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CHAPTER I

Introduction

This dissertation develops novel methodology for three challenging problems in

the estimation of treatment and group effects in the presence of dependently censored

survival data. In Chapter II, we propose semiparametric methods for estimating the

effect of a time-dependent covariate on treatment-free survival. The data structure

of interest consists of a longitudinal sequence of measurements and a potentially cen-

sored survival time. The factor of interest is time-dependent. Treatment-free survival

is of interest and is dependently censored by the receipt of treatment. Patients may

be removed from consideration for treatment, temporarily or permanently. The pro-

posed methods involve landmark analysis and partly conditional hazard regression.

Dependent censoring is overcome through a variant of Inverse Probability of Cen-

soring Weighting (IPCW). The regression parameter of interest is marginal in the

sense that time-varying covariates are taken as fixed at each landmark, with the

modeled mortality hazard function then implicitly averaging across future covariate

trajectories. The proposed methods circumvent the need for explicit modeling of the

longitudinal covariate process.

Mean survival time can be used to quantify both the patient-specific and average

effect of a time-dependent treatment. In Chapter III, we propose semiparamet-

1
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ric methods for estimating the mean difference between treatment-free and post-

treatment restricted mean lifetime. The data structure of the treatment-free period

consists of a longitudinal sequence of measurements and a potentially censored sur-

vival time, with treatment-free survival dependently censored by the receipt of treat-

ment. Landmark analysis, partly conditional hazard regression, and IPCW are used

to model treatment-free survival. The post-treatment death hazard is modeled using

the measurement history leading up to the treatment time. The average treatment

effect is obtained by averaging over subjects who received treatment, in a manner

which accounts for the independent censoring of treatment times.

In time to event data observed in medical studies, nonproportional hazards and

dependent censoring are common issues when comparing group-specific mortality.

The group effect on mortality may vary over time, as opposed to being constant.

One remedy is adopting a parametric form to model the time-dependent pattern.

However, it is generally difficult to verify the chosen parametric function. Moreover,

in the settings where the proportional hazard assumption fails, investigators tend to

be more interested in cumulative effects on mortality rather than the instantaneous

effect. Estimators using standard approaches are generally biased in the presence of

dependent censoring, which may occur when both censoring and death depend on the

same time-dependent covariates. Therefore, in Chapter IV, we propose an estimator

for the cumulative group effect on survival in the presence of nonproportional hazards

and dependent censoring. The proposed estimator is based on the cumulative hazard

function, assumed to follow a stratified Cox model. No functional form needs to be

assumed for the nature of the nonproportionality.

Each of the proposed methods is shown to be consistent and asymptotically nor-

mal, with consistent covariance estimators provided. Simulation studies reveal that
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the proposed estimation procedures are appropriate for practical use. We apply

the proposed methods to pre- and post-transplant data on End-stage Liver Disease

patients.



CHAPTER II

Partly Conditional Estimation of the Effect of a

Time-Dependent Factor in the Presence of

Dependent Censoring

2.1 Introduction

Longitudinal and survival data are often observed simultaneously in biomedical

studies. For instance, measurements related to patient health may be collected over

time as a longitudinal process during the course of a patient’s disease, while time

to a failure event (e.g., death) is of chief interest. Information on time-varying

covariates is usually collected at multiple follow-up times through the time to the

event. For example, the number of CD4-lymphocyte counts is frequently employed

as a surrogate marker for HIV; the glomerular filtration rate has been utilized as an

indicator of kidney failure; the Model for End-stage Liver Disease (MELD) score,

(Wiesner et al., 2001) is a very sensitive indicator of liver dysfunction among End-

stage Liver Disease (ESLD) patients. In particular, the liver failure setting is the

motivation for the methods we propose in this report.

In the presence of longitudinal and survival data, it is often of interest to esti-

mate the effect on survival time of a time-dependent factor hypothesized to be an

important indicator for disease progression. One approach to link the time-varying

4
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covariate with the time to event is proportional hazards model (Cox, 1972). To

jointly model survival and longitudinal data, a regression model for the time depen-

dent covariate process is usually adopted. Recent literature includes, for example,

methods proposed by Tsiatis, Degruttola, and Wulfsohn (1995); Henderson, Diggle,

and Dobson (1997); Xu and Zeger (2001); Song, Davidian, and Tsiatis (2002) and

Taylor (2011). In joint modeling, valid inference on the time-to-event component

generally requires that the longitudinal process be modeled accurately. This is diffi-

cult to accomplish in many cases. For example, in practice, one may only measure

the covariate process at discrete times instead of continuously.

Moreover, each of the joint modeling approaches cited in the preceding paragraph

models the death hazard as a function of the covariate at time t. Although these

time-dependent approaches have a long history in survival analysis and are applicable

in many situations, they may not be consistent with the investigator’s objectives in

many practical settings. For example, in the liver failure setting, it is often of interest

to determine which of several patients awaiting liver transplantation will die soonest

in the absence of a transplant; i.e., based on each patient’s history up until that date,

and averaging over the possible scenarios that could occur in the future without a

transplant. An available donor liver is allocated once, meaning that the decision

about which patient is expected to die fastest without a liver transplant would need

to be based on information only up to the date the organ is allocated.

Zheng and Heagerty (2005) proposed a partly conditional model applicable to

some settings like that described in the preceding paragraph. Typically in modeling

survival data, the event time, Di, is from study entry (marking the beginning of

follow-up) to the occurrence of the failure event. In Zheng and Heagerty (2005), it is

duration since measurement time Si, i.e., (Di − Si) that is modeled. The method of
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Zheng and Heagerty (2005) is referred as “partly conditional” in the sense that the

hazard function being modeled (i.e., that of Di−Si) only conditions on the covariate

history through time Si, rather than the full covariate history. The time-varying

covariate is “frozen” at each measurement time, as opposed to using information on

{t : t > Si}. There would typically be multiple event times for the same subject,

each corresponding to a different measurement time. The authors approach this

element of the data structure through a multivariate survival analysis framework

analogous to Wei, Lin, and Weissfeld (1989). The method does not require modeling

the longitudinal covariate process and there is no imposed dependence structure

between different survival times from the same individual. With respect to related

work, Van Houwelingen (2007) proposed a landmark model based on the partly

conditional method. In this case, the time clock is not reset to zero every time a

measurement is taken.

Each of the partly conditional methods described this far requires that censoring

be independent of death time. However, dependent censoring frequently occurs in

observational studies. A particular case is when survival in the absence of treatment

(hereafter referred to as treatment-free survival) is of interest and both death and

treatment assignment depend on the same time-varying covariates. If the model

being fitted had conditioned on the entire history of the time-dependent covariates,

then independent censoring could be assumed. However, since landmark methods

freeze the time-varying measurement at the landmark time, hence only using part

of the covariate history, dependent censoring can result due to the mutual correla-

tion between future treatment assignment date, treatment-free death hazard, and

the unmodeled portion of the covariate process occurring after the landmark time.

Naturally, dependent censoring can result in greatly biased estimation.
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As stated previously, the data which motivated our current research arise from the

liver failure setting. The preferred method of treatment for liver failure is deceased-

donor liver transplantation. There are thousands more patients awaiting liver trans-

plantation than there are deceased-donor livers. As a result, patients requiring liver

transplantation who are deemed medically suitable are placed on a liver transplant

waiting list. Currently in the United States, the guiding principle in prioritizing

patients for liver transplantation is that patients who are predicted to die the fastest

without a transplant should be given the highest priority for transplantation. Pa-

tients with acute liver disease (known as Status 1 patients) are at the top of the

wait list with highest priority for liver transplantation. They are followed by chronic

liver failure patients, who are sequenced in decreasing order of MELD score. Note

that MELD scores are updated over time, such that MELD is a time dependent

process. In addition, if a patient becomes too sick, then he/she is removed from

the transplant waiting list. Or, inactive status can be issued but possibly canceled

afterward. During an inactive period, the patient is not eligible for transplantation

and will not receive offers of deceased-donor livers. In practice, usually within the

organ arrival day, doctors wish to allocate the donor liver to the patient who will

die soonest without a transplant based on information up until, not beyond that

calendar date. In reality, liver allocation uses updated MELD scores, which is sim-

ilar to our model freezing the covariate. Therefore, although it is clear that liver

transplantation censors pre-transplant death, such censoring amounts to dependent

censoring in the context of a partly conditional model using landmark methods.

Note that, due to dependent censoring and the potential for subjects to become

ineligible for inclusion in the sample, existing methods described previously (includ-

ing existing partly conditional models and landmark methods) cannot be applied
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directly to liver wait list data. Because the donor organs arrive in calendar time,

it is more natural to choose cross sections based on calendar date as opposed to

follow-up time.

In this report, we propose landmark methods featuring a partly conditional model

to estimate the effect of a time-dependent covariate, in the presence of dependent

censoring. Inverse Probability of Censoring Weighting (IPCW; Robins and Rot-

nitzky, 1992; Robins and Finkelstein, 2000) is used to obtain consistent estimators in

the presence of dependent censoring. To increase precision, we propose two weight

stabilizers that are different than those in the existing IPCW literature. Each land-

mark is based on a common calendar date, not follow-up time, consistent with the

motivating example. At each cross-section (landmark) date, patients who are under

observation (alive, uncensored), untreated, and treatment-eligible are included in the

cross-section. Survival time, with respect to a cross section, is measured from the

landmark date forward; such that the time clock is essentially reset to zero at each

cross section date. We assume that the baseline hazards may differ by cross-section,

such that a stratified Cox model (1972) is appropriate. Instead of modeling the time-

varying covariate process on continuous time, multiple cross sections are chosen over

the observation period to collect measurements from numerous discrete time points.

The proposed methods do not require modeling of the longitudinal process.

The remainder of this article is organized as follows. In Section 2.2, we formu-

late the previously described characteristics of the motivating data structure, then

describe the proposed methods. Asymptotic properties of the proposed estimators

are given in Section 2.3. A simulation study is provided in Section 2.4. Results of

applying the proposed method to the afore-described liver failure data are presented

in Section 2.5. In Section 2.6, we provide some concluding remarks and discussion.
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Asymptotic derivations are provided in Appendix A.

2.2 Proposed Methods

We begin by setting up the required notation. Let Di be the treatment-free time

to failure for subject i, with i = 1, . . . , n. We assume that Di may be censored

at treatment time, Ti, or independent censoring time, Ci, and therefore we define

the treatment-free observation time as Xi = min(Di, Ti, Ci). We also define the

associated indicators, Δi = I(Xi = Di) and ΔT
i = I(Xi = Ti), where I(A) = 1 when

condition A is true and 0 otherwise. We define Yi(t) = I(Xi ≥ t). We choose K

cross section times CSk with k = 1, . . . , K, where the cross-section times represent

calendar dates. The {CS1, . . . , CSK} will typically be equally spaced. The number

of cross-sections, K, will generally depend on the length of the study’s observation

period. Let Sik denote the follow-up time of the ith subject on the calendar date of

the kth cross section, CSk. As we describe shortly, we will be modeling survival times

from the cross-section dates, which essentially accounts to re-setting the time clock

to 0 on each cross-section date. Correspondingly, since Di, Ti and Ci are measured

in study time (i.e., time since subject i started follow-up), we then define death,

treatment and censoring times (each measured as time post-cross-section) as follows:

Dik = Di − Sik, Tik = Ti − Sik and Cik = Ci − Sik. Thus Dik, Tik and Cik are the

death, treatment and censoring times, respectively, as measured from the kth cross

section date. Let Ai(t) take value 1 if patient i is eligible to receive treatment as of

follow-up time t, and 0 otherwise.

Figure 2.1 provides a graphical depiction of how each subject’s treatment-free

observation time is transformed into a set of time-since-cross-section dates. Four

subjects are shown (i1, i2, i3, i4) and two cross sections, (k1,k2). The four subjects
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Note: Vertical dashed lines denote cross-section dates, while horizontal dashed lines denote
treatment-ineligible period. Subject i1 has death times Di1k1 and Di1k2 , corresponding to cross
sections k1 and k2, respectively. Note that, even though subject i1 is not censored after becoming
treatment-ineligible. Subject i2 is treated at time Ti2k2 , and hence censored (perhaps dependently)
at that time, with respect to cross section k2. Subject i3 is not included in either cross section since
i3 starts then finishes follow-up in between cross-sections. Subject i4 first passes cross section k1

and then becomes inactive for a while until a time after cross section k2. Subject i4 is treatment-
ineligible at cross section k2 and, therefore, is not included in this cross section. With respect to
cross section k1, the transplant time Ti4k1 is not censored at the beginning of the treatment-ineligible
period.

Figure 2.1: Examples of the relationship between cross-section time and follow-up
time.



11

begin follow-up at times which are staggered in calendar time. Subject i1 has failure

times Di1k1 corresponding to cross section k1 and Di1k2 with respect to cross section

k2. Note that even though subject i1 is deemed treatment-ineligible after cross sec-

tion k2, the subsequent death is not censored. Subject i2 is treated (and therefore

censored) at time Ti2k2 with respect to cross section k2. Subject i3 is not included

in either cross section since i3 starts and then finishes follow-up in between cross-

sections. Subject i4 is included in cross section k1, then becomes treatment-ineligible

for a while until a time after cross section k2. With respect to cross section k1, i4

is censored at treatment time Ti4k1 , as opposed to earlier (at the beginning of the

treatment-ineligible period). Since subject i4 is treatment-ineligible at cross section

k2, i4 is not included in this cross section.

With respect to cross-section k, one observes a vector for subject i, (Xik, Δik, Δ
T
ik),

where Xik = min(Dik, Tik, Cik), Δik = I(Xik = Dik) and ΔT
ik = I(Xik = Tik).

Note that, for a censored subject, Δik = ΔT
ik = 0. For ease of presentation, define

Aik = Ai(Sik), an indicator for subject i being treatment-eligible at the time of the

kth cross-section. We now set up a modified version of counting process notation.

In particular, we let Nik(t) = I(Xik ≤ t, Δik = 1)Aik, and write dNik(t) for the

increment Nik{(t+dt)−}−Nik(t). The at risk process is defined as Yik(t) = I(Xik ≥

t)Aik; i.e., in addition to subject i being alive and not treated as of time Sik (i.e.,

that Xi > Sik), to be included in the kth cross section, it is also required that the

subject is treatment-eligible at time Sik (i.e., that Aik = 1). However, if Aik = 1,

subject i is not censored if he/she later becomes inactive at time t > Sik. Thus, being

treatment-eligible at time Sik is a cross-section inclusion criterion, but subsequently

becoming ineligible for treatment is not a censoring criterion. With respect to the

treatment process, we define NT
i (t) = I(Xi ≤ t, ΔT

i = 1).
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Let Zi(t) denote the covariate vector for subject i at follow-up time t; and let

Zik ≡ Zi(Sik), the covariate vector as measured at the kth cross section date, CSk.

The Zik vector would typically include baseline covariates, such as race and gender,

and time-varying elements as of time Sik. For notational simplicity, we write Zik =

Zi(Sik), although, more generally Zik can be any function of the covariate history

{Zi(s); s ∈ (0, Sik]}. The hazard function of interest can be expressed as:

λik(t) = lim
δ↓0

1

δ
P [t ≤ Dik < t + δ|Dik ≥ t, Zik, Aik = 1].

Note that the t argument pertains to time after the kth cross-section date, with

the covariate “frozen” at its cross-section date value. The objective is to determine

the relationship between the covariate (as known on the kth cross-section date) and

future treatment-free survival time. Since the underlying goal is to determine what

factors are associated with treatment urgency, only subjects who are treatment-

eligible at the kth cross-section date are of interest; hence the conditioning on [Aik =

1].

Death times are modeled using stratified Cox regression,

(2.1) λik(t) = λ0k(t) exp{β ′
0Zik},

where the baseline hazards are allowed to be cross-section-specific, although covariate

effects are assumed to be equal across all cross-sections. We make the standard

independent censoring assumption which, in the context of the observed data, is

given by:

λik(t|Z̃i(Sik + t), Aik = 1, Tik > t, Cik > t) = λik(t|Z̃i(Sik + t), Aik = 1),

where Z̃i(Sik + t) = {Zi(s); s ∈ (0, Sik + t)}. However, a model for Dik conditioning

on Zik does not incorporate {Zi(r); r ∈ (Sik, Sik + t)}. Further, it will generally be



13

the case that λik(t) �= λik(t|Zik, Aik = 1, Tik > t) due to the correlation between Tik

and Dik resulting from mutual dependence on {Zi(r); r > Sik}.

We use a variant of Inverse Probability of Censoring Weighting (IPCW) to over-

come the dependent censoring of Dik by Tik. The model which takes treatment as

the event is imposed, with hazard function

(2.2) λT
i (t) = Ai(t)λ

T
0 (t) exp{θ′0Zi(t)},

where t is the time from study entry. As indicated in equation (2.2), the treatment

hazard is zero at times during which the patient is treatment-ineligible. Therefore,

treatment hazards among eligible patients are assumed to be proportional. The

covariate in model (2.2) is written as Zi(t) for notational convenience. More generally,

the covariate could be any function of the covariate history {Zi(r); r ∈ (0, t)}. The

regression coefficient, θ0, is estimated by θ̂, as the root of the score function,

UT (θ) =

n∑
i=1

∫ τ

0

{Zi(t) − Z(t; θ)}dNT
i (t),

where Z(t; θ) = R
(1)
T (t; θ)/R

(0)
T (t; θ), R

(p)
T (t; θ) = n−1

∑n
i=1 Ai(t)Yi(t)Zi(t)

⊗p exp{θ′Zi(t)},

p = 0, 1, 2, where, for a vector z, z⊗0 = 1, z⊗1 = z, z⊗2 = zz′. The Breslow estimator

of ΛT
0 (t) is given by Λ̂T

0 (t) = n−1
∑n

i=1

∫ t

0
R

(0)
T (u; θ̂)−1dNT

i (u).

The IPCW method allows us to obtain consistent estimators by weighting each

subject’s experience by the inverse of (what can be thought of heuristically as) the

probability of remaining untreated. In particular, the covariate effect, β0, can be

estimated as the root of the stratified inverse-weighted score function,

(2.3) U(β, W ) =

K∑
k=1

n∑
i=1

∫ τk

0

Aik{Zik − Zk(t; β, W )}W A
ik(t)dNik(t),

where τk satisfies P (Xik ≥ τk) > 0, and the weight function is given by W A
ik(t) =

Yik(t) exp{ΛT
i (Sik + t) − ΛT

i (Sik)}, Zk(t; β, W ) = R
(1)
k (t; β, W )/R

(0)
k (t; β, W ), with
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R
(p)
k (t; β, W ) = n−1

∑n
i=1 AikW

A
ik(t)Yik(t) Z⊗p

ik exp(β ′Zik) for p = 0, 1, 2. We refer to

W A
ik(t) as the Type A weight. Typically, τk is set to the largest observation time

from the kth cross section.

With some algebra, dNik(t) in (2.3) can be replaced by dMik(t) = dNik(t) −
Yik(t)dΛik(t), such that the score function can also be written as

U(β, W ) =

K∑
k=1

n∑
i=1

∫ τk

0

Aik{Zik − Zk(t; β, W )}W A
ik(t)dMik(t).

A consistent estimator of β0 should satisfy E[W A
ik(t)dMik(t)|Zik] = 0. We can write

dMik(t) = I(Tik > t)I(Cik > t)dM∗
ik(t), where dM∗

ik(t) = I(Dik ≥ t)[dN∗
ik(t) −

dΛik(t)] and N∗
ik(t) = I(Dik ≤ t). Under the assumed model, E[dM∗

ik(t)|Zik] =

0, which leads to E[I(Cik > t)dM∗
ik(t)|Zik] = 0 in the case of independent cen-

soring. In the presence of dependent censoring, without the IPCW term W A
ik(t),

E[dMik(t)|Zik] �= 0 since E[dMik(t)|Zik] �= E[I(Tik > t)I(Cik > t)|Zik]E[dM∗
ik(t)|Zik].

However, it can be shown that

E[W A
ik(t)dMik(t)|Zik]

= E[E[W A
ik(t)dMik(t)|Zik, Zi(Sik + t)]|Zik]

= E

[
E[I(Ti > Sik + t|Ti > Sik)]

exp{−ΛT
i (Sik + t) + ΛT

i (Sik)}E[I(Cik > t)dM∗
ik(t)|Zik, Zi(Sik + t)]

∣∣∣∣Zik

]
= E[E[I(Cik > t)dM∗

ik(t)|Zik, Zi(Sik + t)]|Zik]

= E[I(Cik > t)dM∗
ik(t)|Zik] = 0,

such that the weighted score function, (2.3), has mean 0.

However, in practice, some values of W A
ik(t) could be very large due to large values

of ΛT
i (t). As a result, such unstable weights could lead to imprecise estimation of

β0. Similar to Robins and Finkelstein (2000) and Miloslavsky et al. (2004), to make

the estimator more precise, a stabilizer is incorporated into the weight function. We
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explore two versions of the stabilized weight. The first, which we refer to as the Type

B weight, is given by

(2.4) W B
ik (t) = Yik(t)

exp{ΛT
i (Sik + t)}

exp{ΛT
i (Sik)} exp{ΛT

ik(t)}
,

where ΛT
ik(t) is the cumulative hazard from a proportional hazard model which takes

transplant as the event, λT
ik(t) = λT

0k(t) exp{θ′1Zik} and t is the time from entry of

study with θ1 as covariate effect. For the Type B weight, the time intervals covered

by stabilizer and Type A estimator are the same, such that W B
ik (t) may serve to

reduce the variability in the estimator of β0. Another weight we evaluate is more

intuitive and yields the Type C weight,

(2.5) W C
ik(t) = Yik(t) exp{ΛT

i (Sik + t)},

which tracks the history from entry to study up to time t, without conditioning on

the fact that Ti > Sik. Since the stabilizing components of both W B
ik (t) and W C

ik (t)

only based on the covariate history up to the kth cross section time, {Zik}, it can be

shown that E[W B
ik (t)dMik(t)|Zik] = 0 and E[W C

ik (t)dMik(t)|Zik] = 0, such that the

weighted score function (2.3) still has mean 0.

2.3 Asymptotic Properties

We assume that the random vectors {Xi, Δi, Δ
T
i , Z̃i(Xi), Ãi(Xi)}, for i = 1 . . . n,

are independent and identically distributed, with Zi(t) bounded for t ∈ (0, τ ], where

τ satisfies P (Xi ≥ τ) > 0. We summarize the asymptotic properties of the proposed

methods in the following theorem. The regularity conditions are listed in Appendix

A.

Theorem II.1. Under certain regularity conditions, n1/2(β̂ − β0) converges asymp-

totically to a zero-mean Gaussian process with covariance function E[ϕiϕ
′
i], where
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{ϕ1, . . . , ϕn} are i.i.d. with mean 0 asymptotically, with

ϕi = Ω(β0)
−1

[ K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β0, W )}W A
ik(t)dMik(t)

+ H ′(t; β0, W )ΩT (θ0)
−1UT

i (θ0) +

∫ τ

0

G(t, τ ; β0)r
(0)
T (t; θ0)

−1dMT
i (t)

]
,

where

dMT
i (t) = dNT

i (t) − Yi(t) exp{θ′Zi(t)}ΛT
0 (t),

zk(t; β, W ) = r
(1)
k (t; β, W )/r

(0)
k (t; β, W ),

z(t; θ) = r
(1)
T (t; θ)/r

(0)
T (t; θ),

r
(p)
k (t; β, W ) = E[AikW

A
ik(t)Yik(t)Z

⊗p
ik exp(β ′Zik)], p = 0, 1, 2,

r
(p)
T (t; θ) = E[Yi(t)Zi(t)

⊗p exp{θ′Zi(t)}], p = 0, 1, 2,

with Ω(β), H(t; β, W ), ΩT (θ), UT
i (θ) and G(t1, t2; β) defined in Appendix A.

The covariance can be estimated consistently by n−1
∑n

i=1 ϕ̂iϕ̂
′
i, where ϕ̂i is ob-

tained by replacing all limiting values in ϕi by their empirical counterparts. A proof

of Theorem II.1 is provided in Appendix A. The proof proceeds by demonstrating

that, asymptotically, n1/2(β̂ − β0) = n−1/2
∑n

i=1 ϕi + op(1) through a sequence of

Taylor series expansions.

The proof is given for the Type A weight, W A
ik(t) = Yik(t) exp{ΛT

i (Sik + t) −
ΛT

i (Sik)}. In practice, a stabilized version would usually be preferred. As implied

by Theorem II.1, the computation of the variance is quite complicated, and is more

complicated with the Type B weight. Such considerations motivate a computation-

ally simpler form for the variance estimator. That is, to take the weight W A
ik(t), or

W B
ik (t) or W C

ik (t), as the case may be as fixed. Then, the variance estimator simplifies

to n−1
∑n

i=1 ϕ̂∗
i ϕ̂

∗′
i , where

ϕ̂∗
i = Ω̂(β̂)−1

K∑
k=1

Aik

∫ τk

0

{Zik − Zk(t; β̂, Ŵ )}Ŵik(t)dM̂ik(t).(2.6)
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This simplified variance estimator can be calculated using Cox regression software

that allows weights and a robust variance estimator; e.g., proc phreg in SAS, coxph

in R.

2.4 Simulation

We modify the algorithm developed by Zheng and Heagerty (2005) to gener-

ate data which follow a partly conditional proportional hazards model. We first

generate a binary treatment group indicator, Zia, taking values 0 and 1 with prob-

ability 0.5. A longitudinal marker Zi(Sik) measured at a common set of cross sec-

tion dates CS1, CS2, . . . , CSK is constructed. To generate data [Di, Zia, Zib] where

Zib = vec{Zi(Sik)}, we first create Zib0 = bi +
∑K

k=1 log(Vik)/γ2, where bi ∼ N(μ, σ2)

and Vik ∼ P (ρ), independent positive stable random variables with index ρ (Samor-

idnitsky and Taqqu, 1994). A pre-treatment death time Di, is then generated with

hazard λi(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia + γ2Zib0}, where Vi0 ∼ P (ρ) and is independent

of Vik, with Λ0(t) = (t/a)1/ρ2
and a is a constant. Let Zi(Sik) = Zib0 − log(Vik)/γ2.

Then the death hazard can be written as

λi(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia + γ2Zi(Sik) + log(Vik)}.(2.7)

Subject i enters the study on calendar date Li, where Li is a Uniform(0, b)

variate. Treatment time, Ti, is generated from the proportional hazards model,

λT
i (t) = λT

0 (t) exp{θ01Zia + θ02I(t > Ri)},(2.8)

where λT
0 (t) = d3, θ0 = (θ01, θ02), and Ri is time of treatment-ineligibility which is

generated with hazard λR
i (t) = λR

0 (t) exp{d1Vi0}, with λR
0 (t) = 1/d2. Thus, Ri and

Di are positively correlated, which is a reflection of the data which motivated the



18

proposed methods. Note that treatment time and pre-treatment death time, Ti, and

Di, are dependent since both depend on time of treatment ineligibility Ri.

To see that the prescribed set-up yields proportional hazards, integrating both

sides of model (2.7), gives

Λi(t) = V
1/ρ
i0 Λ0(t) exp{γ1Zia + γ2Zi(Sik)}Vik,

such that the pre-treatment survival function is given by

exp[−Λi(t)] = exp[−Λ0(t) exp{γ1Zia + γ2Zi(Sik)}VikV
1/ρ
i0 ].

Transforming the time scale to reflect time since cross section, define tk = t − Sik.

Then, take the expectation with respect to Vik first and using the properties of the

positive stable distribution, we have

exp[−Λi(tk|Zia, Zi(Sik), Di > Sik, Vi0)] = exp[−(Λ0(t) exp{γ1Zia+γ2Zi(Sik)}V 1/ρ
i0 )ρ/ cos(πρ/2)].

Then, taking the expectation with respect to Vi0, we have

exp[−Λi(tk|Zia, Zi(Sik), Di > Sik)] = exp[−(Λ0(t)
ρ2

exp{ρ2γ1Zia+ρ2γ2Zi(Sik)}/ cos(πρ/2)(ρ+1)],

which implies the following equation after taking logarithm and negative of both

sides

Λi(tk|Zia, Zi(Sik), Di > Sik) = Λ0(t)
ρ2

exp{ρ2γ1Zia + ρ2γ2Zi(Sik)}/ cos(πρ/2)(ρ+1).

Differentiating with respect to tk,

λi(tk|Zia, Zi(Sik), Di > Sik) =
λ0(tk + Sik)ρ

2{Λ0(tk + Sik)}(ρ2−1)

cos(πρ/2)(ρ+1)
exp{ρ2γ1Zia+ρ2γ2Zi(Sik)}.

Using this construction, the hazard for Dik = Di − Sik will generally depend

on Sik and therefore stratified models similar to those considered by (Wei, Lin, and
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Weissfeld, 1989) would be appropriate. With Λ0(t) = (t/a)1/ρ2
, λ0(tk+Sik)ρ

2{Λ0(tk+

Sik)}(ρ2−1) = 1/a, we obtain

λi(tk|Zia, Zi(Sik), Di > Sik) = exp{ρ2γ1Zia + ρ2γ2Zi(Sik)}/[a cos(πρ/2)(ρ+1)].

If we define λik(t; Sik) = λi(tk|Zia, Zi(Sik), Di > Sik), λ0k(t) = [a cos(πρ/2)(ρ+1)]−1

and β0 = (β01, β02) = (ρ2γ1, ρ
2γ2), then the proportional hazard model on treatment-

free survival is achieved,

λik(t; Sik) = λ0k(t) exp{β01Zia + β02Zi(Sik)}.(2.9)

After generating the data, we only include for analysis those Zi(Sik) with Li <

Sik < min(Xi, Ri). Data pertaining to survival time since cross section {Xik, Δik, Zia, Zi(Sik)}
is used to fit model (2.9), with time to transplant data {Xi, Δ

T
i , Zia, Zi(t)} used to

fit model (2.8).

We evaluate samples with n = 1000 subjects and obtain 10%, 20%, and 40%

censoring by varying a from 104 to 4 × 107. The value of d2 varies from 300 to

3000, resulting in ineligibility rates from 10% to 30%. There are K = 10 cross

section dates. We set b = 500, [θ01, θ02] = [−1,−1], μ = 18, σ = 1, [γ1, γ2] =

[−1,−0.5], [−0.5,−0.25], [0, 0], d1 = d3 = 0.001, with CSk = 100 × k. For all our

simulated situations, 1000 Monte Carlo data sets are used. We present results using

ρ = 0.8, thus [β01, β02] = [−0.64,−0.32] when [γ1, γ2] = [−1,−0.5]. With number of

cross sections set to K = 10, the average number of cross sections per subject is 0.7

to 2.4, depending on the censoring level. We apply the simplified variance estimate

which treats the estimated weights as fixed; i.e., as given in (2.6).

Table 2.1 presents simulation results based on Type A weight, while Tables 2.2

and 2.3 present results for Type B and Type C, respectively. Estimates of β0 appear

to be consistent based on all weights. The variance of the Type B estimator is smaller
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than that of Type A, which is likely the result of the added stabilizer. Coverage prob-

abilities using the proposed (simplified) variance estimator are close to the nominal

95% level, with those of the Type B estimator being slightly higher than those of

Type A. It appears that the variance of the Type C estimator is greater than that of

Type A. This could result from the noise added by incorporating history before the

cross section time in W C
ik(t). The added piece covers a different time interval and

thus does not actually function as a stabilizer. Coverage probabilities for the Type

C estimator are slightly lower than those of Type A.

2.5 Application

We applied the proposed methods in order to compare pre-transplant mortality

between acute and chronic End-Stage Liver Disease (ESLD). The study population

included patients initially wait listed for deceased-donor liver transplantation be-

tween March 1, 2002 and December 31, 2009 in United States. Data were obtained

from the Scientific Registry of Transplant Recipients (SRTR), a national, population

based organ transplant registry. Only patients age ≥ 18 at listing and not previously

transplanted (i.e., not repeat transplant candidates) were included in the study popu-

lation. Cross-section dates were chosen every 7 days from 03/01/2002 to 12/31/2009,

such that there were K = 409 cross sections in all. At any given cross section date,

any subject who was still on the wait-list (not inactive and not removed) was in-

cluded in the cross section since, in practice, patients who got removed or were made

inactive were no longer eligible to receive offers for deceased-donor livers. Given the

objectives of our analysis, it is appropriate to compare only patients who, in a given

cross-section date, are in fact eligible to receive a liver transplant. However, after

being included into a given cross-section, such patients are not censored if they are
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subsequently deactivated or removed from the wait-list. Deactivation and removal

(and the associated death that may follow) are potential consequences of not receiv-

ing a liver transplant. For the death model, the failure time was defined from date of

cross section to the date of death, transplant or censoring whichever occurred first.

In order to construct the IPCW weight, ΛT
i (t) was estimated based on a time-

dependent Cox model in which transplant was the event. For the time-to-transplant

model, time t starts from the beginning of the follow-up (the date of wait listing), as

opposed to cross section time. The model was stratified, such that

λT
ir(t) = Ai(t)λ

T
0r(t) exp{θ′0Zi(t)},

where the subscript r = 1, . . . , 11 stands for region. The presence of the indicator,

Ai(t), reflects the fact that a patient’s time while inactive or removed does not con-

tribute to the estimation of θ0 or ΛT
0r(t). The patient level covariate, Zi(t), included

MELD score, Status 1, albumin, age, gender, race, diagnosis of Hepatitis C, body

mass index, diabetes, hospitalization, blood type, dialysis within prior week, en-

cephalopathy, ascites and serum creatinine. We evaluated several different versions

of weight, including Wikr(t) = Yikr(t) (unweighted), W A
ikr(t) = Yikr(t) exp{ΛT

ikr(t +

Sik)−ΛT
ikr(Sik)}, W B

ikr(t) and W C
ikr(t). Even for the stabilized weight, some very large

values occurred. Since we found that 99% of weights were less than 10, weights were

then capped at 10.

The model of primary interest, the pre-transplant death model, was also stratified

λikr(t) = λ0kr(t) exp{β ′
0Zik},

where the subscript r = 1, . . . , 11 stands for region and k = 1, . . . , 409 stands for cross

section. The subject level covariates at cross section k, Zik, included MELD score (21-

23, 24-26, 27-29, 30-32, 33-35, 36-40), Status 1 (as the reference, to which all MELD
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Table 2.4: Analysis of liver wait-list mortality (using Type B Weight)

Group β̂ ŜE(β̂) eβ̂ p-value

Status 1 0 . 1 .

MELD 21-23 0.05 0.267 1.05 0.87

MELD 24-26 0.18 0.272 1.20 0.50

MELD 27-29 0.52 0.276 1.68 0.06

MELD 30-32 0.25 0.334 1.29 0.45

MELD 33-35 0.96 0.301 2.62 0.001

MELD 36-40 0.95 0.306 2.58 0.002

categories are compared), albumin, age, gender, race, diagnosis, body mass index,

diabetes, hospitalization status at listing and previous malignancy. Also included in

Zik were average change in MELD score (pertaining to the time interval between the

date of listing and cross-section k date, and estimated using ordinary least squares)

and average change in albumin (estimated analogously). Other elements included

the percentage of time spent in inactive status, and percent of time receiving dialysis.

Since 99% of MELD and albumin slope values before cross sections fell in the [-1,1]

interval, the slopes were bounded by -1 and 1.

We focused on comparing each MELD category > 20 with Status 1 (reference).

Our final sample consisted of n = 23, 657 patients.

Results based on the Type B weight are listed in Table 2.4. MELD group 33-35

has a partly conditional pre-transplant death hazard of 2.62 (p = 0.001) times that

of Status 1; the corresponding hazard ratio for MELD 36-40 is 2.58 (p = 0.002).

Both unweighted and weighted results are listed in Table 2.5. After weighting the
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Table 2.5: Analysis of liver wait-list mortality; Comparison of results using different
weight.

Unweighted Type C Weight Type A Weight Type B Weight

Group β̂ ŜE(β̂) β̂ ŜE(β̂) β̂ ŜE(β̂) β̂ ŜE(β̂)

Status 1 0 . 0 . 0 . 0 .

MELD 21-23 -0.81 0.210 0.01 0.271 0.07 0.270 0.05 0.267

MELD 24-26 -0.75 0.215 -0.002 0.286 0.11 0.281 0.18 0.272

MELD 27-29 -0.29 0.220 0.31 0.287 0.42 0.283 0.52 0.276

MELD 30-32 -0.32 0.256 0.10 0.348 0.11 0.339 0.25 0.334

MELD 33-35 0.26 0.246 0.91 0.345 0.92 0.321 0.96 0.301

MELD 36-40 0.33 0.272 0.79 0.335 0.73 0.324 0.95 0.306

model, the parameter estimates of MELD group became larger, in each case. Similar

to the findings from simulation studies, the standard errors in Table 2.5 were the

lowest for the Type B weight, while those for Type C were the largest.

It is interesting that MELD (i.e., chronic liver disease) patients had higher mor-

tality than Status 1 (i.e., acute liver disease) patients, both from a clinical and from

a public health perspective. Supplementary analysis revealed that if only based on

cross section status, acute patients died very fast in the early stage, i.e., the Status

1 Kaplan-Meier curves dropped more quickly than MELD groups. However, Status

1 survival leveled off eventually, while the survival curves for the MELD groups kept

dropping.
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2.6 Discussion

In this chapter, we propose semiparametric methods to estimate the effect of

a time dependent covariate in the presence of a possibly censored survival time.

Treatment-free survival is of our interest, and pre-treatment death may be depen-

dently censored by receipt of treatment. Subjects can also experience permanent or

temporary periods of ineligibility for receiving treatment. Landmark analysis with

a partly conditional hazard model are combined in the proposed methods. Multiple

cross-section dates are chosen, with subjects included in the sample corresponding to

a cross-section if they are alive uncensored, treatment-free, and treatment-eligible.

Survival time is measured from a given cross-section date forward, rather than from

the start of follow-up. Covariates values are “frozen” at cross-section dates and not

updated afterward, which is the reason why the method is called partly conditional.

However, fixing the covariate values on cross-section dates results in dependent cen-

soring, since death and treatment times are independent only if conditioning on the

whole time-dependent covariate history. A modified version of Inverse Probability

of Censoring produces consistent estimators in the presence of dependent censoring.

Stabilized versions of the weights are used to estimate the covariate effect more pre-

cisely. The same subject could have multiple survival times with respect to different

cross-section dates, and no specific covariance structure is imposed for such times.

A stratified IPCW weighted proportional hazards model is applied with each cross-

section date data serving as a stratum. The proposed methods circumvent modeling

of the longitudinal covariate process explicitly. The model is in part marginal, since

fixing time-varying covariate values at cross-section dates could be seen as averaging

mortality hazard function implicitly across future covariate trajectories. The pro-
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posed estimators are demonstrated to be consistent and asymptotically normal, with

consistent covariance estimators provided. Through simulation studies, the proposed

estimator is revealed to be appropriate for practical use. We applied the proposed

methods to wait-list mortality among end-stage liver disease patients.

Zheng and Heagerty (2005) proposed partly conditional Cox regression meth-

ods. Van Houwelingen (2007) proposed landmark models based on partly condi-

tional methods. In Zheng and Heagerty (2005), the time clock is re-set at covariate

measurement times, unlike our methods, wherein the clock is re-set at cross-section

dates. Neither the Zheng and Heagerty (2005) or Van Houwelingen (2007) methods

deal with dependent censoring or accommodate treatment ineligibility.

Comparisons of pre-transplant death rates between Status 1 and MELD patients

have rarely been conducted previously; largely because the assumption that Status

1 patients have the highest death rate is widely accepted by the liver transplant

community. However, in a recent study using a traditional time-dependent model,

death rates of high-MELD patients were shown to be comparable to those of Status

1. Specifically, (Sharma et al., 2012) compared the mortality of Status 1 and high-

MELD patients using a time-dependent model to ESLD patients and a 14-day follow-

up period. The most important result of their study was that MELD≥ 40 patients

have higher pre-transplant mortality than Status 1 patients. Results of our proposed

methods show that MELD ≥ 33 is associated with significantly higher pre-transplant

mortality than Status 1. Unlike traditional time-dependent models, the proposed

method compares the mortality from a given cross-section date forward; inspired by

the real-world situation in which an organ arrives (on a given calendar date) and one

wishes to identify which patient would die next in the absence of liver transplantation,

using only information up until that particular calendar date.
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The methods in this paper are of easy implementation and computation. Multiple

landmarks are chosen to make use of the data more fully. Too few cross sections will

lead imprecision, while too many cross-sections may lead to computation difficulties.

Sampling cross section dates or sampling subjects within each cross section may

be one solution. Another problem is non-proportional hazards, in which case the

ratio of cumulative hazards or the difference in restricted mean life time are possible

measures by which to summarize the cumulative effect. Extensions of the proposed

methods to estimate such quantities would be quite useful.



CHAPTER III

Estimating Average Treatment Effects on Mean

Survival Time when Treatment is Time-dependent

and Censoring is Dependent

3.1 Introduction

In clinical settings, subjects often begin follow-up untreated, with some going

to receive the treatment at some time in the future. In various settings, patients

may experience treatment ineligibility, temporarily or permanently. In the setting

of our interest, receiving treatment is time-dependent, not randomized and depends

on time-varying covariates for which serial data are measured. As a result, joint

data on the longitudinal covariate and possibly censored survival time are observed

simultaneously. The effect of the time-dependent treatment is of interest and could

be quantified through mean survival time, which is easy to interpret and needs no

assumption on the shape of survival curves, such as proportionality in the context of

(Cox, 1972) model. Due of finite duration of study and unclosed survival curves, it is

more practical to use restricted mean life time, which is the area under the survival

curve from 0 up to a specific time L, as opposed to infinity.

When approached through a joint modeling approach, valid inference on the

time-to-event component generally requires the longitudinal process be accurately

30
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modeled, which is often very difficult to achieve. Zheng and Heagerty (2005) pro-

posed a partly conditional model, in which the duration since measurement time

Si, (Di − Si) is modeled, rather than the event time Di from study entry. The

time-varying covariate value is then “frozen” at time Si. The resulting model is

referred to as “partly conditional” since the hazard function only conditions on the

covariate history on measurement up to time Si, as opposed to the full information

which includes covariate values for {t : t > Si}. Therefore, rather than modeling

the time-varying covariate explicitly to predict future covariate values, the partly

conditional model implicitly averages over the possible paths. However, adjusting

for only part of the covariate history causes treatment initiation to be dependent

censoring for treatment-free death. Consistent estimation for parameters pertaining

to the treatment-free death hazard can be obtained through Inverse Probability of

Censoring Weighting (IPCW), proposed originally by Robins and Rotnitzky (1992);

see also Robins and Finkelstein (2000). The IPCW method aims to essentially create

pseudo-data free of dependent censoring through weighting. Of our chief interest, the

average effect of treatment on the treated, is a weighted average of subject-specific

treatment effect estimates, with each observed treatment weighted by inverse of the

probability of remaining uncensored (Horvitz and Thompson, 1952).

The motivation of our research is the liver transplant setting. The number of

available deceased-donor livers is always less than the number of patients awaiting

liver transplantation. As a result, patients who are medically suitable are placed on a

deceased-donor liver transplant waiting list. Patients typically begin follow-up on the

wait list (untreated), such that transplantation is a time-dependent treatment. At

the top of the list are acute liver disease (Status 1) patients, followed by chronic liver

failure patients sequenced in decreasing order of Model for End-Stage Liver Disease
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(MELD) score, a very strong predictor of pre-transplant mortality. Transplantation

results in dependent censoring to pre-transplant death since MELD scores predict

both wait list mortality and transplant rates. Note that patients may be removed

from the wait list, or made inactive and, in such cases, are per permanently or

temporarily ineligible to receive a transplant.

Various methods in the causal inference literature have estimated the average

causal effect through the hazard ratio based on a marginal structural model (e.g.,

Hernan, Brumback, and Robins, 2000, 2001; Robins, Hernan, and Brumback, 2000).

Other authors estimated treatment effect via restricted mean survival time (Chen

and Tsiatis, 2001; Schaubel and Wei, 2011; Zhang and Schaubel, 2010). But very few

methods have contrasted pre- and post-treatment mean survival time when treatment

is time-dependent. Due to the complexity caused by the time-dependent treatment,

the potential for patients to become ineligible for treatment consideration and depen-

dent censoring, the afore-mentioned methods cannot be applied to our motivating

data directly. Schaubel et al. (2009) proposed methods for estimating pre-treatment

restricted mean lifetime. Of chief interest was the application to national liver failure

data. Specifically, a patient-specific score was developed to replace the MELD score

as the basis for ranking wait-listed patients. The focus of this work was on the fitted

values. Asymptotic properties were not developed, nor were simulations conducted.

Moreover, methods for estimating the average treatment effect were not proposed.

In this article, we propose methods for estimating the average effect on the treated

of a time-dependent treatment by taking an appropriately weighted average of esti-

mated subject-specific differences between restricted mean survival time, post- ver-

sus pre-treatment. In particular, for each observed treatment time, we project out

a predicted post-treatment survival curve based on parameter estimates from post-
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treatment survival model, which conditions on measurement history leading up to the

treatment time. We also project a treatment-free survival curve, using fitted values

from the cross-section-based partly conditional treatment-free survival model, which

is analogous to the methods from Chapter II. Then, the areas under the survival

curves up to a pre-specified truncation time (e.g., 5 years) represent the restricted

mean lifetime estimates. The difference between post- and pre-treatment restricted

mean lifetimes represent the subject level treatment effect estimate, and is computed

for each observed treatment. At last, we then weight each observed treatment by the

probability of remaining uncensored. This average is taken using normalized weights

by IPCW (based on a model for independent censoring), such that the weighted

time-until-transplant distribution represents that which would have been observed

in the absence of independent censoring.

The remainder of this article is organized as follows. In Section 3.2, we set up the

notation and describe the proposed methods. Asymptotic properties of the proposed

estimators are listed in Section 3.3. A simulation study is provided in Section 3.4.

Results of applying proposed methods to data obtained from the Scientific Registry

of Transplant Recipients (SRTR) will be given in Section 3.5. Discussion is provided

in Section 3.6. Details regarding the asymptotic derivations are given in Appendix

B.

3.2 Proposed Methods

First, we define the necessary notation. Let Di be the death time for subject i,

with i = 1, . . . , n. We set Ti to be the treatment time for subject i. It is possible

that Di and/or Ti may not be observed due to independent censoring at time Ci.

Observation time is then given by Xi = Di ∧ Ci, where a ∧ b = min(a, b). Subjects
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begin follow-up untreated, with some going to receive treatment unless they die first.

We define the observed data counting processes for death, censoring, and treat-

ment as Ni(t) = I(Di ≤ t, Di < Ci), NC
i (t) = I(Ci ≤ t, Ci < Di), and NT

i (t) =

I(Ti ≤ t, Ti < Di ∧ Ci) respectively. The covariate vector Zi(t) contains both time-

independent and time-dependent factors and perhaps some functions of t such as

(t, t2, t3). The covariate history on (0, t] is defined as Z̃i(t) = {Zi(u); u ∈ (0, t]}. The

indicator for treatment eligibility is defined as Ai(t) which equals 1 when the ith

subject qualifies for the treatment as of follow-up time t and 0 otherwise. Treatment

eligibility history is represented by Ãi(t) = {Ai(u); u ∈ (0, t]}. Let D0
i be the death

time for subject if treatment were unavailable. Consider a subject treated at time Ti,

and define the death time in the presence of treatment as D1
i . For a treated subject,

the death time is necessarily post-treatment and the post-treatment survival time

(since treatment) is given by D1
i −Ti. It is useful to consider when the treated subject

would have died had, in fact, treatment not been received, and we denote this time

by D0
i − Ti.

Suppose that treatment is assigned in calendar time. On any given day, we can

consider the benefit of assigning treatment to specific patients. In particular, it would

be useful to predict the patient’s prognosis survival from that day forward, under

two cases: (0) the subject does not receive treatment ever (1) the subject receives

treatment starting that day. Then the difference between two survival predictions

can be used to quantify the benefit of treatment.

Examining this setting more formally, suppose that patient i is being considered

for treatment on a given calendar date. On that calendar date, the subject has

previous follow-up time of Si time units. As stated previously, only subjects who are

alive and treatment eligible are going to receive the treatment. Suppose that subject
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i has covariate Zi(Si) and is eligible; i.e., {Ai(Si) = 1, Di > Si, Zi(Si)}. Of interest

are both the restricted mean (residual) lifetime if subject i is treated at time Si,

μi1(Si) = E[{D1
i − Si} ∧ L|Di > Si, Ai(Si) = 1, Zi(Si), Ti = Si],

versus the corresponding mean residual lifetime if the subject remained untreated,

μi0(Si) = E[{D0
i − Si} ∧ L|Di > Si, Ai(Si) = 1, Zi(Si)].

The treatment effect is then defined as,

Δi(Si) = μi1(Si) − μi0(Si).

Note that L is some specific length of time chosen in light of the available follow-up

time. The arguments of μij(·), with j = 0, 1, and Δi(·) reflect that a specific follow-

up time, Si, and covariate vector, Zi(Si), are being considered. Thus subject specific

treatment effects, Δi(Si), is predicted via μi1(Si) and μi0(Si).

The overall treatment effect could be measured by averaging over the subject level

estimate, Δ = E[Δi(Si)], where the expectation is with respect to {T, Z(T )}, the

joint distribution of treatment time and covariate vector (at the time of treatment)

among treated patients.

Instead of estimating the pertinent means directly, the following hazard functions

are modeled,

λi1(t; Si) = lim
δ↓0

1

δ
P{t ≤ Di−Si < t+ δ|Di−Si ≥ t, Ai(Si) = 1, Zi(Si), dNT

i (Si) = 1},

λi0(t; Si) = lim
δ↓0

1

δ
P{t ≤ Di−Si < t+δ|Di−Si ≥ t, Ai(Si) = 1, Zi(Si), N

T
i (Si+t) = 0},

with μij(Si) =
∫ L

0
exp{− ∫ u

0
λij(t; Si)dt}du. Note that the conditioning specifically

on Ai(Si) and Zi(Si) is for ease of presentation. More generally, one could condition
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on Ãi(Si) and Z̃i(Si), the treatment-eligibility and covariate histories, respectively,

if the application at hand required.

Note that the just-defined hazard functions are assumed to be independent of

the actual receipt of treatment; i.e., λij(t; Si|{NT
i (u); u ≥ Si}) = λij(t; Si). This

no-unmeasured-confounders assumption is required in order to consistently estimate

the quantities of interest via observed data. The observed-data version of the hazard

function is given by λi(t; Si) = λi1(t; Si)dNT
i (Si) + λi0(t; Si){1 − NT

i (Si + t)}. We

assume that Ci is independent censoring in the sense that λi(t; Si) = λi(t; Si|Ci >

Si + t) and that Ti is also independently censored by Ci. With these assumptions,

λi1(t; Si) = λi1(t; Si|dNT
i (Si) = 1), which implies that one can validly model the

post-treatment hazards, using only the observed treatments.

We now turn our attention to the model for λi0(t; Si). Since the hazard func-

tion explicitly conditions on Zi(Si), and since {Zi(u); u > Si} may affect both the

treatment-free death hazard and the treatment hazard at time {u > Si}, treatment-

free death is dependently censored by Ti. We overcome this issue using IPCW, which

requires a model for

λT
i (t; Zi(t)) = lim

δ↓0
δ−1P{t ≤ Ti < t + δ|Di ∧ Ti ≥ t, Ai(t), Zi(t)}.

Note that the conditioning is on Zi(t) and Ai(t) instead of Zi(Si) and Ai(Si). The

treatment time hazard is assumed to follow a time-dependent model, with time axis

t (follow-up time) as opposed to time since cross section Si. We also assume that

λT
i (t) = λT

i (t; Zi(t), Di), which allows estimation of λi0(t; Si) based on pre-transplant

data in the presence dependent censoring at Ti through IPCW.

We assume the following proportional hazards models for pre- and post-treatment
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respectively,

λij(t; Si) = λ0j(t) exp{β ′
jZi(Si)}, j = 0, 1,

where λ0j(t), are unspecified baseline hazards, βj are unknown regression coefficients;

and j = 0 is with respect to pre-transplant and j = 1 refers to post-treatment.

We now describe how to fit the pre-treatment death model,

λi0(t; Si) = λ00(t) exp{β ′
0Zi(Si)}.

We choose K calendar date based cross-section times CSk with k = 1, . . . , K. The

{CS1, . . . , CSK} can be equally spaced; but, this is not required. Suppose Sik is the

follow-up time for the ith patient at the kth cross-section date, CSk. Since we will

model the survival time since cross-section, the time clock is essentially reset to 0

at each cross section date. Subject i is included in the cross-section sample at CSk

if alive, untreated, uncensored and treatment-eligible; i.e., if Ti ∧ Ci ∧ Di > Sik and

Ai(Sik) = 1. Since survival time from cross-section is modeled, define Dik = Di−Sik,

Tik = Ti − Sik and Cik = Ci − Sik as the death, transplant and censoring time

respectively corresponding to the ith patient and measured from the kth cross section

date. A modified counting process is also defined, where Ni0k(t) = Ni(Sik + t)I(Ti >

Sik + t) with increment dNi0k(t) as Ni0k{(t + dt)−} − Ni0k(t). The pertinent at-risk

process is given as Yi0k(t) = Yi(Sik + t)I(Ti > Sik + t). To simplify the notation, we

define Aik = Ai(Sik), Zi0k = Zi(Sik) and Zi0k(t) = Zi(Sik + t).

Figure 3.1 provides an illustration of how the treatment-free observation time is

transformed into time-since-cross-section times. Four subjects (i1, i2, i3, i4) and two

cross sections (k1,k2) are shown. The four subjects begin follow-up at different calen-

dar time. For subject i1, failure times Di1k1 corresponds to cross section k1 and Di1k2

refers to cross section k2. Note subject i1 is not censored at the treatment-ineligible
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Note: Vertical dashed lines denote cross-section dates, while horizontal dashed lines denote
treatment-ineligible period. Subject i1 has death times Di1k1 and Di1k2 , corresponding to cross
sections k1 and k2, respectively. Note that, even though subject i1 is not censored after becoming
treatment-ineligible. Subject i2 is treated at time Ti2k2 , and hence censored (perhaps dependently)
at that time, with respect to cross section k2. Subject i3 is not included in either cross section since
i3 starts then finishes follow-up in between cross-sections. Subject i4 first passes cross section k1

and then becomes inactive for a while until a time after cross section k2. Subject i4 is treatment-
ineligible at cross section k2 and, therefore, is not included in this cross section. With respect to
cross section k1, the transplant time Ti4k1 is not censored at the beginning of the treatment-ineligible
period.

Figure 3.1: Examples of the relationship between cross-section time and follow-up
time.
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time after cross section k2. Subject i2 is treated, and dependently censored at time

Ti2k2 since cross section k2. Subject i3 is not included in either cross section due to

late start and early finish of the follow-up within between two cross-sections. Sub-

ject i4 is included in cross section k1, but becomes and remains treatment-ineligible

until a time after cross section k2. With respect to cross section k1, i4 is censored

at treatment time Ti4k1 , as opposed to being censored earlier at the beginning of the

treatment-ineligible period. Since subject i4 is treatment-ineligible at cross section

k2, i4 is not included in this cross section.

We will estimate β0 through a stratified model,

λi0k(t; Si) = λ00k(t) exp{β ′
0Zi0k},

where λ00k(t) are the cross-section-specific baseline hazards. The (overall) baseline

hazard function of interest will be estimated by appropriately averaging the cross

section specific λ00k(t) estimators, as will be described later.

As discussed previously, we require a model for the treatment hazard,

λT
i (t) = lim

δ↓0
1

δ
P{t ≤ Ti < t + δ|Ti ≥ t, Ai(t), Zi(t)},

in order to carry out IPCW for the pre-treatment experience. The following propor-

tional hazards model is assumed,

λT
i (t) = Ai(t)λ

T
0 (t) exp{θ′0Zi(t)},

where t is the time from entry to the study. Define the treatment counting process

NT
i (t) = I(Ti ≤ t ∧Xi) and its corresponding increment dNT

i (t) = NT
i {(t + dt)−} −

NT
i (t). The regression coefficient, θ0, is estimated by θ̂, the root of the score function,

UT (θ) =
n∑

i=1

∫ τ

0

{Zi(t) − Z(t; θ)}dNT
i (t),
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where Z(t; θ) = R
(1)
T (t; θ)/R

(0)
T (t; θ), R

(p)
T (t; θ) = n−1

∑n
i=1 Yi(t)Zi(t)

⊗p exp{θ′Zi(t)}, p =

0, 1, 2, where, for a vector z, z⊗0 = 1, z⊗1 = z, z⊗2 = zz′. The Breslow estimator of

ΛT
0 (t) is given by Λ̂T

0 (t) = n−1
∑n

i=1

∫ t

0
R

(0)
T (u; θ̂)−1dNT

i (u).

After estimating the treatment hazards, we come back to the death hazard mod-

els. An estimator for β0, denoted by β̂0, is obtained through solving the IPCW score

function,

U0(β) =
n∑

i=1

K∑
k=1

∫ τ0k

0

Aik{Zi0k − Z0k(t; β, W )}W A
ik(t)dNi0k(t),

with Z0k(t; β0) = R
(1)
0k (t; β0)/R

(0)
0k (t; β0) and R

(d)
0k (t; β0) = n−1

∑n
i=1 AikW

A
ik(t)Z⊗d

i0k exp{β ′
0Zi0k}

with d = 0, 1, 2 and where τ0k satisfies P{Yi0k(τ0k) = 1} > 0, and can in practice be

set to the largest observation time start from the kth cross section. As defined in

Chapter II, an appropriate IPCW weight is given by W A
ik(t) = Yi0k(t) exp{ΛT

i (Sik +

t) − ΛT
i (Sik)}, with ΛT

i (t; θ0) =
∫ t

0
Ai(u)λT

0 (u; θ0) exp{θ′0Zi(u)}du,

However, in practice, some values of W A
ik(t) could be very large and result in

increased variance of β̂0. In order to improve the precision of β̂0, a stabilized weight

is suggested,

W B
ik (t) = Yi0k(t)

exp{ΛT
i (Sik + t) − ΛT

i (Sik)}
exp{ΛT

ik(t)}
,

analogous to procedures suggested by Robins and Finkelstein (2000) and Miloslavsky

et al. (2004), where ΛT
ik(t) is the cumulative hazard from a proportional hazards

model which takes transplant as the event and adjusts only for covariates up to the

cross-section time, λT
ik(t) = λT

0k(t) exp{θ′1Zi0k} and t is the time from entry to study

with θ1 as covariate effect.

With stratum-specific baseline hazards estimated, a weighted version of the Breslow-

Aalen estimator pooled across strata could be obtained,

Λ̂00(t; β̂0) = n−1
n∑

i=1

K∑
k=1

∫ t

0

R
(0)
0 (u; β̂0)

−1AikW
A
ik(u)dNi0k(u)
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for t ∈ (0, L], where R
(0)
0 (u; β0) =

∑K
k=1 R

(0)
0k (u; β0).

After estimating all the necessary parameters, for previous follow-up time Si, we

have Λi0(t; Si) = Λ00(t) exp{β ′
0Zi(Si)} and μi0(Si) =

∫ L

0
exp{−Λi0(t; Si)}dt.

Compared to treatment-free survival, the estimation of the post-treatment pa-

rameters is more conventional. The following model is assumed,

λi1(t; Ti) = λ01(t) exp{β ′Zi(Ti)},

and fitted using observed post-transplant data. Note t here is from treatment initi-

ation forward. Correspondingly, we define the counting process Ni1(t) = Ni(Ti + t)

with increment dNi1(t) = Ni1{(t + dt)−} − Ni1(t) and at risk indicator Yi1(t) =

Yi(Ti + t). Define Zi1 = Zi(Ti). Ni1(t) and Yi1(t) are defined to be 0 if patient i

never receives treatments; i.e., NT
i (Xi) = 0. Since Ti is only subject to independent

censoring, standard partial likelihood method can be applied to estimate β1, that is,

by solving U1(β) = 0, where

U1(β) =

n∑
i=1

∫ τ1

0

{Zi1 − Z1(t; β)}dNi1(t),

and τ1 satisfies P{Yi1(τ1) = 1 > 0}, Z1(t; β1) = R
(1)
1 (t; β1)/R

(0)
1 (t; β1) and R

(p)
1 (t; β1) =

n−1
∑n

i=1 Yi1(t)Z
⊗p
i1 exp{β ′

1Zi1}, for p = 0, 1, 2. The Breslow estimator has the form

Λ̂01(t; β1) = n−1
∑n

i=1

∫ t

0
R

(0)
1 (u; β1)

−1dNi1(u). We then have Λi1(t; Ti) = Λ01(t) exp{β ′
1Zi1}

and μi1(Ti) =
∫ L

0
exp{−Λi1(t; Ti)}dt.

As a result, the subject specific treatment effect can be expressed as

Δi(Si) = μi1(Si) − μi0(Si),

which can be estimated by replacing all parameters with their corresponding afore-

listed estimators. The subject specific difference in survival probability at time t is

defined as

SΔi(t; Si) = Si1(t; Si) − Si0(t; Si).
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Our main objective is to evaluate the average treatment effect under the current

treatment assignment patterns. As implied previously, patients are selected for treat-

ment non-randomly. We wish to estimate the average difference in restricted mean

survival time, given the true (i.e., uncensored) distribution of {Ti, Zi(Ti)}. This

involves taking a weighted average of Δi(Ti) estimators for subjects who received

treatment {Ti, Zi(Ti) : Ti < Xi}. A simple unweighted average will make the average

treatment effect a function of censoring distribution, which is not desirable. Similar

to a Horvitz and Thompson (1952) estimator, we weight each observed transplant

by the inverse of the probability of remaining uncensored. The weighted data repre-

sent what would have been observed in the absence of independent censoring by Ci.

The average treatment effect is is defined as Δ = E[Δ(T )] where the expectation

sign is with respect to the joint distribution of {Ti, Zi(Ti), Ti < τ, Ti < D0
i }, with

corresponding estimator given by

Δ̂ =

∑n
i=1

∫ τ

0
Δ̂i(t)Ĝi(t)

−1dNT
i (t)∑n

i=1

∫ τ

0
Ĝi(t)−1dNT

i (t)
,

where Gi(t) = P{Ci > t|Zi(0)}. We estimate Gi(t) via a standard Cox model,

λC
i (t) = λC

0 (t) exp{α′
0Zi(0)},

fitted to {Xi, I(Ci < Di), Zi(0)}, where t represents follow-up time. The quantity Δ

represents the average number of time units (e.g., years) saved by treatment (out of

the next L years).

Analogously, the average difference in survival probability at time t is defined as

SΔ(t) = E[SΔ(t; T )], with corresponding estimator given by

ŜΔ(t) =

∑n
i=1

∫ τ

0
ŜΔi(t; u)Ĝi(u)−1dNT

i (u)∑n
i=1

∫ τ

0
Ĝi(u)−1dNT

i (u)
.
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3.3 Asymptotic Properties

We assume that the random vectors {Xi, Ni(·), NT
i (·), Z̃i(Xi)}, for i = 1 . . . n, are

independent and identically distributed, with Zi(t) bounded for t ∈ (0, τ ], where τ

satisfies P (Xi ≥ τ) > 0. We summarize the asymptotic properties of the proposed

methods in Theorem III.1 with all regularity conditions listed in Appendix B.

Theorem III.1. Under certain regularity conditions, n1/2[ŜΔ(t)−SΔ(t)] and n1/2(Δ̂−
Δ) converge asymptotically to a zero-mean Gaussian processes with covariance func-

tions E[ξj(t)
2] and E[η2

j ], respectively, where {ξ1(t), . . . , ξn(t)} and {η1, . . . , ηn} are

i.i.d. with mean 0 asymptotically, and

ξj(t) = V (τ)−1

{
V1j(t) + V2j(t) +

∫ τ

0

{SΔj(t; u) − SΔ(t)}Gj(u)−1dNT
j (u)

}
,

ηj =

∫ L

0

ξj(t)dt,

where

V (τ) = E

[ ∫ τ

0

Gi(u)−1dNT
i (u)

]
,

V1j(t) = E

[ ∫ τ

0

ϕS
ij(t)Gi(u)−1dNT

i (u)

]
,

V2j(t) = E

[ ∫ τ

0

SΔi(t; u)ϕC
ij(u)dNT

i (u)

]
,

Gi(t) = exp{−ΛC
i (t)},

ϕC
ij(t) = Gi(t){DC′

i (t)ΩC(α0)
−1UC

j (α0) + JC
ij (t)},

ϕS
ij(t) = Si0(t){Λi0(t)Zi(Si)

′Ω−1
0 (β0)Uj0(β0) − eβ′

0Zi(t)Φj0(t)},

−Si1(t){Λi1(t)Z
′
i1Ω

−1
1 (β1)Uj1(β1) − eβ′

1Zi1Φj1(t)},

with ηj, Ω1(β1), Ω0(β0), Uj1(β1), Uj0(β0), μi1(t), μi0(t), dΦj1(t), dΦj0(t), DC
i (t),

ΩC(α0), UC
j (α0) and JC

ij (t) defined in Appendix B.
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The covariance estimator of Δ̂ is given by n−1
∑n

i=1 η̂2
i , that of ŜΔ(t) is given by

n−1
∑n

i=1 ξ̂i(t)
2, where η̂i and ξ̂i(t) are estimated by changing all limiting values in

ϕi by their empirical counterparts. A proof of Theorem III.1 is given in Appendix

B. The main idea of the proof is demonstrating that, asymptotically, n1/2(Δ̂−Δ) =

n−1/2
∑n

i=1 ηi + op(1) and n1/2{ŜΔ(t) − SΔ(t)} = n−1/2
∑n

i=1 ξi(t) + op(1) through a

sequence of Taylor series expansions.

The proof is provided for the weight, W A
ik(t) = Yi0k(t) exp{ΛT

i (Sik + t)−ΛT
i (Sik)}.

In practice, a stabilized weight is preferred to improve precision. As shown by The-

orem III.1, the computation of the variance is already very complicated, and is more

complicated when a stabilizer is incorporated. Such concerns motivate a computa-

tionally simpler form for the variance estimator. That is, to take the weight W A
ik(t),

or W B
ik (t) and Gi(t)

−1, as the case may be as fixed. Then, the variance estimator of

SΔ(t) and Δ could simplify to n−1
∑n

i=1 ξ̂∗i (t)
2 and n−1

∑n
i=1 η̂∗2

i , where

ξ̂∗j (t) = V̂ (τ)−1
n∑

i=1

∫ τ

0

ϕ̂S∗
ij (t)Ĝi(u)−1dNT

i (u)(3.1)

+V̂ (τ)−1

∫ τ

0

{ŜΔj(t; u) − ŜΔ(t)}Ĝj(u)−1dNT
j (t),

η̂∗
j =

∫ L

0

ξ̂∗j (t)dt(3.2)

V̂ (τ) = n−1

n∑
i=1

∫ τ

0

Ĝi(t)
−1dNT

i (t),

where

ϕS∗
ij (t) = Si0(t){Λi0(t)Zi(Si)

′Ω−1
0 (β0)Uj0(β0) − eβ′

0Zi(t)Φ∗
j0(t)}

−Si1(t){Λi1(t)Z
′
i1Ω

−1
1 (β1)Uj1(β1) − eβ′

1Zi1Φ∗
j1(t)}

Φ∗
i0(t) = −

∫ t

0

z′
0(u; β, W )dΛ00(u)Ω−1

0 (β0)Ui0(β0) +

K∑
k=1

∫ t

0

AikW
A
ik(u)dMi0k(u)

r
(0)
0 (u; β0, W )

,

Φ∗
i1(t) = −

∫ t

0

z′
1(u; β1)dΛ01(u)Ω−1

1 (β1)Ui1(β1) +

∫ t

0

δT
i dMi1(u)

r
(0)
1 (u; β1)

,
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dMi0k(t) = dNi0k(t) − Yi0k(t)dΛi0(t),

dMi1(t) = dNi1(t) − Yi1(t)dΛi1(t),

where z0(t; β, W ), r
(0)
0 (t; β0, W ), z1(t; β1) and r

(0)
1 (t; β1) are the infinity values of

Z0(t; β, W ), R
(0)
0 (t; β0, W ), Z1(t; β1) and R

(0)
1 (t; β1), respectively.

3.4 Simulation

For treatment-free survival, we modify the settings in Zheng and Heagerty (2005)

to generate data following the assumed partly conditional model. First, we generate

a single binary treatment group indicator Zia, with value 0 and 1 with probability

0.5. A single longitudinal covariate Zi(Sik) measured at a common set of cross section

dates CS1, CS2, . . . , CSK is then created. To generate data {Di, Zia, Zib} where Zib =

vec{Zi(Sik)}, we first let Zib0 = bi +
∑K

k=1 log(Vik)/γ2, where bi ∼ N(μ, σ2) and Vik ∼

P (ρ), independent positive stable random variables with index ρ (Samoridnitsky and

Taqqu, 1994). A pre-treatment death time Di, is then generated with a hazard

λi(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia + γ2Zib0}, where Vi0 ∼ P (ρ) and is independent of Vik,

with Λ0(t) = (t/a)1/ρ2
and a is a constant. Let Zi(Sik) = Zib0 − log(Vik)/γ2. Then,

the death hazard can be written as

λi(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia + γ2Zi(Sik) + log(Vik)}.(3.3)

The ith subject enters the study on calendar date, Li, which is generated from a

Uniform(0, b) distribution. Treatment time, Ti, is generated from the proportional

hazards model,

λT
i (t) = λT

0 (t) exp{θ01Zia + θ02I(t > Ri)},(3.4)

where λT
0 (t) = d3 and θ0 = (θ01, θ02) and the time of treatment-ineligibility, Ri, is

generated with hazard λR
i (t) = λR

0 (t) exp{d1Vi0}, where λR
0 (t) = d2. Thus, Ri and
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Di are positively correlated, which is consistent with the data which motivated the

proposed methods. Administrative censoring time, Ci, is generated from hazard

λC
i (t) = λC

0 (t) exp{α0Zia},(3.5)

where λC
0 (t) = d4. Note that treatment time and pre-treatment death time, Ti, and

Di are dependent since both depend on treatment-ineligibility time Ri. However,

independent censoring time Ci is independent with Di conditional on Zia.

To see how the preceding set-ups generate proportional hazards in the partly

conditional setting, integrate both sides of the expression (3.3),

Λi(t) = V
1/ρ
i0 Λ0(t) exp{γ1Zia + γ2Zi(Sik)}Vik,

such that the pre-treatment survival function is given by

exp[−Λi(t)] = exp[−Λ0(t) exp{γ1Zia + γ2Zi(Sik)}VikV
1/ρ
i0 ].

Now, transforming the time scale to reflect time since cross section, define tk = t−Sik.

Then, take the expectation with respect to Vik first and from the property of positive

stable distribution, we have

exp[−Λi(tk|Zia, Zi(Sik), Di > Sik, Vi0)] = exp[−(Λ0(t) exp{γ1Zia+γ2Zi(Sik)}V 1/ρ
i0 )ρ/ cos(πρ/2)].

Then, taking the expectation with respect to Vi0, we have

exp[−Λi(tk|Zia, Zi(Sik), Di > Sik)] = exp[−(Λ0(t)
ρ2

exp{ρ2γ1Zia+ρ2γ2Zi(Sik)}/ cos(πρ/2)(ρ+1)],

which implies the following equation after taking the logarithm and negating both

sides,

Λi(tk|Zia, Zi(Sik), Di > Sik) = Λ0(t)
ρ2

exp{ρ2γ1Zia + ρ2γ2Zi(Sik)}/ cos(πρ/2)(ρ+1).
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Transforming the time scale, we then obtain,

λi(tk|Zia, Zi(Sik), Di > Sik) =
λ0(tk + Sik)ρ

2{Λ0(tk + Sik)}(ρ2−1)

cos(πρ/2)(ρ+1)
exp{ρ2γ1Zia+ρ2γ2Zi(Sik)}.

Using this construction, the hazard for Dik = Di − Sik will generally depend on Sik

and, therefore, stratified models similar to those considered by Wei, Lin, and Weiss-

feld (1989) would be appropriate. With Λ0(t) = (t/a)1/ρ2
and λ0(tk +Sik)ρ

2{Λ0(tk +

Sik)}(ρ2−1) = 1/a, it follows that

λi(tk|Zia, Zi(Sik), Di > Sik) = exp{ρ2γ1Zia + ρ2γ2Zi(Sik)}/[a cos(πρ/2)(ρ+1)].

If we define λi0k(t; Sik) = λi(tk|Zia, Zi(Sik), Di > Sik), λ00k(t) = [a cos(πρ/2)(ρ+1)]−1

and β0 = (β01, β02) = (ρ2γ1, ρ
2γ2), then the proportional hazards model for pre-

treatment death time is given by

λi0k(t; Sik) = λ00k(t) exp{β01Zia + β02Zi(Sik)}.(3.6)

We only include for analysis those Zi(Sik) with Li < Sik < min(Xi, Ri).

For patients who received treatment prior to dying (Di > Ti), a post-treatment

death time D1
i − Ti, is then generated via hazard

λi1(t; Ti) = λ01(t) exp{β11Zia + β12Zi(Ti)},(3.7)

where t represents time from treatment date Ti forward and β1 = (β11, β12) =

(ρ2γ1, ρ
2γ2). We set λ01(t) = a1.

After generating the data, the pre-treatment death data since cross section,

{Xik, Nik(·), Zia, Zi(Sik)} are used to fit model (3.6); treatment data {Xi, N
T
i (Xi), Zia, Zi(t)}

are used to fit model (3.4); censoring data {Xi, N
C
i (·), Zia, Zi(0)} are used to fit model

(3.5); post-treatment death data {Xi − Ti, Zia, Zi(Ti); N
T
i (Xi) = 1} are used in the

fitting of (3.7).
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We evaluate samples with n = 500 subjects and obtain censoring and transplant

rates as approximately [10%, 10%], [15%, 15%] and [20%, 20%] with a = 2000, 5000, 7000

respectively. There are K = 10 cross section dates. We set b = 500, (θ01, θ02) =

(−1,−1), μ = 18, σ = 1, (γ1, γ2) = (−1,−0.5) and d1 = d2 = d3 = d4 = 0.001. We

set CSk = 100 × k. For all our simulated data configurations, 1000 Monte Carlo

data sets are used. We present results using ρ = 0.8, thus (β01, β02) = (β11, β12) =

(−0.64,−0.32). With the number of cross sections set to K = 10, the average num-

ber of records per subject is 0.7 to 2.4, depending on the censoring level. Since we

consider a 3-year restricted mean survival time and try to simulate time data in

“day” scale, we set L = 365 × 3 = 1095. Two scenarios are given, positive effect of

treatment on mean survival (Δ > 0) with a1 = 0.5 × 10−4, and no treatment effect

(Δ = 0) with a1 = [a cos(πρ/2)(ρ+1)]−1 .

We applied the simplified variance estimator in which {Ŵ A
ik(t)}, {Ŵ B

ik (t)} and

{Ĝi(t)
−1} are all treated as fixed; i.e., in (3.2) and (3.1). Table 3.1 presents the

simulation results for the case with Δ = 0, while Table 3.2 provides results for Δ > 0

cases. The quantity Δ equals the difference of 3-year restricted mean survival time

post- versus pre-treatment. The proposed estimators appear to be approximately

unbiased and coverage probabilities of Δ are close to the nominal 95% level.

3.5 Application

We applied the proposed methods to estimate the average effect of liver trans-

plantation among the transplanted, by Model for End-stage Liver Disease (MELD)

score. Data were obtained from the Scientific Registry of Transplant Recipients

(SRTR), a national population based organ transplant registry. The study popula-

tion consists of patients initially wait listed for deceased-donor liver transplantation
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Table 3.1: Simulation result for Δ = 0 with {W B
ik (t)}.

n=500 Δ = 0
[Censor,Treat] True Value Term(yr) Bias ESE ASE CP

[10%, 10%] 0 Δ 0.040 0.204 0.190 0.92

0 SΔ(1) 0.012 0.089 0.082 0.92

0 SΔ(2) 0.016 0.092 0.085 0.93

0 SΔ(3) 0.022 0.094 0.082 0.91

[15%, 15%] 0 Δ 0.022 0.164 0.154 0.93

0 SΔ(1) 0.007 0.065 0.061 0.93

0 SΔ(2) 0.010 0.077 0.072 0.93

0 SΔ(3) 0.010 0.083 0.077 0.91

[20%, 20%] 0 Δ 0.009 0.144 0.141 0.94

0 SΔ(1) 0.001 0.056 0.054 0.93

0 SΔ(2) 0.004 0.067 0.066 0.94

0 SΔ(3) 0.005 0.074 0.073 0.94
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Table 3.2: Simulation result for Δ > 0 with {W B
ik (t)}.

n=500 Δ > 0
[Censor,Treat] True Value Term(yr) Bias ESE ASE CP

[10%, 10%] 0.871 Δ 0.030 0.204 0.190 0.92

0.294 SΔ(1) 0.009 0.088 0.074 0.92

0.346 SΔ(2) 0.009 0.100 0.088 0.92

0.350 SΔ(3) 0.008 0.110 0.097 0.92

[15%, 15%] 0.614 Δ 0.017 0.150 0.145 0.94

0.193 SΔ(1) 0.006 0.054 0.052 0.94

0.253 SΔ(2) 0.008 0.070 0.068 0.94

0.278 SΔ(3) 0.005 0.082 0.077 0.92

[20%, 20%] 0.427 Δ 0.020 0.135 0.133 0.94

0.133 SΔ(1) 0.006 0.048 0.048 0.94

0.177 SΔ(2) 0.009 0.064 0.062 0.93

0.197 SΔ(3) 0.006 0.077 0.072 0.93



51

between March 1, 2002 and December 31, 2009 in the United States. Only adult

patients (age ≥ 18 at listing) not previously transplanted (i.e., not repeat transplant

candidates) were included in the study cohort. Patients who were Status 1 at t = 0

were excluded. Cross-section dates were chosen every 7 days, 30 days or 90 days

from 03/01/2002 to 12/31/2009, which lead to K = 409, 96, 32 cross sections respec-

tively. Three different cross-section frequencies dates were chosen in order to study

the behavior of the proposed methods.

In order to construct the IPCW weight, ΛT
i (t) was estimated through a time-

dependent Cox model in which transplant was the event. For the time-to-transplant

model, time t starts from the beginning of the follow-up (the date of wait listing), as

opposed to cross section date. The model was stratified, such that

λT
ir(t) = Ai(t)λ

T
0r(t) exp{θ′0Zi(t)},

where the subscript r = 1, . . . , 11 stands for United Network for Organ Sharing

(UNOS) region. The presence of the indicator, Ai(t), reflects the fact that a patient’s

time while inactive or removed does not contribute to the estimation of θ0 or ΛT
0r(t).

The covariate, Zi(t), included MELD score, Status 1, albumin, age, gender, race,

diagnosis of Hepatitis C, body mass index, diabetes, hospitalization, blood type,

dialysis within prior week, encephalopathy, ascites and serum creatinine.

To obtain the weight Gi(t)
−1, ΛC

i (t) was estimated through a baseline Cox model

in which administrative censoring was the event. As in the time-to-transplant model,

time t starts from the beginning of the follow-up. Covariates evaluated at baseline,

Zi(0), included MELD score, albumin, age, gender, race, diagnosis, body mass index,

diabetes, hospitalization status at listing and previous malignancy.

For the weight, some very large values occurred. Since we found that 99% of
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W B
ikr(t) and Gi(t)

−1 were less than 10, both weights were then capped at 10. The

time-to-transplant and time-to-censoring models are regressed on the entire study

cohort (i.e., one single model). Separate pre-transplant death models were fitted

for each of the following MELD score categories: 6-8, 9-11, 12-14, 15-17, 18-19, 20-

22, 23-25, 26-29, 30-35 and 36-40. One single post-transplant model was fitted to

all MELD score categories. Then the proposed death models were applied to the

chosen cohort. The pre-transplant data were divided into subgroups by MELD due

to computational burden.

The pre-transplant death model, was also stratified

λi0kr(t) = λ00kr(t) exp{β ′
0Zik},

where the subscript r = 1, . . . , 11 again stands for UNOS region and k = 1, . . . , K

stands for cross section. The subject level covariates at cross section k, Zik, included

MELD score, albumin, age, gender, race, diagnosis, body mass index, diabetes, hos-

pitalization status at listing, previous dialysis and malignancy. Also included in

Zik were time on wait-list, average change in MELD score (pertaining to the time

interval between the date of listing and cross-section k date, and estimated using or-

dinary least squares) and average change in albumin (estimated analogously). Other

elements included the percentage of time spent in inactive status, and percent of

time receiving dialysis. Since 99% of MELD and albumin slope values before cross

sections fell in the [-1,1] interval, the slopes were bounded by -1 and 1.

The post-transplant death model is expressed as

λi1(t) = λ01(t) exp{β ′
1Zi(Ti)}.

The subject level covariates at transplant time Ti, Zi(Ti), included MELD score,

albumin, age, gender, race, diagnosis, body mass index, diabetes, hospitalization
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status at listing, previous dialysis and malignancy, donor risk index (DRI; Feng

et al., 2006) and time on wait-list.

The sample in pre-transplant period consisted of n = 66, 884 patients, of which

36,260 were observed to receive a deceased-donor liver transplant. Estimates of

the difference in restricted mean survival time, Δ, based on the death model using

the Type B weight are listed in Table 3.3. Estimates of the difference in survival

probability, SΔ(t) are shown in Table 3.4 for t = 1, 3, 5 years. For the MELD 30-40

subgroup, weekly cross section dates were chosen. For MELD 18-29 cross sections

were drawn monthly. For MELD 6-17, cross sections were drawn every 3 months.

Note that, we also tried weekly cross section dates for MELD 6-29 patients, which

yielded almost identical results. There was an obvious monotone pattern in that,

as MELD and restricted time L went up, estimates of differences in both restricted

mean lifetime and survival probability increased.

Figure 3.2 shows the estimated average pre- and post-transplant survival curves

for MELD group 6-8, 15-17, 20-22 and 36-40. For MELD 36-40 group, the wait list

survival curve drops dramatically during the first couple of months, then steadily

declines thereafter. As MELD score decreases, the difference between the two survival

curves generally diminishes and the dropping slope of the wait list curve becomes

closer to a constant; a phenomenon is quite obvious in the plot of the MELD 6-8

group.

3.6 Discussion

In this chapter, we proposed pre- and post-treatment models for estimating the

average effect of a time-dependent treatment via differences in survival probability

and restricted mean lifetime. A proportional hazards model which uses covariate
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Table 3.3: Estimate of Δ(SE) by MELD groups.

MELD 1 Year 3 Years 5 Years

36-40 0.47 1.43 2.38
(0.04) (0.18) (0.34)

30-35 0.30 0.88 1.40
(0.04) (0.34) (0.75)

26-29 0.20 0.63 0.99
(0.03) (0.11) (0.20)

23-25 0.12 0.57 1.07
(0.01) (0.07) (0.14)

20-22 0.10 0.62 1.23
(0.02) (0.07) (0.14)

18-19 0.07 0.51 1.06
(0.01) (0.04) (0.08)

15-17 0.03 0.40 1.00
(0.01) (0.05) (0.10)

12-14 -0.01 0.18 0.59
(0.01) (0.04) (0.08)

9-11 -0.03 0.03 0.29
(0.01) (0.03) (0.07)

6-8 -0.04 -0.04 0.11
(0.01) (0.03) (0.07)
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Table 3.4: Estimate of SΔ(SE) by MELD groups.

MELD 1 Year 3 Years 5 Years

36-40 0.48 0.48 0.45
(0.04) (0.06) (0.06)

30-35 0.33 0.27 0.25
(0.04) (0.10) (0.12)

26-29 0.25 0.19 0.16
(0.04) (0.04) (0.05)

23-25 0.19 0.23 0.26
(0.02) (0.02) (0.04)

20-22 0.19 0.29 0.30
(0.02) (0.03) (0.03)

18-19 0.15 0.26 0.27
(0.01) (0.01) (0.02)

15-17 0.09 0.26 0.32
(0.01) (0.02) (0.02)

12-14 0.02 0.16 0.23
(0.01) (0.02) (0.02)

9-11 -0.02 0.09 0.17
(0.01) (0.01) (0.01)

6-8 -0.03 0.03 0.11
(0.01) (0.01) (0.02)
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Figure 3.2: Estimated post- and pre-transplant survival curves by MELD score at
transplant.
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history up to the treatment time is assumed for the post-treatment death hazard. A

cross-section-based partly conditional survival model which conditions on covariate

history up to and time since the cross-section times is used for the treatment-free

death hazard. This cross-section-based model to allows the estimation of treatment-

free survival for treated patients. Thus the comparison in survival probability or

restricted mean lifetime with versus without treatment at the same time point, the

treatment time, is made possible. In the partly conditional survival model, values

of covariates are fixed at cross-section time and multiple cross-sections are drawn

with data of each serves as a stratum. Freezing the covariate value could be seem as

a marginal way of estimation, which averages over all the possible future covariate

paths. However, since only part of the covariate history is conditioned on, receiving

treatment results in the dependent censoring of death. A revised version of IPCW

is applied in aiming to estimate the effect consistently in the presence of dependent

censoring. With pre- and post-treatment survival curves estimated, treatment effect

could be obtained at the subject level based on each patient’s covariate values at

treatment time. To construct the average treatment benefit, another IPCW weighted

average of subject level estimates is used to weight out the effect of administrative

censoring.



CHAPTER IV

Semiparametric Cumulative Contrasts of

Group-Specific Mortality in the Presence of

Dependent Censoring

4.1 Introduction

In medical and clinical studies, nonproportional hazards and dependent censoring

are two common issues. For example, in comparing mortality across different groups

of patients, discrepancies in mortality by group may not be constant over follow-up

time. In the context of the Cox (1972) model, nonproportionality could be handled

by assuming that the group-specific hazard ratio effect changes with a specific pat-

tern that can be represented parametrically. For example, the effect could be piece

wise constant, or follow a continuous function. However, usually it is generally quite

challenging to confirm the correctness of the selected parametric form. Moreover,

when the effect is time-varying, investigators tend to be more interested in the cu-

mulative effect; i.e. if and when the treatment-specific survival (or, equivalently the

cumulative hazard) functions cross.

Another frequently arising issue is dependent censoring, which can occur when

both the death and censoring process depend on overlapping time-varying covariates

not captured in the death hazard model. Effect estimators that rely on censoring

58
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and death being independent are generally no longer consistent in the presence of

dependent censoring. If adjustment is made for the covariates that vary over time,

the effect estimates then represent differences between subjects with equal covariate

paths over time, which is usually of secondary interest at most.

Wei and Schaubel (2008) proposed estimating the cumulative treatment effect

using a stratified Cox model with treatment groups as strata. The methods require

no assumptions on the pattern of the group effect on mortality over time, although

proportionality is assumed to hold within-group for the adjustment convariates. The

ratio of stratum-specific cumulative baseline hazards is used to estimate the cumu-

lative treatment effect over time.

The method of Wei and Schaubel (2008) assumes that censoring is conditionally

independent of death given treatment and the adjustment covariates. This assump-

tion frequently fails in practice, particularly for observational studies. Robins and

Rotnitzky (1992), Robins and Finkelstein (2000) proposed Inverse Probability of

Censoring Weighting (IPCW) to obtain consistent estimators in the presence of de-

pendent censoring.

The motivation for the proposed methods arises from wait-list mortality com-

parisons among End-Stage Liver Disease (ESLD) patients. The preferred treatment

for ESLD is deceased-donor liver transplantation. However, the number of available

organs is always less than the number of patients on the liver transplant waiting list.

According to the current liver allocation guidelines, the sickest patients are priori-

tized to the top of the waiting list, where Status-1 patients are in front of the queue,

followed by chronic patients in decreasing order of Model for End-Stage Liver Disease

(MELD) score. Note that MELD scores are updated over time and, thus, MELD is a

time-varying covariate. MELD scores are highly predictive of both wait list mortality
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and liver transplant rates; the latter being due to the liver allocation policy which

has been in place since 2002. Therefore, liver transplantation represents dependent

censoring for wait-list death unless adjustment is made for the time-dependent pre-

dictors, such as MELD score. However, adjusting for time-dependent covariates will

bias the group effect estimate towards the null. As a result, the receipt of a liver

transplant results in the dependent censoring of wait list death time, in the presence

of adjustment for baseline (time 0) covariates only. Preliminary analysis has revealed

that the Kaplan-Meier curves for high-MELD patients later cross that for Status-1

patients, which implies that the among-group proportionality assumption fails. An-

other issue is that due to health conditions, patients can be permanently removed

from or temporarily inactive on the wait-list, during which time intervals they are

not eligible to receive an organ transplant.

When proportionality fails, some authors estimated the causal inference, or av-

erage hazard ratio, using marginal structural models (e.g., Hernan, Brumback, and

Robins, 2000, 2001; Robins, Hernan, and Brumback, 2000). Various authors esti-

mated restricted mean survival time (Chen and Tsiatis, 2001; Zhang and Schaubel,

2010). However, contrasts between restricted mean lifetime do not describe how the

effect on survival changes over time. Wei and Schaubel (2008) proposed a ratio of

the cumulative hazards to quantify the group effect without considering dependent

censoring. Schaubel and Wei (2011) later proposed the ratio of cumulative hazard

over time and used IPCW to overcome the dependent censoring. However, Inverse

Probability of Treatment Weighting (IPTW) was used instead of covariate adjust-

ment in the death model, which estimates a quantity analogous to the average causal

effect, which may not be of chief interest in certain applications. In summary, due

to interest in the shape of the time-varying effect, the presence of dependent cen-
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soring and the potential for subjects to become treatment ineligible, none of the

afore-mentioned methods can be applied to our ESLD motivating example directly.

In this chapter, we propose the ratio of IPCW-weighted baseline cumulative haz-

ards as an estimator of the group effect on mortality over time. Essentially, the

proposed method extends that of Wei and Schaubel (2008) to the dependent censor-

ing setting. Since only baseline, opposed to time-dependent covariates, are adjusted

for, dependent censoring occurs and is overcome by IPCW, with a stabilized ver-

sion of weight applied to increase precision. To construct the IPCW weight, a time-

dependent Cox model with treatment as the event is adopted. The time-to-treatment

model is conditional on being treatment-eligible, such that treatment-ineligible time

intervals do not contribute to the treatment hazards; reflective of the fact that organs

are not allocated to removed or inactive patients in the motivating example.

The remainder of this chapter is organized as follows. In Section 4.2, we provide

the notation and describe the proposed estimator. How consistent estimation is

obtained in presence of dependent censoring through IPCW method is also explained.

Asymptotic properties of the proposed estimator are given in Section 4.3. Simulation

studies are provided in Section 4.4 to evaluate the performance of the proposed

methods in finite samples. The proposed methods are applied to liver wait list

mortality using data from a national registry in Section 4.5. In Section 4.6, we

provide some concluding remarks and discussion. Asymptotic derivations are given

in Appendix C.

4.2 Proposed Methods

First, we set up the necessary notation. Let Di be the time to failure for subject i,

with i = 1, . . . , n. We assume that Di may be right censored at treatment time, Ti, or
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independent censoring time, Ci, and therefore we only observe Xi = min(Di, Ti, Ci)

and associated indicators Δi = I(Xi = Di) and ΔT
i = I(Xi = Ti), where I(A) = 1

is event A is true, and 0 otherwise. Let J be the number of groups with index

j = 0, 1, 2, . . . , J − 1. The first group (j = 0) serves as the reference category, to

which all other groups are compared. Define the death counting process, Ni(t) =

Ii(Xi ≤ t, Δi = 1) with associated increment dNi(t) = Ni{(t + dt)−} − Ni(t) and

at-risk process, Yi(t) = I(Xi ≥ t). Let Gi be the group variable for ith subject

and define Gij = I(Gi = j). Similarly, we have Yij(t) = Yi(t)Gij and dNij(t) =

dNi(t)Gij as the at risk and counting process for ith subject and jth group. Note

that group is defined at t = 0. With respect to the treatment process, define NT
i (t) =

Ii(Xi ≤ t, ΔT
i = 1) with increment dNT

i (t) = NT
i {(t + dt)−} − NT

i (t). Let Ai(t) be

1 if patient i is eligible to receive treatment as of time t, and 0 otherwise, and set

Ãi(t) = {Ai(s); s ∈ [0, t)}. Note that, since treatment-initiation never occurs when a

patient is treatment-ineligible, dNT
i (t) = Ai(t)dNT

i (t). Thus n independent vectors

are observed from subjects, {Xi, Δi, Δ
T
i , Gi, Z̃i(Xi), Ãi(Xi)}, where Zi(t) is the time-

varying covariate and Z̃i(t) = {Zi(s); s ∈ [0, t)} is the covariate history on [0, t). Set

Zi0 ≡ Zi(0) as the baseline covariates.

A variant of Inverse Probability of Censoring Weighting (IPCW) is used to over-

come the dependent censoring of Di via Ti. First, we assume that the treatment

time Ti follows the Cox model,

λT
i (t) = Ai(t)λ

T
0 (t) exp{θ′0Zi(t)},

where the inclusion of Ai(t) reflects the fact that the treatment hazard is zero at

times during which the subject is treatment-ineligible. The IPCW weight is given

by Wi(t, θ) = Yi(t) exp{ΛT
i (t, θ)}, where ΛT

i (t) =
∫ t

0
Ai(s)λ

T
i (s)ds. The Breslow-type
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estimator is then given by Λ̂T
0 (t, θ) = n−1

∑n
i=1

∫ t

0
dNT

i (s)/R
(0)
T (s, θ) with Λ̂T

i (t, θ) =∫ t

0
Ai(s) exp{θ′Zi(s)}dΛ̂T

0 (s, θ), where R
(d)
T (t, θ) = n−1

∑n
i=1 Ai(t)Yi(t)Zi(t)

⊗d exp{θ′Zi(t)},

d = 0, 1, 2. z⊗0 = 1, z⊗1 = z and z⊗2 = zz′, if z is a vector. The coefficient θ0 is

estimated via partial likelihood (Cox, 1975), by θ̂, as the root of the score function,

UT (θ) =

n∑
i=1

∫ τ

0

{Zi(t) − Z(t; θ)}dNT
i (t),

where Z(t; θ) = R
(1)
T (t; θ)/R

(0)
T (t; θ), and the constant τ satisfies P (Xi ≥ τ) > 0.

We assume that death time Di follows a stratified proportional hazards model,

with hazard function

λij(t) ≡ λ(t|Gi = j, Zi0) = λ0j(t) exp{β ′
0Zi0},

where Zi0 = Zi(0) and λ0j(t) is the unspecified baseline hazard function for group

j. Proportional hazards are not assumed across groups, but are assumed for the

adjustment covariate, Zi0.

The regression parameter for the adjustment covariate, β0, can be estimated as

the root of the stratified inverse-weighted score function,

(4.1) U(β, W ) =
n∑

i=1

J−1∑
j=0

∫ τ

0

{Zi0 − Zj(t; β, W )}Wi(t)dNij(t),

where Zj(t; β, W ) = R
(1)
j (t; β, W )/R

(0)
j (t; β, W ), R

(d)
j (t; β, W ) = n−1

∑n
i=1 Wi(t)Yij(t)Z

⊗d
i0

exp(β ′Zi0) for d = 0, 1, 2. With some algebra, dNij(t) in (4.1) can be replaced by

dMij(t) = dNij(t) − Yij(t)dΛij(t), such that the score function can be written as

U(β, W ) =

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − Zj(t; β, W )}Wi(t)dMij(t).

A consistent estimator of β0 should satisfy E[Wi(t)dMij(t)|Zi0] = 0. We can write

dMij(t) = I(Ti > t)I(Ci > t)dM∗
ij(t), where dM∗

ij(t) = I(Di ≥ t)[dN∗
ij(t) − dΛij(t)]

and N∗
ij(t) = I(Di ≤ t)Gij . Under the assumed model, E[dM∗

ij(t) |Zi0, Gi] = 0,



64

which leads to E[I(Ti > t)dM∗
ij(t)|Zi0, Gi] = 0 in the case of independent cen-

soring. In the presence of dependent censoring, without the IPCW term Wi(t),

E[dMij(t)|Zi0, Gi] �= 0 since E[dMij(t)|Zi0, Gi] �= E[I(Ti > t)I(Ci > t)|Zi0, Gi]

E[dM∗
ij(t)|Zi0, Gi]. However, it can be shown that E[Wi(t)dMij(t)|Zi0, Zi(t), Gi] = 0

and, after iterating the expectation, we have E[Wi(t)dMij(t)|Zi0, Gi] = 0, such that

the weighted score function, (4.1), is unbiased. The weighted Breslow estimator is

then computed as

Λ̂0j(t; β) = n−1
n∑

i=1

∫ t

0

Wi(s)dNij(s)

R
(0)
j (t; β, W )

,

and is a consistent estimator of Λ0j(t) in the presence of dependent censoring.

However, in practice, some values of Wi(t) can be very large due to Λ̂T
i (t) being

unduly large, which can result in β̂ and Λ̂0j(t) being quite imprecise. In order to

improve the precision of the estimate, similar to Robins and Finkelstein (2000) and

Miloslavsky et al. (2004), a stabilized weight is define as

W S
i (t) = Yi(t)

exp{ΛT
i (t, θ)}

exp{ΛT
i (t|Zi0, Gi)} ,

where ΛT
i (t|Zi0, Gi) is the cumulative hazard from a treatment hazards model which

accounts for baseline covariate values only, λT
i (t|Zi0, Gi) = λT

0 (t|Zi0, Gi) exp{θ′1Zi0}

with θ1 the effect coefficient. We refer to Wi(t) as “unstabilized” hereafter.

To compare each group to the reference group, the following measure is proposed,

φj(t) =
Λij(t|Zi0 = z)

Λi0(t|Zi0 = z)
=

Λ0j(t)

Λ00(t)
,

for j = 0, 1, . . . , J − 1. The measure φj(t) contrasts patients with same covariate pat-

tern but in different groups. Note that if proportionality holds for groups, then φj(t)

reduces to a time invariant constant, which is commonly referred to as the hazard

ratio. After obtaining the cumulative baseline hazard estimators and substituting
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them into φj(t), we obtain the estimator

φ̂j(t) =
Λ̂0j(t, β̂)

Λ̂00(t, β̂)
, t ∈ [tL, tU ],

where tL is chosen to be large enough to avoid Λ̂00(t, β̂) = 0 and tU is chosen to avoid

instability estimate at the tail of the observation time distribution.

4.3 Asymptotic Properties

Regularity conditions are listed explicitly in Appendix C. In particular, we assume

that the random vectors {Xi, Δi, Δ
T
i , Z̃i(Xi), Ãi(Xi)}, for i = 1 . . . n, are independent

and identically distributed, with Zi(t) bounded for t ∈ (0, τ ], where τ satisfies P (Xi ≥
τ) > 0. The asymptotic properties of the proposed methods are summarized in the

following theorem.

Theorem IV.1. Under certain regularity conditions, n1/2{φ̂j(t) − φj(t)} converges

asymptotically to a zero-mean Gaussian process with covariance function σj(s, t) =

E[ξij(s)ξij(t)], where {ξ1j(t), . . . , ξnj(t)} are i.i.d. with 0 mean asymptotically, with

ξij(t) =
1

Λ00(t)
Φij(t) − Λ0j(t)

Λ2
00(t)

Φi0(t),

where

Φij(t) = h′
j(t; β0, W )Ω−1(β0)Ui(β0) +

∫ t

0

r
(0)
j (u; β0, W )−1Wi(u)dMij(u)

+[B′
j(t) + E ′

j(t)]ΩT (θ0)
−1UT

i (θ0) +

∫ t

0

[Kj(u, t) + Pj(u, t)]r
(0)
T (u; θ0)

−1dMT
i (u),

hj(t; β, W ) = −
∫ t

0

z′j(u; β, W )dΛ0j(u),

r
(0)
j (t; β, W ) = Ei[Wi(t)Yij(t) exp{β ′Zi0}],

r
(0)
T (t; θ) = Ei[Yi(t) exp{θ′Zi(t)}],

dMT
i (t) = dNT

i (t) − Yi(t)dΛT
i (t),
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with Ω(β), Ui(β), Bj(t), Ej(t), ΩT (θ), UT
i (θ), Kj(t1, t2) and Pj(t1, t2) defined in

Appendix C.

The covariance can be estimated consistently by σ̂j(s, t) = n−1
∑n

i=1 ξ̂ij(s)ξ̂ij(t),

where ξ̂i(t) is obtained by replacing all limiting values in ϕi by their empirical coun-

terparts. A proof of Theorem III.1 is given in Appendix C. The proof basically

shows that, asymptotically, n1/2{φ̂j(t)− φj(t)} = n−1/2
∑n

i=1 ξ̂ij(t) + op(1) through a

sequence of Taylor series expansions.

The proof is for the unstabilized weight, Wi(t) while a stabilized version W S
i (t)

is preferred. As implied by Theorem III.1, the computation of the variance is

quite complicated, and is obviously more complicated with the stabilizer. A com-

putationally simpler variance treats the weight Wik(t), or W S
ik(t), as fixed in the

asymptotics derivation. Then, the covariance estimator could simplify to σ̂∗
j (s, t) =

n−1
∑n

i=1 ξ̂∗ij(s)ξ̂
∗
ij(t), where

ξ∗ij(t) =
1

Λ00(t)
Φ∗

ij(t) −
Λ0j(t)

Λ2
00(t)

Φ∗
i0(t),(4.2)

Φ∗
ij(t) = h′

j(t; β0, W )Ω−1(β0)Ui(β0) +

∫ t

0

r
(0)
j (u; β0, W )−1Wi(u)dMij(u).

This is the variance estimator that we suggest and evaluate through simulations

described in the next section.

4.4 Simulation

We modify the setups of Zhang and Schaubel (2010) to generate data for the sim-

ulation study. First, a single baseline covariate Zi is created as a truncated standard

normal variable, truncated at -4 and 4. The group indicator Gi is then generated

from a Bernoulli distribution with parameter exp(−0.6Zi)/{1+exp(−0.6Zi)}. Death

time Di is generated by transforming ε1i ∼ Uniform(0, 1) using the inverse of the
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cumulative distribution function of a Weibull distribution with hazard function

λij(t) = αjγjt
γj−1 exp{β ′

0Zi},(4.3)

for subject i = 1, . . . , n and group j = 0, 1. Unless γ0 = γ1, proportionality does not

hold across groups. Different values of γj’s are chosen to lead to a constant, increasing

or decreasing true cumulative hazard ratio function φj(t). After that, we generate a

time-dependent covariate which correlates with both death time Di and treatment

time Ti conditional on (Gi, Zi). First let Vti = −2 log{Giε1i +(1−Gi)(1− ε1i)}+ ε2i,

where ε2i ∼ Uniform(0, 1). Define Vi(t) = I(Vti ≥ t). Thus Vi(t) is correlated

with event time Di when conditional on (Gi, Zi). Then, Ti is generated to follow the

proportional hazards model,

λT
i (t) = λT

0 (t) exp{θ0 + θGGi + θZZi + θ1Vi(t)},(4.4)

such that Vi(t) correlates with Ti. Consequently Di is dependently censored by Ti,

even conditional on (Gi, Zi). To simplify the setup, administrative censoring time Ci

is not involved in the simulation study. Data pertaining to death time {Xi, Δi, Zi}

is used to fit model (4.3), with time to transplant data {Xi, Δ
T
i , Zi, Vi(Xi)} used to

fit model (4.4).

We evaluate samples of size n = 500, 250, 100 and treatment percentages as 30%

and 10%. The parameters [β0, α0, α1, θG, θZ , θ1] are set to [0.3, 0.2, 0.4, 0.2, 0.2, 0.3].

Different values of θ0 are used to vary the censoring percentage. The vector [γ0, γ1]

was set to each of [1.5, 1.5], [1.5, 1.25] and [1, 1.5], to make φ1(t) = Λ01(t)/Λ00(t) a

constant, an increasing function and a decreasing function respectively. The prop-

erties of φ1(t) are studied at time t = 1, t = 2 and t = 3. Both the unstabilized

Wi(t) and stabilized W S
i (t) are applied to the simulated data. We use the simplified

variance estimator which treats the IPCW weights as fixed; i.e., as given in (3.3).
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Tables 4.1, 4.2 and 4.3, show the results when the true ratio is increasing, de-

creasing and constant, respectively. All estimates are approximately unbiased. The

magnitude of the finite-sample bias generally increases as the sample size decreases.

There is no obvious association between the degree of bias and treatment percentage.

On one hand, one might expect that higher treatment percentages should increase

bias since the dependent censoring aspect figures move prominently in the estimat-

ing function. However, on the other hand, greater number of observed treatments

should generally result in modeling ΛT
i (t) more precisely and hence to diminish the

bias. Generally, the average asymptotic standard error (ASE) is close to empiri-

cal standard error (ESE). The coverage probabilities (CP) with W S
i (t) are generally

closer to 95% than those based on Wi(t). The CP tended to decrease as the sample

size decreased.

4.5 Application

We applied the proposed methods to ESLD patients initially placed on the wait

list for diseased donor liver transplantation between March 1, 2002 and December 31,

2009 in United States. Data were obtained from the Scientific Registry of Transplant

Recipients (SRTR). Only patients age ≥ 18 at listing were included in our study

sample, and we excluded retransplant candidates.

In order to construct the IPCW weight, a time-dependent stratified Cox model

which takes transplant as the event was adopted, such that

λT
ir(t) = Ai(t)λ

T
0r(t) exp{θ′0Zi(t)},

where the subscript r = 1, . . . , 11 represents United Network for Organ Sharing

(UNOS) Region. The indicator Ai(t) reflects that patients do not contribute to the

estimation of θ0 or ΛT
0r(t), while they are removed from or inactive on the waiting
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list. The covariate, Zi(t), included MELD score, Status 1, albumin, age, gender,

race, diagnosis of Hepatitis C, body mass index, diabetes, hospitalization, blood

type, dialysis within prior week, encephalopathy, ascites and serum creatinine. We

used two types of weights Wi(t) and W S
i (t). Even for the stabilized weight, some

extreme values existed. Since 99% of the estimated weights were less than 10, the

weights were then capped at 10.

The model of main interest (that for the wait list death hazard) is given by

λij(t) = λ0j(t) exp{β ′
0Zi0},

where the subscript j = 0, . . . , 7 corresponding to Status-1 (j = 0; reference) and

MELD score (21-23, 24-26, 27-29, 30-32, 33-35, 36-40, >40). The baseline covariate

vector, Zi0, included terms representing albumin, age, gender, race, diagnosis, body

mass index, diabetes, hospitalization status, if dialysis within prior week, and previ-

ous malignancy. Although the MELD score is capped at 40 for allocation purposes,

in our analysis, calculated MELD scores over 40 were collected into a > 40 group.

A total of 66,884 subjects were eligible for our study. We focused on comparing

the MELD> 20 to Status 1 patients. The cumulative hazard ratio of high-MELD

patient to Status-1 patient are estimated up to 5 years. Restricting attention to

Status 1 and MELD> 20, the sample size was n = 16, 684.

Since the results with Wi(t) are similar to those with W S
i (t), we only show the

stabilized version of hazard ratios. The estimated curves of hazard ratio, comparing

high-MELD to Status 1, are shown in Figure 4.1. Figures 4.2, 4.3 and 4.4 provide the

estimate together with the point-wise confidence interval for MELD> 40, MELD 36-

40 and MELD 21-23 versus Status-1 patients respectively. The curve of MELD> 40

patients is below the reference line of Status 1 in the short run; e.g., within 14
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Figure 4.1: Cumulative hazard ratio of high-MELD patients compared to Status 1
patients.

days. But afterward, the curve crosses the reference line and climbs to φ̂i(t) ≈ 3 and

remains flat for the remainder study follow-up. Other MELD categories have similar

curve patterns over time, but with different crossing times, varying from 14 to 250

days.

It is interesting that Status 1 patients have a lower mortality compared to high-

MELD patients. In practice, acute patients automatically lose their Status 1 desig-

nation after 14 days, since they are very likely to die within 2 weeks. In fact, it is

patients must apply to have their Status 1 classification re-certified after 7 days. It

is assumed that if they were ill enough the warrant Status 1 designation, they would

die within one week in the absence of a liver transplant. However, it appears that

a large portion of patients who were Status 1 at baseline live for years after wait

listing.
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Figure 4.2: Cumulative hazard ratio for MELD>40 patients compared to Status 1
patients, with 95% confidence interval.

Figure 4.3: Cumulative hazard ratio for MELD 36-40 patients compared to Status 1
patients, with 95% confidence interval.
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Figure 4.4: Cumulative hazard ratio for MELD 21-23 patients compared to Status 1
patients, with 95% confidence interval.

4.6 Discussion

In this article, we use the ratio of group-specific cumulative baseline hazard func-

tions as a time-dependent measure of the covariate-adjusted effect of group on mor-

tality. Under the target data structure, covariates are time-varying. The death

hazard model of interest adjusts for only time 0 covariates, such that death may

be dependently censored due to mutual correlation between the values of the time-

varying covariates (after time 0) with death an censoring times. IPCW is used to

obtain unbiased estimators, with a stabilized weight suggested. The fact that sub-

jects may experience time intervals of treatment-ineligibility is handled by fitting a

treatment hazard model that is conditional on being treatment-eligible, with a sub-

jects’s ineligible periods then zeroed out in the probability-of-remaining-untreated

calculation. Simulations show that the proposed methods work well in reasonable

sized samples. Finally, the proposed methods are applied in order to contrast liver
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wait list mortality between acute and chronic liver failure patients.

Very few comparisons between the mortality of Status 1 and high-MELD patients

have been carried out, primarily since it is generally assumed by the liver transplant

community that mortality is much higher for acute relative to chronic liver fail-

ure patients. However, based on a conventional time-dependent model and capping

follow-up at 14 days, Sharma et al. (2012) reported that wait list mortality for

high-MELD patients was very comparable with that of Status 1 patients. Moreover,

Sharma et al (2012) found that MELD≥ 40 was associated with significantly higher

two-week mortality than Status 1. The analysis in this chapter provides further

evidence that the prioritization for deceased-donor liver transplantation of Status 1

over MELD> 40 patients needs to be reconsidered.

Various methods related to those proposed in this chapter can be found in the

existing literature, although none estimate the quantity of interest under the as-

sumed data structure. In particular, Hernan, Brumback, and Robins (2000, 2001)

developed methods for estimating the average causal effect in terms of the hazard

ratio. Although the methods allow for treatment to be time-varying, proportional

hazards are assumed under the marginal structure model employed. Chen and Tsi-

atis (2001); Schaubel and Wei (2011); Zhang and Schaubel (2010) used restricted

mean survival time as a measure; such that the cumulative effect is captured. Each

of these methods estimates an average causal effect, which would be of interest in

many but not all settings. In many applications (such as out motivating example), a

conditional group effect is of greater interest. The estimator proposed in this Chap-

ter is analogous to that of Wei and Schaubel (2008), but allows for a richer covariate

structure and more general censoring patterns.

The motivating example considers treatment-free survival. It would be of interest
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to extend the proposed methods to estimate treatment effects.



CHAPTER V

Conclusion

In this dissertation, three novel semiparametric methods were developed for es-

timating the effect of either a longitudinal covariate or a time-dependent treatment

on survival. Each of the methods was motivated by issues in the analysis of liver

transplant data. The methods are intended for the analysis of observational data

and can accommodate dependent censoring.

In Chapter II, we developed semiparametric methods for estimating the effect of

a time-dependent covariate on treatment-free survival. The data structure of inter-

est consists of a longitudinal sequence of measurements and a potentially censored

survival time. The factor of chief interest is time-dependent. Treatment-free survival

iss of interest and is dependently censored by the receipt of treatment. A further

complication is that patients may be removed from consideration for treatment, ei-

ther temporarily or permanently. The proposed methods involve landmark analysis

and partly conditional hazard regression. Dependent censoring was overcome by a

variant of Inverse Probability of Censoring Weighting (IPCW). Application of the

proposed methods to national organ transplant registry data revealed that the sick-

est chronic end-stage liver disease patients have significantly greater pre-transplant

mortality than acute liver failure patients. The method may be challenging to apply

78
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to large data sets with long follow-up, due to computational intensity.

In Chapter III, we developed semiparametric methods for estimating the aver-

age difference between treatment-free and post-treatment restricted mean lifetime.

The underlying data structure was the same as in Chapter II, except that post-

treatment mortality was also considered. Methods from Chapter II were used to

model treatment-free survival. The post-treatment death hazard was modeled using

the time-dependent covariate history leading up to the treatment time. The average

treatment effect was obtained by averaging over treated subjects, in a manner which

accounts for the competing risks structure and the independent censoring of time to

treatment. Through the proposed methods, the mean survival benefit of deceased-

donor liver transplantation, based on 5-year restricted mean lifetime, was estimated

by Model for End-stage Liver Disease (MELD) score. The methods entail inverse

weights for each of the treatment and independent censoring time; with consistency

requiring the correctness of both such models.

In time to event data observed in medical studies, nonproportional hazards and

dependent censoring are common issues when comparing group-specific mortality.

The group effect on mortality might vary over time, as opposed to being constant.

In settings where the proportional hazard assumption fails, investigators tend to be

more interested in cumulative (as opposed to instantaneous) effects on mortality.

Therefore, in Chapter IV, we developed an estimator for the cumulative group effect

on survival in the presence of nonproportional hazards and dependent censoring. The

proposed estimator is based on the cumulative hazard function, assumed to follow a

stratified Cox model. No functional form need be assumed for the nonproportionality.

Through the proposed methods, it was revealed that acute liver failure patients have

lower pre-transplant survival than high-MELD patients, but only in the short-term.
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The use of stratification for the proposed methods provides much flexibility, but may

lead to instability for smaller data sets.

Each of the proposed methods was shown to be consistent and asymptotically

normal, with consistent covariance estimators provided. Simulation studies revealed

that the proposed estimation procedures were appropriate for practical use.
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APPENDIX A

Appendix A: Proof of Theorem II.1

Appendix A: Proof of Theorem II.1

A.I. Notation

We begin by reviewing the essential notation:

i: subject (i = 1, . . . , n)

n: number of subjects

k: cross section (k = 1, . . . , K)

Di: death time for the ith subject

Ci: censoring time for the ith subject

Ti: treatment time for the ith subject

Xi = min(Di, Ci, Ti), observed time for the ith subject

Δi = I(Xi = Di)

ΔT
i = I(Xi = Ti)

CSk: kth cross-section

Sik: follow-up time for ith subject at calendar date of the kth cross-section date

Ai(t): treatment eligibility indicator of ith subject at time t, Aik = Ai(Sik)
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Ãi(t) = {Ai(s); s ∈ [0, t)}: treatment eligibility history up to time t

Zi(t): time dependent covariate of the ith subject

Zik = Zi(Sik)

Z̃i(t) = {Zi(s); s ∈ [0, t)}: covariate history up to time t

Dik = Di − Sik, death time for the ith subject at date of the kth cross section

Tik = Ti − Sik, treatment time for the ith subject at date of the kth cross section

Cik = Ci − Sik, independent censoring time for the ith subject at date of the kth

cross section

β0: parameter coefficient of the death model

θ0: parameter coefficient of the treatment model

Death hazard; λik(t) = λ0k(t) exp{β ′
0Zik}

Treatment hazard; λT
i (t) = Ai(t)λ

T
0 (t) exp{θ′0Zi(t)}

A.II. Regularity Conditions

In deriving the asymptotic properties of the proposed estimators the following con-

ditions are assumed for i = 1, ..., n and k = 1, ..., K

(a) {Xi, Δi, Δ
T
i , Z̃i(Xi), Ãi(Xi∧Ti)} are independent and identically distributed ran-

dom vectors.

(b) |Zil(t)| < κl, for t ∈ [0, τ ] and Zil(t) is the lth element of Zi(t).

(c)
∫ τ

0
λ0k(t)dt < ∞ and

∫ τ

0
λT

0 (t)dt < ∞ where τ is the maximum follow-up time.

(d) Continuity of the following functions:

r
(1)
k (t; β, W ) =

∂

∂β
r

(0)
k (t; β, W ),

r
(2)
k (t; β, W ) =

∂2

∂β∂β ′ r
(0)
k (t; β, W ),
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and r
(0)
k (t; β, W ),where

r
(p)
k (t; β, W ) = E[W A

ik(t)Yik(t)Z
⊗p
ik exp(β ′Zik)],

is the limiting value of

R
(p)
k (t; β, W ) = n−1

n∑
i=1

W A
ik(t)Yik(t)Z

⊗p
ik exp(β ′Zik),

for p = 0, 1, 2, with r
(1)
k (t; β, W ) and r

(2)
k (t; β, W ) bounded and r

(0)
k (t; β, W ) bounded

away from 0 for t ∈ [0, τ ] and β in an open set.

(e) Continuity of the following functions:

r
(1)
T (t; θ) =

∂

∂θ
r

(0)
T (t; θ),

r
(2)
T (t; θ) =

∂2

∂θ∂θ′
r

(0)
T (t; θ),

and r
(0)
T (t; θ), where

r
(p)
T (t; θ) = E[Ai(t)Yi(t)Zi(t)

⊗p exp{θ′Zi(t)}],

is the limiting value of

R
(p)
T (t; θ) = n−1

n∑
i=1

Ai(t)Yi(t)Zi(t)
⊗p exp{θ′Zi(t)},

for p = 0, 1, 2, with r
(1)
T (t; θ) and r

(2)
T (t; θ) bounded and r

(0)
T (t; θ) bounded away from

0 for t ∈ [0, τ ] and θ in an open set.

(f) Positive-definiteness of the matrices ΩT (θ) and Ω(β), where

ΩT (θ) = E

[ ∫ τ

0

{
r

(2)
T (t; θ)

r
(0)
T (t; θ)

− z(t; θ)⊗2

}
dNT

i (t)

]
,

z(t; θ) = r
(1)
T (t; θ)/r

(0)
T (t; θ),

Ω(β) = E

[ K∑
k=1

∫ τk

0

{
r

(2)
k (t; β, W )

r
(0)
k (t; β, W )

− zk(t; β, W )⊗2

}
dNik(t)

]
.

zk(t; β, W ) = r
(1)
k (t; β, W )/r

(0)
k (t; β, W ),
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(g) P (Yik(t) = 1) > 0 for t ∈ [0, τk].

A.III. Outline of Asymptotic Derivation

We derive the influence functions of terms of interest as summations of indepen-

dent and identical distributed (i.i.d.) terms plus a term which converges to zero

in probability. Inverse weighting is involved in the below derivation and the proof

focuses on the Type C weight. The derivation consists of several parts in which the

quantities are approximated by a summation of i.i.d. terms.

1. n
1
2 (θ̂ − θ0)

2. n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

3. n
1
2{Λ̂T

i (t) − ΛT
i (t)}

4. n
1
2{Ŵ A

ik(t) − W A
ik(t)}

5. n
1
2 (β̂ − β0)

A.IV. Derivation of Asymptotic Properties

Several parts of the proof regarding the proportional hazards model are well-

established results. Therefore, they are simply listed without proof. For details,

please refer to Anderson and Gill (1982), Fleming and Harrington (1991) and An-

dersen et al. (1993).

A.IV.1 n
1
2 (θ̂ − θ0)

As n → ∞, we have

n
1
2 (θ̂ − θ0) = ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0) + op(1),
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where

UT
i (θ) =

∫ τ

0

{Zi(t) − z(t; θ)}dMT
i (t; θ),

dMT
i (t) = dNT

i (t) − Yi(t)dΛT
i (t),

A.IV.2 n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

We induce the following decomposition:

n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

= n
1
2{Λ̂T

0 (t; θ̂) − ΛT
0 (t; θ0)}(A.1)

+n
1
2{Λ̂T

0 (t; θ0) − ΛT
0 (t)}.(A.2)

We can express the first term as

(A.1) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
T (u; θ̂)−1 − R

(0)
T (u; θ0)

−1}dNT
i (u)

= ĥ′
T (t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0)

= h′
T (t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0) + op(1).

where the third line follows from the convergence in probability of

ĥ′
T (t; θ) = −1

n

n∑
i=1

∫ t

0

R
(0)
T (u; θ)−1Z(u; θ)dNT

i (u) = −
∫ t

0

Z(u; θ)dΛ̂T
0 (u; θ),

Ω̂T (θ) = n−1
n∑

i=1

∫ τ

0

{
R

(2)
T (t; θ)

R
(0)
T (t; θ)

− Z(t, θ)⊗2

}
dNT

i (t),

where Z(t; θ) = R
(1)
T (t; θ)/R

(0)
T (t; θ), to the quantities

h′
T (t; θ) = −

∫ t

0

z(u; θ)dΛT
0 (u),

and ΩT (θ) respectively, with ΩT (θ) defined in Regularity Condition (f).
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With respect to the second term in the decomposition, we have,

(A.2) = n− 1
2

n∑
i=1

∫ t

0

R
(0)
T (u; θ0)

−1dMT
i (u)

= n− 1
2

n∑
i=1

∫ t

0

r
(0)
T (u; θ0)

−1dMT
i (u) + op(1),

where the second line follows from continuity and Condition (f). Combining results,

for the decomposition, we have

n
1
2{Λ̂T

0 (t) − ΛT
0 (t)} = n− 1

2

n∑
i=1

ΦT
i (t; θ0) + op(1),

where

ΦT
i (t; θ) = h′

T (t; θ)ΩT (θ)−1UT
i (θ) +

∫ t

0

r
(0)
T (u; θ)−1dMT

i (u) =

∫ t

0

dΦT
i (u; θ),

and

dΦT
i (u; θ) = −z′(u; θ)dΛT

0 (u)ΩT (θ)−1UT
i (θ) + r

(0)
T (u; θ)−1dMT

i (u).

A.IV.3 n
1
2{Λ̂T

i (t) − ΛT
i (t)}

We begin with another decomposition,

n
1
2{Λ̂T

i (t) − ΛT
i (t)}

= n
1
2

{ ∫ t

0

eθ̂′Zi(u)dΛ̂T
0 (u) −

∫ t

0

eθ′0Zi(u)dΛ̂T
0 (u)

}
(A.3)

+n
1
2

{ ∫ t

0

eθ′0Zi(u)dΛ̂T
0 (u) −

∫ t

0

eθ′0Zi(u)dΛT
0 (u)

}
.(A.4)

Considering the first term,

(A.3) = n
1
2

∫ t

0

{eθ̂′Zi(u) − eθ′0Zi(u)}dΛ̂T
0 (u).

By a Taylor series expansion,

n
1
2{eθ̂′Zi(u) − eθ′Zi(u)} = Z ′

i(u)eθ′Zi(u)n
1
2 (θ̂ − θ) + op(1)

= Z ′
i(u)eθ′Zi(u)ΩT (θ)−1n− 1

2

n∑
l=1

UT
l (θ) + op(1).
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Since Λ̂T
0 (t)

p−→ ΛT
0 (t) for t ∈ [0, τ ], we obtain

(A.3) =

∫ t

0

Z ′
i(u)dΛT

i (u)ΩT (θ)−1n− 1
2

n∑
l=1

UT
l (θ) + op(1).

By using Result 4.2, the second term can be written as

(A.4) = n
1
2

∫ t

0

eθ′0Zi(u)d{Λ̂T
0 (t) − ΛT

0 (t)}

=

∫ t

0

eθ′0Zi(u)n− 1
2

n∑
l=1

dΦT
l (u; θ0) + op(1).

Combining results from the decomposition leads to

n
1
2{Λ̂T

i (t) − ΛT
i (t)} =

∫ t

0

{Zi(u) − z(u; θ0)}′dΛT
i (u)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0)

+n− 1
2

n∑
l=1

∫ t

0

eθ′0Zi(u)r
(0)
T (u; θ0)

−1dMT
l (u) + op(1)

= D′
i(t; θ0)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0) + n− 1

2

n∑
l=1

JT
il (t; θ0) + op(1),

where we define

Di(t; θ) =

∫ t

0

{Zi(u) − z(u; θ)}′dΛT
i (u) =

∫ t

0

dDi(u; θ),

JT
il (t; θ) =

∫ t

0

eθ′Zi(u)r
(0)
T (u; θ)−1dMT

l (u).

A.IV.4 n
1
2{Ŵ A

ik(t) − W A
ik(t)}

When the subscript of quantities doesn’t involve the cross section notation k, t

refers the time from study entry. If k is present in the subscript, then t denotes the

time from cross section date.

Since W A
ik(t) = eΛT

i (t+Sik)−ΛT
i (Sik) and Ŵ A

ik(t) = eΛ̂T
i (t+Sik)−Λ̂T

i (Sik), we then have

n
1
2{Ŵ A

ik(t) − W A
ik(t)}

= n
1
2{eΛ̂T

i (t+Sik)−Λ̂T
i (Sik) − eΛT

i (t+Sik)−ΛT
i (Sik)}

= W A
ik(t)n

1
2 [{Λ̂T

i (t + Sik) − ΛT
i (t + Sik)} − {Λ̂T

i (Sik) − ΛT
i (Sik)}] + op(1)

= W A
ik(t)n

− 1
2

n∑
l=1

{D′
ik(t; θ0)ΩT (θ0)

−1UT
l (θ0) + JT

ikl(t; θ0)} + op(1),



89

where we define

Dik(t; θ) =

∫ Sik+t

Sik

{Zi(u) − z(u; θ)}′dΛT
i (u) =

∫ t

0

dDi(u; θ),

JT
ikl(t; θ) =

∫ Sik+t

Sik

eθ′Zi(u)r
(0)
T (u; θ)−1dMT

l (u).

A.IV.5 n
1
2 (β̂ − β0)

It is straightforward to show that

n
1
2 (β̂ − β0) = Ω−1(β0)n

− 1
2

n∑
i=1

K∑
k=1

AikUik(β0, Ŵ ) + op(1),

where we define

Uik(β, W ) =

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)dMik(t),

dMik(t) = dNik(t) − Yik(t)dΛik(t).

The term n− 1
2

∑n
i=1

∑K
k=1 AikUik(β, Ŵ ) can be decomposed as follows,

n− 1
2

n∑
i=1

K∑
k=1

AikUik(β, Ŵ )

= n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, Ŵ )}Ŵ A
ik(t)dMik(t)

= n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)dMik(t)(A.5)

−n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{zk(t; β, Ŵ ) − zk(t; β, W )}W A
ik(t)dMik(t)(A.6)

+n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, Ŵ )}{Ŵ A
ik(t) − W A

ik(t)}dMik(t)(A.7)

+op(1).

Now, through the Functional Delta Method, combined with a lot of tedious algebra,

(A.6) converges in probability to 0.
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(A.7) = n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)n

−1

×
n∑

l=1

D′
ik(t; θ)ΩT (θ)−1UT

l (θ)dMik(t)(A.8)

+n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)n

−1
n∑

l=1

JT
ikl(t; θ)dMik(t).(A.9)

Switching the order of summation, we have

(A.8) = n−1
n∑

i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)D

′
ik(t; θ)dMik(t)

×ΩT (θ)−1n− 1
2

n∑
l=1

UT
l (θ)

= Ĥ ′(t; β, W )ΩT (θ)−1n− 1
2

n∑
l=1

UT
l (θ)

= H ′(t; β, W )ΩT (θ)−1n− 1
2

n∑
l=1

UT
l (θ) + op(1),

where the last equality follows from the convergence in probability of

Ĥ ′(t; β, W ) = n−1
n∑

i=1

K∑
k=1

Aik

∫ τk

0

{Zik − Zk(t; β, W )}W A
ik(t)D

′
ik(t; θ)dMik(t),

to the quantity

H ′(t; β, W ) = E

[ K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β, W )}W A
ik(t)D

′
ik(t; θ)dMik(t)

]
.

Switching the order of summation and integration

(A.9) = n− 1
2

n∑
l=1

∫ τ

Sik

[
n−1

n∑
i=1

K∑
k=1

Aike
θ′Zi(u)

∫ τ−Sik

u−Sik

{Zik − zk(t; β, W )}W A
ik(t)dMik(t)

]
×r

(0)
T (u; θ)−1dMT

l (u)

= n− 1
2

n∑
l=1

∫ τ

Sik

Ĝ(u, τ ; β)R
(0)
T (u; θ)−1dMT

l (u)

= n− 1
2

n∑
l=1

∫ τ

Sik

G(u, τ ; β)r
(0)
T (u; θ)−1dMT

l (u) + op(1),



91

where the last equality follows from the convergence in probability of

Ĝ(t1, t2; β) = n−1

n∑
i=1

K∑
k=1

Aike
θ′Zi(t1)

∫ t2−Sik

t1−Sik

{Zik − Zk(t; β, W )}W A
ik(t)dMik(t),

to the quantity

G(t1, t2; β) = E

[ K∑
k=1

Aike
θ′Zi(t1)

∫ t2−Sik

t1−Sik

{Zik − zk(t; β, W )}W A
ik(t)dMik(t)

]
.

Combining equations (A.5) (A.8) and (A.9), we obtain

n
1
2 (β̂ − β0) = Ω(β0)

−1n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β0, W )}W A
ik(t)dMik(t)

+Ω(β0)
−1H ′(t; β0, W )ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0)

+Ω(β0)
−1n− 1

2

n∑
i=1

∫ τ

Sik

G(t, τ ; β0)r
(0)
T (t; θ0)

−1dMT
i (t) + op(1).

= n− 1
2

n∑
i=1

ϕi + op(1).

where

ϕi = Ω(β0)
−1

[ K∑
k=1

Aik

∫ τk

0

{Zik − zk(t; β0, W )}W A
ik(t)dMik(t)

+H ′(t; β0, W )ΩT (θ0)
−1UT

i (θ0) +

∫ τ

Sik

G(t, τ ; β0)r
(0)
T (t; θ0)

−1dMT
i (t)

]
.
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APPENDIX B

Appendix B: Proof of Theorem III.1

Appendix B: Proof of Theorem III.1

B.I. Notation

We begin by reviewing the essential notation:

i: subject (i = 1, . . . , n)

n: number of subjects

k: cross section (k = 1, . . . , K)

Di: death time for the ith subject

Ci: independent censoring time for the ith subject

Ti: treatment time for the ith subject

Xi: min{Di, Ci}: observation time for the ith subject

Zi(t): covariate for ith subject at follow-up time t

Ai(t): treatment eligibility indicator of ith subject at time t

NT
i (t) = I(Ti ≤ t, Ti < Xi); note that dNT

i (t) = Ai(t)dNT
i (t)

Z̃i(t) = {Zi(s); s ∈ [0, t)}: covariate history up to time t

Ãi(t) = {Ai(s); s ∈ [0, t)}: treatment eligibility history up to time t
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τ : pre-specified constant satisfying P (Xi ≥ τ) > 0 for all i.

Sik: follow-up time at calendar date of the kth cross section

Dik = Di − Sik, death time measured from date of kth cross section

Tik = Ti − Sik, treatment time measured from date of kth cross section

Cik = Ci − Sik, independent censoring time measured from date of kth cross section

Zi0k = Zi(Sik): covariate for subject i at date of kth cross-section

Ni0k(t) = Ni(Sik + t)I(Ti > Sik + t)

Aik = Ai(Sik)

τ0k: pre-specified constant satisfying P (Dik ∧ Tik ∧ Cik ≥ τ0k) > 0

Ni1(t) = I(Ti < Xi)Ni(Ti + t)

τ1: pre-specified constant satisfying P (Di − Ti ≥ τ1|Ti, Ti < Di) > 0

NC
i (t) = I(Ci ≤ t, Ci < Di)

Treatment-free death hazard: λi0(t; Si) = λ00(t) exp{β ′
0Zi0k}

Post-treatment death hazard: λi1(t; Ti) = λ01(t) exp{β ′
1Zi(Ti)}

Treatment initiation hazard: λT
i (t) = Ai(t)λ

T
0 (t) exp{θ′0Zi(t)}

Independent censoring hazard: λC
i (t) = λC

0 (t) exp{α′
0Zi(0)}

B.II. Regularity Conditions

In deriving the asymptotic properties of the proposed estimators the following con-

ditions are assumed for i = 1, ..., n and k = 1, ..., K

(a) {Xi, Δi, Δ
T
i , Z̃i(Xi), Ãi(Xi∧Ti)} are independent and identically distributed ran-

dom vectors.

(b) |Zil(t)| < κl, for t ∈ [0, τ ] and Zil(t) is the lth element of Zi(t).

(c)
∫ τ0k

0
λ0k(t)dt < ∞,

∫ τ1
0

λ01(t)dt < ∞,
∫ τ

0
λT

0 (t)dt < ∞ and
∫ τ

0
λC

0 (t)dt < ∞.
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(d) Continuity of the following functions:

r
(1)
T (t; θ) =

∂

∂θ
r

(0)
T (t; θ),

r
(2)
T (t; θ) =

∂2

∂θ∂θ′
r

(0)
T (t; θ),

and r
(0)
T (t; θ), where

r
(p)
T (t; θ) = E[Ai(t)Yi(t)Zi(t)

⊗p exp{θ′Zi(t)}],

is the limiting value of

R
(p)
T (t; θ) = n−1

n∑
i=1

Ai(t)Yi(t)Zi(t)
⊗p exp{θ′Zi(t)},

for p = 0, 1, 2, with r
(1)
T (t; θ) and r

(2)
T (t; θ) bounded and r

(0)
T (t; θ) bounded away from

0 for t ∈ [0, τ ] and θ in an open set, with z⊗0 = 1, z⊗1 = z and z⊗2 = zz′ for a vector

z.

Continuity of the following functions:

r
(1)
0k (t; β, W ) =

∂

∂β
r

(0)
0k (t; β, W ),

r
(2)
0k (t; β, W ) =

∂2

∂β∂β ′ r
(0)
0k (t; β, W ),

and r
(0)
0k (t; β, W ), where

r
(p)
0k (t; β, W ) = E[AikW

A
ik(t)Z

⊗p
i0k exp(β ′Zi0k)],

is the limiting value of

R
(p)
0k (t; β, W ) = n−1

n∑
i=1

AikW
A
ik(t)Z

⊗p
i0k exp(β ′Zi0k),

for p = 0, 1, 2, with r
(1)
0k (t; β, W ) and r

(2)
0k (t; β, W ) bounded and r

(0)
0k (t; β, W ) bounded

away from 0 for t ∈ [0, τ0k] and β in an open set.
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Continuity of the following functions:

r
(1)
1 (t; β) =

∂

∂β
r

(0)
1 (t; β),

r
(2)
1 (t; β) =

∂2

∂β∂β ′ r
(0)
1 (t; β),

and r
(0)
1 (t; β) where

r
(p)
1 (t; β1) = E[Yi1(t)Z

⊗p
i1 exp(β ′

1Zi1)],

is the limiting value of

R
(p)
1 (t; β1) = n−1

n∑
i=1

Yi1(t)Z
⊗p
i1 exp(β ′

1Zi1),

for p = 0, 1, 2, with r
(1)
1 (t; β1) and r

(2)
1 (t; β1) bounded and r

(0)
1 (t; β1) bounded away

from 0 for t ∈ [0, τ1] and β1 in an open set.

Continuity of the following functions:

r
(1)
C (t; α) =

∂

∂α
r

(0)
C (t; α),

r
(2)
C (t; α) =

∂2

∂α∂α′ r
(0)
C (t; α),

and r
(0)
C (t; α)where

r
(p)
C (t; α) = E[Yi(t)Zi(0)⊗p exp{α′Zi(0)}],

is the limiting value of

R
(p)
C (t; α) = n−1

n∑
i=1

Yi(t)Zi(0)⊗p exp{α′Zi(0)},

for p = 0, 1, 2, with r
(1)
C (t; α) and r

(2)
C (t; α) bounded and r

(0)
C (t; α) bounded away from

0 for t ∈ [0, τ ] and α in an open set.
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(e) Positive-definiteness of the matrices ΩT (θ0), Ω0(β0), Ω1(β1) and ΩC(α0), where

ΩT (θ) = E

[ ∫ τ

0

{
r

(2)
T (t; θ)

r
(0)
T (t; θ)

− z(t; θ)⊗2

}
dNT

i (t)

]
,

z(t; θ) = r
(1)
T (t; θ)/r

(0)
T (t; θ),

Ω0(β) = E

[ K∑
k=1

∫ τ0k

0

{
r

(2)
0k (t; β, W )

r
(0)
0k (t; β, W )

− z0k(t; β, W )⊗2

}
dNi0k(t)

]
.

z0k(t; β, W ) = r
(1)
0k (t; β, W )/r

(0)
0k (t; β, W ),

Ω1(β) = E

[ ∫ τ1

0

{
r

(2)
1 (t; β)

r
(0)
1 (t; β)

− z1(t; β)⊗2

}
dNi1(t)

]
.

z1(t; β) = r
(1)
1 (t; β)/r

(0)
1 (t; β),

ΩC(α) = E

[ ∫ τ

0

{
r

(2)
C (t; α)

r
(0)
C (t; α)

− zC(t; α)⊗2

}
dNC

i (t)

]
,

zC(t; α) = r
(1)
C (t; α)/r

(0)
C (t; α),

(f) P{Yi(t) = 1} > 0 for t ∈ (0, τ ]

B.III. Outline of Asymptotic Derivation

We derive the influence functions of terms of interest as summations of indepen-

dent and identical distributed (i.i.d.) terms plus a term which converges to zero in

probability. The terms are as follows:

1. n
1
2 (θ̂ − θ0)

2. n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

3. n
1
2{Λ̂T

i (t) − ΛT
i (t)}

4. n
1
2{Ŵ A

ik(t) − W A
ik(t)}

5. n
1
2 (β̂0 − β0)
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6. n
1
2{Λ̂00(t) − Λ00(t)}

7. n
1
2{Λ̂i0(t; Si) − Λi0(t; Si)}

8. n
1
2{Ŝi0(t; Si) − Si0(t; Si)}

9. n
1
2{μ̂i0(Si) − μi0(Si)}

10. n
1
2 (β̂1 − β1)

11. n
1
2{Λ̂01(t) − Λ01(t)}

12. n
1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)}

13. n
1
2{Ŝi1(t; Ti) − Si1(t; Ti)}

14. n
1
2{μ̂i1(Ti) − μi1(Ti)}

15. n
1
2 (α̂ − α0)

16. n
1
2{Λ̂C

0 (t) − ΛC
0 (t)}

17. n
1
2{Λ̂C

i (t) − ΛC
i (t)}

18. n
1
2{Ĝi(t)

−1 − Gi(t)
−1}

19. n
1
2{ŜΔi(t) − SΔi(t)}

20. n
1
2{Δ̂i(t) − Δi(t)}

21. n
1
2{ŜΔ(t) − SΔ(t)}

22. n
1
2 (Δ̂ − Δ)
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B.IV. Derivation of Asymptotic Properties

Several parts of the proof regarding the proportional hazards model are well-

established results. Therefore, they are simply listed without proof. For details,

please refer to Anderson and Gill (1982), Fleming and Harrington (1991) and An-

dersen et al. (1993).

B.IV.1 n
1
2 (θ̂ − θ0)

As n → ∞, we have

n
1
2 (θ̂ − θ0) = ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0) + op(1),

where

UT
i (θ) =

∫ τ

0

{Zi(t) − z(t; θ)}dMT
i (t; θ),

dMT
i (t) = dNT

i (t) − Yi(t)dΛT
i (t),

This is now a well-established Cox model result, derived through Martingale

theory.

B.IV.2 n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

We induce the following decomposition:

n
1
2{Λ̂T

0 (t) − ΛT
0 (t)}

= n
1
2{Λ̂T

0 (t; θ̂) − Λ̂T
0 (t; θ0)}(B.1)

+n
1
2{Λ̂T

0 (t; θ0) − ΛT
0 (t)}.(B.2)
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We can express the first term as

(B.1) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
T (u; θ̂)−1 − R

(0)
T (u; θ0)

−1}dNT
i (u)

= ĥ′
T (t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0)

= h′
T (t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

UT
i (θ0) + op(1).

where the third line follows from the convergence in probability of

ĥ′
T (t; θ) = −n−1

n∑
i=1

∫ t

0

R
(0)
T (u; θ)−1Z(u; θ)dNT

i (u) = −
∫ t

0

Z(u; θ)dΛ̂T
0 (u; θ),

Ω̂T (θ) = n−1
n∑

i=1

∫ τ

0

{
R

(2)
T (t; θ)

R
(0)
T (t; θ)

− Z(t, θ)⊗2

}
dNT

i (t),

where Z(t; θ) = R
(1)
T (t; θ)/R

(0)
T (t; θ), to the quantities

h′
T (t; θ) = −

∫ t

0

z(u; θ)dΛT
0 (u),

and ΩT (θ) respectively, with ΩT (θ) defined in Regularity Condition (e).

With respect to the second term in the decomposition, we have,

(B.2) = n− 1
2

n∑
i=1

∫ t

0

R
(0)
T (u; θ0)

−1dMT
i (u)

= n− 1
2

n∑
i=1

∫ t

0

r
(0)
T (u; θ0)

−1dMT
i (u) + op(1),

where the second line follows from continuity and Condition (d). Combining results,

for the decomposition, we have

n
1
2{Λ̂T

0 (t) − ΛT
0 (t)} = n− 1

2

n∑
i=1

ΦT
i (t; θ0) + op(1),

where

ΦT
i (t; θ) = h′

T (t; θ)ΩT (θ)−1UT
i (θ) +

∫ t

0

r
(0)
T (u; θ)−1dMT

i (u) =

∫ t

0

dΦT
i (u; θ),
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and

dΦT
i (u; θ) = −z′(u; θ)dΛT

0 (u)ΩT (θ)−1UT
i (θ) + r

(0)
T (u; θ)−1dMT

i (u).

B.IV.3 n
1
2{Λ̂T

i (t) − ΛT
i (t)}

We begin with another decomposition,

n
1
2{Λ̂T

i (t) − ΛT
i (t)}

= n
1
2

{ ∫ t

0

eθ̂′Zi(u)dΛ̂T
0 (u) −

∫ t

0

eθ′0Zi(u)dΛ̂T
0 (u)

}
(B.3)

+n
1
2

{ ∫ t

0

eθ′0Zi(u)dΛ̂T
0 (u) −

∫ t

0

eθ′0Zi(u)dΛT
0 (u)

}
.(B.4)

Considering the first term,

(B.3) = n
1
2

∫ t

0

{eθ̂′Zi(u) − eθ′0Zi(u)}dΛ̂T
0 (u).

By a Taylor series expansion,

n
1
2{eθ̂′Zi(u) − eθ′Zi(u)} = Z ′

i(u)eθ′Zi(u)n
1
2 (θ̂ − θ) + op(1)

= Z ′
i(u)eθ′Zi(u)ΩT (θ)−1n− 1

2

n∑
l=1

UT
l (θ) + op(1).

Since Λ̂T
0 (t)

p−→ ΛT
0 (t) for t ∈ [0, τ ], we obtain

(B.3) =

∫ t

0

Z ′
i(u)dΛT

i (u)ΩT (θ)−1n− 1
2

n∑
l=1

UT
l (θ) + op(1).

By using Result B.IV.2, the second term can be written as

(B.4) = n
1
2

∫ t

0

eθ′0Zi(u)d{Λ̂T
0 (t) − ΛT

0 (t)}

=

∫ t

0

eθ′0Zi(u)n− 1
2

n∑
l=1

dΦT
l (u; θ0) + op(1).
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Combining results from the decomposition leads to

n
1
2{Λ̂T

i (t) − ΛT
i (t)} =

∫ t

0

{Zi(u) − z(u; θ0)}′dΛT
i (u)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0)

+n− 1
2

n∑
l=1

∫ t

0

eθ′0Zi(u)r
(0)
T (u; θ0)

−1dMT
l (u) + op(1)

= D′
i(t; θ0)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0) + n− 1

2

n∑
l=1

JT
il (t; θ0) + op(1),

where we define

Di(t; θ) =

∫ t

0

{Zi(u) − z(u; θ)}′dΛT
i (u) =

∫ t

0

dDi(u; θ),

JT
il (t; θ) =

∫ t

0

eθ′Zi(u)r
(0)
T (u; θ)−1dMT

l (u).

B.IV.4 n
1
2{Ŵ A

ik(t) − W A
ik(t)}

Consistent with the notation set in Section B.I, when the subscript of quantities does

not involve the cross section notation k, t refers the time from study entry. If k is

present in the subscript, then t denotes the time from the kth cross section date.

Since W A
ik(t) = eΛT

i (t+Sik)−ΛT
i (Sik) and Ŵ A

ik(t) = eΛ̂T
i (t+Sik)−Λ̂T

i (Sik), we then have

n
1
2{Ŵ A

ik(t) − W A
ik(t)}

= n
1
2{eΛ̂T

i (t+Sik)−Λ̂T
i (Sik) − eΛT

i (t+Sik)−ΛT
i (Sik)}

= W A
ik(t)n

1
2 [{Λ̂T

i (t + Sik) − ΛT
i (t + Sik)} − {Λ̂T

i (Sik) − ΛT
i (Sik)}] + op(1)

= W A
ik(t)n

− 1
2

n∑
l=1

{D′
ik(t; θ0)ΩT (θ0)

−1UT
l (θ0) + JT

ikl(t; θ0)} + op(1),

where we define

Dik(t; θ) =

∫ Sik+t

Sik

{Zi(u) − z(u; θ)}′dΛT
i (u) =

∫ t

0

dDi(u; θ),

JT
ikl(t; θ) =

∫ Sik+t

Sik

eθ′Zi(u)r
(0)
T (u; θ)−1dMT

l (u).
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B.IV.5 n
1
2 (β̂0 − β0)

It is straightforward to show that

n
1
2 (β̂0 − β0) = Ω−1

0 (β0)n
− 1

2

n∑
i=1

K∑
k=1

AikUi0k(β0, Ŵ ) + op(1),

where we define

Ui0k(β, W ) =

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)dMi0k(t),

dMi0k(t) = dNi0k(t) − Yi0k(t)dΛi0k(t).

The term n− 1
2

∑n
i=1

∑K
k=1 AikUi0k(β, Ŵ ) can be decomposed as follows,

n− 1
2

n∑
i=1

K∑
k=1

AikUi0k(β, Ŵ )

= n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, Ŵ )}Ŵ A
ik(t)dMi0k(t)

= n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)dMi0k(t)(B.5)

−n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{z0k(t; β, Ŵ ) − z0k(t; β, W )}W A
ik(t)dMi0k(t)(B.6)

+n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, Ŵ )}{Ŵ A
ik(t) − W A

ik(t)}dMi0k(t)(B.7)

+op(1).

Now, through the Functional Delta Method, combined with a lot of tedious algebra,

(B.6) converges in probability to 0.

Using result B.IV.4

(B.7) = n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)

×n−1
n∑

l=1

D′
ik(t; θ0)ΩT (θ0)

−1UT
l (θ0)dMi0k(t)(B.8)

+n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)
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×n−1
n∑

l=1

JT
ikl(t; θ0)dMi0k(t).(B.9)

Switching the order of summation, we have

(B.8) = n−1
n∑

i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)D

′
ik(t; θ0)dMi0k(t)

×ΩT (θ0)
−1n− 1

2

n∑
l=1

UT
l (θ0)

= Ĥ ′
0(t; β, W )ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0)

= H ′
0(t; β, W )ΩT (θ)−1n− 1

2

n∑
l=1

UT
l (θ0) + op(1),

where the last equality follows from the convergence in probability of

Ĥ ′
0(t; β, W ) = n−1

n∑
i=1

K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)D

′
ik(t; θ0)dMi0k(t),

to the quantity

H ′
0(t; β, W ) = E

[ K∑
k=1

Aik

∫ τ0k

0

{Zi0k − z0k(t; β, W )}W A
ik(t)D

′
ik(t; θ0)dMi0k(t)

]
.

Switching the order of summation and integration

(B.9) = n− 1
2

n∑
j=1

∫ τ

Sik

[
n−1

n∑
l=1

K∑
k=1

Aike
θ′0Zi(u)

∫ τ−Sik

u−Sik

{Zi0k − z0k(t; β, W )}W A
ik(t)dMi0k(t)

]
×r

(0)
T (u; θ0)

−1dMT
l (u)

= n− 1
2

n∑
l=1

∫ τ

Sik

Ĝ0(u, τ ; β)R
(0)
T (u; θ0)

−1dMT
l (u)

= n− 1
2

n∑
l=1

∫ τ

Sik

G0(u, τ ; β)r
(0)
T (u; θ0)

−1dMT
l (u) + op(1),

where the last equality follows from the convergence in probability of

Ĝ0(t1, t2; β) = n−1
n∑

i=1

K∑
k=1

Aike
θ′0Zi(t1)

∫ t2−Sik

t1−Sik

{Zi0k − z0k(t; β, W )}W A
ik(t)dMi0k(t),

to the quantity

G0(t1, t2; β) = E

[ K∑
k=1

Aike
θ′0Zi(t1)

∫ t2−Sik

t1−Sik

{Zi0k − z0k(t; β, W )}W A
ik(t)dMi0k(t)

]
.
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Combining the equations (B.5) (B.8) and (B.9), we obtain

n
1
2 (β̂0 − β0) = Ω0(β0)

−1n− 1
2

n∑
i=1

Ui0(β0) + op(1),

where

Ui0(β0) =
K∑

k=1

∫ τ0k

0

Aik{Zi0k − z0k(t; β0, W )}W A
ik(t)dMi0k(t)

+H ′
0(t; β0, W )ΩT (θ0)

−1UT
i (θ0)

+

∫ τ

Sik

G0(t, τ ; β0)r
(0)
T (t; θ0)

−1dMT
i (t).

B.IV.6 n
1
2{Λ̂00(t) − Λ00(t)}

We define

Λ̂00(t; β0) = n−1
n∑

i=1

K∑
k=1

∫ t

0

R
(0)
0 (u; β0)

−1AikW
A
ik(u)dNi0k(u)

for t ∈ (0, L], where R
(0)
0 (u; β0) =

∑K
k=1 R

(0)
0k (u; β0).

We begin another decomposition,

n
1
2{Λ̂00(t) − Λ00(t)}

= n
1
2 [Λ̂00{t; Ŵ , R0(β̂0, Ŵ )} − Λ̂00{t; Ŵ , R0(β0, Ŵ )}](B.10)

+n
1
2 [Λ̂00{t; Ŵ , R0(β0, Ŵ )} − Λ̂00{t; W, R0(β0, Ŵ )}](B.11)

+n
1
2 [Λ̂00{t; W, R0(β0, Ŵ )} − Λ̂00{t; W, R0(β0, W )}](B.12)

+n
1
2 [Λ̂00{t; W, R0(β0, W )} − Λ00(t)](B.13)

By using Result B.IV.5, we can express the first term as

(B.10) = n− 1
2

n∑
i=1

K∑
k=1

∫ t

0

Aik{R(0)
0 (u; β̂0, Ŵ )−1 − R

(0)
0 (u; β0, Ŵ )−1}Ŵ A

ik(u)dNi0k(u)

= −
∫ t

0

Z
′
0(u; β0, W )dΛ00(u)Ω0(β0)

−1n− 1
2

n∑
i=1

Ui0(β0) + op(1)

= h′
0(t; β0, W )Ω0(β0)

−1n− 1
2

n∑
i=1

Ui0(β0) + op(1),



105

where we define

Z0(t; β, W ) = R
(1)
0 (t; β, W )/R

(0)
0 (t; β, W ).

R
(p)
0 (t; β, W ) =

K∑
k=1

R
(p)
0k (t; β, W ),

z0(t; β, W ) = r
(1)
0 (t; β, W )/r

(0)
0 (t; β, W ).

r
(p)
0 (t; β, W ) =

K∑
k=1

r
(p)
0k (t; β, W ),

h0(t; β, W ) = −
∫ t

0

z′
0(u; β, W )dΛ00(u).

By using Result B.IV.4, we have

(B.11) = n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ t

0

{Ŵ A
ik(u) − W A

ik(u)}R(0)
0 (u; β0, Ŵ )−1dNi0k(u)

= n−1
n∑

i=1

K∑
k=1

Aik

∫ t

0

R
(0)
0 (u; β0, W )−1W A

ik(u)D′
ik(u; θ0)ΩT (θ0)

−1

×n− 1
2

n∑
l=1

UT
l (θ0)dNi0k(u)(B.14)

+n−1
n∑

i=1

K∑
k=1

Aik

∫ t

0

R
(0)
0 (u; β0, W )−1W A

ik(u)

×n− 1
2

n∑
l=1

JT
ikl(u; θ0)dNi0k(u) + op(1).(B.15)

Switching the order of summation, we have

(B.14) = B̂′
0(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0)

= B′
0(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0) + op(1),

where the last equality follows from the convergence in probability of

B̂0(t; β) = n−1
n∑

i=1

K∑
k=1

Aik

∫ t

0

R
(0)
0 (u; β, W )−1W A

ik(u)D′
ik(u; θ)dNi0k(u)

to the quantity

B0(t; β) = E

[
Aik

∫ t

0

r
(0)
0 (u; β, W )−1W A

ik(u)D′
ik(u; θ)dNi0k(u)

]
.
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Switching the order of summation and integration

(B.15) = n− 1
2

n∑
l=1

∫ t

0

K̂0(u, t; β0)r
(0)
T (u; θ0)

−1dMT
l (u)

= n− 1
2

n∑
l=1

∫ t

0

K0(u, t; β0)r
(0)
T (u; θ0)

−1dMT
l (u) + op(1),

where the last equality follows from the convergence in probability of

K̂0(t1, t2; β) = n−1
n∑

i=1

K∑
k=1

eθ′Zi(t1)

∫ t2−Sik

t1−Sik

AikW
A
ik(u)R

(0)
0 (u; β, W )−1dNi0k(u),

to the quantity

K0(t1, t2; β) = E

[
eθ′0Zi(t1)Aik

∫ t2−Sik

t1−Sik

W A
ik(u)r

(0)
0 (u; β, W )−1dNi0k(u)

]
.

Combining equations (B.14) and (B.15), we obtain

(B.11) = B′
0(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

UT
l (θ0)

+n− 1
2

n∑
l=1

∫ t

0

K0(u, t; β0)r
(0)
T (u; θ0)

−1dMT
l (u) + op(1).

We can have

(B.12) = n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u){R(0)

0 (u; β0, Ŵ )−1 − R
(0)
0 (u; β0, W )−1}dNi0k(u).

Now, through the Function Delta Method,

n
1
2{R(0)

0 (u; β, Ŵ )−1 − R
(0)
0 (u; β, W )−1}

= −R
(0)
0 (u; β, W )−2n−1

n∑
i=1

K∑
k=1

Aike
β′Zi0kn

1
2{Ŵ A

ik(u) − W A
ik(u)}

= −R
(0)
0 (u; β, W )−2n−1

n∑
i=1

K∑
k=1

Aike
β′Zi0kW A

ik(u)n− 1
2

×
n∑

l=1

{D′
ik(u)ΩT (θ0)

−1UT
l (θ0) + JT

ikl(u)}

= R
(0)
0 (u; β, W )−2F̂ ′

0(u; β)ΩT (θ0)
−1n− 1

2

n∑
l=1

UT
l (θ0)
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+R
(0)
0 (u; β, W )−2n− 1

2

n∑
l=1

∫ u+Sik

0

Q̂′
0(s, u; θ0)r

(0)
T (s, θ0)

−1dMT
l (s)

= R
(0)
0 (u; β, W )−2F ′

0(u; β)ΩT (θ0)
−1n− 1

2

n∑
l=1

UT
l (θ0)

+R
(0)
0 (u; β, W )−2n− 1

2

n∑
l=1

∫ u+Sik

0

Q′
0(s, u; θ0)r

(0)
T (s, θ0)

−1dMT
l (s) + op(1),

where the last line follows from the convergence in probability of

F̂0(u; β) = −n−1

n∑
i=1

K∑
k=1

Aike
β′Zi0kW A

ik(u)D′
ik(u; θ),

Q̂0(t1, t2; θ) = −n−1
n∑

i=1

K∑
k=1

Aike
θ′Zi(t1)eβ′Zi0kW A

ik(t2),

to the quantities

F0(u; β) = −E

[
Aike

β′Zi0kW A
ik(u)D′

ik(u; θ)

]
,

Q0(t1, t2; θ) = −E

[
Aike

θ′Zi(t1)eβ′Zi0kW A
ik(t2)

]
.

Substituting this result into the expansion of (B.12), we obtain

(B.12) = n−1

n∑
i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u)R

(0)
0 (u; β0, W )−2F ′

0(u; β0)ΩT (θ)−1n− 1
2

×
n∑

l=1

UT
l (θ0)dNi0k(u)

+n−1
n∑

i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u)R

(0)
0 (u; β0, W )−2n− 1

2

n∑
l=1

∫ u+Sik

0

Q′
0(s, u; θ0)

×r
(0)
T (s, θ0)

−1dMT
l (s)dNi0k(u).

Switching the order of summation for the first term, and the order of summation

and integration in the second term, we have

(B.12) = Ê0(t; β0)ΩT (θ0)
−1n− 1

2

n∑
l=1

UT
l (θ0)

+n− 1
2

n∑
l=1

∫ t

0

P̂0(u, t; β0)r
(0)
T (u, θ0)

−1dMT
l (u)
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= E0(t; β0)ΩT (θ0)
−1n− 1

2

n∑
l=1

UT
l (θ0)

+n− 1
2

n∑
l=1

∫ t

0

P0(u, t; β0)r
(0)
T (u, θ0)

−1dMT
l (u) + op(1),

where the last line follows from the convergence in probability of

Ê0(t; β) = n−1
n∑

i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u)F0(u; β)

R
(0)
0 (u; β, W )2

dNi0k(u),

P̂0(t1, t2; β) = n−1
n∑

i=1

K∑
k=1

Aik

∫ t2−Sik

t1−Sik

W A
ik(u)Q0(t1, u; θ)

R
(0)
0 (u; β, W )2

dNi0k(u),

to the quantities

E0(t; β) = E

[
Aik

∫ t

0

W A
ik(u)F0(u; β)

r
(0)
0 (u; β, W )2

dNi0k(u)

]
,

P0(t1, t2; β) = E

[
Aik

∫ t2−Sik

t1−Sik

W A
ik(u)Q0(t1, u; θ)

r
(0)
0 (u; β, W )2

dNi0k(u)

]
.

We can also express

(B.13) = n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u)

R
(0)
0 (u; β0, W )

dMi0k(u),

= n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ t

0

W A
ik(u)

r
(0)
0 (u; β0, W )

dMi0k(u) + op(1),

Combining the results of equations (B.10) (B.11) (B.12) and (B.13), we obtain

n
1
2{Λ̂00(t) − Λ00(t)}

= h′
0(t; β0, W )Ω−1

0 (β0)n
− 1

2

n∑
i=1

Ui0(β0)

+[B′
0(t; β0) + E ′

0(t; β0)]ΩT (θ)−1n− 1
2

n∑
i=1

UT
i (θ0)

+n− 1
2

n∑
i=1

∫ t

0

[K0(u, t; β0) + P0(u, t; β0)]r
(0)
T (u; θ0)

−1dMT
i (u)

+n− 1
2

n∑
i=1

K∑
k=1

Aik

∫ t

0

r
(0)
0 (u; β0, W )−1W A

ik(u)dMi0k(u)

= n− 1
2

n∑
i=1

∫ t

0

dΦi0(u),
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where

Φi0(t) = h′
0(t; β0, W )Ω−1

0 (β0)Ui0(β0)

+[B′
0(t; β0) + E ′

0(t; β0)]ΩT (θ0)
−1UT

i (θ0)

+

∫ t

0

[K0(u, t; β0) + P0(u, t; β0)]r
(0)
T (u; θ0)

−1dMT
i (u)

+

K∑
k=1

Aik

∫ t

0

r
(0)
0 (u; β0, W )−1W A

ik(u)dMi0k(u)

=

∫ t

0

dΦi0(u).

B.IV.7 n
1
2{Λ̂i0(t; Si) − Λi0(t; Si)}

We begin with another decomposition

n
1
2{Λ̂i0(t; Si) − Λi0(t; Si)}

= n
1
2{Λ̂i0(t, β̂; Si) − Λ̂i0(t, β0; Si)}(B.16)

+n
1
2{Λ̂i0(t, β0; Si) − Λi0(t)}.(B.17)

Consider the first term and using Result B.IV.5

(B.16) = Λ̂00(t)n
1
2{eβ̂′

0Zi(Si) − eβ′
0Zi(Si)}

= Λ00(t)e
β′
0Zi(Si)Zi(Si)

′n
1
2 (β̂0 − β0) + op(1)

= Λ00(t)e
β′
0Zi(Si)Zi(Si)

′Ω−1
0 (β0)n

− 1
2

n∑
j=1

Uj0(β0) + op(1).

By using Result B.IV.6, the second term can be written as

(B.17) = eβ′
0Zi(Si)n

1
2{Λ̂00(t) − Λ00(t)}

= eβ′
0Zi(Si)n− 1

2

n∑
j=1

Φj0(t) + op(1).

Combining equations (B.16) and (B.17), we obtain

n
1
2{Λ̂i0(t; Si) − Λi0(t; Si)}

= Λi0(t; Si)Zi(Si)
′Ω−1

0 (β0)n
− 1

2

n∑
j=1

Uj0(β0) + eβ′
0Zi(Si)n− 1

2

n∑
j=1

Φj0(t) + op(1).
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B.IV.8 n
1
2{Ŝi0(t; Si) − Si0(t; Si)}

Using the Functional Delta Method and Result B.IV.7, we have

n
1
2{Ŝi0(t; Si) − Si0(t; Si)} = −Si0(t; Si)n

1
2{Λ̂i0(t; Si) − Λi0(t; Si)} + op(1).

B.IV.9 n
1
2{μ̂i0(Si) − μi0(Si)}

Define μi0(Si) =
∫ L

0
Si0(u; Si)du, where L is restricted time point. By continuity and

Result B.IV.7 and B.IV.8, we have

n
1
2{μ̂i0(Si) − μi0(Si)}

= n
1
2

∫ L

0

{Ŝi0(t; Si) − Si0(t; Si)}dt

= −
∫ L

0

Si0(t; Si)n
1
2{Λ̂i0(t; Si) − Λi0(t; Si)}dt + op(1)

= −
∫ L

0

Si0(t; Si)Λi0(t; Si)Zi(Si)
′Ω−1

0 (β0)n
− 1

2

n∑
j=1

Uj0(β0)dt(B.18)

−
∫ L

0

Si0(t; Si)e
β′
0Zi(Si)n− 1

2

n∑
j=1

∫ t

0

dΦj0(u)dt + op(1).(B.19)

For the second term, switching the order of integration and summation

(B.19) = −n− 1
2

n∑
j=1

∫ L

0

∫ L

u

Si0(t; Si)e
β′
0Zi(Si)dtdΦj0(u)

= −n− 1
2

n∑
j=1

∫ L

0

eβ′
0Zi(Si){μi0(Si) −

∫ t

0

Si0(u; Si)du}dΦj0(t).

Combining equations (B.18) and (B.19), we have

n
1
2{μ̂i0(Si) − μi0(Si)} =

∫ L

0

Si0(t; Si)Λi0(t; Si)Zi(Si)
′Ω−1

0 (β0)n
− 1

2

n∑
j=1

Uj0(β0)dt

−n− 1
2

n∑
j=1

∫ L

0

eβ′
0Zi(Si){μi0(Si) −

∫ t

0

Si0(u; Si)du}dΦj0(t)

= n− 1
2

n∑
j=1

ϕij0(Si).
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where

ϕij0(Si) = Zi(Si)
′Ω−1

0 (β0)Uj0(β0)

∫ L

0

Si0(t; Si)Λi0(t; Si)dt

−eβ′
0Zi(Si)

∫ L

0

{μi0(Si) −
∫ t

0

Si0(u; Si)du}dΦj0(t).

B.IV.10 n
1
2 (β̂1 − β1)

It is straight forward to show that

n
1
2 (β̂1 − β1) = Ω−1

1 (β1)n
− 1

2

n∑
i=1

Ui1(β1) + op(1),

where

Ui1(β1) =

∫ τ1

0

{Zi1 − z1(t; β1)}dMi1(t),

dMi1(t) = dNi1(t) − Yi1(t)dΛi1(t).

This is now a well-established Cox model result, derived through Martingale theory.

B.IV.11 n
1
2{Λ̂01(t) − Λ01(t)}

We begin with another decomposition,

n
1
2{Λ̂01(t) − Λ01(t)}

= n
1
2 [Λ̂01(t; β̂1) − Λ̂01(t; β1)](B.20)

+n
1
2 [Λ̂01(t; β1) − Λ01(t)](B.21)

Consider the first term,

(B.20) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
1 (u; β̂1)

−1 − R
(0)
1 (u; β1)

−1}dNi1(u)

= ĥ′
1(t; β1)Ω1(β1)

−1n− 1
2

n∑
i=1

Ui1(β1)

= h′
1(t; β1)Ω1(β1)

−1n− 1
2

n∑
i=1

Ui1(β1) + op(1),
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where the third line follows from the convergence in probability of

ĥ′
1(t; β1) = −

∫ t

0

z′
1(u; β1)dΛ̂01(u),

Ω̂1(β1) = n−1
n∑

i=1

∫ τ1

0

{
R

(2)
1 (t; β1)

R
(0)
1 (t; β1)

− z1(t; β1)
⊗2

}
dNi1(t),

to the quantities

h′
1(t; β1) = −

∫ t

0

z′
1(u; β1)dΛ01(u),

and Ω1(β1) respectively, with Ω1(β1) defined in Regularity Condition (e).

With respect to the second term in the decomposition, we have,

(B.21) = n− 1
2

n∑
i=1

∫ t

0

dMi1(u)

R
(0)
1 (u; β1)

,

= n− 1
2

n∑
i=1

∫ t

0

dMi1(u)

r
(0)
1 (u; β1)

+ op(1),

where the second line follows from continuity and Condition (d). Combining equa-

tions (B.20) and (B.21), for the decomposition, we have

n
1
2{Λ̂01(t) − Λ01(t)}

= h′
1(t; β1)Ω1(β1)

−1n− 1
2

n∑
i=1

Ui1(β1)

+n− 1
2

n∑
i=1

∫ t

0

r
(0)
1 (u; β1)

−1dMi1(u)

= n− 1
2

n∑
i=1

∫ t

0

dΦi1(u),

where

Φi1(t) = h′
1(t; β1)Ω1(β1)

−1Ui1(β1)

+

∫ t

0

r
(0)
1 (u; β1)

−1dMi1(u)

=

∫ t

0

dΦi1(u).
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B.IV.12 n
1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)}

We begin with another decomposition

n
1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)}

= n
1
2{Λ̂i1(t, β̂1; Ti) − Λ̂i1(t, β1; Ti)}(B.22)

+n
1
2{Λ̂i1(t, β1; Ti) − Λi1(t)}.(B.23)

Considering the first term, by a Taylor series expansion and Result B.IV.10, and

Λ̂01(t)
p−→ Λ01(t) for t ∈ [0, τ ], we obtain

(B.22) = Λ̂01(t)n
1
2{eβ̂′

1Zi1 − eβ′
1Zi1}

= Λ01(t)e
β′
1Zi1Z ′

i1n
1
2 (β̂1 − β1) + op(1)

= Λ01(t)e
β′
1Zi1Z ′

i1Ω1(β1)
−1n− 1

2

n∑
j=1

Uj1(β1) + op(1).

By using Result B.IV.11, the second term can be written as

(B.23) = eβ′
1Zi1n

1
2{Λ̂01(t) − Λ01(t)}

= eβ′
1Zi1n− 1

2

n∑
j=1

Φj1(t) + op(1).

Combining results from the decomposition leads to,

n
1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)}

= Λi1(t; Ti)Z
′
i1Ω1(β1)

−1n− 1
2

n∑
j=1

Uj1(β1) + eβ′
1Zi1n− 1

2

n∑
j=1

Φj1(t) + op(1).

B.IV.13 n
1
2{Ŝi1(t; Ti) − Si1(t; Ti)}

Using the Functional Delta Method

n
1
2{Ŝi1(t; Ti) − Si1(t; Ti)} = −Si1(t; Ti)n

1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)} + op(1).

B.IV.14 n
1
2{μ̂i1(Ti) − μi1(Ti)}
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Define μi1(Ti) =
∫ L

0
Si1(u; Ti)du and where L is the restriction time point. By conti-

nuity and Result B.IV.12 and B.IV.13

n
1
2{μ̂i1(Ti) − μi1(Ti)} = n

1
2

∫ L

0

{Ŝi1(t; Ti) − Si1(t; Ti)}dt

= −
∫ L

0

Si1(t; Ti)n
1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)}dt + op(1)

= −
∫ L

0

Si1(t; Ti)Λi1(t; Ti)Z
′
i1Ω1(β1)

−1n− 1
2

n∑
j=1

Uj1(β1)dt(B.24)

−
∫ L

0

Si1(t; Ti)e
β′
1Zi1n− 1

2

n∑
j=1

∫ t

0

dΦj1(u)dt.(B.25)

For the second term, switching the order of integration and summation

(B.25) = −n− 1
2

n∑
j=1

∫ L

0

∫ L

u

Si1(t; Ti)e
β′
1Zi1dtdΦj1(u)

= −n− 1
2

n∑
j=1

∫ L

0

eβ′
1Zi1

{
μi1(Ti) −

∫ t

0

Si1(u; Ti)du

}
dΦj1(t).

Combining equations (B.24) and (B.25), we obtain

n
1
2{μ̂i1(Ti) − μi1(Ti)} =

∫ L

0

Si1(t; Ti)Λi1(t; Ti)Z
′
i1Ω1(β1)

−1n− 1
2

n∑
j=1

Uj1(β1)dt

−n− 1
2

n∑
j=1

∫ L

0

eβ′
1Zi1

{
μi1(Ti) −

∫ t

0

Si1(u; Ti)du

}
dΦj1(t)

= n− 1
2

n∑
j=1

ϕij1(Ti),

where

ϕij1(Ti) = Z ′
i1Ω1(β1)

−1Uj1(β1)

∫ L

0

Si1(t; Ti)Λi1(t; Ti)dt

−eβ′
1Zi1

∫ L

0

{μi1(Ti) −
∫ t

0

Si1(u; Ti)du}dΦj1(t).

B.IV.15 n
1
2 (α̂ − α0)

It is straightforward to show that

n
1
2 (α̂ − α0) = ΩC(α0)

−1n− 1
2

n∑
i=1

UC
i (α0) + op(1),
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where we define

UC
i (α) =

∫ τ

0

{Zi(0) − zC(t; α)}dMC
i (t; α),

dMi1(t) = dNi1(t) − Yi1(t)dΛik(t).

This is now a well-established Cox model result, derived through Martingale theory.

B.IV.16 n
1
2{Λ̂C

0 (t) − ΛC
0 (t)}

We start the following decomposition

n
1
2{Λ̂C

0 (t) − ΛC
0 (t)}

= n
1
2{Λ̂C

0 (t; α̂) − Λ̂C
0 (t; α0)}(B.26)

+n
1
2{Λ̂C

0 (t; α0) − ΛC
0 (t)}.(B.27)

We can express the first term as

(B.26) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
C (u; α̂)−1 − R

(0)
C (u; α0)

−1}dNC
i (u)

= ĥ′
C(t; α0)ΩC(α0)

−1n− 1
2

n∑
i=1

UC
i (α0)

= h′
C(t; α0)ΩC(α0)

−1n− 1
2

n∑
i=1

UC
i (α0) + op(1),

where the third line follows from the convergence in probability of

ĥ′
C(t; α) = −n−1

n∑
i=1

∫ t

0

R
(0)
C (u; α)−1zC(u; α)dNC

i (u) = −
∫ t

0

zC(u; α)dΛ̂C
0 (u; α),

Ω̂C(α) = n−1
n∑

i=1

∫ τ

0

{
R

(2)
C (t; α)

R
(0)
C (t; α)

− zC(t; β1)
⊗2

}
dNC

i (t),

to the quantity

h′
C(t; α) = −

∫ t

0

zC(u; α)dΛC
0 (u),

and ΩC(α) respectively, with ΩC(α) defined in Regularity Condition (e).
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With respect to the second term in the decomposition, we have

(B.27) = n− 1
2

n∑
i=1

∫ t

0

R
(0)
C (u; α0)

−1dMC
i (u)

= n− 1
2

n∑
i=1

∫ t

0

r
(0)
C (u; α0)

−1dMC
i (u) + op(1),

where the second line follows from continuity and Condition (d). Combining equa-

tions (B.26) and (B.27), for the decomposition, we have

n
1
2{Λ̂C

0 (t) − ΛC
0 (t)} = n− 1

2

n∑
i=1

ΦC
i (t; α0) + op(1),

where

ΦC
i (t; α) = h′

C(t; α)ΩC(α0)
−1UC

i (α0) +

∫ t

0

r
(0)
C (u; α0)

−1dMC
i (u) =

∫ t

0

dΦC
i (u; α0),

and

dΦC
i (u; α) = −zC(u; α)dΛC

0 (u)ΩC(α)−1UC
i (α) + r

(0)
C (u; α)−1dMC

i (u).

B.IV.17 n
1
2{Λ̂C

i (t) − ΛC
i (t)}

We start with another decomposition,

n
1
2{Λ̂C

i (t) − ΛC
i (t)}

= n
1
2

{
Λ̂C

i (t; α̂) − Λ̂C
i (t; α)

}
(B.28)

+n
1
2

{
Λ̂C

i (t; α) − ΛC
i (t)

}
.(B.29)

Considering the first term,

(B.28) = Λ̂C
0 (t)n

1
2{eα̂′Zi(0) − eα′

0Zi(0)}.

By a Taylor series expansion,

n
1
2{eα̂′Zi(0) − eα′

0Zi(0)} = Z ′
i(0)eα′

0Zi(0)n
1
2 (α̂ − α0) + op(1)

= Z ′
i(0)eα′

0Zi(0)ΩC(α0)
−1n− 1

2

n∑
j=1

UC
j (α0) + op(1).
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As Λ̂C
0 (t)

p−→ ΛC
0 (t) for t ∈ [0, τ ], we obtain

(B.28) = Z ′
i(0)ΛC

i (t)eα′
0Zi(0)ΩC(α0)

−1n− 1
2

n∑
j=1

UC
j (α0) + op(1).

By using result B.IV.16, the second term can be written as

(B.29) = eα′
0Zi(0)n

1
2{Λ̂C

0 (t) − ΛC
0 (t)}

= eα′
0Zi(0)n− 1

2

n∑
j=1

dΦC
j (u; α0) + op(1).

Combining result leads to

n
1
2{Λ̂C

i (t) − ΛC
i (t)} =

∫ t

0

{Zi(0) − zC(u; α0)}′dΛC
i (u)ΩC(α0)

−1n− 1
2

n∑
j=1

UC
j (α0)

+n− 1
2

n∑
j=1

∫ t

0

eα′
0Zi(0)r

(0)
C (u; α0)

−1dMC
j (u) + op(1)

= DC′
i (t)ΩC(α0)

−1n− 1
2

n∑
j=1

UC
j (α0) + n− 1

2

n∑
j=1

JC
ij (t) + op(1),

where we define

DC′
i (t) =

∫ t

0

{Zi(0) − zC(u; α0)}′dΛC
i (u) =

∫ t

0

dDC′
i (t),

JC
ij (t) =

∫ t

0

eα′
0Zi(0)r

(0)
C (u; α0)

−1dMC
j (u).

B.IV.18 n
1
2{Ĝi(t)

−1 − Gi(t)
−1}

Since Gi(t)
−1 = eΛC

i (t) and Ĝi(t)
−1 = eΛ̂C

i (t), we then have

n
1
2{Ĝi(t)

−1 − Gi(t)
−1} = n

1
2{eΛ̂C

i (t) − eΛC
i (t)}

= Gi(t)
−1n

1
2{Λ̂C

i (t) − ΛC
i (t)} + op(1)

= Gi(t)
−1n− 1

2

n∑
j=1

{DC′
i (t)ΩC(α0)

−1UC
j (α) + JC

ij (t)} + op(1)

= n− 1
2

n∑
j=1

ϕC
ij(t) + op(1),

where

ϕC
ij(t) = Gi(t)

−1{DC′
i (t)ΩC(α0)

−1UC
j (α0) + JC

ij (t)}.
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B.IV.19 n
1
2{ŜΔi(t) − SΔi(t)}

From Result B.IV.8 and B.IV.13, we have

n
1
2{Ŝi0(t; Ti) − Si0(t; Ti)} = −Si0(t; Ti)n

1
2{Λ̂i0(t; Ti) − Λi0(t; Ti)} + op(1),

n
1
2{Ŝi1(t; Ti) − Si1(t; Ti)} = −Si1(t; Ti)n

1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)} + op(1),

then using Result B.IV.7 and B.IV.12, we obtain

n
1
2{ŜΔi(t) − SΔi(t)}

= n
1
2{Ŝi1(t; Ti) − Si1(t; Ti)} − n

1
2{Ŝi0(t; Ti) − Si0(t; Ti)} + op(1)

= Si0(t; Ti)n
1
2{Λ̂i0(t; Ti) − Λi0(t; Ti)} − Si1(t; Ti)n

1
2{Λ̂i1(t; Ti) − Λi1(t; Ti)} + op(1)

= n− 1
2

n∑
j=1

ϕS
ij(t) + op(1),

where

ϕS
ij(t) = Si0(t){Λi0(t)Zi(Si)

′Ω−1
0 (β0)Uj0(β0) − eβ′

0Zi(t)Φj0(t)}

−Si1(t){Λi1(t)Z
′
i1Ω

−1
1 (β1)Uj1(β1) − eβ′

1Zi1Φj1(t)}.

B.IV.20 n
1
2{Δ̂i(t) − Δi(t)}

Since Δ̂i(t) =
∫ t

0
ŜΔi(u)du and Δi(t) =

∫ t

0
SΔi(u)du, and Result B.IV.19, we have

n
1
2{Δ̂i(t) − Δi(t)} = n

1
2

∫ t

0

{ŜΔi(u) − SΔi(u)}du,

= n− 1
2

∫ t

0

n∑
j=1

ϕS
ij(u)du + op(1),

where switch the integration and summation sign, we obtain

n
1
2{Δ̂i(t) − Δi(t)} = n− 1

2

n∑
j=1

ϕD
ij (t) + op(1),

where

ϕD
ij (t) =

∫ t

0

ϕS
ij(u)du.
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B.IV.21 n
1
2{ŜΔ(t) − SΔ(t)}

First define

V̂ (τ) = n−1

n∑
i=1

∫ τ

0

Ĝi(u)−1dNT
i (u),

V (τ) = P (Ti ≤ t, Ti < Di),

and

V̂ (t)
p−→

∫ τ

0

E

(
dNT

i (t)

Gi(t)

)
= P (Ti ≤ t, Ti < Di) = V (τ).

Then by Slutsky’s Theorem, we can write

ŜΔ(t) = V (τ)−1n−1
n∑

i=1

∫ τ

0

ŜΔi(t; u)Ĝi(u)−1dNT
i (u) + op(1).

Since we define SΔ(t) = E[SΔ(t; T, Z(T ))], ŜΔ(t) − SΔ(t) can then be decomposed

as follows:

n
1
2{ŜΔ(t) − SΔ(t)}

= n
1
2

[∑n
i=1

∫ τ

0
ŜΔi(t; u)Ĝi(u)−1dNT

i (u)

nV (τ)
−

∑n
i=1

∫ τ

0
SΔi(t; u)Ĝi(u)−1dNT

i (u)

nV (τ)

]
+n

1
2

[∑n
i=1

∫ τ

0
SΔi(t; u)Ĝi(u)−1dNT

i (u)

nV (τ)
−

∑n
i=1

∫ τ

0
SΔi(t; u)Gi(u)−1dNT

i (u)

nV (τ)

]
+n

1
2

[∑n
i=1

∫ τ

0
SΔi(t; u)Gi(u)−1dNT

i (u)

nV (τ)
− SΔ(t)

]
+ op(1).

Then we can write

n
1
2{ŜΔ(t) − SΔ(t)}

= V (τ)−1n−1

n∑
i=1

∫ τ

0

n
1
2{ŜΔi(t; u) − SΔi(t; u)}Ĝi(u)−1dNT

i (u)(B.30)

+V (τ)−1n−1
n∑

i=1

∫ τ

0

SΔi(t; u)n
1
2{Ĝi(u)−1 − Gi(u)−1}dNT

i (u)(B.31)

+n− 1
2 V (τ)−1

n∑
i=1

∫ τ

0

{SΔi(t; u) − SΔ(t)}Gi(u)−1dNT
i (u) + op(1).(B.32)
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By Results B.IV.19 and Slutsky Theorem, we have the following decomposition

(B.30) = n− 1
2 V (τ)−1n−1

n∑
i=1

∫ τ

0

n∑
j=1

ϕS
ij(t)Gi(u)−1dNT

i (u) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

n−1
n∑

i=1

∫ τ

0

ϕS
ij(t)Gi(u)−1dNT

i (u) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

V̂1j(t) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

V1j(t) + op(1)

where

V̂1j(t) = n−1
n∑

i=1

∫ τ

0

ϕS
ij(t)Gi(u)−1dNT

i (u),

V1j(t) = E

[ ∫ τ

0

ϕS
ij(t)Gi(u)−1dNT

i (u)

]
.

By Results B.IV.18 we have

(B.31) = n− 1
2 V (τ)−1n−1

n∑
i=1

∫ τ

0

SΔi(t; u)

n∑
j=1

ϕC
ij(u)dNT

i (u) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

n−1
n∑

i=1

∫ τ

0

SΔi(t; u)ϕC
ij(u)dNT

i (u) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

V̂2j(t) + op(1)

= n− 1
2 V (τ)−1

n∑
j=1

V2j(t) + op(1),

where

V̂2j(t) = n−1

n∑
i=1

∫ τ

0

SΔi(t; u)ϕC
ij(u)dNT

i (u),

V2j(t) = E

[ ∫ τ

0

SΔi(t; u)ϕC
ij(u)dNT

i (u)

]
.
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Combining all the results above, we can have

n
1
2{ŜΔ(t) − SΔ(t)}

= n− 1
2

n∑
j=1

V (τ)−1

{
V1j(t) + V2j(t) +

∫ τ

0

{SΔj(t; u) − SΔ(t)}Gj(u)−1dNT
j (u)

}
+ op(1)

= n− 1
2

n∑
j=1

ξj(t) + op(1),

where

ξj(t) = V (τ)−1

{
V1j(t) + V2j(t) +

∫ τ

0

{SΔj(t; u) − SΔ(t)}Gj(u)−1dNT
j (u)

}
.

B.IV.22 n
1
2{Δ̂ − Δ}

Since Δ̂ =
∫ L

0
ŜΔ(t)dt and Δ =

∫ L

0
SΔ(t)dt, we can have

n
1
2{Δ̂ − Δ} = n− 1

2

n∑
j=1

ηj + op(1),

where

ηj =

∫ L

0

ξj(t)dt.
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Figure B.1: Estimated post- and pre-transplant survival curves for all MELD groups
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APPENDIX C

Appendix C: Proof of Theorem VI.1

Appendix C: Proof of Theorem IV.1

C.I. Notation

We begin by reviewing the essential notation:

i: subject (i = 1, . . . , n)

j: strata (j = 0, 1, . . . , J − 1)

Di: death time for ith subject

Ci: censoring time for ith subject

Ti: treatment time for ith subject

Xi = min{Di, Ci, Ti}: observation time for ith subject

Δi = I(Xi = Di)

ΔT
i = I(Xi = Ti)

Ai(t): treatment eligibility indicator of ith subject at time t

Zi(t): covariate for ith subject at follow-up time t

Zi0 = Zi(0): covariate for ith subject at follow-up time t = 0

Z̃i(t) = {Zi(s); s ∈ [0, t)}: covariate history up to time t
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Ãi(t) = {Ai(s); s ∈ [0, t)}: treatment eligibility history up to time t

Gi: group variable for ith subject

Yi(t) = I(Xi ≥ t)

Yij(t) = Yi(t)I(Gi = j)

β0: regression parameter, death model

θ0: regression parameter, treatment model

Death baseline hazard: λij(t) = λ0j(t) exp{β ′
0Zi0}

Treatment baseline hazard: λT
ij(t) = λT

0j(t) exp{θ′0Zi(t)}

C.II. Regularity Conditions

In deriving the asymptotic properties of the proposed estimators the following con-

ditions are assumed for i = 1, ..., n and j = 0, ..., J − 1

(a) {Xi, Δi, Δ
T
i , Z̃i(Xi), Ãi(Xi)} are independent and identically distributed random

vectors.

(b) Zi(t) has bounded variation, i.e., |Zi(t)| < κ, where κ is a constant for t ∈ [0, τ ].

(c)
∫ τ

0
λ0j(t)dt < ∞ and

∫ τ

0j
λT

0 (t)dt < ∞ where τ is the maximum follow-up time.

(d) Continuity of the following functions:

r
(1)
j (t; β, W ) =

∂

∂β
r

(0)
j (t; β, W ),

r
(2)
j (t; β, W ) =

∂2

∂β∂β ′ r
(0)
j (t; β, W ),

and r
(0)
j (t; β, W ), where

r
(p)
j (t; β, W ) = E[Wi(t)Yij(t)Z

⊗p
i0 exp(β ′Zi0)],
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is the limiting value of

R
(p)
j (t; β, W ) = n−1

n∑
i=1

Wi(t)Yij(t)Z
⊗p
i0 exp(β ′Zi0),

for p = 0, 1, 2, with r
(1)
j (t; β, W ) and r

(2)
j (t; β, W ) bounded and r

(0)
j (t; β, W ) bounded

away from 0 for t ∈ [0, τ ] and β in an open set.

(e) Continuity of the following functions:

r
(1)
Tj (t; θ) =

∂

∂θ
r

(0)
Tj (t; θ),

r
(2)
Tj (t; θ) =

∂2

∂θ∂θ′
r

(0)
Tj (t; θ),

and r
(0)
Tj (t; θ), where

r
(p)
Tj (t; θ) = E[Yij(t)Zi(t)

⊗p exp{θ′Zi(t)}],

is the limiting value of

R
(d)
Tj (t; θ) = n−1

n∑
i=1

Yij(t)Zi(t)
⊗d exp{θ′Zi(t)},

for p = 0, 1, 2; with r
(1)
Tj (t; θ) and r

(2)
Tj (t; θ) bounded and r

(0)
Tj (t; θ) bounded away from

0 for t ∈ [0, τ ] and θ in an open set.

(f) Positive-definiteness of the matrices ΩT (θ) and Ω(β), where

ΩT (θ) = E

[ J−1∑
j=0

∫ τ

0

{
r

(2)
Tj (t; θ)

r
(0)
Tj (t; θ)

− xj(t; θ)
⊗2

}
dNT

ij (t)

]
,

xj(t; θ) = r
(1)
Tj (t; θ)/r

(0)
Tj (t; θ),

Ω(β) = E

[ J−1∑
j=0

∫ τ

0

{
r

(2)
j (t; β, W )

r
(0)
j (t; β, W )

− zj(t; β, W )⊗2

}
dNij(t)

]
,

zj(t; β, W ) = r
(1)
j (t; β, W )/r

(0)
j (t; β, W ).

(g) P (Yi(t) = 1) > 0 for t ∈ [0, τ ].
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C.III. Outline of Asymptotic Derivation

The proof below focuses on the unstabilized weight. We derive the influence

functions of various terms of interest as summations of independent and identically

distributed (i.i.d.) terms plus a term which converges to zero in probability. The

terms are as follows:

1. n
1
2 (θ̂ − θ0)

2. n
1
2{Λ̂T

0j(t) − ΛT
0j(t)}

3. n
1
2{Λ̂T

ij(t) − ΛT
ij(t)}

4. n
1
2{Ŵi(t) − Wi(t)}

5. n
1
2 (β̂ − β0)

6. n
1
2{Λ̂0j(t) − Λ0j(t)}

7. n
1
2{φ̂j(t) − φj(t)}

C.IV. Derivation of Asymptotic Properties

Asymptotic Normality:

Some parts of the proof regarding the proportional hazards model are results

well-established. Therefore, they are simply listed without proof. For details, please

refer to Anderson and Gill (1982), Fleming and Harrington (1991) and Andersen et

al. (1993).
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C.IV.1 n
1
2 (θ̂ − θ0)

As n → ∞, we have

n
1
2 (θ̂ − θ0) = ΩT (θ0)

−1n− 1
2

n∑
i=1

J−1∑
j=0

UT
ij (θ0) + op(1),

where

UT
ij (θ) =

∫ τ

0

{Zi(t) − xj(t; θ)}dMT
ij (t; θ),

dMT
ij (t) = dNT

ij (t) − Yij(t)dΛT
i (t),

This is now a well-established Cox model result, derived through Martingale theory.

C.IV.2 n
1
2{Λ̂T

0j(t) − ΛT
0j(t)}

We induce the following decomposition:

n
1
2{Λ̂T

0j(t) − ΛT
0j(t)}

= n
1
2{Λ̂T

0j(t; θ̂) − ΛT
0j(t; θ0)}(C.1)

+n
1
2{Λ̂T

0j(t; θ0) − ΛT
0j(t)}.(C.2)

We can express the first term as

(C.1) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
Tj (u; θ̂)−1 − R

(0)
Tj (u; θ0)

−1}dNT
ij (u)

= ĥ′
Tj(t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

J−1∑
j=0

UT
ij (θ0)

= h′
Tj(t; θ0)ΩT (θ0)

−1n− 1
2

n∑
i=1

J−1∑
j=0

UT
ij (θ0) + op(1).

where where the third line follows from the convergence in probability of

ĥ′
Tj(t; θ) = −1

n

n∑
i=1

∫ t

0

R
(0)
Tj (u; θ)−1Xj(u; θ)dNT

ij (u) = −
∫ t

0

Xj(u; θ)dΛ̂T
0j(u; θ),

Ω̂T (θ) = n−1
n∑

i=1

J−1∑
j=0

∫ τ

0

{
R

(2)
Tj (t; θ)

R
(0)
Tj (t; θ)

− Xj(t, θ)
⊗2

}
dNT

ij (t),
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where Xj(t; θ) = R
(1)
Tj (t; θ)/R

(0)
Tj (t; θ), to the quantities

h′
Tj(t; θ) = −

∫ t

0

xj(u; θ)dΛT
0j(u),

and ΩT (θ) respectively, with ΩT (θ) defined in Regularity Condition (f).

With respect to the second term in the decomposition, we have,

(C.2) = n− 1
2

n∑
i=1

∫ t

0

R
(0)
Tj (u; θ0)

−1dMT
ij (u)

= n− 1
2

n∑
i=1

∫ t

0

r
(0)
Tj (u; θ0)

−1dMT
ij (u) + op(1),

where the second line follows from continuity and Condition (f). Combining results,

for the decomposition, we have

n
1
2{Λ̂T

0j(t) − ΛT
0j(t)} = n− 1

2

n∑
i=1

ΦT
ij(t; θ0) + op(1),

where

ΦT
ij(t; θ) = h′

Tj(t; θ)ΩT (θ)−1UT
ij (θ) +

∫ t

0

r
(0)
Tj (u; θ)−1dMT

ij (u) =

∫ t

0

dΦT
ij(u; θ),

and

dΦT
ij(u; θ) = −x′

j(u; θ)dΛT
0j(u)ΩT (θ)−1UT

ij (θ) + r
(0)
Tj (u; θ)−1dMT

ij (u).

C.IV.3 n
1
2{Λ̂T

ij(t) − ΛT
ij(t)}

We begin with another decomposition,

n
1
2{Λ̂T

ij(t) − ΛT
ij(t)}

= n
1
2

{∫ t

0

eθ̂′Zi(u)dΛ̂T
0j(u) −

∫ t

0

eθ′0Zi(u)dΛ̂T
0j(u)

}
(C.3)

+n
1
2

{∫ t

0

eθ′0Zi(u)dΛ̂T
0j(u) −

∫ t

0

eθ′0Zi(u)dΛT
0j(u)

}
.(C.4)

Considering the first term,

(C.3) = n
1
2

∫ t

0

{eθ̂′Zi(u) − eθ′0Zi(u)}dΛ̂T
0j(u).
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By a Taylor series expansion,

n
1
2{eθ̂′Zi(u) − eθ′0Zi(u)} = Zi(u)eθ′0Z′

i(u)n
1
2 (θ̂ − θ0) + op(1)

= Zi(u)eθ′0Z′
i(u)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + op(1).

As Λ̂T
0j(t)

p−→ ΛT
0j(t) for t ∈ [0, τ ], we get

(C.3) =

∫ t

0

Zi(u)dΛT
ij(u)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + op(1).

By using result C.IV.2, the second term can be written as

(C.4) = n
1
2

∫ t

0

eθ′0Zi(u)d{Λ̂T
0j(t) − ΛT

0j(t)}

=

∫ t

0

eθ′0Zi(u)n− 1
2

n∑
l=1

dΦT
lj(u; θ0) + op(1).

Combining result from the decomposition, then we have

n
1
2{Λ̂T

ij(t) − ΛT
ij(t)} =

∫ t

0

{Zi(u) − xj(u; θ0)}′dΛT
ij(u)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)

+n− 1
2

n∑
l=1

∫ t

0

eθ′0Zi(u)r
(0)
Tj (u; θ0)

−1dMT
lj (u) + op(1)

= D′
ij(t; θ0)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + n− 1

2

n∑
l=1

JT
ilj(t; θ0) + op(1),

where we define

Dij(t; θ) =

∫ t

0

{Zi(u) − xj(u; θ)}′dΛT
ij(u) =

∫ t

0

dDij(t; θ),

JT
ilj(t; θ) =

∫ t

0

eθ′Zi(u)r
(0)
Tj (u; θ0)

−1dMT
lj (u).

C.IV.4 n
1
2{Ŵi(t) − Wi(t)}

As Wi(t|Gi) = exp{ΛT
iGi

(t)} and Ŵi(t|Gi) = exp{Λ̂T
iGi

(t)}, we have

n
1
2{Ŵi(t) − Wi(t)} = n

1
2{exp{Λ̂T

iGi
(t)} − exp{ΛT

iGi
(t)}}

= Wi(t)n
1
2{Λ̂T

ij(t) − ΛT
ij(t)} + op(1)

= Wi(t)n
− 1

2

n∑
l=1

{
D′

iGi
(t; θ0)ΩT (θ0)

−1
J−1∑
k=0

UT
lk(θ0) + JT

ilGi
(t; θ0)

}
+ op(1).
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C.IV.5 n
1
2{β̂ − β0}

It is straight forward to show that

n
1
2{β̂ − β0} = Ω−1(β0)n

− 1
2

n∑
i=1

J−1∑
j=0

Uij(β0, Ŵ ) + op(1),

where

Uij(β, W ) =

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)dMij(t),

dMij(t) = dNij(t) − Yij(t)dΛij(t).

The term n− 1
2

∑n
i=1

∑J−1
j=0 Uij(β, Ŵ ) can be decomposed as follows

n− 1
2

n∑
i=1

J−1∑
j=0

Uij(β, Ŵ ) = n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, Ŵ )}Ŵi(t)dMij(t)

= n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)dMij(t)(C.5)

−n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zj(t; β, Ŵ ) − zj(t; β, W )}Wi(t)dMij(t)(C.6)

+n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, Ŵ )}{Ŵi(t) − Wi(t)}dMij(t) + op(1).(C.7)

Now, through the Functional Delta Method, combined with a lot of tedious algebra,

(C.6) converges in probability to 0.

Using result C.IV.4

(C.7) = n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)

×n−1
n∑

l=1

D′
iGi

(t; θ0)ΩT (θ0)
−1

J−1∑
k=0

UT
lk(θ0)dMij(t)(C.8)

+n− 1
2

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)

×n−1
n∑

l=1

JT
ilGi

(t; θ0)dMij(t).(C.9)
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Switching the order of summation, we have

(C.8) = n−1

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)D
′
iGi

(t; θ0)dMij(t)ΩT (θ0)
−1

×n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)

= Ĥ ′(t; β, W )ΩT (θ0)
−1n− 1

2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)

= H ′(t; β, W )ΩT (θ0)
−1n− 1

2

n∑
l=1

J−1∑
k=0

UT
lk(θ0),

where the last equality follows from the convergence in probability of

Ĥ ′(t; β, W ) = n−1

n∑
i=1

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)D
′
iGi

(t; θ0)dMij(t),

to the quantity

H ′(t; β, W ) = E

[ J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)D
′
iGi

(t; θ0)dMij(t)

]
.

Switching the order of summation and integration

(C.9) = n− 1
2

n∑
l=1

∫ τ

0

[
n−1

n∑
i=1

J−1∑
j=0

eθ′0Zi(u)

∫ τ

u

{Zi0 − zj(t; β, W )}Wi(t)dMij(t)

]
×r

(0)
TGi

(u; θ0)
−1dMT

lGi
(u)

= n− 1
2

n∑
l=1

V̂l(β)

= n− 1
2

n∑
l=1

Vl(β) + op(1),

where the last equality follows from the convergence in probability of

V̂l(β) =

∫ τ

0

[
n−1

n∑
i=1

J−1∑
j=0

eθ′0Zi(u)

∫ τ

u

{Zi0 − zj(t; β, W )}Wi(t)dMij(t)

]
×r

(0)
TGi

(u; θ0)
−1dMT

lGi
(u),

to the quantity

Vl(β) = E

[ ∫ τ

0

J−1∑
j=0

eθ′0Zi(t1)

∫ τ

u

{Zi0 − zj(t; β, W )}Wi(t)dMij(t)r
(0)
TGi

(u; θ0)
−1dMT

lGi
(u)

]
.
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Combining equations (C.5) (C.8) and (C.9), we obtain

n
1
2 (β̂ − β0) = Ω(β0)

−1n− 1
2

n∑
i=1

Ui(β0) + op(1),

where we set

Ui(β) =

J−1∑
j=0

∫ τ

0

{Zi0 − zj(t; β, W )}Wi(t)dMij(t)

+H ′(t; β, W )ΩT (θ)−1

J−1∑
j=0

UT
ij (θ) + Vi(β).

C.IV.6 n
1
2{Λ̂0j(t) − Λ0j(t)}

We begin another decomposition,

n
1
2{Λ̂0j(t) − Λ0j(t)}

= n
1
2 [Λ̂0j{t; Ŵ , Rj(β̂, Ŵ )} − Λ̂0j{t; Ŵ , Rj(β0, Ŵ )}](C.10)

+n
1
2 [Λ̂0j{t; Ŵ , Rj(β0, Ŵ )} − Λ̂0j{t; W, Rj(β0, Ŵ )}](C.11)

+n
1
2 [Λ̂0j{t; W, Rj(β0, Ŵ )} − Λ̂0j{t; W, Rj(β0, W )}](C.12)

+n
1
2 [Λ̂0j{t; W, Rj(β0, W )} − Λ0j(t)](C.13)

By using Result C.IV.5, we can express the first term as

(C.10) = n− 1
2

n∑
i=1

∫ t

0

{R(0)
j (u; β̂, Ŵ )−1 − R

(0)
j (u; β0, Ŵ )−1}Ŵi(u)dNij(u)

= −
∫ t

0

z′
j(u; β0, W )dΛ0j(u)Ω(β0)

−1n− 1
2

n∑
i=1

Ui(β0) + op(1)

= h′
j(t; β0, W )Ω(β0)

−1n− 1
2

n∑
i=1

Ui(β0) + op(1),

where we define

hj(t; β, W ) = −
∫ t

0

z′
j(u; β, W )dΛ0j(u).
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By using Result C.IV.4, we have

(C.11) = n− 1
2

n∑
i=1

∫ t

0

{Ŵi(u) − Wi(u)}R(0)
j (u; β0, Ŵ )−1dNij(u)

= n−1
n∑

i=1

∫ t

0

R
(0)
j (u; β0, W )−1Wi(u)D′

iGi
(u)ΩT (θ0)

−1

×n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)dNij(u)(C.14)

+n−1

n∑
i=1

∫ t

0

R
(0)
j (u; β0, W )−1Wi(u)n− 1

2

n∑
l=1

JT
ilGi

(u)dNij(u) + op(1).(C.15)

Switching the order of summation, we obtain

(C.14) = B̂′
j(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)

= B′
j(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + op(1),

where the last equality follows from the convergence in probability of

B̂j(t; β) = n−1
n∑

i=1

∫ t

0

R
(0)
j (u; β, W )−1Wi(u)D′

iGi
(u)dNij(u)

to the quantity

Bj(t; β) = E

[ ∫ t

0

r
(0)
j (u; β, W )−1Wi(u)D′

iGi
(u)dNij(u)

]
.

Switching the order of summation and integration

(C.15) = n− 1
2

n∑
l=1

K̂lj(β0)

= n− 1
2

n∑
l=1

Klj(β0) + op(1),

where the last equality follows from the convergence in probability of

K̂lj(t; β) = n−1
n∑

i=1

∫ t

0

eθ′0Zi(s)

∫ t

s

Wi(u)R
(0)
j (u; β, W )−1dNij(u)r

(0)
TGi

(s; θ0)
−1dMT

lGi
(s)
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to the quantity

Klj(t; β) = E

[ ∫ t

0

eθ′0Zi(t1)

∫ t2

t1

Wi(u)r
(0)
j (u; β, W )−1dNij(u)r

(0)
TGi

(u; θ0)
−1dMT

lGi
(u)

]
.

Combining equations (C.14) and (C.15), we have

(C.11) = B̂′
j(t; β0)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + n− 1

2

n∑
l=1

Klj(t; β0) + op(1).

We can have

(C.12) = n− 1
2

n∑
i=1

J−1∑
j=0

∫ t

0

Wi(u){R(0)
j (u; β0, Ŵ )−1 − R

(0)
j (u; β0, W )−1}dNij(u).

Now through the Function Delta Method,

n
1
2{R(0)

j (u; β, Ŵ )−1 − R
(0)
j (u; β, W )−1}

= −R
(0)
j (u; β, W )−2n−1

n∑
i=1

eβ′Zi0n
1
2{Ŵi(u) − Wi(u)}

= −R
(0)
j (u; β, W )−2n−1

n∑
i=1

eβ′Zi0Wi(u)n− 1
2

n∑
l=1

{
D′

iGi
(u)ΩT (θ0)

−1

J−1∑
k=0

UT
lk(θ0) + JT

ilGi
(u)

}

= R
(0)
j (u; β, W )−2F̂ ′(u; β)ΩT (θ0)

−1n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)

+R
(0)
j (u; β, W )−2n− 1

2

n∑
l=1

Q̂′
l(s, u; θ0) + op(1)

= R
(0)
j (u; β, W )−2F ′(u; β)ΩT (θ0)

−1n− 1
2

n∑
i=1

J−1∑
k=0

UT
lk(θ0)

+R
(0)
j (u; β, W )−2n− 1

2

n∑
i=1

Q′
l(s, u; θ0) + op(1),

where the last line follows from the convergence in probability of

F̂ (u; β) = −n−1
n∑

i=1

eβ′Zi0Wi(u)D′
iGi

(u; θ),

Q̂′
l(u; θ) = −n−1

n∑
i=1

∫ u

0

eθ′Zi(s)eβ′Zi0Wi(u)r
(0)
TGi

(s, θ0)
−1dMT

lGi
(s).
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to the quantities

F (u; β) = −E

[
eβ′Zi0Wi(u)D′

iGi
(u; θ)

]
,

Q′
l(u; θ) = −E

[ ∫ u

0

eθ′Zi(s)eβ′Zi0Wi(u)r
(0)
TGi

(s, θ0)
−1dMT

lGi
(s)

]
,

Substituting this result into the expansion of (C.12), we obtain

(C.12) = n−1

n∑
i=1

∫ t

0

Wi(u)R
(0)
j (u; β0, W )−2F ′(u; β0)ΩT (θ0)

−1

×n− 1
2

n∑
l=1

J−1∑
k=0

UT
lk(θ0)dNij(u)

+n−1
n∑

i=1

∫ t

0

Wi(u)R
(0)
j (u; β0, W )−2n− 1

2

n∑
l=1

Q′
l(u; θ)dNij(u).

Switching the order of summation for the first term, and the order of summation

and integration in the second term, we have

(C.12) = Êj(t; β0)ΩT (θ0)
−1n− 1

2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + n− 1

2

n∑
l=1

P̂lj(t; β0)

= Ej(t; β0)ΩT (θ0)
−1n− 1

2

n∑
l=1

J−1∑
k=0

UT
lk(θ0) + n− 1

2

n∑
l=1

Plj(u; β0) + op(1),

where the last equality follows the convergence in probability of

Êj(t; β) = n−1
n∑

i=1

∫ t

0

Wi(u)F (u; β)

R
(0)
j (u; β, W )2

dNij(u),

P̂lj(t; β) = n−1
n∑

i=1

∫ t

0

Wi(u)Ql(u; θ0)

R
(0)
j (u; β, W )2

dNij(u),

to the quantities

Ej(t; β) = E

[ ∫ t

0

Wi(u)F (u; β)

r
(0)
j (u; β, W )2

dNij(u)

]
,

Plj(t; β) = E

[ ∫ t

0

Wi(u)Ql(u; θ0)

r
(0)
j (u; β, W )2

dNij(u)

]
.
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We can also express

(C.13) = n− 1
2

n∑
i=1

∫ t

0

Wi(u)

R
(0)
j (u; β0, W )

dMij(u)

= n− 1
2

n∑
i=1

∫ t

0

Wi(u)

r
(0)
j (u; β0, W )

dMij(u) + op(1).

Combining the results of equations (C.10) (C.11) (C.12) and (C.13), we obtain

n
1
2{Λ̂0j(t) − Λ0j(t)}

= h′
j(t; β0, W )Ω−1(β0)n

− 1
2

n∑
i=1

Ui(β0)

+[B′
j(t; β0) + E ′

j(t; β0)]ΩT (θ0)
−1n− 1

2

n∑
i=1

J−1∑
k=0

UT
ik(θ0)

+n− 1
2

n∑
i=1

[Kij(t; β0) + Pij(t; β0)]

+n− 1
2

n∑
i=1

∫ t

0

r
(0)
j (u; β0, W )−1Wi(u)dMij(u)

= n− 1
2

n∑
i=1

∫ t

0

dΦij(u),

where

Φij(t) = h′
j(t; β0, W )Ω−1(β0)Ui(β0)

+[B′
j(t; β0) + E ′

j(t; β0)]ΩT (θ0)
−1

J−1∑
k=0

UT
ik(θ0)

+Kij(t; β0) + Pij(t; β0)

+

∫ t

0

r
(0)
j (u; β0, W )−1Wi(u)dMij(u)

=

∫ t

0

dΦij(u).

C.IV.7 n
1
2{φ̂j(t) − φj(t)}
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By a Taylor series expansion and Result C.IV.6, we have

n
1
2{φ̂j(t) − φj(t)}

= n
1
2

[
1

Λ00(t)
{Λ̂0j(t) − Λ0j(t)} + Λ̂0j(t)

{
1

Λ̂00(t)
− 1

Λ00(t)

}]
= n

1
2

[
1

Λ00(t)
{Λ̂0j(t) − Λ0j(t)} − Λ̂0j(t)

Λ2
00(t)

{Λ̂00(t) − Λ00(t)} + o(n−1/2)

]
= n− 1

2

[
1

Λ00(t)

n∑
i=1

Φij(t) − Λ̂0j(t)

Λ2
00(t)

n∑
i=1

Φi0(t)

]
+ op(1)

= n− 1
2

n∑
i=1

ξij(t) + op(1),

where

ξij(t) =
1

Λ00(t)
Φij(t) − Λ0j(t)

Λ2
00(t)

Φi0(t).
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