schizophrenia and bipolar disorder (Mill et al. 2008). Epigenetics is also a mechanism by which environmental exposures can translate to human disease (Dolinoy and Jirtle 2008; Suter and Aagaard-Tillery 2009).

In AD cases lacking highly penetrant genetic susceptibility, the etiology of amyloid dysregulation is not well understood. Altered epigenetic regulation of tau and amyloid processing genes has been observed across multiple brain regions and is a potential mechanism for disease (Barrachina and Ferrer 2009; Tohgi et al. 1999a; Tohgi et al. 1999b). Human post-mortem case-control studies observed global hypomethylation in the entorhinal cortex of AD subjects (Mastroeni et al. 2008) and in the temporal neocortex neuronal nuclei of an AD monozygotic twin relative to their cognitively normal twin (Mastroeni et al. 2009). Evidence for epigenetic involvement in AD pathogenesis spans human studies in various tissues, animal models, and cell culture, and was recently reviewed (2010; Mastroeni et al. 2011; Mill 2011).

Significant transcriptome-wide gene expression differences have been observed between brain tissues of LOAD cases and controls (Loring et al. 2001; Miller et al. 2008). However, previous AD research on DNA methylation as a

regulator of gene expression evaluated DNA methylation at 5' promoter regions of a few candidate genes selected based on *a priori* hypotheses about AD molecular mechanisms. The current research provides a semi-unbiased, quantitative, genome-wide discovery of locations of DNA epigenetic differences in human frontal cortex brain tissue between LOAD cases and controls, which allows for identification of novel disease-associated genes. The gene identified in this study that best distinguished cases and controls was technically validated using an additional sensitive and quantitative method of DNA detection. This mark was also validated using a second population of samples. The functional significance of this DNA methylation mark was further confirmed by gene expression and protein quantification assays.

MATERIALS AND METHODS

Sample Acquisition

The NIA funded Michigan Alzheimer's Disease Center (MADC) (P50AG008671; PI: Sid Gilman) maintains a well-clinically characterized cohort of Alzheimer's disease and cognitively normal control subjects, many of which agreed to participate in autopsy and donated to the MADC Brain Bank. Upon autopsy, each left hemisphere was fixed in 10% neutral formalin for neuropathological diagnosis. The right hemisphere was sectioned coronally, flash frozen, and archived in MADC freezers at -80°C. Frozen tissue blocks 0.5 cm³ (50-90 mg) in size were dissected at -20°C from the mid-frontal gyrus of the frontal lobe and provided for this study. MADC frozen tissues were previously used in high quality expression (Hong et al. 2008; Pan et al. 2007) and proteomic studies (Pan et al. 2007).

Twelve age- and gender- matched pairs of LOAD cases (clinical diagnosis and Braak Score \geq 4) and controls (clinically confirmed and Braak Score \leq 2) were used for the genome-wide discovery phase of the project and for genespecific technical validation. An additional thirteen matched pairs were included in the population validation phase, which included gene-specific DNA

methylation, gene expression, and protein quantification studies. The demographic characteristics of all 50 brains included in this study are described in **Table 3.1**. Post-mortem intervals in hours for AD cases used in the Discovery Set were as follows: 3, 4, 7, 7, 7.75, 8, 8.75, 9, 11, 12, 14, 24. Post-mortem intervals in hours for controls used in the Discovery Set were as follows: 6, 6, 13.5, 14, 17, 18, 18, 18, 19.3, 20.5, 21.25, 24.5. Gray matter for DNA methylation, expression, and protein analysis was excised from the tissue sample and used in this study and vascular lesions were avoided.

DNA Isolation and APOE Genotyping

DNA was extracted from all 25 matched pair samples using the Promega Maxwell Tissue DNA Kit (Madison, WI) according to manufacturer's instructions. APOE genotyping was assayed using the Applied Biosystems TaqMan method (Foster City, CA) according to manufacturer's instructions using the ABI 7900 HT machine (Christensen et al. 2008).

Genome-wide DNA Methylation Discovery

DNA was bisulfite-treated using the Zymo EZ DNA Methylation Kit (Orange, CA) with a modified thermal cycling protocol (98°C for 10 minutes, 64°C for 17 hours). Genome-wide DNA methylation was assessed with the Infinium HumanMethylation27 BeadArray (Illumina) performed at the University of Michigan DNA Sequencing Core facility in accordance with manufacturer's instructions and previously published (Bibikova et al. 2009). Six cases and six control samples were randomly applied to each of two 12-sample arrays to avoid biasing case-control differences by batch effect. BeadArrays were imaged using the Illumina BeadArray Reader. Image processing and intensity data extraction are standard components of the BeadScan software that is associated with the BeadArray Reader. The Illumina BeadStudio Software generated percent methylation estimates (beta values) for each probe set based on Cy3 and Cy5 fluorescence intensities. Data was background normalized and exported for further processing.

Statistical Methods for Bead Array

All statistical analysis was performed with the R Statistical Software (version 2.10.1). CpG sites that failed on 10% of samples were not included in subsequent analyses. Linear models adjusting for age and gender were fit across all CpG sites using the limma package (version 3.2.3). As is standard in microarray analyses, empirical Bayesian variance methods were incorporated to site-specific moderated t-tests (Smyth 2004). The linear model used for each individual CpG site was as follows:

% Methylation = $\beta_0 + \beta_1$ (Case Status) + β_2 (Age) + β_3 (Sex)

Top hits by case status were identified by p-values < 0.05 and false discovery rates were calculated. Additional analyses were performed on the top hit. We compared the basic linear model above to a model containing PMI using an F-test. We also compared the R^2 goodness of fit of two simple linear regression models containing only either PMI or Case Status as predictors.

Samples were hierarchically clustered by the single linkage method across the top 26 hits by case status. Positional gene set enrichment analysis was performed using Gene Set Enrichment Analysis (GSEA) to determine statistical over-representation of disease specific epigenetic marks within chromosomal cytogenic bands containing at least 15 genes (Subramanian et al. 2005). Enrichment in promoter and 3'UTR regulatory motifs of disease associated genes was determined by GSEA (Xie et al. 2005). Biological processes and molecular functions associated with LOAD gene lists were established using Gene Ontology (Ashburner et al. 2000).

Gene-Specific DNA Methylation Validation

Site-specific methylation technical (of the original 12 Discovery Set matched pairs) and population (of an additional 13 matched pairs with an expanded age range) validation of the top CpG hit was determined by bisulfitepyrosequencing on the Qiagen Pyromark MD instrument (Valencia, CA). Using

Pyromark Assay Design Software, a custom pyrosequencing assay was designed to include the two CpG sites present on the Illumina array (Target IDs cg01182697 and cg20793071). This amplicon is located in the promoter of the gene that most statistically distinguished LOAD cases and controls on the Illumina array. Primers were complementary to bisulfite treated DNA in regions without CpG nucleotides (**Table 3.2**). The region of interest was amplified by bisulfite-PCR with the following thermal cycling protocol: 15 minute activation at 95°C, 45 cycles of 30 second denaturation at 94°C, 30 second annealing at 55°C, and 1 minute extension at 72 minutes, followed by a final extension for 10 minutes at 72°C. Serial dilutions of 100% methylated and unmethylated controls were used to test for any bias in amplification for each assay. Internal bisulfite conversion quality controls were incorporated at original sequence non-CpG cytosines by including C nucleotides in the dispensation order, which should be fully converted to T's following bisulfite treatment.

Incorporation of either a T (for an unmethylated cytosine) or C (for a methylated cytosine) at each CpG provides a quantitative measure for consecutive CpG sites throughout the region sequenced. The level of methylation for each CpG within the target region of analysis was quantified using the Pyro Q-CpG Software. Primers and pyrosequencing assay file information including nucleotide dispensation orders and sequences to analyze are in **Table 3.2**.

Gene Expression

Functional relevance of top methylation marks distinguishing Alzheimer's disease cases and controls was assessed via SYBR green Real Time PCR gene expression assays. RNA was extracted from all 25 matched pair samples using an adjacent portion of the same gray matter sample used for DNA. RNA was extracted using the Qiagen RNeasy Lipid Tissue Kit (Valencia, CA), following homogenization with the Qiagen Tissue Lyser instrument. Assays were designed using Genscript software (Piscataway, NJ). cDNA was generated with the Bio Rad iScript cDNA Synthesis Kit (Hercules, CA) and the primers are listed

in **Table 3.3**. Quantitative PCR assays were run with the iQ SYBR Green Supermix (Bio Rad) on the CFX96 C1000 Thermal Cycler (Bio Rad). CFX Manager software (Bio Rad) was used to determine the threshold cycle (C_T) and perform inter-plate normalizations. C_T values relative to β -actin levels were used to compute a fold change between matched pairs. A subset of samples was analyzed on the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array in the University of Michigan Sequencing Core using standard protocols. We determined that β -actin is a suitable control in these samples as gene expression of β -actin did not differ by case control status at any of the 6 probe sets included in the Affymetrix Array (p-values: 0.13, 0.18, 0.23, 0.43, 0.48, 0.77). Gene expression data were evaluated for normality using R Statistical Software. To determine if higher methylation values were associated with decreased expression of target genes, Spearman correlation coefficients were calculated between CpG methylation (as measured by pyrosequencing) and the expression level data.

Protein Quantification

Adjacent portions of the same 25 matched-pair, gray matter tissue used for DNA were homogenized and protein extracted in Thermo Scientific RIPA buffer (Burlington, Ontario). Protein concentration was quantified using the Thermo Scientific Pierce BSA assay (Burlington, Ontario). Protein (25 ug) was loaded on 10% SDS-polyacrylamide gels for Western Blot analysis. Transmembrane protein 59 antibody was purchased from Novus Biologicals (Littleton, CO) and Transmembrane protein 59 control protein was purchased from OriGene (Rockville, MD). The blots were imaged on the VersaDoc 5000MP instrument (Bio Rad) with Quantity One densitometry software (Bio Rad) under a consistent, constrained area. The levels of Transmembrane protein 59 were standardized to the corresponding tubulin band.

RESULTS

Genome-Wide Descriptive Statistics

DNA was extracted from the frontal cortex of 25 age- and gender-matched LOAD case and control human post-mortem pairs (**Table 3.1**). Sixteen pairs were male and nine pairs were female. LOAD cases and controls did not differ by age (p-value = 0.68). The mean post-mortem interval (PMI) was 12.8 hours, ranging from 3-28 hours. Controls had significantly longer PMI than LOAD cases (p-value=0.0004). The mean number of years in storage was 11.8, ranging from 2-21 years. Cases and controls did not statistically differ in the number of years in storage (p=0.07).

In the Discovery Set, a randomly selected subset of 12 matched pairs ranging in age from 69-95 (mean age 79.8) were analyzed for genome-wide DNA methylation using the Illumina Infinium HumanMethylation27 BeadArray. The BeadArray represented 27,578 CpG sites corresponding to 14,475 unique genes. The average number of CpG sites per gene was 1.9, and 92.0% of CpG sites were within 1000 bp of a transcription start site. CpG sites within CpG islands were overrepresented on the array, as 72.5% of sites were within CpG islands. The average number of CpG sites per sample with Illumina detection p-values greater than 0.05 (considered failing) was 71.1 (range 11-360 sites). CpG sites that failed on more than 2 samples (>10% samples) were not included for further analyses (n= 171 sites).

The global distribution of 5'-cytosine modifications at all CpG sites measured by the array was bimodal, and the distribution of methylation levels was very similar between cognitively normal controls (**Figure 3.1A**) and Alzheimer's disease cases (**Figure 3.1B**). There was a large cluster of sites that had less than 10% methylation (15,735 in controls and 15,619 in AD cases) based on the mean of each group of 12 samples. A second cluster of sites was modified between 75% and 100% (5,226 sites in controls and 5,162 sites in AD cases).

Of the 27,578 sites on the array, 25,380 sites were located in promoter regions as defined within 1,000 bp of a transcription start site. Only 2,198 sites were outside of known promoters. Promoter CpG sites had a median of 5.1%

methylation (IQR= 2.1-5.2) while non-promoter sites had a median of 59.7% methylation (IQR=11.0-84.0). This observation did not depend on AD case status. On the array, 20,006 sites were located within CpG islands and 7,572 sites were outside of CpG islands. CpG island sites had a median methylation of 3.2% (IQR = 1.7-9.6) and non-CpG island sites had 74.6% median methylation (IQR=45.5-85.4). This did not depend on AD case status. Our discovery set of 24 samples ranged in age from 69-95 years (**Table 3.1**), and age was an important predictor of methylation. There were 2,416 sites and 2,227 unique genes associated with age (based on a p-value of 0.05). Of these sites, 1,294 were hypermethylated with increasing age and 1,122 were hypomethylated with age. The top 25 CpG sites associated with age among controls are listed in **Table 3.4**.

Alzheimer's Disease-Specific Results

Following age and gender adjusted linear fit models with empirical Bayseian standard error adjustments, 948 CpG sites representing 918 unique genes were significantly associated with AD case status (based on p-value of 0.05). Among these 948 sites, the maximum mean methylation difference between AD cases and controls was 19.5% at a CpG site 249 base pairs from the predicted TSS of C21orf56 on chromosome 21 (cases 34.8% methylated vs. controls 15.9% methylated). The mean observed disease specific methylation difference across the 958 sites was 2.9% (IQR=0.88-4.2).

The top 26 autosomal CpG sites distinguishing cases and controls (as defined by FDR) are depicted in a heatmap (**Figure 3.2**). Samples clustered on case status with the exception of two control samples. One of those controls was the oldest control subject in the study at 94 years of age. The top 25 CpG sites that were significantly different by case status are outlined in **Table 3.5**.

Gene ontology analysis of the top 958 disease specific sites revealed hypermethylation in several molecular functions and biological processes associated with transcription. The top 10 molecular functions enriched for

hypermethylation with AD cases were RNA polymerase II transcription factor activity (**Figure 3.3A**), RNA binding, GTPase regulator activity, cytokine binding, DNA binding, lyase activity, ATPase activity, transcription factor activity, and nucleoside triphosphatase activity. Similarly, the top 10 biological processes associated with hypermethylation were nucleic acid metabolic process, DNA replication, regulation of nucleic acid metabolism, regulation of DNA dependent transcription, regulation of RNA metabolic process, regulation of cell cycle, DNA dependent transcription, positive regulation of RNA metabolic process, DNA metabolic process, RNA biosynthetic process, and nervous system development.

Hypomethylation was enriched at functions and processes related to membrane transport and protein metabolism. The top 10 molecular functions associated with hypomethylation in AD cases are electron carrier activity, cation transmembrane transporter activity, metal ion transmembrane transporter activity, enzyme binding, rhodopsin-like receptor activity, cation channel activity, integrin binding, phosphoric ester hydrolase activity, G-protein coupled receptor activity, and peptidase activity. The top 10 biological processes associated with hypomethylation in LOAD cases were carboxylic acid metabolic processes (**Figure 3.3B**), organic acid metabolic process, biosynthetic process, cation transport, nitrogen compound metabolic process, amine metabolic process, negative regulation of developmental process, programmed cell death, apoptosis, and anti-apoptosis.

Several promoter and 3' UTR regulatory binding motifs were enriched in the disease associated gene list. Hypermethylation in LOAD cases was observed in genes containing binding site motifs for transcription factors *POU3F2* (p-value < 0.001) and *HOXA4* (p-value=0.004), and microRNAs *MIR-9* (p-value = 0.002), *MIR-518C* (p-value < 0.001), *MIR-1* (p-value=0.025), and *MIR-326* (pvalue=0.019). Genes containing *MIR-140* (p-value = 0.04) and *NFE2* (pvalue=0.019) motifs were hypomethylated in LOAD cases.

Positional gene set analysis of the 958 disease associated CpG sites identified enrichment of hypomethylation at the chromosomal location19q13

(Normalized Enrichment Score (NES) = 1.24), in cytogenetic band region where the *APOE* gene is located (Kim et al. 2009). In addition, hypermethylation in LOAD cases was seen at 19q13 (NES= -0.72), a candidate location for genetic linkage with LOAD (Wijsman et al. 2004). We visually identified broad regions of altered methylation in AD brains compared to control brains (**Figure 3.4**). These include the p-arm of chromosome 14 and distal q-arm of chromosome 3 (hypomethylated in AD brains compared to control brains) and the p-arms of chromosomes 10 and 17 (hypermethylated in AD brains compared to control brains). Chromosome 15 had the highest density of observed disease-specific methylation differences.

We checked the list of disease specific hits identified with the BeadArray for genes known to be associated with AD. There were two CpG sites on the array corresponding to each of the following genes: ABCA7, APOE, ABPP, BACE1, BDNF, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MAPT, MS4A6A, PICALM, PSEN2, and TOMM40. There was one site representing PSEN1 on the array and this site was associated with AD (Cases mean methylation = 1.6%, Controls mean methylation = 2.6%; p-value=0.034; cg11490446). Gene expression of the probe set for PSEN1 at exon 2 differed by case status based on the results of the Affymetrix gene expression array (probe 207782 s at, pvalue = 0.0076, fdr = 0.35). The Spearman correlation coefficient linking expression of this gene expression probe set and methylation measured by the Illumina BeadArray is -0.61 (pvalue=0.0014). AD cases were less methylated and had higher expression of this probe. There was no difference gene expression in the other five probe sets for *PSEN1*. One of the two sites corresponding to EPHA1 was associated with hypermethylation with age (p-value = 0.029; cg02376703). One of the two sites associated with PSEN2 was associated with hypomethylation with age (p-value = 0.030; cg25514304). The remaining CpG sites within LOAD candidate genes were not associated with differential methylation by case status or age.

We also assessed known human imprinted genes for their association with AD, focusing on CpG sites located within Differentially Methylated Regions (DMRs) (Choufani et al. 2011). The Illumina array contains 10 sites in the DMR for *DIRAS3*, 8 sites each for *PLAGL1* and *GNAS*, 7 sites for *ZIM2*, 4 sites for *PEG10*, 3 sites for *PEG3*, 2 sites for *MEST*, and 1 site each for the genes *GRB10*, *KCNQ1*, and *SNURF*. One of the sites in the DMR for *DIRAS3* was more highly methylated in AD cases (43.4%) than controls (38.5%) (p-value = 0.024; cg21808053). One of the sites in the DMR for *GNAS* was hypomethylated with age among controls (p-value = 0.012; cg21625881) and the site for *KCNQ1* was hypermethylated with age (p-value = 0.023; cg27119222).

Gene-Specific Results

After adjusting for age and sex, the highest ranking site (FDR = 0.36, p-value = 0.000013) associated with LOAD was a CpG site upstream of Transmembrane Protein 59 (*TMEM59*). *TMEM59* is responsible for post-translational glycosylation of *ABPP* and leads to retention of *ABPP* in the Golgi apparatus (Ullrich et al. 2010). AD cases had 7.3% lower methylation at *TMEM59* than controls, and this difference was more profound in older subjects (**Figure 3.5A**). Methylation of *TMEM59* was significantly associated with age in cases relative to controls (p-value=0.013). In a second *TMEM59* model, we added PMI as a predictor and compared the goodness of fit of the two nested models using an F-test. PMI did not improve the model fit and PMI is not a statistically significant predictor of methylation at the *TMEM59* site. In a simple linear regression model with Case Status as the only predictor of *TMEM59* methylation, the model fit R² was 0.597. The model fit R² with PMI as the only predictor was 0.132.

The methylation findings were technically validated by pyrosequencing a single assay containing both CpG sites from the Illumina array that were associated with *TMEM59*. The CpG density 1000 bp flanking the top hit on either side is 1.5%. Pyrosequencing the original 24 discovery samples confirmed the difference between cases and controls at *TMEM59* was 2.7% (**Figures 3.5B and**

3.5D). Methylation was again associated with age in cases relative to controls in the technical validation (p-value=0.0084). Pyrosequencing of an additional 26 matched pair samples across an expanded younger age range (61-94) confirmed the age-associated reduction in methylation (p-value-0.0022), and the association with AD case status was not statistically significant at an alpha of 0.05 (p-value = 0.088) (**Figure 3.5C**).

We determined expression levels of *TMEM59* at four points along the 8 exon transcript (**Figure 3.6A**) (including the beginning, end, and two middle sites) to functionally validate the DNA methylation results with the *TMEM59* gene. At the four locations along the transcript that were assayed by real time PCR, controls had lower RNA expression levels than cases (**Figure 3.6B**). For the first assay on the transcript, AD cases had 24.9% higher expression (fold change 1.33; p-value 0.0013). For two assays in the middle of the transcript, AD cases had 20.5% (fold change 1.26; p-value 0.0071) and 28.3% (fold change 1.40; p-value 0.056) higher expression. The assay at the end of the transcript showed AD cases to have 21.5% (fold change 1.27; p-value-0.0036) higher expression than controls. DNA methylation and RNA expression were negatively correlated at *TMEM59* (Spearman correlation coefficient = -0.274, p-value = 0.0083).

To further investigate the functional implications of the observed DNA methylation and gene expression differences of *TMEM59*, we measured the protein levels by Western blot in the full set of 25 case brains and 25 control brains. No differences were observed for the full length 36 kDa protein (p-value=0.68) (**Figure 3.6C**), but AD cases had reduced levels of a shorter protein that was also bound by the antibody specific for the C-terminus of *TMEM59* (p-value=0.040) (**Figures 3.6C, 3.6E**). The quantity of shorter protein was associated with age (**Figure 3.6D**).

DISCUSSION

We performed a genome-wide, semi-unbiased quantitative comparison of frontal cortex DNA methylation from age- and gender-matched LOAD cases and

controls. The CpG site most strongly associated with case status was located in the promoter region of *TMEM59*, a gene recently implicated in Alzheimer's disease pathogenesis (Ullrich et al. 2010). This gene is involved in the posttranslational modification of Amyloid Precursor Protein ($A\beta PP$) and causes retention of $A\beta PP$ in the Golgi apparatus (Ullrich et al. 2010). The magnitude of methylation difference at this site between cases and controls was very modest (7.3% difference using the Illumina array), but the direction of association was confirmed using an alternate method of DNA methylation detection (2.7% difference using pyrosequencing). In an expanded population including a higher number of younger cases and controls, an interaction between age and case status was detected. Thus, age modifies the association between disease status and methylation. There was not a primary association between case status and methylation when the younger population was included. In the original sample of LOAD cases and controls, TMEM59 DNA methylation levels corresponded to functional changes in *TMEM59* gene expression. LOAD cases had lower methylation and higher expression of *TMEM59* than control samples. No differences in the level of the full length TMEM59 protein were observed between cases and controls; however a smaller protein that bound the *TMEM59* antibody was significantly higher in controls. This *TMEM59* protein size pattern is consistent with the TMEM59 control protein lysate. The shorter protein may represent a proteolytic product of the full length protein. The shorter protein is approximately 17 kDa, which could also be consistent with translation of an alternative RNA transcript beginning at exon 5 of the TMEM59 gene. The observed differences in protein expression levels are consistent with epigenetic regulation. Further molecular research is needed to better understand the gene expression and protein regulation and potential role of DNA methylation at this site.

Well-studied genes known to be involved in AD pathogenesis or identified through GWAS for genetic association with LOAD were largely not associated with disease-specific DNA methylation differences in this study. A notable exception was *PSEN1*, which was modestly hypomethylated in LOAD cases.

Consistent with previous human post-mortem tissue studies, *PSEN1* showed very low levels of methylation in our population (Siegmund et al. 2007). Here, LOAD cases had reduced DNA methylation that was associated with increased *PSEN1* gene expression, suggesting the DNA methylation change may be functional at this site. Studies in mice and neuroblastoma cell lines demonstrate that *PSEN1* gene expression is regulated by DNA methylation at specific promoter CpG sites and this regulation depends on B vitamin availability (Fuso et al. 2011). The correlation between DNA methylation and gene expression in our study support the cell line and mouse model findings. The Illumina HumanMethylation27 BeadArray platform used in this study also allowed for discovery of novel gene associations with AD. For example, methylation change was observed within the DMR for the imprinted gene, *DIRAS3*. Genomic imprinting in Alzheimer's disease is a potential mechanism to explain epidemiological parent-of-origin inheritance observations(Fallin et al. 2011; Mosconi et al. 2011).

Greater than 900 genes (6% of genes featured on the array) were differentially methylated by case status after adjusting for age and gender. Overall, the disease related methylation effect size (2.9%) was relatively modest, and the global methylation distributions of AD cases and controls were similar. Together these findings suggest that DNA methylation may play a role in LOAD and the individual effects at each CpG site may be subtle. The magnitude and absolute number of DNA methylation changes observed in this study are consistent with previous reports in the literature performed on candidate gene subsets. In a case-control study of prefrontal cortex DNA methylation of twelve genes, only two genes were associated with AD status and the differences in methylation were less than 10% (Wang et al. 2008).

Gene set enrichment analysis revealed key patterns in the identified set of disease associated CpG sites. First, gene ontology analysis showed hypermethylation of genes involved in transcription and DNA replication, while membrane transporters were hypomethylated. Second, hypermethylation was

enriched at genes containing *POU3F2* binding motifs. *POU3F2* is a transcription factor critical in central nervous system development that regulates Nestin gene expression, a protein important for radial axon growth (Jin et al. 2009). Third, positional analysis showed hypomethylation with case status at 19q13 and hypermethylation at 19p13, cytogenic band regions genetically linked with AD (Kim et al. 2009; Wijsman et al. 2004).

LOAD cases and control sample groups were similar with respect length of time in storage, but LOAD cases had shorter PMI then control samples (pvalue = 0.0004). During PMI, samples may be exposed to damaging lower pH conditions and higher temperatures where enzymes may be active. PMI was not a significant confounder at the *TMEM59* site, however, PMI may be a factor at other specific locations throughout the DNA methylome.

This study measured genome-wide DNA methylation differences between LOAD case and control subjects aged 69 to 95. Across this relatively short age range, DNA methylation was associated with age at over 2,400 CpG sites, representing more than 8% of the sites on the BeadArray. Both hyper and hypomethylation was observed. Previous studies have observed global hypomethylation with age in the brain (Pogribny and Vanyushin 2010), but gene-specific studies of aging and methylation have noted varying patterns (Siegmund et al. 2007). These results further support age as an important covariate to consider in statistical models of DNA methylation in late life.

Age is a major factor in epigenetic change in the brain (Hernandez et al. 2011), potentially confounding or modifying disease specific associations. In a study of cerebral cortex DNA from gestation to 104 years of age, eight of fifty loci showed increases in methylation through late life and two sites presented changes suggestive of an acceleration of age-related change in a subset of samples with LOAD (Siegmund et al. 2007). Additional evidence supports increased age-dependent epigenetic drift with disease. In LOAD prefrontal cortex samples representing a 30 year age range, an age-specific epigenetic drift was more prominent among cases compared to controls. The average

methylation in promoters of *MTHFR* and *APOE* increased by 6.8%, while control samples decreased with age by 10.6% (Wang et al. 2008).

Cultured cells can potentially have very different epigenetic profiles than primary cells as an artifact of growth in culture (Smiraglia et al. 2001), and thus use of primary human frontal cortex tissue is a strength of this study. DNA methylation is brain region specific and greater differences have been seen between the cerebellum and cortex regions than by sex, age, post-mortem interval, race, or cause of death (Ladd-Acosta et al. 2007). This study consistently used frontal cortex tissue because of its role in advanced AD. As with many studies of epigenomic, transcriptomic, or proteomic changes in the human brain, the tissue samples represented populations of mixed cell types, an important limitation, which may have resulted in attenuated effects. Epigenomes are cell type specific (Lister et al. 2009; Maunakea et al. 2010), and brain cell types have different roles in AD (Selkoe 2001). The AD brain has an active changing cell population including neuronal loss and glial activation (Akiyama et al. 2000) that may in part be responsible for the observed results. DNA methylation data, however, was not enriched in inflammatory mediators, which would have supported changes due to gliosis. This study considered brain region specific methylation and as epigenomic platforms require lower input DNA amounts, future research may be able to also consider cell type specific changes.

Results from large DNA methylome and transcriptome maps of the human brain suggest that intragenic CpG sites rather than promoter CpG islands may better correlate with transcription (Maunakea et al. 2010). The genome-wide sites included on the Illumina Infinium HumanMethylation27 BeadArray are more likely to be located within promoter region CpG islands. Important methylation events located elsewhere throughout the genome would be missed using this platform and may be included in future research utilizing alternative technologies.

These results must be interpreted with caution because this study had a small sample size relative to the large number of CpG site comparisons and the

magnitude of observed methylation differences between LOAD cases and controls was moderate. The results from the array were technically validated at the top CpG site, but it is not clear whether this observation will be consistent across populations. While a small study, we identified modest DNA methylation differences as a potential event in LOAD.
FIGURES

Figure 3.1. Mean percent methylation frequency distribution of the Discovery Set of 12 cognitively normal control samples (A) and 12 Alzheimer's disease cases (B) across the 27,578 CpG sites on the Illumina HumanMethylation27 BeadArray.

Figure 3.2. Hierarchical clustering heatmap of the Discovery Set top 26 autosomal CpG loci associated with late-onset Alzheimer's disease (LOAD) case/control status after adjusting for sex and age. Green represents hypermethylation in LOAD cases and red represents hypomethylation in cases. Horizontal color bars at the top refer to the age, sex, and case status of the sample. In the Case Status color bar, light green represents control samples and dark green represents LOAD cases. For sex, female is light pink and male is dark blue. In the age panel, black represents ages 91-95, darkest gray 86-90, medium gray 81-85, light gray 76-80, lightest gray 71-75, and white represents ages 66-70. Vertical color bars on the left refer to the CpG island and promoter status of the CpG sites. In the CpG island bar, dark purple represents sites within CpG islands and light purple represents sites outside of CpG islands. In the promoter bar, dark orange represents sites within promoter regions and light orange represents sites outside of promoter regions.

Figure 3.3. Discovery Set gene set enrichment analysis plots. (A) Genes associated with RNA polymerase II transcription factor activity molecular function were hypermethylated in LOAD cases relative to controls (p-value = 0.013). (B) Genes associated with carboxylic acid metabolic biological processes were hypomethylated in LOAD cases relative to controls (p-value= 0.013).

Figure 3.4. Human chromosome ideogram in black. Distribution of CpG sites featured on the Illumina HumanMethylation27 BeadArray is below the chromosomes in blue. Distribution of CpG sites that were significantly associated with late-onset Alzheimer's disease (LOAD) in the Discovery Set are above the ideograms. Green represents hypermethylation with LOAD status. Red represents hypomethylation with LOAD status.

Predicted alternative isoforms are in blue. (B) Boxplot of *TMEM59* gene expression by Q-PCR in the Discovery Set. Two-sample t-test between cases and controls were all statistically significant (exon 1 p-value=0.0013; exons 1-2 pvalue=0.0071; exons 3-4 p-value=0.0036, exons 7-8 p-value=0.0083) (C) Boxplot of relative protein levels of *TMEM59* in the Discovery Set plus an additional 26 validation samples. Paired t-tests did not reflect case specific differences for the full length protein (p-value=0.68), while the shorter protein fragment was significantly lower in AD cases (p-value=0.040). (D) Levels of the shorter *TMEM59* protein fragment as a function of age. (E) Representative western blot image of *TMEM59* protein expression in controls and AD cases 1-3 representing identical exposures of the same gel. No differences were detected between AD and controls for full length *TMEM59* protein based on case status, but the levels of the *TMEM59* shorter proteins were reduced in AD cases. These shorter proteins were also observed in the TMEM59 control protein lysate.

TABLES

	LOAD Cases		Cognitively Normal Controls		
Characteristic	Discovery Set	Full Set	Discovery	Full Set	
	(n=12)	(n=25)	Set (n=12)	(n=25)	
Neuropathological	High	High	Control n=11	Control n=24	
Diagnosis	Likelihood AD	Likelihood	Other n=1	Other n=1	
	II= I I	AD II=21			
	Likelihood	Likelihood			
	n=1	n=4			
Braak Stage	4.7 (2-6)	4.8 (2-6)	1.3 (1-2)	1.5 (1-2)	
Age	79.6 (69-94)	78.2 (61-94)	79.9 (69-95)	78.3 (61-95)	
Sex					
Female	6	9	6	9	
Male	6	16	6	16	
Post Mortem Interval (hours)	9.6 (3-24)	9.5 (3-27.5)	16.3 (6-24.5)	16.0 (5-28)	
Years in Storage	10.75 (5-17)	10.5 (3-18)	13.2 (3-20)	13.2 (2-21)	
Race	Caucasian (n=12)	Caucasian (n=25)	Caucasian (n=12)	Caucasian (n=25)	
Age of onset	69.1 (59-78)	· · ·	ŇA	ŇA	
MMSE	11.7 (0-28)	12.9 (0-30)	26.8 (25-28)	26 (24-28)	
	missing=1	missing=2	missing=10	missing=16	
# Years from	5.1 (1-12)	5.2 (1-12)	NA	NA	
Diagnosis to					
Death					
APOE Genotype	_	-			
2/2	2	2	3	6	
2/3	1	1	0	1	
2/4	0	1	0	0	
3/3	3	7	6	13	
3/4	5	13	1	3	
4/4	1	1	1	1	
Missing	0	0	1	1	

Table 3.1. Study population mean demographics by case status. Range is provided in parentheses.

Gene		Sequence 5 – 3'				
TMEM	59					
Forwar	rd Primer	GGGTAGGTATATAGAATTATATTTGGTATT				
Revers	se Primer	AAATTTCTACACACCCCTACTACA				
Biotiny	lated					
Seque	ncing Primer	AATAGATTATATTTTGTAAAAGAA				
Dispen	sation Order	ATATCGATCGAGGATGTTGATCGAG				
Seque	nce to Analyze	TAATAAYGAAGGGGATTTGTTTTAYGAGTTAGTATATATGGTGTAAAT				

Table 3.2. Pyrosequencing assay information.

 Table 3.3. Primer sequences for gene expression QPCR assays.

Gene	Sequence 5' – 3'
TMEM59 Exon 1	
Forward Primer	TGACTCGGTCTTGGGTGATA
Reverse Primer	TCTTCCTTAGGGTAGGTGTGC
TMEM59 Exons 1-2	
Forward Primer	GGGCCTGTCAGTTGACCTAC
Reverse Primer	CTGCAACCTCTCTGACATGC
TMEM59 Exons 3-4	
Forward Primer	GAACAACTTATGTCCCTGATGC
Reverse Primer	CGTCATCGGCTTGAAGATAA
TMEM59 Exons 7-8	
Forward Primer	TCCTCTCGGTGATGGTATTG
Reverse Primer	TCAGCTTCTCAGAGGGAACA
B-actin	
Forward Primer	TGCTATCCAGGCTGTGCTAT
Reverse Primer	AGTCCATCACGATGCCAGT

Rank	Associated Gene	Beta Coefficient	p-value	Transcription Start Site	CpG Island	Chromosome	Biological Description	
1	DNAI2	0.441288	1.08E-05	714	FALSE	17	Dynein intermediate polypeptide 2; axonemal;. Function in microtubule motor activity.	
2	ECM2	0.453176	3.85E-05	717	FALSE	9	Extracellular matrix protein 2 precursor. Function in integrin binding and cell- matrix adhesion	
3	UNQ689	0.409188	1.39E-04	991	FALSE	4	hypothetical protein LOC401138	
4	C3	0.262665	1.52E-04	680	FALSE	19	Complement component 3 precursor. Function in acylation-stimulating protein cleavage in innate immune response	
5	OSMR	0.25763	2.10E-04	404	TRUE	5	oncostatin M receptor. Role in cell proliferation and cell surface linked signal transduction	
6	MEG3	-0.45638	2.15E-04	NA	TRUE	14	Predicted gene from GNOMON	
7	GLO1	0.238369	2.36E-04	480	TRUE	6	glyoxalase I. Role in zinc ion binding, lyase activity in carbohydrate metabolism and antiapoptosis.	
8	CRNN	0.295641	2.50E-04	167	FALSE	1	Hypothetical protein LOC49860. Tumor-related protein.	
9	SF3B2	-0.16749	2.92E-04	484	TRUE	11	splicing factor 3B subunit 2	
10	PIK3C2B	0.221434	3.22E-04	164	FALSE	1	phosphoinositide-3-kinase; class 2; beta polypeptide. Role in intracellular signaling cascade	
11	RIBC2	0.226036	3.68E-04	126	TRUE	22	RIB43A domain with coiled-coils 2. Synonym C22orf11	
12	CCDC74B	0.230644	3.71E-04	1015	FALSE	2	hypothetical protein LOC91409	
13	C20orf77	0.622206	6.42E-04	605	TRUE	20	hypothetical protein LOC58490	
14	C9orf112	0.530497	6.84E-04	317	TRUE	9	hypothetical protein LOC92715	
15	LCE1B	0.388947	7.51E-04	1310	FALSE	1	late cornified envelope 1B Role in epidermal differentiation complex 2A	
16	SFRS11	0.36302	7.59E-04	1480	FALSE	1	Splicing factor p54. Nucleic acid binding and nuclear mRNA splicing	
17	SLC18A2	0.055023	8.92E-04	275	TRUE	10	solute carrier family 18 (vesicular monoamine); member 2. Vesicle monoamine transporter type 2.	
18	PAPPA	-0.21564	1.07E-03	204	FALSE	9	pregnancy-associated plasma protein A preproprotein. Insulin-like growth factor dependent IGF binding protein.	
19	FIGNL1	0.64861	1.08E-03	599	TRUE	7	fidgetin-like 1 ATP binding nucleoside-triphosphatase activity	
20	NMT1	-0.08842	1.10E-03	285	TRUE	17	N-myristoyltransferase 1	
21	VAMP5	-0.28073	1.13E-03	492	TRUE	2	vesicle-associated membrane protein 5 (myobrevin). Role in vesicle-mediated transport, myogenesis, and cell differentiation	
22	FLJ33641	0.634	1.20E-03	974	FALSE	5	hypothetical protein LOC202309	
23	DVL3	0.40801	1.21E-03	580	TRUE	3	dishevelled 3. Kinase activity. Role in nervous system development.	
24	C20orf4	-0.15153	1.22E-03	250	TRUE	20	hypothetical protein LOC25980	
25	IGF2	0.534292	1.25E-03	NA	TRUE	11	insulin-like growth factor 2	

 Table 3.4. CpG sites differentially methylated with age among cognitively normal controls (Discovery Set, Age 69-94).Beta coefficient can be interpreted as the rate of change in methylation per year across the years studied.

 Associated
 Beta

Rank	Associated Gene	% Methylation Cases	% Methylation Controls	p-value	Distance to Transcription Start Site	CpG Island	Chromoso me	Biological Description
1	TMEM59	63.03	70.30	1.32E-05	1339	FALSE	1	APP post-translational glycolytic processing
2	ATG10	8.16	5.59	1.97E-04	197	TRUE	5	Autophagy
3	C9orf138	85.53	77.88	2.08E-04	47	TRUE	9	Hypothetical Protein
4	CPNE9	4.76	6.33	4.43E-04	549	TRUE	3	Copine-like protein
5	RELB	36.40	45.75	5.68E-04	470	TRUE	19	reticuloendotheliosis viral oncogene homolog B
6	C9orf138	68.36	57.60	8.92E-04	406	TRUE	9	Hypothetical Protein
7	PLA2G3	45.95	37.03	9.66E-04	488	FALSE	22	Phospholipase A2
8	DHFRL1	6.41	4.41	1.08E-03	511	TRUE	3	Hypothetical Protein
9	MBD3L1	16.33	11.98	1.08E-03	141	FALSE	19	Methyl-CpG binding domain protein 3-like
10	RSN	2.37	2.85	1.37E-03	698	TRUE	12	Restin isoform a. Intermediate filament associated protein
11	OTUD5	22.39	18.53	1.53E-03	232	TRUE	Х	Hypothetical Protein
12	TUBB2B	7.58	10.50	1.53E-03	494	TRUE	6	Tubulin, beta polypeptide paralog. Microtubule associated.
13	NTN2L	7.63	4.97	1.59E-03	159	TRUE	16	Netrin 2-like. Structural molecule, axon guidance.
14	GPR142	90.60	88.52	1.64E-03	237	FALSE	17	Signal transduction
15	TSCOT	55.93	62.95	1.65E-03	498	TRUE	9	Thymic stromal co-transporter
16	IL2RG	67.12	60.80	1.70E-03	88	FALSE	Х	Interleukin 2 receptor, gamma precursor.
17	BNC1	39.63	48.20	1.86E-03	NA	TRUE	15	Zinc finger protein basonuclin. Metal ion binding.
18	HERC5	2.57	1.43	1.91E-03	108	TRUE	4	Cyclin-E binding protein 1.
19	SLC36A3	73.03	80.25	2.18E-03	203	FALSE	5	Proton/amino acid transporter 3
20	DYNC2LI1	4.44	3.05	2.21E-03	24	TRUE	2	Dynein 2 light intermediate chain
21	SLC7A3	10.20	6.88	2.32E-03	208	TRUE	Х	Cationic amino acid transporter
22	FGF5	4.24	5.70	2.36E-03	544	TRUE	4	Fibroblast growth factor 5
23	CAMP	92.62	89.57	2.53E-03	284	FALSE	3	Cathelicidin antimicrobial peptide
24	CNN1	13.81	9.18	2.59E-03	92	TRUE	19	Caloonin 1. Calmodulin binding
25	C15orf21	87.01	88.96	2.76E-03	7	FALSE	15	Dresden prostate carcinoma 2

 Table 3.5.
 Table of the 25 CpG sites most significantly differentially methylated by AD case status (Discovery Set).

REFERENCES

- Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. 2000. Inflammation and Alzheimer's disease. Neurobiol Aging 21(3): 383-421.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1): 25-29.
- Ashford JW. 2004. APOE genotype effects on Alzheimer's disease onset and epidemiology. J Mol Neurosci 23(3): 157-165.
- Barrachina M, Ferrer I. 2009. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68(8): 880-891.
- Bertram L. 2009. Alzheimer's disease genetics current status and future perspectives. Int Rev Neurobiol 84: 167-184.
- Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou LX, Shen R, Gunderson KL. 2009. Genome-wide DNA methylation profiling using Infinium (R) assay. Epigenomics-Uk 1(1): 177-200.
- Bird TD. 2005. Genetic factors in Alzheimer's disease. N Engl J Med 352(9): 862-864.
- Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. 2011. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res 21(3): 465-476.
- Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL. 2010. Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90(4): 498-510.
- Christensen H, Batterham PJ, Mackinnon AJ, Jorm AF, Mack HA, Mather KA, Anstey KJ, Sachdev PS, Easteal S. 2008. The association of APOE genotype and cognitive decline in interaction with risk factors in a 65-69 year old community sample. BMC Geriatr 8: 14.

- Dolinoy DC, Jirtle RL. 2008. Environmental epigenomics in human health and disease. Environ Mol Mutagen 49(1): 4-8.
- Ertekin-Taner N. 2010. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res Ther 2(1): 3.
- Fallin MD, Szymanski M, Wang R, Gherman A, Bassett SS, Avramopoulos D. 2011. Fine mapping of the chromosome 10q11-q21 linkage region in Alzheimer's disease cases and controls. Neurogenetics 11(3): 335-348.
- Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S. 2011. Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32(2): 187-199.
- Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, Posner SF, Viitanen M, Winblad B, Ahlbom A. 1997. Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52(2): M117-125.
- Hardy J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 20(4): 154-159.
- Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10): 1088-1093.
- Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB. 2011. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20(6): 1164-1172.
- Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC,

Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, Destefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V. Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hanneguin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouvel P. Williams J. 2011. Common variants at ABCA7. MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet.

- Hong MG, Myers AJ, Magnusson PK, Prince JA. 2008. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One 3(8): e3024.
- International AsD. 2010. World Alzheimer Report 2010: The global economic impact of dementia.
- Jin SG, Wu X, Li AX, Pfeifer GP. 2011. Genomic mapping of 5hydroxymethylcytosine in the human brain. Nucleic Acids Res.
- Jin Z, Liu L, Bian W, Chen Y, Xu G, Cheng L, Jing N. 2009. Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem 284(12): 8160-8173.
- Kim J, Basak JM, Holtzman DM. 2009. The role of apolipoprotein E in Alzheimer's disease. Neuron 63(3): 287-303.

- Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB, Feinberg AP. 2007. DNA methylation signatures within the human brain. Am J Hum Genet 81(6): 1304-1315.
- Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41(10): 1094-1099.
- Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA, Jr., Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-Vance MA. 2002. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70(4): 985-993.
- Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271): 315-322.
- Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R. 2001. A gene expression profile of Alzheimer's disease. DNA Cell Biol 20(11): 683-695.
- Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. 2008. Epigenetic changes in Alzheimer's disease: Decrements in DNA methylation. Neurobiol Aging.
- Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. 2011. Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging.
- Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. 2009. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 4(8): e6617.
- Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T,

Costello JF. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303): 253-257.

- Mill J. 2011. Toward an integrated genetic and epigenetic approach to Alzheimer's disease. Neurobiol Aging.
- Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A. 2008. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82(3): 696-711.
- Miller JA, Oldham MC, Geschwind DH. 2008. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J Neurosci 28(6): 1410-1420.
- Mosconi L, Tsui W, Murray J, McHugh P, Li Y, Williams S, Pirraglia E, Glodzik L, De Santi S, Vallabhajosula S, de Leon MJ. 2011. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer's disease. Neurobiol Aging.
- Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, George-Hyslop PS, Arnold SE, Barber R. Beach T. Bigio EH. Bowen JD. Boxer A. Burke JR. Cairns NJ. Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, Decarli C, Dekosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. 2011. Common variants at MS4A4/MS4A6E,

CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet.

- Nee LE, Lippa CF. 1999. Alzheimer's disease in 22 twin pairs--13-year follow-up: hormonal, infectious and traumatic factors. Dement Geriatr Cogn Disord 10(2): 148-151.
- Pan S, Shi M, Jin J, Albin RL, Lieberman A, Gearing M, Lin B, Pan C, Yan X, Kashima DT, Zhang J. 2007. Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer. Mol Cell Proteomics 6(10): 1818-1823.
- Pogribny IP, Vanyushin BF. 2010. Age-Related Genomic Hypomethylation. Epigenetics of Aging: 11-27.
- Selkoe DJ. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2): 741-766.
- Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S. 2007. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2(9): e895.
- Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, Lang JC, Eng C, Li B, Wright FA, Caligiuri MA, Plass C. 2001. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10(13): 1413-1419.
- Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
- Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43): 15545-15550.
- Suter MA, Aagaard-Tillery KM. 2009. Environmental influences on epigenetic profiles. Semin Reprod Med 27(5): 380-390.
- Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. 1999a. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2): 288-292.
- Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y. 1999b. The methylation status of cytosines in a tau gene promoter region alters

with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275(2): 89-92.

- Ullrich S, Munch A, Neumann S, Kremmer E, Tatzelt J, Lichtenthaler SF. 2010. The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein. J Biol Chem 285(27): 20664-20674.
- Wang SC, Oelze B, Schumacher A. 2008. Age-specific epigenetic drift in lateonset Alzheimer's disease. PLoS One 3(7): e2698.
- Wijsman EM, Daw EW, Yu CE, Payami H, Steinbart EJ, Nochlin D, Conlon EM, Bird TD, Schellenberg GD. 2004. Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am J Hum Genet 75(3): 398-409.
- Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. 2005. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434(7031): 338-345.

CHAPTER IV

Research Chapter 3

An integrated analysis of genome-wide RNA expression and DNA methylation in late-onset Alzheimer's disease and neuropathological controls

ABSTRACT

Introduction: Spontaneous, neurodegenerative, late-onset Alzheimer's disease (LOAD) is associated with aberrations in brain gene expression. Recent studies have observed dysregulation of epigenetic mechanisms, such as DNA methylation, but the association of gene expression with these marks in disease tissue is unknown. Gene expression analysis in conjunction with DNA methylation mapping provides insight into the mechanisms of LOAD.

Research: To investigate the potential epigenetic regulation of gene expression in LOAD, we evaluated the human frontal cortex of 11 cases of LOAD and 12 cognitively normal controls. We measured genome-wide RNA gene expression using the Affymetrix U133A Plus 2.0 Array and DNA methylation using the Illumina HumanMethylation 27K BeadArray. We performed validation of X specific loci.

Results: After adjusting for age and sex, there were 176 probe sets (145 unique genes) distinguishing gene expression of LOAD cases and controls (FDR<0.1, p-value< 3.3×10^{-4}). Of these, 76.7% were down-regulated in LOAD, including the statistically top five genes *DUSP16*, *ERICH1*, *ESF1*, *PTPRF*, and *RNBP1*. Among the genes where expression was associated with LOAD (p-value<0.05), DNA methylation and gene expression were correlated at 151 genes. Positive (47.7%) and inverse (52.3%) associations were observed between gene expression and DNA methylation.

Conclusions: LOAD case and control samples differed by RNA expression levels and relatively few (7.2%) of those differences were correlated with DNA methylation. Among genes with correlated DNA methylation and gene expression, positive and negative associations were observed with approximately equal frequencies. Integrated genome-wide analyses of DNA methylation and RNA gene expression provide a functional molecular signature of LOAD and suggest novel sites for disease biomarker development.

Keywords: Alzheimer's disease, epigenetics, DNA methylation, frontal cortex, gene expression

INTRODUCTION

Alzheimer's disease (AD) is a fatal neurodegenerative disease that affects over five million people in the United States. It is the sixth leading cause of death across all ages and the prevalence is rising (Alzheimer's Association 2011). AD is characterized by two neuropathologies: β -amyloid (A β) plagues and tau neurofibrillary tangles (NFT). Highly penetrant genetic mutations in the $A\beta$ production pathway account for approximately 2% of AD cases, termed earlyonset AD (EOAD) cases (Bird 2005). The remaining 98% of AD cases manifest symptoms after age 55 and are termed late-onset AD (LOAD) cases. Genomewide association studies reveal genetic risk factors for LOAD that are neither necessary nor sufficient to cause disease. LOAD risk is associated with polymorphisms in the apolipoprotein E4 (APOE ε4), ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A4A and PICALM genes (Harold et al. 2009; Hollingworth et al. 2011; Lambert et al. 2009; Naj et al. 2011). The combined population attributable fraction (PAF) for these multiple genetic risk factors is 0.50, even after adjusting for APOE ɛ4 dose (Naj et al. 2011). Thus, LOAD risk may be conferred through an interaction of external factors with genetic risk factors through gene-environment interactions or epigenetic modifications.

In LOAD, where genetic determinants confer only partial risk, A β and NFT pathways may be dysregulated through epigenetic mechanisms. Epigenetics refers to heritable changes in gene expression that do not involve changes to the underlying DNA sequence. Recent evidence suggests age-related changes in candidate gene methylation, such as upstream of Microtubule Associated Protein Tau (*MAPT*) in post-mortem human brain tissue (Tohgi et al. 1999). Striking disease-specific differences however, have not been consistently detected in promoter CpG island regions of A β and NFT candidate genes (Barrachina and Ferrer 2009). Newer research investigates non-canonical disease pathways, including cellular protein translation. For example, AD samples from the parietal and prefrontal cortex were hypermethylated in the promoter regions of nucleolar rRNA genes (Pietrzak et al. 2011), coinciding with reduced ribosomal activity that has been observed with LOAD.

To better understand the etiology of LOAD and the pathogenic processes, mapping the more complete epigenetic signature of disease is an important emerging area of research (Bakulski et al. 2012a). Recent work from our research group has broadened the targeted pathway approach to examine genome-wide DNA methylation in LOAD (Bakulski et al. 2012a; Bakulski et al. 2012b). DNA methylome studies in LOAD brain tissues suggest widespread, yet modest DNA methylation changes associated with both age and disease (Bakulski et al. 2012b). DNA methylation change is apparent, but the functional implications of the observed epigenetic marks have not yet been determined.

LOAD cases and controls have been classified based on their differential gene expression profiles in post-mortem brain tissues. For example, studies of gene expression by brain region in AD indicate significant dysregulation beyond the A β and NFT pathways (Kong et al. 2011). Expression levels of ceramide fatty acid processing genes including *ASMas*, *NSMass2*, and *GALC* were upregulated in the brains of AD subjects (Filippov et al. 2012). Changes in gene expression may also be at the center of hippocampal-dependent memory and corresponding deficiencies in AD. For example, hippocampal neurons derived

from AD transgenic mice had reduced expression of activity-induced CREBdependent genes, which was reversible with expression of CREB-regulated transcription coactivator 1 (*Crtc1*) (Saura 2012). Transcriptome profiles of AD and controls suggest AD brain tissues have increased expression of broad markers of chronic inflammation, cell adhesion, cell proliferation, and protein synthesis, as well as downregulation of signal transduction, energy metabolism, stress response, synaptic vesicle synthesis and function, calcium binding, and structural proteins (Loring et al. 2001). The factors responsible for these broad gene expression changes are not clear. In order to understand the etiology of LOAD, we move upstream in the LOAD course and investigate the regulation of the LOAD transcriptome, controlled in part through the epigenome.

Recent individual gene studies have underscored the strengths in analyzing matched epigenetic and gene expression data in AD. The candidate gene, peptidyl-prolyl cis/trans isomerase (*Pin1*), was examined in human peripheral blood mononuclear cells of 60 matched LOAD and control samples (Arosio et al. 2012). Pin1 promoter DNA methylation had a modest reduction (8%) and increased gene expression (74%) in LOAD (Arosio et al. 2012). A second example involves the A β A4 precursor protein-binding family A member 2 (APBA2) gene implicated in A β production. In primary rat cortical neurons, expression of Apba2 was reduced with promoter DNA methylation at a location 7-120 base pairs upstream of the transcription start site (TSS) (Hao et al. 2012). An integrated analysis of observed DNA methylation and previously published RNA-seq expression was performed on a human cell line expressing the Swedish mutation of APP (APP-sw) and it revealed three potential gene sites (CTIF, NXT2, and DDR2) where DNA methylation and RNA expression were correlated (Sung et al. 2011). These results are promising, but cell lines have distinct epigenetic profiles from primary tissue (Smiraglia et al. 2001) and cell lines engineered with EOAD mutations are not adequate models for spontaneous LOAD. Previous studies show that analyses incorporating both epigenetic and gene expression data can be very useful (Sartor et al. 2011). Research using

primary human brain tissue in LOAD is needed to characterize the connection between DNA methylation and gene expression on a genome-wide scale.

Here we utilize whole genome approaches to interrogate both gene expression and DNA methylation profiles in LOAD cases and controls to identify potential functional relationships between epigenetic patterns and disease status. First, human post-mortem frontal cortex samples from LOAD and neuropathologically normal control subjects are assessed for gene expression profiles. Next, we combined gene expression data with DNA methylation results in the same samples. Identification of genes with disease-specific gene expression differences that are correlated with DNA methylation changes support an emerging role of epigenetics in LOAD.

Results

Gene expression results.

Gene expression in the frontal cortex was measured in 11 LOAD cases and 12 cognitively normal controls using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The array features 54,675 probe sets representing 20,722 unique gene ids. The mean expression level across LOAD and controls was 4.73 and it ranged from 1.75 to 14.25.

After adjusting for age and sex, site-specific expression values were compared between cases and controls. The *DUSP16* (dual specificity phosphatase 16) gene transcript distinguished LOAD cases and controls with the greatest statistical significance (p-value= 8.85*10⁻⁷, FDR= 0.0316, log(2) fold change: -0.913). *DUSP16* was down-regulated in LOAD, as were the next eight statistically significant genes with strongest association with LOAD status (**Figure 4.1**). These top nine genes (*DUSP16, ERICH1, ESF1, PTPRF, FNBP1, RBM4, JMJD1C, LUC7L3*, and *RBM25*) were down-regulated in AD case samples with an average of -1.18 log(2) fold change. Three of the top nine genes were RNA splicing regulators (*RBM4, LUC7L3, RBM25*).

The top 25 probesets that differentiated cases and controls at a false discovery rate of 0.033 are listed in **Table 4.1**. Twenty-two of the top 25 genes (88%) (*DUSP16, ERICH1, ESF1, PTPRF, FNBP1, RBM4, JMJD1C, LUC7L3, RBM25, NUPL1, TCF25, UBXN4, CDC42BPA, CCAR1, ZNF37A, BRD4, EIF5B, LIMA1, ZFHX4, SMARCA4, MYO6, CHAF1A*) were down-regulated in LOAD. Three of the top 5 genes (12%) (*SYTL4, DPYSL3,* and *LOC100505875*) were upregulated in LOAD.

Overall, there were 176 probe sets (146 unique genes) distinguishing LOAD cases and controls at a false discovery rate of less than 0.1 (pvalue<3.2x10⁻⁴) (**Supplemental Table 4.1**). The log(2) fold change between cases and controls in these probe sets ranged from -1.98 to 1.72. Forty-one (23.9%) of these probe sets were up-regulated in LOAD, while 135 (76.7%) were down-regulated in LOAD. The normalized expression of the top 176 sites is illustrated in a heatmap of using Ward's hierarchical clustering methods and the maximum distance function (Figure 4.2). Cases and controls are separated into two column clusters and the probeset rows separate into two groups based on up and down regulation with disease. These 176 probesets also distinguish cases and controls when using Principal Component Analysis. Principal component analysis (PCA) is a dimension reduction tool to reduce multiple correlated variables to linearly uncorrelated variables. When data were restricted to probe sets that were differentially expressed according to LOAD status (n=176), PCA was an effective visualization strategy. The first principal component described 67.2% of the variance and the second principal component described 9.5% of the variance (Figure 4.3A). PCA on the 176 probe sets associated with LOAD (FDR <0.1), clustered samples by LOAD case and control (**Figure 4.3B**). The heatmap and the PCA plot illustrate that these 176 probesets together are markers of LOAD case/control status in these samples.

To examine whether these differences observed between AD cases and controls were due to disease-specific changes in expression or changing celltype populations, we incorporated publicly available cell-type specific data from

the NCBI Gene Expression Omnibus (GEO). We combined GEO data from embryonic stem cell-derived neuronal precursor cells (NPC) and astrocytes with our own AD case and control data. We used a follow-up heatmap to plot the expression levels at the original 176 probesets we found to distinguish cases and controls alongside the expression at those sites in NPC and astrocyte cells (**Supplemental Figure 4.1**). At these 176 sites, NPC and astrocyte cells were separated into two cell-type clusters. NPC and astrocytes did not cluster with AD cases or controls however, and the embryonic stem cell-derived data displayed greater range in gene expression change than our data.

To test whether there were biological patterns in the group of genes that were found to be different in expression between LOAD cases and controls, we used the software, LRpath, developed by the National Center for Integrative Biomedical Informatics (NCIBI) (Sartor et al. 2009). LRpath is a program that runs gene set enrichment testing using logistic regression on the full list of genes and associated p-values. We used LRpath to calculate overrepresentation among our top expression hits in gene ontology terms (biological processes and molecular functions), cytogenic bands, transcription factor targets, and miRNA targets. We observed down-regulation of 92 gene ontology biological processes at p<0.01 (FDR<0.1). The top fifteen biological processes that are decreased in LOAD are listed in **Table 4.2** and the full list is in **Supplemental Table 4.2**. Nine processes were at false discovery rates < 0.002: synaptic transmission, transmission of nerve impulses, cell-cell signaling, oxidative phosphorylation, regulation of synaptic plasticity, regulation of transmission of nerve impulse, cellular respiration, regulation of neurological system process, neurotransmitter transport, and regulation of neuronal synaptic plasticity. Similarly, we observed enrichment of 348 gene ontology biological processes in the genes with increased expression in AD cases (p-value<0.01, FDR<0.1). The top fifteen biological processes that are increased in LOAD are listed in **Table 4.3** and the full list is in **Supplemental Table 4.3**. The top nine were translational elongation, defense response, immune response, innate immune response, inflammatory response, response to biotic stimulus, response to other organism, activation of

immune response, and regulation of immune response at false discovery rates < 4*10⁻⁷. The results for gene ontology molecular functions were similar to the results for 77 significantly up and 79 down regulated biological processes (**Supplemental Tables 4.4 and 4.5**, respectively).

Genes differentially expressed in LOAD were also enriched in specific transcription factor targets, microRNA targets, and cytogenic bands. Reducedexpression in LOAD was associated with 17 transcription factors (Supplemental Table 4.6) including the top five: NRSF 01, NMYC 01, CREB 01, CREBP1CJUN 01, and MEIS1BHOXA9 02. Over-expression in LOAD was associated with the following six transcription factors NFKAPPAB 01, NKX22 01, OCT C, PBX1 01, HOXA3 01, and CREL 01 (Supplemental Table 4.7). Genes targets associated with three microRNAs were overexpressed in LOAD (mir-506, mir-124, mir-433) and genes under-expressed in LOAD were enriched in binding for three microRNAs (mir-129-5p, mir-185, and mir-328) (Supplemental Tables 4.8 and 4.9, respectively). Among genes with higher expression in LOAD, 32 cytogenic bands were enriched, including the top five: 7p13-p12, 17p13, 4q25, 10p12.31, and 1q25 (Supplemental Table 4.10). Across genes with lower expression in LOAD, 33 cytogenic bands were enriched, including the top five: 16p13.3, 10p11.2, 8p23, 12p12.3, 8p21.3 (Supplemental Table 4.11).

Expression-Methylation

To test the extent to which DNA methylation was associated with the observed LOAD gene expression differences, we linked genome-wide gene expression and DNA methylation data from the same samples. DNA methylation data was generated using the Illumina Infinium HumanMethylation27 BeadArray (Bakulski et al. 2012b). We assessed combined methylation and expression at 2,094 Entrez gene IDs (**Figure 4.4**). These 2,094 genes had RNA expression associated with LOAD status (p-value <0.05) and DNA methylation data was available.

Across these 2,094 genes, we tested whether DNA methylation was correlated with gene expression. At 151 genes (7.2% of genes tested), DNA methylation and gene expression were significantly correlated (Pearson correlation test p-value<0.05). Among the 151 correlated sites, 79 (52.3%) represented the canonical, inverse association between DNA methylation and gene expression. Conversely, 72 (47.7%) represented non-canonical, positive correlation between DNA methylation and gene expression. Pearson correlation values ranged from -0.62 to 0.68 across these significantly correlated sites. Among the 151 DNA methylation and RNA expression correlated sites, 81 (53.6%) genes had higher methylation in LOAD and 70 (46.4%) had lower methylation in LOAD (**Figure 4.5A**). Similarly, 86 (57%) had higher expression in LOAD and 65 (43%) had lower expression (**Figure 4.5B**)

Significant differences in methylation levels between LOAD cases and controls were observed at 24 of the 151 DNA methylation-gene expression correlated sites (15.9%), after adjusting for age and sex (p-value<0.05) (**Table 4.4**). These 24 sites had significant disease-specific differences in DNA methylation, gene expression, and correlated methylation-expression values. Canonical, inverse correlation was observed at the following 17 genes (70.8% of 24 genes with significant methylation differences): *ARHGAP15, PTAFR, FAM122C, SNX20, MKNK1, PSEN1, PMP2, CDC42EP3, PLD5, SKI, GPR34, TP53TG5, WWTR1, CATSPERG, PARVG, PPP1R3B,* and *IFI16.* Noncanonical, positive correlation between DNA methylation and gene expression was observed at 7 (29.2%) of sites: *TMPO, SERPINH1, PSMB2, ITGAM, MED12, OLFML2B,* and *NACC2.* The first 9 genes with significant disease-specific differences in DNA methylation, gene expression, and correlated methylation-expression are illustrated in scatter plots in **Figure 4.6** and the remaining 15 genes are in **Supplemental Figure 4.2**.

To test whether the genes with correlated expression and methylation values shared common biological pathways, we again performed gene set enrichment analysis using LRpath software. We uploaded the Pearson's

correlation test p-values corresponding to the correlations between the 2,094 genes with linked RNA expression and DNA methylation data. We observed enrichment at the cytogenic bands across DNA methylation and RNA expression correlated genes: 17p11.2, 14q24.3, 16q22.1, 11q23.3, 6p21.2, and 19p13.3, as shown in the circos plot (Figure 4.7). We also observed transcription factor binding site enrichment at CEBPA 01, OCT1 05, GFI1 01, EVI1 06, MEF2 02, OCT1 01, NCX 01, PAX4 03, USF C, GATA1 01, HAND1E47 01, PAX3 01, FOXO3 01, and COUP 01. The following microRNA targets were enriched among the correlated DNA methylation and RNA expression sites: mir-342-3p, mir-215, mir-192, mir-455-5p, mir-300, mir-488, and mir-142-3p. 171 biological processes were enriched, including the top ranked twelve: protein deubiquitination, protein modification by small protein removal, NK-kappB import into nucleus, regulation of NF-kappaB import into nucleus, negative regulation of axonogenesis, ion membrane transport, regulation of transcription factor import into nucleus, microtubule depolymerization, positive regulation of protein ubiguitination, nuclear-transcribed mRNA catabolic process, mRNA catabolic process, and positive regulation of ligase activity.

Discussion

LOAD is a complex disease involving multiple physiological changes that are evident in post-mortem pathology. Known genetic risk factors are responsible for only approximately half of the risk of LOAD disease initiation and progression (Naj et al. 2011). We interrogated the gene expression changes associated with disease and an epigenetic gene expression regulator. DNA methylation changes have been observed in LOAD, but the function of DNA methylation as a biomarker or potential mechanism of disease with gene expression implications had not been well characterized. We compared frontal cortex genome-wide RNA expression and DNA methylation profiles of LOAD cases and neuropathologyconfirmed controls. Tissues were acquired on autopsy and nucleic acid samples were analyzed using array-based methods. We identified genes where expression was correlated with DNA methylation and where there were

differences by disease status. These observations support a potential functional role for DNA methylation in LOAD at a subset of genes.

First, using frontal cortex tissue, we identified discordant gene expression in LOAD. We identified a subset of genes that were associated with LOAD where expression of samples clustered by case status. These genes also differentiated NPC and astrocyte cell lines, which clustered separately from postmortem samples. The majority of genes altered in LOAD were repressed in the disease samples. Across the entire gene set, the biological processes synaptic plasticity and transmission of nerve impulse were down-regulated in LOAD, while immune-related responses were up-regulated in LOAD. These findings are consistent with the current understanding of LOAD pathogenesis. In a novel analysis of genes with altered expression in LOAD, we integrated gene expression and DNA methylation data to test the role of DNA methylation in disease RNA changes. Seven percent of genes with altered expression in LOAD were correlated with DNA methylation levels. Gene expression varies with disease and DNA methylation may regulate the expression changes at a subset of genes.

A handful of identified genes have previously been implicated in LOAD and in cognitive changes. Specifically, we found reduced gene expression of *ERICH1* in LOAD. Copy number variation within the *ERICH1* gene was previously associated with intra-extradimensional set shifting (IED) domain on the CANTAB cognition test (Need et al. 2009). We also observed downregulation of formin binding protein 1 (*FNBP1*) in LOAD samples. *FNBP1* was previously shown to be downregulated in blood mononuclear cells of AD subjects (Maes et al. 2007). *FNBP1* is implicated in endocytosis and cellular trafficking and protein processing. Further, we observed reduced expression of *PTPRF*. AD pathogenesis is associated with abnormal autophagy and *PTPRF* binds PTPσ, an autophagic phosphatase (Martin et al. 2011).

The gene expression probe set which best distinguished LOAD cases and controls was associated with *DUSP16* (dual specificity phosphatase 16). *DUSP16* is a member of a family of proteins that catalyse the inactivation of mitogen-activated protein kinase (*MAPK*). *MAPK* plays a role in long term potentiation (LTP) of neurons (English and Sweatt 1997). The *p38 MAPK* pathway is involved in tau pathology in AD (Johnson and Bailey 2003) and has been targeted for AD treatment (Munoz and Ammit 2010). In addition, *RBM4* was downregulated in LOAD in our study. *RBM4* is a splice factor that interacts with an intronic element for *MAPT* and stimulates tau exon 10 inclusion (Kar et al. 2006). *RMB25* and *LUC7L3* are also splice factors that were downregulated in LOAD in our study. Dysregulation of splicing factors could have widespread downstream effects for neurodegenerative disease (Licatalosi and Darnell 2006).

Previous research has performed transcriptome array analysis on LOAD cases and controls in the neocortex and found a large number of genes with divergent disease gene expression with wide-ranging physiological functions (Tan et al. 2010). Among the genes that were associated with LOAD (FDR<0.1), we observed 77% were down-regulated in gene expression with LOAD. Similarly, Maes et al. found of the 942 genes with 2-fold differential change in AD blood mononuclear cells relative to controls, 87% were downregulated and only 13% were upregulated in AD (Maes et al. 2007). Research has looked at genetics as a driver of gene expression differences. A previous genome-wide gene expression study in Alzheimer's disease linked SNP data with transcript levels (Webster et al. 2009), and found that $\sim 5\%$ of transcripts had correlation between expression profiles and genotypes that could distinguish LOAD cases and controls. Results from our study suggest that a similar level of genes with a altered expression (7% of genes) are correlated with DNA methylation levels. The current paper is the first study, that we are aware of, to examine the association between DNA methylation and gene expression in LOAD on a genome-wide scale. Future research may integrate genetics, transcriptomics, and epigenomics for a more complete understanding of gene regulation in LOAD.

A limitation of cross-sectional research, such as this, is that causal relationships cannot be inferred. Later work will be able to study the time course of the DNA methylation and gene expression associations observed here. Further, LOAD is characterized by neuronal loss (Coleman and Flood 1987) and glial cell activation (Mattson 2004). Changing cell type populations may be responsible for these observations and future work could identify the cell type specific DNA methylation and gene expression patterns.

GWAS studies estimate that known genetic LOAD risk alleles confer a combined population attributable fraction of 0.5 (Naj et al. 2011). Additional risk genotypes may be discovered, but the remaining risk likely results from environmental exposures and an interaction of genetic and environmental factors, which have been historically understudied. Epigenetics represents an important intersection of genes and environment. By identifying new candidate areas of epigenetic and gene expression variability with LOAD, this research provides the groundwork for future studies in environmental and genetic susceptibility to LOAD. LOAD research may increasingly consider a combined gene-environment paradigm.

Materials and Methods

Sample ascertainment. The Michigan Alzheimer's Disease Center (MADC) (P50AG008671; PI: Henry Paulson) followed a clinically characterized cohort of Alzheimer's disease and cognitively normal control subjects. Many subjects (and legal care-givers) consented to autopsy and donated to the MADC Brain Bank. Diagnoses were neuropathologically confirmed using Braak and Reagan scoring in the left hemispheres. The right hemispheres were coronally sectioned, flash frozen, and archived at -80°C. For the current study, frozen tissue blocks from the mid-frontal gyrus of the frontal lobe were dissected at -20°C. MADC frozen tissues were previously used in high quality DNA methylation (Bakulski et al. 2012b), expression (Hong et al. 2008; Pan et al. 2007), and proteomic studies (Pan et al. 2007).

Samples were eligible for the current study if neuropathology confirmed the diagnosis and if the subjects were at least 60 years old at death. The MADC Brain Bank had 98 eligible LOAD cases (Braak Score \geq 4) and 39 controls (Braak Score \leq 2). Twelve gender- and age- (+/- 2 years) matched pairs of LOAD cases and controls were generated randomly, without replication. The population characteristics of both sets of samples used in the current study are described in **Table 4.5**. This human subjects study was approved by the Institutional Review Board of the University of Michigan Medical School.

DNA and RNA isolation. Gray matter free of vascular lesions was selected from the tissue blocks. DNA and RNA were isolated from adjoining tissues in all 25 matched pairs. DNA was extracted according to manufacturer's instructions using the Maxwell Tissue DNA Kit (Promega, AS1030). Tissue was homogenized with the TissueLyser II (Qiagen, 85300) and total RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, 74804).

Transcriptome-wide RNA expression. RNA from the twelve case-control pairs was interrogated for genome-wide expression analysis. RNA guality was assessed using the Agilent 2100 Bioanalyzer and guantified using the Thermo Scientific NanoDrop Spectrophotometer 2000. Samples with RNA quality greater than 3.0 RNA Integrity Number (RIN) and absorbance ratios A260/A280 greater than 2.0 were used for further study. One AD case sample did not meet this set of criteria and was not used for further RNA study. The guality of RNA did not differ by LOAD cases and controls (mean RIN=6.0, p-value=0.8). 5 ug of RNA was used for cDNA synthesis using a T7-Oligo(dT) promoter primer. An in vitro transcription (IVT) reaction produced biotin-labeled cRNA that was then fragmented. At the University of Michigan Affymetrix Core facility, cRNA was hybridized to the GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, 900470) using the 16-hour hybridization protocol. Each sample was hybridized to its own chip. The probe array was washed and stained according to the GeneChip Expression Wash, Stain and Scan User Manual (Affymetrix, 702731). The probe array was scanned using the Affymetrix Scanner 3000 instrument and

the image files were analyzed for probe intensities. The GeneChip provided data on 20,722 unique genes using 54,675 probe sets.

Affymetrix Data Processing. All further data processing and statistical analyses were done in R Statistical Software (version 2.18). Data was background corrected, log2 transformed, and quantile normalized with Robust Multichip Average (RMA) methods (Gautier et al. 2004). Using the affyQCReport and simpleaffy packages, quality control between the chips was high.

Gene specific differential expression and significance by AD case status was assessed using parallel linear models and empirical Bayesian variance methods at site-specific moderated t-tests (Smyth 2004). The following parallel linear models were fit at each CpG site that adjusted for subject's age and sex.

Expression = $\beta_0 + \beta_1$ (AD Case Status) + β_2 (Age) + β_3 (Sex)

Probesets with AD Case Status β values that are significant at false discovery <0.1 are listed in a table and are used for data visualization. A heatmap with mean normalized expression values was used to cluster samples and probesets. To further illustrate differences between gene expression profiles in LOAD cases and controls, principle component analysis was used. Across all probes on the GeneChip, the first three principal components explain 67% of variance.

For each probeset, the Entrez gene ID, corresponding AD Case Status β p-value, and T-test statistic for direction of association were uploaded to the LRpath gene set enrichment testing program (Sartor et al. 2009). LRpath was used to test for enrichment in gene ontology terms, cytogenic bands, transcription factor binding sites, and microRNA binding sites.

We also downloaded publicly available cell-type specific gene expression data from NCBI's Gene Expression Omnibus (GEO). Gene expression in embryonic stem cell derived neuronal precursor cells (GSE7178) and astrocytes

(GSE5080) were plotted in a heatmap alongside the top hits distinguishing LOAD cases and controls.

Genome-wide DNA methylation. One µg of DNA from the twelve case-control pairs in the Discovery Phase was bisulfite-treated according to manufacturer's instructions with the EZ DNA Methylation Kit (Zymo, D5001). The Illumina recommended extended bisulfite thermocycling protocol (98°C 10 minutes, hold at 64°C for 17 hours) was followed. Bisulfite-treated DNA was prepped and applied to the Infinium HumanMethylation27 BeadArray (Illumina, WG-311-2201) by the University of Michigan DNA Sequencing Core facility using methods published by Illumina researchers (Bibikova et al. 2009). Across 27,578 probe sets, the BeadChip primarily targets CpG sites in the promoter regions of 14,475 genes and 110 miRNAs. Batch effects can potentially bias experimental differences, so six cases and six control samples were randomly applied to each of the 12-sample BeadChips. Fluorescent intensities were imaged using the Illumina BeadArray Reader and the associated BeadScan software was used for image processing and data extraction. Data were background normalized and percent methylation estimates (beta values) were calculated for each probe set. Data were exported to R for further processing.

Illumina Data Processing. The Illumina GenomeStudio software scored CpG sites for individual samples as failing based on fluorescence. CpG sites that failed on greater than 10% of samples (n=171 sites) were excluded from analyses. Tests for differences in methylation by epidemiological characteristics were performed using the limma BioConductor R package. The following parallel linear models were fit at each CpG site that adjusted for subject's age and sex.

% Methylation = $\beta_0 + \beta_1$ (AD Case Status) + β_2 (Age) + β_3 (Sex)

Data integration and statistical methods. We filtered the list of genes differentially expressed between LOAD cases and controls and selected only the probe sets that met an expression difference threshold of p<0.05 (n=4,063 probe sets). We removed 750 probe sets that did not map to Entrez gene ID's

(n=3,313). To reduce the data to a single expression value per unique gene ID, if greater than one probe set was differentially expressed for a given gene, we selected the probe with the highest expression value. The set of unique Affymetrix gene ID's that were associated with LOAD case status included 2,768 probe sets.

We filtered the Illumina methylation data to only include CpG sites within 1500 bp of a transcription start site with a known Entrez gene ID (n=25,811). In the case of multiple Illumina probes for a given gene ID, we selected the CpG site with the lowest p-value for the association between LOAD cases and controls (n=13,865).

We then matched the Affymetrix expression data and the Illumina methylation data by Entrez gene IDs. This yielded a total of 2,094 unique gene ID's where Illumina and Affymetrix matched and where the Affymetrix probe set was statistically significantly associated with LOAD case status (**Figure 4.4**). The Pearson's correlation between gene expression and DNA methylation was calculated for each gene. We performed LRpath gene set enrichment analysis on the 2,094 gene ID's with linked expression and methylation data.

Figure 4.1. Boxplots of gene expression of the 9 top genes that differ by LOAD case or control status. LOAD cases display reduced gene expression at all of 9 of the genes.

Figure 4.2. Heatmap of all of the 176 sites on the Affymetrix gene expression array (FDR < 0.1) associated with LOAD case status. This plot used maximum distance and Ward's hierarchical clustering methods. Data has been normalized to the mean expression value per probeset.

Figure 4.3. Principal Component Analysis. (A) Principal component loading histogram. (B). Principal component analysis scree plot for the top 176 probesets (FDR < 0.1).

Figure 4.4. Gene-expression and DNA methylation linked data analysis pipeline.

Figure 4.5 (A) Scatterplot of the 133 genes that displayed discordant gene expression and DNA methylation between LOAD cases and controls. The top of the figure represents genes less expressed in AD (n=50) and the bottom of the figure represents genes upregulated (n=84) in LOAD. The left of the figure shows genes more highly methylated in LOAD and the right shows less

methylation in LOAD. (B) Boxplot of the differences in methylation between AD and controls separated by the direction of change in expression.

Figure 4.6. Scatter plots of 9 genes: expression vs. methylation.

Figure 4.7. Circos plot: Locations of gene expression change and DNA methylation change.

TABLES	
--------	--

E . E .				-		· /		<u>, , , , , , , , , , , , , , , , , , , </u>			
Rank Af	ffymetrix ID	Entrez ID	Gene Symbol	Gene Name	Chromosome	Average	Fold	Log2 Fold	T-test	P-value	Adjusted
					Location	Expression	Change	Change	Statistic		P-value
1 15	558740_s_at	80824	DUSP16	dual specificity phosphatase 16	12p13.2	7.11	0.531	-0.913	-6.63	8.85E-07	0.0316
2 22	27016_at	157697	ERICH1	glutamate-rich 1	8p23.3	5.37	0.529	-0.917	-6.26	2.09E-06	0.0316
3 21	18859_s_at	51575	ESF1	ESF1, nucleolar pre-rRNA processing protein,	20p12.1	7.72	0.393	-1.349	-6.16	2.65E-06	0.0316
				homolog (S. cerevisiae)							
4 20	00635_s_at	5792	PTPRF	protein tyrosine phosphatase, receptor type, F	1p34	7.35	0.488	-1.034	-6.12	2.96E-06	0.0316
5 21	13940_s_at	23048	FNBP1	formin binding protein 1	9q34	7.03	0.425	-1.233	-5.87	5.33E-06	0.0316
6 21	13718_at	5936	RBM4	RNA binding motif protein 4	11q13	5.86	0.537	-0.897	-5.85	5.57E-06	0.0316
7 22	24933_s_at	221037	JMJD1C	jumonji domain containing 1C	10q21.3	7.19	0.504	-0.990	-5.83	5.96E-06	0.0316
8 20	08835_s_at	51747	LUC7L3	LUC7-like 3 (S. cerevisiae)	17q21.33	10.14	0.399	-1.327	-5.78	6.59E-06	0.0316
9 21	12027_at	58517	RBM25	RNA binding motif protein 25	14q24.3	7.73	0.264	-1.919	-5.74	7.27E-06	0.0316
10 24	41425_at	9818	NUPL1	nucleoporin like 1	13q12.13	5.70	0.558	-0.842	-5.73	7.60E-06	0.0316
11 21	13311_s_at	22980	TCF25	transcription factor 25 (basic helix-loop-helix)	16q24.3	8.47	0.374	-1.420	-5.71	7.89E-06	0.0316
12 21	12007_at	23190	UBXN4	UBX domain protein 4	2q21.3	8.97	0.421	-1.247	-5.66	8.88E-06	0.0316
13 21	14464_at	8476	CDC42BPA	CDC42 binding protein kinase alpha (DMPK-like)	1q42.11	8.32	0.303	-1.722	-5.64	9.27E-06	0.0316
14 22	27703_s_at	94121	SYTL4	synaptotagmin-like 4	Xq21.33	6.31	2.538	1.344	5.64	9.32E-06	0.0316
15 22	24736_at	55749	CCAR1	cell division cycle and apoptosis regulator 1	10q21.3	8.02	0.446	-1.165	-5.64	9.47E-06	0.0316
16 22	28711_at	7587	ZNF37A	zinc finger protein 37A	10p11.2	7.10	0.584	-0.775	-5.61	1.01E-05	0.0316
17 20	01430_s_at	1809	DPYSL3	dihydropyrimidinase-like 3	5q32	5.01	1.937	0.954	5.61	1.01E-05	0.0316
18 22	26054 at	23476	BRD4	bromodomain containing 4	19p13.1	7.45	0.538	-0.894	-5.59	1.05E-05	0.0316
19 20	01026 at	9669	EIF5B	eukaryotic translation initiation factor 5B	2q11.2	7.24	0.465	-1.104	-5.58	1.10E-05	0.0316
20 23	30781_at	100505875	LOC100505875	uncharacterized LOC100505875	NA	4.56	2.494	1.318	5.52	1.26E-05	0.0322
21 22	22457_s_at	51474	LIMA1	LIM domain and actin binding 1	12q13	5.52	0.432	-1.212	-5.51	1.28E-05	0.0322
22 21	19779 at	79776	ZFHX4	zinc finger homeobox 4	8q21.11	6.64	0.627	-0.674	-5.50	1.33E-05	0.0322
23 21	12520 s at	6597	SMARCA4	SWI/SNF related, matrix associated, actin	19p13.2	7.19	0.427	-1.229	-5.49	1.35E-05	0.0322
				dependent regulator of chromatin, subfamily a,							
				member 4							
24 20	03215_s_at	4646	MYO6	myosin VI	6q13	7.26	0.253	-1.984	-5.47	1.41E-05	0.0322
25 20	03975_s_at	10036	CHAF1A	chromatin assembly factor 1, subunit A (p150)	19p13.3	4.89	0.674	-0.569	-5.45	1.51E-05	0.0330

Table 4.1 . Affymetrix expression differences between LOAD cases and controls (n=25) aft	ter adjusting for age and se	ex.
---	------------------------------	-----

Table 4.2. Among genes with lower gene expression in AD cases vs. controls, the following are the top 15 biological processes that are down-regulated based on LR-Path.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	synaptic transmission	353	4.92E-12	2.92E-09	223, 5368, 627, 6529, 7425, 9379
2	transmission of nerve impulse	411	6.52E-12	3.38E-09	223, 5368, 627, 6529, 7425, 9379
3	cell-cell signaling	700	5.95E-07	6.03E-05	223, 4826, 5368, 627, 6529, 7425, 9379, 9547, 9636
4	oxidative phosphorylation	94	3.10E-06	1.81E-04	155066, 4704
5	regulation of synaptic plasticity	53	8.57E-06	4.23E-04	627, 7425
6	regulation of transmission of nerve impulse	132	2.83E-05	1.10E-03	627, 6529, 7425
7	cellular respiration	94	2.90E-05	1.10E-03	4704
8	regulation of neurological system process	142	4.41E-05	1.57E-03	627, 6529, 7425
9	neurotransmitter transport	96	5.54E-05	1.93E-03	6529, 9379
10	regulation of neuronal synaptic plasticity	32	5.96E-05	2.06E-03	7425
11	regulation of synaptic transmission	121	7.69E-05	0.003	627, 6529, 7425
12	respiratory electron transport chain	59	8.08E-05	0.003	4704
13	regulation of neurotransmitter levels	82	1.13E-04	0.003	223, 9379
14	nucleotide-excision repair, DNA damage removal	21	1.16E-04	0.003	2073
15	ATP synthesis coupled electron transport	51	1.89E-04	0.005	4704

Table 4.3. Among genes with higher gene expression in AD cases vs. controls, the following are the top 15 biological processes that are up-regulated based on LR-Path.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	translational elongation	101	4.07E-20	1.69E-16	11224, 1937, 2197, 25873, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232
					10219, 10410, 1050, 10581, 11326, 12, 23643, 241, 2532, 2919, 313, 3440, 3487,
					3588, 3600, 3823, 4057, 4615, 4688, 51191, 58191, 6039, 604, 60675, 6283, 7097,
2	defense response	661	1.16E-16	2.42E-13	7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7305, 8519, 929, 9332, 9450
					10346, 10410, 10581, 11326, 23643, 2669, 2919, 3108, 3109, 3122, 3588, 3600,
					4057, 4615, 4688, 4860, 51191, 54209, 563, 58191, 604, 6398, 7097, 7098, 710,
3	immune response	660	3.86E-15	5.34E-12	7100, 712, 713, 714, 718, 719, 8519, 929, 9450
					10219, 1050, 11326, 12, 1462, 2162, 23643, 241, 2697, 2919, 313, 3399, 3440,
					3487, 3587, 3588, 3600, 4615, 4814, 604, 60675, 6283, 7097, 7098, 710, 7100, 712,
4	response to wounding	598	1.07E-14	1.11E-11	713, 7132, 714, 718, 719, 7423, 929, 9332, 9450
					10410, 10581, 11326, 23643, 4615, 4688, 51191, 58191, 7097, 7098, 710, 7100,
5	innate immune response	201	8.28E-13	6.68E-10	712, 713, 714, 718, 8519, 929, 9450
					10219, 1050, 11326, 12, 23643, 241, 2919, 313, 3440, 3487, 3588, 3600, 4615, 604,
6	inflammatory response	365	9.65E-13	6.68E-10	60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 929, 9332, 9450
					10049, 10346, 10410, 10581, 11080, 1373, 1937, 23643, 3315, 3440, 3587, 3600,
7	response to biotic stimulus	442	8.34E-12	3.85E-09	3665, 3669, 4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 871, 929
					10346, 10410, 10581, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669,
8	response to other organism	354	5.69E-11	2.36E-08	4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 929
9	activation of immune response	110	7.45E-11	2.81E-08	11326, 1997, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719
10	regulation of immune response	245	8.89E-10	3.08E-07	11326, 1997, 3600, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719
11	response to bacterium	213	1.42E-09	4.53E-07	1373, 23643, 3587, 4057, 6283, 7079, 7097, 7098, 7100, 7132, 929
12	I-kappaB kinase/NF-kappaB cascade	171	2.35E-09	6.98E-07	23643, 2697, 3965, 4615, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132
	regulation of toll-like receptor signaling				
13	pathway	9	2.97E-09	8.21E-07	7097, 7098, 7100
	positive regulation of toll-like receptor				
14	signaling pathway	7	7.11E-09	1.85E-06	7097, 7098, 7100
15	humoral immune response	80	8.56E-09	2.09E-06	11326, 4057, 54209, 710, 712, 713, 714, 718, 9450

Rank	Entrez ID	Gene Symbol	Affymetrix ID	Illumina ID	Log2	Expression	Percent	Methylation	Pearson	Pearson
		-			Expression	Difference P-	Difference in	Difference P-	Correlation	Correlation
					Fold Change	Value	Methylation	Value	Coefficient	Test P-Value
1	7112	TMPO	209754_s_at	cg23264519	0.309	0.041	0.411	0.046	0.617	0.002
2	55843	ARHGAP15	218870_at	cg23627134	0.457	0.003	-3.241	0.016	-0.614	0.002
3	5724	PTAFR	227184_at	cg18468844	0.436	0.011	-3.088	0.031	-0.591	0.003
4	159091	FAM122C	239047_at	cg16510010	-0.259	0.003	4.715	0.016	-0.586	0.003
5	124460	SNX20	228869_at	cg27081230	0.261	0.016	-4.881	0.016	-0.567	0.005
6	8569	MKNK1	1560720_at	cg15445332	0.230	0.002	-0.362	0.029	-0.540	0.008
7	5663	PSEN1	207782_s_at	cg11490446	0.430	0.008	-1.044	0.034	-0.534	0.009
8	871	SERPINH1	207714_s_at	6.250186	0.878	0.041	1.507	0.026	0.525	0.010
9	5375	PMP2	206826_at	cg21649520	-1.124	0.000	4.849	0.024	-0.521	0.011
10	5690	PSMB2	231323_at	3.890297	0.402	0.027	0.606	0.007	0.509	0.013
11	3684	ITGAM	205786_s_at	cg00833777	0.509	0.030	7.910	0.004	0.503	0.015
12	10602	CDC42EP3	209288_s_at	cg05469695	0.446	0.040	-1.993	0.027	-0.491	0.017
13	200150	PLD5	1563933_a_at	cg12613383	0.657	0.002	-2.358	0.042	-0.488	0.018
14	6497	SKI	213755_s_at	cg06382459	-0.263	0.032	1.217	0.011	-0.484	0.019
15	2857	GPR34	223620_at	cg22835805	0.670	0.031	-5.528	0.006	-0.464	0.026
16	27296	TP53TG5	207482_at	cg14226064	-0.407	0.029	3.634	0.006	-0.461	0.027
17	25937	WWTR1	202133_at	cg12507125	0.725	0.010	-2.123	0.004	-0.454	0.030
18	9968	MED12	203506_s_at	cg21693321	0.242	0.037	5.736	0.029	0.449	0.032
19	57828	CATSPERG	231261_at	cg18996334	-0.189	0.042	0.234	0.043	-0.448	0.032
20	64098	PARVG	233510_s_at	cg19863740	0.385	0.004	-2.099	0.035	-0.445	0.033
21	25903	OLFML2B	213125_at	cg20172280	0.242	0.043	0.803	0.022	0.443	0.034
22	79660	PPP1R3B	222662_at	cg24727203	0.601	0.004	-7.281	0.011	-0.441	0.035
23	138151	NACC2	212993_at	cg12004206	0.421	0.022	0.358	0.044	0.441	0.035
24	3428	IFI16	208966_x_at	cg21406461	0.598	0.030	-7.925	0.039	-0.438	0.036

Table 4.4. Gene expression and methylation correlation.

	LOAD Cases	Neuropathologically
		Normal Controls
Ν	11	12
Age mean(range)	80 (69-94)	79.9 (69-95)
Sex	6 Females	6 Females
	5 Males	6 Males
Ethnicity	Caucasian	Caucasian
Braak Stage mean	4.75	1.33
Years in storage mean (range)	11 (5-17)	13.2 (3-20)

 Table 4.5. Study population characteristics.

REFERENCES

- Alzheimer's Association I. 2011. Alzheimer's disease facts and figures. Alzheimer's & Dementia 7(2).
- Arosio B, Bulbarelli A, Bastias Candia S, Lonati E, Mastronardi L, Romualdi P, Candeletti S, Gussago C, Galimberti D, Scarpini E, Dell'osso B, Altamura C, Maccarrone M, Bergamaschini L, D'Addario C, Mari D. 2012. Pin1 Contribution to Alzheimer's Disease: Transcriptional and Epigenetic Mechanisms in Patients with Late-Onset Alzheimer's Disease. Neurodegener Dis.
- Bakulski KM, Dolinoy DC, Paulson HL, Rozek LS, Hu H. 2012a. Alzheimer's disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics. Current Alzheimer's Research (In Press).
- Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Lieberman AP, Konen JR, Albin RL, Hu H, Rozek LS. 2012b. Genome-wide DNA methlyation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. Journal of Alzheimer's Disease 29(2).
- Barrachina M, Ferrer I. 2009. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68(8): 880-891.
- Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou LX, Shen R, Gunderson KL. 2009. Genome-wide DNA methylation profiling using Infinium (R) assay. Epigenomics-Uk 1(1): 177-200.
- Bird TD. 2005. Genetic factors in Alzheimer's disease. N Engl J Med 352(9): 862-864.
- Coleman PD, Flood DG. 1987. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol Aging 8(6): 521-545.
- English JD, Sweatt JD. 1997. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31): 19103-19106.
- Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, Yang J, Duerksen-Hughes PJ. 2012. Increased Ceramide in Brains with Alzheimer's and other Neurodegenerative Diseases. J Alzheimers Dis.
- Gautier L, Cope L, Bolstad BM, Irizarry RA. 2004. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3): 307-315.
- Hao Y, Chai KH, McLoughlin DM, Chan HY, Lau KF. 2012. Promoter characterization and genomic organization of the human X11beta gene APBA2. Neuroreport.

- Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10): 1088-1093.
- Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B. Todd S. Holmes C. Mann D. Smith AD. Beaumont H. Warden D. Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, Destefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M,

Amouyel P, Williams J. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet.

- Hong MG, Myers AJ, Magnusson PK, Prince JA. 2008. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One 3(8): e3024.
- Johnson GV, Bailey CD. 2003. The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp Neurol 183(2): 263-268.
- Kar A, Havlioglu N, Tarn WY, Wu JY. 2006. RBM4 interacts with an intronic element and stimulates tau exon 10 inclusion. J Biol Chem 281(34): 24479-24488.
- Kong W, Mou X, Hu X. 2011. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data. BMC Bioinformatics 12 Suppl 5: S7.
- Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41(10): 1094-1099.
- Licatalosi DD, Darnell RB. 2006. Splicing regulation in neurologic disease. Neuron 52(1): 93-101.
- Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R. 2001. A gene expression profile of Alzheimer's disease. DNA Cell Biol 20(11): 683-695.
- Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. 2007. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12): 1795-1809.
- Martin KR, Xu Y, Looyenga BD, Davis RJ, Wu CL, Tremblay ML, Xu HE, MacKeigan JP. 2011. Identification of PTPsigma as an autophagic phosphatase. J Cell Sci 124(Pt 5): 812-819.
- Mattson MP. 2004. Pathways towards and away from Alzheimer's disease. Nature 430(7000): 631-639.

- Munoz L, Ammit AJ. 2010. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 58(3): 561-568.
- Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR. De Jager PL. Evans D. Schneider JA. Carrasquillo MM. Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, George-Hyslop PS, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, Decarli C, Dekosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet.
- Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KL, Hunt P, Ge D, Heinzen EL, Maia JM, Shianna KV, Weale ME, Cherkas LF, Clement G, Spector TD, Gibson G, Goldstein DB. 2009. A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum Mol Genet 18(23): 4650-4661.
- Pan S, Shi M, Jin J, Albin RL, Lieberman A, Gearing M, Lin B, Pan C, Yan X, Kashima DT, Zhang J. 2007. Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer. Mol Cell Proteomics 6(10): 1818-1823.
- Pietrzak M, Rempala G, Nelson PT, Zheng JJ, Hetman M. 2011. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease. PLoS One 6(7): e22585.

- Sartor MA, Dolinoy DC, Jones TR, Colacino JA, Prince ME, Carey TE, Rozek LS. 2011. Genome-wide methylation and expression differences in HPV(+) and HPV(-) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 6(6): 777-787.
- Sartor MA, Leikauf GD, Medvedovic M. 2009. LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25(2): 211-217.
- Saura CA. 2012. CREB-Regulated Transcription Coactivator 1-Dependent Transcription in Alzheimer's Disease Mice. Neurodegener Dis.
- Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, Lang JC, Eng C, Li B, Wright FA, Caligiuri MA, Plass C. 2001. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10(13): 1413-1419.
- Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
- Sung HY, Choi EN, Ahn Jo S, Oh S, Ahn JH. 2011. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line. Biochem Biophys Res Commun 414(4): 700-705.
- Tan MG, Chua WT, Esiri MM, Smith AD, Vinters HV, Lai MK. 2010. Genome wide profiling of altered gene expression in the neocortex of Alzheimer's disease. J Neurosci Res 88(6): 1157-1169.
- Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. 1999. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2): 288-292.
- Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS, 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ. 2009. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84(4): 445-458.

SUPPLEMENTAL FIGURES

Supplemental Figure 4.1. Heatmap of all of the 176 sites on the Affymetrix gene expression array (FDR < 0.1) associated with LOAD case status. Publicly available data from embryonic stem cell derived neuronal precursor cells (GSE7178) and astrocytes (GSE5080) have been included. This plot used maximum distance and Ward's hierarchical clustering methods and normalized to the mean expression value per probeset.

Supplemental Figure 2. Scatterplots of expression vs. methylation for the 23 genes significantly associated with AD via expression (p<0.05) and methylation (p<0.05), and methylation and expression are significantly correlated (Pearson's p<0.05).

SUPPLEMENTAL TABLES

<u>U</u> up	piomontai	I UDIO -				VO . 0011				110)	
Rank	Affymetrix ID	Entrez ID	Gene Symbol	Gene Name	Chromosome Location	Average Expression	Fold Change	Log2 Fold Change	T-test Statistic	P-value	Adjusted P-value
1	1558740 s at	80824	DUSP16	dual specificity phosphatase 16	12p13.2	7.11	0.531	-0.913	-6.63	8.85E-07	0.0316
2	227016 at	157697	ERICH1	glutamate-rich 1	8p23.3	5.37	0.529	-0.917	-6.26	2.09E-06	0.0316
3	218859 s at	51575	ESF1	ESF1, nucleolar pre-rRNA processing protein,	20p12.1	7.72	0.393	-1.349	-6.16	2.65E-06	0.0316
-			-	homolog (S. cerevisiae)	- 1-						
4	200635_s_at	5792	PTPRF	protein tyrosine phosphatase, receptor type, F	1p34	7.35	0.488	-1.034	-6.12	2.96E-06	0.0316
5	213940_s_at	23048	FNBP1	formin binding protein 1	9q34	7.03	0.425	-1.233	-5.87	5.33E-06	0.0316
6	213718_at	5936	RBM4	RNA binding motif protein 4	11q13	5.86	0.537	-0.897	-5.85	5.57E-06	0.0316
7	224933 s at	221037	JMJD1C	jumonji domain containing 1C	10q21.3	7.19	0.504	-0.990	-5.83	5.96E-06	0.0316
8	208835 s at	51747	LUC7L3	LUC7-like 3 (S. cerevisiae)	17q21.33	10.14	0.399	-1.327	-5.78	6.59E-06	0.0316
9	212027_at	58517	RBM25	RNA binding motif protein 25	14q24.3	7.73	0.264	-1.919	-5.74	7.27E-06	0.0316
10	241425_at	9818	NUPL1	nucleoporin like 1	13q12.13	5.70	0.558	-0.842	-5.73	7.60E-06	0.0316
11	213311_s_at	22980	TCF25	transcription factor 25 (basic helix-loop-helix)	16q24.3	8.47	0.374	-1.420	-5.71	7.89E-06	0.0316
12	212007_at	23190	UBXN4	UBX domain protein 4	2q21.3	8.97	0.421	-1.247	-5.66	8.88E-06	0.0316
13	214464_at	8476	CDC42BPA	CDC42 binding protein kinase alpha (DMPK-like)	1q42.11	8.32	0.303	-1.722	-5.64	9.27E-06	0.0316
14	227703_s_at	94121	SYTL4	synaptotagmin-like 4	Xq21.33	6.31	2.538	1.344	5.64	9.32E-06	0.0316
15	224736_at	55749	CCAR1	cell division cycle and apoptosis regulator 1	10q21.3	8.02	0.446	-1.165	-5.64	9.47E-06	0.0316
16	228711_at	7587	ZNF37A	zinc finger protein 37A	10p11.2	7.10	0.584	-0.775	-5.61	1.01E-05	0.0316
17	201430_s_at	1809	DPYSL3	dihydropyrimidinase-like 3	5q32	5.01	1.937	0.954	5.61	1.01E-05	0.0316
18	226054_at	23476	BRD4	bromodomain containing 4	19p13.1	7.45	0.538	-0.894	-5.59	1.05E-05	0.0316
19	201026_at	9669	EIF5B	eukaryotic translation initiation factor 5B	2q11.2	7.24	0.465	-1.104	-5.58	1.10E-05	0.0316
20	230781_at	100505875	LOC100505875	uncharacterized LOC100505875	NA	4.56	2.494	1.318	5.52	1.26E-05	0.0322
21	222457_s_at	51474	LIMA1	LIM domain and actin binding 1	12q13	5.52	0.432	-1.212	-5.51	1.28E-05	0.0322
22	219779_at	79776	ZFHX4	zinc finger homeobox 4	8q21.11	6.64	0.627	-0.674	-5.50	1.33E-05	0.0322
23	212520_s_at	6597	SMARCA4	SWI/SNF related, matrix associated, actin	19p13.2	7.19	0.427	-1.229	-5.49	1.35E-05	0.0322
				dependent regulator of chromatin, subfamily a,							
				member 4							
24	203215_s_at	4646	MYO6	myosin VI	6q13	7.26	0.253	-1.984	-5.47	1.41E-05	0.0322
25	203975_s_at	10036	CHAF1A	chromatin assembly factor 1, subunit A (p150)	19p13.3	4.89	0.674	-0.569	-5.45	1.51E-05	0.0330
26	232595_at	NA	NA	NA	NA	3.49	1.360	0.444	5.41	1.66E-05	0.0349
27	222628_s_at	51455	REV1	REV1 homolog (S. cerevisiae)	2q11.1-q11.2	7.19	0.530	-0.916	-5.37	1.81E-05	0.0366
28	200842_s_at	2058	EPRS	glutamyl-prolyl-tRNA synthetase	1q41	7.79	0.367	-1.444	-5.36	1.88E-05	0.0366
29	222792_s_at	29080	CCDC59	coiled-coil domain containing 59	12q21.31	6.50	0.566	-0.822	-5.34	1.98E-05	0.0366
30	214375_at	8496	PPFIBP1	PTPRF interacting protein, binding protein 1 (liprin beta 1)	12p12.1	6.27	0.440	-1.185	-5.33	2.03E-05	0.0366
31	220727_at	54207	KCNK10	potassium channel, subfamily K, member 10	14q31.3	6.30	0.577	-0.794	-5.30	2.16E-05	0.0366
32	206726_at	27306	HPGDS	hematopoietic prostaglandin D synthase	4q22.3	3.32	1.353	0.436	5.29	2.23E-05	0.0366
33	242233_at	NA	NA	NA	ŇA	5.52	0.603	-0.730	-5.28	2.25E-05	0.0366
34	202379_s_at	4820	NKTR	natural killer-tumor recognition sequence	3p23-p21	9.16	0.476	-1.070	-5.28	2.28E-05	0.0366

Supplemental Table 4.1. Gene expression probesets associated with AD case vs. controls at FDR <0.1 (n=176)

35	214911_s_at	6046	BRD2	bromodomain containing 2	6p21.3	8.26	0.467	-1.098	-5.25	2.47E-05	0.0386
36	216563_at	23253	ANKRD12	ankyrin repeat domain 12	18p11.22	7.50	0.389	-1.363	-5.22	2.64E-05	0.0399
37	211993_at	65125	WNK1	WNK lysine deficient protein kinase 1	12p13.3	6.85	0.344	-1.540	-5.20	2.76E-05	0.0399
38	219387_at	55704	CCDC88A	coiled-coil domain containing 88A	2p16.1	8.08	0.286	-1.807	-5.16	3.05E-05	0.0399
39	226176_s_at	84132	USP42	ubiquitin specific peptidase 42	7p22.1	6.36	0.510	-0.971	-5.16	3.09E-05	0.0399
40	223185_s_at	79365	BHLHE41	basic helix-loop-helix family, member e41	12p12.1	4.14	0.464	-1.108	-5.15	3.10E-05	0.0399
41	209945_s_at	2932	GSK3B	glycogen synthase kinase 3 beta	3q13.3	5.25	0.703	-0.509	-5.14	3.19E-05	0.0399
42	229353_s_at	64710	NUCKS1	nuclear casein kinase and cyclin-dependent kinase substrate 1	1q32.1	10.51	0.526	-0.926	-5.14	3.20E-05	0.0399
43	225041 at	54737	MPHOSPH8	M-phase phosphoprotein 8	13q12.11	8.89	0.376	-1.410	-5.14	3.24E-05	0.0399
44	225565_at	1385	CREB1	cAMP responsive element binding protein 1	2q34	5.33	0.552	-0.857	-5.13	3.27E-05	0.0399
45	222122_s_at	57187	THOC2	THO complex 2	Xq25-q26.3	7.11	0.462	-1.114	-5.13	3.28E-05	0.0399
46	213298_at	4782	NFIC	nuclear factor I/C (CCAAT-binding transcription factor)	19p13.3	5.44	0.447	-1.161	-5.10	3.55E-05	0.0422
47	209230_s_at	26471	NUPR1	nuclear protein, transcriptional regulator, 1	16p11.2	7.06	2.413	1.271	5.08	3.74E-05	0.0432
48	222540_s_at	51773	RSF1	remodeling and spacing factor 1	11q14.1	8.25	0.398	-1.328	-5.07	3.79E-05	0.0432
49	222620_s_at	64215	DNAJC1	DnaJ (Hsp40) homolog, subfamily C, member 1	10p12.31	7.29	0.385	-1.378	-5.04	4.08E-05	0.0442
50	1569594_a_at	9147	NEMF	nuclear export mediator factor	14q22	7.97	0.429	-1.221	-5.04	4.08E-05	0.0442
51	229586_at	80205	CHD9	chromodomain helicase DNA binding protein 9	16q12.2	7.65	0.476	-1.072	-5.04	4.13E-05	0.0442
52	208963_x_at	3992	FADS1	fatty acid desaturase 1	11q12.2- q13.1	7.71	0.556	-0.847	-5.00	4.52E-05	0.0467
53	226975_at	55599	RNPC3	RNA-binding region (RNP1, RRM) containing 3	1p21	6.65	0.393	-1.346	-5.00	4.53E-05	0.0467
54	229163_at	55450	CAMK2N1	calcium/calmodulin-dependent protein kinase II inhibitor 1	1p36.12	7.38	0.567	-0.820	-4.99	4.69E-05	0.0472
55	1555495_a_at	10283	CWC27	CWC27 spliceosome-associated protein homolog (S. cerevisiae)	5q12.3	8.27	0.566	-0.820	-4.97	4.85E-05	0.0472
56	200702_s_at	57062	DDX24	DEAD (Asp-Glu-Ala-Asp) box polypeptide 24	14q32	7.59	0.358	-1.480	-4.97	4.88E-05	0.0472
57	225946_at	11228	RASSF8	Ras association (RalGDS/AF-6) domain family (N- terminal) member 8	12p12.3	6.58	1.665	0.736	4.96	5.04E-05	0.0472
58	209376_x_at	9169	SCAF11	SR-related CTD-associated factor 11	12q12	7.02	0.468	-1.095	-4.96	5.09E-05	0.0472
59	208994_s_at	9360	PPIG	peptidylprolyl isomerase G (cyclophilin G)	2q31.1	7.81	0.406	-1.299	-4.95	5.10E-05	0.0472
60	213850_s_at	9169	SCAF11	SR-related CTD-associated factor 11	12q12	7.86	0.460	-1.122	-4.94	5.27E-05	0.0480
61	201183_s_at	1108	CHD4	chromodomain helicase DNA binding protein 4	12p13	7.21	0.461	-1.118	-4.93	5.35E-05	0.0480
62	232323_s_at	55761	TTC17	tetratricopeptide repeat domain 17	11p11.2	6.38	0.469	-1.092	-4.92	5.60E-05	0.0494
63	209088_s_at	29855	UBN1	ubinuclein 1	16p13.3	6.99	0.418	-1.257	-4.91	5.75E-05	0.0497
64	215049_x_at	9332	CD163	CD163 molecule	12p13.3	5.22	3.284	1.715	4.90	5.85E-05	0.0497
65	222616_s_at	10600	USP16	ubiquitin specific peptidase 16	21q22.11	6.39	0.329	-1.606	-4.89	5.92E-05	0.0497
66	213729_at	55660	PRPF40A	PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)	2q23.3	6.87	0.460	-1.120	-4.89	5.99E-05	0.0497
67	231061_at	NA	NA	NA	NA	5.42	0.540	-0.888	-4.88	6.11E-05	0.0499
68	217728_at	6277	S100A6	S100 calcium binding protein A6	1q21	8.34	1.537	0.620	4.87	6.26E-05	0.0500
69	203729_at	2014	EMP3	epithelial membrane protein 3	19q13.3	5.56	1.977	0.983	4.86	6.47E-05	0.0500
70	227298_at	401264	FLJ37798	uncharacterized LOC401264	6p12.3	6.06	0.750	-0.414	-4.86	6.48E-05	0.0500
71	229635_at	1.01E+08	LOC100505702	uncharacterized LOC100505702	NA	4.25	2.236	1.161	4.86	6.50E-05	0.0500

72	208685_x_at	6046	BRD2	bromodomain containing 2	6p21.3	8.27	0.487	-1.038	-4.84	6.73E-05	0.0511
73	217832_at	10492	SYNCRIP	synaptotagmin binding, cytoplasmic RNA interacting	6q14-q15	7.35	1.764	0.819	4.82	7.16E-05	0.0536
74	208772 at	NA	NA	NA	NA	8.03	0.579	-0 788	-4 80	7.56E-05	0.0557
75	219437 s at	29123	ANKRD11	ankyrin repeat domain 11	16g24.3	6.84	0.376	-1 411	-4 79	7.75E-05	0.0557
76	238595 at	NA	NA	NA	NA	5.86	0.070	-1.037	-4 79	7.77E-05	0.0557
77	238584 at	79781	IQCA1	IQ motif containing with AAA domain 1	2037.3	4 26	0.467	-1 099	-4 78	7.85E-05	0.0557
78	35436 at	2801	GOLGA2	aolain A2	9a34 11	6.16	0.495	-1 015	-4 76	8 20E-05	0.0569
79	1558965 at	51317	PHF21A	PHD finger protein 21A	11p11 2	3 12	1 4 1 9	0.505	4 76	8 24E-05	0.0569
80	241458 at	NA	NA	NA	NA	4.63	1.432	0.518	4.76	8.38E-05	0.0569
81	220946 s at	29072	SETD2	SET domain containing 2	3p21.31	3.30	0.550	-0.862	-4.75	8.53E-05	0.0569
82	214843 s at	23032	USP33	ubiquitin specific peptidase 33	1p31.1	6.00	0.600	-0.738	-4.75	8.59E-05	0.0569
83	236869 at	NA	NA	NA	NA	4.33	0.553	-0.854	-4.74	8.74E-05	0.0569
84	207542 s at	358	AQP1	aguaporin 1 (Colton blood group)	7p14	6.41	2.433	1.283	4.74	8.75E-05	0.0569
85	201914 s at	11231	SEC63	SEC63 homolog (S. cerevisiae)	6g21	6.13	0.384	-1.380	-4.73	8.93E-05	0.0575
86	221210_s_at	80896	NPL	N-acetylneuraminate pyruvate lyase (dihydrodipicolinate synthase)	1q25	3.93	2.039	1.028	4.72	9.21E-05	0.0581
87	203181_x_at	6733	SRPK2	SRSF protein kinase 2	7q22-q31.1	9.55	0.496	-1.011	-4.71	9.43E-05	0.0581
88	233080_s_at	55660	PRPF40A	PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)	2q23.3	6.77	0.490	-1.029	-4.70	9.70E-05	0.0581
89	209466_x_at	5764	PTN	pleiotrophin	7q33	8.46	0.411	-1.282	-4.69	9.81E-05	0.0581
90	208663_s_at	7267	TTC3	tetratricopeptide repeat domain 3	21q22.2	8.39	0.298	-1.745	-4.69	9.98E-05	0.0581
91	211737_x_at	5764	PTN	pleiotrophin	7q33	9.37	0.445	-1.168	-4.68	1.02E-04	0.0581
92	214314_s_at	9669	EIF5B	eukaryotic translation initiation factor 5B	2q11.2	6.17	0.551	-0.861	-4.68	1.02E-04	0.0581
93	206929_s_at	4782	NFIC	nuclear factor I/C (CCAAT-binding transcription factor)	19p13.3	7.19	0.499	-1.002	-4.67	1.03E-04	0.0581
94	209127_s_at	9733	SART3	squamous cell carcinoma antigen recognized by T cells 3	12q24.1	6.13	0.417	-1.260	-4.67	1.03E-04	0.0581
95	212382_at	6925	TCF4	transcription factor 4	18q21.1	7.25	0.387	-1.371	-4.67	1.04E-04	0.0581
96	225590_at	57630	SH3RF1	SH3 domain containing ring finger 1	4q32.3	5.92	0.595	-0.749	-4.67	1.04E-04	0.0581
97	226782_at	253512	SLC25A30	solute carrier family 25, member 30	13q14.13	5.11	1.364	0.448	4.67	1.05E-04	0.0581
98	204964_s_at	8082	SSPN	sarcospan (Kras oncogene-associated gene)	12p11.2	6.29	0.497	-1.008	-4.66	1.06E-04	0.0581
99	208942_s_at	7095	SEC62	SEC62 homolog (S. cerevisiae)	3q26.2	9.81	0.596	-0.746	-4.65	1.08E-04	0.0581
100	232677_at	NA	NA	NA	NA	4.55	0.603	-0.731	-4.65	1.09E-04	0.0581
101	208993_s_at	9360	PPIG	peptidylprolyl isomerase G (cyclophilin G)	2q31.1	8.28	0.463	-1.111	-4.64	1.10E-04	0.0581
102	208610_s_at	23524	SRRM2	serine/arginine repetitive matrix 2	16p13.3	7.99	0.326	-1.619	-4.64	1.11E-04	0.0581
103	216520_s_at	7178	TPT1	tumor protein, translationally-controlled 1	13q14	11.68	1.383	0.468	4.64	1.12E-04	0.0581
104	201224_s_at	10250	SRRM1	serine/arginine repetitive matrix 1	1p36.11	8.23	0.543	-0.882	-4.64	1.12E-04	0.0581
105	225730_s_at	25917	THUMPD3	THUMP domain containing 3	3p25.3	5.40	0.463	-1.111	-4.64	1.12E-04	0.0581
106	242916_at	11064	CNTRL	centriolin	9q33.2	4.22	0.575	-0.799	-4.64	1.13E-04	0.0581
107	212570_at	23052	ENDOD1	endonuclease domain containing 1	11q21	5.80	0.496	-1.012	-4.63	1.14E-04	0.0581
108	215338_s_at	4820	NKTR	natural killer-tumor recognition sequence	3p23-p21	7.00	0.510	-0.970	-4.61	1.20E-04	0.0609
109	211996_s_at	NA	NA	NA	NA	10.44	0.621	-0.686	-4.60	1.24E-04	0.0615
110	230180_at	10521	DDX17	DEAD (Asp-Glu-Ala-Asp) box helicase 17	22q13.1	5.80	0.510	-0.971	-4.60	1.24E-04	0.0615

111	1569302_at	85459	KIAA1731	KIAA1731	11q21	5.21	0.508	-0.976	-4.59	1.27E-04	0.0625
112	208676 s at	5036	PA2G4	proliferation-associated 2G4, 38kDa	12q13.2	7.93	0.718	-0.478	-4.59	1.28E-04	0.0625
113	218659_at	55252	ASXL2	additional sex combs like 2 (Drosophila)	2p24.1	6.85	1.483	0.568	4.57	1.32E-04	0.0634
114	211948 x at	23215	PRRC2C	proline-rich coiled-coil 2C	1q23.3	8.90	0.557	-0.843	-4.57	1.33E-04	0.0634
115	225377 at	55684	C9orf86	chromosome 9 open reading frame 86	9q34.3	7.78	0.408	-1.293	-4.57	1.33E-04	0.0634
116	1555913_at	54856	GON4L	gon-4-like (C. elegans)	1q22	4.58	0.643	-0.636	-4.57	1.34E-04	0.0634
117	221745_at	10238	DCAF7	DDB1 and CUL4 associated factor 7	17q23.3	5.94	0.641	-0.642	-4.56	1.36E-04	0.0635
118	1556211_a_at	NA	NA	NA	NA	4.88	0.300	-1.737	-4.55	1.41E-04	0.0654
119	214305_s_at	23451	SF3B1	splicing factor 3b, subunit 1, 155kDa	2q33.1	6.57	0.510	-0.971	-4.54	1.44E-04	0.0663
120	209579_s_at	8930	MBD4	methyl-CpG binding domain protein 4	3q21.3	8.48	0.529	-0.918	-4.52	1.50E-04	0.0683
121	228801_at	94101	ORMDL1	ORM1-like 1 (S. cerevisiae)	2q32	4.16	0.678	-0.561	-4.51	1.53E-04	0.0692
122	239894_at	1E+08	LOC100128511	uncharacterized LOC100128511	10p12.31	3.94	0.614	-0.703	-4.51	1.55E-04	0.0694
123	202845_s_at	10928	RALBP1	ralA binding protein 1	18p11.3	8.73	1.381	0.466	4.50	1.58E-04	0.0696
124	201085_s_at	6651	SON	SON DNA binding protein	21q22.1-	7.75	0.356	-1.492	-4.50	1.58E-04	0.0696
					q22.2						
125	206826_at	5375	PMP2	peripheral myelin protein 2	8q21.3-q22.1	10.04	0.459	-1.124	-4.47	1.70E-04	0.0739
126	201024_x_at	9669	EIF5B	eukaryotic translation initiation factor 5B	2q11.2	9.48	0.524	-0.934	-4.47	1.70E-04	0.0739
127	203186_s_at	6275	S100A4	S100 calcium binding protein A4	1q21	5.35	1.685	0.753	4.46	1.74E-04	0.0742
128	242835_s_at	728730	LOC728730	uncharacterized LOC728730	2p22.1	5.29	0.380	-1.395	-4.46	1.75E-04	0.0742
129	239154_at	NA	NA	NA	NA	5.39	0.578	-0.790	-4.46	1.76E-04	0.0742
130	232617_at	1520	CTSS	cathepsin S	1q21	5.85	1.904	0.929	4.46	1.77E-04	0.0742
131	203761_at	6503	SLA	Src-like-adaptor	8q22.3-qter	6.22	1.909	0.933	4.45	1.78E-04	0.0742
132	238893_at	338758	LOC338758	uncharacterized LOC338758	12q21.33	7.45	0.506	-0.983	-4.45	1.79E-04	0.0742
133	204999_s_at	22809	ATF5	activating transcription factor 5	19q13.3	3.64	0.670	-0.577	-4.44	1.84E-04	0.0758
134	241955_at	25831	HECTD1	HECT domain containing E3 ubiquitin protein ligase	14q12	5.29	0.413	-1.275	-4.43	1.89E-04	0.0770
135	213509_x_at	8824	CES2	carboxylesterase 2	16q22.1	7.20	0.716	-0.482	-4.42	1.92E-04	0.0778
136	218454_at	79887	PLBD1	phospholipase B domain containing 1	12p13.1	4.02	1.365	0.449	4.42	1.95E-04	0.0786
137	209258_s_at	9126	SMC3	structural maintenance of chromosomes 3	10q25	5.46	0.386	-1.372	-4.41	2.00E-04	0.0794
138	201730_s_at	7175	TPR	translocated promoter region (to activated MET oncogene)	1q25	6.69	0.426	-1.233	-4.41	2.01E-04	0.0794
139	231729_s_at	828	CAPS	calcyphosine	19p13.3	4.69	2.011	1.008	4.40	2.02E-04	0.0794
140	1552326_a_at	220136	CCDC11	coiled-coil domain containing 11	18q21.1	4.19	1.442	0.528	4.39	2.11E-04	0.0822
141	208095_s_at	NA	NA	NA	NA	6.95	0.353	-1.502	-4.38	2.12E-04	0.0822
142	208879_x_at	24148	PRPF6	PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae)	20q13.33	6.57	0.430	-1.218	-4.38	2.16E-04	0.0832
143	212994 at	57187	THOC2	THO complex 2	Xq25-q26.3	6.17	0.506	-0.984	-4.37	2.22E-04	0.0850
144	244154 at	80821	DDHD1	DDHD domain containing 1	14q21	4.89	0.722	-0.471	-4.36	2.25E-04	0.0853
145	222020 s at	50863	NTM	neurotrimin	11q25	6.37	0.508	-0.977	-4.35	2.33E-04	0.0863
146	204787_at	11326	VSIG4	V-set and immunoglobulin domain containing 4	Xq12-q13.3	5.92	2.774	1.472	4.34	2.35E-04	0.0863
147	209715_at	23468	CBX5	chromobox homolog 5	12q13.13	7.32	0.564	-0.825	-4.34	2.36E-04	0.0863
148	242974_at	961	CD47	CD47 molecule	3q13.1-q13.2	5.50	1.343	0.426	4.34	2.38E-04	0.0863
149	214129_at	9659	PDE4DIP	phosphodiesterase 4D interacting protein	1q12	6.28	1.945	0.960	4.34	2.38E-04	0.0863
150	208930_s_at	3609	ILF3	interleukin enhancer binding factor 3, 90kDa	19p13.2	5.53	0.452	-1.147	-4.34	2.39E-04	0.0863

151	219507_at	51319	RSRC1	arginine/serine-rich coiled-coil 1	3q25.32	5.74	0.360	-1.473	-4.33	2.41E-04	0.0863
152	223138_s_at	170506	DHX36	DEAH (Asp-Glu-Ala-His) box polypeptide 36	3p13-q23	5.53	0.471	-1.085	-4.33	2.41E-04	0.0863
153	222737_s_at	29117	BRD7	bromodomain containing 7	16q12	7.03	0.513	-0.962	-4.33	2.42E-04	0.0863
154	1554470_s_at	29068	ZBTB44	zinc finger and BTB domain containing 44	11q24.3	4.40	1.524	0.608	4.33	2.43E-04	0.0864
155	226416_at	90459	ERI1	exoribonuclease 1	8p23.1	5.18	1.401	0.486	4.33	2.46E-04	0.0868
156	206167_s_at	395	ARHGAP6	Rho GTPase activating protein 6	Xp22.3	5.74	1.485	0.570	4.32	2.48E-04	0.0870
157	204061_at	5613	PRKX	protein kinase, X-linked	Xp22.3	5.49	2.377	1.249	4.32	2.51E-04	0.0870
158	202844_s_at	10928	RALBP1	ralA binding protein 1	18p11.3	7.35	0.470	-1.090	-4.32	2.51E-04	0.0870
159	203645_s_at	9332	CD163	CD163 molecule	12p13.3	4.50	2.827	1.499	4.30	2.59E-04	0.0892
160	224631_at	NA	NA	NA	NA	6.65	0.447	-1.162	-4.30	2.64E-04	0.0901
161	217869_at	51144	HSD17B12	hydroxysteroid (17-beta) dehydrogenase 12	11p11.2	9.37	0.726	-0.461	-4.29	2.70E-04	0.0918
162	235409_at	23269	MGA	MAX gene associated	15q14	5.91	0.491	-1.026	-4.28	2.78E-04	0.0937
163	224856_at	2289	FKBP5	FK506 binding protein 5	6p21.31	6.81	1.951	0.964	4.27	2.81E-04	0.0940
164	212120_at	23433	RHOQ	ras homolog family member Q	2p21	8.27	1.367	0.451	4.27	2.86E-04	0.0940
165	241769_at	NA	NA	NA	NA	5.38	0.541	-0.888	-4.27	2.86E-04	0.0940
166	226189_at	3696	ITGB8	integrin, beta 8	7p21.1	9.05	1.469	0.555	4.26	2.87E-04	0.0940
167	223797_at	114224	PRO2852	uncharacterized protein PRO2852	NA	6.19	1.467	0.553	4.26	2.87E-04	0.0940
168	208710_s_at	8943	AP3D1	adaptor-related protein complex 3, delta 1 subunit	19p13.3	8.12	0.627	-0.674	-4.26	2.91E-04	0.0946
169	214055_x_at	23215	PRRC2C	proline-rich coiled-coil 2C	1q23.3	8.85	0.553	-0.855	-4.25	2.99E-04	0.0961
170	242728_at	NA	NA	NA	NA	4.54	1.474	0.560	4.25	2.99E-04	0.0961
171	224605_at	401152	C4orf3	chromosome 4 open reading frame 3	4q26	8.04	0.611	-0.711	-4.25	3.00E-04	0.0961
172	201606_s_at	11137	PWP1	PWP1 homolog (S. cerevisiae)	12q23.3	6.49	0.486	-1.040	-4.24	3.02E-04	0.0961
173	221043_at	NA	NA	NA	NA	3.57	0.621	-0.687	-4.23	3.12E-04	0.0987
174	213328_at	4750	NEK1	NIMA (never in mitosis gene a)-related kinase 1	4q33	6.24	0.463	-1.111	-4.23	3.16E-04	0.0987
175	227221_at	64393	ZMAT3	zinc finger, matrin-type 3	3q26.32	6.74	1.315	0.395	4.22	3.17E-04	0.0987
176	239946_at	NA	NA	NA	NA	4.77	1.382	0.467	4.22	3.18E-04	0.0987

Supplemental Table 4.2. Among genes with lower expression in Alzheimer's, several biological processes were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes		
1	synaptic transmission	353	4.92E-12	2.92E-09	223, 5368, 627, 6529, 7425, 9379		
2	transmission of nerve impulse	411	6.52E-12	3.38E-09	223, 5368, 627, 6529, 7425, 9379		
3	cell-cell signaling	700	5.95E-07	6.03E-05	223, 4826, 5368, 627, 6529, 7425, 9379, 9547, 9636		
4	oxidative phosphorylation	94	3.10E-06	1.81E-04	155066, 4704		
5	regulation of synaptic plasticity	53	8.57E-06	4.23E-04	627, 7425		
6	regulation of transmission of nerve impulse	132	2.83E-05	1.10E-03	627, 6529, 7425		
7	cellular respiration	94	2.90E-05	1.10E-03	4704		
8	regulation of neurological system process	142	4.41E-05	1.57E-03	627, 6529, 7425		
9	neurotransmitter transport	96	5.54E-05	1.93E-03	6529, 9379		
10	regulation of neuronal synaptic plasticity	32	5.96E-05	2.06E-03	7425		
11	regulation of synaptic transmission	121	7.69E-05	0.003	627, 6529, 7425		
12	respiratory electron transport chain	59	8.08E-05	0.003	4704		
13	regulation of neurotransmitter levels	82	1.13E-04	0.003	223, 9379		
14	nucleotide-excision repair, DNA damage removal	21	1.16E-04	0.003	2073		
15	ATP synthesis coupled electron transport	51	1.89E-04	0.005	4704		
16	mitochondrial ATP synthesis coupled electron transport	51	1.89E-04	0.005	4704		
17	generation of a signal involved in cell-cell signaling	178	1.92E-04	0.005	4826, 627, 7425, 9379		
18	signal release	178	1.92E-04	0.005	4826, 627, 7425, 9379		
19	oxygen transport	5	2.37E-04	0.006	3049		
20	mitochondrial electron transport, NADH to ubiquinone	37	4.13E-04	0.01	4704		
21	tRNA metabolic process	113	5.68E-04	0.013	26995, 54938, 80222		
22	cerebellar cortex formation	9	8.19E-04	0.017			
23	synaptic vesicle transport	31	1.12E-03	0.023			
24	cellular amino acid metabolic process	227	1.17E-03	0.023	10157, 2954, 54938, 80222		
25	ncRNA metabolic process	230	1.32E-03	0.026	26995, 5393, 54938, 6839, 80222		
26	cerebellar cortex morphogenesis	12	1.50E-03	0.028			
27	synaptic vesicle exocytosis	14	1.52E-03	0.029			
28	nucleobase, nucleoside and nucleotide metabolic process	551	1.55E-03	0.029	155066, 254272, 3704, 482, 56342, 79077, 8382		
29	aspartate family amino acid catabolic process	6	1.70E-03	0.03	10157		
30	negative regulation of synaptic transmission, GABAergic	7	1.91E-03	0.033	6529		
31	generation of precursor metabolites and energy	324	2.01E-03	0.033	155066, 4704, 7425		
32	cellular amino acid catabolic process	68	2.32E-03	0.037	10157, 2954		
33	neurotransmitter secretion	47	2.36E-03	0.038	9379		
34	DNA dealkylation	6	2.40E-03	0.038			
35	DNA dealkylation involved in DNA repair	6	2.40E-03	0.038			
36	regulation of megakaryocyte differentiation	14	0.003	0.039	8364, 8366		
37	fear response	18	0.003	0.039	627		
38	L-amino acid import	8	0.003	0.041	6529		
39	lysosome organization	24	0.003	0.043	53, 84067		
40	nucleoside phosphate metabolic process	529	0.004	0.049	155066, 254272, 3704, 482, 56342, 79077, 8382		
41	nucleotide metabolic process	529	0.004	0.049	155066, 254272, 3704, 482, 56342, 79077, 8382		
42	ATP hydrolysis coupled proton transport	9	0.004	0.051	155066		
43	energy coupled proton transport, against electrochemical gradient	9	0.004	0.051	155066		
44	inner cell mass cell proliferation	5	0.004	0.053	27339		
45	glutamate secretion	19	0.004	0.053	627		
46	subpallium development	11	0.004	0.053	220, 585		
47	ATP metabolic process	96	0.004	0.056	155066, 482		
48	transcription-coupled nucleotide-excision repair	5	0.004	0.057	2073		

50 cellular annie metabolic process 360 0.061 1072 232, 242, 5438, 80222 51 electro transport form fungtort 168 0.068 15088 52 ATP's prifiesis coupled priori framagort. Com relectrochemical gradient 38 0.068 15088 53 entablishment of malanosme localization 101 0.064 25070, 2696, 27336, 58342, e100, 6836, 85437, 5930 54 establishment of malanosme localization 101 0.065 10.064 25070, 2696, 27336, 58342, e100, 6836, 85437, 5930 55 armine metabolic process 463 0.065 10.065 10.068 0.067 10.72, 2534, 4838, 8022 56 armine metabolic process 76 0.068 0.071 10.072, 2534, 4834, 4866 61 relocalisas, muleioadia and nucleotide hosynthetic process 260 0.077 155066, 422, 4534, 3634 10.022 22070 63 relocalizant muleicalide inducleotide hosynthetic process 280 0.007 0.071 155066, 422, 45342, 4334 64 proces 280 0.007 0.077 155066, 422, 55342, 4355	49	striatum development	9	0.004	0.058	220, 585			
51 electron transport damin 109 0.061 7704 52 ATP synchesis coupled proton transport. 38 0.065 155066 53 energy: coupled proton transport. 68 0.065 155066 54 ATP bosoffhelic process 66 0.066 155066 55 establishment of matanessme localization 67 0.066 155066 56 establishment of matanessme localization 67 0.066 1057 232, 539, 530, 5932, 6100, 6839, 58437, 9360 56 amotio mathabolic process 670 0.066 1057 232, 544, 5403, 8022 56 accord-messenger-mediated signaling 261 0.066 0.077 1572, 232, 534, 5365 56 accord-messenger-mediated signaling 11 0.066 0.077 15966, 482, 5582, 5382, 5362 57 anticebase, nucleoside and nucleotode biosynthetic process 290 0.077 15966, 482, 5582, 5382, 5392 56 coldation reduction 161 0.068 0.068 5842 56 regulation of actinylate norda actinylate no	50	cellular amine metabolic process	306	0.005	0.061	10157, 223, 2954, 54938, 80222			
52 ATP synthesis coupled proton transport. down electrochemical gradient 38 0.005 0.061 155066 54 ATP biosynthetic process 66 0.005 0.064 55566 54 ATP biosynthetic process 66 0.005 0.064 5556 55 FibA processing 657 0.005 0.064 555 55 FibA processing 657 0.005 0.005 10157, 232, 2040, 44036, 80222 56 annine calabolic process 403 0.006 0.077 1572, 232, 264, 44036, 80222 57 nucle chases nucle-mediate signaling 261 0.006 0.077 15972, 232, 232, 42, 4704, 78224, 7823 58 nucle chases, nucleoside and nucleotic is acid biosynthetic process 260 0.007 10157, 220, 223, 234, 4704, 78224, 7823 58 nucle chase, nucleoside nucleoside and nucleotic acid biosynthetic process 260 0.007 10157, 220, 223, 234, 4704, 78294, 7823 59 nucle chase, nucleoside nucleoside nucleoside acid biosynthetic process 365 0.007 10157, 220, 232, 242, 4704, 78294, 7823 60 regul	51	electron transport chain	109	0.005	0.061	4704			
S3 energy coupled proton transport, down electrochemical gradient 38 0.061 155066 44 Phosynthetic process 66 0.005 0.061 155066, 442 58 establishment of melanosome locatization 10 0.006 0.004 23072, 2096, 2739, 5539, 5539, 5539, 5534, 2100, 6339, 85437, 9300 57 armine metabolic process 403 0.006 0.005 1017, 223, 2086, 44308, 80222 58 armine relationic process 78 0.006 0.007 15044, 6348, 8062 59 armine relationic process 78 0.006 0.007 15044, 2044 61 armine catabolic process and underdie biosynthetic process 290 0.007 1017, 2354 2034 63 nucleotables, nucleotade and nucleicia catabolisynthetic process 290 0.007 1017, 15506, 442, 56342, 5832 64 procesis 200 0.007 1017, 15506, 442, 56342, 5432, 5432 563 65 celular armino acid and derivative metabolic process 355 0.007 1017, 15506, 442, 56342, 5432 563 66 relynation fragman	52	ATP synthesis coupled proton transport	38	0.005	0.061	155066			
S4 ATP biosyntheir process 68 0.005 0.001 15506, 482 56 etablishment or malaxone boainzation 10 0.005 0.064 585 57 anne metabolic process 403 0.005 0.064 585 58 aerobic reginition 33 0.005 0.061 1017, 2944 58 aerobic reginition 34 0.005 0.007 1017, 2944 60 amme relabolic process 401 0.006 0.007 1017, 2944 61 RNA methystein reduction 614 0.006 0.007 1017, 2944 62 oxiden reduction 614 0.006 0.007 1017, 220, 223, 424, 4704, 78294, 7823 63 nucleobase, nucleoside and nucleotide biosynthetic process 200 0.007 1017, 220, 223, 243, 4434, 3932 64 process 200 0.007 1017, 220, 23, 245, 4538, 8022 65 regulation of aderlyste relabolic process 350 0.007 0.007 1017, 239, 23, 295, 4538, 8022 66 regulation of aderlys	53	energy coupled proton transport, down electrochemical gradient	38	0.005	0.061	155066			
65 estabilishment of melanosome localization 10 0.008 0.004 2507.025095, 27339.5339.56342, 6100.6839.85437, 9300 67 amine metabolic process 403 0.006 0.0064 2507.025095, 27339.5339.50342, 6100.6839.85437, 9300 58 arobic respiration 34 0.005 0.0054 2504 58 arobic respiration 34 0.005 0.0071 25544.2544.8548.80622 58 arobic respiration 78 0.006 0.0172 5544.2544.8548.6022 50 aronic catabolic process 61 0.006 0.007 10157.230.223.342.4704.728204.7023 51 nucleobales and nucleolide biosynthetic process 200 0.007 0.071 15506.425.5342.4392 56 onclobales and nucleolide biosynthetic process 200 0.007 0.077 15506.425.5342.4538.2022 56 celular amino acid and derivative metabolic process 335 0.007 0.077 15506.425.5342.45498.80222 57 estabilishment of pigment granule localization 41 0.008 6439.80222 58 arobic odias di	54	ATP biosynthetic process	86	0.005	0.061	155066, 482			
66 RNA processing 557 0.005 0.004 2070, 2006, 2730, 5302, 5534, 6143, 6100, 8539, 58437, 9800 57 arrobic respiration 34 0.005 0.005 1157, 223, 2254, 54938, 80222 58 arrobic respiration 34 0.005 0.005 1157, 220, 223, 424, 704, 728, 294, 7023 60 second-messenger-mediated signaling 261 0.006 0.072 2530, 230, 237, 232, 242, 4704, 728, 294, 7023 61 RNA methylation 11 0.006 0.071 1057, 220, 223, 424, 704, 728, 294, 7023 62 oxidation reduction 614 0.006 0.077 1057, 220, 223, 424, 4704, 728, 294, 7023 63 nucleobase, nucleoside and nucleocide biosynthetic process 290 0.007 1057, 220, 228, 5438, 8022 64 process 260 0.007 0.077 115506, 432, 5534, 2838, 80222 65 collation of diventive exclusion of diventive exclusion 45 0.007 0.077 1057, 239, 2845, 45308, 80222 66 relation of diventive exclusion 45 0.007 0.071 105506, 432, 5542, 2855	55	establishment of melanosome localization	10	0.005	0.064	585			
97 arnine metabolic process 403 0.005 1017, 223, 2845, 5438, 80222 98 arnine catabolic process 78 0.006 0.005 99 arnine catabolic process 78 0.006 0.072 5934, 2845, 2836, 2836 91 second-messenger-mediated signaling 281 0.006 0.073 1917, 223, 223, 224, 4704, 728294, 7923 92 oxidation reduction 614 0.006 0.073 1917, 223, 223, 224, 4704, 728294, 7923 93 nucleobase, nucleoside and nucleic axid biosynthetic process 290 0.007 10506, 482, 6942, 8932 94 process .0001 0.077 15506, 482, 6943, 8922 94 regulation of aderivate cyclase activity 96 0.007 0.077 15506, 482, 6943, 6932 96 regulation of aderivate cyclase activity 96 0.007 0.075 16507, 223, 2945, 45438, 6022 97 regulation of aderivate cyclase activity 96 0.007 0.075 16517, 223, 2945, 45438, 6022 97 regulation of aderivate cyclase activity 96 0.000 0.035 </td <td>56</td> <td>RNA processing</td> <td>557</td> <td>0.005</td> <td>0.064</td> <td>23070, 26995, 27339, 5393, 56342, 6100, 6839, 85437, 9360</td>	56	RNA processing	557	0.005	0.064	23070, 26995, 27339, 5393, 56342, 6100, 6839, 85437, 9360			
98 aerobic respiration 34 0.005 0.0056 99 amino catabolic process 76 0.006 0.077 10157, 2954 60 second-messenger-mediated signaling 261 0.006 0.072 56342, 3834, 8366 62 oxidation reduction 614 0.006 0.073 10157, 202, 232, 242, 4704, 78234, 7923 63 nucleobase, nucleoside and nucleicid biosynthetic 0.007 105566, 482, 65342, 8382 64 process 290 0.007 15566, 482, 6542, 8382 65 cellular amino acid and derivative metabolic process 355 0.007 0.073 15564, 483, 68022 66 regulation of adsmittate localization 11 0.008 6938, 80222 67 establishment of pignent granute localization 45 0.008 10.083 593. 68 aminoscylation for protein transition 45 0.008 10.083 593. 70 ItSNA aminoscylation for protein transition 45 0.008 10.035 5439, 80222 71 dicatoxyla caid metabolic	57	amine metabolic process	403	0.005	0.065	10157, 223, 2954, 54938, 80222			
69 amine catabolic process 76 0.006 0.77 10157, 2924 60 second-messenger-mediated signaling 261 0.006 0.072 23070 61 RNA methylation 614 0.006 0.072 23070 63 nucleobase, nucleoside and nucleotide biosynthetic process 290 0.007 1057, 220, 223, 242, 4704, 728294, 7923 64 procebase, nucleoside and nucleosi and biosynthetic process 290 0.007 10566, 482, 55342, 8382 66 regulation of ademylate cyclase activity 86 0.007 10517, 222, 2345, 45383, 80222 67 resubilishment of pyneur granule localization 11 0.008 5935 68 amino acid activation 45 0.008 0.008 5938, 80222 70 IRNA aminoacylation for protein translation 45 0.008 5938, 80222 71 dicatovylic acid methyles process 242 0.008 5938, 80222 71 dicatovylic acid methyles process 424 0.008 5938, 80222 72 fisgeflum aspanization 7<	58	aerobic respiration	34	0.005	0.065				
60 second-messenger-mediated signaling 261 0.006 0.072 56342, 8364, 8366 61 RNA methylation 11 0.006 0.073 10157, 220, 223, 242, 4704, 76234, 7923 62 oxidation reducion 614 0.006 0.077 10157, 220, 223, 242, 4704, 76234, 7923 63 nucleobase, nucleoside, nucleotide biosynthetic process 290 0.007 10157, 223, 284, 6382, 8382 64 process 290 0.007 0.078 155066, 482, 56342, 8382 65 cellular amino acid and derivative metabolic process 355 0.007 0.078 15564, 482, 56342, 8382 66 regulation of aderivative relabolic process 355 0.007 0.078 56342 67 establishment of pigment granule localization 11 0.008 5636 68 amino acid acid validation for protein translation 45 0.008 54938, 80222 70 ItRNA aminoacylation for protein translation 45 0.008 54938, 8022 71 dicatoxylic acid metabolic process 42 0.008 54938, 8022	59	amine catabolic process	78	0.006	0.071	10157, 2954			
61 RNA methylation 11 0.006 0.072 23070 63 nucleobase, nucleoside and nucleotide biosynthetic process 290 0.007 10576, 20, 223, 242, 4704, 78234, 7923 64 procebase, nucleoside and nucleic acid biosynthetic 0.007 155066, 482, 56342, 6382 65 cellular amino acid and derivative metabolic process 355 0.007 0.077 155066, 482, 56342, 6382 66 regulation of ademylate cyclase activity 96 0.007 0.078 56342 67 estabilishment of gamel granule localization 45 0.008 54938, 80222 70 IRNA aminoacydation for protein translation 45 0.008 54938, 80222 71 dicarboxylic acid metabolic process 42 0.008 54938, 80222 71 dicarboxylic acid metabolic process 42 0.008 54938, 80222 72 fingellum assemby 7 0.008 0.084 585 72 fingellum assemby 7 0.008 0.084 585 73 mine fold betioxyninhetic process 24	60	second-messenger-mediated signaling	261	0.006	0.072	56342, 8364, 8366			
62 oxidation reduction 614 0.006 0.073 10157, 220, 223, 242, 4704, 728294, 7923 63 nucleobase, nucleoside and nucleic acid biosynthetic process 200 0.007 155066, 642, 56342, 6332 64 process 200 0.007 15506, 642, 56342, 6332 65 cellular amino acid and derivative metabolic process 355 0.007 0.017 16157, 223, 284, 54338, 80222 66 regulation of aderivative metabolic process 355 0.007 0.078 16342, 63342, 6332 67 estabilishment of pignent granule localization 11 0.008 0.683 54938, 80222 68 amino acid activation 45 0.008 0.083 54938, 80222 70 tRNA aminoacylation for protein translation 45 0.008 0.084 54938, 80222 71 dicatovija caid metabolic process 42 0.084 0.084 585 72 flagellum asynthetion for protein translation 7 0.008 0.084 585 73 flagellum organization 7 0.008 0.084 <td>61</td> <td>RNA methylation</td> <td>11</td> <td>0.006</td> <td>0.072</td> <td>23070</td>	61	RNA methylation	11	0.006	0.072	23070			
63 nucleobase, nucleoside and nucleic acid biosynthetic process 200 0.077 155066, 482, 58342, 8382 64 process 200 0.077 1077 155066, 482, 58342, 8382 65 cellular annio acid and derivative metabolic process 355 0.007 0.077 10157, 223, 2854, 54938, 80222 66 regulation of adenylate cyclase activity 96 0.007 0.078 65342 67 estabilisment of pignent granule localization 11 0.008 0.083 6483 68 amino acid activation 455 0.008 0.083 64938, 80222 70 IRNA aminoacylation for protein translation 45 0.008 0.083 64938, 8022 71 dicatrolycite acid metabolic process 42 0.008 0.084 685 73 ftagellum assembly 7 0.008 0.084 685 73 ftagellum catabolic process 246 0.008 0.084 1057, 25427, 2954, 79077 74 small molecule catabolic proces 244 0.008 0.084 105506,	62	oxidation reduction	614	0.006	0.073	10157, 220, 223, 242, 4704, 728294, 7923			
nucleobase, nucleoside, nucleoside, nucleoside, and biosynthetic. 200 0.077 155066, 482, 58342, 8382 65 Cellular amino acid and derivative metabolic process 355 0.007 0.079 16506, 482, 56342, 8382 66 regulation of aderivative metabolic process 355 0.007 0.079 16542 67 establishment of pigment granule localization 11 0.008 0.083 8493, 80222 68 aminoacylation 455 0.008 0.083 54938, 80222 70 fRNA aminoacylation for protein translation 45 0.008 0.083 54938, 80222 71 dicatoxylic acid metabolic process 42 0.008 0.083 54938, 80222 72 flagellum asambly 7 0.008 0.084 585 73 flagellum organization 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 15506, 627, 6529 76 cognition 1115 0.008 0.087 15007, 6322 77	63	nucleobase, nucleoside and nucleotide biosynthetic process	290	0.007	0.077	155066, 482, 56342, 8382			
64 process 290 0.07 15506, 482, 6542, 832 65 reglulation adiand derivative metabolic process 355 0.007 0.078 1052, 232, 2954, 54038, 80222 66 reglulation of adenylate cyclase activity 96 0.007 0.078 1652, 232, 2954, 54038, 80222 67 establishment of pigment granule localization 45 0.008 54938, 80222 68 amino acid activation 45 0.008 54938, 80222 01 RNA aminoacylation for protein translation 45 0.008 54938, 80222 71 dicarboxylic acid metabolic process 42 0.008 0.084 585 73 flagellum assembly 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 585 76 cognition 71 0.008 0.084 585 5832, 6322, 6329 77 nucleoside tiphosphate metabolic process 244 0.008 10566, 254272, 482, 79077, 9382 77 78 purine nucleotid		nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic							
65 cellular amino acid and derivative metabolic process 355 0.07 0.078 10157, 223, 2954, 54938, 80222 66 regulation of adenylate cyclase activity 96 0.007 0.079 65342 67 establishment of pigment granule localization 11 0.008 0.083 54338, 80222 68 amino acid activation 45 0.008 0.083 54338, 80222 70 IRNA aminoacylation for protein translation 45 0.008 0.083 54338, 80222 71 dicarboxylic acid metabolic process 42 0.008 0.084 585 72 flagellum assembly 7 0.008 0.084 585 73 flagellum assembly 7 0.008 0.084 1157, 254,272, 2954, 79077 74 small molecule catabolic process 246 0.008 0.084 685 76 cognition 115 0.008 0.084 10506, 422, 55342, 3832 77 nucleoside triphosphate metabolic process 233 0.009 0.084 15506, 25472, 482, 76342,	64	process	290	0.007	0.077	155066, 482, 56342, 8382			
66 regulation of adenylate cyclase activity 96 0.007 0.079 56342 67 estabilishment of pigment granuel localization 11 0.008 0.0083 54938, 80222 68 amino acid activation 45 0.008 0.6083 54938, 80222 69 1RNA aminoacylation for protein translation 45 0.008 0.6083 54938, 80222 71 dicarboxylic acid metabolic process 42 0.008 0.084 5453 73 flagellum assembly 7 0.008 0.084 585 73 flagellum organization 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 15506, 482, 56342, 832 75 purine nucleotide tiphosphate metabolic process 224 0.008 0.085 155066, 254272, 482, 79077 76 cogniton 115 0.008 0.085 155066, 254272, 482, 79077, 8382 77 nucleoside tiphosphate metabolic process 224 0.009 0.085 155066, 254272, 482,	65	cellular amino acid and derivative metabolic process	355	0.007	0.079	10157, 223, 2954, 54938, 80222			
67 establishment of pigment granule localization 11 0.008 0.083 585 68 amino acid activation 45 0.008 0.083 54938, 80222 69 tRNA aminoacylation for protein translation 45 0.008 0.083 54938, 80222 70 tRNA aminoacylation for protein translation 45 0.008 0.084 54938, 80222 71 dicatoxylic acid metabolic process 42 0.008 0.084 54938, 80222 72 flagellum assembly 7 0.008 0.084 555 73 flagellum organization 7 0.008 0.084 155066, 482, 65442, 79077 74 small molecule catabolic process 246 0.008 0.084 155066, 254272, 482, 79077, 8382 76 cognition 115 0.008 0.084 155066, 254272, 482, 79077, 8382 77 nucleoside triphosphate metabolic process 33 0.009 0.081 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.081	66	regulation of adenylate cyclase activity	96	0.007	0.079	56342			
68 amino ac/attiviton 45 0.008 0.683 5438, 80222 69 IfRNA aminoacylation for protein translation 45 0.008 0.683 54398, 80222 70 IfRNA aminoacylation for protein translation 45 0.008 0.683 54398, 80222 71 dicarboxylic acid metabolic process 42 0.008 0.084 72 ffagellum organization 7 0.008 0.084 585 73 fiagellum organization 7 0.008 0.084 10157, 254272, 2954, 79077 75 purine nucleoide biosynthetic process 246 0.008 0.084 155066, 2542, 56342, 8382 76 cognition 115 0.008 0.084 155066, 25427, 482, 79077, 5322 77 nucleoside triphosphate metabolic process 244 0.008 0.084 155066, 25427, 482, 56342, 8382 78 GPI anchor biosynthetic process 244 0.008 0.088 155066, 25427, 482, 79077, 6322 79 purine nucleotide metabolic process 144 0.009 0.088 <td>67</td> <td>establishment of pigment granule localization</td> <td>11</td> <td>0.008</td> <td>0.083</td> <td>585</td>	67	establishment of pigment granule localization	11	0.008	0.083	585			
69 IRNA aminoacylation 45 0.008 0.683 54938, 80222 70 ItRNA aminoacylation for protein translation 45 0.008 0.681 54938, 80222 71 dicarboxylic acid metabolic process 42 0.008 0.084 5893, 80222 72 ftagellum assembly 7 0.008 0.084 585 73 ftagellum assembly 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 19506, 482, 56342, 58342 76 cognition 116 0.008 0.084 19506, 482, 56342, 8382 77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.088 155066, 254272, 482, 79077, 8382 79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 79077, 8382 80 RNA modification 49 0.009 0.088 155066, 254272, 482, 5634	68	amino acid activation	45	0.008	0.083	54938, 80222			
70 tRNA aminoacylation for protein translation 45 0.008 0.083 54938, 80222 71 dicaboxylic acid metabolic process 42 0.008 0.084 72 flagellum assembly 7 0.008 0.084 585 73 flagellum organization 7 0.008 0.084 585 74 small moleculic catabolic process 419 0.008 0.084 1157, 254272, 2954, 79077 75 purine nucleotide biosynthetic process 246 0.008 0.084 1155066, 452, 65342, 8382 76 cognition 115 0.008 0.084 155066, 254272, 482, 79077, 8382 77 nucleoside triphosphate metabolic process 234 0.008 0.084 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.087 79087, 80235 79 purine nucleotide metabolic process 422 0.009 0.088 125066, 254272, 482, 79077, 8382 80 RNA modification 49 0.009 0.088 155066, 254272, 482, 56342,	69	tRNA aminoacylation	45	0.008	0.083	54938, 80222			
71 dicarboxylic acid metabolic process 42 0.008 0.084 72 flagellum assembly 7 0.008 0.084 585 73 flagellum assembly 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 10157, 254272, 2954, 79077 75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 68342, 8382 76 cognition 115 0.008 0.084 155066, 482, 68342, 8382 77 nucleoside triphosphate metabolic process 244 0.008 0.084 155066, 254272, 482, 79077, 8382 77 nucleoside triphosphate metabolic process 244 0.008 0.087 15906, 254272, 482, 79077, 8382 77 nucleoside triphosphate metabolic process 33 0.009 0.087 15906, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 422 0.009 0.088 155066, 254272, 482, 6342, 8382 80 RNA modification 49 0.009 0.088 585 81 metanosome toalization 14 0.009<	70	tRNA aminoacylation for protein translation	45	0.008	0.083	54938, 80222			
72 flagellum assembly 7 0.008 0.084 585 73 flagellum organization 7 0.008 0.084 585 74 small molecule catabolic process 419 0.008 0.084 10157, 254272, 2954, 79077 75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 56342, 8382 76 cognition 115 0.008 0.084 585, 627, 6529 77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.088 155066, 254272, 482, 56342, 8382 79 purine nucleotide metabolic process 422 0.009 0.088 23070, 26995 81 melanosome localization 44 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.088 585 83 vesice docking involved in exocytosis 25 0.009 0.091 585 84 regulation of cAMP biosynthetic process 6 0.009 0	71	dicarboxylic acid metabolic process	42	0.008	0.084				
73 flagellum organization 7 0.08 0.084 585 74 small molecule catabolic process 419 0.008 0.084 10157, 254272, 2954, 79077 75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 56342, 8382 76 cognition 115 0.008 0.084 585, 627, 6529 77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.088 155066, 254272, 482, 56342, 8382 80 RNA modification 499 0.009 0.088 155066, 254272, 482, 56342, 8382 80 RNA modification 499 0.009 0.088 585 81 melanosome localization 14 0.009 0.088 585 82 regulation of cytokinesis 25 0.009 0.081 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebell	72	flagellum assembly	7	0.008	0.084	585			
74 small molecule catabolic process 419 0.008 0.084 10157, 254272, 2954, 79077 75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 65342, 8382 76 cognition 115 0.008 0.084 155066, 254272, 482, 79077, 8382 77 nucleoside triphosphate metabolic process 234 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.085 155066, 254272, 482, 79077, 8382 79 purine nucleotide metabolic process 422 0.009 0.085 155066, 254272, 482, 79077, 8382 80 RNA modification 49 0.009 0.088 155066, 254272, 482, 56342, 382 81 melanosome localization 14 0.009 0.088 585 82 regulation of cytokinesis 25 0.009 0.091 1 84 regulation of cytokinesis 9 0.009 0.091 585 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 1 86 cerebellar Purkinje cell digre from tation<	73	flagellum organization	7	0.008	0.084	585			
75 purine nucleotide biosynthetic process 246 0.008 0.084 155066, 482, 56342, 8382 76 cognition 115 0.008 0.084 585, 627, 6529 77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.087 79087, 80235 79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 56342, 8382 80 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 565 82 regulation of cAMP biosynthetic process 111 0.009 0.081 585 83 vesice docking involved in exocytosis 25 0.009 0.091 585 84 regulation of cytokinesis 9 0.009 0.091 585 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 585	74	small molecule catabolic process	419	0.008	0.084	10157, 254272, 2954, 79077			
76 cognition 115 0.008 0.084 585, 627, 6529 77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.085 155066, 254272, 482, 79077, 8382 79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 56342, 8382 80 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.088 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 684 84 regulation of cytokinesis 9 0.009 0.091 585 85 cerebellar Purkinje cell diferentiation 6 0.009 0.091 6845 86 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 68342 <tr< td=""><td>75</td><td>purine nucleotide biosynthetic process</td><td>246</td><td>0.008</td><td>0.084</td><td>155066, 482, 56342, 8382</td></tr<>	75	purine nucleotide biosynthetic process	246	0.008	0.084	155066, 482, 56342, 8382			
77 nucleoside triphosphate metabolic process 244 0.008 0.085 155066, 254272, 482, 79077, 8382 78 GPI anchor biosynthetic process 33 0.009 0.087 79087, 80235 79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 56342, 8382 78 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.081 58542 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer formation 6 0.009 0.091	76	cognition	115	0.008	0.084	585, 627, 6529			
78 GPI anchor biosynthetic process 33 0.009 0.087 79087,80235 79 purine nucleotide metabolic process 422 0.009 0.088 155066,254272, 482,56342, 8382 80 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.095 56342 90 cAMP biosynthetic process<	77	nucleoside triphosphate metabolic process	244	0.008	0.085	155066, 254272, 482, 79077, 8382			
79 purine nucleotide metabolic process 422 0.009 0.088 155066, 254272, 482, 56342, 8382 80 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.096 56342 90 cAMP biosynthetic process </td <td>78</td> <td>GPI anchor biosynthetic process</td> <td>33</td> <td>0.009</td> <td>0.087</td> <td>79087, 80235</td>	78	GPI anchor biosynthetic process	33	0.009	0.087	79087, 80235			
80 RNA modification 49 0.009 0.088 23070, 26995 81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 25 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.096 56342 90 cAMP biosynthetic process 113 0.01 0.099 56342 91 regulation of cyclase activity 98	79	purine nucleotide metabolic process	422	0.009	0.088	155066, 254272, 482, 56342, 8382			
81 melanosome localization 14 0.009 0.088 585 82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.096 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 91 regulation of cyclase activity 98	80	RNA modification	49	0.009	0.088	23070, 26995			
82 regulation of cAMP biosynthetic process 111 0.009 0.089 56342 83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.096 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	81	melanosome localization	14	0.009	0.088	585			
83 vesicle docking involved in exocytosis 25 0.009 0.091 84 regulation of cytokinesis 9 0.009 0.091 585 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 686 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 687 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 688 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	82	regulation of cAMP biosynthetic process	111	0.009	0.089	56342			
84 regulation of cytokinesis 9 0.009 0.091 585 85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	83	vesicle docking involved in exocytosis	25	0.009	0.091				
85 cerebellar Purkinje cell differentiation 6 0.009 0.091 86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 87 Gerlentor metabolic process 34 0.01 0.093 88 GPI anchor metabolic process 34 0.01 0.095 89 regulation of lyase activity 99 0.01 0.095 90 cAMP biosynthetic process 113 0.01 0.096 91 regulation of cyclase activity 98 0.01 0.099 92 cerebellar cortex development 14 0.01 0.099	84	regulation of cytokinesis	9	0.009	0.091	585			
86 cerebellar Purkinje cell layer formation 6 0.009 0.091 87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	85	cerebellar Purkinje cell differentiation	6	0.009	0.091				
87 cerebellar Purkinje cell layer morphogenesis 6 0.009 0.091 88 GPI anchor metabolic process 34 0.01 0.093 79087, 80235 89 regulation of lyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	86	cerebellar Purkinje cell layer formation	6	0.009	0.091				
88 GPI anchor metabolic process 34 0.01 0.093 79087,80235 89 regulation of Iyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	87	cerebellar Purkinje cell layer morphogenesis	6	0.009	0.091				
89 regulation of lyase activity 99 0.01 0.095 56342 90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099 56342	88	GPI anchor metabolic process	34	0.01	0.093	79087, 80235			
90 cAMP biosynthetic process 113 0.01 0.096 56342 91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099	89	regulation of lyase activity	99	0.01	0.095	56342			
91 regulation of cyclase activity 98 0.01 0.099 56342 92 cerebellar cortex development 14 0.01 0.099	90	cAMP biosynthetic process	113	0.01	0.096	56342			
92 cerebellar cortex development 14 0.01 0.099	91	regulation of cyclase activity	98	0.01	0.099	56342			
	92	cerebellar cortex development	14	0.01	0.099				

Supplemental Table 4.3. Among genes with higher expression in Alzheimer's, several biological processes were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	translational elongation	101	4.07E-20	1.69E-16	11224, 1937, 2197, 25873, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232
2	defense response	661	1.16E-16	2.42E-13	10219, 10410, 1050, 10581, 11326, 12, 23643, 241, 2532, 2919, 313, 3440, 3487, 3588, 3600, 3823, 4057, 4615, 4688, 51191, 58191, 6039, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7305, 8519, 929, 9332, 9450
3	immune response	660	3.86E-15	5.34E-12	10346, 10410, 10581, 11326, 23643, 2669, 2919, 3108, 3109, 3122, 3588, 3600, 4057, 4615, 4688, 4860, 51191, 54209, 563, 58191, 604, 6398, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 8519, 929, 9450
4	response to wounding	598	1.07E-14	1.11E-11	10219, 1050, 11326, 12, 1462, 2162, 23643, 241, 2697, 2919, 313, 3399, 3440, 3487, 3587, 3588, 3600, 4615, 4814, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423, 929, 9332, 9450
5	innate immune response	201	8.28E-13	6.68E-10	10410, 10581, 11326, 23643, 4615, 4688, 51191, 58191, 7097, 7098, 710, 710, 712, 713, 714, 718, 8519, 929, 9450
6	inflammatory response	365	9.65E-13	6.68E-10	10219, 1050, 11326, 12, 23643, 241, 2919, 313, 3440, 3487, 3588, 3600, 4615, 604, 60675, 6283, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 929, 9332, 9450
7	response to biotic stimulus	442	8.34E-12	3.85E-09	10049, 10346, 10410, 10581, 11080, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669, 4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 871, 929
8	response to other organism	354	5.69E-11	2.36E-08	10346, 10410, 10581, 1373, 1937, 23643, 3315, 3440, 3587, 3600, 3665, 3669, 4057, 51191, 6283, 7079, 7097, 7098, 7100, 7132, 8519, 929
9	activation of immune response	110	7.45E-11	2.81E-08	11326, 1997, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719
10	regulation of immune response	245	8.89E-10	3.08E-07	11326, 1997, 3600, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719
11	response to bacterium	213	1.42E-09	4.53E-07	1373, 23643, 3587, 4057, 6283, 7079, 7097, 7098, 7100, 7132, 929
12	I-kappaB kinase/NF-kappaB cascade	171	2.35E-09	6.98E-07	23643, 2697, 3965, 4615, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132
13	regulation of toll-like receptor signaling pathway	9	2.97E-09	8.21E-07	7097, 7098, 7100
14	positive regulation of toll-like receptor signaling pathway	7	7.11E-09	1.85E-06	7097, 7098, 7100
15	humoral immune response	80	8.56E-09	2.09E-06	11326, 4057, 54209, 710, 712, 713, 714, 718, 9450
16	positive regulation of immune response	155	9.07E-09	2.09E-06	11326, 1997, 3600, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719
17	positive regulation of intracellular protein kinase cascade	222	1.03E-08	2.24E-06	2697, 3059, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132, 7423
18	regulation of response to stimulus	533	1.94E-08	4.02E-06	10488, 11326, 1997, 23411, 285, 2874, 3600, 4615, 604, 6188, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423
19	positive regulation of immune system process	268	2.77E-08	5.36E-06	11326, 1997, 3600, 4860, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 7423
20	defense response to bacterium	96	2.84E-08	5.36E-06	4057, 6283, 7097, 7098, 7100, 7132
21	positive regulation of I-kappaB kinase/NF-kappaB cascade	115	4.25E-08	7.67E-06	2697, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132
22	humoral immune response mediated by circulating immunoglobulin	37	4.47E-08	7.73E-06	710, 712, 713, 714, 718
23	positive regulation of response to stimulus	276	5.08E-08	8.43E-06	10488, 11326, 1997, 3600, 7097, 7098, 710, 7100, 712, 713, 7132, 714, 718, 719, 7423
24	complement activation	37	7.95E-08	1.24E-05	11326, 710, 712, 713, 714, 718
25	toll-like receptor signaling pathway	22	8.06E-08	1.24E-05	7097, 7098, 7100
26	regulation of I-kappaB kinase/NF-kappaB cascade	127	8.46E-08	1.25E-05	2697, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132
27	regulation of cytokine production	199	9.39E-08	1.34E-05	11326, 1997, 4615, 604, 7097, 7098, 7100, 718, 719, 929
28	innate immune response-activating signal transduction	25	1.02E-07	1.41E-05	7097, 7098, 7100
29	pattern recognition receptor signaling pathway	24	1.11E-07	1.49E-05	7097, 7098, 7100
30	activation of innate immune response	26	1.24E-07	1.61E-05	7097, 7098, 7100
31	cytokine production	226	2.25E-07	2.83E-05	11326, 1997, 4615, 4860, 604, 7097, 7098, 7100, 718, 719, 929
32	positive regulation of JNK cascade	23	2.34E-07	2.86E-05	7098
33	positive regulation of signal transduction	275	3.05E-07	3.58E-05	2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7098, 7105, 7132, 7423
34	positive regulation of tumor necrosis factor production	14	3.11E-07	3.58E-05	7097, 7098, 929
35	positive regulation of signaling process	280	3.59E-07	3.97E-05	2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7098, 7105, 7132, 7423
36	interleukin-6 production	44	3.63E-07	3.97E-05	4615, 7097, 7098
37	complement activation, classical pathway	27	4.92E-07	5.24E-05	710, 712, 713, 714, 718
38	positive regulation of cytokine production	104	5.08E-07	5.28E-05	4615, 7097, 7098, 7100, 718, 719, 929
39	positive regulation of interleukin-6 production	23	7.62E-07	7.54E-05	4615, 7097, 7098
40	regulation of interleukin-12 production	23	9.39E-07	9.07E-05	7097, 7098
41	positive regulation of stress-activated protein kinase	29	1.08E-06	1.02E-04	7098

	signaling cascade							
					10346, 10410, 10488, 1050, 10581, 1373, 1937, 1981, 200186, 23411, 23643, 23764, 285, 3315, 3440, 358, 3587, 3600, 3665,			
42	multi-organism process	772	1.17E-06	1.08E-04	<u>3669, 4057, 4734, 51191, 5422, 5696, 6283, 6993, 7079, 7097, 7098, 7100, 7132, 8519, 929</u>			
43	interleukin-12 production	24	1.31E-06	1.15E-04	7097, 7098			
44	positive regulation of signaling pathway	376	1.35E-06	1.15E-04	1950, 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423			
45	positive regulation of cell communication	408	1.64E-06	1.15E-04	1950, 2697, 3059, 3965, 4615, 4734, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423			
46	response to molecule of bacterial origin	133	1.78E-06	1.15E-04	13/3, 23643, 3587, 7079, 7097, 7100, 7132, 929			
47	regulation of response to stress	321	1.87E-06	1.15E-04	23411, 2874, 3600, 4615, 604, 6188, 7097, 7098, 710, 7100, 7132, 718, 7423			
48	modulation by organism of defense response of other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
49	modulation by organism of immune response of other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
50	modulation by organism of innate immunity in other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
51	modulation by symbiont of host defense response	6	1.90E-06	1.15E-04	7097, 7098, 7100			
52	modulation by symbiont of host immune response	6	1.90E-06	1.15E-04	7097, 7098, 7100			
53	modulation by symbiont of host innate immunity	6	1.90E-06	1.15E-04	7097, 7098, 7100			
	pathogen-associated molecular pattern dependent							
	induction by organism of innate immunity of other							
54	organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
55	pathogen-associated molecular pattern dependent induction by symbiont of host innate immunity	6	1.90E-06	1.15E-04	7097, 7098, 7100			
	pathogen-associated molecular pattern dependent							
	modulation by organism of innate immunity in other							
56	organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
	pathogen-associated molecular pattern dependent		4 995 99					
57	modulation by symbiont of nost innate immunity	6	1.90E-06	1.15E-04	/09/, /098, /100			
58	other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
59	positive regulation by organism of immune response of other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
	positive regulation by organism of innate immunity in							
60	other organism involved in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
61	positive regulation by symbiont of host defense response	6	1.90E-06	1.15E-04	7097, 7098, 7100			
62	positive regulation by symbiont of host immune response	6	1.90E-06	1.15E-04	7097, 7098, 7100			
63	positive regulation by symbiont of host innate immunity	6	1.90E-06	1.15E-04	7097, 7098, 7100			
64	response to host immune response	6	1.90E-06	1.15E-04	7097, 7098, 7100			
05	response to immune response of other organism involved	0	4 005 00	4.455.04	7027 7000 7400			
65	in symbiotic interaction	6	1.90E-06	1.15E-04	7097, 7098, 7100			
60	immune effector process	210	1.91E-06	1.15E-04	11325, 3600, 604, 7097, 7098, 710, 712, 713, 714, 718			
67	D coll mediated immunity	70	2.99E-06	1.77E-04	004, 710, 712, 713, 714, 710			
00	B cell mediated immunity	71	3.90E-06	2.23E-04	004, / 10, / 12, / 13, / 14, / 16			
69	inflammatory response	40	4 94E-06	2 81E-04	11326 710 712 713 714 718			
70	regulation of interleukin-6 production	42	5.19E-06	2.01E-04	4615 7097 7098			
70	positive regulation of interleukin-8 production	10	5.38E-06	2.98E-04	7097 7008 7100			
72	regulation of transcription regulator activity	146	5.78E-06	3.16E-04	23411, 3399, 6188, 7097, 7098			
73	regulation of immune system process	424	5.94E-06	3.20E-04	11326, 1997, 3600, 4860, 604, 7097, 7098, 710, 7100, 712, 713, 714, 718, 719, 7423, 8399			
74	macrophage activation involved in immune response	10	6.04E-06	3.22E-04	7097, 7098, 7100			
75	regulation of transcription factor activity	145	6.66E-06	3.46E-04	23411, 3399, 6188, 7097, 7098			
76	antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	13	6.67E-06	3.46E-04	3108, 3109, 3122			
77	modification by symbiont of host morphology or physiology	9	6.88E-06	3.53E-04	7097, 7098, 7100			
78	modification of morphology or physiology of other organism involved in symbiotic interaction	21	7.22E-06	3.65E-04	358, 7097, 7098, 7100			

79	regulation of innate immune response	61	7.69E-06	3.85E-04	7097, 7098, 710, 7100
	regulation of vascular endothelial growth factor receptor				
80	signaling pathway	16	1.09E-05	5.30E-04	4734, 7423
81	positive regulation of angiogenesis	43	1.15E-05	5.54E-04	285, 358, 7132, 718, 719, 7423
82	symbiosis, encompassing mutualism through parasitism	64	1.17E-05	5.57E-04	358, 4734, 6993, 7097, 7098, 7100
83	positive regulation of type I interferon production	15	1.18E-05	5.58E-04	7097, 7098
84	microglial cell activation involved in immune response	7	1.25E-05	5.81E-04	7097, 7098, 7100
85	positive regulation of interleukin-12 production	12	1.26E-05	5.81E-04	7097, 7098
86	regulation of defense response	156	1.29E-05	5.90E-04	3600, 4615, 604, 7097, 7098, 710, 7100, 7132, 718
87	cellular response to UV	6	1.31E-05	5.92E-04	358, 4734
	adaptive immune response based on somatic				
88	recombination of immune receptors built from	114	1 47E-05	6 58E-04	604 710 712 713 714 718
89	positive regulation of multicellular organismal process	279	1.53E-05	6 76F-04	1373 358 4615 60675 7097 7098 7100 718 719 929 9388
90	cytokine production involved in immune response	22	1.60E-05	6.82E-04	604 7097
00	response to defenses of other organism involved in		1.00E 00	0.022 04	
91	symbiotic interaction	8	1.62E-05	6.82E-04	7097. 7098. 7100
92	response to host	8	1.62E-05	6.82E-04	7097, 7098, 7100
93	response to host defenses	8	1.62E-05	6.82E-04	7097, 7098, 7100
94	adaptive immune response	116	1.63E-05	6.82E-04	604. 710. 712. 713. 714. 718
95	antigen processing and presentation	50	1.69E-05	7.04E-04	3108, 3109, 3122, 563
96	translation	394	2.07E-05	8.51E-04	11224, 1937, 1978, 1981, 2197, 25873, 283, 3315, 6135, 6154, 6173, 6176, 6188, 6193, 6207, 6222, 6232, 92399
	vascular endothelial growth factor receptor signaling				
97	pathway	22	2.21E-05	8.99E-04	4734, 7423
98	regulation of intracellular protein kinase cascade	328	2.33E-05	9.38E-04	2697, 2874, 3059, 3965, 4615, 6275, 6283, 6398, 7098, 7105, 7132, 7423
99	regulation of type I interferon production	19	2.57E-05	1.03E-03	7097, 7098
100	immune response-activating signal transduction	72	2.62E-05	1.04E-03	1997, 7097, 7098, 7100, 719
101	acute inflammatory response	100	2.87E-05	1.10E-03	1050, 11326, 12, 710, 712, 713, 714, 718, 9332
102	cellular response to light stimulus	7	2.87E-05	1.10E-03	358, 4734
103	immune response-regulating signaling pathway	80	3.19E-05	1.20E-03	1997, 7097, 7098, 7100, 719
104	detection of biotic stimulus	20	3.38E-05	1.27E-03	23643, 7097, 7098
105	type I interferon production	21	3.84E-05	1.42E-03	7097, 7098
	regulation of cytokine production involved in immune				
106	response	19	3.96E-05	1.46E-03	604, 7097
107	interferon-beta production	17	4.07E-05	1.47E-03	7097, 7098
108	regulation of interferon-beta production	17	4.07E-05	1.47E-03	7097, 7098
109	positive regulation of interferon-beta production	13	4.10E-05	1.47E-03	7097, 7098
110	I-kappaB phosphorylation	11	5.28E-05	1.86E-03	7097, 7098
111	positive regulation of MAPKKK cascade	87	8.00E-05	0.003	7098, 7423
112	anti-apoptosis	228	8.38E-05	0.003	1410, 23411, 25816, 26574, 3315, 4615, 57099, 60675, 7423, 81542, 8870, 9531
113	regulation of humoral immune response	13	8.59E-05	0.003	710, 718
114	negative regulation of cytokine production	42	8.86E-05	0.003	11326, 604, 7097
115	intracellular protein kinase cascade	583	8.90E-05	0.003	1410, 1950, 23643, 2697, 2874, 3059, 3965, 4615, 60675, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423, 9459
116	signal transmission via phosphorylation event	583	8.90E-05	0.003	1410, 1950, 23643, 2697, 2874, 3059, 3965, 4615, 60675, 6275, 6283, 6398, 7097, 7098, 7100, 7105, 7132, 7423, 9459
117	positive regulation of NF-kappaB import into nucleus	15	9.03E-05	0.003	7097, 7098
118	regulation of immune effector process	103	9.09E-05	0.003	3600, 604, 7097, 710, 718
119	negative regulation of transcription factor activity	61	9.53E-05	0.003	23411, 3399, 6188
120	negative regulation of transcription regulator activity	61	9.53E-05	0.003	23411, 3399, 6188
121	regulation of angiogenesis	87	9.73E-05	0.003	285, 358, 7132, 718, 719, 7423
122	interferon-beta biosynthetic process	7	1.01E-04	0.003	7098
123	positive regulation of interferon-beta biosynthetic process	7	1.01E-04	0.003	7098
124	regulation of interferon-beta biosynthetic process	7	1.01E-04	0.003	7098
125	regulation of lipid transport	40	1.05E-04	0.003	706, 8399, 9388
126	lymphocyte mediated immunity	108	1.06E-04	0.003	604, 710, 712, 713, 714, 718
127	cellular response to radiation	9	1.07E-04	0.003	358, 4734

128	type I interferon biosynthetic process	10	1.12E-04	0.003	7098
129	tumor necrosis factor superfamily cytokine production	36	1.19E-04	0.003	7097, 7098, 929
130	regulation of DNA binding	165	1.19E-04	0.003	23411, 3399, 6188, 7097, 7098
131	blood vessel morphogenesis	276	1.30E-04	0.004	1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423
132	positive regulation of protein transport	83	1.43E-04	0.004	1950, 283, 7097, 7098
133	positive regulation of innate immune response	50	1.48E-04	0.004	7097. 7098. 7100
134	negative regulation of immune effector process	18	1.57E-04	0.004	604.710
	regulation of production of molecular mediator of immune	-			
135	response	41	2.06E-04	0.006	604, 7097
136	response to lipopolysaccharide	122	2.14E-04	0.006	1373, 23643, 3587, 7079, 7097, 7132, 929
137	leukocyte mediated immunity	133	2.22E-04	0.006	604, 710, 712, 713, 714, 718
138	myeloid leukocyte cytokine production	9	2.23E-04	0.006	604, 7097
139	translational initiation	60	2.34E-04	0.006	1978, 1981, 3315, 6188, 6193
140	negative regulation of DNA binding	69	2.44E-04	0.006	23411, 3399, 6188
141	angiogenesis	234	2.45E-04	0.006	1950, 283, 285, 358, 60675, 7132, 718, 719, 7423
142	regulation of tumor necrosis factor production	33	2.57E-04	0.007	7097, 7098, 929
143	tumor necrosis factor production	33	2.57E-04	0.007	7097, 7098, 929
144	response to mercury ion	9	2.60E-04	0.007	358, 5224
145	positive regulation of intracellular transport	46	2.64E-04	0.007	1950, 4734, 7097, 7098
146	prostaglandin metabolic process	25	2.73E-04	0.007	27306, 6916, 7132
147	prostanoid metabolic process	25	2.73E-04	0.007	27306, 6916, 7132
148	response to exogenous dsRNA	11	2.82E-04	0.007	7098
149	wound healing	215	3.28E-04	0.008	2162, 2697, 3587, 3588, 4814, 710, 7423
150	response to virus	153	3.49E-04	0.009	10346, 10410, 10581, 1937, 3315, 3440, 3600, 3665, 3669, 51191, 7098, 8519
151	defense response to Gram-positive bacterium	29	3.51E-04	0.009	7097
152	regulation of binding	209	3.55E-04	0.009	23411, 3399, 6188, 7097, 7098
153	notochord development	7	3.92E-04	0.009	3399
454		000	4.445.04	0.01	10049, 10076, 1050, 11080, 1373, 1410, 1978, 2052, 23643, 2697, 283, 285, 3059, 3315, 3399, 358, 3587, 4615, 58191, 6402,
154	response to organic substance	886	4.14E-04	0.01	7079, 7097, 7096, 7100, 713, 7132, 7913, 871, 900, 929
155	positive regulation of prosphorylation	135	4.28E-04	0.01	1950, 283, 3059, 7423
150	regulation of gene-specific transcription	220	4.29E-04	0.01	1050, 23411, 2874, 7097, 7098
157	detection of molecule of bacterial origin	8	4.72E-04	0.011	23043, /097
158	regulation of stress-activated protein kinase signaling	90	4 74E-04	0.011	2874 7098
159	NE-kappaB import into nucleus	26	4.81E-04	0.011	2007,7098
160	regulation of NE-kappaB import into nucleus	26	4 81E-04	0.011	7097 7098
161	positive regulation of defense response	85	5.03E-04	0.012	7097 7098 7100 7132 718
162	response to protein stimulus	115	5.26E-04	0.012	10049.11080.285.3315.3399.7913.871
163	negative regulation of binding	84	5.48E-04	0.012	23411, 3399, 6188
164	positive regulation of transmembrane transport	26	5.90E-04	0.013	7097, 7098
					10076, 10488, 11037, 1410, 1950, 23411, 2697, 283, 285, 358, 4734, 58191, 5867, 604, 706, 7097, 7098, 718, 719, 7423, 8399,
165	regulation of localization	726	6.27E-04	0.014	84876, 91624, 9388
166	prostaglandin biosynthetic process	16	6.29E-04	0.014	27306, 6916
167	prostanoid biosynthetic process	16	6.29E-04	0.014	27306, 6916
168	protein maturation	116	6.30E-04	0.014	11326, 710, 712, 713, 714, 718, 871, 9049
169	chemokine production	26	6.32E-04	0.014	7097, 7098
170	regulation of cell fate commitment	9	6.61E-04	0.014	22943
171	regulation of cell fate specification	9	6.61E-04	0.014	22943
172	regulation of cellular response to stress	138	6.76E-04	0.015	23411, 2874, 6188, 7098
173	Interteron-alpha production	9	7.27E-04	0.015	7098
1/4	regulation of interferon-alpha production	9	7.27E-04	0.015	/098
175	positive regulation of chemokine production	16	7.36E-04	0.016	7097,7098
1/6	myeloid cell activation involved in immune response	27	7.80E-04	0.016	/09/, /098, /100
1//	cellular response to molecule of bacterial origin	28	8.45E-04	0.018	/09/, 929
1/8					

179	blood vessel development	324	9.91E-04	0.02	1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423			
180	regeneration	86	9.98E-04	0.021	10076, 1050, 1462, 2697, 285, 4814			
	positive regulation of transcription factor import into							
181	nucleus	20	1.05E-03	0.021	7097, 7098			
182	regulation of JNK cascade	81	1.06E-03	0.022	2874, 7098			
183	negative regulation of smooth muscle cell proliferation	13	1.08E-03	0.022	283, 3600			
184	positive regulation of transport	276	1.12E-03	0.023	10488, 1950, 283, 358, 4734, 7097, 7098, 718, 8399, 84876, 9388			
185	regulation of transport	514	1.17E-03	0.023	10488, 11037, 1410, 1950, 23411, 2697, 283, 358, 4734, 5867, 706, 7097, 7098, 718, 8399, 84876, 9388			
186	response to pH	13	1.17E-03	0.023	2697, 84329			
187	gene-specific transcription from RNA polymerase II promoter	161	1.21E-03	0.024	1050, 23411, 2874, 7097, 7098			
188	regulation of gene-specific transcription from RNA polymerase II promoter	161	1.21E-03	0.024	1050, 23411, 2874, 7097, 7098			
189	positive regulation of cytokine biosynthetic process	53	1.35E-03	0.026	7097, 7098			
190	icosanoid metabolic process	51	1.35E-03	0.026	241, 27306, 6916, 7132, 8399			
191	positive regulation of phosphate metabolic process	138	1.44E-03	0.028	1950, 283, 3059, 7423			
192	positive regulation of phosphorus metabolic process	138	1.44E-03	0.028	1950, 283, 3059, 7423			
193	negative regulation of immune system process	90	1.45E-03	0.028	11326, 1997, 604, 710			
194	regulation of interferon-gamma production	34	1.51E-03	0.028	7098			
195	microglial cell activation	10	1.54E-03	0.029	7097, 7098, 7100			
196	positive regulation of chemokine biosynthetic process	8	1.59E-03	0.029	7098			
197	positive regulation of protein import into nucleus	25	1.64E-03	0.03	7097, 7098			
198	response to unfolded protein	65	1.68E-03	0.03	10049, 11080, 3315, 871			
199	chemokine biosynthetic process	12	1.70E-03	0.03	7098			
200	chemokine metabolic process	12	1.70E-03	0.03	7098			
201	regulation of B cell apoptosis	8	1.70E-03	0.03	604			
202	negative regulation of cell death	402	1.71E-03	0.03	1410 23411 25816 26574 3315 358 4615 57099 604 60675 7423 81542 8870 900 9531			
203	cellular response to xenobiotic stimulus	27	1.71E-03	0.03				
200	xenobiotic metabolic process	27	1.71E-03	0.00	6283 9049			
205	interferon-gamma production	35	1.7 TE 00	0.00				
206	response to venobiotic stimulus	31	1.80E-03	0.032	6283 0040			
200	cellular defense response	51	1.80E-03	0.032	0200,0000			
207	response to fungus	22	1.82E-03	0.032	10210, 20040, 0020, 4000, 7000			
200	negative regulation of apontosis	301	1.02E-03	0.032	0200, 1007			
209	S phase of mitotic cell cycle	25	1.85E.03	0.032	1410, 234 11, 236 10, 20374, 3310, 330, 4013, 37039, 004, 00073, 7423, 01342, 0070, 903, 9331			
210	regulation of mononuclear cell proliferation	03	1.85E.03	0.032	3422, 3424, 004, 0035, 04307 11226 3600 4860 604			
211	regulation of humphosite proliferation	90	1.000-03	0.032	11320, 3000, 4000, 004			
212	regulation of hymphocyte promeration	92	1.00E-03	0.032	1 1320, 3000, 4000, 004 4724, 707, 700,			
213	positive regulation of nucleocytopiasific transport	32	1.92E-03	0.033	4/34, (US), (US), (US) 1440 - 22411 - 25946 - 26574 - 2215 - 259 - 4615 - 5700 - 604 - 60675 - 7422 - 81542 - 8070 - 000 - 0521			
214	regulation of loukeoute preliferation	390	1.93E-03	0.033	1410, 23411, 23610, 20374, 3313, 336, 4013, 37039, 004, 00073, 7423, 61342, 6670, 900, 9331			
210	negative regulation of linid transport	94 1E	1.900-03	0.033	11320, 3000, 4000, 004			
210		10	1.90E-03	0.033	7007			
217	negative regulation of multi-organism process	18	1.96E-03	0.033				
218	cell migration	455	1.97E-03	0.033	100/0, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624			
219	regulation of digestive system process	14	1.99E-03	0.033	338			
220	regulation of G2/M transition of mitotic cell cycle	9	2.00E-03	0.033	900			
221	cellular response to abiotic stimulus	13	2.02E-03	0.033	358, 4734			
222	JNK cascade	109	2.03E-03	0.033	2874, 7098, 9459			
223	macrophage activation	27	2.05E-03	0.034	7097, 7098, 7100, 8399			
224	response to peptidoglycan	11	2.09E-03	0.034	7097			
225	unsaturated fatty acid metabolic process	54	2.16E-03	0.035	241, 27306, 6916, 7132, 8399			
226	detection of external stimulus	71	2.17E-03	0.035	56925, 7097, 7098			
227	lymphocyte proliferation	122	2.40E-03	0.038	11326, 3600, 4860, 604			
228	mononuclear cell proliferation	124	2.42E-03	0.038	11326, 3600, 4860, 604			
229	regulation of cholesterol transport	23	2.43E-03	0.038	706, 9388			
230	regulation of sterol transport	23	2.43E-03	0.038	706, 9388			

231	negative regulation of response to stimulus	122	2.47E-03	0.038	23411, 285, 2874, 604, 6188, 710			
232	vasculature development	334	2.47E-03	0.038	1950, 2697, 283, 285, 358, 60675, 7132, 718, 719, 7423			
233	interaction with host	39	0.003	0.039	4734, 6993, 7097, 7098, 7100			
234	cytokine biosynthetic process	89	0.003	0.04	7097, 7098			
235	cytokine metabolic process	90	0.003	0.04	7097, 7098			
236	response to glucocorticoid stimulus	97	0.003	0.04	10076, 1050, 1373, 358, 713			
237	cell activation involved in immune response	55	0.003	0.041	604, 7097, 7098, 7100			
238	leukocyte activation involved in immune response	55	0.003	0.041	604, 7097, 7098, 7100			
239	locomotion	599	0.003	0.041	10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 2919, 4478, 4734, 5355, 58191, 6036, 60675, 7097, 719, 7423, 91624			
	positive regulation of production of molecular mediator of							
240	immune response	15	0.003	0.041	7097			
241	regulation of transcription in response to stress	6	0.003	0.041	4734			
	regulation of transcription from RNA polymerase II							
242	promoter	745	0.003	0.043	100125288, 1050, 1997, 23411, 26574, 2874, 29128, 3399, 3660, 3665, 4734, 57658, 5932, 604, 7097, 7098, 7132, 7913, 79366			
243	positive regulation of lipid transport	20	0.003	0.043	8399, 9388			
244	regulation of protein secretion	63	0.003	0.043	1950, 283			
					10488, 1050, 1373, 1509, 23411, 285, 2919, 358, 4615, 5355, 56925, 58191, 6036, 604, 60675, 7097, 7098, 710, 7132, 718,			
245	response to external stimulus	645	0.003	0.043	719, 7423, 9388			
246	leukocyte proliferation	126	0.003	0.043	11326, 3600, 4860, 604			
247	leukocyte activation	336	0.003	0.043	11326, 3600, 4860, 604, 7097, 7098, 7100, 81542, 8399			
248	ribosomal large subunit biogenesis	11	0.003	0.043	6135. 6154			
249	cellular response to lipoteichoic acid	6	0.003	0.043	7097.929			
250	response to lipoteichoic acid	6	0.003	0.043	7097, 929			
251	positive regulation of intracellular protein transport	43	0.003	0.047	1950 7097 7098			
252	positive regulation of ERK1 and ERK2 cascade	34	0.003	0.047	7423			
253	lymphocyte chemotaxis	9	0.003	0.047	58191			
254	protein maturation by pentide bond cleavage	81	0.000	0.047	11326 710 712 713 714 718			
255	response to corticosteroid stimulus	104	0.000	0.047				
255		27	0.003	0.048				
257	nentidul turosine modification	112	0.003	0.040	1050 2050 7423			
258	PNA catabolic process	74	0.003	0.049	1763, 5056, 6036, 6036, 6030, 87178			
250	totrahydrahiantarin higgynthatia process	6	0.004	0.049	105, 305, 005, 005, 005, 0110			
209		11	0.004	0.049	0097			
200		11	0.004	0.05	241, 330			
201	cellular response to metal ion	11	0.004	0.05				
262	cellular response to stress	677	0.004	0.05	1410, 1402, 1509, 1705, 23411, 26574, 27244, 2874, 29128, 358, 3978, 4438, 4734, 5422, 5424, 5932, 604, 6188, 7098, 79677, 8303, 600, 610, 610, 610, 610, 610, 610, 610			
202	positive regulation of transportation regulator activity	077	0.004	0.05	0332, 300, 9439			
203	positive regulation of transcription regulator activity	00	0.004	0.05	1097,1096			
264	activity	58	0.004	0.051	7097 7098			
265	negative regulation of lymphocyte apoptosis	0	0.004	0.051	804			
266	response to heat	62	0.004	0.052	11080 1410 3315 020			
200	regulation of epidermis development	21	0.004	0.052	1000, 1410, 5313, 323			
207	regulation of epidemiis development	145	0.004	0.053	25704			
200	negliation of protein transport	140	0.004	0.053				
209	positive regulation of cellular component movement	130	0.004	0.055	10400, 30191, 004, 7097, 719, 7423			
270	positive regulation of transcription factor activity	87	0.004	0.055	7097,7090			
271	establishment of mitotic spinole orientation	7	0.004	0.057	6993			
2/2	establishment of spindle orientation	/	0.004	0.057				
2/3	cell activation	381	0.005	0.059	11320, 3000, 4660, 004, 7097, 7098, 7100, 81542, 8399			
274	response to abiotic stimulus	393	0.005	0.06	11080, 1410, 2097, 2766, 285, 3315, 358, 4734, 5424, 56925, 7098, 84329, 929			
275	receptor-mediated endocytosis	73	0.005	0.061	10268, 4/34, 58191			
276	regulation of inflammatory response	87	0.005	0.061	4615, 604, 7097, 7098, 710, 7132, 718			
277	pancreatic juice secretion	8	0.005	0.061	358			
278	mitotic cell cycle	480	0.005	0.061	10459, 1950, 1978, 246184, 26574, 5422, 5424, 54443, 54930, 55145, 5696, 604, 6993, 8099, 81930, 84967, 900, 90293			
279	cell cycle phase	509	0.005	0.061	10459, 1950, 1978, 246184, 4438, 5422, 5424, 54443, 54930, 604, 6993, 8099, 81930, 84967, 900, 90293			
280	regulation of cytokine biosynthetic process	79	0.005	0.062	7097, 7098			

281	protein processing	106	0.005	0.064	11326,710,712,713,714,718
282	regulation of gastrulation	9	0.005	0.067	
	positive regulation of cytokine production involved in	-			
283	immune response	11	0.005	0.067	7097
284	regulation of lymphocyte apoptosis	15	0.006	0.067	604
285	regulation of interleukin-8 production	21	0.006	0.067	7097, 7098, 7100
286	regulation of response to external stimulus	187	0.006	0.069	10488, 285, 4615, 604, 7097, 7098, 710, 7132, 718, 719, 7423
287	interferon-gamma biosynthetic process	14	0.006	0.069	7098
288	peptidyl-tyrosine phosphorylation	110	0.006	0.069	1950, 3059, 7423
289	complement activation, alternative pathway	14	0.006	0.069	11326, 718
290	regulation of cell activation	189	0.006	0.07	11326, 3600, 4860, 604, 8399
	positive regulation of interferon-gamma biosynthetic				
291	process	11	0.006	0.07	7098
292	positive regulation of protein secretion	45	0.006	0.071	283
293	regulation of multi-organism process	52	0.006	0.072	3600, 7097
294	production of molecular mediator of immune response	64	0.006	0.072	604, 7097
295	interphase of mitotic cell cycle	137	0.006	0.072	1978, 5422, 5424, 604, 8099, 84967, 900
296	rRNA transcription	18	0.006	0.072	283
297	positive regulation of humoral immune response	8	0.006	0.072	718
298	transcription from RNA polymerase II promoter	900	0.006	0.073	100125288, 1050, 1997, 23411, 23764, 26574, 2874, 29128, 29777, 3399, 3660, 3665, 4734, 57658, 5932, 604, 7097, 7098, 7132, 7913, 79366
299	interleukin-8 production	23	0.007	0.075	7097, 7098, 7100
300	cell cycle process	662	0.007	0.076	10459, 1950, 1978, 246184, 27244, 4438, 5422, 5424, 54443, 54930, 5696, 604, 6993, 8099, 81930, 84967, 900, 90293
301	regulation of establishment of protein localization	153	0.007	0.076	1950, 23411, 283, 7097, 7098
302	mesenchyme development	81	0.007	0.077	1592, 6275
303	regulation of leukocyte migration	40	0.007	0.077	7097, 719, 7423
304	myeloid leukocyte activation	71	0.007	0.077	7097, 7098, 7100, 8399
305	superoxide anion generation	14	0.007	0.079	26574, 4688
306	regulation of chemokine production	24	0.007	0.081	7097, 7098
307	regulation of leukocyte mediated immunity	59	0.007	0.082	604, 718
308	tetrahydrobiopterin metabolic process	7	0.007	0.083	6697
309	acute-phase response	44	0.008	0.083	1050, 12, 9332
310	regulation of chemokine biosynthetic process	11	0.008	0.083	7098
311	regulation of leukocyte activation	177	0.008	0.083	11326, 3600, 4860, 604, 8399
312	regulation of B cell mediated immunity	24	0.008	0.083	604, 718
313	regulation of immunoglobulin mediated immune response	24	0.008	0.083	604, 718
314	protein secretion	94	0.008	0.084	1950, 283, 4860
315	positive regulation of cell migration	129	0.008	0.084	10488, 58191, 7097, 719, 7423
316	defense response to virus	41	0.008	0.084	3600, 7098
317	tissue regeneration	30	0.008	0.084	2697, 4814
318	regulation of body fluid levels	200	0.008	0.084	187, 2162, 358, 3587, 3588, 710
319	positive regulation of leukocyte migration	31	0.008	0.084	7097, 719, 7423
320	positive regulation of inflammatory response	43	0.008	0.084	7097, 7098, 7132, 718
321	interspecies interaction between organisms	335	0.008	0.085	10346, 10488, 1050, 1981, 200186, 23411, 358, 3665, 4734, 5422, 5696, 6993, 7097, 7098, 7100, 7132
322	cell motility	484	0.008	0.085	10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624
323	localization of cell	484	0.008	0.085	10076, 10488, 128954, 1462, 2191, 2697, 283, 285, 4478, 58191, 7097, 719, 7423, 91624
324	cellular response to lipopolysaccharide	25	0.008	0.085	929
325	regulation of nucleocytoplasmic transport	84	0.008	0.085	1950, 23411, 4734, 7097, 7098
326	positive regulation of mononuclear cell proliferation	65	0.008	0.086	3600, 4860, 604
327	icosanoid biosynthetic process	36	0.008	0.086	241, 27306, 6916
328	I cell proliferation	86	0.008	0.086	11326, 3600, 4860
329	regulation of protein import into nucleus	67	0.008	0.086	1950, 23411, 7097, 7098
330	positive regulation of lymphocyte proliferation	64	0.008	0.086	3600,4860,604
331	reproductive process	791	0.009	0.087	<u>100125288, 10149, 10488, 23411, 23764, 283, 285, 4438, 4734, 51314, 5224, 604, 60675, 6993, 7079, 7913</u>
332	regulation of adaptive immune response based on	51	0.009	0.088	604, /18

	somatic recombination of immune receptors built from immunoglobulin superfamily domains				
333	positive regulation of leukocyte proliferation	66	0.009	0.088	3600, 4860, 604
334	reproduction	793	0.009	0.089	100125288, 10149, 10488, 23411, 23764, 283, 285, 4438, 4734, 51314, 5224, 604, 60675, 6993, 7079, 7913
335	interphase	146	0.009	0.091	1978, 5422, 5424, 604, 8099, 84967, 900
336	establishment of tissue polarity	12	0.009	0.091	57216
337	positive regulation of immune effector process	46	0.009	0.091	7097, 718
338	negative regulation of RNA metabolic process	412	0.009	0.091	100125288, 10049, 1050, 23411, 2874, 3399, 3660, 3665, 4734, 604, 6207, 84232
339	transepithelial transport	10	0.01	0.093	358
340	cellular response to hypoxia	6	0.01	0.093	358
341	cellular response to oxygen levels	6	0.01	0.093	358
342	renal water transport	5	0.01	0.093	358
343	regulation of phospholipase A2 activity	6	0.01	0.094	283
344	regulation of cell proliferation	834	0.01	0.095	10076, 10488, 1050, 11326, 138151, 1950, 2014, 23411, 2697, 27244, 283, 2919, 3059, 358, 3600, 4860, 563, 604, 6282, 648, 7423, 8519
345	phospholipid catabolic process	21	0.01	0.095	9388
346	response to oxygen levels	155	0.01	0.097	1410, 283, 285, 358, 51167, 54541, 7097, 9124
347	positive regulation of gene-specific transcription	145	0.01	0.097	1050, 7097, 7098
348	B cell apoptosis	11	0.01	0.098	604

Supplemental Table 4.4. Among genes with lower expression in Alzheimer's, several molecular functions were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	neuropeptide hormone activity	21	5.46E-07	1.89E-04	2922, 5368, 7425
2	cation transmembrane transporter activity	525	1.09E-05	0.001	155066, 482, 6529
3	inorganic cation transmembrane transporter activity	203	5.44E-05	0.005	155066, 482, 6529
4	porin activity	6	6.50E-05	0.005	10452
5	calmodulin-dependent protein kinase activity	20	1.14E-04	0.008	
6	ion transmembrane transporter activity	683	1.34E-04	0.009	10452, 155066, 482, 6529
7	MAP kinase tyrosine/serine/threonine phosphatase activity	12	1.43E-04	0.009	1846, 1848
8	MAP kinase phosphatase activity	13	1.74E-04	0.009	1846, 1848
9	monovalent inorganic cation transmembrane transporter activity	160	2.38E-04	0.012	155066, 482, 6529
10	nucleoside-triphosphate diphosphatase activity	6	4.97E-04	0.021	3704, 79077
11	hydrogen ion transmembrane transporter activity	83	0.001	0.023	155066
12	NADH dehydrogenase (quinone) activity	38	0.001	0.044	4704
13	NADH dehydrogenase (ubiquinone) activity	38	0.001	0.044	4704
14	NADH dehydrogenase activity	38	0.001	0.044	4704
					10452, 11182, 155066, 21, 22, 482,
15	transmembrane transporter activity	859	0.002	0.055	6529
16	cis-trans isomerase activity	36	0.002	0.068	2954, 9360
17	substrate-specific transporter activity	916	0.004	0.099	10452, 11182, 155066, 3049, 482, 6529
18	SNARE binding	29	0.004	0 113	
19	mannosyltransferase activity	15	0.005	0.12	10585 79087 80235
20	phosphotyrosine binding	10	0.005	0.12	53
21	oxygen transporter activity	8	0.005	0.12	3049
22	ATPase activity	330	0.005	0.123	155066 21 22 482 57680
23	RNA polymerase II carboxy-terminal domain kinase activity	13	0.005	0.123	155000, 21, 22, 402, 57000
24	sodium:notassium-exchanging ATPase activity	10	0.000	0.127	482
25	calcium channel regulator activity	13	0.007	0.130	9379
25		266	0.007	0.130	155066 21 22 482 57680
20	channel regulator activity	53	0.007	0.130	57730 9379
21		206	0.007	0.14	10452
20	ATPace activity	290	0.008	0.141	155066 482
29	ATPace activity, coupled to transmembrane movement of cubstances	100	0.000	0.141	155066 21 22 482
	Arrase activity, coupled to transmembrane movement of substances	100	0.009	0.140	155000, 21, 22, 482
31	oxidoreductase activity, acting on the aldehyde or oxo group of donors	32	0.009	0.146	220. 223
32	aldehvde dehvdrogenase (NAD) activity	9	0.009	0.147	220, 223
33	voltage-gated channel activity	185	0.011	0.157	10452
34	voltage-gated ion channel activity	185	0.011	0.157	10452
35	Q-methyltransferase activity	12	0.011	0.157	23070
					10157, 220, 223, 242, 2954, 4704,
36	oxidoreductase activity	648	0.011	0.157	728294, 7923
27	hydrologo activity, acting on acid anhydridog	740	0.012	0 157	155066, 21, 22, 3704, 4636, 482,
37		742	0.012	0.157	
38	hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides	738	0.012	0.157	155066, 21, 22, 3704, 4636, 482, 57680, 585, 79077, 79132
39	calmodulin binding	140	0.012	0 157	5,000,503,75077,75152
	hydrolase activity, acting on acid anhydrides, catalyzing transmembrane				
40	movement of substances	102	0.012	0.159	155066, 21, 22, 482
41	GABA receptor activity	22	0.013	0.159	
42	P-P-bond-hydrolysis-driven transmembrane transporter activity	109	0.013	0.159	155066, 21, 22, 482
43	primary active transmembrane transporter activity	109	0.013	0.159	155066, 21, 22, 482
					155066, 21, 22, 3704, 4636, 482,
44	pyrophosphatase activity	735	0.013	0.16	57680, 585, 79077, 79132
45	ATPase activity, coupled to movement of substances	101	0.013	0.161	155066, 21, 22, 482
46	RNA methyltransferase activity	27	0.014	0.164	23070
47	active transmembrane transporter activity	324	0.014	0.165	155066, 21, 22, 482, 6529
48	aminoacyl-tRNA ligase activity	46	0.016	0.171	54938, 80222
49	ligase activity, forming aminoacyl-tRNA and related compounds	46	0.016	0.171	54938, 80222
50	ligase activity, forming carbon-oxygen bonds	46	0.016	0.171	54938, 80222
51	ion channel activity	366	0.017	0.178	10452
52	S-adenosylmethionine-dependent methyltransferase activity	90	0.018	0.182	23070, 6839
53	nucleoside-triphosphatase activity	706	0.019	0 192	155066, 21, 22, 4636, 482, 57680, 585, 79132
54	notassium-transporting ATPase activity	12	0.070	0.102	482
	powersam autoporting / r r use usawity	14	0.02	0.100	

55	glutamate receptor activity	29	0.021	0.198	
56	syntaxin-1 binding	8	0.022	0.202	
57	cation:amino acid symporter activity	11	0.023	0.21	6529
58	2 iron, 2 sulfur cluster binding	17	0.024	0.214	
59	cation channel activity	263	0.024	0.214	
60	substrate-specific channel activity	376	0.025	0.224	10452
61	ARF GTPase activator activity	26	0.026	0.224	
62	syntaxin binding	23	0.031	0.258	
63	aldehyde dehydrogenase [NAD(P)+] activity	5	0.032	0.262	220
64	calcium channel activity	78	0.032	0.263	
65	antibiotic transporter activity	7	0.033	0.265	
66	metal ion transmembrane transporter activity	125	0.034	0.272	482, 6529
67	passive transmembrane transporter activity	393	0.036	0.273	10452
68	peptidyl-prolyl cis-trans isomerase activity	34	0.036	0.273	9360
69	oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor	8	0.036	0.273	
70	oxidoreductase activity, acting on NADH or NADPH, quinone or similar compound as acceptor	44	0.036	0.273	4704
71	channel activity	392	0.039	0.285	10452
72	oxidoreductase activity, acting on sulfur group of donors, oxygen as acceptor	6	0.04	0.287	
73	hormone activity	96	0.04	0.287	2922, 5368, 7425
74	tetracycline transporter activity	6	0.041	0.292	
75	E-box binding	7	0.041	0.292	7291
76	sodium ion transmembrane transporter activity	75	0.042	0.295	482, 6529
77	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor	22	0.043	0.296	220, 223
78	beta-tubulin binding	19	0.043	0.299	2010, 585
79	fructose binding	6	0.048	0.324	

Supplemental Table 4.5. Among genes with higher expression in Alzheimer's, several molecular functions were enriched.

Rank	Name	#Genes	P- Value	FDR	SigGenes
rtariit	Name	// Cerres	1.33E-	TER	11224, 2197, 25873, 6135, 6154, 6173, 6176,
1	structural constituent of ribosome	149	10	0	6188, 6193, 6207, 6222, 6232
		10	7.58E-		
2	pancreatic ribonuclease activity	10	80	0	283, 6036, 6039
3	glycosaminoglycan binding	148	2.16E- 06	0.0005	1462, 26377, 283, 4037, 6402, 7097, 7423, 79625, 929, 9388
			2 64F-		
4	endoribonuclease activity, producing 3'-phosphomonoesters	13	06	0.0005	283, 6036, 6039
_		_	4.03E-		
5	RAGE receptor binding	7	06	0.0007	6275, 6283
6	nattern hinding	163	9.22E- 06	0.0014	1462, 26577, 283, 4057, 6402, 7097, 7423, 79625, 929, 9388
	pattern binding	100	1.31E-	0.0014	10219, 1462, 26577, 283, 3823, 3965, 4057.
7	carbohydrate binding	339	05	0.0015	6402, 7097, 7423, 79625, 929, 9388, 9936
			4.14E-		7007 000
8	peptidoglycan binding	y	05	0.0043	7097, 929
0	endonuclease activity, active with either ribo- or deoxyribonucleic	10	5.51E-	0.0049	282 6026 6020
10	actos and producing 5 -phosphomonoesters	10	0.0001	0.0040	10260, 22642
10	coreceptor activity	19	0.0001	0.0069	10268, 23643
11	cytokine binding	113	0.0002	0.0093	1436, 2532, 3587, 3588, 5355, 7132
12	heparin binding	110	0.0002	0.0117	26577, 283, 4057, 6402, 7423, 79625, 9388
					100125288, 10049, 10346, 10488, 1050,
					10848, 138151, 165, 1997, 23411, 27005, 2874, 29128, 29777, 3399, 3660, 3665,
					55145, 57658, 604, 7764, 7913, 79366,
13	transcription regulator activity	923	0.0003	0.0138	84232, 9049, 9124
14	lipopolysaccharide binding	13	0.0004	0.0167	23643, 7097, 929
15	rRNA binding	24	0.0004	0.0168	283, 6135, 6222
					10488, 2919, 3440, 3600, 4615, 58191, 7100,
16	cytokine receptor binding	179	0.0006	0.024	7423
17	ribonuclease activity	58	0.0022	0.0683	283, 3669, 563, 6036, 6039, 87178
18	vascular endothelial growth factor receptor binding	6	0.0022	0.0685	7423

1					1101, 11224, 1410, 2197, 24146, 25873,
					4478, 4604, 6135, 6154, 6173, 6176, 6188,
19	structural molecule activity	570	0.0024	0.0707	84617, 9499
20	cyclic nucleotide-dependent protein kinase activity	9	0.0032	0.0915	5613
21	water transmembrane transporter activity	12	0.0033	0.0915	358
22	phosphate binding	13	0.0039	0.1026	10797, 4860
23	microtubule plus-end binding	10	0.0046	0.1153	81930
24	cytokine receptor activity	56	0.0051	0.1203	3587, 3588
25	metalloexopeptidase activity	37	0.0059	0.1283	10269, 10404, 165
26	death receptor activity	13	0.0066	0.1377	7132
27	monocarboxylic acid binding	57	0.007	0.1377	1592, 241, 563, 6646, 91452
28	alvcosphinaolipid bindina	6	0.0072	0.1379	6402
29	monosaccharide binding	42	0.0076	0 1402	3965
30	proline-rich region binding	9	0.008	0.1408	4734
31	sphingolipid binding	8	0.0085	0.1464	6402
32	metallocarboxypeptidase activity	24	0.0088	0.1464	10404, 165
33	I-SMAD binding	10	0.009	0 1464	10101/105
00	1 OWN D Diricing	10	0.000	0.1404	170954, 283, 4478, 4542, 4604, 54443,
34	actin binding	315	0.0094	0.1474	81930, 822, 91624, 9499
25	transprintion represent activity	226	0.0104	0.1560	100125288, 10049, 10346, 10848, 138151,
35	transcription repressor activity	336	0.0104	0.1569	165, 1997, 23411, 2874, 3399, 604, 7764
36		35	0.0106	0.1569	3315, 4734, 81930
37	anion binding	16	0.0109	0.1569	10797, 4860
38	IgG binding	6	0.0114	0.1569	
39	voltage-gated chloride channel activity	15	0.0115	0.1569	1192, 1193
40	low-density lipoprotein receptor activity	11	0.012	0.1584	58191
41	protein complex binding	238	0.0123	0.1592	1050, 1373, 2857, 3059, 3384, 7045, 7132
42	cAMP-dependent protein kinase activity	7	0.0133	0.1602	5613
43	carboxypeptidase activity	36	0.0144	0.1662	10404, 165, 642
44	GDP binding	26	0.0152	0.171	2669, 5867
45	small conjugating protein binding	36	0.0153	0.171	3315, 4734, 81930
46	interleukin-1 receptor binding	11	0.0159	0.171	7100
47	metalloendopeptidase inhibitor activity	10	0.0165	0.171	56925, 7079
48	metalloenzyme inhibitor activity	10	0.0165	0.171	56925, 7079
49	metalloenzyme regulator activity	10	0.0165	0.171	56925, 7079
50	intramolecular oxidoreductase activity	40	0.0165	0.171	10130, 27306, 6916
51	sugar binding	173	0.0185	0.187	10219, 1462, 3823, 3965, 6402, 9936
52	endoribonuclease activity	39	0.0187	0.1871	283, 6036, 6039
53	exopeptidase activity	78	0.0205	0.1975	10269, 10404, 165, 2191, 642
54	ATPase regulator activity	7	0.0205	0.1975	10049
55	water channel activity	11	0.0208	0.1978	358
56	cyclic nucleotide-gated ion channel activity	6	0.0238	0.2144	358
57	intracellular cyclic nucleotide activated cation channel activity	6	0.0238	0.2144	358
58	scavenger receptor activity	43	0.0255	0.2238	58191, 9332
59	RNA polymerase II transcription factor activity	236	0.0261	0.2238	1050, 29128, 29777, 3660, 3665, 7913
60	regulatory region DNA binding	148	0.0263	0.2238	1050, 57658, 7764
61	transcription regulatory region DNA binding	148	0.0263	0.2238	1050, 57658, 7764
62	interferon-alpha/beta receptor binding	8	0.0306	0.2581	3440
63	collagen binding	38	0.0314	0.2613	871
64	peptidase inhibitor activity	141	0.032	0.2619	12, 25816, 56925, 6590, 7079, 710, 718, 871
65	endopeptidase inhibitor activity	133	0.0341	0.272	12, 25816, 56925, 6590, 7079, 710, 718, 871
66	tumor necrosis factor receptor activity	11	0.0355	0.2733	7132
67	alcohol transmembrane transporter activity	7	0.0365	0.2747	358
68	polyol transmembrane transporter activity	7	0.0365	0.2747	358
					10346, 10488, 10848, 165, 23411, 27005,
69	transcription cofactor activity	358	0.0367	0.2747	2874, 29777, 3399, 57658, 9049, 9124
70	RNA polymerase binding	6	0.0387	0.2849	4734
71	phospholipase inhibitor activity	12	0.0389	0.2849	
72	growth factor binding	111	0.0394	0.2862	3487, 3587, 3588, 4052
70		500	0.0400	0.005	100125288, 10488, 1050, 1997, 23764,
/3		582	0.0423	0.295	55145, 57658, 604, 7764
74		9	0.0464	0.3166	4604
75	tumor necrosis factor binding	12	0.0466	0.3166	7132
76	cytokine activity	188	0.0487	0.3268	2919, 3440, 3600, 58191, 6398
77	lipoprotein receptor activity	15	0.0499	0.3321	58191
Supplemental Table 4.6. Among genes with lower expression in Alzheimer's, the binding motifs of several transcription factors were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	NRSF_01	418	0	0.022	10307, 23130, 26505, 401190, 57574, 627
2	NMYC_01	330	0.001	0.049	1846, 7291, 7425
3	CREB_01	283	0.001	0.049	148304, 1846, 9360
4	CREBP1CJUN_01	287	0.002	0.095	124044, 23070, 7425, 8364, 8366
5	MEIS1BHOXA9_02	231	0.004	0.13	1408, 627, 79680, 9360
6	AREB6_03	248	0.004	0.13	124044, 155066, 83694
7	CREB_02	137	0.005	0.13	140597, 63917, 8364, 8366
8	CREBP1_Q2	357	0.005	0.13	54984, 81576, 8364, 8366, 9360
9	NFY_01	22	0.01	0.225	
10	AREB6_01	161	0.011	0.225	23130, 5368, 9379
11	ROAZ_01	326	0.024	0.384	124808, 4330, 91851
12	RFX1_02	420	0.028	0.384	124044, 145407, 1848, 29070
13	TAXCREB_02	267	0.03	0.384	115548, 79132
14	ATF_01	394	0.03	0.384	8364, 8366, 9360
15	SREBP1_01	338	0.031	0.384	140597, 26995, 57795, 627
16	MEIS1_01	101	0.042	0.484	10307
17	LYF1_01	99	0.045	0.495	23130, 242

Supplemental Table 4.7. Among genes with higher expression in Alzheimer's, the binding motifs of several transcription factors were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
					11170, 1462, 24146, 27005, 2919, 3384, 56658, 56833, 57216,
1	NFKAPPAB_01	214	0.0020	0.0951	57658, 58191, 81493, 84876
2	NKX22_01	219	0.0108	0.2252	285, 29128, 4734, 5422, 57633, 6646, 85450
					10488, 1997, 25816, 4734, 55843, 56131, 58526, 6036, 712,
3	OCT_C	267	0.0146	0.2704	9531
4	PBX1_01	54	0.0300	0.3837	5166, 8334, 91947
5	HOXA3_01	183	0.0318	0.3837	2197, 4038, 648, 84173, 85450
6	CREL 01	274	0.0490	0.5000	1462, 23764, 2919, 55273, 56833, 57216, 57658, 58191, 84876

Supplemental Table 4.8. Among genes with higher expression in Alzheimer's, the binding sites of several microRNAs were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes	
					10269, 1050, 10848, 1462, 23593, 26511, 29128, 5355, 55227,	
1	mir-506	893	0.023	0.831	57658, 58526, 604, 64089, 754, 79710	
					10269, 1050, 10848, 1462, 23593, 26511, 29128, 5355, 55227,	
2	mir-124	890	0.035	0.831	57658, 58526, 604, 64089, 754, 79710	
3	mir-433	163	0.045	0.831	256435, 284370, 91947	

Supplemental Table 4.9. Among genes with lower expression in Alzheimer's, the binding sites of several microRNAs were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	mir-129-5p	292	0.004	0.592	114034, 124808, 23251, 9379
2	mir-185	118	0.014	0.831	81606
3	mir-328	73	0.028	0.831	4330, 8364, 8366

Supplemental Table 4.10. Among genes with higher expression in Alzheimer's, several cytogenic bands were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	7p13-p12	7	8.12E-05	0.023	10268, 5224
2	17p13	30	1.85E-04	0.036	2874, 58191, 6154
3	4q25	26	2.08E-04	0.036	1950
4	10p12.31	5	3.68E-04	0.046	219681
5	1q25	21	4.45E-04	0.048	4688, 6646
6	1q23.2	7	1.09E-03	0.086	54935, 56833
7	1p36.3-p36.2	10	1.97E-03	0.122	
8	1p21.3	7	2.41E-03	0.129	51375
9	17q11.2-q12	9	2.50E-03	0.129	26574
10	5q31-q33	5	3.31E-03	0.143	
11	2p11.2	33	3.67E-03	0.152	822, 84173
12	22q11.1	5	0.005	0.19	128954
13	9q22	13	0.005	0.193	4814
14	Xp21.1	13	0.005	0.193	8406
15	1q21	78	0.006	0.193	6232, 6275, 6282, 6283
16	1q23	16	0.008	0.227	
17	8q11	6	0.009	0.251	
18	12q	12	0.012	0.301	
19	9q33.2	15	0.012	0.301	92399
20	3p26.2	6	0.014	0.329	57633
21	1p31-p22	5	0.014	0.334	22802
22	7p14	7	0.024	0.464	358
23	6q24	8	0.025	0.478	23593
24	14q21	7	0.026	0.48	57161
25	5q14.3	8	0.028	0.49	1462
26	12q24.11	24	0.033	0.541	338773, 84329
27	3q24	12	0.034	0.546	
28	2p16.3	7	0.038	0.604	11037
29	1p31.1	28	0.043	0.629	11080, 256435, 91624
30	6p22.1	42	0.043	0.629	29777
31	19q13.3	68	0.045	0.636	2014, 2828, 29998, 5424
32	15q22.1	6	0.049	0.661	79811

Supplemental Table 4.11. Among genes with lower expression in Alzheimer's, several cytogenic bands were enriched.

Rank	Name	#Genes	P-Value	FDR	SigGenes
1	16p13.3	169	1.81E-06	0.002	10573, 124093, 1877, 21, 3049
2	10p11.2	6	7.64E-06	0.003	7587
3	8p23	6	3.45E-04	0.046	54984
4	12p12.3	25	9.67E-04	0.086	8364, 8366
5	8p21.3	21	1.03E-03	0.086	10361
6	15q25.1	11	1.81E-03	0.122	23251
7	2q21.1	15	1.86E-03	0.122	653275
8	7q31.3	11	2.61E-03	0.129	10157
9	2p22.2	6	2.70E-03	0.129	10153
10	7p14.3	8	2.83E-03	0.129	6100
11	7p11.2	8	6.16E-03	0.203	
12	14q32.2	11	6.31E-03	0.203	57596
13	8p23.3	5	6.66E-03	0.206	9172
14	19q13.42	46	7.39E-03	0.221	
15	10q23.32	5	0.008	0.227	
16	9q34.11	42	0.011	0.286	26995
17	20q11.2-q12	6	0.016	0.354	4826
18	17p11.2	59	0.018	0.4	125170, 254272, 388341
19	2p23.1	6	0.018	0.4	81606
20	2q37.3	43	0.019	0.402	151176, 728294
21	2p25.3	10	0.019	0.402	
22	14q32	16	0.021	0.416	
23	5p15.33	14	0.024	0.471	65980
24	17q23	7	0.027	0.49	762
25	10q24.31	9	0.029	0.509	
26	1p36.33	31	0.031	0.53	9636
27	16q24.3	34	0.032	0.536	124044, 58189
28	9q34	44	0.039	0.611	11182
29	12q23.3	17	0.042	0.629	121053
30	6p21.33	24	0.044	0.629	8364, 8366
31	19p13.3	183	0.044	0.632	5657, 566, 84717
32	14q11.2-q12	8	0.047	0.647	
33	14q32.33	26	0.05	0.661	

CHAPTER V

Conclusions and Future Directions

OVERALL SUMMARY

The goals of this dissertation are to understand (1) the regulation of homocysteine (Hcy), a one-carbon metabolite, by the heavy metal lead (Pb) and (2) the role of DNA methylation and gene expression in late onset Alzheimer's disease (LOAD), a spontaneous neurodegenerative disease. First, in the Normative Aging Study cohort, it is demonstrated that plasma total Hcy is regulated by Pb exposure and dietary availability of vitamin B6, vitamin B12, and folate. LOAD is associated with changes in circulating Hcy, which is involved with methyl-group substrate availability for DNA methylation. Second, modest, widespread differences in DNA methylation were observed in the frontal cortex of LOAD subjects vs. controls. A follow-up study suggests that these DNA methylation marks may have functional gene expression implications. Gene expression and DNA methylation values at an individual gene were validated in additional samples. This dissertation provides the foundation for further work on the environmental influences on Hcy and epigenetics in LOAD.

SUMMARY OF HOMOCYSTEINE (HCY) AND LEAD (PB) EXPOSURE

Hcy is a thiol-containing intermediate in the one-carbon metabolism cycle. It is involved in folate metabolism and corresponding nucleotide synthesis, methionine metabolism and corresponding methylation of DNA, RNA, and proteins, and finally glutathione (antioxidant) synthesis (Selhub 1999). Elevations in homcysteine are associated with cardiovascular disease (CVD) (Wald et al. 2002) and neurodegeneration (Mattson and Shea 2003), including AD (Seshadri et al. 2002). This dissertation chapter shows that recent lead exposure (measured in blood) is cross-sectionally associated with Hcy levels (8.14% increase in Hcy with 3ug/dl IQR increase in blood Pb). This association was modified by vitamin B6, vitamin B12, and folate dietary factors as determined through stratified analysis. Cumulative exposure to lead (measured in tibia) was also associated with homocysteine, but this relationship disappeared after blood lead was included in the model, suggesting that blood lead mediates the association between bone lead and homocysteine.

Strengths and Weaknesses

The current study is strengthened by the use of repeated measures of Hcy and blood Pb as well as repeated measures in Hcy with baseline bone Pb. This allows us to look at longitudinal changes in Hcy with Pb exposure, not simply cross-sectional associations. This study is the first to examine the Pb-Hcy relationship while examining plausible dietary interactions, namely folate and vitamins B6 and B12.

Previous research has looked at the cross-sectional association between lead exposure and homocysteine (Chia et al. 2007; Schafer et al. 2005). Other studies have observed changes in homocysteine with diet over time (Clarke and Armitage 2000). One paper has combined lead exposure and diet in the study of homocysteine (Yakub and Iqbal 2010). This study is the first (that we are aware of) to include repeated measures of lead exposure, Hcy, and diet. It is

strengthened by multiple measures of lead exposure (tibia, patella, and blood) and of dietary status (plasma levels and food frequency questionnaire levels).

This study had limited power to detect interactions, due in part to missing nutrient data. In addition, results using food frequency questionnaires (FFQ) have been debated in the literature largely due to the poor correlation between FFQ and repeated dietary recall (Byers 2001; Kristal et al. 2005). In our study the consistent associations observed with concurrent measures of plasma nutrients validate the use of FFQ.

Scope and Implications of the Work

The results of this longitudinal study suggest a strong link between homocysteine and lead exposure. This dissertation did not address the downstream consequences of the association. Toxicology studies are needed to decipher the molecular mechanisms linking homocysteine and lead exposure. Potentially, Pb and Hcy may work through a common mechanism of binding and disrupting available sulfur-containing proteins (Krumdieck and Prince 2000; Needleman 2004), which may suggest synergistic or additive toxicity.

Based on the research in this dissertation, behavioral interventions to reduce blood Pb and improve dietary intake of vitamins B6 and B12 and folate will have a protective effect by lowering Hcy. Multiple randomized control trials have attempted to reduce circulating Hcy levels in people who are already ill by using dietary interventions (Mei et al. 2010). These studies have been successful in reducing circulating Hcy, but did not produce the hypothesized health benefits, specifically reductions in coronary heart disease, stroke, cardiovascular events, or all-cause mortality. Perhaps taking a public health approach with interventions prior to disease onset are needed to prevent incident cases.

SUMMARY OF DNA METHYLATION IN AD

The second part of the dissertation observed throughout the genome moderate changes in DNA methylation that are associated with LOAD in the frontal cortex (Bakulski et al. 2012). This study was the largest genome-wide DNA methylation investigation of the LOAD brain to date. Using 12 matched-pair LOAD case and control frontal cortex samples, we quantitatively determined DNA methylation at 27,578 CpG sites. Across 948 CpG sites that were statistically different between LOAD cases and controls after adjusting for age and sex, the mean methylation difference was 2.9%. A CpG site in the promoter for the gene Transmembrane Protein 59 (TMEM59) was 7.3% hypomethylated in LOAD cases. This gene is involved in post-translational modification of Amyloid Precursor Protein (APP), and thus β -amyloid plaque formation. We validated the DNA methylation findings using a second DNA methylation detection platform and 13 additional matched pairs. DNA methylation was associated with *TMEM59* mRNA gene expression, but not with the quantity of the full-length protein. This study suggests that DNA methylation may be involved in LOAD, but future research is needed to determine the extent.

Strengths and Weaknesses

A major strength of this research was the use of well pathologically characterized human tissue from a brain region involved in LOAD. The majority of epigenetic epidemiology studies test blood DNA methylation (Foley et al. 2009). The association between circulating lymphocytes and brain epigenetics is unknown (though our research group has a funded NIEHS p30 pilot grant to investigate this question). Access to post-mortem human samples via the Michigan Alzheimer's Disease Center provided valuable information on the *in vivo* inaccessible tissue.

On the other hand, a potential weakness of this research is the use of tissue samples made up of complex mixtures of cell types. Changes in composite DNA methylation may be due to changes in the percent cell-types

(Houseman et al. 2012). The data presented in this paper could be interpreted as actual epigenetic changes with disease, as indicators of different cellular mixtures, or as markers of past environmental exposures.

At the time, the Illumina Infinium HumanMethylation27K BeadArray was the most comprehensive and cost efficient method available. This technology queries the quantitative DNA methylation levels of 27,578 CpG sites throughout the genome with approximately two tag CpG sites per gene. Previous LOAD-DNA methylation research was based on gene-specific DNA methylation founded in *a priori* assumptions about the disease. The Illumina array was the most comprehensive DNA methylation array available and our study provided the most un-biased assessment of the DNA methylome of LOAD.

Genomic technology is rapidly evolving. In retrospect, with newer array and next-generation sequencing technologies available, the Illumina 27K BeadArray represents a fraction of the potential DNA methylation information that is available today. Illumina's latest 450K array has more than fifteen times the number CpG sites and these sites have a less biased genomic distribution. The 27K array CpG sites were 92.0% in promoters and 72.5% in CpG islands. Potentially important non-genic regulation sites were largely not included in the model used in the dissertation. Studies suggest that CpG locations in gene deserts may be functionally important in the brain (Maunakea et al. 2010) and unfortunately they were unable to be captured in our study.

Scope and Implications of the Work

This research suggests DNA methylation may be involved in LOAD, but it is far from definitive. The methylation changes and sample size were modest, and results need to be confirmed in additional studies before mechanistic conclusions may be drawn. Several research groups have ongoing projects to investigate Alzheimer's disease and epigenetics. The results of those studies combined with our research will provide a larger body of evidence on the topic. In addition, the effect sizes observed were moderate and future work will want to

consider separating complex cell mixtures to identify changes in neurons as a priority. Further, the findings at *TMEM59* were validated through gene expression, but the full-length protein levels did not differ+ between LOAD cases and controls. The functional significance of these DNA methylation markers across the genome is presented in the next section of the dissertation.

SUMMARY OF GENE EXPRESSION AND DNA METHYLATION IN AD

The final section of the dissertation builds on the second experimental section. Using the same LOAD and neuropathologically confirmed controls as above, we observed correlations between DNA methylation differences and gene expression differences in the frontal cortex when comparing. Integrating genome-wide analyses of DNA methylation and gene expression allowed us to detect additional potential sites at low false discovery rates with LOAD associated epigenetic change. This research suggests that DNA methylation differences may have functional consequences, potentially relevant in disease.

Strengths and Weaknesses

The samples and the technologies used overlap between this dissertation chapter and the previous, therefore the strengths and weaknesses of the samples and the Illumina technology still apply. In addition, combining datasets from two companies (Illumina and Affymetrix) with multiple probesets per gene proved to be methodologically challenging. We followed a previously published pipeline to integrate the data (Sartor et al. 2011). This method proved to be successful in identifying genes for follow-up.

Scope and Implications of the Work

This research extends previous dissertation study to continue building case for DNA methylation in LOAD. Integrating gene expression and DNA methylation analyses yielded greater numbers of CpG sites for potential follow-up and mechanistic investigation. This study is an example of how DNA methylation research can be enhanced when done alongside gene expression research. As studies increase the sample number of LOAD and control brains tested, this method is recommended.

FUTURE DIRECTIONS

This dissertation provides opportunities for rich potential areas of further research. Late-onset Alzheimer's disease is an enormous public health problem and the burden will continue to increase (International 2010). LOAD is traditionally understudied in the laboratory relative to EOAD, due to the availability of EOAD analogous animal models. Despite the public health potential, within the LOAD literature, environmental risk factors and potential mechanisms of environmental toxicants are further underrepresented. Future research topics, directly related to this dissertation, include testing for a human epidemiologic link between Pb exposure and LOAD, examination of the roles of additional metals in neurodegeneration, cell-type specificity in the epigenetic molecular epidemiology, modifications to histones, and further work on dietary factors and methylation. This is a broad field of research in which could potentially contribute to our understanding and prevention of an insidious disease.

Exposure to lead has negative neurological consequences in early life (Fewtrell et al. 2004; Grosse et al. 2002). It is also associated with cognitive decline in late life (Shih et al. 2007; Weisskopf et al. 2004; Wright et al. 2003), potentially through increased hippocampal gliosis (Weisskopf et al. 2007). Though a large body of research demonstrates Pb is associated with accelerated declines in cognition, the hypothesized causal association between lead exposure and LOAD, implied in this dissertation, has not been rigorously tested. Potential epidemiologic studies to test this link are challenged by the current clinical diagnoses of AD. Clinical diagnoses of AD from 30 ADRC's were

compared to post-mortem neuropathological diagnoses, with 71-87% sensitivity and 44-71% specificity (Beach et al. 2012). The ranges of clinical diagnosis of disease misclassification would require a large study size for environmental epidemiology research.

There are recent advances in neuroimaging (Matsuda and Imabayashi 2012) and circulating biomarkers (Chintamaneni and Bhaskar 2012; Doecke et al. 2012) that improve AD diagnosis and are available for research purposes. For example, the UM ADC utilizes positron emission tomography (PET) imaging methods to visualize β -amyloid in the brain and diagnose cases more accurately (Burke et al. 2011). Brain scan confirmed AD cases and controls could be measured for lead exposure at the UM Retrospective Lead Exposure Laboratory using the Cd¹⁰⁹ K-shell X-ray Fluorescence instrument. Alternatively, postmortem studies with neuropathologically confirmed LOAD and control samples may be able to reconstruct past metals exposure history using teeth. Researchers have identified a layer of molar tissue with relatively low turnover that dates from early development that can be quantified for metals using laserablation ICP-MS (Hare et al. 2011). With method validation, a case-control approach may be able to accurately reconstruct past exposure history. Finally the Pb-LOAD argument could be tested with brain post-mortem lead mapping. Demonstrating that Pb is present at the site of pathology would strengthen the argument. Post-mortem soft tissue metal content can be mapped in slices using rapid-scanning x-ray fluorescence methods (Popescu et al. 2009). Grants that propose to study the Pb-induced epigenetic changes in LOAD will need to first demonstrate the Pb-LOAD relationship in humans.

Several metals beyond Pb have been implicated in AD with varying degrees of evidence, including aluminum (Frisardi et al. 2010; Shcherbatykh and Carpenter 2007), iron (Mandel et al. 2007), copper (Brown 2009; Shcherbatykh and Carpenter 2007), zinc (Shcherbatykh and Carpenter 2007), and mercury (Gerhardsson et al. 2008). Many metals work through shared mechanisms in the

body. For example, lead, cadmium, mercury, and nickle bind protein sulfhydryl groups and deplete glutathione, resulting in oxidative stress (Stohs and Bagchi 1995). Future LOAD research could expand to include rigorous epidemiologic inquiry of metals in addition to Pb, using similar methods proposed above for Pb. Post-mortem exposure studies utilizing ICP-MS methods are capable of measuring up to twelve metals simultaneously. The half-life of each of these metals varies in tissues such as bone and skin, thus post-mortem exposure assessment for metals besides Pb may not reflect exposure prior to disease onset. KXRF *in vivo* technologies are being developed for additional metals including cadmium and arsenic (personal communication, Linda Huiling Nie, Purdue University). *In vivo* metals epidemiology studies coupled with early stage disease diagnosis techniques may be an effective strategy to test metals exposure as a risk factor for LOAD.

Reports have proposed pesticides (Baldi et al. 2003; Santibanez et al. 2007), solvents (Kukull et al. 1995), electromagnetic field (Sobel et al. 1996), and particulate matter in air pollution (Calderon-Garciduenas et al. 2004) may be risk factors for LOAD. The links between these exposures and LOAD have not been yet been validated. These types of environmental exposure studies have been underrepresented in the AD literature, likely due to the challenges of retrospective exposure assessment in older adults. Retrospective exposure assessment for pesticides and solvents relies heavily on questionnaire data in the absence of effective biomarkers. Future work may test the association between additional exposures and LOAD onset using long-running large cohorts where exposure information has been collected over time.

In addition to the influence of toxicants on one-carbon metabolism and epigenetics, future research may look at the direct and indirect effects of diet on the system. Results from the lead and homocysteine research paper demonstrate that dietary B6, B9, and B12 levels modify the association between blood Pb and homocysteine, an important methyl-donor for DNA methylation.

We have shown that DNA methylation change is associated with LOAD (Bakulski et al. 2012). Future research could test whether AD-associated DNA methylation changes are prevented with B-vitamin supplemented diet. The study of nutrient toxicant interactions is an emerging field in environmental health with potential for public health intervention.

To understand more precise mechanisms involved in LOAD pathogenesis, molecular epidemiology of epigenetics will need to refine the tissues and cell types studied. AD epigenetic epidemiology compared blood from AD cases and controls as a tissue of epidemiologic convenience (Bollati et al. 2011; Maes et al. 2007). Blood DNA methylation has not yet been tested as a biomarker of brain epigenetics. Whole brain region epigenetics is closer to the disease site, but it still represents a mixture of cell types that each likely have characteristic epigenetic profiles. Recent studies suggest that changes in circulating lymphocyte epigenetics represent shifting cell type proportions (Houseman et al. 2012). The DNA methylation differences observed in this dissertation in the human brain with LOAD may represent the understood shifting cell type proportions with disease. In future research, cell types will need to be separated from the tissue matrix. This is logistically challenging in frozen archived tissues where the cell membrane is often no longer intact. Ongoing work in the laboratory (particularly by 2nd year Ph.D. student, Zishaan Farooqui) seeks to separate nuclei of neurons from non-neurons. This allows for the study of epigenetics in neurons, and associations with environmental exposures, but it does not allow for RNA or protein functional validation. Further advancements may make the study of specific cell types more feasible.

The focus of the current research has been DNA methylation. However, recent research suggests that histones may be an important target for epigenetic modifications in the brain. Histone modifications play a role in memory formation

(Levenson et al. 2004) and HDAC inhibitor treatment increases memory formation (Vecsey et al. 2007). Indeed, HDAC inhibitors have been proposed for human AD clinical trials (Kazantsev and Thompson 2008). In the male rat brain, *App* mRNA expression is repressed by thyroid hormone (T3) sensitive histone modifications (Belakavadi et al. 2011). T3 Treatment decreases H3K4 methylation and H3 acetylation at the *App* promoter. This silences *App*, reversed with histone deacetylase (HDAC) and histone lysine demethylase inhibitor treatment (Belakavadi et al. 2011). Histone modifications are also environmentally sensitive (Mathers et al. 2010). Together, these observations suggest that future environmental molecular epidemiology research on AD should target histone modification.

CONCLUDING REMARKS

In summary, this dissertation has provided important molecular epidemiology insights to chronic disease. It has demonstrated moderate DNA methylation differences in the LOAD brain vs. controls that may have functional gene expression consequences. In addition, homocysteine may be an important target for lead exposure toxicity and may link lead exposure to chronic disease including CVD and neurodegenerative disease. This work has implications for prevention and potential homocysteine intervention through lowering blood lead levels. This research has also spurred multiple additional research questions at the intersection of Alzheimer's disease, one-carbon metabolism, epigenetics, and lead exposure.

REFERENCES

- Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Lieberman AP, Konen JR, Albin RL, Hu H, Rozek LS. 2012. Genome-wide DNA methlyation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. Journal of Alzheimer's Disease 29(2).
- Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P. 2003. Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5): 409-414.
- Beach TG, Monsell SE, Phillips LE, Kukull W. 2012. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol 71(4): 266-273.
- Belakavadi M, Dell J, Grover GJ, Fondell JD. 2011. Thyroid hormone suppression of beta-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol 339(1-2): 72-80.
- Bollati V, Galimberti D, Pergoli L, Dalla Valle E, Barretta F, Cortini F, Scarpini E, Bertazzi PA, Baccarelli A. 2011. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun.
- Brown DR. 2009. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans(21): 4069-4076.
- Burke JF, Albin RL, Koeppe RA, Giordani B, Kilbourn MR, Gilman S, Frey KA. 2011. Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 134(Pt 6): 1647-1657.
- Byers T. 2001. Food frequency dietary assessment: how bad is good enough? Am J Epidemiol 154(12): 1087-1088.
- Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-Flores M, Solt AC, Altenburg M, Torres-Jardon R, Swenberg JA.
 2004. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6): 650-658.
- Chia SE, Ali SM, Lee BL, Lim GH, Jin S, Dong NV, Tu NT, Ong CN, Chia KS. 2007. Association of blood lead and homocysteine levels among lead

exposed subjects in Vietnam and Singapore. Occup Environ Med 64(10): 688-693.

- Chintamaneni M, Bhaskar M. 2012. Biomarkers in Alzheimer's Disease: A Review. ISRN Pharmacol 2012: 984786.
- Clarke R, Armitage J. 2000. Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. Semin Thromb Hemost 26(3): 341-348.
- Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, Rumble R, Szoeke C, Taddei K, Taddei T, Trounson B, Ames D, Masters CL, Martins RN. 2012. Blood-Based Protein Biomarkers for Diagnosis of Alzheimer Disease. Arch Neurol: 1-8.
- Fewtrell LJ, Pruss-Ustun A, Landrigan P, Ayuso-Mateos JL. 2004. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. Environ Res 94(2): 120-133.
- Foley DL, Craig JM, Morley R, Olsson CA, Dwyer T, Smith K, Saffery R. 2009. Prospects for epigenetic epidemiology. Am J Epidemiol 169(4): 389-400.
- Frisardi V, Solfrizzi V, Capurso C, Kehoe PG, Imbimbo BP, Santamato A, Dellegrazie F, Seripa D, Pilotto A, Capurso A, Panza F. 2010. Aluminum in the diet and Alzheimer's disease: from current epidemiology to possible disease-modifying treatment. J Alzheimers Dis 20(1): 17-30.
- Gerhardsson L, Lundh T, Minthon L, Londos E. 2008. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 25(6): 508-515.
- Grosse SD, Matte TD, Schwartz J, Jackson RJ. 2002. Economic gains resulting from the reduction in children's exposure to lead in the United States. Environ Health Perspect 110(6): 563-569.
- Hare D, Austin C, Doble P, Arora M. 2011. Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 39(5): 397-403.
- Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. 2012. DNA methylation arrays as

surrogate measures of cell mixture distribution. BMC Bioinformatics 13(1): 86.

- International AsD. 2010. World Alzheimer Report 2010: The global economic impact of dementia.
- Kazantsev AG, Thompson LM. 2008. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10): 854-868.
- Kristal AR, Peters U, Potter JD. 2005. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomarkers Prev 14(12): 2826-2828.
- Krumdieck CL, Prince CW. 2000. Mechanisms of homocysteine toxicity on connective tissues: implications for the morbidity of aging. J Nutr 130(2S Suppl): 365S-368S.
- Kukull WA, Larson EB, Bowen JD, McCormick WC, Teri L, Pfanschmidt ML, Thompson JD, O'Meara ES, Brenner DE, van Belle G. 1995. Solvent exposure as a risk factor for Alzheimer's disease: a case-control study. Am J Epidemiol 141(11): 1059-1071; discussion 1072-1059.
- Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. 2004. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279(39): 40545-40559.
- Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. 2007. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12): 1795-1809.
- Mandel S, Amit T, Bar-Am O, Youdim MB. 2007. Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor proteinprocessing regulatory activities as therapeutic agents. Prog Neurobiol 82(6): 348-360.
- Mathers JC, Strathdee G, Relton CL. 2010. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71: 3-39.
- Matsuda H, Imabayashi E. 2012. Molecular neuroimaging in Alzheimer's disease. Neuroimaging Clin N Am 22(1): 57-65, viii.

- Mattson MP, Shea TB. 2003. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3): 137-146.
- Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303): 253-257.
- Mei W, Rong Y, Jinming L, Yongjun L, Hui Z. 2010. Effect of homocysteine interventions on the risk of cardiocerebrovascular events: a meta-analysis of randomised controlled trials. Int J Clin Pract 64(2): 208-215.
- Needleman H. 2004. Lead poisoning. Annu Rev Med 55: 209-222.
- Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RPE, Luning K, Devon RM, George GN, Hanson AD, Harder SM, Chapman LD, Pickering IJ, Nichol H. 2009. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence. Physics in Medicine and Biology 54(3): 651-663.
- Santibanez M, Bolumar F, Garcia AM. 2007. Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64(11): 723-732.
- Sartor MA, Dolinoy DC, Jones TR, Colacino JA, Prince ME, Carey TE, Rozek LS. 2011. Genome-wide methylation and expression differences in HPV(+) and HPV(-) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 6(6): 777-787.
- Schafer JH, Glass TA, Bressler J, Todd AC, Schwartz BS. 2005. Blood lead is a predictor of homocysteine levels in a population-based study of older adults. Environ Health Perspect 113(1): 31-35.
- Selhub J. 1999. Homocysteine metabolism. Annu Rev Nutr 19: 217-246.
- Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346(7): 476-483.

- Shcherbatykh I, Carpenter DO. 2007. The role of metals in the etiology of Alzheimer's disease. J Alzheimers Dis 11(2): 191-205.
- Shih RA, Hu H, Weisskopf MG, Schwartz BS. 2007. Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3): 483-492.
- Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC. 1996. Elevated risk of Alzheimer's disease among workers with likely electromagnetic field exposure. Neurology 47(6): 1477-1481.
- Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2): 321-336.
- Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA. 2007. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27(23): 6128-6140.
- Wald DS, Law M, Morris JK. 2002. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325(7374): 1202.
- Weisskopf MG, Hu H, Sparrow D, Lenkinski RE, Wright RO. 2007. Proton magnetic resonance spectroscopic evidence of glial effects of cumulative lead exposure in the adult human hippocampus. Environ Health Perspect 115(4): 519-523.
- Weisskopf MG, Wright RO, Schwartz J, Spiro A, 3rd, Sparrow D, Aro A, Hu H. 2004. Cumulative lead exposure and prospective change in cognition among elderly men: the VA Normative Aging Study. Am J Epidemiol 160(12): 1184-1193.
- Wright RO, Tsaih SW, Schwartz J, Spiro A, 3rd, McDonald K, Weiss ST, Hu H. 2003. Lead exposure biomarkers and mini-mental status exam scores in older men. Epidemiology 14(6): 713-718.
- Yakub M, Iqbal MP. 2010. Association of blood lead (Pb) and plasma homocysteine: a cross sectional survey in Karachi, Pakistan. PLoS One 5(7): e11706.