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estimates and the truth is the distance to the observed point. In the 

limit of perfect agreement, RMSD should approach zero, CC should 

approach unity, and the SD of the estimates should be the same as the 

truth.  
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ABSTRACT  

Data Assimilation for Atmospheric CO2: Towards Improved Estimates of  

CO2 Concentrations and Fluxes 

by  

Abhishek Chatterjee 

Chair: Anna M. Michalak 

The lack of a process-level understanding of the carbon cycle is a major contributor to 

our uncertainty in understanding future changes in the carbon cycle and its interplay with the 

climate system. Recent initiatives to reduce this uncertainty, including increases in data density 

and the estimation of emissions and uptake (a.k.a. fluxes) at fine spatiotemporal scales, presents 

computational challenges that call for numerically-efficient schemes. Often based on data 

assimilation (DA) approaches, these schemes are common within the numerical weather 

prediction community.  

The goal of this research is to identify fundamental gaps in our knowledge regarding the 

precision and accuracy of DA for CO2 applications, and develop suitable methods to fill these 

gaps. First, a new tool for characterizing background error statistics based on predictions from 

carbon flux and atmospheric transport models is shown to yield improved estimates of CO2 

concentration fields within an operational DA system at the European Centre for Medium-Range 



xviii 

 

Weather Forecasts (ECMWF). Second, the impact of numerical approximations within existing 

DA approaches is explored using a simplified flux estimation problem. It is found that a complex 

interplay between the underlying numerical approximations and the observational characteristics 

regulates the performance of the DA methods. Third, a novel and versatile DA method called the 

geostatistical ensemble square root filter (GEnSRF) is developed to leverage the information 

content of atmospheric CO2 observations. The ability of GEnSRF to match the performance of a 

more traditional inverse modeling approach is confirmed using a series of synthetic data 

experiments over North America. Fourth, GEnSRF is used to assimilate high-density satellite 

observations from the recently launched GOSAT satellite, and deliver global data-driven 

estimates of fine-scale CO2 fluxes. Diagnostics tools are used to evaluate the benefit of satellite 

observations in constraining global surface fluxes, relative to a traditional surface monitoring 

network. Overall, this research has developed, applied, and evaluated a novel set of tools with 

unique capabilities that increase the credibility of DA methods for atmospheric CO2 applications. 

Such advancements are necessary if we are to accurately understand the critical controls over the 

atmospheric CO2 growth, and improve our understanding of carbon-climate feedbacks.   

 



Chapter 1 

Introduction 

Data assimilation is "an analysis technique in which the observed information is 

accumulated into the background state by taking advantage of consistency constraints with laws 

of time evolution and physical properties" (Bouttier and Courtier [1999]). Although this 

definition is merely a decade old, its roots can be traced back to the late eighteenth century when 

both Gauss and Legendre are credited with simultaneously discovering the core principles behind 

data assimilation (DA). While Gauss and Legendre’s efforts were aimed at calculating the orbits 

of heavenly bodies, the mathematical basis of their work paved the way for the least squares 

method, which forms the most basic concept in DA. Through the last two centuries, Gauss and 

Legendre’s ideas and concepts have been advanced and refined, but the fundamental tenet of 

minimization of the squared departure between an estimate, and observations and/or background 

information have remained unchanged. Today DA is more generally cast in a probabilistic 

framework that formalizes the conjunction of the two states of information (e.g. Tarantola 

[2005]), and the least squares method is derived as a special case of this much more general 

probabilistic framework.  

The popularity and recognition of DA has primarily stemmed from its application to 

weather forecasting. Post-WWII, a rich scientific period ensued, during which advances in 

atmospheric general circulation models, weather satellites, and computational infrastructure, 

culminated in the development of the four dimensional view of DA (or, 4D-VAR – Sasaki 



 

[1970a, b, c]). Sasaki’s trilogy of papers in the Monthly Weather Review and his expansive 

approach was instrumental in demonstrating the value of DA to a broader scientific audience. 

Based on Sasaki’s and subsequently, the work of Lorenc [1986] and Le Dimet and Talagrand 

[1986], the main advantages of DA can be summarized as: 1) the inherent ability to bring 

disparate sources of information (i.e., models, various sources of data) to achieve the best 

analysis, with the analysis being ‘better’ than the individual pieces of information alone, 2) the 

ability to predict future analysis states, and 3) the ability to ambitiously match available 

computational resources, even with the inclusion of more physical processes in the model or 

more complex data streams. It is no surprise then, that over the last several decades, DA tools 

and application have become ubiquitous in almost all Earth Sciences disciplines (e.g. 

atmospheric chemistry and air quality, hydrology, oceanography etc.).  

More recently, within the last seven years, data assimilation has found increasing usage 

within the carbon science community (Rayner [2010]). Its application within carbon cycle 

research, however, has been in two separate contexts.  

In an assimilation context, DA has been applied to generate consistent 4-dimensional 

fields of atmospheric CO2 concentrations (e.g. Engelen et al. [2009]; Liu et al. [2012]) or to 

estimate parameters of biogeochemical models (e.g. Rayner et al. [2005]). In this sense, the aim 

of the carbon DA system is to integrate together atmospheric, terrestrial and oceanic data 

together, along with underlying dynamical constraints into a common analysis framework. 

Applications that make use of the assimilation framework are built on the premise of carbon 

cycle model development (e.g. Chatterjee et al. [in prep.]; Koffi et al. [2012]; Ziehn et al. 

[2011b]) and/or the predictive properties of the carbon system (e.g. Rayner et al. [2011]; Ziehn et 

al. [2011a]).  



 

Within carbon science, however, DA has gained more popularity in an inversion context 

for inference of CO2 sources and sinks using atmospheric CO2 measurements (e.g. Chevallier et 

al. [2005b]; Rödenbeck et al. [2005]; Peters et al. [2005]; Baker et al. [2006a]; Zupanski et al. 

[2007a]; Lokupitiya et al. [2008]; Feng et al. [2009]; Gerber and Joos [2010]; Miyazaki et al. 

[2011]; Kang et al. [2011]; Chatterjee et al. [in press]). This application is based on an inverse 

modeling paradigm, in which the basic premise is that given a set of atmospheric CO2 

observations, and using a model of atmospheric transport, it is possible to infer information on 

the distribution of CO2 fluxes at the surface of the Earth (e.g. Enting [2002]). Historically this 

problem has been solved in a “batch” mode, in which the inversion is performed in one step by 

solving a single system of linear equations relating the CO2 fluxes and the CO2 measurements 

(e.g. Ciais et al. [2010b]). The batch solution however requires an atmospheric transport model 

to be run either once per estimated flux region/period combination, or once per observation. This 

becomes prohibitively expensive as the number of CO2 measurements and/or the number of 

fluxes to solve for increase. DA methods are able to minimize the number of atmospheric 

transport model runs by virtue of their underlying numerical approximations and sidestep the 

computational challenges. Thus, application to the CO2 flux estimation problem simply intends 

to take advantage of the computational efficiency of a DA framework. 

In reality, within the inversion context the word ‘assimilation’ is loosely used since there 

is no explicit dynamical model against which the observations are assimilated. Or in purely DA 

terms, there is no forecast step to propagate observation information in time and space. The 

forecast step is a key component in DA, in which the dynamical model is used to provide a first 

guess of the state vector before observations are assimilated to update the state vector. By 

propagating the state vector between different assimilation time steps, the dynamical model 



 

directly contributes to the growth of the eigenvalue spectrum of the state covariance matrix in 

certain preferred directions and decay in others (Bengtsson et al. [2003]; Furrer and Bengtsson 

[2007]). For the CO2 flux estimation problem, however, there is no applicable dynamical model 

(e.g. Peters et al. [2005]; Miyazaki et al. [2011]; Chatterjee et al. [in press]) that can evolve the 

fluxes forward in time. As a consequence, changes to the background error structure are only 

possible via the information provided by the observations. Such a formulation not only loses out 

on the predictive capabilities associated with a DA framework, but likely results in the DA 

approaches performing sub-optimally, if there is a lack of measurements to constrain the 

problem.  

Irrespective of these drawbacks, it is well-accepted at this point that as carbon science 

becomes increasingly data rich, DA provides the optimal and most computationally efficient 

framework to process the high-density data for estimating CO2 sources and sinks. Extracting the 

maximum information content from the data to obtain realistic flux estimates and uncertainties 

will allow us to address a variety of science and policy questions that could not be answered 

before (e.g. Baker et al. [2006a]). For example, accurately resolving the surface fluxes at fine 

spatial and temporal scales will help in quantifying the relative importance of the driving 

processes at these levels. Again as noted by Dilling et al. [2003] working out the precise CO2 

fluxes to the level of individual countries may pave the way for improved carbon management 

policies and for the verification of international emission treaties. DA is envisaged to play a 

major role in carbon cycle science over the next decade and has been identified as an important 

modeling tool in several strategy reports (e.g. European Commission Report, ed. Schulze et al. 

[2009]; U.S. Climate Change Science Program [2009]; U.S. Carbon Cycle Science Plan, ed. 

Michalak et al. [2011]).  



 

Almost all of these strategy reports have also challenged the CO2-DA community to: a) 

make existing DA systems more reliable and accurate in their analysis estimates (for e.g., 

determining the magnitude and distribution of CO2 sources and sinks), and b) extend existing 

DA systems to incorporate models of major carbon cycle components and pursue multi-species 

carbon data assimilation (for e.g., transition from an inversion to an assimilation framework). 

Tackling the second issue is technically more difficult and has little scientific value until and 

unless the first issue is completely addressed. But this also raises a different science question, 

that in spite of CO2-DA being in vogue for nearly a decade, why are the analyses (e.g. flux) 

estimates from DA not deemed reliable or accurate? While there is no single answer to this 

question, several reasons can be identified as to why DA has failed to provide robust analyses for 

carbon science applications.  

First and foremost, most of the DA tools that have been applied for CO2 applications 

have been borrowed from the numerical weather prediction (NWP) community. NWP-DA is 

designed to work at short time scales due to the chaotic nature of the underlying process. 

Conversely CO2 is a long-lived gas that gets well-mixed in the atmosphere at the scale of months 

(Bruhwiler et al. [2005]). Different operational time-scales means that DA tools borrowed from 

NWP need to be modified to suit the features of the carbon cycle. Additionally, as stated earlier, 

specifically for CO2-DA inversions there is no explicit dynamical model that evolves the 

estimated fluxes forward in time. The lack of a dynamical model represents a valuable loss of 

information to the DA system. For the CO2 inverse problem, the absence of such a model 

coupled with the highly under-determined nature of the estimation problem (i.e., sparse 

observation datasets) likely hampers the performance of DA approaches, especially when the 

analysis is conducted at fine spatial and temporal scales. 



 

Secondly, DA aims to optimally combine the information from the observations as well 

as some background based on their respective uncertainty estimates. Due to the under-

constrained and ill-conditioned nature of the CO2 flux estimation problem, the background plays 

a significant role in determining the final analysis. Ill-conditioned in this respect means that 

several different solutions (and not one unique solution) exist that are equally consistent with the 

available measurement data (e.g. Tarantola [2005]). In an ill-conditioned problem, mass balance 

constraints imply that estimates recovered in regions under-constrained by the measurements are 

likely to be unrealistic and compensating for limited information in better-constrained regions. 

Therefore, some sort of regularization technique is needed to stabilize the solution to these 

inverse problems that are then provided by the background information. Currently, all existing 

carbon data assimilation systems aim to provide this background information by specifying an 

initial estimate of CO2 fluxes, which are obtained either from biospheric models (for e.g., 

Carnegie-Ames-Stanford Approach (CASA) model, Randerson et al. [1997]) and/or inventories 

(e.g. Brenkert [1998]; Olivier and Berdowski [2001]; Takahashi et al. [2002]). These estimates 

are often termed as “bottom-up”, as these are scaled up from a process-based understanding of 

CO2 surface exchange at plot-level or laboratory scales. Bottom-up estimates depend heavily on 

simplifying assumptions and have been shown to differ considerably in their estimates of fluxes 

over large regions (e.g. Huntzinger et al. [2012]). Given that a posteriori flux estimates represent 

a compromise between the information contained in the measurements versus the prior fluxes, 

the posterior flux estimates in under-constrained regions can strongly reflect the characteristics 

of the specific bottom-up estimate used in the inversion (e.g. Peters et al. [2007; 2010]). As a 

consequence, the final flux estimate can no longer be considered as an independent validation 

tool for process-based understanding of the carbon cycle. 



 

Thirdly, almost all of the DA methods have some form of underlying numerical 

approximations that make them computationally tractable. The analysis is based on making 

several compromises between the computational cost, statistical optimality and physical realism 

of the assimilation problem. The ill-conditioned nature of the CO2 flux estimation problem, 

however, may make the errors due to the numerical approximation grow. None of the CO2-DA 

studies to date have attempted to test the impact of these numerical approximations. It is still not 

clear whether these numerically approximate methods can serve as a suitable long-term 

replacement of the batch technique in producing robust estimates of CO2 sources and sinks.  

The above-described shortcomings have directly contributed to the uncertainty 

surrounding the applicability and accuracy of DA approaches for atmospheric CO2 applications. 

These shortcomings can be restated in the form of three specific research questions that need to 

be addressed to increase the credibility of the CO2-DA systems:  

(Q1) What are the modifications necessary to adapt existing DA methods for carbon science?  

(Q2) What are the errors incurred due to the numerical approximations in the DA methods, 

and how do these impact the analysis estimates, and the associated uncertainties? 

(Q3) Is there a way of providing the background information in a data assimilation system that 

would make the posterior analysis less reliant on a single bottom-up estimate? 

The core of this dissertation revolves around finding the answers to these questions. As 

illustrated in Figure 1.1, each of the four objectives investigates one (or more) of these questions 

in detail. These specific objectives and their relevance to the questions outlined in (Q1), (Q2) and 

(Q3) are discussed next.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – A schematic showing the correspondence between the three research questions outlined in 

(Q1) to (Q3) and the four dissertation objectives. Dark green indicates that an objective primarily 

answers the specific research question. Light green indicates that the analysis conducted as part of the 

objective helps in answering a secondary research question. In addition, going from Objective 2 to 

Objective 4, the complexity of the inverse problem that will be solved with DA will increase. 

 

Objective 1: Characterize the background error statistics for atmospheric CO2 data 

assimilation 

The first objective (Chapter 4; Chatterjee et al. [in prep.]) aims to develop a 

model of a realistic background error statistics for an atmospheric CO2 data assimilation 

system. For atmospheric CO2 data assimilation, the errors in the background are not only 

impacted by the uncertainties in the CO2 transport but also by the spatial and temporal 

variability of the carbon exchange at the Earth surface. The background errors cannot be 

prescribed via traditional forecast-based methods used within the NWP community, as 



 

these fail to account for the uncertainties in the carbon emissions and uptake, resulting in 

an overall underestimation of the errors.  

As part of this objective a new approach is proposed whereby the differences 

between two CO2 model concentrations are used as a proxy for the statistics of the 

background errors. These error statistics are subsequently used to assimilate observations 

from the Greenhouse gases Observing SATellite (GOSAT) into an operational 

atmospheric 4D-VAR system implemented at the European Centre for Medium Range 

Weather Forecasts (ECMWF). The ECMWF system is designed akin to a NWP-DA 

setup (Engelen et al. [2009]), in which CO2 mixing ratios are assimilated along with 

relevant meteorological variables to obtain consistent estimates of 4-dimensional 

atmospheric CO2 concentrations. The resultant 4D CO2 fields are evaluated against 

independent observations of CO2 from aircraft profiles and from the Total Column 

Carbon Observing Network (TCCON) to gauge the impact of the background error 

statistics on the 4D-VAR analysis.  

In essence, this objective answers (Q1) from a true assimilation perspective and 

demonstrates the need to adapt existing DA methods to carbon science applications. 

More generally, the developed approach for parameterizing the background error 

statistics is also relevant for other trace gas assimilation applications, especially ones 

where the background errors are influenced by both atmospheric transport and the 

emission patterns. 

 



 

Objective 2: Evaluate data assimilations systems against a batch setup for a CO2 flux 

estimation problem 

The second objective (Chapter 5, Chatterjee and Michalak [in prep.]) explores the 

impact of the numerical data assimilation framework on the accuracy and precision of 

inversion estimates. A comparison of DA approaches under the same inversion 

conditions, or knowledge of their advantages/disadvantages for the CO2 flux estimation 

problem is lacking. Similarly, the applicability of DA and the equivalence of their 

estimates to those from batch inversion methods have not been demonstrated either.  

Using a simple 1-dimensional advection-diffusion inverse problem, estimates 

from two advanced DA (an ensemble-filter and a variational) methods are compared and 

assessed against the estimates from a batch inverse modeling scheme. Experiments are 

specifically designed to identify the impact of the observations and/or the choices of the 

DA parameters (i.e., ensemble size, number of descent iterations) in order to isolate the 

degradation relative to the batch solution. No dynamical model is specified for the DA 

methods to keep the problem setup analogous to a real CO2 flux estimation problem. 

Results of the experiments are used to discuss the advantages and disadvantages of the 

two DA methods relative to the batch as well as implications for solving a real CO2 flux 

estimation problem.  

This objective addresses (Q2) and highlights some of the critical aspects in the 

implementation of DA for the CO2 flux estimation problem. More generally, the 

conclusions presented in this study are aimed to provide: (a) a guide to the CO2 inverse 



 

community, for deciding which DA approach to invest in, and (b) a platform for future 

DA inter-comparison efforts using real CO2 datasets. 

Objective 3: Development of a geostatistical ensemble square root filter for estimating fine 

scale CO2 fluxes  

The third objective (Chapter 6, Chatterjee et al. [in press]) is to adapt existing 

data assimilation methods to a geostatistical inverse modeling framework. This study 

introduces a Geostatistical Ensemble Square Root Filter (GEnSRF) as a prototypical 

ensemble filter designed for high-resolution flux estimation applications. Within the 

geostatistical inverse modeling (GIM; Michalak et al. [2004]) framework, the prior 

estimate of the flux from biospheric models and inventories is replaced by a linear 

combination of auxiliary variables related to CO2 flux processes. The proposed filter, 

thus, eliminates reliance on a particular biospheric model or inventory by directly 

leveraging the information content from the observations.  

GEnSRF is applied to a synthetic data study over North America, in which CO2 

surface fluxes are estimated at a high spatial (1° × 1°) and temporal (3-hourly) resolution. 

Subsequently, the ensemble performance, both in terms of estimates and the estimation 

uncertainties, is benchmarked against a GIM setup. This allows isolation and 

quantification of the degradation in the estimates due to the numerical approximations 

and parameter choices in the ensemble filter. Advanced techniques, such as adaptive 

covariance inflation (Anderson [2009]) and localization (e.g. Houtekamer and Mitchell 

[2001]) are also implemented within GEnSRF to make it a state-of-the-art filter. Multiple 

sensitivity tests are conducted to identify the critical factors in stabilizing the ensemble 



 

filter and develop guidelines for tuning the ensemble performance, specifically for CO2 

applications.  

Specifically this objective focuses on (Q1) and (Q3) and develops a modified 

ensemble filter framework that can leverage the information content of large and complex 

data streams in the design of flux estimation inference problems. Additionally, this 

objective also contributes to (Q2) and reinforces the conclusions from Objective 2 as it 

provides insights into the behavior of an ensemble DA approach. More generally, the 

results point to key differences between the applicability of ensemble approaches to 

carbon cycle science relative to meteorological applications, where these tools were 

originally developed. 

Objective 4: Implement the geostatistical ensemble square root filter for estimating surface 

fluxes using satellite measurements of CO2 concentrations 

The final objective (Chapter 7) assesses the utility of global CO2 distributions 

from the Greenhouse gases Observing SATellite “IBUKI” (GOSAT; Kuze et al. [2009]; 

Yokota et al. [2009]) towards the estimation of fine-scale CO2 surface fluxes. The 

GOSAT instrument is the first operational space-based instrument designed specifically 

for measuring the dry air mole fractions of CO2 (XCO2). Yet robust results with 

simulated GOSAT XCO2 retrievals have been obtained only at large spatial scales of 

subcontinents or oceanic basins (e.g. Maksyutov et al. [2008], Kadygrov et al. [2009]; 

Chevallier et al. [2009b]; Hungershoefer et al. [2010]). As a consequence it is unclear: 

(a) whether GOSAT retrievals can constrain fine-scale fluxes with reasonable precision 

and accuracy, and (b) whether the dense but low precision GOSAT data really provides 



 

additional information with respect to the high-precision but sparse observations from the 

surface monitoring network. 

Observations retrieved from the GOSAT and CO2 measurements from surface 

flask sites are assimilated using GEnSRF to estimate high-resolution (spatial: 1 × 1.25; 

temporal: daily) global surface fluxes. GEnSRF is ideal for this application as it is 

capable of ingesting the high-density data and estimating grid-scale sources and sinks of 

CO2 independent of any a priori flux estimates from biospheric model and inventories. 

The purely data-driven flux estimates provide unbiased quantification of the 

observational influence on the CO2 flux estimates. Examining the analysis sensitivity 

with respect to the observations (Cardinali et al. [2004]) provides quantitative estimates 

of the constraints provided by the different observational datasets. Comparison of the 

resultant flux estimates with a bottom-up estimate is used to assess the source-sink 

information gleaned out from the GOSAT XCO2 retrievals by GEnSRF. 

While this objective primarily addresses (Q3) in providing flux estimates that 

eliminate reliance on a particular bottom-up model and/or inventory, it partially 

contributes to (Q1) in demonstrating a real data application of GEnSRF. The direct 

scientific impact of this objective, however, is not only the high-precision data driven 

flux estimates but also information about the constraints that GOSAT observations 

provide regarding global surface fluxes. As the GOSAT XCO2 retrievals mature, the 

data-driven GEnSRF flux estimates is expected to provide valuable insights into the 

processes driving the net uptake and release of carbon in space and time.  

 



 

The rest of the dissertation is organized in the following manner. Chapter 2 reviews the 

current state of carbon cycle science and the application of DA for atmospheric CO2. Chapter 3 

is intended to be a brief mathematical primer on inverse modeling and data assimilation 

approaches. Chapters 4 through 7 outline the specific studies framed around the four objectives 

discussed earlier. Chapter 8 concludes the dissertation and provides several research 

recommendations for further improving CO2-DA applications.  

 



 

Chapter 2 

The Carbon Cycle –  

Processes and Measurement Tools 

2.1 INTRODUCTION 

In the last century, humans have strived towards a better understanding of the existence 

of a “greenhouse” effect and the significance of the level of rising atmospheric CO2 

concentrations on the Earth’s surface temperature. Although the potential alteration of the 

climate through anthropogenic activities was identified clearly by the middle of the twentieth 

century (e.g. Fourier [1824]; Tyndall [1861]; Arrhenius [1896]; Chamberlin [1897]; Callendar 

[1938]; Revelle and Suess [1957]), only over the last two decades have humans widely 

recognized the greenhouse effect and begun to respond collectively (GCP [2009]).  

The IPCC Climate Change Synthesis Report (IPCC [2007]) identified CO2 as the most 

important anthropogenic greenhouse gas. Since 1990, CO2 alone has been responsible for 

approximately 80% of the change in the Earth’s radiation balance amongst all major greenhouse 

gases (Hofmann et al. [2006]). Atmospheric CO2  concentrations have increased from 280 ppm 

in pre-industrial times (circa 1750) to 392 ppm (~40% above pre-industrial) in 2011, with a mean 

growth rate of about 2.07 ( 0.09) ppm per year (http://www.esrl.noaa.gov/gmd/ccgg/trends/) 

within the last decade. Given the current level of increase, it is anticipated that a doubling of CO2 



 

from pre-industrial levels will occur by the middle of the century. This is expected to lead to an 

average global increase of temperature of 2.0-4.5 C via a positive climate-carbon cycle 

feedback (e.g. Friedlingstein and Prentice [2010]; Friedlingstein et al. [2006]; Cox et al. 

[2000]). These predictions illustrate the importance, but do not necessarily show the multitude, 

of carbon-climate feedbacks possible (e.g. Berthelot et al. [2005]; Matthews et al. [2007]; 

Heimann and Reichstein [2008]; Gloor et al. [2010]; Roy et al. [2011]; Bellard et al. [2012]) or 

the uncertainty in the understanding of thresholds and tipping points in the Earth’s carbon cycle 

(U.S. Carbon Cycle Science Plan, ed. Michalak et al. [2011]).  

This uncertainty in the carbon-climate feedback primarily stems from a fundamental lack 

of understanding of the processes governing the carbon cycle. Current inaccurate assessments of 

the ‘size, spatial distribution, uncertainty and likelihood of disturbance of carbon pools’ 

(Canadell et al. [2010]) also contributes to this uncertainty. Based on a survey of strategy reports 

aiming to synthesize and assess the role of the carbon cycle and its responses to human activities 

(e.g. U.S. Carbon Cycle Science Plan, ed. Michalak et al. [2011]; European Commission Report, 

ed. Schulze et al. [2009]; State of the Carbon Cycle Report, ed. King et al. [2007]), three key 

questions have been identified by the carbon science community, which need to be addressed: 

C1. What are the spatial and temporal patterns of carbon fluxes at large scales (continents, 

ocean basins)? How do regional and sub-regional patterns in carbon fluxes interact with 

the global-scale carbon cycle? 

C2. What are the multiple mechanisms responsible for current aquatic and terrestrial carbon 

sinks? What are the relative contributions of these mechanisms, and their interactions? 

C3. How will natural dynamics of the carbon cycle and human activities feedback to 

influence future atmospheric CO2 concentrations? 



 

These science questions specifically aim to address the interactions between different carbon 

pools and the processes controlling their interactions. Process-level understanding will increase 

the ability to develop realistic scenarios of the carbon cycle that can be used to assess and 

anticipate future changes in carbon fluxes and atmospheric CO2 concentrations. This, however, 

first requires an accurate diagnosis of global and regional carbon sources and sinks with realistic 

uncertainties.  

Significant progress has already been made in identifying the major carbon pools and the 

flow between them at global scales. It is well-established that in the absence of anthropogenic 

emissions, the carbon exchange between the earth surface and the atmosphere are approximately 

balanced over multi-decadal time scales (Denman et al. [2007]). Both the land biosphere and the 

ocean continuously exchange CO2 with the atmosphere through a variety of processes such as 

photosynthesis, respiration, air-sea gas transfer etc. Anthropogenic activities, especially fossil-

fuel emissions and changes in land use, perturb the balance as these represent a net source of 

CO2 to the atmosphere (Figure 2.1).  

At global scales, the overall magnitude of these sources and sinks are relatively well-

known. For example, the CO2 community has reached an agreement that the Northern lands are 

responsible for the largest portion of the net terrestrial carbon sink (e.g. Stephens et al. [2007]). 

The strength of the net terrestrial sink is variable from one year to the next because the carbon 

balance of terrestrial ecosystems strongly responds to climate variability (e.g. Bousquet et al. 

[2000]; Rödenbeck et al. [2003a]; Canadell et al. [2004]) such as precipitation, surface 

temperature, radiation (e.g. Le Quéré et al. [2009]), and other inter-annual variability resulting 

from fires, land use changes etc. The average global terrestrial net uptake for the past three 

decades have been updated continuously as new methods and carbon cycle models have become  



 

 

Figure 2.1- This figure adapted from Raupach and Canadell [2010] show the major fluxes in the global 

carbon cycle over (roughly) the Anthropocene. The anthropogenic CO2 emissions, comprising of fossil 

fuel emissions and deforestation, are shown as positive fluxes into the atmosphere. Conversely, the 

accumulation of carbon in three major components: the atmosphere, the terrestrial biosphere and the 

ocean are shown as negative fluxes. The numbers in the right panel give the 2000-2008 average estimates 

from Le Quéré et al. [2009].  

 

available (1980s: 0.2 PgC y
−1

, Houghton et al. [2001]; ~0.27 PgC yr
−1

, Sarmiento et al. [2010]; 

1990s: 1.2 PgC y
−1

, Houghton et al. [2001]; 2.6±0.7 PgC yr
−1

, Canadell et al. [2007]; 1.15 PgC 

yr
−1

, Sarmiento et al. [2010]; 2008: 4.7±1.2 Pg C yr
−1

, LeQuere et al. [2009]) but overall 

remained consistent amongst different studies. Similarly in terms of the ocean budget, the 

agreement between different sets of estimates is closer than the land component. Gruber et al. 

[2009] provided two estimates of the net oceanic uptake of CO2 for 1995 – 2002; the first based 

on climatological data (1.9  0.6 PgC y
−1

), and the second based on an inversion of interior 

ocean carbon observations (2.2  0.3 PgC y
−1

). Manning and Keeling [2006] used a novel 

approach, in which they examined the decline in atmospheric O2/N2 ratios and suggested an 



 

oceanic uptake rate of 1.9  0.6 PgC y
−1 

for 1990 to 2000 and 2.2  0.6 PgC y
−1 

for 1993 to 2003, 

both of which are remarkably close to the estimates provided by Gruber et al. [2009].  

Considerable uncertainties remain at regional scale budgets, however, especially over 

‘dynamic’ regions such as the tropics and the boreal zones on land and the high latitude and 

Southern Ocean regions (U. S. Carbon Cycle Science Plan, ed. Michalak et al. [2011]). Large 

uncertainties in the budget estimates at regional scales have hindered attempts to better 

understand the processes controlling the carbon cycle at local to regional scales and/or provide 

comprehensive verification of inventory estimates (e.g. Canadell et al. [2010]). Well-established 

regional budgets and their uncertainties not only help to attribute fluxes to underlying processes 

and drivers, but also to use the regional flux estimates to constrain the global budget. Reducing 

the uncertainty in regional budgets is also necessary for monitoring and verifying emissions at 

the scale of individual countries (e.g. Dilling [2007]; U. S. Carbon Cycle Science Plan, ed. 

Michalak et al. [2011]). Thus, a large amount of effort within the CO2 research community is 

dedicated to better understanding the carbon cycle dynamics and their associated uncertainty at 

regional scales.  

This dissertation is primarily driven by the need to identify CO2 sources and sinks at 

regional (and/or finer) scales, as well as the need to further reduce uncertainties on existing 

carbon budget estimates. The methods developed as part of this dissertation are aimed at 

advancing specific tools used by the CO2 research community to infer the exchange and 

magnitude of surface fluxes amongst different carbon pools. Against the backdrop of the key 

carbon science questions outlined earlier in (C1) to (C3), the contribution of this dissertation is 

an important cog in our efforts to reconcile the carbon sources and sinks with atmospheric CO2 

observations.  



 

The rest of the chapter is organized as follows. Section 2.2 provides a high-level 

summary of the two primary methods (‘bottom-up’ and ‘top-down’) that are currently in vogue 

for obtaining carbon budgets. Section 2.3 reviews existing studies on the top-down (or 

atmospheric inverse modeling) approach, while Section 2.4 reviews the recent shift towards 

advanced data assimilation (DA) approaches for obtaining CO2 flux estimates. Finally, Section 

2.5 summarizes other DA applications for CO2 science.   

2.2 APPROACHES TO EVALUATE CARBON BUDGETS 

 

Figure 2.2- Schematic showing the association between different techniques for obtaining estimates of 

surface carbon flux estimates. 

 

Knowledge of carbon fluxes and its magnitude can be inferred via two main approaches 

as shown in Figure 2.2 - "bottom-up" (based on measurements in the land or ocean 

compartments) and "top-down" (based on measurements in the atmosphere).  

Bottom-up approaches are based on a process-based understanding of CO2 surface 

exchange and can be broadly divided into three different methods - flux measurements, inventory 

datasets, and process models. The first method, direct measurement of carbon flux, is well 

developed over land for measurements over small spatial scales (for example, up to 1 km
2
) using 



 

the eddy correlation method (e.g. Wofsy et al. [1993]). Although eddy covariance measurements 

of carbon dioxide exchange between the biosphere and the atmosphere are now collected at more 

than 400 active sites (http://fluxnet.ornl.gov/site_status ), the limited footprint of the flux tower 

network prevented accurate spatial scaling due to heterogeneity in land cover (e.g. Raupach and 

Finnigan [1995]; Baldocchi [2003]; Friend et al. [2007]; Baldocchi [2008]). Recent studies (e.g. 

Jung et al. [2011]; Xiao et al. [2012]), however, have demonstrated that novel machine learning 

techniques may be used to successfully upscale site-level data to global scales. Still, known 

issues with the eddy covariance technique, especially during night-time and under lateral flow 

conditions (e.g. Saleska et al. [2003]; Alfieri et al. [2011]) introduce large uncertainties in the 

measurements. Estimation of the magnitude of these uncertainties (e.g. Finkelstein and Sims 

[2001]; Loescher et al. [2006]; Billesbach [2011]), the variation in these uncertainties across 

different sites and regions (e.g. Hollinger and Richardson [2005]; Richardson et al. [2006]; 

Luyssaert et al. [2009]; He et al. [2010]), and/or their impact on inverse estimation of ecosystem 

model parameters (e.g. Lasslop et al. [2008]) remain active areas of research. Similar to land, 

over the oceans eddy flux measurements are possible (e.g. Wanninkhof et al. [2009]) but 

estimates based on measurements of surface water CO2 partial pressure are more widely used 

(e.g. Takahashi et al. [2002]).  

The second bottom-up method is inventory datasets, which are based on a variety of 

observations of specific flux components (i.e., gross productivity, respiration, land use change 

and disturbance, fossil fuel combustion, ocean fluxes etc.). The observations for each of the flux 

components range from measurement of trees on land (e.g. Birdsey [2004]; McKinley et al.  

[2011]) and land-use change (e.g. Houghton [2003]; Houghton [2010]), fossil fuel emissions 

from fuel sales, air pollution measurements (e.g. Gurney et al. [2009]) or night-time lights (e.g. 



 

Oda and Makyutov [2011]), carbon in ocean-water samples (e.g. Takahashi et al. [2002]; Sabine 

et al. [2004]) etc. Even though inventory datasets can provide useful constraints on changes in 

the size of carbon pools, their utility is limited for quantifying trends longer than the last couple 

of decades. For example, the most complete forest inventories exist only since 1990 for northern 

mid-latitudes, where several plots have been systematically measured. Inventory data are 

available for tropical forests (e.g. Houghton [2005; 2007]; Phillips et al. [2009]) as well, though 

to a much lesser extent than for the northern temperate zones. Recent improvements in 

monitoring the above ground biomass via satellite observations (e.g. Goetz et al. [2009]), and 

model simulations (e.g. Wulder et al. [2008]) may allow more long-term estimates (e.g. Pan et 

al. [2011]), in the near future.  

Finally, process-based models build from an understanding of the underlying processes of 

atmosphere/ocean or atmosphere/ecosystem carbon exchange to make estimates over scales of 

space and time that are relevant to the global carbon cycle. While initial studies (e.g. Potter et al. 

[1993]; Denning et al. [1996a]; Ruimy et al. [1996]) presented simple frameworks, these have 

been significantly refined and  a variety of sophisticated models are now available, all of which 

differ substantially in the data used as constraints and/or the processes simulated (for example, 

see Huntzinger et al. [2012], Keenan et al. [2012] for discussions on a range of terrestrial 

biosphere models, and Matsumoto et al. [2004], Gruber et al. [2009] for discussions on a range 

of ocean models). The biggest advantage of the process-based models are that they allow for an 

easy understanding of the processes driving the carbon cycle (e.g. Bondeau et al. [2007]; Piao et 

al. [2009]; Randerson et al. [2009]). Yet the large variations across models estimates for both 

short and long-term projections (e.g. Heimann et al. [1998]; Cramer et al. [2001]; Sitch et al. 

[2008]; Schwalm et al. [2010]; Dietze et al. [2011]), imperfect parameterizations of the processes 



 

represented in the models (e.g. Braswell et al. [2005]; Xu et al. [2006]; Williams et al. [2009]; 

King et al. [2011]; Medvigy and Moorcroft [2012]), and/or missing processes at large scales (e.g. 

Moorcroft [2006]; Beer et al. [2010]) cast doubt on the current capabilities of these models to 

provide robust regional budgets.  

Juxtaposed to the bottom-up approaches, the basic premise of the top-down or inverse 

modeling approach is that - given a set of atmospheric CO2 observations, and using a model of 

atmospheric transport, it is possible to infer information on the distribution of CO2 sources and 

sinks at the surface of the Earth (e.g. Enting [2002]). In principle, given a perfect transport model 

together with an unlimited and perfectly distributed set of atmospheric CO2 observations, the 

inverse modeling approach should provide CO2 flux estimates at any desired spatial and 

temporal scale. But because both the transport model and the observational networks are 

imperfect, a multitude of different surface source/sink configurations become compatible with 

the atmospheric data. As a consequence, inverse modeling approaches for studying the carbon 

cycle vary significantly (e.g. Ciais et al. [2010b]) in the time scale of the analysis, the 

spatiotemporal resolution of the inferred fluxes, the inverse modeling framework used, and other 

setup choices. Since in this dissertation the main focus will be on the inverse modeling 

framework, the literature is reviewed in more detail in the next section (Section 2.3), while the 

mathematical framework is outlined in Chapter 3.  

A long-term interest within the CO2 community has been to reconcile the estimates from 

bottom-up and top-down approaches (e.g. Canadell et al. [2000]). Although the top-down 

approach ensures that the estimated fluxes are consistent with the atmospheric data, it does not 

take as much advantage of scientific understanding of plant physiology, ocean dynamics and 

other biogeochemical processes associated with the carbon cycle as is possible by the bottom-up 



 

approaches. This may be disadvantageous, as it loses out on these sources of information and 

provides limited insights into the processes controlling the variability in the fluxes. The 

advantage, however, is that the top-down estimates have the potential to validate inventories (e.g. 

Levin and Karstens [2007]; Desai et al. [2011]; Hayes et al. [2012]), and/or identify errors in the 

process-based model formulations (e.g. Peylin et al. [2005]; Desai et al. [2010]). In recent years, 

a larger number of studies have aimed to reconcile the estimates from these two different 

approaches (e.g. Baker et al. [2008]; Wang et al. [2009]; Ciais et al. [2010a]; Turner et al. 

[2011]; Gourdji et al. [2012]), and coordinated regional synthesis activities are being pursued 

(for example, the North American Carbon Program - http://nacp.ornl.gov/int_synthesis.shtml, 

plus the REgional Carbon Cycle Assessment and Processes - 

http://www.globalcarbonproject.org/reccap/overview.htm). Initial results from these activities 

have already demonstrated the large spread that exists in the bottom-up and the top-down model 

estimates of CO2 flux at both continental and sub-continental scales, due to differing model 

setups and input data. The soon to be completed RECCAP synthesis (Canadell et al. [2011]; 

Patra et al. [2012]) is expected to finally provide a better consistency check and provide new 

assessment of carbon fluxes and their drivers over different regions. As noted by Canadell et al. 

[2010], an ability to reconcile the CO2 flux estimates from these two approaches would lead to 

not only minimizing the uncertainty within each approach but also increasing confidence in 

results, especially at intermediate regional scales (e.g. individual states, provinces, or countries). 

Providing independent sets of top-down flux estimates, however, is a significant challenge and 

will be an important motivating factor behind the methods developed and discussed later in this 

dissertation (Chapters 6 and 7).  

 



 

2.3 ‘TOP-DOWN’ APPROACHES TO STUDYING THE CARBON CYCLE 

The approach most commonly adopted in atmospheric inverse modeling of CO2 sources 

and sinks is based on Bayesian inverse modeling (see Chapter 3 - Section 3.3.1 for the 

mathematical framework). As outlined in the last section, the variations in the atmospheric CO2 

observations are traced back to the most likely configuration of source-sink patterns with the 

help of an atmospheric transport model.  

Typically, atmospheric CO2 observations are based on in situ measurements from a 

network of surface sites, ship observations and aircraft profiles, for example, those operated by 

the National Oceanic and Atmospheric Administration (NOAA – 

http://www.esrl.noaa.gov/gmd/dv/site/site_table2.html; Tans and Conway [2005]), or the Scripps 

Institute of Oceanography (GLOBALVIEW-CO2 [2008]). Historically, CO2 surface measurement 

sites have been deliberately placed in regions remote from terrestrial sources and sinks such as 

mountain tops and remote marine locations (e.g. Fan et al. [1998]). These sites are less exposed 

to anthropogenic and terrestrial influence and highly representative of the background CO2 

conditions. Continental sites do a better job of addressing the role of the local and regional 

influences on the atmospheric carbon cycle (e.g. Gloor et al. [2001]). Continental CO2 records, 

especially from tall towers (e.g. Bakwin et al. [1998]) are available at hourly resolution and 

contain high-frequency information regarding the interaction between the terrestrial biosphere 

and the atmosphere at diurnal and synoptic (~days) time scales (e.g. Geels et al. [2004]). 

Although the surface measurements have high precision, they do have limited spatial coverage 

and are confined to the planetary boundary layer. Of late, the availability of aircraft 

measurements from targeted campaigns have allowed reasonable characterization of vertical 

gradients of atmospheric CO2 (e.g. Stephens et al. [2007]; Machida et al. [2008]; Niwa et al. 



 

[2011]; Sawa et al. [2012]). The vertical gradients are not only an indicator of the processes 

controlling the carbon exchange near the surface (i.e., under the planetary boundary layer) but 

also useful in evaluating model simulations of vertical and seasonal variations of atmospheric 

CO2 (e.g. Stephens et al. [2007]; Parazoo et al. [2008]; Miyazaki et al. [2009]). Regular aircraft 

measurements, however, are limited to a few sites that remain unequally distributed around the 

globe (e.g. Niwa et al. [2012]). 

The finite number of measurements available, coupled with atmospheric mixing, makes 

the CO2 inverse problem both underdetermined (i.e., the total number of fluxes to be estimated is 

much greater than the number of observations available) and ill-posed (i.e., several different 

solutions exist that are equally consistent with the available measurements). To address the 

under-determined nature of the problem, historically, synthesis Bayesian inversions were 

constructed to estimate fluxes for a small number of pre-defined continental regions (e.g. 

Bousquet et al. [2000]; Gurney et al. [2003]; Rödenbeck et al. [2003b]; Baker et al. [2006b]; 

Nassar et al. [2011]). Specifying the spatial patterns of CO2 flux within such large regions leads 

to aggregation errors (e.g. Kaminski et al. [2001]), whereby the atmospheric measurements are 

sensitive to variability in the fluxes at finer scales than the scale at which the inversion is allowed 

to adjust the fluxes. Inference of fluxes at large regions are also not amenable to capturing 

vegetation and climate variability at sub-regional scales, and thus provide little information on 

the mechanisms driving the underlying carbon cycle.  

Newer studies have resolved this shortcoming by estimating fluxes at finer scales (i.e., 

'biome-scale', 'grid-scale'). In some cases, like the ongoing Carbon Tracker project (Peters et al. 

[2007; 2010]), a set of scaling factors is used to adjust fluxes within a biome in order to match 

the observations, while in others, fine-scale (e.g. 8 km, 50 km etc.) fluxes have even been 



 

estimated (e.g. Gerbig et al. [2006]; Lauvaux et al. [2009]; Carouge et al. [2010a]). Solving at 

such fine-scales, however, increases the computational challenge as a result of which the latter 

set of studies typically focus on specific regions within the continental United States or Europe. 

In between these two extremes lie the grid-scale inversions at 1 by 1, 3.75° by 5°, 5° by 5°, or 

8° by 10° etc. Often termed as ‘regional scale’ inversions, a suite of atmospheric inverse 

modeling studies using synthetic or real atmospheric CO2 observations have been presented over 

the last decade (e.g., Kaminski et al. [1999]; Gerbig et al. [2003a; 2003b]; Rödenbeck et al. 

[2003a]; Michalak et al. [2004]; Peylin et al. [2005]; Matross et al. [2006]; Mueller et al. [2008]; 

Gourdji et al. [2010]; Rivier et al. [2010]; Schuh et al. [2010]; Goeckede et al. [2010]; Gourdji et 

al. [2012]), which have ranged from global to domain-specific application.  

Alongside the under-determined nature of the problem, an important consideration is 

handling the ill-posed nature of the inverse problem. In order to extract a meaningful unique 

solution, additional information on the sources and sinks has to be introduced into the 

calculation. Examples of this additional information that are relevant to the CO2 inversion 

problem include maps of air-sea fluxes from observations or ocean models (e.g. Takahashi et al. 

[2002]), patterns of terrestrial CO2 exchanges inferred by terrestrial models (e.g. Randerson et al. 

[1997]; Krinner et al. [2005]), inventories of fossil fuel emissions (e.g. Brenkert [1998]; Olivier 

and Berdowski [2001]; Andres et al. [2012]), or combination of other bottom-up estimate from 

biospheric/oceanic models and inventories.  

One of the reported issues with specifying a priori bottom-up flux estimates is that in the 

Bayesian framework, prior estimates will generally be recovered in areas under-sampled by the 

atmospheric network. As such, any assumptions associated with the biospheric models and 

inventories will be aliased onto the final flux estimates. Also, if the prior uncertainties are not 



 

correctly specified, it can lead to spurious a posteriori flux estimates and/ or under-estimated a 

posteriori uncertainties (e.g. Engelen et al. [2002]; Michalak et al. [2005]).  

These issues have prompted studies that relax some of the dependence on prior 

information from bottom-up estimates. The geostatistical inverse modeling approach (see 

Chapter 3 -Section 3.3.2 for the mathematical framework) to atmospheric CO2 flux estimation 

(e.g. Michalak et al. [2004]; Mueller et al. [2008]; Gourdji et al. [2012]) is an example of one 

such approach. The underlying principle in the geostatistical approach is to specify a model of 

the trend, which can be a simple set of mean fluxes in space and time or consist of auxiliary 

environmental variables related to carbon flux. These auxiliary variables can range from 

vegetative indices such as Leaf Area index, Enhanced Vegetation index, Fraction of 

Photosynthetically Active Radiation, and/or indices associated with biomass burning, land use 

change and fossil fuel emissions (e.g. Gourdji et al. [2008; 2012]). The coefficients relating these 

auxiliary variables to the final fluxes are estimated as part of the inversion using the atmospheric 

data as a constraint. The geostatistical approach is thus more data-driven than its Bayesian 

counterpart and aims to leverage the information content of atmospheric observations more 

strongly. 

Several other factors (for example - the atmospheric transport model, the choice of prior 

flux estimates for the Bayesian inverse modeling approaches, the parameterization of the 

covariance matrices, specification of boundary conditions for regional inversions etc.) are also 

known to control the quality of the flux estimates. An in-depth discussion on each of these topics 

is beyond the scope of this dissertation, and the reader is referred to Ciais et al. [2010b] for a 

more comprehensive summary on these issues. In spite of the different parameterization or setup 

choices amongst the different inversion studies, almost all of these have unanimously agreed that 



 

the quality of the flux estimates is severely constrained by the sparse distribution of the in situ 

atmospheric CO2 measurement network.  

A promising opportunity for overcoming the sparse coverage of in situ measurements is 

satellite observations of atmospheric CO2 concentrations. This option has been explored by the 

CO2 community for over a decade now (e.g. Rayner and O’Brien [2001]). Missions currently 

operating and planned by international space agencies collect a broad range of data that aim to 

provide space-based measurements of CO2 with dense coverage in space and time. These include 

passive sensors such as the Atmospheric Infrared Sounder (AIRS; Chahine et al. [2006]), 

infrared atmospheric sounding interferometer (IASI) on Met-Op-1 (Crevoisier et al. [2009]), 

scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY; 

Buchwitz et al. [2005]), the greenhouse gases observing satellite (GOSAT; Kuze et al. [2009]), 

the Tropospheric Emission Spectrometer (TES; Kulawik et al. [2010]) and the planned re-flight 

of the Orbiting Carbon Observatory-2 (OCO-2; Boesch et al. [2011]; Eldering et al. [2012]). It is 

important to distinguish though between CO2-dedicated missions such as GOSAT and OCO-2, 

and other multi-purpose missions such as TES, IASI and AIRS.  The multi-purpose missions are 

typically more sensitive to the mid-troposphere, which makes it difficult to relate the measured 

variations in CO2 concentrations to the spatial and temporal variations of CO2 surface fluxes (e.g. 

Chevallier et al. [2009a]; Ciais et al. [2010b]). Future active sensors are also in the pipeline, 

such as the Active Sensing of CO2  Emissions over Nights, Days, and Seasons (ASCENDS) 

satellite that is listed as a Tier 2 mission in the NRC Decadal Survey (NRC [2007]; NASA 

[2008]). 

The current focus in the top-down community is to increase the resolution of flux 

estimates in both space and time to better understand the dynamics of the global carbon cycle. 



 

This idea has been made possible by the increased availability of atmospheric CO2 observations 

from recent remote-sensing instruments, and an expansion of the in situ network, over the last 

two to three years. Two limitations, however, have proved a bottleneck in making the most 

efficient use of the data. First the long life time of CO2 makes its relative variations much smaller 

than for shorter-lived species. Such a small variability imposes a stringent constraint on the 

retrieval uncertainties from the remote-sensing instruments (e.g. Rayner and O’Brien [2001]; 

Miller et al. [2007]), which are yet to be attained (also see Chapter 7 for a more in-depth 

discussion on this aspect). Secondly, the, high-density data from the satellite necessitates usage 

of advanced data assimilation techniques in order to make the inverse problem computationally 

tractable. The development and application of data assimilation techniques for the carbon 

problem has spawned off its own area of research and studies, which are described in the next 

section.  

2.4 DATA ASSIMILATION FOR CO2 SOURCE-SINK ESTIMATION 

The inverse modeling techniques mentioned above (i.e. Bayesian Inverse Modeling – e.g. 

Enting [2002] and Geostatistical Inverse Modeling – e.g. Michalak et al. [2004]) are employed in 

a batch mode, in which the inversion is performed in one step, by solving a single system of 

linear equations relating the CO2 fluxes and the atmospheric CO2 observations. The batch inverse 

modeling technique requires running an atmospheric transport model either once per estimated 

flux region/period combination or once per observation. This becomes computationally 

infeasible given the increasing spatial and temporal resolution of satellite data and ground based 

CO2 concentration measurements, as well as the need for solving fluxes at fine spatiotemporal 

scales. The effort of pre-calculating and storing the transport model runs is becoming too large 



 

even for today’s supercomputers, and the resulting set of equations cannot be solved by 

traditional batch methods.  

Computational challenges have created a need for moving away from batch setups to try 

and solve the system in a time stepping approach, where at every time step smaller subsets of 

unknown fluxes are optimized. This is exactly what has been pursued in the Numerical Weather 

Prediction (NWP) research for several decades now under the banner of data assimilation (DA). 

Although DA methods had made their way into the trace gas flux estimation problem in the early 

years of 2000 (e.g. Kleiman and Prinn [2000]; Petron et al. [2004]; Yudin et al. [2004]), 

application to the CO2 flux estimation problem did not happen until 2005. Since then a series of 

studies have investigated methods based on the regular Kalman Filter (e.g. Bruhwiler et al. 

[2005]; Michalak [2008]; Bruhwiler et al. [2011]; Zhuravlev et al. [2011]), the ensemble Kalman 

Filter (e.g., Peters et al. [2005]; Feng et al. [2009]; Kang et al. [2011]; Miyazaki et al. [2011]; 

Chatterjee et al. [in press]), the variational scheme (e.g. Chevallier et al. [2005b]; Rödenbeck et 

al. [2005]; Baker et al. [2006a]) or hybrid approaches, such as the Maximum Likelihood 

Ensemble Filter (MLEF; Zupanski et al. [2007a]; Lokupitiya et al. [2008]).  

It is important to point out though, that DA applications for CO2 source-sink estimation 

are relatively new compared to batch inverse modeling applications. As a result, in most cases 

the capabilities of different DA systems and the skill of the DA inversions are still evolving. The 

majority of studies have been presented as proof-of-concept studies demonstrating the 

capabilities of individual DA systems using simulated data and/or estimating fluxes at coarse 

resolutions. These flux estimates have been subsequently evaluated by comparing them to 

biospheric model and inventory estimates and/or by assessing how well they reproduce available 

atmospheric CO2 observations (e.g. Peters et al. [2005]; Chevallier et al. [2007]; Lokupitiya et 



 

al. [2008]; Feng et al. [2009]; Baker et al. [2010]; Kang et al. [2011]; Miyazaki et al. [2011]). 

With the recent launch of the GOSAT instrument and availability of high-density data, it is 

expected that DA tools and their applications will evolve to answer more carbon science relevant 

questions.  

From the viewpoint of this dissertation, the focus will be on ensemble Kalman filter (see 

Chapter 3- Section 3.4.1 for the mathematical framework) and the variational (see Chapter 3 – 

Section 3.4.2 for the mathematical framework) approaches, and hence applications for CO2 

source-sink estimation are presented in greater detail from the perspective of these two data 

assimilation approaches. 

2.4.1 Source-sink studies using an ensemble Kalman filter 

The most extensive application of the ensemble methods have been in the development of 

CarbonTracker (Peters et al. [2005]; http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) that has 

been used to reanalyze the recent flux history of CO2  using an atmospheric transport model 

(TM5; Krol et al. [2005]) coupled to an ensemble square root filter (Whitaker and Hamill 

[2002]). Initially applied only for North America (Peters et al. [2007]), currently CarbonTracker 

has been extended to infer sources and sinks over Europe (Peters et al. [2010]) and is in the 

development stages for application to South America, Asia and Australasia (W. Peters, pers. 

comm.) and other atmospheric trace gas species (such as CH4 - L. Bruhwiler, pers. comm.). 

CarbonTracker starts by forecasting atmospheric CO2 mole fractions around the globe from a 

combination of CO2 surface exchange models and the TM5 transport model driven by 

meteorological fields from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). The resulting three-dimensional CO2 distribution is then sampled at the time and 

location when in situ observations are available, and the difference between observations and 



 

model forecast is minimized. This minimization is achieved by tuning a set of linear scaling 

factors that control the magnitude of the surface fluxes for larger, but sub-continental eco-regions 

based on the classification proposed by Olson et al. [2001]. Once the value of each of the scaling 

factors is determined in many consecutive assimilation cycles, the history of surface CO2 

exchange at 1° × 1° is reconstructed. Similar to CarbonTracker applications, Feng et al. [2009] 

have used a stochastic ensemble filter to estimate 8-day CO2 surface fluxes over 144 

geographical regions using simulated XCO2 measurements.  

More recent studies (e.g., Miyazaki et al. [2011]; Kang et al. [2011]; Chatterjee et al. [in 

press]) have used variants of the ensemble Kalman Filter but with various advancements in the 

filter algorithm and/or their assimilation characteristics. Contrary to CarbonTracker though, 

almost all of these newer studies have solved for fluxes at high resolutions but using only 

simulated measurements. For, example both Miyazaki et al. [2011] and Kang et al. [2011] solve 

for weekly fluxes at the model resolution (~2.8°) using the Local Ensemble Transform Kalman 

Filter (LETKF; Hunt et al. [2007]). Chatterjee et al. [in press] solve for 3-hourly fluxes at a 1° × 

1° spatial resolution using a geostatistical variant of the ensemble square root filter (EnSRF – 

Whitaker and Hamill [2002]) that is designed to minimize the influence of information from 

biospheric models and/or inventories. The development of the geostatistical filter is a key 

component of this dissertation and will be discussed in greater detail in Chapter 6 (with a 

synthetic data application over North America) and Chapter 7 (with a real-data application over 

the globe assimilating satellite retrievals).  

2.4.2 Source-sink studies using a variational scheme 

The introduction of variational schemes to the carbon flux estimation problem (e.g. 

Chevallier et al. [2005b]; Rödenbeck et al. [2005]; Baker et al. [2006a]) happened around the 



 

same time as ensemble methods. Yet in terms of their data usage, the 4D-VAR applications have 

been more varied than their ensemble counterparts. Almost all types of CO2 observations, 

including in situ (e.g. Rödenbeck et al. [2005]; Chevallier et al. [2010a]), simulated satellite (e.g. 

Chevallier et al. [2007]; Baker et al. [2006a; 2010]), actual satellite observations (e.g. Chevallier 

et al. [2005a; 2009a]), or retrievals of the CO2 total column from the Total Column Carbon 

Observing Network (TCCON; e.g. Chevallier et al. [2011]) have been assimilated.  

The 4D-VAR setup in these studies is similar in most respects to the basic formalism 

used in the NWP community, except that  instead of optimizing an initial condition (i.e., the 

atmospheric state) at the start of a relatively short assimilation window, in most cases, time-

varying boundary values (surface CO2  fluxes) are optimized over a longer span. The use of a 

long time window is necessary to account for the long mixing time scales of the CO2 fluxes. 

Furthermore, this is possible due to the linearity of the CO2 flux estimation problem unlike the 

non-linear evolution of the atmospheric state for the NWP problem. 

Unlike the ensemble schemes, which are being developed worldwide by different groups, 

the development and application of 4D-VAR has been consigned to a few specific groups. The 

drawback to a wider implementation of 4D-VAR within the CO2 inverse community has been 

the need for the development and maintenance of an adjoint of the atmospheric transport model. 

Of the available 15-25
 [1]

 CO2 transport models and variants thereof, to the best knowledge of the 

author only four global transport models - LMDz, PCTM, TM5 and GEOS-Chem (Chevallier et 

al. [2005b]; Baker et al. [2006a]; Meirink et al. [2008]; Henze et al. [2007]) have corresponding 

adjoints, and only two of these (LMDz and GEOS-Chem) are up-to-date with their respective 

[1]
 This number is approximate based on a review of published studies over the last five years, e.g. Baker et al. 

[2006a], Geels et al. [2007], Sarrat et al. [2007], Houweling et al. [2010]; Law et al. [2010], Niwa et al. [2011], 

Saito et al. [2011] etc. that have inter-compared global and regional transport models for CO2. In reality, there 

may be a larger number of regional-scale transport models that have been developed worldwide.   



 

forward models. Difficulties associated with the availability of the adjoint stem largely from a 

general lack of efforts within the CO2 community in developing/maintaining atmospheric 

transport models (e.g. Rayner [2010]). In this dissertation, even though a geostatistical variant of 

the 4DVAR technique was developed, it could not be applied to any real data problem because 

of the lack of an adjoint.  

Finally, studies that compare different DA methods (ensemble-filter and 4D-VAR) under 

the same conditions are lacking. Hence, the advantages/disadvantages of different DA techniques 

with respect to solving the CO2 flux estimation problem still remains to be evaluated (e.g. 

Rayner [2010]; Zupanski et al. [2007a]). This existing gap is filled in by Chapter 5 of this 

dissertation (Chatterjee and Michalak [in prep.]) where two state-of-the-art DA methods are 

implemented and compared for a source-sink estimation problem. By identifying the advantages 

and disadvantages of the two DA methods, it is expected that the findings will provide valuable 

guidance to the CO2 research community, in deciding which approach to invest in, for future 

source-sink estimation purposes.  

Given the increasing coverage and resolution of the remote-sensing data, DA provides 

the most computationally efficient scheme to characterize CO2
 
sources and sinks on regional 

scales. The key challenge though will be in: (a) delivering the satellite data with high enough 

precision (~  1.5 ppm) to yield new constraints on CO2 fluxes, and (2) having advanced DA 

tools to optimally use this data and quantify regional sources and sinks with sufficient accuracy 

to reduce the uncertainty of current carbon budgets (or, in other words address carbon science 

question, C1). As stated earlier, reducing this uncertainty will enable us in a better understanding 

of the process-based impacts (C2), improving the mechanistic models for future predictions of 

carbon-climate feedbacks and implement effective mitigation policies (C3). 



 

2.5 OTHER APPLICATION OF DATA ASSIMILATION IN CO2 SCIENCE 

Earlier in Chapter 1, it was mentioned that aside from using DA for its computational 

efficiency in the design of flux estimation inference problems, a few studies apply DA methods 

to estimate atmospheric CO2 concentrations or parameters of biogeochemical models. These 

studies are amongst the first applications in CO2 science, and any discussion on CO2 -DA would 

be incomplete without highlighting these briefly.  

The first of these, which has been pursued at the European Centre for Medium-Range 

Weather Forecasts (ECMWF) is to obtain consistent estimates of atmospheric CO2  

concentrations (e.g. Engelen et al. [2004; 2009]), using 4D-VAR to assimilate CO2 observations 

along with a host of meteorological variables. The setup of this system is akin to a NWP-like 

system and poses analogous challenges regarding error and bias characterization etc. In fact 

Chapter 4 (Chatterjee et al. [in prep.]) in this dissertation explores this system in detail, and 

proposes a new approach for parameterizing the background error statistics of this system. The 

real benefit of this system lies in generating global CO2 fields, which enhances the observational 

database, as the DA procedure uses physical and dynamical laws, along with the available 

observations, to constrain the analysis. The global CO2 fields are generated with high-precision 

and these can be subsequently used to constrain CO2 surface fluxes via inverse modeling (e.g. 

Chevallier et al. [2009a]).  

The second of these has been the construction and application of a terrestrial Carbon 

Cycle Data Assimilation (http://ccdas.org/). The original framework proposed by Kaminski et al. 

[2002] has been expanded over the last decade (e.g. Rayner et al. [2005]; Scholze et al. [2007]; 

Knorr et al. [2010]; Ziehn et al. [2011b]) but its core concept of using atmospheric observations 

to constrain the parameters of a terrestrial biosphere model, has remained unchanged. Via a 4D-



 

VAR setup, CCDAS essentially combines the top-down and bottom-up approaches in calibrating 

key model parameters that: 1) improves the underlying behavior and the predictive capability of 

the model, and 2) can be used to provide estimates of high-resolution surface CO2  fluxes, if 

necessary. The same conceptual framework has been extended to evaluate the optimality of CO2 

networks (Kaminski et al. [2012]) as well as specifically estimate photosynthetic parameters 

using CO2 and heat fluxes observed locally at eddy-covariance sites (Santaren et al. [2007]). 



Chapter 3 

Mathematical Concepts 

3.1 INTRODUCTION 

 Data Assimilation (DA) is essentially a class of numerical methods that has been widely 

used by the geosciences community to estimate the state of a system, given a discrete model of 

the dynamics of the system, a (noisy) estimate of the current state and (noisy) observations of the 

system over time. The data assimilation problem can also be considered as a generalized inverse 

problem
[1]

 (e.g. van Leeuwen and Evensen [1996]), although typically the inverse modeling 

paradigm follows a slightly different representation. As per Rodgers [2000], “the inverse 

problem is the question of finding the best representation of the required parameter given the 

measurements made, together with any appropriate prior information that may be available 

about the system and the measuring device”. Thus, the emphasis is more on retrieving system 

parameters or time-varying boundary values of the system, rather than the initial state or 

systems’ forecast. 

In this chapter, DA principles are introduced from a generic inverse modeling standpoint, 

primarily because much of the conceptual implementation in this dissertation is based on the 

[1]
 Proponents of non-linear data assimilation have stated that data assimilation is not an inverse problem (e.g. 

van Leeuwen [2010]). Within the geosciences community, the terms data assimilation and inverse problem have 

been used interchangeably due to their formulation based on a least squares framework (e.g. Lewis et al. 

[2006]). But the way the observations and errors are modeled and handled for these two frameworks, and/or 

the way the prior or background information is brought into play has resulted in subtle distinctions between 

these two frameworks (e.g. Bocquet [2005]). Also see footnote [2] in Section 3.2. 



atmospheric inverse modeling paradigm. Section 3.2 defines a generic inverse problem, and 

develops the objective functions required to obtain a solution to the inverse problem. Solutions 

are discussed in terms of two batch inverse modeling schemes in Section 3.3, and two data 

assimilation (sequential and variational) schemes in Section 3.4. In this chapter only the general 

methodological aspects of the different inverse modeling/data assimilation schemes are 

described, with occasional references to CO2 applications. A standard set of notations (Appendix 

A) are introduced for all the equations, which will be followed in this chapter and throughout the 

dissertation as well.  

3.2 FORMAL STATEMENT OF THE PROBLEM 

Assume one has a set of m parameters, represented by a state vector s ( ms ) that one 

wishes to infer from a set of n observations, represented by a vector z ( nz ). The two vectors 

are related by a forward model h, which may be an atmospheric transport model, an observation 

operator, a radiative transfer model etc., or a combination thereof, that encapsulates our 

understanding of the physics of the system: 

   rh z s ε  3.1  

where rε  accounts for the possible mismatch between the observations and the model’s 

prediction of the observations. The generic inverse problem is to estimate the parameter vector s, 

knowing the observation vector z and its error characteristics.  

In the majority of real-world applications, however, the number of observational data is 

lower than the number of parameters to be estimated (n << m) that makes the problem under-

determined. Also the inverse problem is ill-posed whereby several different solutions and not one 

unique solution exist, which are equally consistent with the available measurement data (e.g. 



Tarantola [2005]). A common approach is to regularize the solution by providing prior 
[2]

 

information about the parameters, where the a priori expected value is represented as E[s] = s
b
 (

b ms ). Like all other information sources, the prior (or the background) has some error 

associated with it and this is captured through the prior (or background) error statistics qε . Thus, 

the generic inverse problem is redefined as finding the set of parameter values that optimally 

balances the information from the observational data and the prior (or the background) along 

with their associated errors.  

3.2.1 Bayesian objective function 

Using a Bayesian framework, all the sources of information that can be used to constrain 

the estimate s are represented in terms of probability density functions (pdf’s). Three key 

assumptions will be made now: (a) the forward model h is linear, (b) both the measurement (or 

the likelihood) pdf
 

 |P z s and the prior pdf  P s can be captured by Gaussian statistics, and (c) 

the error statistics of the observation and the prior (or background) are centered (

  0r qE E     ), mutually uncorrelated ( , 0r qE      ), and have respective variances 

2

rE     R and 2 b

qE     Q .  

Note that in general, Bayesian estimation theory does not require specific assumptions 

regarding the form of the pdf’s. Rather it only provides a framework to formalize the conditional 

relationship of the pdf’s and conjoin the two sources of information from the observation and the  

[2]
 The terms 'prior' and 'background' are often used interchangeably in the inverse modeling community as they 

represent a subset of all possible parameter states that are more likely due to some pre-existing knowledge of the 

physical process being estimated. But in operational data assimilation, ‘prior’ refers to a set of initial conditions 

specified at the start of the assimilation (very first time step). For subsequent time steps, the term ‘background’ is 

used and refers to a model forecast of the analysis from previous time steps. Specifically, for this chapter I will use 

the term ‘prior (or background)’ where these can be used interchangeably. Else if the terms prior (i.e. initial 

conditions at the very first time step) and background (i.e. model forecast) is used separately, then they do have 

separate meanings. 



prior (or background). Assumption of Gaussian pdf’s is common for modeling probability 

distributions as it is both algebraically convenient and a reasonable approximation for the real 

errors (e.g. Rodgers [2000]). Similarly, assumptions of a linear h are valid for the atmospheric 

CO2 inverse problem, in which case it is typically represented by its linearized matrix form H. 

For a larger set of inverse problems encountered in geophysical applications h may not be linear 

and is only assumed in the vicinity of the background state, i.e., h(s) – h(s
b
) h(s-s

b
). 

Using the above assumptions, the likelihood pdf and the prior pdf are typically written as: 

         1

1| exp / 2
T

P a h h   z s z s R z s  3.2  

         1

2 exp / 2
T

b b bP a


   s s s Q s s  3.3  

where R and Q
b
 are the n  n model-data mismatch covariance and the m  m prior (or 

background) error covariance. Usually the model-data mismatch covariance matrix R is 

structured as a diagonal matrix and aims to capture the combined measurement, forward model, 

representation and aggregation errors (e.g. Engelen et al. [2002]). The measurement error is the 

actual error associated with the measuring instrument, and for remote-sensing observations, can 

also include errors from the retrieval algorithm. The model error is intended to capture the error 

in h either due to wrongly specifying the forward model parameters or due to an 

oversimplification of the real physics and dynamics in the forward model. The representation 

error describes the error accrued due to the fact that the actual observations are representative of 

a smaller scale relative to the resolution of the forward model. Finally, the aggregation error 

component is the error accrued due to estimating parameters at a coarser resolution, in both space 

and time. Low (or high) values along the diagonal of this matrix thus determine whether the 

inversion must reproduce the observations to a high (or low) precision. The Q
b
 matrix represents 



the uncertainties associated with the prior (or background) estimates of the parameters and can 

have pre-defined spatial and temporal correlations relating the different parameters of the state 

vector to each other. 

Using Bayes' theorem, the aim is to calculate the a posteriori pdf  |P s z by updating the 

prior pdf with the measurement pdf. Since the prior (or the background) and the observational 

fields are two independent sources, the most likely estimate of the state is given by the joint 

probability of the above two probabilities: 

  
   

   
  3 exp

P | P
P | a J

P | P d
  



z s s
s z s

z s s s
 3.4  

Combining Equations 3.2 to 3.4, J(s) is defined as: 

              
1

11 1

2 2

TT b b bJ h h


     s z s R z s s s Q s s  3.5  

Due to our assumption of Gaussian pdf’s, maximizing the joint probability in Equation 3.4 is the 

same as minimizing the objective function (or the cost, or penalty function) in Equation 3.5. 

Essentially higher values of J(s) correspond to less probable states. The contributions of the 

observational term denoted by Jo and the prior (or the background) term, denoted by Jb is 

distinguished as:  

 
             

1
11 1

2 2

TT b b bJ h h

J Jo b


     s z s R z s s s Q s s  

3.6  

The Bayesian objective function (Equation 3.5 or 3.6), thus, represents the sum of least-squared 

difference between the parameters to be estimated and the prior (or the background) and 

observational fields, weighed by their respective error covariance matrices.  

3.2.2 Geostatistical objective function 



 A slightly different objective function (e.g. Kitanidis and Vomvoris [1983]; Michalak et 

al. [2004]) can be obtained by re-defining the way the prior (or the background) information is 

represented in the system. This definition follows from the field of geostatistics where the 

parameter s is modeled as a random vector with a priori expected value (i.e., mean): 

  E s Xβ  3.7  

X is a known m  p matrix representing different processes, which influence the parameters to be 

estimated, β are p  1 unknown drift coefficients, and Xβ is the model of the mean. The prior pdf 

is now modeled as: 

         1

2, exp / 2
T bP a



   s β s Xβ Q s Xβ  3.8  

In Equation 3.8, note that: a) the drift parameters β are assumed to be unknown as well and 

hence these need to be estimated along with the original set of parameters s, and b) Q
b
 now 

describes the expected variability in the departures of the parameters from the model of the trend. 

Other than the changes in the prior pdf, the likelihood function (Equation 3.2) and the Bayesian 

scheme (Equation 3.4) remains the same and the geostatistical objective function is defined as: 

              
1

11 1
,

2 2

T T bJ h h


     s β z s R z s s Xβ Q s Xβ  3.9  

Analogous to the Bayesian objective function, this Geostatistical objective function (Equation 

3.9) also represents a compromise between reproducing the observations and staying close to a 

statistical model of the trend (Xβ), where the covariance matrices determine the relative weight 

of these competing objectives.  

The objective functions
 
defined in Equations 3.6 and 3.9, however, fail to single out one 

particular estimate for s. In order to select a particular solution of s, it is necessary to specify an 

estimator. Possible examples are the class of approaches that are based on finding the "minimum 



variance estimate" or based on the "maximum a posteriori (MAP) estimate". The minimum 

variance estimators minimize the variance of the analysis error, thus ensuring that the minimum 

is the most probable state. Conversely, the MAP solution is based on finding the state that 

maximizes the posterior pdf  ˆ arg max P |s s z . For a linear problem with Gaussian statistics, 

these two frameworks lead to two equivalent algorithms because of the symmetrical properties of 

the pdf. Since the numerical implementations of the estimators are very different, this leads to 

different solutions schemes, as discussed in the next two sections.  

As an aside, using a subset of applications from the literature, Box 1 defines the various 

ingredients of the objective functions (i.e., observations, prior or background information, error 

covariance matrices, forward model etc.) in terms of an atmospheric CO2 inverse modeling 

application or an atmospheric CO2 data assimilation application. 

3.3 BATCH INVERSE MODELING SCHEMES 

The batch inverse modeling schemes are based on finding the minimum variance estimate 

and aim to solve the system of (linear) equations in a single step. Two distinct sets of equations, 

based on whether the Bayesian or the Geostatistical objective function is used, can be identified.  

3.3.1 Bayesian inverse modeling (BIM) 

The minimum of the Bayesian objective function defined in Equation 3.6 can be obtained 

by taking the derivative with respect to the parameters s, and setting them to zero. The final 

solution (e.g. Enting [2002]) in the form of a posteriori means and covariances is given by: 

 

 



   

BOX 1 – Ingredients of the objective function based on a subset of the CO2 literature  

 

Variable (Dimensions) 
Atmospheric CO2 Inverse Modeling 

Application 
[*]

 

Atmospheric CO2 Data Assimilation 

Application 
[**]

 

s (m  1) 
Discretized surface flux distribution, in 

space and time 

4D atmospheric fields, including CO2 

concentrations 

z (n  1) 
CO2 observations from in situ and/or 

satellite 

Observed radiances  or CO2 

observations from in situ and/or 

satellite; meteorological observations 

h 

Linear and a combination of the 

transport model and the observation 

operator. Its matrix form H (n × m) is 

also commonly used. 

Non-linear and a combination of the 

radiative transfer model and an 

observation operator 

R (n  n) Model-data mismatch covariance Model-data mismatch covariance 

Q
b 
(m × m) 

Covariance of flux deviations from 

either the prior estimate s
b 
or

 
the model 

of the mean Xβ 

Covariance of the background error due 

to our imperfect knowledge of the  

‘true’ errors in the atmospheric state 

s
b
(m × 1) 

Prior (or background) estimate from a 

process based model output (i.e., 

biospheric fluxes) or inventory data 

(i.e., ocean air-sea CO2 exchange, fossil 

fuel emissions etc.) 

Background state usually taken from a 

short range forecast valid at the initial 

time 

X(m  p) 

Auxiliary variables such as vegetative 

indices (land cover, LAI, fPAR etc.) or 

socioeconomic datasets  (population 

density, fossil fuel emissions, GDP 

etc.). 

 

Simpler - unknown but constant mean, 

i.e., X = [1….1]
T
 

n/a 

 

(* e.g. Michalak et al. [2004], Ciais et al. [2010b]   ** Engelen et al. [2009]) 



  ˆ b b  s s K z Hs  3.10  

  a b Q I KH Q  3.11  

where H is the n × m linearized matrix form of h that represents the sensitivity of the 

observations z to the parameters s (i.e., i,j i jH z s   ), K is the Kalman gain, ŝ is the posterior 

best estimate of the parameters, Q
a
 is the a posteriori covariance of the recovered best estimate, 

with the diagonal elements of Q
a
 representing the predicted error variance (

2

ˆ
s ) of individual 

elements in ŝ . This form of the estimate is commonly termed as the best linear unbiased 

estimator (BLUE) due to the fact that the term K that weights the observation increments, can be 

analytically shown to be the optimal gain (Jazwinski [1970]). The dimension of the matrix to be 

inverted in Equation 3.12 is n × n. If the number of parameters to be estimated is significantly 

larger than the number of observations, it is computationally efficient to use this form. Alternate 

formulations (e.g. Enting [2002]) of Equations 3.10 - 3.12 exist, in which the dimension of the 

matrix to be inverted is m × m; this formulation is computationally cheaper if the number of 

parameters is significantly smaller than the number of observations.  

3.3.2 Geostatistical inverse modeling (GIM) 

As per Equation 3.9, the inverse problem has two vectors of unknowns. To find the 

minimum variance estimator, the geostatistical objective function is minimized with respect to 

the state and the drift parameters, s and β, respectively. Algebraic manipulation (e.g. Michalak et 

al. [2004]) yields the following system of linear equations: 

  
1

b T b T


 K Q H HQ H R  3.12  



 
( )( )

( )

bb T T

TT

    
     

     

HQHQ H R HX Λ

XHX 0 M
 3.13  

Once the above system is solved for Λ (m  n) and M (p  m), they are used to obtain the a 

posteriori estimate of the parameters ŝ and their posterior covariance Q
a
: 

 ˆ s Λz  3.14  

 T- -a b b TQ Q Q H Λ XM  3.15  

Note that in these equations, M is a matrix of Lagrange multipliers and should not be confused 

with M, which will be used to define the dynamical model later (Equation 3.19-3.20). Finally, the 

drift coefficients β̂ (p  1) and their uncertainties are estimated as:   

     
1

1 1
ˆ T b T b


 

β X Q X X Q Λz  3.16  

 
1 -1

ˆ ( )a T 

β
Q = X Ψ X  3.17  

where the diagonal elements of ˆ

a

β
Q  represent the uncertainty of the individual drift coefficients, 

and the off-diagonal terms represent the estimated covariance of the errors associated with these 

estimates.  

The estimate can also be expressed in a fashion similar to the Bayesian best estimate. In 

this case, the best estimate is the sum of a deterministic component (i.e., model of the mean ( ˆXβ

)) and a stochastic component that is a function of the a priori correlation structure in Q
b
: 

Associated with the GIM framework, an additional task is the selection of auxiliary 

variables to be included in X. These variables can be selected based on scientific understanding 

of the problem or one can use advanced variable selection methods such as hypothesis-based 

  1ˆ ˆˆ b T   s Xβ Q H Ψ z HXβ  3.18  



techniques (e.g. Variance-Ratio Test -Kitanidis [1997]; Gourdji et al. [2008]) or criterion-based 

selection methods (e.g. Akaike information criterion - Akaike [1974], Bayes information criterion 

- Schwarz [1978]; Mueller et al. [2010]; Yadav et al. [2010a]).  

Finally, in concluding this section it is worth highlighting that the matrix form of h (i.e., 

H) is necessary to solve both the BIM and the GIM systems. For the atmospheric CO2 inverse 

problem, this is obtained by running an atmospheric transport model either once per estimated 

flux region/period combination, or once per observation if an adjoint to the transport model is 

available. Pre-calculating and storing this sensitivity matrix, however, is not a trivial task. For 

example, if one aims to estimate daily global fluxes at 1 × 1 for a month (360*180*30 = ~2e6) 

using atmospheric CO2 observations from a satellite (~5000 observations per month), then the 

dimensions of H will be approximately [5e3 × 2e6]. The corresponding dimensions of Q
b
 will 

be [2e6 × 2e6] while the dimensions of R will be [5e3 × 5e3]. The cost of generating H and the 

sheer size of the matrices and their inverses involved makes the batch inverse modeling schemes 

computationally infeasible for such large-scale applications, necessitating the use of data 

assimilation schemes. 

3.4 DATA ASSIMILATION SCHEMES 

Given the vastness (and richness!) of DA methods and concepts, this section can by no 

means be regarded as a complete overview of the subject. Along with the specific references 

outlined in each section, the reader is encouraged to look at the excellent reviews of Ghil and 

Malanotte-Rizzoli [1991], Cohn [1997], Todling [1999] and specific textbooks by Daley [1991], 

Rodgers [2000], Lewis et al. [2006], Lahoz et al. eds. [2010] for a thorough introduction to the 

field. 



For the purposes of this dissertation, a suite of DA schemes have been examined (Figure 

3.1). It will not be possible to outline the mathematical framework of all the examined methods. 

Specifically among the Monte-Carlo based DA approaches, the Kalman filter is first introduced 

in order to motivate the ensemble square root filter (EnSRF). Amongst the variational DA 

approaches, both the 3-dimensional primal (3D-VAR) and dual (3D-PSAS) forms are discussed 

followed by the 4-dimensional variational method (4D-VAR).  Note that all these methods will 

be discussed from the perspective of solving the objective function outlined in Equation 3.6 (i.e. 

regular Bayesian objective function) but can be theoretically converted to solve Equation 3.9 (i.e. 

Geostatistical objective function). The geostatistical approach adds another set of p parameters 

that need to be estimated along with the original state parameters. Given that the dimension of p 

is significantly smaller than m, the additional computational cost is trivial in most cases. The 

specific development of a geostatistical ensemble square root filter (GEnSRF) is presented in 

Chapter 6.  

3.4.1 Sequential data assimilation scheme 

The Kalman filter (Kalman [1960]) is an optimal data assimilation method for problems 

with linear dynamics and is derived based on the minimum variance requirement. The regular 

Kalman filter equations can be divided into two components: time update and measurement 

update equations.  

Time update equations from time step t-1 to t: 

 
1

ˆf a

t tM
  

s = s  3.19  

  
1

f a T

t t MM M
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Q = Q ε  3.20  

 



 

Figure 3.1 – A subset of data assimilation algorithms that were examined in the dissertation. Specifically, 

in this chapter the mathematical formulation of the EnSRF (among the Monte-Carlo based methods) and 

the 3D-VAR, PSAS and strong constraint 4D-VAR (among the variational based methods) will be 

discussed.  

 

Measurement update equations at time step t: 

 
-1f T f T

t t t t t t t      
K = Q H (H Q H + R )  3.21  

 ˆ ( )a f f

t t t t t t     
  s s K z H s  3.22  

  a f

t t t t   
 Q I K H Q  3.23  



M 
[3]

 is a dynamical/forecast model that propagates the parameters in s between two time steps, 

Mε is the dynamical model error covariance, I is the identity matrix,  
f

 represents the forecast 

values at time t and  
a

 represents the analyzed values at time t.  

A close examination of the measurement update equations indicates their equivalence to 

the BIM setup presented in Equations 3.10-3.12. At a particular time step, if the time indices are 

dropped, the Kalman gain matrix K is exactly similar to the term multiplying  bz Hs on the 

RHS in Equation 3.10. For the Kalman filter, the forecast 
f

t
s is the analyzed values from the 

previous time step propagated through the dynamical model to the current time step. At a 

particular time step t, this is equivalent to the prior (or background), p
s in the Bayesian IM 

setup. It is not surprising then that the posterior covariance calculation of the Kalman filter is 

almost as difficult to implement as the Bayesian IM equations. Two main challenges can be 

identified: (i) the computational cost associated with the multiplication of the large matrices 

involved, and (ii) the need to calculate and pre-store the transport model runs H. Thus, practical 

implementation for a fine-scale CO2 flux estimation problem is still not feasible with the Kalman 

filter scheme. 

The ensemble Kalman filter (EnKF; Evensen [1994]) is a reduced-rank approximation to 

the optimal, full-rank Kalman filter solution that addresses these problems by using ensemble 

representations for the background and posterior error covariances. Ensemble size limits the 

[3]
 For the atmospheric CO2 inverse problem, no suitable dynamical model is available; hence estimates of 

future CO2 fluxes do not normally depend on the analysis of current CO2 fluxes (Peters et al. [2005]). If one 

assumes M = I, then the time update in Equations 3.19 and 3.20 can be ignored and one is concerned only 

with the measurement update equations in Equations 3.21-3.23. The absence of a dynamical model is not 

applicable for the CO2 assimilation problem, where a full non-linear forecast model is available (e.g. Engelen 

et al. [2009]) to propagate the atmospheric state, including the CO2 concentrations, between different time 

steps.  

 



number of degrees of freedom used to represent these error covariances and the calculations can 

be shown to be computationally practical for modest-sized ensembles (e.g. Anderson [2009]). 

Several flavors of EnKF are in vogue but with assumptions of linearity and Gaussian statistics, 

all of these flavors are closely related (Anderson [2003]). Specifically for a linear problem, 

deterministic filters have been shown to be more accurate than their stochastic counterparts (e.g. 

Whitaker and Hamill [2002]; Lawson and Hansen [2004]). Tippett et al. [2003] conducted a 

review of three popular deterministic filters (ensemble transform Kalman filter – ETKF, Bishop 

et al. [2001]; ensemble adjustment Kalman filter – EAKF, Anderson [2001]; ensemble square 

root filter – EnSRF, Whitaker and Hamill [2002]) and concluded that beginning with the same 

prior (or background) error covariance these different deterministic filters ultimately produce 

analyses ensembles that span the same state subspace and have the same covariance. The only 

difference is that the computational cost of ETKF and EAKF are dependent on the rank of the 

prior (or background) covariance matrix while the computational cost of EnSRF is dependent on 

the number of observations. This is highly attractive if the number of observations is lower than 

the number of parameters to be estimated, which makes EnSRF more computationally efficient 

relative to other deterministic filters. 

Similar to the Kalman filter, the EnSRF algorithm derives the analysis equations by 

requiring that the total analysis error variances are minimized. Assuming the prior (or 

background) covariance is known, one can create an ensemble of N state fields 
bs  (where 

N<<m) that have a background covariance Q
b
. These deviations 

bs are created such that the 

normalized ensemble of deviations defines the columns of the matrix Γ [m  N] that is the 

square root of the covariance matrix Q
b
: 

b TQ ΓΓ  
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The matrix square roots of Q
b
 are not unique, and can be computed in different ways, for 

example through Cholesky decomposition or singular value decomposition. A convenient 

representation is to write: 
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In the limit of N  this representation of Q
b
 is exact. For the measurement update step at time 

t, the state vector and the deviations from the state vector are updated as: 

   ˆa f fh  s s K z s  3.26  

   ˆ ˆa f fh   s s K s  3.27  

where the time indices have been dropped. Comparing Equation 3.26 to Equation 3.22, note that 

the forward model h is used directly, instead of using its matrix form H. Here K is the traditional 

Kalman gain matrix (similar to Equation 3.12) and K  is a reduced form of K:  
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1
b T



 
   
 

R
K K

HQ H + R
 3.28  

The Kalman gain matrix K is used to update the state vector while the reduced form K is used to 

update the ensemble. Since the ensemble is a reduced rank representation of the full covariance, 

if the Kalman gain matrix were to be used to update the ensemble, it would result in a systematic 

underestimation of the covariances (e.g. Whitaker and Hamill [2002]). For the calculation of the 

gain matrices
b T

Q H and 
b T

HQ H is approximated by directly running the forward model (h) and 

sampling it with the ensemble (i.e. ( )bh s ). If observations are being assimilated sequentially, 

b T
HQ H is a scalar value while the size of 

b T
Q H is m  1: 
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In essence the innovations in Equations 3.29 and 3.30 ultimately reduce the computational cost 

of the ensemble scheme relative to the regular Kalman filter.  

Once all observations have been assimilated, the a posteriori covariance Q
a
 is 

reconstructed from the ensemble (Equation 3.31). This explicit calculation of a posteriori error 

covariances is often advertised as one of the primary advantages of the ensemble-based data 

assimilation schemes, relative to variational schemes.  

   
1

1

T
a a a

N
 


Q s s  3.31  

Once the measurement update step is completed, the time update steps as presented in Equations 

3.19-3.20 are applied, and the ensemble filter is ready for the next measurement update step.  

 The ensemble adjustment Kalman filter (EAKF) of Anderson [2001] and the ensemble 

transform Kalman filter (ETKF) of Bishop et al. [2001], also uses the traditional Kalman filter 

update equation to update the ensemble mean (Equation 3.26).  In the EAKF, a linear operator 

 A I KH is applied to the prior (or background) ensemble to get an updated ensemble whose 

sample covariance will be identical to the posterior covariance obtained via Equation 3.23. For 

the ETKF, a more complicated transformation matrix is used to update the ensemble. Several 

choices of the transformation matrix have been proposed in the literature (e.g. Bishop et al. 

[2001]; Wang and Bishop [2003]; Wang et al. [2007]) but the idea in all of them is to obtain an 

analysis error covariance, which is consistent with the full-rank Kalman filter analysis error 

covariance given by Equation 3.23. Thus all of the deterministic filters are functionally 



equivalent but differ only in algorithmic details (e.g. Whitaker and Hamill [2002]; Tippett et al. 

[2003]).  

An important feature of all ensemble filters is their dependency on the ensemble size. 

Given that the number of ensemble members N is finite, the representation of Q
b
 in N-

dimensional space is not perfect. This results in a varying number of off-diagonal correlations 

(termed sampling error) as a consequence of which, a state variable may be incorrectly impacted 

by an observation that is physically remote. Several techniques have been proposed to account 

for the spurious noise in the ensemble (e.g. Houtekamer and Mitchell [2001]; Hamill et al. 

[2001]; Ott et al. [2004]; Anderson [2007b]). The most common approach is to perform a Schur 

(element wise) multiplication of a compactly supported correlation matrix ρ (Gneiting [2002]; 

Bergemann and Reich [2010]) with the covariance model generated by the ensemble: 
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The choice of the correlation matrix ρ can range from simple exponential based function to a 

more complex fifth-order Gaspari-Cohn function (Gaspari and Cohn [1999]). Generally, 

compactly supported functions are preferable as these functions are non-zero in only a small 

(local) region specified by a length scale thus ensuring that correctly specified physical 

correlations are maintained, while spurious correlations beyond the length scale are removed. 

More recently sophisticated balance-aware localization schemes have been proposed primarily 

for NWP applications (e.g. Bishop and Hodyss [2011]; Kepert [2011]; Jun et al. [2011]) as well 

as adaptive sampling error correction techniques based on an examination of the prior ensemble 

(e.g. Anderson [2012]).  

Along with sampling error, limited ensemble size may lead to an ensemble collapse and 

filter divergence. Ensemble collapse (e.g. Lawson and Hansen [2004]; Leewunburgh et al. 



[2005]; Sacher and Bartello [2008]) refers to the fact that before the assimilation the spread of 

the ensemble members reflects the prior (or background) error structure but after assimilation 

they tend to converge to a single value. The precise cause of ensemble collapse is not well 

understood but it is easy to see its manifestation through the Kalman filter equations. 

Specifically, equations 3.21 to 3.23 imply that as
1

0f

t Q  , then ˆ ˆ
t t

a f

t ts s ; that is, if the prior (or 

background) uncertainty is very small, then the prior (or background) ensemble effectively 

informs the Kalman filter that one is “very confident” in the prior (or background), in which case 

the observations add very little information about the parameters to be estimated and the 

assimilation reduces to the prior (or background).  

Several ad-hoc and adaptive techniques have been proposed in different ensemble-related 

applications to counter this loss of variance (e.g. Anderson and Anderson [1999]; Zhang et al. 

[2004]; Hamill and Whitaker [2005]; Anderson [2007a]; Li et al. [2009]; Anderson [2009]; Pena 

et al. [2010]; Miyoshi [2011]). In all ensemble-filter applications used in this dissertation, the 

adaptive technique proposed by Anderson [2009] will be used (also see Chapter 6 – Section 

6.2.4).  

3.4.2 Variational data assimilation scheme 

3.4.2.1 3D-VAR and 3D-PSAS 

Unlike sequential data assimilation schemes, the principle of variational data assimilation 

(e.g. Sasaki [1970 a, b and c]; Lorenc [1986]; Talagrand and Courtier [1987]) is based on 

rewriting the least squares problem posed in Equation 3.6 as a minimization problem that can be 

solved (approximately) using explicit minimization algorithms. This is also equivalent to finding 

the maximum a posteriori (MAP) estimate of the objective function. The variational method 



works in an iterative fashion, whereby an estimate of the parameters in time are first run through 

the forward model to derive modeled measurements. These modeled measurements are then 

compared to the true measurements and the measurement residuals (weighted using the 

measurement error statistics) are subsequently run backwards in time through the adjoint model 

to obtain the adjustments to be made to the estimate of the parameters. The minimization can be 

stopped by limiting artificially the number of iterations or by requiring that the norm of the 

gradient decreases by a predefined amount during the minimization. The simplest 

implementation of this class of algorithms is in terms of solving the objective function in 

Equation 3.6. Termed as 3D-VAR (3-dimensional variational), in this technique both the prior 

(or background) s
b
 and the observational set z are assumed to be obtained at the same time. This 

is a reasonable assumption if either the time period over which the observations are available is 

short enough, or the underlying process can be considered stationary over this period (e.g. Daley 

and Barker [2001]; Talagrand [2010]). Minimization of the objective function requires the 

availability of the gradient of J with respect to the parameters s:  

         
1

1b b TJ h


    s Q s s H R z s  3.33  

A particularly efficient way of calculating this derivative is through the adjoint approach (Errico 

[1997]), in which explicit calculation of all the elements of H
T
 is avoided by running the forward 

model backwards to compute the relationship between a small change in J and changes in s. A 

single pass of the adjoint of the forward model computes   1T h H R z s , which is then added 

to    
1

b b


Q s s  in Equation 3.33 above.  

The second derivative of the objective function or the Hessian is given as: 

    
1

2 1b TJ


  s Q H R H  3.34  



Calculating the Hessian is not strictly necessary for solving the variational problem. Most state-

of-the-art minimization algorithms (e.g. L-BFGS, Nocedal and Wright [2006]) tend to 

approximate the Hessian to avoid the large-scale computational costs associated with the 

calculation and storage of the second derivatives. Recovering the exact Hessian is attractive 

though as its inverse corresponds to the analysis error covariance matrix Q
a
 (e.g. Le Dimet et al. 

[2002]; Rödenbeck [2005]), which is highly desirable for inverse problems. In most applications 

of variational algorithms either the uncertainty estimates are not reported or a suite of sensitivity 

tests are done to provide an approximate range within which the estimates may lie. Recent 

studies (e.g. Shutyaev et al. [2009]; Cheng et al. [2010]) have shown that computationally 

efficient alternatives for calculating the Hessian may exist, although these are yet to be applied to 

an inverse estimation problem. 

 A second type of variational algorithm can be derived based on Equation 3.10, which is 

re-written as: 

     
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Equation 3.35 is split into the following two equalities: 

     
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where w has the same dimension as z and is regarded as an increment in observation space while 

Q
b
H

T
 acts a smoothing term that maps the increment from the observation to the parameter 

space. Equation 3.36 allows us to define a new objective function on the dual of the observation 

space:  

     
1

( )
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This is known as the Physical Space Assimilation System (PSAS; e.g. Da Silva and Guo [1996]; 

Cohn et al. [1998]), which was first developed and implemented at NASA’s Data Assimilation 

Office (DAO) in the late 1990s. Since the size of the control vector of the 3D-PSAS functional is 

determined by the number of observations n instead of the dimension of the parameters m, this 

makes it especially attractive if the number of observations is significantly lower than the 

number of parameters. 

The dual approach (3D-PSAS) has been less popular than the primal approach (3D-VAR) 

even though studies (e.g. Courtier [1997]; El Akkraoui et al. [2008]) have pointed out that both 

formulations have the same convergence properties. A possible cause may be that the dual 

approach requires the use of H
T
 in Equation 3.36, which in the case of variational assimilation, 

implies strict linearity of the forward model operator. Conversely an argument in favor of the 

dual approach is that the inverses of the error covariance matrices (i.e., R and Q
b
) are not 

required, unlike 3D-VAR. As a result PSAS has no singularities when the error covariance 

matrices tend to zero (e.g. Auroux [2007]). This is important, especially when the 3D-PSAS is 

expanded to the 4D-PSAS, and the dynamical model error comes into play. The same PSAS 

algorithm can be used for both strong- (assuming no dynamical model error) and weak-constraint 

(assuming dynamical model error) variational assimilation. Recently, a secondary algorithm 

called the Restricted Preconditioned Conjugate Gradient (RPCG) has been proposed by Gratton 

and Tshimanga [2009], which presents an alternate framework to solve the linear variational 

problem in the dual space. Clearly, depending on the conditions of the problem and especially on 

the relative dimensions of the state and observation space, it may be more advantageous to use 

the dual form over the primal form, for many large-scale inverse problems.  

 



3.4.2.2 4D-VAR 

The 4 dimensional-variational or 4D-VAR in short, is the current state-of-the art 

variational approach where the parameters are estimated by minimizing the misfit between a 

temporal sequence of states and observations that are available over the given assimilation 

window (Figure 3.2). The four dimensional nature of 4D-VAR reflects the fact that the 

observation set spans not only three dimensional state spaces but also a time domain. 

Mathematically, this calls for a generalization of the 3D-VAR objective function (based on 

Equation 3.6) in time:  
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The observations are now distributed among t times in the interval but the prior (or background) 

s
b
 and the analysis are defined only at the initial time. The parameters st at any given time may 

be identified as: 

 0, ( )t tt M  s s  3.39  

Similar to Equation 3.19, the role of M is to forecast the parameters from the initial time to t. 

Commonly known as the strong-constraint 4D-VAR, this forms the basis for the variational 

assimilation systems widely employed within the numerical weather prediction (NWP) 

community (e.g. Rabier [2005]). In case the error associated with M cannot be neglected, a 

different objective function is necessary that adds an additional term (e.g. Tremolet [2006; 

2007]). This approach is then known as the weak constraint 4D-VAR.     

  In the absence of the model forecast operator, a common assumption that can be made is 

M = I. The 4D-VAR application is then known as the First-Guess-At-the-right-Time 3D-VAR, or 

FGAT3D-VAR. This process is four-dimensional in the sense that the observations distributed  



 
 

Figure 3.2 - Schematic representation of a variational data assimilation scheme. Observations are 

collected over an assimilation window during which a prior, or background from the previous forecast, is 

also available. Observations update the prior (or background) to obtain a new analysis valid at the initial 

time. Difference between 3D-VAR and 4D-VAR is simply based on whether all observations over the 

assimilation window are assumed to be at the same time (3D-VAR), or assimilated at their correct times 

within the assimilation window (4D-VAR).This figure has been modified from Bouttier and Courtier 

[1999]. 

 

over the assimilation window are compared with their analogues (i.e. modeled observations) at 

the correct time. But it is three-dimensional in that the minimization of the objective function 

does not use any explicit dynamics. Compared to 3D-VAR, the FGAT 3D-VAR still shows an 

improvement in the estimation quality (Massart et al. [2010]) because the temporal sequence of 

innovation vector it uses is more exact than the standard 3D-VAR.  

In the context of 4D-VAR, there are many innovative ideas that have been explored and 

developed over the last couple of decades, especially within the NWP community. Operational 

systems using 4D-VAR for weather data assimilation have employed a number of algorithms 

(nested loops leading to incremental 4D-VAR; e.g. Courtier et al. [1994]) to cut down the 

numerical cost without sacrificing too much on the basic analysis method itself. Individually 

examining these algorithms and the resultant flavors of 4D-VAR is beyond the scope of this 

chapter and a more detailed review of these algorithms may be found in Talagrand [2010].  



 

 

Chapter 4 

Background Error Covariance for Atmospheric CO2 Data 

Assimilation 

4.1 INTRODUCTION  

Atmospheric CO2 observations provide a powerful constraint on the net sources and sinks 

of CO2 as well as their spatial and temporal distribution (e.g. Le Quéré et al. [2009]). The advent 

of several remote-based instruments for observing CO2 is expected to provide better insight into 

the critical controls over the atmospheric CO2 growth (e.g. Scholes et al. [2009]) and potentially 

improve atmospheric flux inversions (e.g. Chevallier et al. [2009b]; Baker et al. [2010]). 

Assessing the information content of remote-sensing datasets, however, is difficult due to 

sampling limitations and large data gaps in the observations. These data gaps can be caused by 

geophysical limitations, such as clouds and aerosols (e.g. Bösch et al. [2006]; Tiwari et al. 

[2006]), as well as by retrieval uncertainties. Further analysis in the form of statistical mapping 

(e.g. Alkhaled et al. [2008]; Hammerling et al. [2012a; 2012b]) or binning and averaging (e.g. 

Tiwari et al. [2006]; Crevoisier et al. [2009]; Kulawik et al. [2010]) is often necessary in order to 

create full-coverage maps and maximize the usefulness of the data.  

An alternate approach is to use advanced data assimilation (DA) techniques to extract 

information about global CO2 distributions from the available observations. Atmospheric CO2 

data assimilation (e.g. Engelen et al. [2004]; Engelen and McNally [2005]; Engelen et al. [2009]; 



 

 

Li et al. [2012]) yields 4-dimensional fields of atmospheric CO2 concentrations that are 

statistically consistent with (1) the information provided by the CO2 observations, and (2) 

additional sources of information, for example from model estimates of CO2 fluxes, atmospheric 

transport etc. These additional sources of information, commonly termed as the a priori model 

state (or the background state) are typically obtained from a short-range forecast valid at the time 

of assimilation. The background state incorporates knowledge about the mechanistic processes 

governing the carbon cycle and/or imposes physical or dynamical constraints to the assimilation. 

An attractive feature of the DA framework (Engelen et al. [2009]) is that along with CO2 

observations it also makes it possible to assimilate relevant meteorological variables such as 

temperature and humidity, which are known to affect the observed radiances from which CO2 

information is derived. The final analysis is a consistent estimate of the atmospheric CO2 

concentrations, which if produced with sufficiently high accuracy, could be subsequently used 

for carbon flux inversions (e.g. Chevallier et al. [2009a]).   

In all DA applications, ranging from atmospheric CO2 or other constituents to the 

Numerical Weather Prediction (NWP) problem, the observations and the background are 

weighted (e.g. Nichols [2010]) based on the accuracy of the information sources. Like any other 

information source, the background state is prone to errors, which are accounted for through the 

so-called background error covariance statistics (e.g. Bannister [2008a]). It is now well accepted 

that a realistic representation of the background error distribution is highly important for 

successful data assimilation. The background error statistics filter and spatially spread the 

information provided by the observations and impose correlation between different model 

variables. The critical role played by the background has been demonstrated by Cardinali et al. 

[2004], where it was shown that only 15% of the information content of a well-balanced 



 

 

meteorological analysis is attributable to the observations assimilated during an analysis; the 

remaining 85% of the information is provided by the background.  

A conceptual definition of background error is relatively trivial, in the sense that it 

corresponds to the difference between the background atmospheric state and the true atmospheric 

state. Nonetheless, realistic estimation of the error statistics is not straightforward for several 

reasons. First, the true atmospheric state is never exactly known, such that the background errors 

and associated covariances must be estimated from surrogate data. A second difficulty is that 

error contributions to the background are relatively complex, because the background is the 

result of a complex data assimilation procedure that involves interplay between the observations 

assimilated in the past, the analysis formulation, and a forecast model operator. A third difficulty 

is that the size of the background error covariance matrix is too large to be stored explicitly, 

necessitating a variety of reduced-rank approximations to make the computations feasible.  

Various techniques have been developed to tackle these challenges (Bannister [2008a; 

2008b]), and there is now a substantial literature on background error statistics for NWP and 

constituent assimilation applications, covering their nature, estimation, and practical 

implementation in operational settings (e.g. Derber and Bouttier [1999]; Chapnik et al. [2004]; 

Fisher [2004]; Deckmyn and Berre [2005]; Zagar et al. [2005]; Belo Pereira and Berre [2006]; 

Berre et al. [2006]; Benedetti et al. [2007]; Buehner and Charron [2007]; Constantinescu et al. 

[2007]; Pannekoucke et al. [2007; 2008]; Raynaud et al. [2009]; Berre and Desroziers [2010]; 

Boloni and Horvath [2010]; Bonavita et al. [2010]; Cheng et al. [2010]; Hess [2010]; Michel et 

al. [2010]; Giuseppe et al. [2011]; Singh et al. [2011]; Varella et al. [2011]; Brousseau et al. 

[2012]; Massart et al. [2012]).  



 

 

The proposed approaches are problematic for atmospheric CO2 data assimilation, 

however, because they fail to take into account: (a) the significant uncertainty associated with the 

surface CO2 fluxes, and (b) the errors associated with the CO2 transport model. Forecast or 

ensemble-based techniques prescribe the background statistics based only on the internal 

uncertainties in the transport model, but these are not a realistic representation of the true 

transport model errors. Additionally spatial and temporal variations in the CO2 fluxes are a key 

driving force behind atmospheric CO2 distributions, and consequently the measured CO2 

concentrations. Failing to capture the true magnitude of the transport errors and ignoring the 

uncertainty of the fluxes results in an under-estimation of the background error statistics, which 

makes the assimilation reject the observations in favor of the background. This problem is 

especially severe during the Northern Hemisphere summer when the uncertainties in the 

background CO2 fluxes are expectedly high.  In such cases, one has to artificially inflate the 

background error (Engelen et al. [2009]), but this strategy still does not account for the spatial 

error correlations due to the flux uncertainties.  

The primary goal of this study is to outline an approach for parameterizing the 

background error covariance for atmospheric CO2 data assimilation, in a way that includes the 

statistics of errors resulting from both flux and transport uncertainties. The proposed approach is 

based on the assumption that the difference between modeled CO2 concentrations (henceforth, 

denoted as CO2) from two state-of-the-art global models is statistically representative of the 

background errors. Because any two models provide a limited sample of the true background 

error distribution, it is beneficial to ensure that these models are different both in terms of the 

underlying fluxes and the transport fields driving them to capture realistic variability in the 



 

 

background error. The error statistics can then be generated from the CO2 fields using spatial 

statistical tools.  

In this study, the resulting background error statistics are implemented within the 

atmospheric CO2 4D-VAR system at ECMWF. This system, as described in Engelen et al. 

[2009], is akin to a NWP-DA setup, in which CO2 mixing ratios are constrained along with other 

atmospheric variables such as temperature, winds, surface pressure, and humidity, to obtain a 

consistent estimate of the atmospheric CO2 concentrations. Experiments are designed to 

evaluate: (a) whether the difference between two models can be used as a proxy for the statistics 

of the background errors, (b) the extent to which the representation of background errors has a 

discernible impact on CO2 estimates, and (c) whether including realistic statistics of errors 

improves the performance of the data assimilation system, relative to simply accounting for 

internal transport model uncertainties as available from a forecast-based technique (standard 

version of the NMC-method, according to the terminology of Široká et al. [2003]). The 

predictions of the 4D-VAR analyses are evaluated using independent observations of CO2 from 

aircraft profiles and column-averaged dry mole fractions of CO2 (i.e., XCO2) from the Total 

Column Carbon Observing Network (TCCON).  

Although the application presented here primarily focuses on atmospheric CO2 data 

assimilation, the proposed approach is relevant for other trace gas assimilation applications, 

especially ones in which the background errors are influenced by both atmospheric transport and 

emission patterns. Additionally, this study provides insights into improvements that can be 

achieved within operational atmospheric data assimilation systems from better representations of 

background error statistics in general.  



 

 

4.2 EXPERIMENTAL FRAMEWORK 

4.2.1 Four-dimensional variational data assimilation 

The atmospheric 4D-VAR data assimilation system used in this study is based on the one 

described by Engelen et al [2009]. It uses the ECMWF Integrated Forecasting System (IFS) 

transport model with CO2 fluxes prescribed at the surface based on climatological and inventory 

data. The system assimilates the same meteorological observations as the operational ECMWF 

system, in addition to observations constraining CO2. We avoid repeating the details of the data 

assimilation system here, and instead point out the two major changes relative to Engelen et al. 

[2009]. The specification of the background covariance matrix, however, forms the primary 

focus of this study and is discussed separately in Section 4.2.2.  

First, the IFS version has been updated since the study of Engelen et al. [2009]. The 

version used in this study is based on CY37r3 (ECMWF, IFS documentation CY37r2, 2011, 

http://www.ecmwf.int/research/ifsdocs/CY37r2/index.html), which became operational in 

November 2011, and incorporates several improvements to the atmospheric forecast model and 

the data assimilation system at ECMWF.  

Second, the focus in Engelen et al. [2009] was on the assimilation of radiances from the 

Atmospheric Infrared Sounder (AIRS; Chahine et al. [2006]) and the Infrared Atmospheric 

Sounding Interferometer (IASI; Crevoisier et al. [2009]) instruments. Instead, this study uses L2 

retrieval data from the Greenhouse gases Observing SATellite “IBUKI” (GOSAT; Kuze et al. 

[2009]; Yokota et al. [2009]). These datasets are obtained from version 2.9 of the ACOS 

algorithm (e.g. O’Dell et al. [2012]; Crisp et al. [2012]). Based on the recommendations of the 

ACOS team, only the high (H) gain observations with the master quality flag equal to “good” are 

used in the assimilation process. Although first estimates for bias correction of the ACOS data do 



 

 

exist (Wunch et al. [2011a]), these are not used in the experiments in this study. GOSAT data 

provide a stronger constraint on CO2 near the surface relative to AIRS and IASI observations, 

but have relatively poor geographical coverage. 

4.2.2 Specification of the background error covariance matrix 

4.2.2.1 NMC method 

The background error covariance matrix used in Engelen et al. [2009] is based on the 

NMC (National Meteorological Center, nowadays named National Center for Environmental 

Prediction) method (Parrish and Derber [1992]). The NMC method is also based on the 

principle of using a surrogate quantity to represent the background errors, where the surrogate is 

typically chosen to be the differences between forecasts of different length valid at the same 

time. In its simplest form (e.g. Široká et al. [2003]), the NMC method is implemented by taking 

the differences between 24 h forecasts and 12 h forecasts over a one-month period. The main 

advantage of this method is that the forecasts required for calculating the background error 

statistics are readily available during the DA process.  

One limitation of this approach is that the variance of background errors in data sparse 

regions is underestimated (e.g. Berre et al. [2006]) because any differences between forecasts of 

different lengths are attributable to information from observations within the period between the 

starting times of the two forecasts. A second limitation is that this approach does not account for 

the uncertainty associated with the underlying fluxes because the two forecasts start from the 

same set of prescribed fluxes. This also implies that if there is no significant seasonality in the 

observational constraint then the error statistics defined via the NMC method remain invariant in 

time, and will fail to account for the seasonal variability in the background errors. Third, while 

the NMC method is able to account for internal (i.e. within the same model) transport 



 

 

uncertainties, they cannot represent the epistemic errors due to the structure of the transport 

model itself. Finally, the implicit formalism of the NMC method (i.e., the analysis of increments) 

emphasizes the small-scale structures in the background CO2, missing much of the large-scale 

variability. Interestingly, this is different from NWP-related applications where it has been 

pointed out (e.g. Berre et al. [2006]; Belo Pereira and Berre [2006]; Storto and 

Randriamampianina [2010]) that the NMC method likely overestimates the error correlations. 

This difference is purely based on the different scales at which the chaotic weather dynamics and 

the atmospheric CO2 processes operate.  

4.2.2.2 -statistics method 

Analogous to the NMC method, the -statistics are formulated using a surrogate quantity, 

which is chosen to be the difference in the modeled CO2 concentrations (ΔCO2) from two global 

models. In this study, the two selected models are PCTM-GEOS4 CASA (Kawa et al. [2004]) 

and IFS-ORCHIDEE (e.g. Hollingsworth et al. [2008]; de Rosnay et al. [2003]; Krinner et al. 

[2005]), which are based on different biospheric CO2 flux distributions (CASA vs. ORCHIDEE) 

propagated by different atmospheric transport (PCTM-GEOS4 vs. IFS). These models also have 

distinct specifications of ocean fluxes as well as fossil fuel and fire emissions.   

The ΔCO2 fields (Figure 4.1) are obtained 3-hourly at a horizontal resolution of 1° by 

1.25° for 60 sigma-hybrid levels of the atmosphere. The horizontal and vertical error correlations 

for generating the background error covariance matrix is based on these ΔCO2 fields. The vertical 

error correlations distribute the information of the observations in the vertical because they 

represent the correlation between errors at different altitudes. In our case, the correlation 

coefficients of ΔCO2 between different atmospheric (or model) levels are constant in space but 

vary monthly to capture the seasonality in the ΔCO2 field. 



 

 

The horizontal error correlations define how errors are correlated between grid boxes, 

and define the degree to which CO2 is adjusted around grid boxes containing observations. In our 

case, the horizontal error correlations are obtained from a variogram analysis, a quantitative tool 

in geostatistics that has been successfully used to characterize the spatial and temporal structure 

of atmospheric CO2 (e.g. Alkhaled et al. [2008]; Hammerling et al. [2012a]). The horizontal 

correlations are themselves spatially variable, and are defined separately for each atmospheric 

(or model) level. Separate horizontal error statistics are calculated for each atmospheric (or 

model) level due to the difference in the patterns of CO2 gradients at different levels of the 

atmosphere (Figure 4.1). Near the surface (Figure 4.1A and B), differences between the  

 
Figure 4.1- ΔCO2  fields for: (a) January (A and C) and June (B and D), and (b) at two different 

atmospheric levels, 975 hPa or ~ 300 m (Panels A and B) and 250 hPa or ~ 10 km. The fields are shown 

for the 15
th
 of the month at 1800 h UTC. 

 



 

 

prescribed fluxes, result in higher errors in the background. In addition, the interaction between 

boundary layer dynamics and biospheric emissions (a.k.a. ‘the rectifier effect, Denning et al. 

[1999]) also contributes to large variability in the CO2 concentrations near the surface. 

Conversely, in the free troposphere (Figure 4.1C and D), CO2 is more dispersed and well-mixed, 

yielding smaller and smoother errors. Note that in Figure 4.1 the ΔCO2 fields are shown for two 

typical months - January and June 2010, which are representative of Northern Hemispheric 

winter and summer, respectively. As can be seen in this figure, the seasonality in the ΔCO2 fields 

is more evident near the surface (Figure 4.1A and B) relative to higher levels in the atmosphere 

(Figure 4.1C and D).  

The plots in Figure 4.1 also show that within each atmospheric (or model) level, 

significant regional variability exists in the ΔCO2 fields. These reflect the regional differences in 

surface fluxes between the models, as well as differences due to different representations of 

global atmospheric transport. Previous work by Alkhaled et al. [2008] and Hammerling et al. 

[2012a] using column-averaged CO2 concentrations (i.e., XCO2) highlighted that significant 

regional variability exists in the spatial covariance structure of atmospheric CO2 concentrations, 

and hence any spatial analysis needs to be done regionally rather than globally. Keeping these 

features in mind, the spatial variability ( γ ( )region d ) at a particular model level is defined as: 
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where xregion and xregion+d  denote the differences in modeled CO2 over two locations separated by 

a distance d. Similarly to Alkhaled et al. [2008], here: a) regions are defined as overlapping 

2000km radius circles, centered at the model grid cell, and b) γregion(d) is constructed using pairs 

of points, with the first point being within the specified region (ΔCO2 (xregion)) and the other 



 

 

point being either within or outside that region (ΔCO2 (xregion+d)). The horizontal variability, thus, 

accounts for both the observed variability within each sub-region (by using all available pair of 

points within a region) and large scale variability (by using a random sample of the points 

outside the region). Once the regional variability of ΔCO2 is defined, it can be represented using 

an exponential decay in the spatial correlation as a function of separation distance (d), 

parameterized by a variance (
2
) and a correlation length (3l), and a positive-definite function 

describing the decay of auto-correlation as the separation distance (d) increases: 

  2 2γ ( ) exptheo

d
d d

l
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 
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Fitting the correlation length and the variance parameters is possible using a simple or weighted 

least-squares technique, or more computationally efficient minimization schemes such as the 

limited memory BFGS (L-BFGS; Nocedal and Wright [2006]) as used in this study. The 

horizontal error correlation coefficients are now obtained as the ratio of Q(d)/ 
2
. 

Theoretically, both the horizontal and the vertical error correlations can be generated for 

each time period (i.e. 3-hourly) when the modeled CO2 concentrations are available. Based on 

our understanding of the surface CO2 exchange, the atmospheric structure and the transport of air 

masses, significant seasonal (or monthly) differences in the background error are expected. At 

daily or sub-daily time scales, however, the differences in the background error are local and 

mostly remain confined within the boundary layer. Hence in this study, these error correlations 

are generated once each month (on the 15
th

 day at 1800 UTC) that is assumed to be 

representative of the typical variability that would be observed during an individual day in the 

month.  

The properties of the background error covariance inferred from the -statistics are 

subsequently modeled using the mathematical framework of wavelet-like, non-orthogonal basis 



 

 

functions having simultaneous localization both in space and wave number. This mathematical 

formulation of the background error covariance matrix is based on Fisher [2004; 2006] and the 

application to tracer variables is described in Benedetti and Fisher [2007].  

4.3 SAMPLE APPLICATION 

4.3.1 Experiments  

GOSAT observations for the year 2010 are assimilated into the 4D-VAR system to 

generate global 4D distributions of atmospheric CO2. Two independent sets of experiments are 

run, in which the background error covariance is prescribed based on the -statistics (henceforth 

“analysis with the -statistics”) and the NMC approach (henceforth “analysis with the NMC 

statistics”), respectively. While the background error using the -statistics method is defined as 

outlined in Section 4.2.2.2, the NMC method typically under-estimates the background error. In 

order to offset this under-estimation, following Engelen et al. [2009] the standard deviations of 

the background errors from the NMC-based statistics are inflated by a factor of 8 with a 

maximum of 15 ppm. The inflation factor is based on comparisons between the CO2 model 

concentrations and independent surface and aircraft observations. All other parameters in these 

experiments are held the same to allow a straightforward evaluation of the impact on the CO2 

estimates due to different parameterization of the background errors statistics.  

A third set of experiments is run in which fluxes are prescribed but no observational 

constraint on CO2 is provided (henceforth “unconstrained model run”), to assess the impact of 

the GOSAT observations on the assimilation and the impact of each of the background error 

representations. This experiment uses only meteorological observations and transports the CO2 

starting from the same initial field on 1 January 2010 as the other two sets of experiments.  



 

 

4.3.2 Evaluation of the 4D CO2 fields  

 Given that the true atmospheric CO2 concentrations are unknown globally, the 4D-VAR 

estimates from the three experiments are evaluated using two sets of independent observations 

(Figure 4.2) that are not included in the assimilation process – column-averaged dry mole 

fractions of CO2 (i.e., XCO2) from the Total Column Carbon Observing Network (TCCON) and 

vertical profiles of CO2 from aircraft observations. Both these observational datasets have much 

higher accuracy than the 4D-VAR analysis, and are assumed to be representative of the true 

atmospheric state.  

TCCON is a global network of calibrated ground-based Fourier transform spectrometers 

that measure the total column amount of various species (including CO2) by recording the direct 

solar spectra in the near-infrared spectral region (Wunch et al. [2011b]). The TCCON 

observations are compared to column-averaged 4D-VAR analysis estimates within six latitudinal 

bands (90-60 N, 60-30 N, 30-0 N, 0-30 S, 30-60 S and 60-90 S) to assess the impact of 

latitudinal differences in the background error statistics on the 4D-VAR analysis.  

Mean absolute errors (MAE; e.g. Willmott and Matsuura [2005]) are calculated across all 

TCCON sites within each latitudinal band, as is the uncertainty of the mean:  
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where M represents the total number of TCCON sites, Ni represents the total number of 

observations at the i
th

 TCCON site,       
is the j

th
 TCCON observation at the i

th
 site, and  ̂     

 is 



 

 

 
Figure 4.2- Location of the aircraft and TCCON sites. The three-letter codes for the sites are defined in 

Appendix B.  

 

the corresponding 4D-VAR analysis for that TCCON observation. Additionally, the MAE for 

each TCCON site is also calculated as: 
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The second evaluation is carried out using aircraft observations available over North 

America. The National Oceanic and Atmospheric Administration Earth System Research 

Laboratory (NOAA-ESRL) has been conducting long term aircraft monitoring 

(http://www.esrl.noaa.gov/gmd/ccgg/aircraft/), in which vertical profiles of various trace gases 

(including CO2) are observed in the troposphere (i.e., surface to 8 km altitude) with high 

accuracy (e.g. Tans [1996]; Crevoisier et al. [2010]). Sampling frequencies are weekly or 

biweekly for most sites. The aircraft observations and the 4D-VAR analysis estimates are 

divided into four altitude bins, 0-2 km, 2-4 km, 4-6 km and 6-8 km. For each altitude bin, 

Equations 4.3-4.5 are applied to calculate the MAE metrics between the 4D-VAR analysis 



 

 

estimates and the aircraft observations. This evaluation exercise, thus, provides quantitative 

information regarding the impact of the background error statistics in the vertical. Because 

aircraft observations are available only over North America for the study period, only a single 

latitude band between 90 – 0 N is considered for this second evaluation exercise. 

4.4 RESULTS  

4.4.1 Background error correlation from the -statistics 

Figure 4.3 shows the horizontal error correlation length and the variance for the near-

surface ΔCO2 fields shown in Figure 4.1A and B, showing both regional and seasonal differences 

in the inferred covariance parameters. In June, strong biospheric signals dominate the Northern 

Hemisphere and the overall flux uncertainty and variability is higher relative to January. 

Consequently the horizontal error correlations in Figure 4.3 show higher variance and shorter 

correlation length over the Northern Hemisphere. Analyses at higher atmospheric (or model) 

levels indicate longer correlation lengths and lower variance. This is expected because the impact 

of the near-surface CO2 exchange and transport is dampened higher in the atmosphere, and the 

variability is dominated by the synoptic-scale mixing of air masses. 

The vertical error correlations based on the CO2 fields are stronger relative to those 

derived from the NMC analysis, show distinct seasonality, and decay more slowly across levels 

(Figure 4.4). As a result, analysis based on the -statistics will spread the information from the 

observations more in the vertical relative to an analysis using NMC-statistics. In the upper 

troposphere and the stratosphere (Figure 4.4B) the vertical error correlations from the two 

methods become more similar to one another, although the vertical error correlations from the -



 

 

statistics still decays more gradually compared to the NMC-statistics (Figure 4.4B – between 20 

- 0 km) 

If the ΔCO2 fields are a reasonable representation of the structure of the background 

errors, then its corresponding horizontal and vertical error correlations indicate that the 

background error statistics should vary spatially and temporally. By specifying these error 

statistics to be constant over large areas or forcing them to be invariant in time, the NMC 

statistics may underestimate (or over-estimate) the magnitude of the true errors and therefore 

degrade the DA analysis. These error statistics also provide an initial indication of the 

observational impact on the analysis. The long correlations are a result of the large scale 

structures in the CO2 background. Within a DA analysis, specifying these long error correlation 

functions will make the analysis filter out any small-scale features while propagating the 

information from the observations to large distances, in the horizontal and the vertical.  

4.4.2 Impact on the 4D-VAR analysis due to the background error statistics  

A sample of atmospheric CO2 fields near the surface from the three experiments is shown 

in Figure 4.5. All three experiments capture the latitudinal and inter-hemispheric gradients in 

CO2 as well as the seasonal cycle of the Northern Hemisphere CO2, i.e., buildup of CO2 

concentrations in January when the majority of the terrestrial biosphere is dormant and a 

significant drawdown of CO2 in June due to the vegetation uptake.  

A closer evaluation of the two 4D-VAR analysis using the GOSAT observations 

indicates that the difference between the two analysis estimates are greater near the surface, 

where most of the variability in the CO2 processes (such as fossil fuel emissions, biospheric 

exchanges, influence of boundary layer variations etc.) are present.   



 

 

 

Figure 4.3- Inferred correlation length (3l) and variance (2
) parameters for January (A and C) and 

June (B and D). The covariance parameters are shown for the 15
th
 day of the month, 1800h UTC at 975 

hPa (i.e., ~ 0.3 km). Note the higher variance for June is indicative of greater variability in the surface 

CO2 processes during this month.    

 

Relative to the background, the analysis with the -statistics allows more adjustment by 

the GOSAT observations than the analysis using the NMC-statistics. A typical example is visible 

over Eurasia (compare the CO2 fields in Figure 4.5B and 4.5D with those in 4.5F). The NMC-

statistics tends to produce localized changes only while the adjustments made by the -statistics 

are over larger scales. The mean absolute difference in CO2 concentrations between the analysis 

with the NMC statistics and the unconstrained model run (January – 0.22 ppm, June – 0.36 ppm) 

is smaller and less variable across seasons than the corresponding difference between the 

analysis with the -statistics and the unconstrained model run (January – 0.63 ppm;  



 

 

 
 

Figure 4.4- Vertical error correlations from the seasonally-static NMC-method and the -statistics at the 

surface (A), and at ~50 hPa or ~ 20.0 km (B).  

 

June - 3.3 ppm). These differences are limited to the lower levels of the atmosphere where: a) the 

error statistics from the NMC and the –method are most different, and b) the GOSAT 

observations tend to have the largest impact on the analysis. This supports our original 

hypothesis that the longer error correlation length (both in the horizontal and the vertical) in the 

-statistics allows the GOSAT observations to have a greater impact. The relatively ‘stiff’ or the 

smaller error variances associated with the NMC NMC-statistics gives less weight to the 

GOSAT observations in favor associated with the keeping the analysis close to the background 

CO2 distribution. 

An alternate way of examining the impact of the GOSAT observations is by looking at 

the CO2 analysis increments (analysis minus background values), which show the direct impact 

of the observations on the CO2 field. As described in Fisher [2002], within the ECMWF 4D- 

VAR system these increments are calculated using the differences between the observations and 

the model background (short forecast), the observation errors and the background errors. Figure 

4.6 shows the increments in total column mean mixing ratio of CO2 for June 2010 for the NMC 

experiment and the -statistics experiment. The CO2 increments in the NMC experiment 



 

 

 

Figure 4.5- CO2 concentrations from the 4D-VAR analysis based on the two background error statistics –

-statistics (A and B), NMC statistics (C and D) and the no-assimilation model run (E and F) for January 

and June 2010. The plots are shown for the 15th day of the month, 1800h UTC at 975 hPa (i.e., ~ 0.3 km).  

 

are generally small-scale, while the -statistics allow much broader scale adjustments to the CO2 

fields. This follows from the longer error correlation lengths and higher variance prescribed in -

statistics compared to the NMC-statistics. The accuracy of these adjustments is next evaluated 

using independent observations.  



 

 

 

Figure 4.6- Column-averaged CO2 mixing ratio analysis increments based on the two background error 

statistics –-statistics (A), and NMC-based statistics (B), averaged over the month of June 2010.  

4.4.3 Evaluation of the 4D-VAR analysis  

The quality of the 4D-VAR analysis is assessed by comparing the atmospheric CO2 fields 

to observations from the aircraft and the TCCON networks. Figures 4.7A and 4.7B show 

example profiles collected on 9
th

 Jan 2010, and 26
th

 June 2010, over Worcester, Massachusetts 

(site code-NHA in Figure 4.2). In both cases, the 4D-VAR analysis reduces the mismatch 

between the background and the true atmospheric CO2 state.  The ability of the GOSAT 

observations to adjust the details of the background CO2 profile, however, is limited by the stiff 

NMC-method relative to the more flexible -statistics approach. Figures 4.8A and 4.8B show the 

TCCON observations collected over Bialystok, Poland (site code – BIA in Figure 4.2) for 

different days in January and June 2010. The NMC statistics again limit the degree to which the 

GOSAT observations can adjust the background state. 

Overall, the CO2 estimates based on the -statistics show significant improvement 

relative to the analysis using NMC statistics during the Northern Hemisphere summer, when 

significant uncertainty in the fluxes are present (Figure 4.9). The variability of the MAE across 

TCCON sites is also smaller when using the -statistics approach. This denotes that the CO2 



 

 

 
 
Figure 4.7- Evaluation of 4D fields of CO2 using aircraft observations over Worcester, Massachusetts 

(site code – NHA) on 9
th
 January 2010 (A), and 26

th
 June 2010 (B).  

 

 
 
Figure 4.8- Evaluation of column-averaged CO2 using TCCON observations over Bialystok, Poland (site 

code – BIA) during January 2010 (A), and June 2010 (B).  

 

concentrations obtained from the analysis with the -statistics are consistently closer to the 

observed CO2 from the TCCON sites. During the Northern Hemisphere winter, the analysis with 

the -statistics performs similarly to the analysis using NMC-based estimates (Figure 4.9A, 60-

30 N) or slightly worse (Figure 4.9B, 30-60 S). The performance over the Southern Hemisphere, 

however, is difficult to judge given the dearth of TCCON sites.  



 

 

The aircraft profiles allow us to also examine the assimilation performance at different 

levels of the atmosphere. As seen from Figures 4.7A and 4.7B, at higher levels of the atmosphere 

(~  50 hPa or  20 km), the differences in the analysis estimates become negligible due to: (a) 

the background error covariance from the -statistics and the NMC-statistics being similar, and 

(b) the GOSAT observations being uninformative. Both analysis estimates tends to remain close 

to the background model CO2. Between 10 and 20 kms (i.e., ~ 200 hPa and 50 hPa), however, 

occasional differences are visible between the 4D-VAR analysis and the background.   

This pattern is also generally true across aircraft sites (Figure 4.10). Given that the 

GOSAT sensitivity to CO2 is very low at this level, any information from the observations can 

only change CO2 concentrations at this level through transport or through the information 

spreading of the background covariance matrix. The -statistics spread information more in the 

vertical relative to the NMC-statistics. Whereas the MAE for the analyses with the -statistics 

and the NMC statistics are similar higher up in the atmosphere (Figure 4.10A and 4.10B, 6-8 

km), differences in the MAE are more clearly visible lower down (Figure 4.10A and 4.10B, 0-2 

and 2-4 km). Similar to the TCCON evaluation, the analysis with the -statistics outperforms the 

other analysis using the NMC statistics and the unconstrained run slightly during the summer, 

but does slightly worse (Figure 4.10A) during the winter. Recall that almost all of the aircraft 

sites are located over North America, where there is little variability in the fluxes for the winter 

months due to reduced biospheric activity. 

Before concluding this section it is worthwhile to discuss a couple of caveats regarding 

the use of background statistics. Since the 4D-VAR configuration assumes unbiased Gaussian 

statistics, any systematic differences between the observations and the model background may be 

interpreted incorrectly. When the background error is small relative to the observation error, as is 



 

 

 
 

Figure 4.9- MAE between the column-averaged CO2 estimates from the 4D-VAR analysis and the 

TCCON observations, binned by latitude for January 2010 (A), and June 2010 (B). MAE between the 4D-

VAR analysis and observations from each of the TCCON sites are shown as the smaller horizontal dots. 

The error bars on the MAE take into account the total number of independent observations (# obs.) 

available within each latitude band, which are reported in black text. Values reported in brown denote 

the number of TCCON sites (# sites) available for evaluation within each latitude band.  

 

the case with the NMC experiment, the analysis will be directed towards the model background, 

irrespective of the bias in either the observations or the model background itself. When the 

background error is large compared to the observation error, as is the case in our -statistics 

experiment, the analysis is directed towards the observations in the areas where observations are 

available. Ultimately this leads to significant differences in the final analysis. Previous 

experiments (results not shown) with a biased set of AIRS data demonstrated that for the -

statistics to provide reasonable results, the observational constraint should be of a fair quality. 

The reduced performance of the -statistics during the winter months could therefore also be a 

by-product of biases in the CO2 retrievals. During the winter months, even the analysis with the 

NMC-statistics does worse than the unconstrained model run (Figures 4.9A – 30-60 N and 4.10A 

-0-2 km, 2-4 km), which points to an inconsistency between the constraint provided by the 

GOSAT data and the available independent observations.  

 



 

 

 

Figure 4.10- MAE between the CO2 estimates from the 4D-VAR analysis and the aircraft observations, 

binned by altitude for January 2010 (A), and June 2010 (B). MAE between the 4D-VAR analysis and 

observations from each of the aircraft sites are shown as the smaller horizontal dots. The error bars on 

the MAE take into account the total number of independent observations (# obs.) available within each 

altitude band, which are reported in black text. Values reported in brown denote the number of aircraft 

sites (# sites) available for evaluation within each altitude band.  

 

4.5 SUMMARY  

The background error covariance matrix is a critical component of an atmospheric data 

assimilation system and its realistic estimation is necessary to make efficient use of the 

observational information. This study examined the specification of the background error 

statistics for the atmospheric CO2 data assimilation system in place at ECMWF. Currently, the 

background error statistics for this system are based on the NMC method, which not only 

underestimates the background errors but also fails to take into account any spatial and temporal 

variations in the underlying CO2 fluxes. Limitations associated with the NMC method prompted 

the investigation of a new flexible approach for parameterizing the background error statistics 

that is more suited to atmospheric CO2-DA.  

Using the difference between CO2 concentrations of two different models as a proxy for 

the background errors, spatial statistical tools are used to generate the background error statistics. 



 

 

The resultant error correlation functions are consistent with the large scale structures in the 

background error. The new error statistics are also found to imply that errors are correlated over 

longer distances, indicating that the information from the assimilated observations can be used to 

reduce errors over larger regions. Experiments using GOSAT observation and subsequent 

evaluation with independent CO2 observations demonstrated that accounting for the spatial and 

temporal variability in the fluxes is necessary to generate reliable and consistent atmospheric 

CO2 concentrations. Because the CO2 problem is dominated by the surface fluxes, the errors in 

their prescribed or even prior (in case they form part of the minimization control vector) values is 

of utmost importance. This study illustrates the improvement that can be made and therefore 

makes the clear case for including a good estimate of surface flux errors and error correlations in 

any method that is used for estimating the background errors of an atmospheric CO2 data 

assimilation system. 

The experiments also demonstrated a couple of caveats with the proposed approach. First, 

a judicious selection of the models is necessary to capture the maximum possible uncertainty in 

the background. Ideally one should attempt to generate the background error from an ensemble 

of models that would be more representative of the background error. Secondly, generation of 

the -statistics requires separate analysis and computational time as compared to a forecast-

based technique as the NMC method. The overall benefits from the new approach, however, 

outweigh these drawbacks in terms of defining a more physically consistent CO2 data 

assimilation system. With the increasing interest in atmospheric CO2 data assimilation systems in 

order to make efficient use of remote-sensing observations, the results from this work are 

expected to contribute to an overall improvement in data assimilation systems for carbon science 

applications.  



 

Chapter 5 

Inter-comparison of ensemble and variational data assimilation 

in the context of a CO2 flux estimation problem 

5.1 INTRODUCTION 

Data Assimilation (DA) is best known as a tool in Numerical Weather Prediction (NWP; 

e.g. Swinbank [2010]) and has been applied to analyze complex datasets and estimate parameters 

in a variety of fields, including atmospheric constituent (e.g. Lahoz and Errera [2010]; Elbern et 

al. [2010]), oceanographic (e.g. Haines [2010]), and land surface (e.g. Reichle [2008]; Houser et 

al. [2010]) assimilation problems. In all applications, a DA system aims to optimally combine 

the information from the observations as well as a prior model estimate (or the background based 

on a model forecast), based on their respective uncertainty estimates. 

DA methods for estimating CO2 fluxes, similarly aim to constrain the spatial and 

temporal distributions of CO2 sources and sinks by integrating atmospheric, terrestrial and 

oceanic data together into a common analysis framework. CO2-DA applications (e.g. ensemble 

filter based methods - Peters et al. [2005]; Feng et al. [2009]; Miyazaki et al. [2011]; Kang et al. 

[2011]; Chatterjee et al. [in press], variational based methods - Rayner et al. [2005]; Chevallier 

et al. [2005b]; Rödenbeck et al. [2005]; Baker et al. [2006a], or hybrid approaches such as the 

Maximum Likelihood Ensemble Filter - Zupanski et al. [2007a]; Lokupitiya et al. [2008]) have 

been in vogue for nearly a decade and are viewed as an alternative to more traditional batch 



 

inverse modeling schemes (Bayesian Inverse Modeling, e.g. Enting [2002]). Unlike DA, which 

uses a combination of numerical approximations and time-stepping approaches, the batch 

schemes solve the linear system of equations relating the fluxes and the atmospheric CO2 

observations in a single step. The DA approaches are attractive because of their computational 

efficiency (e.g. Rayner [2010]) but the exact impact of their underlying numerical 

approximations on the final estimates and their associated uncertainties is still ambiguous.  

Recently, Chatterjee et al. [in press] pointed out that because of certain fundamental 

differences between the carbon flux estimation (i.e., the inverse framework) and the 

NWP/constituent (i.e., assimilation framework) problems: a) the performance of the DA methods 

are not necessarily equivalent for the two frameworks, and b) only under specific inversion 

scenarios are the DA methods able to perform optimally. Differences between the two 

frameworks are mainly driven by: a) the ill-conditioned and highly diffusive nature of the flux 

estimation problem, and b) the absence of an explicit dynamical model that can evolve a set of 

estimated fluxes forward in time. The lack of a dynamical model represents a loss of valuable 

information to the DA system. By propagating the state vector between different assimilation 

time steps, the dynamical model directly contributes to the growth of the eigenvalue spectrum of 

the state covariance matrix in certain preferred directions and decay in others (Bengtsson et al. 

[2003]; Furrer and Bengtsson [2007]). But for the CO2 inverse problem, the absence of such a 

model coupled with the availability of sparse observational datasets may result in the DA 

approaches performing sub-optimally.  

The authors are not aware of any study, specifically related to the CO2 flux estimation 

problem, which attempts to evaluate the performance of different data assimilation techniques. 

This is unlike the weather community, where several studies have evaluated the strengths and 



 

weaknesses of ensemble and variational approaches for different weather-related applications 

ranging from simple to chaotic non-linear systems (e.g. Lorenc [2003]; Caya et al. [2005]; Fertig 

et al. [2007]; Kalnay et al. [2007]; Liu et al. [2008b]; Whitaker et al. [2009]; Buehner et al. 

[2010a, 2010b]; Jardak et al. [2010]; Zhang et al. [2011]; also see the special collection of 

papers on inter-comparison at http://journals.ametsoc.org/page/Ensemble_Kalman_Filter). Apart 

from NWP-related comparison studies, DA methods have also been inter-compared for chemical 

(e.g. Carmichael et al. [2008]) and constituent (e.g. ozone – Wu et al. [2008]) assimilation 

problems. These comparison studies cannot be used as a baseline, however, because of 

differences amongst the flux estimation and the NWP/constituent data assimilation frameworks, 

as stated above.  

The main purpose of this work is to fill this gap and build on the existing body of inter-

comparison studies from the perspective of the CO2 flux estimation problem. Specifically, this 

study aims to answer the following two questions: a) what is the relative performance of two 

state-of-the art DA approaches (Ensemble Square Root Filter – Whitaker and Hamill [2002] and 

4-dimensional variational – e.g. Talagrand [2010]) for solving the CO2 inverse problem?, and b) 

in the absence of a dynamical model for the inverse problem, can the DA approaches reproduce 

the flux estimates from a batch inverse modeling scheme?  

To facilitate the inter-comparison, we consider here a one-dimensional passive tracer 

transport problem. The one-dimensional problem allows us flexibility to set up the inverse 

problem because multiple experiments can be simulated in a computationally efficient way. The 

low computational cost associated with the 1D problem enables the implementation of a batch 

least-squares method alongside the DA approaches. The DA estimates are compared to both the 

true signal and the batch estimates in order to isolate the degradation due to the underlying 



 

numerical approximations. The final estimate in any DA technique is based on making several 

compromises between the computational cost, statistical optimality and physical realism of the 

assimilation problem. This study will assess whether these compromises allow the examined DA 

methods to be suitable long-term replacements of the batch technique, under different inversion 

conditions.  

When designing the 1D problem, we focus on setting up a framework that allows us to 

examine an under-determined and fine-scale flux estimation problem. This set up is necessary to 

mimic the challenges of a true CO2 flux estimation problem in which atmospheric mixing 

coupled with the sparseness of observations leaves the problem highly under-determined and ill-

posed. The under-determined nature of the problem is accentuated by the need for estimating 

CO2 fluxes at fine spatial and temporal scales. This is necessary to avoid aggregation errors (e.g. 

Kaminski et al. [2001]; Michalak et al. [2004]; Gourdji et al. [2012]) and improve our 

understanding of the fine-scale processes driving the carbon cycle. This shift in paradigm has 

primarily brought about a computational bottleneck in solving the batch inverse problem, as it 

requires the atmospheric transport model to be run either once per estimated flux region/period 

combination, or once per observation if an adjoint to the transport model is available. This has 

prompted the use of computationally efficient alternatives, such as DA methods in which the 

number of atmospheric transport model runs is proportional to the number of ensembles (in the 

ensemble approach) or the number of descent iterations (in the variational approach) rather than 

the number of estimated parameters or available observations. 

Analogous to a real CO2 flux estimation problem, no dynamical model is specified for 

solving the 1D problem using the DA methods. The experiments are specifically targeted to 

evaluate the impact of three factors on the two DA approaches: (a) impact of the observational 



 

density and homogeneity, (b) impact of the model-data mismatch covariance, and (c) impact of 

the operational parameters of the DA system (i.e., ensemble size, number of iterations). Given 

the absence of a dynamical model, it is expected that the DA methods are highly sensitive to the 

information flowing in from the observations. Assessing the impact of the density and 

heterogeneity of the observation network and the quality of the observations is therefore 

necessary to gauge the optimality of the DA methods under different inversion scenarios. While 

determining the impact of the observational density and homogeneity, issues of sampling and 

convergence error are minimized by specifying a large number of ensemble members and 

descent iterations, for the EnSRF and the 4D-VAR
[1]

, respectively. Operational constraints are 

subsequently imposed in the final set of experiments in order to investigate the interplay between 

the underlying numerical approximations and the influence of the observational density and 

homogeneity. Thus, the inter-comparison presented in this study not only addresses the 

fundamental differences between the DA methods but also the effect of the compromises 

necessary to make the algorithms practically feasible. The study is a first comparison of the 

EnSRF and the 4D-VAR for a simplified flux estimation problem, and can guide the 

development of future inter-comparison experiments with real data. 

  

[1]
 Typically in the DA community the term 4D-VAR is used to represent the 3-dimensional space plus time. In 

this study, the variational approach is applied to a 1-dimensional space plus time, which may suggest that the 

term ‘1+1D-VAR’ may be more appropriate. Within the geophysical community, however, the term 1D in 1D-

VAR specifically refers to the vertical column, and is quite popular  for radio occultation data (e.g. Eyre et al. 

[1993]; Poli et al. [2002]), total column water vapor (e.g. Marécal and Mahfouf [2002]; Bauer et al. [2006]), 

cloud (e.g. Janiskova et al. [2012])  assimilation etc. Since in the current study, 1D refers to a single dimension 

along the horizontal space and not necessarily the vertical column, we persist with usage of the term 4D-VAR 

rather than the term 1D-VAR. 

 

 



 

5.2 EXPERIMENTAL FRAMEWORK 

5.2.1 Estimation methods 

Following Enting [2002], in a Bayesian framework, all the information that is used to 

constrain a set of parameters that are being solved for, can be represented by probability density 

functions (pdfs). If the pdfs can be approximated as Gaussian, then maximizing the posterior 

probability of the state is equivalent to finding the minimum of a quadratic objective function as 

shown in Equation 5.1: 
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where s is a m  1 vector of the discretized state (for e.g., CO2 flux), z is the n  1 vector of 

observations (for e.g., CO2 observations), h is a forward model that is often a combination of an 

atmospheric transport model and an observation operator, R is the n  n model-data mismatch 

covariance, s
b
 is the m  1 prior estimate of the state, Q

b
 is the m  m error covariance of the 

prior estimate s
b
, and the superscript T denotes the matrix transpose operation. Note that in the 

case of atmospheric CO2 inverse problem, h is linear and represented via its matrix form H 

(a.k.a. sensitivity matrix with dimensions n  m, or Jacobian matrix). Typically, this matrix form 

of H represents the sensitivity of the observations z to the fluxes s (i.e. i,j i jH z s   ).  

The inverse problem as formulated via Equation 5.1 determines a least squares fit of the 

prior state estimate to the observations, subject to the constraints provided by the error 

covariance matrices. The estimate of s can be obtained via a batch Bayesian Inverse Modeling 

(BIM) approach (e.g. Enting [2002]). The analytical solution for the a posteriori estimate and the 

covariances are given by: 



 

  ˆ b b  s s K z Hs  5.2  

  a bQ I - KH Q  5.3  

  
1

b T b T


 K Q H HQ H R
 

5.4  

where ŝ is the posterior best estimate of the state and Q
a 

is the a posteriori covariance of the 

recovered best estimate. The diagonal elements of Q
a
 represent the predicted error variance (

2

ˆ
s ) 

of individual elements in ŝ . As stated earlier in Section 5.1, for CO2 inversion studies, generation 

of the matrix H requires an atmospheric transport model to be run either once per estimated state, 

or once per observation. The large number of forward model runs ultimately makes the batch 

approaches, such as BIM, computationally intractable for solving large-scale problems.  

In the variational approach, Equation 5.1 is recast as a minimization problem and the 

solution ŝ  is sought iteratively by an optimization algorithm. The overall approximation lies in 

the fact that only a small number of iterations are performed. The minimization can be stopped 

by artificially limiting the number of iterations or by requiring that the norm of the gradient 

decreases by a predefined amount during the minimization. Most minimization schemes (e.g., L-

BFGS, Nocedal and Wright [2006]) rely on the availability of the gradient of the objective 

function ( ˆ( )J s ) with respect to the state (or control vector in 4D-VAR terms). 
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Instead of analytically calculating the gradient, the adjoint of the forward transport model is used 

to compute the term  1T h   H R z s , which is then added to  
1

b b


  Q s s in Equation 5.5 

above. In this study, the 4D-VAR is implemented with successive overlapping windows to 

account for the long residence times of CO2 in the atmosphere. If a single long window is 



 

employed for a real CO2 flux estimation problem, the computational cost associated with 

calculating the inverse of the prior covariance matrix Q
b
 in Equation 5.5 increases significantly. 

Alongside the CO2 flux errors are both spatially and temporally correlated (e.g. Chevallier et al. 

[2012]), which implies that the prior error covariance matrix has off-diagonal terms. Any 

algebraic manipulations, such as taking inverses or calculating the square roots for 

preconditioning purposes, thus become operationally cumbersome.  

In the absence of a dynamical model, we find the 4D-VAR implementation to be similar 

to the FGAT-3DVAR (Massart et al. [2010]) variant occasionally used within the NWP 

community. The main caveat with the variational approach is that a direct estimate of the 

analysis error is not available (no clear analogue of Equation 5.3). Mathematically this can be 

obtained from the inverse of the Hessian (e.g. Le Dimet et al. [2002]; Rödenbeck [2005]; Meirink 

et al. [2008]). But computational challenges restrict the calculation and storage of the Hessian for 

large scale problem. Recent studies have shown that computationally efficient alternatives do 

exist (e.g. Shutyaev et al. [2009]; Cheng et al. [2010]), which may have potential applicability 

for the CO2 flux problem but have not been pursued in this study. 

In the ensemble filter approach, the key innovation is to work in a reduced subspace of 

the error covariance matrices. Observations are assimilated to update the ensemble representation 

of the error covariance matrices. The optimal analysis states and an estimate of the analyses error 

are determined in a similar fashion to Equations 5.2 and 5.3 but the calculation of 
b T

Q H and 

b T
HQ H  are approximated by running the transport model with the ensemble members directly:  
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While several variants of the ensemble approach are available, here we have used a serial 

ensemble square root filter (Whitaker and Hamill [2002]), which is implemented in a fixed-lag 

smoother form (e.g. Whitaker and Compo [2002]; Chatterjee et al. [in press]). The localization 

scheme (i.e., to cut down spurious noise in the ensemble) is based on Houtekamer and Mitchell 

[2001] using a fifth-order Gaspari-Cohn function (Gaspari and Cohn [1999]) while the adaptive 

inflation algorithm (i.e., to counter spurious variance deficiency among the ensemble members) 

is based on Anderson [2009]. Implementation of these algorithms within an ensemble smoother 

framework is described in further detail in Chatterjee et al. [in press] (also see Chapter 6 -

Section 6.2). Inspite of these additional algorithms, the overall implementation of EnSRF is 

surprisingly simple and computationally efficient.  

The setup of 4D-VAR (overlapping time windows) and EnSRF (fixed-lag smoother) 

reflect state of the art implementations of these two DA approaches, keeping in mind the nature 

of the atmospheric CO2 process. We tested other flavors of the ensemble filter (EnKF with 

perturbed observations) and the variational approach (PSAS) but found that the overall 

conclusions from the inversion experiments remain largely consistent across these algorithmic 

choices. We encourage the reader to look at Lorenc [2003] and Nichols [2010] (and references 

therein) for a more mathematical and detailed exposition on these DA methods.   

5.2.2 Problem description 

A 1-dimensional (1D) advection-diffusion problem of a passive tracer is selected to 

emulate the CO2 flux estimation problem. In the 1D illustration, the passive tracer represents 

atmospheric CO2. Tracer fluxes get released from a series of locations over a finite duration and 



 

get transported by a tracer transport model that encapsulates the physics of advection and 

diffusion. No sink is specified in the model as a result of which there is a gradual buildup of the 

passive tracer within the domain. Subsequently, observations of the tracer are obtained at various 

locations and times within the domain. The locations and times of the observations as well as 

their precision can be regulated to simulate a variety of inversion scenarios. The inverse problem 

constitutes of using the noisy tracer observations along with the transport information to infer the 

original tracer fluxes.  

In the following description, the units of mass, length and time are reported as [M], [L] 

and [T] to keep the problem generic. Both the length of the 1D domain and the time period of the 

experiment are arbitrarily discretized. The parameters for the experiment are: the grid size x = 1 

[L]; the domain length x = 300 [L]; the time step of release t = 1 [T]; the total number of time 

periods over which the tracer flux is released is 35; the longitudinal dispersion coefficient DL = 

2.0 [L
2
/T]; and the advection velocity v = 50.0 [L/T].  

The tracer flux s [ML
-1

T
-1

] that is released (Figure 5.1A) is modeled as: 
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where xr represents the locations along the 1D domain (xr = 1, 2, 3…299, 300 [L]) over which 

the tracer flux is released at times tr (tr = 1, 2, 3…34, 35 [T]). Equation 5.8 is designed to model 

two large peaks with fluctuating amplitudes (Figure 5.1B) between 50-100 [L] and 200-250 [L], 

and a smaller consistent double peak (Figure 5.1B) between 100-150 [L]. Even though the spatial 

tracer flux profiles are different for each time period, the spatially averaged flux has a constant 

value of 0.84 [ML
-1

T
-1

] across all time periods. Note that the true tracer flux s is used only for 

simulating the plume but then considered unknown during the analysis.  



 

 The tracer is sampled at the locations xo (xo = 1, 2, 3,…, 299, 300 [L]) for 35 consecutive 

time periods (to= 1.5, 2.5, 3.5…34.5, 35.5 [T]) to obtain the observational dataset z [ML
-1

], such 

that the observations times are offset from the release times. Initial random error with a pre-

specified variance (10 [M
2
L

-2
]) is added to the tracer observations to simulate measurement, 

transport, aggregation, and representation errors. Later in the study, different configurations of xo 

and a higher error variance (
2
R ) are prescribed to test the impact of these parameters.  

 The tracer observations (z) and the tracer fluxes (s) are related in the following fashion: 

  , where ~ 0,N  z Hs R  5.9  

where H is the sensitivity matrix that is generated using a 1D tracer transport model as: 
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where xr and tr are the tracer flux release locations and times, xo and to are the tracer observation 

locations and times, erfc represent the complimentary error function. The tracer transport model 

 

 

Figure 5.1 – (A) Filled contour plot of the tracer flux, over the entire domain and for different time 

periods. (B) Flux profile for a particular time period corresponding to the dashed white-line in (A). 

 



 

embedded in Equation 5.10 assumes conservation of mass and is based on a well-known one-

dimensional analytical solution for contaminant transport in the groundwater literature (e.g. 

Ogata and Banks [1961]; Runkel [1996]).  

The tracer observations obtained at a particular time step are sensitive to the tracer flux 

released at multiple previous time steps. Given that the total length of the domain is 300 [L] and 

the advection velocity is 50 [LT
-1

], the maximum residence time of the tracer within the domain 

can be 6 [T]. Based on the exponential construction of Equation 5.8, however, the fluxes start 

being released from approximately 50 [L] onwards, in which case their residence time in the 

domain is reduced to 5 [T]. This means that an observation taken at time to [T] provides 

information about the tracer flux approximately up to time to - 5 [T]. Hence, based on the physics 

driving the advection-diffusion problem, in all subsequent experiments the lag window size for 

the DA schemes is set to 5 [T].  

The final piece of information necessary for setting up the inverse problem is the prior 

estimate (s
b
) of the tracer flux and its error characteristics. s

b
 is constant across all time periods:  
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Its error covariance matrix Q
b
 is based on an exponential decay model, with a correlation length 

(3lQ) of 90 [L] and variance ( 2Q
) of 3 [M

2
L

-2
T

-2
].  

The 1D framework has been designed to capture most of the characteristic features of the 

CO2 flux estimation problem. For a real CO2 inversion, these units would typically have been 

[µmol/(m
2
s)] for s and Q

, [ppm] for z and R , [ppm/ µmol/(m
2
s)] for h1D and [km] for lQ . 



 

5.2.3 Experiments 

Experiments are designed to explore the impact of three factors on the ability of the DA 

methods to solve the inverse problem: (a) the observational density and homogeneity, (b) the 

model-data mismatch covariance, and (c) the computational constraints of the DA system (i.e., 

ensemble size, number of iterations). In all the experiments, the size of the state vector or the 

total number of fluxes to be inferred is 10500 × 1 (i.e. [300*35] × 1).  

The first set of experiments (Table 5.1 – Experiments A through C) aims to investigate 

the effect of the density and homogeneity in space and time of the observational network. Three 

different observational networks are designed (Figure 5.2). In the first network configuration 

(denoted as REF – ‘reference observational set’, same as outlined in Section 5.2.2), observations 

are obtained at all locations (xo = 1, 2…300 [L]) and for all 35 time periods (to= 1.5, 2.5, 3.5 

…34.5, 35.5 [T]). The total number of observations available is 10500 (300*35). In the second 

network configuration (denoted as HM – ‘homogeneous’), observations are obtained at 

 

Table 5.1 – Summary of the experiments outlined in Section 5.2.3. The following parameters are held 

constant for all the experiments in this study:  s
b
 (Equation 5.11), 3lQ = 90 [L] and 

2Q
= 3 [M

2
] 

Impact 

Considered 

Experiment  Observation Parameters DA Parameters 

Network Variance 
2
R  Ensemble Size 

Descent 

Iterations 

Observational 

density and 

homogeneity 

A REF 10 1000 250 

B HM 10 1000 250 

C HT 10 1000 250 

Model-data 

mismatch 

AR REF 400 1000 250 

BR HM 400 1000 250 

CR HT 400 1000 250 

Operational 

limitations 

AO REF 10 100 25 

BO HM 10 100 25 

CO HT 10 100 25 

 



 

25 equally spaced locations within the 1D domain (xo = 10, 22, 34…298 [L]), which are 

maintained for all 35 time periods (to= 1.5, 2.5, 3.5…34.5, 35.5 [T]). The total number of 

observations is thus reduced to 875 (25*35). In the final configuration (denoted as HT - 

‘heterogeneous’), observations are taken at 25 random locations, which vary arbitrarily over the 

35 time periods (to= 1.5, 2.5, 3.5…34.5, 35.5 [T]). Similar to HM, in HT the total number of 

observations remains 875 (25*35) but the observations are neither uniform in space nor 

consistent over time. Note that unlike REF, both HM and HT represent under-determined 

inversion problems where the total number of observations is significantly lower than the 

number of states to be estimated. In reality the HT network configuration scheme is the closest to 

current CO2 monitoring networks where different monitoring locations (ground-based or remote-

sensing) can come online and go offline over different periods. For all the three network 

configurations, random error with a variance of 10 [M
2
L

-2
] is added to the observations to make 

the problem realistic. This allows us to specify the model data mismatch covariance matrix R (in 

Equation 5.1) with its diagonal values corresponding to variance of the errors introduced in the 

 

 

Figure 5.2 – Observations of the tracer obtained from the three network configurations - REF (A), HM 

(B) and HT (C). Note that – (i) going from the REF to the HM and the HT networks, the total number of 

observations decreases, and (ii) going from the HM to the HT network, the observational fields become 

more heterogeneous in space and time.  

 



 

synthetic observations. All the observations are assumed to have the same model-data mismatch 

error without any temporal correlation.  

The second set of experiments (Table 5.1 – Experiments AR through CR) examines the 

effect of the model-data mismatch covariance on the best estimates and their associated 

uncertainties. The model data mismatch covariance matrix captures not only the errors in the 

observations but also errors due to other sources, such as the transport model, representation and 

aggregation errors (e.g. Engelen et al. [2002]). For all the network configurations, the variance of 

the random errors is increased to 400 [M
2
L

-2
] and the diagonal values of the model data 

mismatch covariance matrix R increased accordingly. All the other parameters are maintained 

the same as the first set of experiments.  

The third set of experiments (Table 5.1 – Experiments AO, BO and CO) explores the 

impact of the operational constraints in implementing any DA system. To minimize the 

numerical approximations and avoid any form of sampling or convergence error in the first two 

set of experiments (Table 5.1 – Experiments A-C and Experiments AR-CR), the ensemble size 

(for the EnSRF) and the number of descent iterations (for the 4D-VAR) are set to 1000 and 250, 

respectively. The number of descent iterations are prescribed to be lower than the number of 

ensemble members, keeping in mind that 4D-VAR typically requires more model integrations 

(i.e., both forward and adjoint model run) than EnSRF. Given that it is not feasible to either run a 

large number of ensemble members or specify a large number of descent iterations for any real 

atmospheric application, these are reduced to 100 ensemble members for the EnSRF and 25 

descent iterations for the 4D-VAR. The noise added to the observations is reduced to 10 [M
2
L

-2
], 

however, so that a direct comparison can be made with Experiments A-C.   



 

5.3 RESULTS  

Results from the nine experiments are interpreted: (a) at native and aggregated spatial 

scales, and (b) in terms of the individual performance of EnSRF and 4D-VAR relative to the 

truth and the BIM estimates. Three metrics - the root mean square difference (RMSD), the 

correlation coefficient (CC) and the standard deviation (SD) are calculated between the flux 

estimates and the truth at the grid-scale (Figure 5.4) or at spatially aggregated scales (Figure 5.5). 

All metrics are averaged across 30 time periods (tr = 6, 7, 8…34, 35 [T]) after discarding the first 

5 time periods as spin-up.  

5.3.1 Impact of observational density and homogeneity 

Figure 5.3A-C shows the recovered tracer fluxes for the three network configurations. 

For the REF-network in Figure 5.3A, all three analyses methods perform extremely well in: a) 

recovering the true flux that was released during this time period (Panel A), and b) fitting the 

observations within the specified errors (results not shown). Both the 4D-VAR and the EnSRF 

estimates qualitatively capture the flux profile, including its large and the small scale peaks. The 

estimates obtained from the three analyses methods are not specific to the time period shown in 

Figure 5.3 but remain consistent across other time periods. As indicated in Figure 5.4A, all the 

three methods have a high CC (~0.97), low RMSD (~0.3 [ML
-1

T
-1

]) and identical standard 

deviation (~1.5 [ML
-1

T
-1

]) as the true fluxes. The performance of all three methods degrades as 

the observation density and homogeneity changes in going from Experiments A to C. This is 

evident by looking at Figure 5.3B-C where the methods fail to capture precisely the smaller 

double peak around 100-200 [L] while the Taylor diagram in Figures 5.4B-C captures the 

resultant drop in CC and a corresponding increase in RMSD. 



 

 
 
 

Figure 5.3 – True and estimated tracer fluxes and associated uncertainties for the different experiments 

in this study. All values are shown for the 25
th
 time period, which is assumed to be representative of other 

time periods. The panel numbers correspond to the different experiments outlined in Table 5.1.   



 

 

Figure 5.4- Performance of the BIM, the EnSRF and the 4D-VAR for the different experiments outlined in 

Table 5.1. For each experiment, statistics are calculated between the estimates and the true fluxes across 

all locations and all 30 time periods and represented on a Taylor diagram (Taylor [2001]). For each 

Taylor diagram the true flux is represented by a point from the origin along the abscissa (‘Truth’). All 

other points (‘BIM’, ‘EnSRF’, ‘4D-VAR’) that represent the estimated fluxes, are positioned such that - 

their standard deviation is the radial distance from the origin, the correlation coefficient between the 

estimates and the truth is the cosine of the azimuthal angle, and the root mean square difference (RMSD) 

between the estimates and the truth is the distance to the observed point. In the limit of perfect agreement, 

RMSD should approach zero, CC should approach unity, and the SD of the estimates should be the same 

as the truth.  

  



 

In general, for observations with spatially uncorrelated error, decreasing the observation 

density is expected to decrease the analysis accuracy. The response of the two DA approaches 

mirror the BIM estimate in such cases, including the inference of a wrong flux pattern for the HT 

network around 100 [L] in Figure 5.3C. This indicates that in the absence of any operational 

limitations, if all other parameters of the inverse problem are the same, then the DA estimates are 

consistent with the BIM estimate. Neither the lack of a dynamical model nor the under-

determined nature of the inverse problem impedes the ability of the DA methods in performing 

as optimally as the BIM approach.  

Despite the lower quality of the best estimates, both the BIM and the EnSRF are able to 

capture the true flux profile within their 95% confidence bounds. The EnSRF uncertainty 

estimates are initially consistent with the BIM uncertainty estimates for the REF network (Figure 

5.3A). In fact, the ratio of the predicted standard deviation of the individual flux estimates in 

EnSRF (
EnSRFˆ s ) to those from the BIM (

BIMˆ s ) is approximately 0.98, i.e. on average EnSRF 

underestimates the a posteriori uncertainties by 2% relative to BIM. Going from the REF to the 

HT scheme, the EnSRF over-estimates the uncertainty by 2% and 6% for HM and HT, 

respectively. For example, for the HT network (Figure 5.3C) the EnSRF over-estimates the error 

towards the end of the 1D domain (250 – 300 [L]).  

In the EnSRF framework, the uncertainties are directly related to the ensemble spread. In 

the absence of a dynamical model, there is little source of variability for the ensemble to 

maintain a consistent spread. As observations are assimilated the ensemble tends to collapse to 

the ensemble mean and the adaptive inflation has to compensate for this degeneracy by inflating 

the ensemble spread. In the HT case, however, the inflation technique has a delayed response in 

adjusting to the heterogeneity in the observation network, as different observation locations 



 

come into and out of the network. For the adaptive inflation component to work properly, we 

find it is beneficial to have a consistent set of observations to maintain a reasonable ensemble 

spread. It is worthwhile to mention here that the magnitudes of the inflation factors are very 

small in Experiments A-C. This is not surprising given that a large number of ensemble members 

have been specified and hence, the sampling error is quite low. Even without the application of 

inflation and localization (results not shown here), the EnSRF estimates have a high CC (~0.93), 

low RMSD (~0.66 [ML
-1

T
-1

]) but slightly higher SD (~1.78 [ML
-1

T
-1

]) to the true fluxes (SD = 

1.58 [ML
-1

T
-1

]). 

Overall, we find that both the 4D-VAR and the EnSRF performance reasonably match 

the BIM performance for all three observational network configurations. Even though small 

discrepancies are noticeable, the impact of a sparse and/or heterogeneous observational network 

is similar for DA as for the BIM approach.   

5.3.2 Impact of model-data mismatch covariance 

Panels AR-CR in Figures 5.3 and 5.4 (right hand column) illustrate the impact of the 

model-data mismatch covariance. For all the network configurations the quality of the estimates 

degrades when a higher model-data mismatch error is prescribed (comparing Panels A and AR, 

B and BR, C and CR) albeit the heterogeneous network estimates are the worst. Increase in 
2
R  

also increases the uncertainty of the estimates, indicative of the decreased confidence in the 

analysis. Analogous to the first set of experiments, the DA approaches respond similarly to the 

BIM as the model-data mismatch covariance changes and both the 4D-VAR and the EnSRF 

track the BIM estimates quite well for all the three experiments. Figure 5.4AR-CR confirm that 

the estimates from all the three analyses methods have a lower CC, higher RMSD, and lower SD 

when compared to Panels A to C.  



 

The standard deviation of the estimates changes considerably between Panels AR (~ 

1.45-1.5 [ML
-1

T
-1

] for the three methods) and CR (~ 0.94-1.00 [ML
-1

T
-1

] for the three methods). 

Increasing the
2
R  to 400 [M

2
L

-2
] results in the analysis rejecting the information from the 

observations and giving more weight to the prior, yielding overly smooth a posteriori estimates.. 

A typical example of this is seen by comparing the estimated peak around 50-100 [L] in Figure 

5.3C and CR. Estimates in both these panels are based on the same observational fields but the 

estimates in Figure 5.3CR are unable to capture the amplitude of the peak in the true flux signal.  

The inability to capture the true amplitude is slightly mitigated for the BIM and the 

EnSRF due the fact that these approaches infer higher uncertainty on the estimates. Both these 

estimates do capture the true flux profile within their respective 95% uncertainty bounds. As the 

observation network becomes sparser and more heterogeneous, the EnSRF slightly over-

estimates the BIM uncertainty, by 3% (HM) and 5% (HT), while it underestimates the 

uncertainty by only 1% for the reference network. In spite of over-estimating the uncertainties, 

the EnSRF exhibits a clear advantage over the 4D-VAR by providing analyses errors as part of 

the estimation procedure.  

Experiments AR-CR reconfirm that in the absence of operational limitations, increase (or 

decrease) in the model-data mismatch covariance do not make the DA methods perform any 

worse (or better) than the BIM approach. 

5.3.3 Impact of operational constraints  

  Panels AO-CO in Figures 5.3 and 5.4 (left-hand column) shows the performance of the 

DA approaches when the number of ensemble members and the descent iterations are reduced. 

Reducing these parameters impacts the performance of the DA approaches negatively, and the 

impact is further intensified as the observational network becomes more heterogeneous. We find 



 

that the 4D-VAR and the EnSRF performance are impacted differently as the numerical 

approximations come into play. These are discussed separately below.  

For the 4D-VAR, an inadequate number of iterations fails to find the global minimum of 

the quadratic objective function (convergence results not shown here). When the observation 

fields are heterogeneous, the minimization has more difficulty in finding the closest path towards 

the true minimum. Thus, comparing Panels AO, BO and CO in Figure 5.4, the 4D-VAR 

estimates are worst for the HT network configuration. In general, we found that for the HT 

network, 4D-VAR needs approximately 150 iterations to converge completely as several 

iterations are wasted in zigzagging very slowly towards the optimum. Conversely, for the REF 

network 4D-VAR required less than 50 iterations to reach full convergence. When only 25 

iterations are specified, expectedly the negative performance of the 4D-VAR is more visible for 

Experiment CO than Experiments AO and BO that have a relatively homogeneous network. 

For all the three experiments, however, the magnitude of the posterior objective function 

is reduced relative to the prior, indicating that a more probable posterior state has been found 

compared to the prior. As pointed out by Rödenbeck [2005] in the initial iterations, the 

minimization determines the large-scale gradient while in subsequent iterations fine-scale tuning 

is performed to capture the optimum. By artificially limiting the number of iterations, the ability 

of 4D-VAR to make any small scale changes is hindered yet for Experiments AO and BO 

(Figure 5.4AO and BO), the 4D-VAR estimates are reliably close to the BIM estimates.  

For the EnSRF, the degradation can be solely attributed to sampling error caused by a 

limited ensemble size. This reduces the estimation accuracy (both flux estimates and the 

uncertainties) and makes the filter sensitive to the observational density. As was stated earlier in 

Section 5.2.1, a Schur-based localization scheme has been implemented for the EnSRF. Since the 



 

localization length scale is dependent on the ensemble size, when an ensemble size of 1000 is 

used (Experiments A-C, or AR-CR) a long localization length scale of 90-120 [L] is sufficient. 

The localization length scale is determined subjectively based on sensitivity tests, and hence a 

range of values (i.e., 90-120 [L]) are acceptable for which the EnSRF estimates are not 

contaminated by spurious noise.  

Reducing the ensemble size to 100 necessitates a shorter localization length scale. Even 

with the application of localization, the spurious noise in the estimates overwhelms the 

information available from the observations. It is found beneficial to have two different length 

scales now, 10-30 [L] for the REF network and 45-60 [L] for the sparser networks. Specifying a 

longer localization length scale than 30 [L] for the REF network led to a divergence of the 

EnSRF system. In this case the spurious noise in the ensemble outweighs the positive impact of 

the observations. The complicated interplay between the ensemble size and the observational 

density makes it difficult to identify a mathematical or physical basis for selecting an appropriate 

localization length scale.  

In terms of the recovered uncertainty, the sampling error plays a dominant role in 

determining the ability of the EnSRF to correctly represent the error in the ensemble mean. The 

EnSRF uncertainty estimates are close to the BIM uncertainty estimates but under/over-estimate 

at different estimation locations, rather randomly for the three network configurations, REF 

(over-estimation by 10%), HM (under-estimation by 9%) and HT (under-estimation by 3%). For 

Experiment CO, the EnSRF estimates fail to capture the true tracer flux within the 95% 

uncertainty bounds (see around 200-210 [L] in Figure 5.3CO).  

An important caveat here is that the results for both the DA approaches could be 

potentially improved through further tuning of each algorithm. For example, implementation of 



 

pre-conditioning algorithms to reach faster convergence, or more sophisticated localization 

schemes to dampen the spurious noise in the ensemble, may provide slightly different responses 

and reduce the error incurred due to the numerical approximations. In spite of having state-of-

the-art covariance localization and adaptive inflation algorithms, once the underlying numerical 

approximations come into play: a) the EnSRF fails to reproduce the BIM estimate, with the 

EnSRF performance decreasing as the observation network becomes sparser and more 

heterogeneous, and b) the 4D-VAR fails to reproduce the BIM estimate when the observation 

network is heterogeneous but still performs better than the EnSRF. The better performance of the 

4D-VAR is offset by the fact that the EnSRF provides explicit uncertainty bounds on the 

recovered flux estimates. 

The DA approaches are specifically sensitive to the information flow from the 

observations because of the lack of a dynamical model. As discussed in Section 5.1 the 

dynamical model adds to the information content in the system. Identifying/developing an 

appropriate dynamical model relevant to the CO2 flux estimation problem and subsequently 

repeating the experiments may allow an assessment of the interplay between the operational 

constraints and the observational network better. This task is beyond the scope of the current 

study but should be targeted in future studies to better understand the performance of DA 

approaches for the CO2 inverse problem relative to applications within an assimilation 

framework.  

5.3.4 Examining results at aggregated spatial and temporal scales 

In the previous sections, the performance of the DA and the BIM approaches have been 

analyzed and reported at the actual estimation scales (both space and time). Typically in current 



 

CO2 studies, the fine-scale analyses are averaged spatially and/or temporally to coarser scales 

(for e.g., daily grid-scale fluxes averaged to monthly continental scales) and then examined.  

When the estimates from the three analyses methods are aggregated across all space (i.e., 

across all locations xr = 1, 2, 3…299, 300 [L]) and time (i.e. across all analyzed periods tr = 6, 7, 

8…34, 35 [T]), it is difficult to gauge any degradation in the EnSRF or the 4D-VAR. For 

example, after both spatial and temporal aggregation, the EnSRF and the 4D-VAR estimates 

recover the true flux and the BIM flux estimates precisely except for the two most challenging 

setups (Experiments CR and CO). Even in these cases the difference between the EnSRF and the 

4DVAR with the BIM estimates is less than 5%. Likewise if the results are aggregated in time 

and examined spatially, the DA approaches are still able to recover the BIM estimates and the 

true fluxes.   

Next the domain is divided into two segments, i.e. 1-150 [L] and 151-300 [L], and the 

true flux and the flux estimates are aggregated over each of these segments and examined across 

time. Since the true flux has fluctuating amplitudes between 50-100 [L] and 200-250 [L], it is 

possible to examine the ability of the inversion methods in capturing these distinct temporal 

variations. Quantitative metrics are calculated between the estimates and the true flux at the 

aggregated spatial scales and plotted on a Taylor diagram (Figure 5.5). For all the 9 experiments, 

the 4D-VAR is able to match the temporal variation of the spatially aggregated BIM estimates 

better than the EnSRF. The 4D-VAR iterative algorithm reliably captures the large scale 

patterns, as a result of which at any given time period and for any experiment, the 4D-VAR 

estimates are closest to the BIM.  Even when the number of descent iterations are reduced (Panel 

AO-CO in Figure 5.5), at the spatially aggregated scales, the 4D-VAR estimates have negligible 

difference from the BIM. Comparing Panel CO in Figures 5.4 and 5.5 demonstrate that the  



 

 
 
 

 

Figure 5.5- - Performance of the BIM, the EnSRF and the 4D-VAR at spatially aggregated scales for the 

different experiments outlined in Table 5.1.  

  



 

differences at fine scale are substantially reduced by aggregating the estimates to a coarser 

resolution.  

Even though the EnSRF has been applied as a smoother, there is no dynamical model to 

evolve the information between assimilation time periods. For all the experiments that are run 

without any operational constraints, the EnSRF estimates are always contaminated with small 

sampling error. This gets washed out when the estimates are spatially aggregated but still EnSRF 

estimates are more erratic than the 4D-VAR estimates. When the number of ensemble members 

is reduced (Panel AO-CO in Figure 5.5), however, both the sampling error and the observational 

density and homogeneity starts playing a role. For example in Figure 5.5, Panels AO and CO, the 

CC between the spatially aggregated EnSRF and the true flux estimates drop from 0.99 to 0.90 

and the RMSD increases from 0.03 to 0.21 [ML
-1

T
-1

]. The standard deviation of these spatially 

aggregated EnSRF estimates also increase from 0.37 to 0.40 [ML
-1

T
-1

] compared to the true flux, 

which has a standard deviation of 0.36 [ML
-1

T
-1

]. This indicates that even the spatially 

aggregated EnSRF estimates become more unpredictable as the observation network gets sparser 

and heterogeneous.  

Analysis at aggregated scales demonstrates if operational constraints are not imposed, 

both the DA approaches provide aggregated estimates that are close to the aggregated BIM 

estimates. Even when operational constraints are taken into account, the aggregated flux 

estimates for the EnSRF and the 4D-VAR (Figure 5.5CO) have higher CC and lower RMSD 

than the corresponding values at the fine scale (Figure 5.4CO). This is encouraging from the 

perspective of a real CO2 flux estimation problem, as it implies that the DA flux estimates can 

serve as reliable alternative for the BIM flux estimates, when aggregated a posteriori to coarse 

resolutions.   



 

5.4 DISCUSSION 

 It is clear that any attempt to choose among the 4D-VAR and EnSRF DA approaches for 

solving a linear Gaussian problem, such as the CO2 flux estimation problem, should be based on: 

(a) the tradeoff between slow convergence of the minimization algorithm (for 4D-VAR) or 

sampling error (for EnSRF) on the estimated fluxes, and (b) the carbon science questions being 

targeted. Given the availability of an adjoint model, and if only the best estimates are desired (for 

e.g., regional/continental budgets), the 4D-VAR is preferred over EnSRF, especially when the 

measurement network is highly variable. With a small number of iterations, the 4D-VAR may 

not converge to the global minimum but still reliably capture the majority of the large-scale 

features, with the final estimates close to those expected from a regular batch solution. The main 

disadvantages of the 4D-VAR is its incapability to provide any direct estimates of the analysis 

error and its more cumbersome implementation.  

In the future, the 4D-VAR framework may be potentially more advantageous for the CO2 

flux estimation problem due to its ability to easily account for correlated observation errors (O. 

Talagrand, pers. comm.). Although this specific issue has not been demonstrated in this study, it 

is worth keeping in mind with the increasing use of satellite-based CO2 measurements. Recent 

work by Brankart et al. [2009] has demonstrated techniques to cope with such correlations in an 

ensemble filter setting. Such techniques, however, are numerically efficient only for certain types 

of error correlation structures.  

In the absence of correlated errors, the serial EnSRF is easier to implement and does not 

require the development and maintenance of an adjoint model. But due to restrictions on the size 

of the ensemble, it is necessary to adapt and tune additional algorithms like localization and 

inflation. Unlike the adaptive inflation piece, the localization component remains highly 



 

subjective. Experiments in this study clearly showed that the localization length scale is 

dependent on both the ensemble size and the observational density. Will higher and higher 

volumes of observations push us towards specifying shorter localization length scales? If so, 

what is the limit beyond which decreasing the localization length scale may actually degrade the 

analysis? It is necessary to identify more rigorously a basis for selecting the localization 

parameters or develop approaches that may be less sensitive to changes in the observational 

network.  

Ultimately the inflation and localization algorithms make the ensemble approximation to 

the full-rank Kalman Filter computationally feasible, and allow analysis of a fair quality. In spite 

of having more tuning parameters (ensemble size, localization length scale), the EnSRF 

formulation explicitly provides second-order statistical moments for the estimated system states. 

In an inverse problem framework, this is specifically desirable to ascertain the reliability of the 

estimates. The EnSRF is more desirable for attribution purposes, whereby source/sink estimates 

with confidence bounds can be used to gain a better understanding of the mechanistic processes 

driving the carbon cycle or reconcile estimates from top-down and bottom-up biospheric models. 

Recovering realistic a posteriori uncertainty bounds on the flux estimates will allow better 

tuning of the parameters in a bottom-up model, or at the minimum aid us in identifying a range 

of suitable values for these parameters.  

 With both approaches there is a direct trade-off between computational savings and 

estimation accuracy, which is intensified in trying to solve an under-determined problem with 

inconsistent observational network. For large-scale flux estimation problems, operational 

constraints will always exist along with scarce and inconsistent set of observations, erroneous 

transport models (thus further limiting the use of available observations) etc. The HT scheme 



 

with limited number of ensemble members/descent iterations (Panel CO in Figures 5.3 and 5.4) 

serve as the closest analogue to how a real inversion problem is tackled. Even if we account for 

the increase in remote-sensing measurements of CO2, the observational network is going to be a 

complex hybrid between the REF and the HT scheme. In this scenario, the accuracy and 

precision of either of the DA approaches are lower than the BIM for solving the CO2 inverse 

problem until and unless the issues of convergence (4D-VAR) and sampling error (EnSRF) are 

appropriately addressed.  

5.5 SUMMARY 

This paper has compared two well-established data assimilation methods, 4D-VAR and 

EnSRF, in the context of a CO2 flux estimation problem and investigated the potential impact of 

the estimation scale versus ensemble size (for the ensemble approach) and the number of descent 

iterations (for the variational approach). To assess the performance of the data assimilation 

approaches with the batch inverse modeling scheme, the inversion framework is designed in a 

relatively simple way. A 1-dimensional tracer transport problem is employed with the 

observational network and the overall inversion system prescribed analogous to a real CO2 flux 

estimation problem. Both assimilation schemes were compared against the estimates from a 

synthesis BIM to isolate the degradation specifically due to the numerical approximations in the 

two approaches.  

The sensitivity experiments demonstrated that when a large number of ensemble 

members or descent iterations are specified, state of the art implementation of the 4D-VAR and 

the EnSRF yield comparable analysis to the BIM, irrespective of the observational 

characteristics. When the operational parameters of the DA approaches are reduced, there is a 

complex interplay between the observations and the numerical approximations. Although both 



 

methods are adept at handling the under-determined CO2 flux estimation problem, their relative 

use should clearly be based on: a) the carbon science questions being targeted, and b) the 

inversion conditions under which they are being applied. By identifying the advantages and 

disadvantages of the two DA methods relative to the BIM, we expect that our finding will 

provide guidance to the CO2 community in deciding which approach to invest in. Recently, each 

of these methods has begun to influence the development of the other, and it is expected that in 

the near future hybrid approaches may take center-stage for solving the CO2 flux problem. 

The conclusions about the operational implementation and the uncertainty estimates are 

well-established in the weather prediction community. To the best knowledge of the authors the 

sensitivity of the approaches to the observational schemes in the absence of an explicit 

dynamical model and for solving an under-determined inverse problem, has not been 

documented. The conclusions from our study can be juxtaposed against previous NWP-based 

inter-comparison studies, all of which have typically assumed a dynamical model. This study did 

not prescribe any form of a dynamical model and the findings are relevant to DA applications 

where dynamical models for propagating the state vector may not be readily available.  

 This study only considered simulated observations without any temporal correlation in 

the errors. The next step in the inter-comparison will be in the context of the assimilation of real 

remote-sensing observations. Controlled experiments with assimilation of satellite CO2 data will 

be needed to fully understand the analyses quality in the future. How different DA algorithms 

account for these error sources and correlations within the remote-sensing data remain important 

research issues, not just within the CO2-DA community but within the wider DA community as 

well. 



Chapter 6 

Towards Reliable Ensemble Kalman Filter Estimates of CO2 

Fluxes 

6.1 INTRODUCTION  

Over the last decade it has become increasingly apparent that quantification of global 

carbon sources and sinks with sufficient accuracy and precision is critical to balancing the global 

carbon budget and monitoring of carbon-management activities (Schimel [2007]). It has also 

become clear that our understanding of, and ability to accurately model, the carbon-cycle is 

severely constrained by the sparse distribution of the present atmospheric CO2 measurement 

network (e.g. Scholes et al. [2009]). The sparse and spatially non-uniform network is neither 

sufficient to constrain regional budgets with the needed certainty, nor understand the nature, 

geographic distribution and temporal variability of CO2 sources and sinks. This absence of 

spatially and temporally dense measurements of atmospheric CO2 has spurred the development 

of space-based measurement sensors. Measurements from passive sensors such as the 

Atmospheric Infrared Sounder (AIRS) on Aqua (Chahine et al. [2006]), the Tropospheric 

Emissions Spectrometer (TES) on Aura (Kulawik et al. [2010]), the Infrared Atmospheric 

Sounding Interferometer (IASI) on Met-Op-1 (Crevoisier et al. [2009]), the SCanning Imaging 

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on EnviSAT (Buchwitz 

et al. [2005]), the Greenhouse gases Observing SATellite (GOSAT; Kuze et al. [2009]), as well 



as planned future sensors such as the Orbiting Carbon Observatory-2 (OCO-2; Eldering et al. 

[2012]), and the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) 

satellite (NRC [2007]) are expected to improve our scientific understanding of regional carbon 

cycle processes and budgets. Although remote-sensing measurements of CO2 do not achieve the 

precision possible from in situ measurements (Rayner and O’Brien [2001]), they provide a large 

number of observations with near-global coverage, beyond what is possible from a surface 

network alone (e.g. Buchwitz et al. [2007]). 

The global coverage provided by these space-based measurements has demonstrated 

promise in improving the accuracy and precision of regionally-resolved flux estimates (e.g. 

Baker et al. [2010]), but the solution of the associated inverse problem has also resulted in a 

substantial increase in computational cost. The computational challenge results from the fact that 

inverse modeling techniques (a.k.a. top-down approaches) have historically been solved in 

“batch” mode, where the inversion is performed by solving a system of linear equations relating 

the CO2 fluxes and the atmospheric CO2 observations (e.g. Enting [2002]).  Solving the batch 

problem requires an atmospheric transport model to be run either once per estimated flux 

region/period combination, or once per observation if an adjoint to the transport model is 

available. This becomes computationally infeasible given the increasing spatial and temporal 

resolution at which CO2 fluxes are being estimated, and the increasing number of concentration 

measurements available from remote-sensing observations.  

To address the increasing computational challenge of atmospheric inversions, data 

assimilation (DA) techniques (e.g. ensemble Kalman filter methods - Peters et al. [2005]; Feng 

et al. [2009]; Miyazaki et al. [2011]; variational methods - Rayner et al. [2005]; Chevallier et al. 

[2005b]; Rödenbeck [2005]; Baker et al. [2006a], or hybrid approaches such as the Maximum 



Likelihood Ensemble Filter - Zupanski et al. [2007a]; Lokupitiya et al. [2008]) have recently 

been employed for estimating CO2 fluxes, in some cases as part of advanced systems where 

meteorological and carbon variables are simultaneously assimilated (e.g. Kang et al. [2011]). 

Application of data assimilation techniques to the CO2 problem is, however, much less mature 

(Rayner [2010]) than its use in numerical weather prediction (Swinbank [2010] and references 

therein) or for assimilating other atmospheric constituents such as humidity and ozone (e.g. Rood 

[2005]; Lahoz and Errera [2010]). An important question for carbon-cycle research that has 

hitherto remained unanswered concerns the impact of the numerical data assimilation framework 

on the precision and accuracy of fine-scale flux estimates and their associated uncertainties. 

Previous CO2 DA studies have evaluated flux estimates by comparing them to biospheric model 

and inventory estimates and/or by assessing how well they reproduce available atmospheric CO2 

observations (e.g. Peters et al. [2005]; Chevallier et al. [2007]; Lokupitiya et al. [2008]; Feng et 

al. [2009]; Baker et al. [2010]; Kang et al. [2011]; Miyazaki et al. [2011]). Given the host of 

error sources (e.g. transport error, aggregation error, etc.) that impact inversions, these 

diagnostics provide an assessment of the overall inversion framework, but do not isolate any 

errors incurred due to the numerical approximations in the implemented DA approach. 

This study is primarily motivated by an attempt to isolate and quantify such errors, 

specifically from the perspective of an ensemble Kalman filter applied to the estimation of CO2 

fluxes at fine spatial and temporal scales. Ensemble filters and their variants (e.g. Peters et al. 

[2005, 2007, 2010]; Zupanski et al. [2007]; Lokupitiya et al. [2008]; Feng et al. [2009, 2011]; 

Kang et al. [2011]; Miyazaki et al. [2011]) have gained popularity within the carbon-cycle 

community due to their simple conceptual formulation and relative ease of implementation. So 

far, the examination of the use of ensemble Kalman filters for estimating fluxes at fine spatial 



and temporal scales has been limited, however. Except for Kang et al. [2011] and Miyazaki et al. 

[2011], where fluxes were estimated at the grid resolution of the atmospheric transport model 

used in the studies (~2.8°), almost all other studies have estimated fluxes at large spatial scales 

(e.g. continental or ecoregion). The temporal scales at which fluxes have been estimated range 

from several days to weeks.   

The work presented here estimates fluxes at substantially finer scales (1° by 1° and 3-

hourly) relative to previous application of ensemble filters. In general, high resolution estimates 

of carbon fluxes are advantageous for 1) improving budgeting and mechanistic understanding of 

the carbon cycle at local to regional scales, and 2) minimizing spatial and temporal aggregation 

errors (e.g. Kaminski et al. [2001]; Peters et al. [2010]; Gourdji et al. [2010]) that may otherwise 

bias the final flux estimates. The impact of spatial aggregation errors has long been discussed 

and documented in the inverse modeling literature (e.g. Kaminski et al. [2001]; Engelen et al. 

[2002]; Peters et al. [2010]), and recent studies have shown that a priori temporal aggregation 

has similar impacts. Gourdji et al. [2010; 2012] found that biases occurred when fluxes were 

estimated at multi-day or even daily timescales, and recommended a 3-hourly temporal 

resolution to allow the inversion to resolve the diurnal cycle. Huntzinger et al. [2011] further 

found that differences between the diurnal representations among a suite of terrestrial ecosystem 

models yielded significant difference at CO2 monitoring locations, suggesting that adopting a 

fixed diurnal cycle from one particular model a priori could bias flux estimates at larger scales. 

Although desirable from a scientific perspective, applying an ensemble approach to a fine-scale 

flux estimation problem is challenging due to two issues associated with the ensemble filter.  

The first challenge common to all applications of ensemble filters is the error due to 

representing the probability density function of the fluxes by a finite number of randomly 



generated flux realizations or system states. Experience in the NWP area has suggested that 

because of the finite number of ensemble members, the ensemble filter can suffer from variance 

underestimation, rank deficiency and sampling error (e.g. Houtekamer and Mitchell  [2005]; 

Anderson [2007a; 2007b]; Ehrendorfer [2007]; Meng and Zhang [2011]), all of which impact 

both the final estimates and their uncertainty. Anderson [2007a] notes that, even in low-order 

perfect-model applications for NWP, mitigating the impacts of the limited ensemble size requires 

the introduction and tuning of several additional algorithms. Considerable expertise exists in 

these algorithms for NWP (e.g. Hamill and Whitaker [2005]; Anderson [2007a; 2007b]; 

Uzunoglu et al. [2007]; Sacher and Bartello [2008]; Anderson [2009]; Bergemann and Reich 

[2010]; Bishop and Hodyss [2011]) and for DA of other constituents (e.g. Schutgens et al. 

[2010]). However, these algorithms and their impact on flux estimates and uncertainties are less 

well-understood for the carbon flux estimation problem. Applications to CO2 have investigated 

the impact of ensemble size (e.g. Peters et al. [2005]; Zupanski et al. [2007a]; Feng et al. [2009]; 

Miyazaki et al. [2011]) and different localization/inflation parameters (see Sections 6.2.3 and 

6.2.4) but have refrained from drawing conclusions as to the optimal values of parameters that 

may aid future filter designs. Because previous studies have not compared ensemble filter 

estimates to those from batch inversions, it is difficult to isolate the impact of the parameter and 

algorithm choices from other errors present within any inversion framework. 

The second challenge that differentiates the CO2 flux estimation problem from NWP-

related applications is that there is currently no dynamical model to directly evolve the carbon 

flux state vector forward in time (Peters et al. [2005]; Lokupitiya et al. [2008]; Miyazaki et al. 

[2011]). In other words, given the estimated flux at one time, there is no model to predict the flux 

at the following assimilation time. The lack of such a dynamical model represents a loss of 



valuable information to the ensemble, as along with the transport model, a dynamical model 

would capture the flow-dependent error covariance patterns. In NWP-related applications, 

several studies have been carried out to test the impact of dynamical model errors (e.g. 

Houtekamer et al. [2005]; Szunyogh et al. [2005]; Houtekamer et al. [2009]; Hamill and 

Whitaker [2011]), but no study has evaluated the impact of a complete absence of a dynamical 

model. The absence of the dynamical model may make the ensemble filter extremely sensitive to 

the observation network and coverage. Given the spatial and temporal variability of atmospheric 

CO2 measurements (whether in situ or satellite-based), this raises questions about the 

applicability of ensemble filters for leveraging the information content of available CO2 

observations. 

In order to understand these issues, we introduce a geostatistical variant of the Bayesian 

ensemble square root filter (EnSRF; Whitaker and Hamill [2002]). The geostatistical ensemble 

square root filter (GEnSRF) is based on a geostatistical inverse modeling formulation of the flux 

estimation problem (GIM; Michalak et al. [2004]). The GIM formulation is not limited to the use 

of prior CO2 flux information from biospheric models and/or inventories, and has been applied 

for inversions conducted at very high spatiotemporal resolutions (e.g. Gourdji et al. [2012]).   

The GEnSRF is used as a prototype filter in exploring the impacts of the challenges 

outlined above for CO2 flux estimates at fine spatial and temporal scales. The sensitivity of the 

ensemble filter to different scenarios is judged by comparing the GEnSRF estimates to the 

estimates from an equivalent batch GIM setup. This comparison is carried out using synthetic 

data from the growing season (June 2008) over North America. Both GEnSRF and GIM are used 

to estimate fluxes and their associated uncertainties at a 1º × 1º (spatial) and 3-hourly (temporal) 

resolution. Test cases are designed to gauge the performance of the ensemble system and to 



evaluate whether the numerically-approximate ensemble scheme can accurately capture the 

characteristic features of the CO2 cycle, such as the spatial location of sources and sinks and the 

amplitude and phase of the diurnal flux cycle. The test cases are used to assess the baseline 

performance of the ensemble system, as well as to explore the impact of the measurement 

network, ensemble size, and the implementation of covariance inflation and localization 

algorithms designed to improve ensemble performance.   

Overall, this work provides 1) an assessment of the relative performance of the ensemble 

filter in comparison to the batch approach and of the conditions necessary for the ensemble 

approach to be a suitable replacement for batch inversions, and 2) an investigation of the error 

sources in the ensemble system and their implications for adjustments to ensemble systems that 

need to be made relative to NWP applications. The remainder of this paper is organized as 

follows. Section 6.2 provides the rationale for the proposed filter followed by an overview of 

GEnSRF. Section 6.3 provides a description of the examined synthetic data test cases. Results 

are presented and discussed in Section 6.4. Finally, we conclude in Section 6.5 with a summary 

of the findings of this study and recommendations for future research. 

6.2 METHODOLOGY 

6.2.1 Choosing a filter formulation 

The underlying framework in all ensemble filters is a low-rank ensemble representation 

of the error covariance matrices. The ensembles themselves are scaled matrix square-roots of the 

covariance matrices, and are updated during the assimilation of observations either stochastically 

(e.g. Houtekamer and Mitchell [1998]; Burgers et al. [1998]; Pham [2001]) or deterministically 

(e.g. Bishop et al. [2001]; Anderson [2001]; Whitaker and Hamill [2002]; Ott et al. [2004]). The 



details of this update step distinguish most ensemble variants. Based on existing studies (e.g. 

Tippett et al. [2003]; Lawson and Hansen [2004]; Nerger et al. [2005]; O’Kane and Frederiksen 

[2008]), it can be concluded that for a linear problem – 1) deterministic filters are more accurate 

than their stochastic counterparts, and 2) although all the deterministic filters will produce 

analysis ensembles that span the same state subspace and have the same covariance, 

implementation of a serial EnSRF has the lowest computational cost if the observation errors are 

assumed to be independent.  

The simplest serial EnSRF that can be implemented for inferring CO2 surface fluxes is 

one using a Bayesian formulation (e.g. Carbon Tracker - Peters et al. [2010]), which uses prior 

information about the CO2 fluxes from bottom-up models and/or inventories. Because of the 

highly ill-posed nature of the CO2 flux estimation problem and the sparseness of the current 

observing network, the posterior flux estimates and uncertainties are quite sensitive to the a 

priori prescribed flux patterns and their associated error covariance parameters (Peters et al. 

[2010]). By adapting the ensemble system to the geostatistical approach, we avoid some of the 

reliance on prior/model assumptions, albeit at the cost of an increase in complexity. Therefore, it 

can be argued that the niche filled by a geostatistical ensemble square root filter lies in more 

directly isolating the information content of the available atmospheric measurements.  

6.2.2 Geostatistical ensemble square root filter  

The GEnSRF, like the EnSRF, is a Monte Carlo technique based on a state space 

formulation of the Kalman Filter using an ensemble of model states to represent, propagate and 

update the estimates of the state and state error covariance. The aim is to minimize an objective 

function of the form: 
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where z is a n×1 vector of observations, h represents the atmospheric transport model, s is a m×1 

state vector composed of the discretized unknown surface flux distribution, R is the n×n model-

data mismatch covariance, X is an m×1 vectors of ones in the test cases presented in the work, 

but could also include auxiliary variables related to carbon flux (see Gourdji et al. [2008; 2012] 

for further details on the selection of auxiliary variables), β is an unknown constant here, but 

could also include unknown drift coefficients that scale the auxiliary variables in X, the prior 

covariance matrix Q
b
 describes the expected variability in flux departures from Xβ as a function 

of the separation distance in space and time between fluxes (see Section 6.3.1.3 for further 

details on the structure of Q
b
), and T represents the transpose operator. In a batch setup, instead 

of running the transport model h directly as part of the inversion, an n×m sensitivity matrix H 

(a.k.a. Jacobian matrix) is generated that represents the sensitivity of the observations z to the 

fluxes s (i.e., i,j i jH z s   ).  

Equation 6.1 represents a compromise between reproducing the atmospheric 

measurements (z) and staying close to the statistical model of the trend (Xβ), where the 

covariance matrices determine the relative weight of these competing objectives. Although some 

implementations of ensemble approaches include more variable in the state vector s, including 

atmospheric concentrations of CO2 themselves, the focus here is on constraining only the 

underlying fluxes.  Correspondingly, any updates in the atmospheric CO2 distribution must 

therefore be attributable by a change in the underlying fluxes.  

The GEnSRF is implemented as a smoother (e.g. Bruhwiler et al. [2005]; Michalak 

[2008]), such that individual time steps through the smoother include a) fluxes that are no longer 

being estimated, b) fluxes that are being updated at least for the second time (i.e., that have been 



previously estimated), and c) fluxes being estimated for the first time (i.e., for which no prior 

information is available). In the following discussion, the m×1 vector of the estimated surface 

flux distribution is represented as ŝ . ˆ
js
 
denotes estimates of fluxes that are being updated at least 

for the second time, ˆ
ks

 
denotes fluxes that are being obtained for the first time, and +

ˆ
j ks  denotes 

both sets of fluxes being estimated. Finally, the superscripts a and b represents the analyzed (or 

updated) estimate and the previous estimate.  

Given an initial prior covariance
b

Q , GEnSRF starts by creating an ensemble of N state 

fields (where N<<m). These are created as unconditional realizations of the matrix 
b

Q  through 

Cholesky decomposition.  
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where bs  represents the estimated error statistics of CO2 flux deviations from the trend. In the 

limit of N  this representation of 
b

Q is exact. In GEnSRF, observations are assimilated 

serially. When the i
th

 observation is being assimilated, the estimates of fluxes are given by: 
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where  is calculated by solving the system of equations,  
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Consistent with a GIM framework, fluxes being estimated for the first time ˆ
ks

 
need not be 

initialized with a prior value, and the zero in equation 6.3 is not equivalent to a prior in the 

classical Bayesian setup.  Since direct matrix computation of 
, , ,

b T

i j k j k j k i j k   H Q H  and 



, ,

b T

j k j k i j k  Q H can be expensive, these are approximated by running the transport model directly 

with the ensemble of state deviations.  
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Once  is obtained, it is used in Equation 6.3 to estimate the fluxes. If the same  is used 

to update the ensemble of state deviations from the mean b

j k
s , it would result in an 

underestimation of the analysis error covariance (Whitaker and Hamill [2002]). Instead  is 

reduced in magnitude (Λ ; Equation 6.7) such that the spread of the ensemble is reduced less by 

the analysis (Equation 6.8), in order to maintain an error covariance consistent with the full-rank 

Kalman filter.  
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When observations are serially processed, Equation 6.7 reduces to the computation of a scalar 

factor. Notice that the piece  b

i j kh 
s is already available, and hence updating the ensemble via 

Equation 6.8 is no more computationally expensive than Equation 6.3.  

Finally, before assimilating the next observation, we update the sampled observational 

ensemble and the sampled observation state corresponding to all future observations that are yet 

to be assimilated: 
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Equations 6.9 and 6.10 require two additional transport model runs that could be avoided as 

described in Peters et al. [2005] by approximating these equations in a manner similar to 

Equation 6.5. When the ensemble size is much smaller than the size of the state vector (as will be 

the case when fluxes are estimated at a high spatial and temporal resolution) this results in a poor 

approximation, however. The additional cost of running the transport model might well offset the 

errors incurred due to the approximation. However, with satellite measurements, running the 

transport model each time an observation is assimilated makes the direct implementation of 

Equations 6.9 and 6.10 impractical. Hence, work is underway to find suitable alternatives to both 

these equations without incurring large errors in the analysis. In the work presented here, these 

additional runs are performed. 

Using Equations 6.3 to 6.10, a best estimate of CO2 fluxes is obtained. Once all 

observations have been assimilated, the a posteriori covariance 
a

Q for the flux estimates is 

reconstructed from the ensemble (Equation 6.11). The diagonal values of this posterior 

covariance matrix correspond to the uncertainty (expressed as a variance) of each estimated flux 

component in ŝ . 

   
1

1

T
a a a

N
 


Q s s  

6.11  

Finally, in regular NWP applications a dynamical model (non-linear forecast operator) 

would have been used to propagate the state vector between the two observational time periods. 

For the CO2 problem, no suitable deterministic model is available to directly propagate fluxes 



from one time step to the next. This differentiates the CO2 flux estimation problem from the 

NWP and other trace gas assimilation problems, and may have critical implications for good 

filter performance. Note that this drawback is not specific to GEnSRF but to all variants of the 

ensemble filter that have been employed for CO2 flux estimation. 

6.2.3 Covariance localization 

Covariance localization aims to heuristically improve the error covariance estimates in 

the case of small ensemble sizes. In all ensemble filters (including GEnSRF), the number N of 

ensemble members is small relative to the size m of the state space, hence the representation of 

the prior covariance matrix in N-dimensional space is not perfect. This results in a number of 

erroneous flux correlations as a consequence of which a state variable may be incorrectly 

impacted by an observation that is physically remote.  

Several covariance localization techniques have been proposed for the NWP problem 

(Houtekamer and Mitchell [2001]; Hamill et al. [2001]; Ott et al. [2004]; Anderson [2007b]) to 

account for the statistical noise of the ensemble. For CO2 applications, implemented localization 

schemes have varied depending on the particular ensemble filter variant being used. For 

example, Peters et al. [2005] chose a simple exponential decay function, while Miyazaki et al. 

[2011] subjectively specify different cutoff radii based on the type and location of observation 

data used in their analysis. Zupanski et al. [2007a] and Lokupitiya et al. [2008] chose a more 

dynamic scheme based on information theory, where the localization length scale is a function of 

the information content in the assimilated observations. 

Similarly to Peters et al. [2005], we implement a simple covariance localization scheme 

in GEnSRF. This is achieved by performing a Schur (or Hadamard; Horn and Mathias [1990]) 



product, or element-wise multiplication (denoted  in Equation 6.12) of a correlation matrix ρ 

with the covariance model generated by the ensemble as shown in Equation 6.12. 
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Here, ρ is defined using a standard fifth-order Gaspari-Cohn function (Gaspari and Cohn [1999]) 

with a finite length scale. Note that Peters et al. [2005] used an exponential decay function to 

define their ρ. Both the Gaspari-Cohn function and the exponential function are compactly 

supported (Gneiting [2002]; Bergemann and Reich [2010]), which means that the function is 

non-zero in only a small (local) region specified by a length scale. We find that the overall 

conclusions presented in Section 6.4.2 are valid for a variety of compactly supported functions. 

The key ingredient in all compactly supported functions is the length scale, which ensures that 

spurious correlations are removed, but correctly specified physical correlations are maintained 

and not excessively damped.  

Covariance localization using the Schur product might be a simple approach to increase 

the effective rank of the covariance matrix, but there are several important caveats for CO2 

applications. Previous studies (e.g. Lokupitiya et al. [2008]) have raised questions regarding 

selection of an appropriate localization length scale, and whether the atmospheric advection of 

CO2 is consistent with the use of a compactly supported correlation function such as the Gaspari-

Cohn. Since the prior covariance matrix holds information on the spatial and temporal 

autocorrelation of flux deviations from the trend (Section 6.3.1.3), by including the Schur 

product and thereby modifying this matrix, covariance localization may disrupt the 

autocorrelation structure (see Karspeck and Anderson [2007]; Oke et al. [2007]; Kepert [2009] 

for a similar discussion related to NWP problems). In spite of these concerns, in this study, we 

have persisted with the Gaspari-Cohn function because we want to assess the applicability of this 



simple scheme for atmospheric CO2 inversions. Future work could explore the applicability of 

more sophisticated dynamic localization schemes (e.g. Zupanski et al. [2007a]) or balance-aware 

localization schemes proposed for NWP (e.g. Bishop and Hodyss [2011]; Kepert [2011]; Jun et 

al. [2011]) or more adaptive techniques based on the prior ensemble (e.g. Anderson [2012]).  

6.2.4 Adaptive covariance inflation 

A second algorithm for combatting insufficient variance in ensemble filters is covariance 

inflation. Insufficient variance (or under sampling) is primarily caused by sampling error 

resulting from the use of small ensembles (Furrer and Bengtsson [2007]). Over successive 

assimilation periods, under- sampling can become more severe, and in the worst case can lead to 

filter divergence, where the filter effectively rejects the observations and the assimilation reduces 

to the prior. Also, because the posterior analysis error covariance is generated from the ensemble 

at the end of the assimilation (Equation 6.11), insufficient variance leads to an under-estimation 

of the analysis error covariance (i.e. the flux uncertainties).  

Several ad-hoc and adaptive techniques have been proposed in NWP applications to 

counter this loss of variance (e.g. Anderson and Anderson [1999]; Zhang et al. [2004]; Hamill 

and Whitaker [2005]; Anderson [2007a]; Li et al. [2009]; Anderson [2009]; Pena et al. [2010]). 

Various inflation schemes have also been employed with CO2 applications, depending on the 

variant of ensemble Kalman filter used in a particular study. Some have avoided using the 

ensemble spread as a measure of uncertainty altogether by instead deriving final uncertainties 

from a set of sensitivity experiments (e.g. Peters et al. [2010]).  Feng et al. [2009] chose to use 

an ensemble of the same size as the state vector, thereby minimizing under sampling directly. 

For the maximum likelihood ensemble filter (e.g. Zupanski et al. [2007a]; Lokupitiya et al. 

[2008]) a multiplicative inflation scheme was used for covariance inflation, where the ensemble 



is inflated by a constant factor that is homogeneous in space (although different inflation factors 

are used for land and ocean regions) and time. This approach has some limitations because 

neither the observation network nor the CO2 dynamics are homogeneous in space and time, and 

the cost of tuning experiments to find an appropriate inflation factor that is applicable 

everywhere is prohibitive. Recognizing these drawbacks, more recent studies have employed 

either conditional covariance inflation (Miyazaki et al. [2011]) or a mix of adaptive and 

covariance relaxation techniques (Kang et al. [2011]).  

In GEnSRF, we adopt the more generalized version of the adaptive technique used by 

Kang et al. [2011] (as originally proposed by Anderson [2009]) to calculate spatially and 

temporally varying inflation factors for each state component (i.e., flux at each time and grid 

point). This adaptive algorithm applies Bayesian estimation theory to the probability density 

function of the inflation factors. First, a normally-distributed inflation random variable is 

associated with each element of the state vector. Then, via Bayes theorem, these inflation factors 

are incrementally updated during serial assimilation of the observations. Note that the 

atmospheric CO2 observations can be used to optimize the inflation factors for the CO2 fluxes 

due to the link between these quantities provided by the atmospheric transport model.  

In order to calculate the spatially and temporally varying inflation factors, however, it is 

necessary to implement covariance localization first. The adaptive technique uses sample 

correlations of the ensemble between observation space and the model space to convert the 

inflation estimates in the observation space to those in the model space. Covariance localization 

plays an important role in reducing the sampling noise in the sample correlations. If no 

covariance localization is pursued, then the sampling error manifests itself in the adaptive 

inflation step resulting in spurious inflation factors. Thus, using the adaptive technique, we have 



specifically adjusted the covariance inflation strategy to take into account the information 

provided by the atmospheric CO2 measurements. 

We refer the reader to Anderson [2009] (and the subsequent review by Miyoshi [2011]) 

for the mathematical underpinnings of the adaptive approach. It is worthwhile to reiterate that 

this particular adaptive technique has not previously been applied to any CO2 inversion study. 

Hence, as part of the sensitivity tests described later, we will examine both the advantages and 

disadvantages of this adaptive technique for the CO2 source-sink estimation problem. 

6.3 SAMPLE APPLICATION 

The GEnSRF approach is applied to a synthetic data study over the North American 

continent (Section 6.3.1). A series of analyses are designed (Section 6.3.2) to compare the 

estimates from GEnSRF with the estimates from GIM. These comparisons are done by 

aggregating the posterior estimates to a range of spatial and temporal scales (Section 6.3.3) to 

assess the accuracy and precision of the ensemble approach relative to a batch inversion. 

In the context of this study, the main advantage of the GIM approach relative to the 

GEnSRF technique is that it solves the entire system of equations analytically (without any 

approximations) and hence provides a “gold” standard for evaluating the ensemble results. By 

keeping the atmospheric datasets consistent for GEnSRF and GIM, it is possible to isolate the 

degradation due to the numerical approximations in the ensemble filter framework. The 

drawback of this setup is that the effects of the transport model errors have been removed by 

using the same transport model to both create the synthetic measurements as well as estimate the 

fluxes in the inversion.  



6.3.1 Experimental design 

6.3.1.1 Flux data and Basis functions 

Biospheric fluxes from the Carnegie Ames Stanford Approach terrestrial carbon cycle 

model, as configured for the Global Fire Emissions Database v2 project (henceforth referred to 

as CASA-GFEDv2; Randerson et al. [1997]; van der Werf et al. [2006]) are used as the true 

fluxes for generating the  synthetic atmospheric data. The monthly-averaged 1° × 1° CASA-

GFEDv2 Net Ecosystem Exchange (NEE) for June 2008 (Figure 6.1) is temporally downscaled 

to 3-hourly resolution using the method of Olsen and Randerson [2004].  

The sensitivity matrix H is obtained by coupling the Weather Research Forecasting 

(WRF) model (Skamarock et al. [2005]) to the Stochastic Time-Inverted Lagrangian Transport 

Model (STILT) (Lin et al. [2003]), as outlined in Gourdji et al. [2010]. Calculating and pre-

storing the sensitivity matrix H is necessary for performing the batch GIM analysis but not for 

GEnSRF, where the transport model can be run directly as part of the DA system. Given that H 

was available in this case, it is also used as the transport model for the ensemble implementation. 

 
 

Figure 6.1 - “True” CASA-GFEDv2 fluxes aggregated to the monthly scale. 



6.3.1.2 Synthetic observation data 

The basis functions generated via WRF-STILT are used with the CASA-GFEDv2 fluxes 

to generate the synthetic observations z (i.e., h(s)) for the 35 continuous observation towers (see 

Appendix C) that were operational in June 2008 (Figure 6.2). First, a full set of synthetic data is 

generated for all the towers at the 3-hourly scale, and small random errors (standard deviation of 

0.1ppm) are then added to the synthetic data. Such small errors were used to represent an, albeit 

somewhat unrealistic, best case scenario for the performance of the ensemble approach. Next 

only afternoon measurements are retained for the shorter towers (height ≤ 150 m) consistent with 

typical data choices in inversion studies (e.g. Göckede et al. [2010]; Gourdji et al. [2010]), 

motivated by lower transport model errors for afternoon conditions (e.g. Geels et al. [2007]; 

Gerbig et al. [2008]).  Finally, data gaps are simulated in the synthetic observations consistent  

 

Figure 6.2 - Location of the 35 tower network (stars), and the regions used for interpreting the flux 

estimates, i.e., North America and the MCI region (green shaded area). The background grid represents 

the flux estimation resolution of 1°× 1°. The three-letter codes for the towers are defined in Appendix C. 
 



with missing data from the actual June 2008 observations (due to either instrument down time or 

calibration needs). By mimicking the random outage in the collection/storage of the data, the 

synthetic dataset is highly variable (in both space and time), but realistic. The ratio of the number 

of fluxes (m) to the number of observations (n) is on the order of ~250:1. Conversely, if the full 

set (i.e., eight 3-hourly-averaged observations per day) of synthetic observations without data 

gaps were retained, then the ratio would be on the order of ~75:1.   

6.3.1.3 Error covariance matrices 

The model-data mismatch covariance matrix R is a diagonal matrix, with values of 0.01 

ppm
2
 along the diagonal (i.e., all towers are assumed to have the same model-data mismatch 

error), corresponding to the variance of the errors introduced into the synthetic observations.   

The prior covariance matrix 
b

Q captures the spatiotemporal autocorrelation of the flux 

deviations from the model of the trend Xβ. In this study, only spatial correlation is assumed a 

priori in order to keep the structure of Q
b
 simple, although accounting for both spatial and 

temporal correlation could further improve estimates (e.g. Gourdji et al. [2010]; Chevallier et al. 

[2012]).  

b
Q is prescribed as a block diagonal matrix, with each block describing the correlation 

between grid-scale fluxes for each time period of the inversion. Based on previous work (e.g. 

Michalak et al. [2004]; Gourdji et al. [2010]), each block is modeled by an exponential 

covariance function: 
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where d is the spatial separation distance between the grid points where fluxes are to be 

estimated, 
2  represents the variance of the flux residuals at large separation distances, and l is 



the range parameter. The correlation length beyond which correlation between the flux residuals 

becomes negligible is approximately 3l (Chiles and Delfiner [1999]) for an exponential model.  

The covariance parameters in 
b

Q (i.e., 
2 and l) can be obtained via different methods 

(e.g. Michalak et al. [2005]; Rödenbeck [2005]; Chevallier et al. [2010]) ranging from analyzing 

the variability in biospheric model outputs to statistically inferring these parameters directly from 

the atmospheric measurements. In this study, we follow the latter approach, and optimize for the 

covariance parameters using the Restricted Maximum Likelihood (e.g. Kitanidis [1995]; 

Michalak et al. [2004]).  

6.3.2 Test cases 

Two primary inversion setups (TC1 and TC2) are outlined, both of which estimate 3-

hourly fluxes at a 1° × 1° scale over North America for the month of June 2008. However, TC1 

uses a sparse measurement dataset (as described in Section 6.3.1.2), while TC2 uses all 24 hours 

of measurements for all towers, yielding a temporally denser and homogeneous dataset. 

Covariance parameters were estimated separately for the two test cases. GIM is run once for each 

test case to obtain the batch estimates, while the GEnSRF is run multiple times for both TC1 and 

TC2 with different configurations of ensemble size, localization and inflation parameters. The 

details of these runs are expanded upon in the following paragraphs.   

A control run of GEnSRF is defined based on TC1 with a 500-member ensemble and 

without any covariance localization or adaptive inflation. This run, designated as TC1E500, is 

used to gauge the incremental benefits of subsequent modifications.  

Given the absence of a dynamical model to propagate the state vector forward in time, 

our hypothesis is that the inversion conditions (at least in terms of measurement quantity and 

density) may play a significant role in the performance of the ensemble filter. Miyazaki et al. 



[2011] concluded that the absence of a dynamical model resulted in the posterior analysis being 

sensitive to the initial error covariance, but this earlier study did not test the influence of the 

measurement network. TC2 is designed to explore the impact of the measurement network 

sparseness as it represents the best possible scenario that one can attain with the existing ground-

based continuous measurement network. If this were a real-data study, there would be several 

caveats regarding using all 3-hourly measurements, especially from shorter towers (Gourdji et al. 

[2012]). Hence other inversion scenarios in which measurements are progressively reduced in 

space and time were also evaluated. The conclusions from these additional test cases mirrored 

those from TC1 and TC2, and hence these have been omitted here for the sake of brevity.  

In order to provide insight into an optimal and practical setup of the ensemble filter that 

can provide accurate flux estimates of CO2 with reliable uncertainties, the parameters of the 

ensemble system were varied for both TC1 and TC2. The GEnSRF is run with three ensemble 

sizes – 100, 500, and 2500, denoted as E100, E500, and E2500, respectively. In addition, three 

different localization length scales were prescribed – 500, 1500 and 3000 km, denoted as L500, 

L1500 and L3000, respectively. Finally, the adaptive inflation algorithm requires a priori 

estimates of inflation factors and their associated variance. Again three different specifications of 

the prior inflation variance were provided - a prior inflation factor of 1 with a standard deviation 

of 0.01, a prior inflation factor of 1 with a standard deviation of 0.05, and a prior inflation factor 

of 1 with a standard deviation of 0.25. These runs are denoted as I001, I005 and I025, 

respectively. These parameters were chosen based on a combination of extensive literature 

review of ensemble filter applications, subjective knowledge of CO2 transport and its correlation 

scales, and some preliminary testing with a 1D advection-diffusion problem.  



Overall, a total of 2 GIM and 56 GEnSRF runs were carried out for this study. The 2 

GIM runs represent the batch estimates for each of the test cases, and are simply denoted as GIM 

TC1 and GIM TC2. For GEnSRF, the first run for each setup is with an ensemble size of 500 and 

without any localization and inflation applied (i.e., the control run GEnSRF TC1E500 and 

GEnSRF TC2E500). GEnSRF is then run with varying ensemble sizes, localization length 

scales, and different a priori inflation values as described above. As an example, the GEnSRF 

run for setup TC1 using a 500 member ensemble, a localization length scale of 1500 km and a 

prior inflation factor of 1 with a standard deviation of 0.05 is denoted GEnSRF 

TC1E500_L1500I005.    

Finally, as mentioned previously, the covariance parameters in 
b

Q (Equation 6.13) are 

optimized separately for the two inversion setups. The flux standard deviation (σ) was 6.7 

µmol*m
-2

s
-1 

for TC1 and 6.4 µmol*m
-2

s
-1 

for TC2, while the correlation length (3l) was 1630 km 

for TC1 and 1590 km for TC2.   For all the runs, GEnSRF was spun up for 8 days prior to June 

1, 2008. The lag window for the smoother was set to 10 days to take into account that CO2 

information is preserved over the continent for a maximum of 10 days. Note that a much longer 

lag window would have been required for global applications where there is no finite residence 

time for an air mass in the domain, or if substantial flux temporal correlation had been assumed a 

priori. Even with a 10-day window longer integrations of the transport model are required as 

well as more parameters need to be estimated. Thus to represent the covariance matrix properly, 

it becomes necessary to have a large number of ensemble members.   

6.3.3 Evaluating the analysis 

The posterior flux estimates from the different GEnSRF runs and GIM are compared 

using both quantitative and qualitative metrics at different spatial and temporal scales. Results  



Table 6.1 – Summary of the GEnSRF configurations reported in Section 6.4. 

Test Case Name 

Inversion 

setup 
 

Number of 

observations 
 

Parameters 

Ensemble size 
Localization 

length 
 

Prior inflation 

standard 

deviation 
 GEnSRF TC1E500 TC1 3-hourly with 

data gaps 
a,b

 

 

500 n/a n/a 

GEnSRF TC1E2500 TC1 2500 n/a n/a 

GEnSRF TC1E500_L1500I005 TC1 500 1500 km 0.05 

GEnSRF TC2E500 TC2 3-hourly 
a
 500 n/a n/a 

GEnSRF TC2E500_L1500I005 TC2 500 1500 km 0.05 

a. 3-hourly implies observations are available at 8 time-periods during the day 
b. For the shorter towers (height ≤ 150 m) afternoon measurements are only used; for the very short towers (height ≤ 30 m) only those 

measurements recommended by the data providers are used.  

 

are presented for a subset of GEnSRF runs (Table 6.1) that answer the specific questions posed 

in the study, and other setups are discussed where appropriate. 

In terms of time-averaged diagnostics, the two quantitative metrics used are the root 

mean square difference (RMSD) and the correlation coefficients (CC). The GEnSRF and the 

GIM flux estimates are aggregated to a monthly timescale and the RMSD and the CC calculated 

at the native 1°1° spatial resolution for all grid-cells across the continent. Both these quantities 

are reported aggregated over North America (NA) and the Mid-Continent Intensive (MCI) 

region. The MCI region (e.g. Lauvaux et al. [2012]) that is shown as the green shaded area in 

Figure 6.2, was not only well constrained by a dense measurement network in 2008, but also lies 

in the interior of the study domain and hence is immune to biases that may arise along the 

boundaries of the study domain (Dirren et al. [2007]). The monthly fluxes and uncertainties are 

also aggregated to seven ecoregions (Figure 6.3) that are loosely defined based on the work of 

Olson (2001) and demarcate large (mostly contiguous) regions with similar climate, land cover 

and land use.  



 

Figure 6.3 – Ecoregion map, modified from Olson (2001), which is used for analyzing inversion results at 

spatially-aggregated scales. Stars represent the location of the 35 tower network. 

 

In terms of diagnostics at fine time scales, the GEnSRF performance is evaluated at 3-

hourly and daily time scales, aggregated spatially to the full North American domain. By 

domain-averaging the recovered 3-hourly fluxes, we assess the ability of GEnSRF to accurately 

recover the diurnal cycle of the CO2 fluxes. Daily RMSD between the GEnSRF and the GIM 

grid-scale flux estimates are also examined as a function of time to evaluate the filter stability.  

The degree to which the GEnSRF fluxes reproduced the atmospheric CO2 observations 

was also evaluated (results not shown), but a direct comparison of GEnSRF fluxes rather than 

atmospheric concentrations provides a more direct measure of the impact of the numerical DA 

scheme.  



6.4 RESULTS 

6.4.1 Multi-scale evaluation of the ensemble estimates for the control run (TC1E500) 

Monthly-averaged grid-scale flux estimates and uncertainties for TC1 are presented in 

Figure 6.4. Qualitatively, it is clear that the control run (GEnSRF TC1E500 – Figure 6.4C, D) is 

not capable of reproducing the monthly-averaged GIM estimates or their associated uncertainties 

(Figure 6.4A, B). The under-estimated uncertainties should not be interpreted as more confident 

estimates, but rather point to the problem of insufficient variance in the ensemble. While the 

ensemble approach correctly captures the flux estimates over the Eastern corridor and the 

Southern parts of the continent, its performance degrades over the Northwestern region in Alaska 

and Canada, where scattered sources are incorrectly inferred throughout. In real-data application, 

this could be caused by two reasons: 1) the use of a limited number of ensemble members 

resulting in large sampling error, and 2) in general, this area has a sparse network with several of 

the available towers located in complex terrains where the transport is difficult to model. Given 

that this synthetic data study does not include transport model errors, the erroneous fluxes 

suggested by GEnSRF are a product of spurious ensemble noise. As indicated in Table 6.2, the 

difference in the spatial patterns between the two sets of estimates manifests itself in low CC and 

high RMSD between GIM and GEnSRF over North America.  

Monthly-averaged ecoregion-scale flux estimates and associated uncertainties are 

presented in Figure 6.5. GEnSRF TC1E500 estimates suggest a smaller sink throughout all 

ecoregions relative to the GIM TC1 estimates, and the 95% uncertainty bounds based on the 

ensemble estimate only capture the true fluxes in 4 of the 7 ecoregions. At the continental scale, 

the GEnSRF TC1E500 estimate (-23.8 (3.4) gC/(m
2
month)) is significantly higher than the 

GIM TC1 estimate (-32.8 (2.7) gC/(m
2
month)), and unlike the GIM estimate, and does not  



 

Figure 6.4 –TC1 flux estimates (top row) and associated uncertainties (bottom row) aggregated to the 

monthly scale for GIM (A and B) and three different GEnSRF runs (C to H).  

 

 

Figure 6.5 – Estimated monthly-averaged flux estimates and the associated uncertainties aggregated to 

ecoregions (Figure 6.3) and continental scales. The error bars represent 95% uncertainty bounds. 

 

capture the true flux of -30.46gC/(m
2
month).  

The inferred monthly-averaged diurnal cycle at the continental scale is shown in Figure 

6.6. GEnSRF TC1E500 does not reproduce the GIM TC1 diurnal pattern, with the difference 

between the two estimates spiking around 0400h and 1900h UTC. The largest differences 

between the estimated diurnal cycles coincide with times with the greatest temporal gradient in 



the true underlying fluxes, as well as times when observation locations are coming into/out-of 

the TC1 network. Another mechanism that could cause these observed errors is the sampling 

error due to a small ensemble size which could result in spurious temporal correlations in the 

estimates, leading to a dampened diurnal cycle relative to GIM. Further analysis (Sections 6.4.2 

and 6.4.3) suggests that the gradient in the true diurnal cycle is the better explanatory factor.  

Conclusions based on the inferred diurnal cycle for the MCI region, which spans a much 

narrower longitudinal range and therefore exhibits less smearing of the diurnal cycle, are 

consistent with those for the full continent (results not shown). 

Overall, the conclusion from the control run is that the small ensemble size and limited 

observational information in TC1E500 hinder the ensemble’s ability to reproduce GIM estimates 

across spatial and temporal scales. Sampling errors and sparse measurements may both result in 

a dramatic failure of the ensemble filter to infer fluxes.  

 

Figure 6.6 – Estimated flux diurnal cycle (top row), and absolute errors of the individual GEnSRF 

estimates with respect to the GIM estimates (bottom row), aggregated to the continental scale. Also 

highlighted in the bottom row is the average observation density (light yellow denotes <10 observations, 

medium yellow denotes  10 observations) used in TC1 over the day.  



6.4.2 Sensitivity to ensemble size, and covariance localization and inflation algorithms  

A straightforward solution to reducing the sampling error is to increase the ensemble size, 

which in effect increases the rank of the ensemble estimate of the prior error covariance matrix. 

In the absence of a dynamical model and at the limit of a large ensemble, the ensemble filter 

asymptotically approaches the Kalman filter (assuming the error characteristics remain Gaussian) 

at a convergence rate of 1/√N. A large ensemble (GEnSRF TC1E2500, Figure 6.4G, H) indeed 

appropriately reduces the spurious noise in the best estimates at fine spatial scales, and yields 

uncertainty estimates close to those from GIM TC1, albeit at the expense of an increase in 

computational cost compared to GEnSRF TC1E500 proportional to the increase in the size of the 

ensemble.  

An alternate approach that does not carry substantial additional computational cost is to 

implement covariance localization and inflation, which dampen the sampling error and improve 

estimates of the flux uncertainties, as seen in GEnSRF TC1E500_L1500I005 (Figure 6.4E, F).  

The improved performance resulting from increasing the ensemble size and implementing 

localization and inflation is confirmed in Table 6.2, where GEnSRF TC1E2500 and GEnSRF 

TC1E500_L1500I005 both show higher CC and lower RMSD values relative to the control run. 

Both approaches also improve the ecoregion and continental scale results (Figure 6.5). The 

continental scale flux estimate for both GEnSRF TC1E2500 (-28.6 (3.9) gC/(m
2
month)) and 

GEnSRF TC1E500_L1500I005 (-33.3 (3.7) gC/(m
2
month)) capture the true CASA fluxes 

within their 95% confidence intervals.  

The impact of increasing the ensemble size or of implementing inflation and localization 

is less conclusive for the estimation of the diurnal cycle either over the full continent (Figure 6.6) 

or over the MCI region (results not shown). From Figure 6.6, GEnSRF TC1E2500 captures the  



Table 6.2- Correlation coefficients (CC) and Root Mean Square Difference (RMSD; µmolm
-2

s
-1

), 

calculated based on grid-scale, monthly averaged flux estimates between the various runs of GEnSRF 

and GIM TC1 (first three rows shaded light gray) and GIM TC2 (last two rows shaded dark gray). The 

best results are obtained by specifying a large ensemble size, albeit at the cost of high computational cost. 

The bold font indicates the control run.  

 
Test Case North America (NA) Mid-Continent Intensive (MCI) 

CC RMSD CC RMSD 

GEnSRF TC1E500 0.64 0.52 0.77 0.32 

GEnSRF TC1E2500 0.81 0.35 0.91 0.29 

GEnSRF TC1E500_L1500I005 0.75 0.37 0.83 0.35 

GEnSRF TC2E500 0.68 0.48 0.77 0.30 

GEnSRF TC2E500_L1500I005 0.76 0.39 0.85 0.32 

 

diurnal cycle very well initially but the error peaks around 1600h UTC. The implementation of 

inflation and localization in GEnSRF TC1E500_L1500I005 does not yield a clear reduction in 

errors especially at 1900h UTC, although the discontinuity observed in GEnSRF TC1E500 

between 1300h UTC and 1600h UTC is eliminated. The overall diurnal cycle, however, becomes 

even more washed out and fails to capture the true amplitude of the fluxes. The lack of error 

reduction resulting from the implementation of inflation and localization highlights the fact that 

although sampling error does contribute somewhat to the errors in the estimated diurnal cycle, 

the dominant cause is either the variable measurement network prescribed in TC1 or the inability 

of a small ensemble to capture sharp gradients in the flux diurnal cycle, or a combination of both. 

This is problematic, especially if we were to use these estimates either for mechanistic 

understanding of the carbon cycle at sub-diurnal scales, or for reconciling with estimates from 

biospheric models.  

Changing the localization length scale to either 500 km or 3000 km for the 500-member 

ensemble negatively impacts the estimates (Table 6.3). A tight isotropic localization scale  



Table 6.3- Correlation coefficients (CC) and Root Mean Square Difference (RMSD; µmolm
-2

s
-1

), 

calculated based on grid-scale, monthly averaged flux estimates between the different runs of GEnSRF 

and GIM for TC1. The cases presented for GEnSRF specifically show the impact of localization 

(highlighted in light gray) and adaptive inflation (highlighted in dark gray) on the final estimates.  The 

control run is shown in bold.  

 
Test Case North America (NA) Mid-Continent Intensive (MCI) 

CC RMSD CC RMSD 

GEnSRF TC1E500 0.64 0.52 0.77 0.32 

GEnSRF TC1E500_L500 0.62 0.42 0.90 0.31 

GEnSRF TC1E500_L1500 0.75 0.37 0.84 0.32 

GEnSRF TC1E500_L3000 0.69 0.44 0.82 0.28 

GEnSRF TC1E500_L1500I001 0.75 0.37 0.84 0.33 

GEnSRF TC1E500_L1500I005 0.75 0.37 0.83 0.35 

GEnSRF TC1E500_L1500I025 0.75 0.38 0.79 0.44 

 

(GEnSRF TC1E500_L500) imposes high locality, as a consequence of which the autocorrelation 

information modeled in the prior covariance is completely lost. Measurements impact fluxes in 

their immediate vicinity, while areas in which no local observations are available are not 

constrained at all. It is possible though that strong localization could be imposed if a wide 

network of measurements were available to compensate for the loss of remote influence. On the 

other hand, a large localization scale (GEnSRF TC1E500_L3000) cannot significantly reduce the 

spurious correlations among distant flux locations. This suggests that the optimal value of the 

localization length scale (1500 km) may be linked with the correlation length scale of the fluxes 

themselves (~ 1600 km, see Section 6.3.2). However, tests also revealed that the optimal filter 

length scale is a function of the size of the ensemble, with a smaller ensemble size requiring a 

shorter optimal length scale. This is due to the fact that if the number of ensemble members is 

large, the noise in the covariance estimates does not overwhelm the signal until much farther 

from the observations. This makes it harder to identify a universal mathematical or physical basis 



for selecting these length scales. Nevertheless, the correlation length scale of the fluxes can be 

used as a starting point for the localization length scale in future filter designs.  

Likewise, the estimates are found to be sensitive to the parameters of the adaptive 

inflation technique, especially in terms of the recovered uncertainties over data-sparse regions 

and periods. As evident in Table 6.3, the change in CC and RMSD is small for the different 

starting parameters of the adaptive inflation, but the impact is more visible when the 

uncertainties associated with the GEnSRF are compared to the uncertainties from the GIM. For 

example, with very tightly constrained inflation factors (I001), GEnSRF underestimates the 

standard deviation of the individual flux estimates by an average of 13% relative to GIM.  

Conversely, with very loose prior inflation factors (I025) the initial inflation in the ensemble is 

large. During assimilation of subsequent observations, the ensemble should be deflated 

gradually. Yet for TC1, even after the full analysis, the ensemble remains over-inflated, resulting 

in an overestimate of the posterior standard deviations by GEnSRF by 31%.  A prior inflation 

factor standard deviation of 0.05 provides a good balance, with uncertainties being 

underestimated by GEnSRF by only 4% (Figure 6.4F).  

In understanding the response of the adaptive inflation technique, two factors need to be 

considered: 1) the specification of a large and spatially uniform prior inflation factor uncertainty, 

i.e., one that does not vary between data sparse and data dense regions, and 2) a delayed response 

on the part of the adaptive inflation technique in adjusting to the changes in the measurement 

network as specific measurement location come into and out of the network throughout the day. 

Recall that the adaptive inflation technique is based on a Bayesian inverse modeling framework; 

hence, its dependency on the measurement network is not surprising. Significant improvement in 

the performance is obtained if the inflation is damped towards 1 as a function of time. Damping 



the inflation value over time makes the technique less dependent on the measurement coverage, 

and has been successfully implemented in other operational tests of the adaptive technique (e.g. 

Torn [2010]). 

6.4.3 Sensitivity to the measurement network 

For any inversion framework based on Bayesian estimation theory, the addition of 

measurements in space and time will improve both the estimation accuracy and the uncertainty. 

As expected by increasing the temporal density of measurements in TC2, the performance of 

both GIM and GEnSRF estimates at the grid and ecoregion scale improve significantly (results 

not shown). The continental scale flux estimates for both GIM TC2 (-31.7(1.9) gC/(m
2
month)) 

and GEnSRF TC2E500_ L1500I005 (-32.1 (2.7) gC/(m
2
month)) improve substantially, 

allowing them to capture the true CASA flux estimate (-30.5gC/(m
2
month)) within their 95% 

confidence intervals.  

Of greater interest is that the GEnSRF estimates now capture the amplitude and phase of 

the diurnal cycle better than in the case of TC1 (Figure 6.7), even without needing to increase the 

ensemble size. GEnSRF TC2E500_L1500I005 estimates mirror the GIM TC2 3-hourly 

estimates, indicating the positive impact that the additional measurements have had on the 

ensemble filter, especially between 0100h to 1600h UTC. Comparing the error in the two bottom 

panels in Figure 6.7, one can see that the denser homogeneous network in TC2 plays a 

significant role in aiding the ensemble filter to correctly capture the diurnal cycle. However, the 

higher errors at 1900h UTC still persist, showing that these errors are more likely to be 

attributable to the sharp gradient in the true diurnal cycle at this time, rather than due to temporal 

heterogeneity in the measurement network. Either hypothesis could have been supported by 

results from TC1, because transition times in network size coincide with times with sharp 



 

Figure 6.7 – Estimated flux diurnal cycle (top row), and absolute errors of GEnSRF 

TC1E500_L1500I005 and GEnSRF TC2E500_L1500I005 with respect to the corresponding GIM 

estimates (bottom row), aggregated to the continental scale. For TC2 the average observation density is 

35 (dark yellow) but for TC1 it varies (light yellow denotes <10 observations, medium yellow denotes  

10 observations) over the day. 

 

gradients in the diurnal cycle. Allowing the GEnSRF to directly estimate sub-continental spatial 

and sub-daily temporal patterns therefore also made it possible to identify the filter sensitivity to 

the measurement network prescribed in TC1 and TC2.  

Results from TC2 also confirm that ensemble filter performance improves with a denser 

measurement network. This follows from the hypothesis stated earlier in Section 6.3.2, that for 

an under-determined inversion problem, the ensemble system is sensitive to the spatiotemporal 

density of the measurements. Additional runs with a temporally-homogeneous 10 tower network 

confirmed that the total number of observations is a better determinant of ensemble performance 

at fine temporal scales relative to their temporal heterogeneity/homogeneity. Without the 

guidance of a dynamical model and in the absence of a rich observational constraint, the 

ensemble deviates from the truth, resulting in increased ensemble degeneracy and inaccurate  



 

Figure 6.8 – Time series of the Root Mean Square Difference (RMSD) between grid-scale daily-averaged 

estimates from GEnSRF and GIM over North America for TC1 and TC2. The time series shown here is 

for the latter half of the assimilation cycle to emphasize that with the measurement network in TC1, the 

ensemble filter does not stabilize and suffers from divergence. 

 

estimates. In fact, as shown in Figure 6.8, it is only in the case of TC2 that the filter is stable and 

reaches an asymptotic level of accuracy. 

The influence of the measurement density on the ensemble behavior can be examined 

using several diagnostics that are commonly available in the NWP literature. All of these 

diagnostics, however, require knowledge of the true state against which the ensemble mean is 

evaluated. In this study, the true state is available from the CASA-GFED v2 fluxes, but in real 

application this would be unknown and hence these diagnostics could not be calculated. The 

diagnostic selected here examines the ratio of the time-averaged ensemble spread to the error in 

the ensemble mean (Liu et al. [2008]) at every estimation grid-point, and highlights how 

measurement availability controls ensemble behavior. In this case, the ensemble spread is 

obtained as the difference between individual ensemble members and the ensemble mean, while 

the error in the ensemble mean is calculated as the mean squared difference from the true state. 

This ratio is an indication of the optimality of the DA system, and illustrates the impact of the 

measurements in adjusting this ratio. Figure 6.9 shows this ratio for GEnSRF  



 

Figure 6.9 –The ratio of grid-scale time-averaged ensemble spread and ensemble mean error for 

TC1E500_L1500I005 and TC2E500_L1500I005. A ratio of 1.0 (or green color) indicates optimal data 

assimilation.  

 

TC1E500_L1500I005 and GEnSRF TC2E500_L1500I005. In the case of GEnSRF 

TC2E500_L1500I005, the ratio is close to 1.0 over most of the continent, such that on an 

average the analysis spread among the ensemble members is consistent with the true errors, i.e. 

mean squared difference between the ensemble mean and the truth. In the case of GEnSRF 

TC1E500_L1500I005, however, the ratio is close to 1.0 only over a small portion of the 

continent that is both removed from domain boundaries and that is relatively well constrained by 

observations, while in other areas the value of the ratio is near 2.0. This indicates that the 

ensemble overestimates the uncertainties in these regions by a factor of 2. This result is 



indicative of the better performance of the adaptive inflation technique with a richer 

observational constraint, as seen by the fact that TC2E500_L1500I005 has a reduced mismatch 

between the ensemble mean error and the ensemble spread, except over very sparsely observed 

areas like the Tundra. The dependency of the adaptive inflation technique on the spatial 

heterogeneity of the measurement network might seem a disadvantage at first. However, we 

argue that the adaptive algorithm provides inflation values that are preferable than having to 

manually tune the system with a single inflation value that would be applied everywhere. Figure 

6.10 shows the spatially-dependent monthly-averaged inflation factors and their uncertainties, as 

determined by the adaptive inflation algorithm for GEnSRF TC2E500_L1500I005. Although the 

time-averaged values in Figure 6.10 mask the significant temporal variations of the inflation 

factors, they do highlight the spatial structure that is clearly consistent with the spatial density of 

the measurement network. This spatial variability in the inflation factors underscores the need for 

adopting an inflation strategy that can be adjusted recursively. Conversely, if a single inflation 

value had been used over the entire continent, for example a value of 1.1, then this would have 

under-inflated the ensemble in the data-dense regions, but over-inflated it over the data-sparse 

regions. This would have led to additional errors in the final estimated flux estimates and their 

uncertainties. Overall, results indicate that the density of the measurement network not only 

controls the estimation accuracy, but also ensures that the entire ensemble system and its 

associated algorithms function well. In the absence of a dynamical model, the measurements 

play an even more integral role in the assimilation process, as they drive both the ensemble mean 

and the ensemble spread. In practice, obtaining such a network not only requires additions to the 

existing monitoring network, but also improvements to atmospheric transport model that would 

enable the use of observations collected throughout the day, as was done in TC2.  



 

Figure 6.10 – Monthly-averaged a posteriori inflation factor estimates and associated standard 

deviations for the case GEnSRF TC2E500_L1500I005. Note that the largest change in the inflation 

factors and the largest reduction in the prior inflation standard deviations are over areas with more 

measurements.  

 

An important question that has not been addressed here is the response of the ensemble to 

either transport error or measurements of varying quality. Given the sensitivity of the ensemble 

to the density of measurements, we expect differential and/or correlated model-data mismatch 

errors to play a key role as well. Tests with higher model-data mismatch covariance errors 

demonstrated that no additional degradation in the performance of GEnSRF was observed 

relative to that for GIM (results not shown). These tests did not include correlated observational 

errors, however.  

6.5 SUMMARY  

Application of data assimilation techniques for estimating sources and sinks of CO2 

provides unique opportunities to better understand the mechanistic processes governing the 



carbon cycle. In this work, we examined the parameter space of the ensemble filter in terms of 

estimating CO2 fluxes at high spatial and temporal resolutions. A new ensemble square root filter 

(GEnSRF) based on the geostatistical inverse modeling technique was presented and applied to a 

synthetic data study over North America.    

The application of GEnSRF to different inversion regimes illustrates a dynamic interplay 

between three factors: 1) the spatial and temporal density of the measurements available to 

inform the filter, 2) the ensemble size, and the resultant sampling error, and 3) the 

implementation of covariance inflation and localization algorithms to ameliorate the latter. 

Together, these factors determine not only the relative precision and accuracy of the best 

estimates but also their associated uncertainties. For the ensemble filter to serve as an appropriate 

replacement for batch estimation of fine-scale fluxes, experiments in this study demonstrate that 

it may be necessary to have a dense network of measurements in space and time. To some extent, 

this bodes well for future applications with high-density remote sensing measurements of CO2. 

Additional studies will be necessary, however, to quantify the impact of biases, correlated errors, 

temporal heterogeneity etc. in the remote sensing measurements.  

It can be argued that the requirement for more measurements may be relaxed if a 

dynamical model is developed to propagate the CO2 fluxes in time. Alternately, if the inversion 

can be formulated as an over-determined problem it will be better constrained by the 

measurements, which would also lead to better ensemble behavior. This may be problematic, 

however, since by solving at large spatial and temporal scales existing deficiencies in the 

ensemble filter are masked, and aggregation errors grow. In the long run, solving at large spatial 

and temporal scales may limit methodological advancements in the design of future filters for the 

CO2 source-sink estimation problem.  



As the popularity of the ensemble filter within the carbon science community rises, future 

developments will most likely revolve around reducing the impact of sampling error. In this 

study, this was the largest source of error resulting from the use of a limited ensemble size. 

Sensitivity tests with different ensemble sizes established that approximately 500 ensemble 

members, used in combination with covariance inflation and localization, may be used for 

estimating 3-hourly fluxes over North America at a 1° × 1° scale. Estimates at both native and 

aggregated spatial scales were reliable, as were estimates at aggregated temporal scales. 

Capturing the diurnal cycle of the underlying fluxes proved most difficult, even when covariance 

inflation and localization were used. By designing inflation and localization techniques that are 

more tailored or customized to the CO2 flux estimation problem, the requisite number of 

ensemble members may be reduced further to increase the computational efficiency. The two 

algorithms implemented here are drawn from NWP-related problems. Although they perform 

reasonably well, questions remain over the behavior of the adaptive inflation technique in data-

sparse regions, the appropriateness of existing localization techniques, etc. In spite of these 

shortcomings, these algorithms can be implemented with a limited ensemble size to obtain 

reliable posterior CO2 flux estimates but with over-inflated uncertainties over data-sparse 

regions, as was done here. 



 

Chapter 7 

Role of GOSAT total column CO2 observations for the 

estimation of CO2 surface fluxes 

7.1 INTRODUCTION 

The absence of spatially and temporally dense measurements of atmospheric CO2 from 

the ground-based monitoring network is considered one of the major limiting factors to obtaining 

precise and accurate knowledge of CO2 sources and sinks (e.g. Scholes et al. [2009]). The sparse 

and spatially non-uniform network is not sufficient to constrain regional fluxes with the needed 

certainty as well as understand the nature, geographic distribution and temporal variability of 

CO2 sources and sinks (e.g. Miller et al. [2007]; Le Quéré et al. [2009]). Flux inversion studies 

have typically relied on atmospheric CO2 observations from: (a) discrete flask samples (weekly 

snapshot measurements) of CO2 (e.g. Rödenbeck et al. [2003a]; Gurney et al. [2003]; Baker et al. 

[2006a]; Mueller et al. [2008]; Gourdji et al. [2008]), (b) continuous in situ data collected over 

continental sites (e.g. Carouge et al., [2010a]; Schuh et al. [2010]; Goeckede et al. [2010]; 

Gourdji et al. [2012]), and/or (c) vertical profiles of CO2 measurements from research aircraft 

(e.g. Gerbig et al. [2003a; 2003b]; Stephens et al. [2007]; Crevoisier et al. [2010]; Xueref-Remy 

et al. [2011a; 2011b]; Pickett-Heaps et al. [2011]) or commercial airlines (e.g. Machida et al. 

[2008]; Niwa et al. [2011]; Patra et al. [2011]; Niwa et al. [2012]), to constrain carbon fluxes 

and pools. In spite of the steady expansion of the in situ observation network, the atmospheric 



 

inverse problem remains severely under-determined, if it is used to constrain fluxes at fine 

spatial and temporal scales (e.g. Ciais et al. [2010b]).   

A viable option for overcoming the sparse coverage of the ground-based and aircraft 

network is to use space-based remote-sensing measurements of atmospheric CO2. Existing 

remote-sensing instruments such as the TIROS Operational Vertical Sounder (TOVS), the 

Atmospheric InfraRed Sounder (AIRS), the Tropospheric Emission Spectrometer (TES) and the 

Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) 

have been examined for their ability to measure CO2 concentrations (e.g. Chédin et al. [2003]; 

Engelen et al. [2004]; Buchwitz et al. [2005]; Pagano et al. [2011]; Schneising et al. [2012]). 

These multi-purpose sounding instruments typically have increased sensitivity to the mid and the 

upper troposphere, which makes it difficult to relate the measured variations in CO2 

concentrations to the spatial and temporal variations of surface CO2 sources and sinks. Thus, it is 

not surprising that the surface fluxes inverted from the CO2 observations obtained from these 

instruments have not provided substantial insights on the carbon cycle (e.g. Chevallier et al. 

[2005b]; Chevallier et al. [2009a]; Nassar et al. [2011]).  

More recently, efforts have been invested in the development of CO2-dedicated remote-

sensing instruments, such as the Orbiting Carbon Observatory-2 (OCO-2; Eldering et al. [2012]), 

the Greenhouse Gases Observation SATellite ‘IBUKI’ (GOSAT; Kuze et al. [2009]; Yokota et 

al. [2009]) and the Active Sensing of CO2 Emissions over Nights, Days and Seasons Mission 

(ASCENDS; NRC [2007]; NASA [2008]); all of these instruments are sensitive to the lower 

troposphere, and are expected to improve our scientific understanding of regional carbon cycle 

processes and budgets. GOSAT, which was successfully launched in January 2009, is the only 

remote-sensing mission currently operational that was specifically designed to measure 



 

atmospheric CO2 and CH4 concentrations from space. GOSAT takes global soundings of 

reflected sunlight from which column-averaged dry air mole fractions of CO2 (XCO2) are 

retrieved. The GOSAT satellite has a Sun-synchronous orbit at an altitude of 666 km and a 3-day 

recurrence with the descending node around 13:00 local time (e.g. Hamazaki et al. [2004; 

2005]). Over the 3-day orbital repeat cycle, GOSAT measures thousands of single soundings that 

cover the globe but the most useful observations for retrieving CO2 concentrations are limited to 

areas under clear-sky conditions (e.g. Yoshida et al. [2011]; O’Dell et al. [2012]). Even then the 

number of clear-sky locations where the GOSAT data are available (see Section 7.2.2) far 

surpasses the current number (~ 200) of in situ monitoring locations, as registered with the 

World Data Centre for Greenhouse Gases (WDCGG; http://ds.data.jma.go.jp/gmd/wdcgg/).  

It may still be early, however, to assess the real contribution of GOSAT to the estimation 

of carbon sources and sinks with reliable uncertainties. This is because the GOSAT XCO2 

retrieval algorithms are themselves maturing (e.g. O’Dell et al. [2012]; Oshchepkov et al. 

[2012]), and studies are underway to minimize the retrieval errors and improve the precision of 

the data products. Theoretical studies (e.g. Kadygrov et al. [2009]) using simulated GOSAT 

observations have claimed that GOSAT XCO2 retrievals will be able to reduce the mean regional 

flux uncertainties from those based on in situ measurements by 50% only if the total errors in the 

monthly averaged column data are less than 0.8 ppm. Other synthetic data studies (e.g. 

Maksyutov et al. [2008]; Chevallier et al. [2009b]; Hungershoefer et al. [2010]; Palmer et al. 

[2011]) point out that it will be necessary to use additional information from other remote-

sensing missions and/or surface networks, along with the GOSAT data, to improve our current 

knowledge of carbon fluxes. Since the launch of GOSAT, only one study has been published 

(Takagi et al. [2011]) that focuses on the estimation of CO2 surface fluxes from the actual 



 

GOSAT observations. This study used monthly-mean surface observations and monthly-

averaged GOSAT XCO2 retrievals gridded to 5×5, for estimating monthly fluxes over 64 

regions. The conclusions of the study were rather disappointing, as sound estimates of surface 

fluxes could not be obtained due to retrieval biases in the data product, and large aggregation 

errors caused by the estimation of fluxes at coarse spatial and temporal scales.  

Nonetheless, it is important to keep probing the utility of the GOSAT observations as 

they provide valuable feedback to the retrieval community regarding the value of their data 

products. To the best knowledge of the author, 6 or 7 groups worldwide (S. Houweling, pers. 

comm.) are actively pursuing flux inversions with the GOSAT data at different spatial (~ 2.5 or 

coarser) and temporal (~ weekly or coarser) resolutions. Several of these studies are still 

exploratory, and a variety of Bayesian data assimilation (DA) techniques (ensemble filter or 

variational) are being used to extract information from the GOSAT retrievals. The use of 

Bayesian DA techniques limits our understanding of the actual information content of the 

GOSAT data as these DA systems (e.g. Chevallier et al. [2005b]; Peters et al. [2005]; 

Rödenbeck [2005]; Baker et al. [2006a]; Feng et al. [2009]; Miyazaki et al. [2011]) require an 

initial estimate of CO2 fluxes from bottom-up models and/or inventories, or combination thereof. 

Hence, the posterior flux estimates are no longer a direct reflection of the information contained 

in the GOSAT data. 

The goal of this study is twofold: (1) to assess the ability of the GOSAT XCO2 data to 

constrain fine scale (spatial - 1 × 1.25 and temporal - daily) estimates of carbon flux over 

different seasons, and (2) to quantify the influence of the GOSAT XCO2 observations in 

constraining surface fluxes, relative to the observations from the surface network. Flux estimates 

are presented for two representative months that are typical of Northern Hemisphere early 



 

summer (June 2009) and winter (January 2010), in order to identify whether the seasonal 

variability in the fluxes is adequately captured by the GOSAT observations. These estimates of 

surface flux represent the total flux, including terrestrial, oceanic, and anthropogenic 

contributions. As pointed out in Mueller et al. [2008], directly estimating the total flux avoids the 

possibility of aliasing the uncertainties and seasonality of fossil fuel emissions (e.g. Gurney et al. 

[2003]) onto the estimated biospheric flux signal. The estimated fluxes are subsequently 

compared at various spatial and temporal scales to bottom-up estimates of biospheric (Potter et 

al. [2007]), oceanic (Takahashi et al. [2002]), fossil fuel (e.g. Friedlingstein et al. [2010]), and 

fire emissions (van der Werf et al. [2006]) fluxes.  

The geostatistical ensemble square root filter (GEnSRF) developed and tested in the 

previous chapter (e.g. Chatterjee et al. [in press]) is well-suited to obtaining the surface flux 

estimates as it has been designed to: (a) handle large observational datasets, and (b) provide data-

driven estimates of surface fluxes at high spatial and temporal resolutions. By reducing the 

influence of prior bottom-up flux estimates from biospheric models and/or inventories, GEnSRF 

allows us to directly assess the information content of the atmospheric observations. Further, by 

judiciously selecting the model of the trend as an unknown but constant set of mean fluxes in 

space and time, the analysis is not influenced by any auxiliary variables that may prescribe flux 

spatial patterns a priori on the surface flux estimates. Analytical tools such as the influence 

matrix (e.g. Cardinali et al. [2004]; Liu et al. [2009]) are used to directly assess the amount of 

influence each data type (i.e., GOSAT vs. surface-network) has on the posterior analysis.  

The results from this study will be shared with the GOSAT-ACOS retrieval team, which 

was set up after the launch failure of the Orbiting Carbon Observatory (OCO) mission (e.g. Crisp 

et al. [2004]), under the auspices of the NASA Atmospheric CO2 Observations from Space 



 

(ACOS) task. This may provide valuable feedback to the retrieval team on the precision of the 

XCO2 data product, and its ability to inform contemporary CO2 sources and sinks. Additionally, 

the results will be submitted to an inter-comparison effort led by S. Houweling (GOSAT 

inversion inter-comparison protocol, S. Houweling, pers. comm.). The inter-comparison effort 

specifically aims to quantify the effects of GOSAT observations on estimated fluxes from 

several inverse models, update the global and regional carbon budgets using the GOSAT 

observations, and if possible, attribute the variability and trends of the CO2 surface fluxes to the 

underlying drivers.  

7.2 INVERSION FRAMEWORK 

The geostatistical objective function used in the solution of the atmospheric CO2 inverse 

problem is expressed as:  
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where z is a n×1 vector of observations, h represents the atmospheric transport model, s is a m×1 

vector of the discretized true but unknown surface flux distribution, R is the n×n model-data 

mismatch covariance, X is an m×1 vector of ones in the work but could also include auxiliary 

variables related to carbon flux, β is an unknown constant here but could also include unknown 

drift coefficients that scale other variables in X, and the prior covariance matrix Q
b
 describes the 

expected variability in flux departures from Xβ as a function of the separation distance in space 

and time between fluxes. Further description of these components is presented in Sections 7.2.1 

to 7.2.4. 

The overall mathematical framework of GEnSRF DA system that is used to solve 

Equation 7.1, including the implementation of the covariance localization and the adaptive 



 

inflation algorithms, is based on Chatterjee et al. [in press]. The operational implementation, 

however, is more advanced mainly due to the data volumes that need to be assimilated. In order 

to avoid repetition of the entire framework, the reader is referred to Chapter 6 (Section 6.2) and 

the specific components of the problem that are different from Chapter 6 are discussed here.  

7.2.1 Flux estimation resolution 

CO2 fluxes are estimated daily at 1° × 1.25° for both land and ocean components. 

Although the choice of the spatial and temporal resolution is limited by the resolution and model 

integration time step of the transport model (Section 7.2.3), these are substantially finer than any 

current global flux inversion study using the GOSAT data. The primary reason for estimating 

fluxes at such a fine spatial and temporal scale is to minimize the aggregation errors. 

Aggregation errors occur when the atmospheric measurements are sensitive to variability in the 

fluxes at finer scales than the scale at which the inversion is allowed to adjust the fluxes (e.g. 

Kaminski et al. [2001]; Peylin et al. [2002]). Hence, we follow the recommendation of Kaminski 

et al. [2001] that global flux inversions should resolve sources and sinks at as fine a scale as 

computationally feasible (with the limit being the resolution of the transport model).  

Ideally the temporal resolution should be sub-daily to minimize the temporal aggregation 

error as pointed out by several recent studies (e.g. Gourdji et al. [2010; 2012]; Huntzinger et al. 

[2011]; Chatterjee et al. [in press]). It is worth noting, however, that these aforementioned 

studies used continuous tower data from regions with high flux variability, which is influenced 

by the diurnal cycle from terrestrial ecosystems and local sources and sinks of CO2. The surface 

flask sites used in the current study are primarily located over remote areas, where the sampled 

air shows little diurnal variation caused by local CO2 fluxes. In terms of the satellite 

observations, the diurnal amplitude of column CO2 is less than 1 ppm even over highly 



 

productive terrestrial ecosystems (e.g. Olsen and Randerson [2004]; Kawa et al. [2010]). Hence, 

we believe a daily estimation scale using the remote-sensing and/or the surface flask data may 

cause less temporal aggregation error than it would have with continuous tower data.  

7.2.2 Atmospheric CO2 observations  

Figure 7.1A and 7.1B shows a snapshot of the atmospheric CO2 observations used in the 

study that are obtained from the GOSAT instrument and a ground network of surface flask sites. 

The GOSAT L2 retrieval data have been generated by version 2.9 of the ACOS algorithm 

(O’Dell et al. [2012]; Crisp et al. [2012]). Based on the recommendations of the ACOS team, 

only the high (H) gain observations are retained from the data product, which are then filtered 

through a conservative scheme based on Wunch et al. [2011b]. For a month, this amounts to 

retaining 10-15% (i.e., ~6e3) of the total observations (i.e., ~ 4e4) from the native ACOS L2 data 

product. Note that the GOSAT data, as used in the current study, are not bias-corrected, although 

first estimates for bias correction do exist (Wunch et al. [2011b]).  

CO2 concentration measurements are also obtained from approximately 100 surface flask 

sites (Figure 7.1E and 7.1F) within the NOAA Earth System Research Laboratory (ESRL) 

Global Monitoring Division cooperative air sampling network (Conway et al. [2011]). The 

surface flask observations are available at weekly time scales, and a typical site provides 4 to 5 

observations within a month. In addition, several locations have missing data during the 

examined time periods, reducing the number of operational sites to ~70 per week.  

7.2.3 Atmospheric tracer transport model 

An off-line atmospheric transport model (GSFC parameterized chemistry and transport 

model – ‘PCTM’, Kawa et al. [2004]), which is run internally as part of the GEnSRF DA 



 

system,  is used to relate surface CO2 fluxes to atmospheric CO2 observations. PCTM is driven 

by pre-calculated meteorological fields (horizontal winds, surface pressure, vertical diffusion 

coefficient, and cloud-convective mass flux) from NASA’s GEOS4-DAS reanalysis at a 

resolution of 1 ×1.25 in latitude/longitude and 55 vertical layers. The model uses a vertically-

Lagrangian finite volume advection scheme (Lin [2004]) and has simple linear schemes for both 

dry and convective vertical mixing.  

 

 
 

 

Figure 7.1 - GOSAT ACOSv2.9 XCO2 and surface flask CO2 observations, their associated standard 

deviations and their locations, gridded to 1 × 1.25. Note the seasonal shift in the north-south upper 

bounds of the GOSAT XCO2 retrievals over the oceans between Panels E and F.  



 

7.2.4 Error covariance matrices 

The model-data mismatch covariance matrix R is a diagonal matrix whose elements 

represent the variances associated with measurement, transport, representation and aggregation 

errors (Engelen et al. [2002]) for each observation.  

For the GOSAT XCO2 observations, the model-data mismatch variances are obtained by 

adding 1.0 ppm
2
 to the square of the measurement errors reported with the ACOS v2.9 data 

product. The additional 1.0 ppm
2
 (e.g. Chevallier et al. [2010b]) is assumed to be representative 

of the transport model, representation and aggregation errors in column-averaged observations. 

Overall, for the filtered H-gain GOSAT data the prescribed model-data mismatch uncertainties 

range from 1.0 to 2.0 ppm (i.e., model-data mismatch variance = 1.0 ppm
2
 to 4.0 ppm

2
).  

For the surface flask observations, the errors are typically site-dependent (e.g. Rödenbeck 

[2005]; Michalak et al. [2005]; Mueller et al. [2008]; Hungershoefer et al. [2010]). Following 

the setup outlined in Hungershoefer et al. [2010], the surface flask sites are sub-divided into four 

groups, and the uncertainty for each group of sites specified accordingly: 

- Remote sites (island, deserts, Antarctica): 1.0 ppm  

- Shore sites with mixed ocean/continent influence: 1.5 ppm  

- Mountain site (within continents): 1.5 ppm  

- Continental site with proximity to large sources and sinks: 3.0 ppm  

The model-data mismatch covariance matrix is obtained by squaring the prescribed uncertainties 

for each observation. Figure 7.1C and 7.1D shows a snapshot of the total errors (i.e., sum of 

measurement, transport, representation and aggregation errors) prescribed for all the observations 

used in the study. 



 

The prior covariance matrix Q
b
 contains off-diagonal entries describing the spatial 

correlation of the flux deviations from the model of the trend Xβ. Similar to Chapter 6, Q
b
 is 

prescribed as a block diagonal matrix, with each block describing the correlation between grid-

scale fluxes for each time period of the inversion. Each block is modeled by an exponential 

covariance function: 
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where d is the spatial separation distance between the grid points where fluxes are to be 

estimated, 
2  represents the variance of the flux residuals at large separation distances, and l is 

the range parameter. The correlation length beyond which correlation between the flux residuals 

becomes negligible is defined as approximately 3l (Chiles and Delfiner [1999]) for an 

exponential model.  

It is necessary to distinguish between the land and ocean components as different 

processes drive the underlying fluxes. Hence, spatial correlation is assumed among land and 

ocean flux residuals but not between them (e.g. Michalak et al. [2004]). The parameters of the 

exponential covariance function are based on a variogram analysis of the spatial variability of a 

typical bottom-up estimate, which is based on the net ecosystem production from CASA AMES 

(Potter et al. [2007]), oceanic carbon exchange from Takahashi et al. [2002], fossil fuel 

emissions extrapolated from the CDIAC database (e.g. Friedlingstein et al. [2010]), and fire 

emissions from the GFEDv2 (van der Werf et al. [2006]). The land variance ( 2

land
Q

= 0.45 

[µmol/(m
2
s)]

2
) is almost a magnitude higher than the ocean variance ( 2

ocean
Q

= 0.020 

[µmol/(m
2
s)]

2
) while the terrestrial flux correlation length (lQland = 3l = 2700 km) is slightly 

lower than the ocean flux correlation length (lQocean = 3l = 3200 km). Note that the covariance 



 

parameters specified here may change if the specified land and ocean bottom-up estimates are 

modified.  

Rather than subjectively specifying the errors for each observation set individually (i.e., 

for R) or deriving it from a single bottom-up estimate (i.e., for Q
b
 ), a more robust approach is to 

statistically infer the covariance parameters from the atmospheric measurements directly via 

statistical approaches (e.g. Michalak et al. [2004]; Michalak et al. [2005]; Mueller et al. [2008]). 

These approaches, however, are substantially more computationally intensive and require the 

pre-calculation and storage of the transport model (i.e., generate the full sensitivity matrix H), 

which is infeasible in this case. In the future, these statistical approaches will be adapted to a data 

assimilation framework in order to specify the error covariance matrices directly from the 

atmospheric data.  

7.2.5 Lag window 

Peters et al. [2005] argued that the length of the lag window for a Kalman smoother must 

vary with the flux estimation temporal resolution. This argument was based on the fact that for 

monthly flux inversions, Bruhwiler et al. [2005] needed to link observations to 6-9 months of 

past fluxes, whereas for weekly flux inversions Peters et al. [2005] required only 8-10 weeks of 

lag to reliably retrieve CO2 fluxes. An important argument that can be made here is that the 

length of the lag window may also be a function of the density of the observation network. Both 

Bruhwiler et al. [2005] and Peters et al. [2005] primarily used sparse near-surface CO2 

concentration observations whereby the large distances between observations required a long 

assimilation window to collect enough constraints on the fluxes on continental and hemispheric 

scales. But the density of the observation network used in Peters et al. [2005] was relatively 

higher than the observation density employed by Bruhwiler et al. [2005]. For our case, this 



 

implies that the relatively good coverage of satellite CO2 observations and the daily estimation 

scale may allow us to use a shorter lag window compared to Bruhwiler et al. [2005] or Peters et 

al. [2005]. Also, this will allow us to capture the instantaneous information in the surface carbon 

fluxes before the information in the CO2 concentrations is blurred by the atmospheric transport.  

The satellite data provides column-averaged CO2 concentrations, which have information 

on surface fluxes from different times and places. Miyazaki et al. [2011] claimed that because of 

this mixed information in the column data, it is more difficult to extract meaningful information 

from the column-averaged data relative to surface data, even if a large lag window is used. A 

longer lag window would also require a larger number of ensemble members, failing which 

spurious temporal correlations may arise that would degrade the analysis. Hence, Miyazaki et al. 

[2011] suggested using a 3-day window, which is equivalent to the ground track repeat cycle of 

GOSAT. The disadvantage of such a short lag window, however, is that the observation 

information gets too localized in time and space. As a result, variations in the surface fluxes 

occurring over unobserved regions, or longer-term variations occurring over weekly or monthly 

time scales, cannot be captured, because the observations are allowed to inform only local (i.e., 

in space) and recent (i.e., in time) sources and sinks.   

Keeping these issues in mind, the lag window in this study is set to be 21 days as a 

compromise between realistically capturing the longer-term variations and reducing the influence 

of spurious temporal correlations. Sensitivity tests were conducted (results not shown) in which 

the lag window was decreased to 10 days. The surface fluxes inferred, especially over the ocean 

regions, were found to be smoothed out indicating that the assimilation system was unable to 

estimate the gradual variations in the ocean fluxes with a short lag window. Using a 3-week lag 



 

window, the size of the state vector or the total number of surface fluxes to be estimated at each 

assimilation time step, is approximately 1.1e6. 

7.2.6 Parameters of the DA system 

GEnSRF is run with an ensemble size of 500. Due to the limited number of ensemble 

members used, it is necessary to implement both covariance localization (i.e., to reduce spurious 

long-distance correlations caused by sampling error; also see Section 6.2.3) and covariance 

inflation (i.e., to avoid filter divergence by increasing the spread of the ensemble; also see 

Section 6.2.4). These algorithms introduce additional tuning parameters (i.e., localization length 

scale and prior inflation factor) into the DA system, which are determined via sensitivity tests as 

described below. Note that since the true fluxes are unknown, the flux estimates are only gauged 

qualitatively against the bottom-up estimate described in Section 7.2.4. 

Three different localization length scales were tested – 1500 km, 3000 km and 4500 km, 

out of which the optimal localization length scale was found to be 3000 km. A shorter 

localization length scale (i.e., 1500 km) did not allow the dense observations over land to adjust 

the ocean fluxes. When the larger localization length scale (i.e., 4500 km) was specified, it failed 

to dampen the sampling error sufficiently, resulting in noisy estimates. These tests reinforced the 

conclusions from Chatterjee et al. [in press] that the optimal value of the localization length 

scale (3000 km) may be linked with the correlation length scale of the fluxes themselves, which 

in this study were inferred to be 2700 km for land and 3200 km for the oceans (see Section 

7.2.4). 

Even though the inflation algorithm is adaptive in nature, it requires a priori estimates of 

inflation factors and their associated variance. Chatterjee et al. [in press] noted that the 

prescribed standard deviation of the prior inflation factor plays an important role in defining the 



 

posterior uncertainty of the estimates. In order to determine the optimal value of the inflation 

factors and their associated variance that one should prescribe, it is desirable to have the 

uncertainty estimates from a batch setup relative to which the GEnSRF uncertainty estimates can 

be gauged. Since obtaining a batch solution is infeasible in this case, future work will examine 

alternate ways by which the prior inflation factor and its associated variances can be prescribed. 

Presently, based on the recommendation of Chatterjee et al. [in press] a prior inflation factor of 1 

with a standard deviation of 0.1 has been specified. Finally, as the adaptive inflation algorithm 

has a delayed response in adjusting to the changes in the observational locations, the inflation is 

damped towards 1 as a function of time.  

7.3 EVALUATING THE FLUX INVERSIONS 

For each of the two examined months (i.e., June 2009 and January 2010), flux estimates 

are obtained using different sets of CO2 observations: (a) using both surface flask and GOSAT 

together (henceforth, termed as GOSAT+SF), (b) using only the GOSAT retrievals (henceforth, 

termed as GOSAT-only) and (c) using only the surface flask (henceforth, termed as SF-only). 

Estimated fluxes and the associated uncertainties are aggregated to a monthly time scale and then 

compared with each other, either at the grid scale or aggregated to the regions (Figure 7.2) used 

in the TransCom intercomparison study (e.g. Gurney et al. [2003]; Baker et al. [2006b]). Given 

that the true surface fluxes are unknown, the aggregated a posteriori fluxes are compared to the 

aggregated bottom up estimate that is used to obtain the covariance parameters (Section 7.2.4).  

Note that the bottom-up estimate serves only as a reference point to evaluate the ability of 

the DA system to identify ‘reasonable’ regional-scale fluxes. Even though the bottom-up 

estimate is not the ‘truth’, it does provide a sense of the magnitude of the fluxes, and whether the 

magnitude is consistent with the source-sink estimate from the bottom-up model.  



 

Throughout this study the flux estimates from the SF-only inversion are considered the 

baseline against which the increments made by the GOSAT observations (i.e., GOSAT + SF) are 

evaluated. Following Takagi et al. [2011], first the benefit of adding the GOSAT observations is 

captured in terms of a metric that measures the reduction in uncertainty (UR) relative to the a 

posteriori inversion using the surface flask network. The uncertainty reduction is obtained as a 

percentage, separately for each TransCom region, as:  
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where -SF only  and SF GOSAT  denote the a posteriori uncertainty over a TransCom region from 

the SF-only and the GOSAT+SF inversion, respectively. These uncertainties are obtained by 

averaging across the estimated grid-scale uncertainties within a particular TransCom region.  

 Second, the observational influence on the estimates of the CO2 surface fluxes is 

quantified via the information matrix (e.g. Cardinali et al. [2004]; Liu et al. [2009]). The 

information matrix (S
o
) characterizes how the assimilation system uses the observations to pull 

the analysis away from the prior. For GEnSRF, the information matrix is mathematically given 

by:  
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where ẑ is projecting the final analysis estimate ŝ onto the observation space. In the ensemble 

setup, HQ
a
H

T
 at the end of the assimilation can be readily approximated as: 
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where as  represents the updated ensemble once all observations have been assimilated, and N is 

the ensemble size. From the GEnSRF setup,  ah s is updated during assimilation of the 



 

observations via Equation 6.9 (Chapter 6 – Section 6.2.2) and no extra computations are 

necessary to calculate this diagnostic separately. The diagonal elements of the matrix S
o 
(n × n) 

are the analysis self-sensitivities and the off-diagonal elements represent the cross-sensitivities. 

As stated in Cardinali et al. [2004], the self-sensitivity with respect to the ith observation is S
o
ii, 

while the sensitivity with respect to the prior projected to the same observational variable at the 

same location and time is 1- S
o
ii. The self-sensitivity has no units and its theoretical value is 

between 0 and 1, when the observation errors are not correlated (i.e., R is diagonal). A value of 1 

indicates that the analysis derives all the information from the observations, while a value of 0 

indicates that all the information in the analysis comes from the prior. 

 The observational influence analysis provides: (a) the amount of information that the 

analysis extracts from the observations during data assimilation, (b) an identification of the 

subset of observations that are the most influential (e.g. Lupu et al. [2012]), and (c) a rigorous 

mathematical framework to choose amongst different observational datasets in the future, when 

multiple remote-sensing data products are to be assimilated. Note that other variations of the 

influence matrix can be developed using information theory (e.g. Engelen and Stephens [2004]; 

Zupanski et al. [2007b]). Although there are subtle differences in the way observation impacts 

 

 

Figure 7.2- Location of 11 land and 11 ocean TransCom regions (e.g. Gurney et al. [2003]) 



 

are measured in these approaches, ultimately they all provide complementary information about 

the impact of the observations on the posterior analysis. 

7.4 RESULTS 

7.4.1 Monthly averaged grid-scale flux estimates  

CO2 flux estimates over land, based on both the surface flask and the GOSAT 

observations (i.e., GOSAT+SF) are shown in Figures 7.3A and 7.3B. Comparison with the 

baseline surface flask estimates (i.e., SF-only) in Figures 7.3C and 7.3D illustrate that the flux 

estimates using the GOSAT data infer stronger sources and sinks, especially during the Northern 

Hemisphere summer. In June, the flux estimates from the two experiments are noticeably 

different over Eurasia (carbon sinks) and Temperate Asia (carbon source). This difference is 

attributable to the larger number of GOSAT retrievals available over the Northern Hemisphere 

during June that constrains the GOSAT+SF flux inversion more than the SF-only flux inversion. 

Conversely, the addition of GOSAT data in January tends to make limited increments to the flux 

estimates from the SF-only experiment. In this case, not only are the number of GOSAT 

retrievals limited over land but also the quality of these retrievals is poor. Consequently, the DA 

system extracts less information over land from the GOSAT observations in January compared 

to the June observations.  

Over the ocean regions (Figure 7.4) the flux estimates from the GOSAT+SF experiment 

shows a large modification relative to the flux estimates from the SF-only experiment. 

Noticeable differences are seen over the North Pacific in June and over all the ocean regions in 

January. Specifically, this can be attributed to the large number of GOSAT retrievals available 

over the ocean regions relative to the observations from the surface flask sites.  



 

Using both the GOSAT and surface flask observations together, the global land regions 

are found to act as a carbon sink in June 2009 (-2.74  2.33 GtC/yr, or -0.22  0.19 GtC/month) 

with a larger tendency towards uptake in the Northern lands, but a source in January 2010 (3.02 

 2.11 GtC/yr, or 0.25  0.17 GtC/month). A possible reference for gauging these numbers is 

provided by the bottom-up estimate described earlier in Section 7.2.4. The bottom-up estimate 

provides a carbon sink estimate of -4.96 GtC/yr (i.e., -0.41 GtC/month) in June 2009 that is 

captured within the 95% uncertainty bound of the GOSAT+SF inversion estimates. For January, 

the bottom-up estimate provides a source magnitude of 11.18 GtC/yr (i.e., 0.93 GtC/month) that 

is significantly greater than the estimates obtained from the GOSAT+SF inversion. Recall that 

even though both the estimated fluxes and the bottom-up estimates report the total flux, a single 

  
 

 

Figure 7.3- Monthly-averaged grid-scale flux estimates over land for June 2009 and January 2010 using 

both GOSAT + SF observations (A and B), and using only SF observations (C and D).  

 



 

bottom-up estimate only serves as a qualitative reference point and cannot be used to judge the 

skill of the inversion. In the future a suite of bottom-up models will be used to better assess the 

agreement between the inversion and the bottom-up estimates (e.g. Gourdji et al. [2012]).      

Analysis of the grid-scale flux estimates and subsequent comparison of the carbon 

budgets for June and January highlight a possible caveat associated with the implemented setup. 

Unlike other existing CO2-DA systems, GEnSRF does not specify explicit prior information 

from biospheric models and/or inventories to help constrain the flux estimates. While this avoids 

any potential biases associated with these prior assumptions, it also fails to capture the small-

scale variability in the fluxes. Within a geostatistical framework, it has been shown (e.g. Gourdji 

et al. [2008; 2012]) that small-scale flux variability can be captured if the model of the trend 

  
Figure 7.4- Monthly-averaged grid-scale flux estimates over ocean for June 2009 and January 2010 

using both GOSAT + SF observations, and using only SF observations.  



 

incorporates information from auxiliary environmental variables related to carbon flux. The 

caveat is that the column-averaged observations must be able to infer the relationship between 

the auxiliary variables and the fluxes, in order to select the flux covariates that optimally explain 

the variability in the atmospheric data. It is possible to specify all possible auxiliary 

environmental variables into the model of the trend. If there is a lack of atmospheric constraint 

from the GOSAT XCO2 retrievals, however, then the inferred drift coefficients (β) will not be 

significant and the complex model of the trend will not explain any more of the variability in the 

flux distribution compared to the current simple model of the trend. The complex model of the 

trend may even introduce spurious correlations that may potentially bias the flux estimates in 

under-constrained regions (e.g. Gourdji et al. [2012]). Thus, for the current study, the prime 

reason behind specifying a simple model of the mean is to compare the relative influence of the 

GOSAT retrievals and the surface flask observations on the analysis, without being impacted by 

prior spatial patterns or spurious relationships due to additional environmental variables. 

Obtaining realistic carbon budgets is a high priority, and future work will aim to evaluate the 

ability of satellite observations to select the flux covariates as well as integrate the information 

from the selected variables into the DA system. 

7.4.2 Monthly averaged TransCom-scale flux estimates  

Aggregating the flux estimates to the TransCom regions shows that when both the 

GOSAT and the surface flask observations are used in conjunction, the posterior analysis 

uncertainties are reduced over both land and ocean regions compared to the estimated 

uncertainties derived from the SF-only inversion (Figure 7.5). In June 2009, pronounced 

reductions are found in the uncertainty estimates for southern South America (15%), Boreal and 

Temperate Asia (12%), and over most of the ocean regions where the scarcity of the surface 



 

flask sampling network is evident (Figure 7.1E). For January, the largest reduction in uncertainty 

occurs over the ocean regions (~30-35%). The lowest uncertainty reduction is found over 

Northern Africa (5%) for June 2009, which can be attributed to the limited number of GOSAT 

retrievals available over this region, the poor quality of these available retrievals, and a relative 

abundance of surface flask observations surrounding the Northern African region (Figure 7.1E).  

Figures 7.6 and 7.7 show the flux estimates aggregated to the TransCom ocean and land 

regions separately. From Figure 7.6, it can be seen that when both the GOSAT and surface flask 

observations are used together, it not only reduces the uncertainty estimates but also provides 

ocean flux estimates that are more consistent with the bottom-up estimate. For example, for the 

Northern and Tropical ocean regions in June 2009 (Figure 7.6A), and for the Tropical and the 

Southern Ocean regions in January 2010 (Figure 7.6B), the flux estimates from the GOSAT+SF 

inversion are closer to the bottom-up estimate and have lower uncertainties associated with them. 

The shift from the Northern ocean regions in June to the Southern ocean regions in January 

corresponds to the north-south shift in the availability of good-quality retrievals from GOSAT 

(Figure 7.1E and7.1F). These results also demonstrate that the sparse surface flask network, 

especially over the Southern Atlantic and the Indian oceans, cannot constrain the fluxes over 

these regions unlike the high-density observations from the GOSAT. In the future, as the errors 

associated with the GOSAT retrievals decrease, the GOSAT observations may play a crucial role 

in improving our knowledge of ocean fluxes, and consequently our attempts to close the global 

carbon budget.    

Over the land TransCom regions (Figure 7.7) the flux estimates from the GOSAT+SF 

inversion is able to capture the bottom-up estimate within its 95% uncertainty bounds, over the 

majority of the TransCom regions. For example, over Boreal Asia and Europe during June 2009,  



 

 

Figure 7.5 – Reduction in the uncertainty of monthly surface CO2 flux estimates, attained via the addition 

of GOSAT XCO2 observations to the surface flask observations.  

 
 

Figure 7.6 – Estimated monthly-averaged ocean flux estimates and the associated uncertainties 

aggregated to the TransCom ocean regions. The error bars represent 95% uncertainty bounds. The 

Northern, Tropical and Southern ocean regions are shaded in green, purple, and light yellow, 

respectively. 

 

 

Figure 7.7 – Estimated monthly-averaged land flux estimates and the associated uncertainties 

aggregated to the TransCom land regions. The error bars represent 95% uncertainty bounds. The 

Northern, Tropical and Southern land regions are shaded in green, purple, and light yellow, respectively. 



 

the sink estimate from the GOSAT+SF inversion is closer to the bottom-up flux estimate relative 

to the estimates from the SF-only inversion. Also the posterior analysis uncertainties are reduced 

over all the land regions when both the GOSAT and surface flask observations are used together. 

In a couple of cases though, the uncertainty reduction does not necessarily correspond with the 

GOSAT+SF flux estimates being nudged in the right direction. A typical example is Temperate 

Asia in January 2010, where a reduction in uncertainty (17%; Figure 7.5B) did not necessarily 

correspond with the flux estimate being any closer to the bottom-up estimate (TeAs; Figure 

7.7B). Compared to a CO2 source that is inferred from the SF-only inversion, the GOSAT+SF 

inversion inferred a small sink over this region (Figure 7.3B – parts of Xinjiang Province in 

China, Tibet and India). Given the limited biospheric activity taking place over this region during 

the winter season, a carbon sink is highly inconsistent with the underlying physical processes 

regulating the CO2 fluxes. Biases in the GOSAT glint retrievals (e.g. O’Dell et al. [2012]) have 

been reported, and it is possible that these biases adjust the GOSAT+SF inversion in the wrong 

direction.  

For both Figures 7.6 and 7.7, alongside the flux estimates from the GOSAT +SF and the 

SF-only inversion, flux estimates based on a GOSAT-only inversion are also shown. The 

GOSAT+SF inversion flux estimates lies in between the GOSAT-only and the SF-only inversion 

estimated fluxes. Over several regions, for example, the Tropical ocean regions in June 2009 or 

the Southern ocean regions in January 2010, the GOSAT+SF inversion flux estimates are more 

consistent with the bottom-up estimate than either the SF-only or the GOSAT-only flux 

estimates. If the GOSAT observations are biased, however, the estimated fluxes from the 

GOSAT+SF inversion degrade significantly. Over North Africa for both June 2009 and January 

2010 (NoAf; Figure 7.7), GOSAT operates primarily in glint mode and quite likely biases in the 



 

glint retrievals inform the inversion of a wrong source estimate over this region. If the GOSAT 

retrievals had large uncertainty associated with them, the inversion would have given less weight 

to these observations relative to the surface flask data. For example, over Boreal Asia (BoAs; 

Figure 7.7A), the surface flask sites are located over continental areas, and have a large model-

data mismatch uncertainty (3.0 ppm) associated with them. As a consequence for the 

GOSAT+SF inversion, less weight is given to the imprecise flask observations while more 

information is extracted from the GOSAT observations. Unlike the flux estimates from the SF-

only inversion, the estimated fluxes from the GOSAT+SF inversion are not impacted negatively 

by the surface flask data. Overall, the ability of GOSAT to provide strong constraints on the 

surface fluxes relative to the surface flask network is dependent on both the number of available 

retrievals over a region, and the quality of the retrievals. These different constraints provided by 

the GOSAT and the surface flask observations are assessed more quantitatively in the next 

section using the information matrix analysis.  

7.4.3 Analysis sensitivity with respect to the observations  

Figure 7.8 shows the analysis self-sensitivity (S
o
ii ) for each of the GOSAT and surface 

flask observations for the two examined months. Qualitatively, it is evident that the surface flask 

observations provide the largest source of information to the analysis for both months. Quite 

likely this is due to the fact that the GOSAT column-averaged observations are less sensitive to 

the surface fluxes than the surface flask observations. For the examined months, the influence of 

the satellite and the surface observations varies between 0.02-0.04 and 0.24-0.25, respectively. 

The relatively small influence of the surface flask and the GOSAT observations indicate that 

only a small portion of the information in the analysis comes from the observation at each 

observation location. Within the GEnSRF framework, the remaining information to the analysis 



 

is provided by the ensemble. At the very first assimilation time step, the ensemble is 

representative of the information contained in the prior error covariance matrix. Over subsequent 

time steps, the ensemble accumulates information from the assimilated observations, and a 

portion of this information is used by the analysis. Note that within a Bayesian DA framework, 

however, the prior flux estimates (Bayesian framework) based on a bottom-up model and/or 

inventory, would have provided the background information to the analysis. But given the 

relatively low influence of the observations, any spatial patterns or assumptions associated with 

the bottom-up model would have significantly impacted the estimated fluxes. Thus, relative to 

existing Bayesian CO2-DA systems, the value of GEnSRF lies in providing stronger data-driven 

estimates of surface fluxes, which can be used to assess the impact of the observational quality 

and quantity of the GOSAT retrievals in an independent fashion.  

The influence of the observations increases if either the measurement error or the total 

model-data mismatch variances are reduced. For example, if all the surface flask observations 

are specified to have a low model-data mismatch uncertainty of 0.5 ppm (i.e., 0.25 ppm
2
), then 

the average influence of the surface flask observations increases to 0.60-0.65. Additionally, the 

observational influence is also dependent on the observation density within a region. These can 

be seen by comparing the influence of the surface flask observations over the Southern Pacific in 

June (Figure 7.8A) and January (Figure 7.8B). Since the surface flask observations have the 

same model-data mismatch error for both the months, the reduction in their influence can be 

directly attributed to the increase in the number of GOSAT retrievals over this region in January. 

Likewise, the influence of the GOSAT observations is reduced in areas, where a large number of 

retrievals are available. For example, over Australia in June 2009 where the GOSAT retrievals 

are dense, the self-sensitivity of each observation tends to be small in order to reduce the relative  



 

 
 

Figure 7.8– Observational influence of GOSAT XCO2 and surface flask CO2 observations for June 2009 

and January 2010. Higher the observational influence of a site, larger is the size of the circles plotted at 

that site. Typically the observational influence is plotted on a scale of 0 to 1 but here the color scale goes 

from 0 to 0.1 to bring out specifically the influence of the GOSAT XCO2 observations.  

 

impact of the same type of observations on the analysis, whereas the surrounding observations 

from the surface flask become more influential.  

Figure 7.8 demonstrates that, for estimation of surface fluxes, the average influence of the 

GOSAT data is significantly lower relative to the influence of the surface flask data. The 

GOSAT data are primarily able to contribute to the analysis because of their high density and 

good spatial coverage over large areas of the globe that are unobserved by the surface flask 

network. The limited sensitivity of the GOSAT observations to the surface fluxes can be either 

due to existing retrieval errors (e.g. Takagi et al. [2011]) or simply due to the inability of the 

transport model to correctly link the variations in the column-averaged CO2 concentrations to the 

changes in the surface fluxes (e.g. Houweling et al. [2010]). The performance of atmospheric 

transport models and the impact of transport model errors on flux inversions using satellite 

measurements remains a high-priority research area within the larger CO2 community as well 

(e.g. Houweling et al. [2010]; Chevallier et al. [2010b]).  

 



 

7.5 SUMMARY  

This study presented the results of assimilating GOSAT XCO2 observations into a 

geostatistical ensemble square root filter (GEnSRF) to obtain high resolution (spatial - 1 × 1.25 

and temporal – daily) estimates of CO2 surface fluxes. Alongside the GOSAT observations, 

atmospheric CO2 observations from an in situ monitoring network are also assimilated. Based on 

the experiments conducted in this study, it is evident that the GOSAT and the surface flask 

observations have complementary benefits. While the surface flask observations are more 

sensitive to the surface fluxes, the GOSAT data provides better coverage in space and time. 

Typical regions that are unconstrained by the surface network (e.g. the Tropical and the Southern 

Ocean regions), are well observed by GOSAT. Being able to obtain flux estimates over these 

regions fills a substantial gap in our knowledge of regional and global carbon budgets. Hence, 

using both the GOSAT and the surface flask observations in synergy is a better option for 

retrieving CO2 surface fluxes than using observations from a single instrument. Quantification of 

the observational influence indicates that the high sensitivity of the ground-based network to the 

surface fluxes play a greater role in influencing the analysis than the satellite observations. As 

the GOSAT XCO2 retrievals mature and the data product becomes more precise, the influence of 

the GOSAT observations will likely increase. Consequently, the recovered CO2 fluxes should aid 

in better qualitative and quantitative definition of the processes driving the net uptake and release 

of carbon, especially over regions that were previously unconstrained.  

The GEnSRF framework implemented in this study takes into account the versatility of 

the geostatistical inverse modeling as well as the computational efficiency of DA. GEnSRF 

provides the framework required to assimilate large volumes of satellite observation of CO2 and 

provides estimates that minimize the influence of assumptions inherent to bottom-up estimates. 



 

The developed framework is beneficial for future global studies with additional satellite data, as 

well as for conducting Observing System Simulation Experiments (OSSEs) for upcoming 

sensors such as the OCO-2 (e.g. Eldering et al. [2012]) and the ASCENDS (e.g. NRC [2007]) 

mission. Furthermore the influence matrix analysis can be easily embedded into the GEnSRF 

framework to demonstrate the impact of the observations. This likely will be valuable in the 

assessment and design of these future sensors.  

Ongoing work aims to examine the drivers of the inter-annual variability in the carbon 

budget by estimating fluxes for an entire year (i.e., June 2009 – May 2010). This will also allow 

a direct comparison with other groups involved in inferring fluxes using Bayesian CO2-DA 

systems. The GEnSRF analysis will provide a valuable basis for comparison to these estimates, 

and may help explain the influence of prior model assumptions on recovered fluxes. Second, 

even though the GEnSRF DA system was able to glean source-sink estimates from the GOSAT 

data at high spatiotemporal scales, robust carbon budgets could not be obtained. Our current 

inability to capture small-scale features in the flux patterns could potentially be overcome by 

incorporating auxiliary environmental variables into the model of the trend. Work is underway to 

assess the ability of the column-averaged XCO2 observations to identify relevant environmental 

variables as well as remodel the DA setup to ingest these auxiliary variables.  

Finally, other setup choices such as the use of a particular atmospheric transport model 

will be potentially considered in the future. The GEnSRF DA framework has been set up in a 

flexible manner (Appendix D) such that the atmospheric transport model component can be 

swapped in and out easily. This will provide insights into the role of transport model errors on 

the flux estimates and examine potential transport model improvements that are necessary to 

make optimal use of satellite measurements for estimating CO2 sources and sinks.  



Chapter 8 

Conclusions 

As part of the dissertation, four specific components were examined, each of which 

contributes in its own way to obtaining reliable estimates of atmospheric CO2 concentrations 

and/or fluxes using data assimilation. This concluding chapter summarizes the findings of each 

of the four major components of the dissertation, the overall contribution of the dissertation, and 

also suggests directions for future work. 

8.1 CONTRIBUTION OF EACH DISSERTATION COMPONENT  

8.1.1 Background error statistics for atmospheric CO2 data assimilation 

The first dissertation component developed a model for the background error statistics for 

use in the ECMWF 4D-VAR system for estimating global 4D fields of atmospheric CO2 

concentrations. A new approach was developed that used the difference between modeled CO2 

distributions (CO2) as a surrogate for the 'true' background error. The CO2 field enabled 

specification of representative background error statistics for atmospheric CO2 data assimilation, 

which was shown to - 1) vary regionally and seasonally to better capture the changing degree of 

variability in the background CO2 field, and 2) have a discernible impact on the analysis 

estimates by allowing observations to adjust predictions over a larger area. The specific 

contribution of this component has been towards providing a method for realistic estimation of 

the background error statistics. This study illustrates the improvement that can be made and 



therefore makes the clear case for including a good estimate of surface flux errors and error 

correlations in any method that is used for estimating the background errors of an atmospheric 

CO2 data assimilation system. On a broader level though, these results establish the necessity to 

adapt existing data assimilation methods and/or the components of a DA system for carbon 

science applications.  

8.1.2 Inter-comparison of ensemble and variational data assimilation in the context of a 

CO2 flux estimation problem 

The second component carried out a comparative assessment of two advanced data 

assimilation approaches with a batch inverse modeling scheme, specifically for the atmospheric 

CO2 inversion problem. The primary outcome was an evaluation of the DA methods keeping in 

mind the nature of the CO2 inversion problem. Results demonstrated that the performance of the 

DA approaches depends on a complex interplay between the underlying numerical 

approximations, the lack of a dynamical model, and the information available from the 

observations. The 4D-VAR scheme is found to be slightly more robust for obtaining CO2 flux 

estimates while the EnSRF scheme provided useful estimates of analysis error, which were not 

directly available from the 4D-VAR system. The framework outlined in this study may also be 

used in the future to pursue more advanced intercomparison efforts for a real CO2 flux estimation 

problem. Prior to this study, efforts were undertaken to interact with diverse groups involved in 

carbon data assimilation research. The results of this study are expected to benefit the CO2 data 

assimilation community as a whole, in recognizing the pros and cons of different methods. As 

such, the conclusions and the framework are also relevant to a broader spectrum of DA 

applications, where dynamical models for propagating the state vector may not be readily 

available. 



8.1.3 Towards reliable ensemble Kalman filter estimates of CO2 fluxes  

The third component developed the mathematical framework for a geostatistical 

ensemble square root filter (GEnSRF) that leverages the information content of atmospheric CO2 

observations more strongly relative to existing CO2-DA approaches. The primary goal in 

developing GEnSRF was: a) to provide a basis for determining carbon sources or sinks with 

acceptable accuracy at fine spatial and temporal scales, and b) to aid us in understanding the 

crucial controls on the global carbon cycle and its responses to anthropogenic forcing. Within 

this context, the ability of the GEnSRF to yield reliable flux estimates and uncertainties across a 

range of resolutions over North America, without the use of prior fluxes from any bottom-up 

estimate, was found to be extremely promising. Several advanced techniques, such as adaptive 

covariance inflation and localization were implemented to minimize well-known error sources in 

the ensemble filter, and the sensitivity of the filter to these algorithms tested as well.  Even 

though the primary application in this study was in an atmospheric CO2 inverse modeling 

context, GEnSRF remains applicable to complementary inverse problems, for example 

constraining sources and sinks of other trace gases of interest like methane, CFCs and N2O. 

8.1.4 Role of GOSAT total column CO2 observations for the estimation of CO2 surface 

fluxes 

 The final component used GEnSRF to estimate global carbon fluxes at a high spatial and 

temporal resolution, using solely the atmospheric data constraint provided by a combination of 

GOSAT XCO2 retrievals and atmospheric CO2 observations from a conventional surface flask 

network. A state-of-the-art data assimilation infrastructure was developed that provided not only 

knowledge about the global fluxes but also evaluated the role of GOSAT observations in carbon 

cycle science. The data-driven estimates are not influenced by a priori assumptions from bottom-



up flux estimates, and thus directly reflect the information content of the GOSAT observations. 

Even though the satellite observations are found to be useful in constraining ocean fluxes, where 

the surface network has limited coverage, they have a limited influence on the analysis relative to 

the ground-based network. This can be attributed to both the limited sensitivity of the satellite 

observations to the surface fluxes as well as the inability of current atmospheric transport models 

to link variations in column-averaged CO2 concentrations to the variations in surface fluxes. 

Thus, going forward a high priority research area for the CO2-DA community should be in 

evaluating ways to possibly extract more information from the high-density GOSAT data than 

currently possible. Additionally, since GEnSRF provides a computationally efficient platform for 

examining the analysis sensitivity with respect to the observations, it has a lot of potential for the 

design and assessment of future CO2 observing systems. 

8.2 OVERALL CONTRIBUTION OF DISSERTATION 

The primary contribution of this dissertation has been in identifying fundamental gaps in 

our understanding/applications of CO2-DA, and developing suitable methods to fill these gaps. 

The sum of the different components of the dissertation increases the credibility of both existing 

and new CO2-DA systems. Several of the key issues examined in this dissertation (i.e. impact of 

background error statistics, lack of a dynamical flux model, impact of numerical approximations, 

impact of observational network constraints, etc.) have been primarily motivated by the 

uncertainty surrounding the applicability and accuracy of DA approaches for atmospheric CO2 

applications. The attempt throughout has been to reduce this uncertainty and develop improved 

CO2-DA tools, which may ultimately aid in understanding the critical controls over the 

atmospheric CO2 growth. 



As the cost of carbon observing systems is rising, the need for efficiently using the 

benefits of new observations, such as expanded CO2 surface networks, and satellite observations, 

is steadily increasing. Simultaneously, rapid advancements are being made in the development of 

process-based models of the carbon cycle. The development of GEnSRF is especially beneficial 

in this regard, as it minimizes process-based assumptions inherent to other existing CO2-DA 

systems and instead allows validation of the process-based models by independent data-driven 

estimates of carbon flux. In fact, by determining as accurately as possible the state of the CO2 

fluxes, the geostatistical data assimilation system may also be used in the future for the 

monitoring and verification of fossil and bio fuels emissions and sequestration.  

Alongside the scientific-cum-mathematical contribution, the DA infrastructure that has 

been set up as part of Chapter 7, in terms of the data processing, the coupling between the 

ensemble filter and the transport, and the general ensemble filter framework, is highly beneficial 

in its own right. It retains the ability to integrate multiple atmospheric, oceanic and terrestrial 

data sources seamlessly as may be necessary in the future with launch of new dedicated missions 

such as OCO-2 (Eldering et al. [2012]) and ASCENDS (NRC [2007]). Over the next decade, the 

greater coverage in time and space provided by the satellite data will yield new constraints on 

CO2 fluxes that may dramatically improve our understanding of the surface CO2 exchange. The 

infrastructure developed as part of this dissertation is the first step towards utilizing the full 

potential of a geostatistical DA system in efficiently solving the atmospheric CO2 inverse 

problem.  

8.3 FUTURE RESEARCH DIRECTIONS 

This section describes avenues for future research based on the finding of this 

dissertation. The framework for this discussion derives from the perceived drawbacks and/or 



unexplored areas in CO2-DA applications. In reality the range of possible directions for the data 

assimilation work is indescribably varied due to the large number of DA tools that can be used, 

and the subtle methodological advancements that can be made within each of these tools. This 

section will focus mainly on ensemble filter applications, which are arguably becoming more 

popular than other DA approaches due to their ease of operational implementation. 

Unfortunately, this also implies that a discussion on 4D-VAR and/or hybrid schemes remain 

beyond the scope of this chapter.   

8.3.1 Direct extensions to current work 

While the GEnSRF tool developed for this dissertation is starting to yield promising flux 

estimates at global scales, an important issue that has not been addressed is the impact of 

auxiliary variables on the flux estimates. Recall that the geostatistical framework (Chapter 3 – 

Section 3.3.2) allows for inclusion of auxiliary environmental data related to CO2 flux to help 

constrain the estimates. These additional variables help to capture the small scale variability in 

the flux field (e.g. Gourdji et al. [2008]) than what is visible through the atmospheric data. An 

added advantage of including these covariates is that, if the model of the trend (i.e., Xβ) is able 

to explain more of the variability in the recovered fluxes, then the influence of the spatiotemporal 

correlation structure in Q
b
 is significantly reduced in the final estimates. Inclusion of auxiliary 

variables in the GEnSRF DA may require modifications of the existing mathematical framework 

but will definitely improve the ability of the GEnSRF to provide more realistic flux estimates 

and uncertainties.  

An associated issue is the fact that there is no dynamical (or time evolution) model to 

evolve the CO2 flux (or state vector) forward in time. The lack of a dynamical model is clearly 

one of the main challenges specific to the CO2 flux estimation problem but is most evident, 



however, when operational constraints are imposed (Chatterjee and Michalak [in prep.]). Using 

the information from the auxiliary variables to substitute for the missing dynamical model may 

inject valuable physical information into the DA system. It is important to remember that 

GEnSRF has a data assimilation system at its core. Thus, if a suitable substitute for the 

dynamical model can be identified and/or specified, the existing GEnSRF setup can be easily 

modified to work as a prediction tool.  

 Secondly, specific to all ensemble filter applications for CO2 an important issue is the 

impact of the covariance localization scheme and the specified localization length scales. 

Currently, all ensemble filter applications for CO2 specify a compactly supported function to 

filter out the sampling error noise. Studies (e.g. Lokupitiya et al. [2008]; Chatterjee et al. [in 

press]) have pointed out that the atmospheric advection of CO2 may not be consistent with the 

use of compactly supported correlation functions. Apart from the compactly supported functions, 

an alternate option for CO2 applications is to use the dynamical localization scheme as suggested 

by Zupanski et al. [2007a]. In this approach, the distance for covariance localization is not based 

on the geodesic distance but rather the ratio between the prior and the posterior uncertainty. A 

significant challenge though is coming up with an estimate of the posterior uncertainty prior to 

the analysis. The above study is based on a hybrid Maximum Likelihood Ensemble Framework 

(MLEF) framework, within which the posterior uncertainty is available as a byproduct of the 

Hessian pre-conditioning (Zupanski [2005]). The 4D-VAR implementation allows this but it is 

less clear how to calculate this within a regular ensemble framework.  

In addition, choosing the localization length scale remains rather subjective (e.g. 

Chatterjee et al. [in press]) and is based on a number of sensitivity tests. This is complicated by 

the fact that the localization length scale itself depends on the ensemble size and the number of 



observations used in the assimilation. Recently Anderson [2012] has proposed a sampling error 

correction technique in which the localization length scale is calculated based on the prior 

ensemble. This method does not use observational information, however, and will not be able to 

correct for systematic biases in the model or other forms of model error. Localization is one of 

key aspects within the ensemble filter and identifying a suitable approach for obtaining realistic 

localization length scales will significantly improve ensemble filter based CO2 estimates, 

including those from GEnSRF.   

Thirdly, atmospheric CO2 observations are not sufficient to understand all the different 

aspects of the global carbon cycle. In reality, atmospheric CO2 observations can provide reliable 

constraints on the net flux budget but not necessarily on the key signatures of anthropogenic 

and/or biogenic processes driving those fluxes. A possible way of inferring information about the 

processes that influence the surface fluxes of CO2 may be by examining or incorporating 

atmospheric measurements of process-specific tracers in the inversion process. To this end, there 

may be value in assimilating heterogeneous observations of carbon tracer species within an 

integrated earth system model using a data assimilation framework. Development and 

implementation of this multi-species carbon data assimilation framework will be the basis for my 

future research at the National Centre for Atmospheric Research, as part of a NOAA Climate and 

Global Change Postdoctoral Fellowship (Appendix E).  The aim of this research will be to merge 

information of atmospheric trace gas species of carbon with CO2 measurements with state of the 

art community models using an ensemble smoother. Overall, this study will explore the value of 

adopting a multispecies approach for improved CO2 source attribution including fingerprinting 

the role of anthropogenic forcing on carbon cycle dynamics. 

 



8.3.2 Larger community-wide directions for improving CO2-DA applications 

Before delving into data assimilation related improvements, it is worthwhile to briefly 

mention one aspect, which is more relevant to the CO2 inverse modeling community as a whole. 

There is an immediate need to improve transport modeling capabilities in order to: (a) eliminate 

systematic biases that may affect inversion results, (b) allow better use of night-time CO2 

measurements (see Chapter 6) or measurements retrieved over complex terrains (e.g. van der 

Molen and Dolman [2007]; Brooks et al. [2012]) from continuous sites, and (c) make better use 

of satellite data by correctly simulating key processes such as the time scales of stratosphere-

troposphere exchange and planetary boundary layer dynamics (e.g. Houweling et al. [2010]; 

Chevallier et al. [2010b]). Recent efforts have been made in improving certain aspects of the 

transport model, for example the representation of vertical transport within the planetary 

boundary layer (e.g. Gerbig et al. [2008]; Kretschmer et al. [2012]) but the community still lacks 

a pragmatic knowledge of the real magnitude of the transport model uncertainties. Clearly large-

scale efforts (i.e., sustained observations, funding and improved theory) are necessary to improve 

this critical piece within an atmospheric CO2 inverse modeling framework.   

Finally, within the next decade I believe the CO2-DA community will have to address 

two critical issues, if there is any hope in advancing DA for carbon science and/or utilizing the 

true capabilities of DA in understanding carbon-climate feedback issues.  

First, it will be prudent for the CO2-DA community to transition from an inversion to an 

assimilation framework. The inversion framework loses out on the predictive capabilities 

associated with a true DA framework as well as the ability to directly adjust the parameters of 

biogeochemical model components using atmospheric CO2 observations (Rayner [2010]). In an 

assimilation framework it is quite feasible to identify which parameters of the biogeochemical 



model are less well-understood, and subsequently design an observational network/system to 

constrain those parameters. A research framework adopting an integrated observation and 

modeling approach may likely provide the scientific basis for future atmospheric CO2 mitigation 

strategies, but it will require a community wide effort to advance current CO2-DA flux 

estimation systems to CO2-DA prediction systems. 

A second issue will be to generate more interest and expertise within the CO2 community 

in developing and implementing DA tools. Surprisingly, this issue is not unique to the CO2 field 

and has been identified within the larger DA community as well (Vukicevic et al. [2004]). Over 

the past decade, the NWP community has made concerted efforts to organize educational and 

outreach DA workshops to train young scientists and professionals, in not just working with 

existing DA systems but interested in development of assimilation tools. The CO2-DA 

community may as well follow the NWP paradigm (e.g. Roebber et al. [2010]) in providing 

more exposure to young scientists and graduate students with systems of relevant complexity and 

with relevant computational infrastructure. This will require the CO2-DA community, however, 

to first graduate from working on independent research agendas and independent DA systems to 

developing a more multi-faceted DA system with strong operational components.  



Appendix A 

Table A1- Reference list of mathematical symbols used in this dissertation. 

 

Symbols Name Dimensions 

s state vector m × 1 

s  state vector deviations m × N 

s
b
 prior (or background )estimate of the state vector m × 1 

Q
b
 prior (or background) error covariance matrix m × m 

ŝ  posterior best estimate of s m × 1 

Q
a
 a posteriori covariance of s m × m 

X drift (or trend) from auxiliary variables m × p 

β drift coefficients defining the weight to each variable p ×1 

z observation vector n × 1 

R observation error covariance matrix n × n 

h forward model operator  

H matrix form of h (also called sensitivity matrix) n × m 

M forecast/dynamical model operator  

K Kalman gain m × n 

K  
reduced Kalman gain m × n 

Λ  matrix of coefficients m × n 

Λ  
reduced matrix of coefficients m × n 

M matrix of Lagrange multipliers p × m 

d separation distance between grid points in space  

t time   

 

9
 

semi-variance at separation distance h  

2
 

sill parameter of a variogram  

l range parameter of a variogram  

i, j, k,  generic integer indices  

J(·) objective function (also called cost or penalty function)  

 Gradient operator  



Symbols Name Dimensions 

 
f

  
Forecast values  

 
a

  
Analyzed values  

 
b

  
Background values  

 
T


 

Transpose operator  

 
1


 

Inverse operator  



Appendix B 

Table B1- Aircraft (blue) and TCCON (purple) sites used in the evaluation of the 4D-VAR analysis in 

Chapter 4. Data availability at a site is denoted with a ‘Y’. Note that all the aircraft sites are located over 

North America. 

 

Measurement 

site code 

 

Site name Site latitude/ 

longitude 

(degrees) 

Data for 

January 2010 

Data for 

June 2010 

BNE Beaver Crossing, Nebraska 40.80 N, 97.18 W Y Y 

CAR Briggsdale, Colorado 40.37 N, 104.30 W Y Y 

CMA Cape May, New Jersey 38.83 N, 74.32 W Y Y 

DND Dahlen, North Dakota 48.38 N, 99.00 W - Y 

ESP Estevan Point, B. Columbia 49.58 N, 126.37 W Y Y 

ETL East trout Lake, Saskatchewan 54.35 N, 104.98 W Y Y 

HIL Homer, Illinois 40.07 N, 87.91 W Y Y 

LEF Park Falls, Wisconsin 45.95 N, 90.27 W Y Y 

NHA Worcester, Massachusetts 42.95 N, 70.63 W Y Y 

PFA Poker Flats, Alaska 65.07 N, 147.29 W Y Y 

SCA Charleston, South Carolina 32.77 N, 79.55 W Y Y 

SGP Southern Great Plains, 

Oklahoma 

36.80 N, 97.50 W Y Y 

TGC Sinton, Texas 27.73 N, 96.86 W Y Y 

THD Trinidad Head, California 41.05 N, 124. 15 W Y Y 

WBI West Branch, Iowa 41.72 N, 91.35 W Y Y 

BIA Bialystok, Poland 53.23 N, 23.03 E Y Y 

BRE Bremen, Germany 53.10 N, 8.85 E Y Y 

DAR Darwin, Australia 12.42 S, 130.89 E Y - 

EUR Eureka, Canada 80.05 N, 86.42 W - - 

GAR Garmisch, Germany 47.48 N, 11.06 E Y Y 

IZA Izana, Tenerife 28.30 N, 16.50 W - Y 

KAR Karlsruhe, Germany 49.10 N, 8.44 E - Y 

LAU Lauder, New Zealand 45.04 S, 169.68 E - Y 



Measurement 

site code 

 

Site name Site latitude/ 

longitude 

(degrees) 

Data for 

January 2010 

Data for 

June 2010 

LEF Park Falls, Wisconsin 45.95 N, 90.27 W Y - 

NYA NY Alesund, Norway 78.92 N, 11.92 E - Y 

ORL Orleans, France 47.97 N, 2.11 E - Y 

SGP Lamont, Oklahoma 36.60 N, 97.49 W Y Y 

SOD Sodankyla, Finland 67.37 N, 26.63 E - Y 

TSU Tsukuba, japan 36.05 N, 140.12 E Y - 

WOL Wollongong, Australia 34.41 S, 150.88 E Y - 

 



 

Appendix C 

Table C1- Measurement network used in the inversions in Chapter 6. 

 

Measurement site 

code 

 

Site name Site latitude/ longitude 

(degrees) 

Height above 

ground level 

(m) 
LEF Park Falls, Wisconsin  45.93N, 90.27W 396 

WKT Moody, Texas 31.32N, 97.33W 457 

WBI West Branch, Iowa  41.73 N, 91.35 W 379 

BAO Boulder Atmospheric Obs., Colorado  40.05 N, 105.01 W 300 

SCT South Carolina Tower, South Carolina  33.41 N, 81.83 W 305 

WGC Walnut Grove, California  38.27 N, 121.49 W 483 

AMT Argyle, Maine  45.03N, 68.68W 107 

BRW Barrow, Alaska  71.32N, 156.60W 10 

FRD Fraserdale, Ontario  49.88 N, 81.57 W 40 

CDL Candle Lake, Saskatchewan  53.99N, 105.12W 30 

SBL Sable Island, Nova Scotia  43.93N, 60.02W 25 

EGB Egbert, Ontario  44.23 N, 79.78 W 3 

ETL Saskatchewan, East Trout Lake  54.35 N, 104.99 W 105 

LLB Lac LaBich, Alberta  54.95 N, 112.45 W 10 

CHI Chibougamau, Quebec  49.69 N, 74.34 W 30 

HFM Harvard Forest, Massachusetts  42.54N, 72.17W 30 

ARM Norman, Oklahoma 36.80 N, 97.50W 60 

CVA Canaan Valley, West Virginia  39.06 N, 79.42 W 7 

MOM Morgan Monroe, Indiana  39.32 N, 86.41 W 48 

OZA Ozark, Missouri  38.74 N, 92.20 W 30 

KEW Kewanee, Illinois 41.28 N, 89.97 N 140 

CEN Centerville, Iowa  40.79 N, 92.88 W 110 

MEA Mead, Nebraska  41.14 N, 96.46 W 122 



Measurement site 

code 

 

Site name Site latitude/ longitude Height above 

ground level 

(m) 
ROL Round Lake, Minnesota  43.53 N, 95.41 W 110 

GAL Galesville, Wisconsin  44.09 N, 91.34 W 122 

SNP Shenandoah National Park, Virginia  38.62 N, 78.35 W 17 

SPL Storm Peak Lab, Colorado  40.45 N, 106.73 W 9 

NWR Niwot Ridge, Colorado  40.05 N, 105.58 W 5 

HDP Hidden Peak Snowbird, Utah 40.56 N, 111.65 W 18 

FIR Fir, Oregon  44.65 N, 123.55 W 38 

MET Metolius, Oregon  44.45 N, 121.56 W 34 

YAH Yaquina Head, Oregon 44.67 N, 124.07 W 13 

MAP Mary’s Peak, Oregon  44.50 N, 123.55 W 8 

NGB NGBER, Oregon  43.47 N, 119.69 W 7 

LJA LaJolla, California  32.87 N, 117.26 W 5 

 



Appendix D 

Figure D1- Flow of the data assimilation system used in Chapter 7, showing the interactions between 

different ingredients of the problem such as the observations, the ensemble filter, the transport scheme 

etc. Based on a shared-memory multiprocessing framework, the system uses a geostatistical ensemble 

square root filter to assimilate observations from different sources and generate estimates of global land 

and oceanic CO2 exchange at fine spatiotemporal scales. Ultimately, this system will be deployed as part 

of a larger parallel autonomous software platform (Yadav et al. [2010b]) for real-time integration of in-

situ and satellite-based atmospheric CO2 observations. 

 

 

 

 

 



Appendix E 

Figure E1- Schematic of a proposed data assimilation framework to investigate: 1) the value in 

assimilating information from disparate carbon tracers for reliable source attribution, and 2) potential 

improvements to carbon cycle models and their predictive capabilities by assimilation of a variety of 

carbon tracers. Observations of carbon tracers from different platforms will be merged with the 

components of the Community Earth System Model (CESM; http://www.cesm.ucar.edu/) using a n 

ensemble smoother that will be developed as part of a community data assimilation facility (DART; 

http://www.image.ucar.edu/DAReS/DART/#).  Note that for brevity, sample observational databases for 

the different tracers have been highlighted. Appropriate datasets will be identified during the course of 

this work in discussion with different observational groups at the National Centre for Atmospheric 

Research (NCAR), and elsewhere. 
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