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[1] This study investigates numerically the characteristics of upscaling the Manning
resistance coefficient (nt) for areas covered by partially submerged vegetation elements,
such as shrub or tree stems. A number of high-resolution hydrodynamic simulations were
carried out corresponding to scenarios with different domain slopes (S), inflow rates (Q),
bed roughness (nb), and vegetation cover fractions (Vf). Using simulations performed at fine
space-time scales, two methods were developed for computing the upscaled Manning
coefficient, termed ‘‘Equivalent Roughness Surface (ERS)’’ and ‘‘Equivalent Friction Slope
(EFS).’’ Results obtained with these two methods indicate that both yield highly correlated
estimates of nt. The effects of four independent variables (Vf, S, Q, and nb) on nt were
further investigated. First, as Vf increases, nt also grows. Second, two distinct modes of the
relationship between S and nt for a fixed Vf and Q emerge: a positive dependence at low-
flow rates and a negative dependence at high-flow rates. For a fixed Vf and S, two distinct
modes of the relationship between Q and nt are also identified: a positive dependence at
mild domain slopes and a negative dependence at steep slopes. A regression analysis shows
that the two conflicting trends can occur depending on whether the variability of flow depth
with respect to S (or Q) is greater than the ratio of h and S (or Q). Third, a rougher soil bed
(i.e., larger values of nb) implies a higher resistance due to vegetation. Last, the study
argues that nt increases as h increases and decreases as V increases. A generic regression
relation that includes all four of the above variables and the difference nt � nb (i.e., the
additional resistance due to partially submerged vegetation representing the sum of the form
and wave resistances) was developed. The range of applicability of this relation is given by
the following conditions: Vf � 0.5, 0.1 � S � 1.1, and 0.0001 � Q � 0.01. The difference
nt � nb computed from the developed regression relation was compared with estimates
reported by five different studies. Furthermore, the simulated wave resistance coefficients
were compared with those predicted from an equation in a previous study; the estimates
were consistent in the range of experimental conditions for which the latter equation was
developed. The relationship is sufficiently general and applicable to other flow conditions
with partially submerged roughness elements.

Citation: Kim, J., V. Y. Ivanov, and N. D. Katopodes (2012), Hydraulic resistance to overland flow on surfaces with partially

submerged vegetation, Water Resour. Res., 48, W10540, doi:10.1029/2012WR012047.

1. Introduction
[2] Hydraulic resistance to open-channel and overland

flows is an important characteristic that needs to be repre-
sented properly in modeling runoff, flood routing and inun-
dation, and soil erosion. Resistance estimation affects
not only the accurate calculation of flow variables, such as
the water depth, velocity, and shear stress, but also the

prediction of their derivative outcomes, such as the time of
concentration, flow distribution in a basin, the transport
capacity, the total sediment yield, etc. The resistance of a
surface can be characterized with several hydraulic rough-
ness coefficients. The most widely used are the Manning
roughness coefficient (n), the Chezy resistance factor (C),
and the Darcy-Weisbach friction factor ( f ). Manning’s n is
most popular in hydrological and soil erosion models, while
using the Darcy-Weisbach f is more common than the other
resistance formulations in experimental studies [Hessel et al.,
2003]. Theoretically, hydraulic resistance can be divided into
five components: surface (grain) resistance, form resistance,
wave resistance, rain resistance, and bed-mobility resistance
[Abrahams and Parsons, 1994; Hu and Abrahams, 2006;
Smith et al., 2007].

[3] Numerous studies have performed field or laboratory
experiments and theoretical analyses seeking ways to relate
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hydraulic characterization of flow to roughness coefficients.
These studies tried to investigate a number of dimension-
less variables in an attempt to find suitable relationships
using various metrics such as the Reynolds number (Re),
the Froude number (Fr), the characteristic roughness length
(e.g., the ratio of depth to roughness element), domain
slope (S), and vegetation or obstacle cover fractions. Since
early studies of overland flow, resistance was described by
a roughness coefficient, in analogy to the resistance rela-
tions used to characterize flows in pipes. A relationship
between the roughness coefficients and the Reynolds num-
ber (e.g., f-Re) has been well established for shallow over-
land flows as well as for flows in pipes and smooth
channels [Chow, 1959; Emmett, 1970; Li and Shen, 1973;
Phelps, 1975; Savat, 1980]. The f-Re relationship has a
negative slope of 1.0 in the laminar flow regime [Blasius,
1913]; in turbulent flow, different f-Re relationships are
obtained, depending on the value of the relative roughness
[Nikuradse, 1933]. These findings indicated that among
several possible dimensionless variables, Re has a predomi-
nant effect in quantifying the flow resistance in conditions
where the flow completely submerges a plane bed with ei-
ther a smooth or a rough surface. In such conditions, the
roughness height is significantly smaller than the flow
depth and the hydraulic resistance is dominated by the sur-
face resistance component arising due to the presence of
roughness elements beneath the flow surface.

[4] However, in conditions where the surface is covered
by stones, organic litter, or stems of vegetation that pro-
trude through the flow, the aforementioned f-Re relation-
ships are not applicable. Other dimensionless variables
(e.g., Fr, relative roughness height, vegetation cover, etc.)
may become more dominant, reflecting that the form and
wave resistance can become the primary components of the
total flow resistance [Emmett, 1970; Roels, 1984; Abra-
hams et al., 1986; Gilley and Finkner, 1991; Gilley et al.,
1992b; Hirsch, 1996; Lawrence, 1997; 2000; Takken and
Govers, 2000; Hu and Abrahams, 2006]. For example,
Emmett [1970] was the first to emphasize the importance of
form resistance caused by microtopography, which can sig-
nificantly exceed the surface resistance. Roels [1984] and
Abrahams et al. [1986] stated that the standard f-Re rela-
tionship is not ubiquitous: the f-Re relationship can have a
convex upward or a negatively sloping power law relation.
These relationships can be attributed to the progressive
inundation of roughness elements, implying that the surface
configuration of the elements, and not just the flow state,
becomes dominant in quantifying the resistance. Further,
Gilley and Finkner [1991] presented a regression equation
for predicting f and n by including the characteristic length
scale, i.e., a ‘‘random roughness index’’ as the primary vari-
able. Gilley et al. [1992b] suggested that f is largely con-
trolled by a measure of the gravel cover fraction. Hirsch
[1996] developed a flow resistance model that explained
flow conditions when the fraction of roughness elements
was greater than 10% and Fr was greater than 0.5.

[5] Recently, Lawrence [1997] further demonstrated the
importance of other dimensionless variables in conditions of
emerging vegetation and other types of obstacles protruding
through the flow. Rather than using the Reynolds number,
Lawrence [1997] advocated the use of the inundation ratio,
h/k, as the ratio of the flow depth h to the characteristic

height of roughness elements k. Lawrence [1997] identified
distinct flow regimes, such as partial and marginal inunda-
tion, and well-inundated flows, with various fractions of
obstacles (hemispheres) placed in the flow. Depending on
whether the flow depth h was greater/smaller than the char-
acteristic height k, Lawrence [1997] estimated f as a func-
tion of the inundation ratio by using a drag model for the
partial inundation, a mixing length model for the marginal
inundation, and a rough turbulent flow formula for well-
inundated flows. Since the estimation of the drag model
showed an underestimation of flow resistance for the partial
inundation case, Lawrence [2000] later modified the form
drag model to obtain higher f values by increasing the drag
coefficient, which was negatively correlated with h/k.

[6] The modified model of Lawrence [2000] was suc-
cessfully applied for the estimation of flow resistance for
the case of marginal inundation, where roughness elements
were randomly distributed and relatively uniform in size.
However, when this model was applied under conditions
differing from the setting under which the model was
developed, such as complex flow geometries, the perform-
ance was not always satisfactory. Ferro [2003] tested the
model using laboratory measurements and showed that the
modified mixing length formulation provided accurate esti-
mates, while the modified drag model resulted in a limited
accuracy in estimating f. Takken and Govers [2000] also
tested the partial inundation case of Lawrence [1997] and
concluded that for situations with the complex configura-
tions of roughness elements, a single independent variable
(i.e., h/k) was insufficient to predict f. Thus, other variables,
such as the flowrate, Fr, and Re need to be considered to
fully characterize the flow resistance [Takken and Govers,
2000; Smart et al., 2002; Hu and Abrahams, 2006].

[7] In shrubland or forested hillslopes, typical flow
depths are much smaller than the height of roughness ele-
ments such as vegetation stems and thus inundation ratios
are very small. Such flow conditions generally prevail in
hillslope hydrological dynamics. Characterization of flow
for partially inundated conditions with a nonuniform distri-
bution of roughness elements is therefore significant for
modeling runoff routing and soil erosion. However, these
flow conditions remain poorly characterized by empirical
observations. For example, experimental data from previ-
ous studies (see Lawrence [1997, Figure 4] reporting data
from eleven studies) are limited to partial inundation cases,
i.e., most of the observed inundation ratios were between
0.1 and 1.

[8] In order to establish a general relationship applicable
to a wide range of conditions, numerical modeling based on
the two-dimensional shallow-water equations was carried
out in this study. The numerical simulations corresponded
to overland flow on hillslopes covered with shrubby or
woody vegetation. An application of a numerical model, as
compared to field or experimental manipulations, provides
several advantages. Specifically, in the case of small depths
of overland flow (few mm to cm length scale), the minimum
requirement of water depth for measuring the velocity with
Acoustic Doppler velocimeters or electromagnetic current
meters is not satisfied [Lawless and Robert, 2001]. When
the requirements are satisfied, small depths still represent an
issue in terms of measurement accuracy [Biron et al.,
1998]. These difficulties result in large measurement errors
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in laboratory or field experiments. Furthermore, the determi-
nation of the friction (or energy) slope used in the calcula-
tion of roughness coefficients is also cumbersome. It can be
normally substituted with the bed slope under uniform flow
conditions, but it may not represent truthfully a spatially
varying friction slope in situations with many protruding
obstacles. Lastly, the difficulty of controlling conditions for
high-flow rates prevents empirical observations in field and
laboratory studies [e.g., Takken and Govers, 2000; Hessel
et al., 2003]. For example, Takken and Govers [2000] used
discharges ranging from 4.2 � 10�6 to 2.7 � 10�4 m3 s�1.

[9] High-resolution, hydrodynamic numerical simula-
tions can overcome all of the above problems by specifying
arbitrary flow conditions, including both high and low-flow
rates that occur in real world situations. Using detailed sim-
ulations performed at fine space-time scales, the properties
of the resistance coefficient at larger spatial scales can be
investigated. In order to represent a system with tree/shrub
stems, a sloped plane populated with ‘‘obstacle cells’’ that
have infinitely long vertical dimension was designed. A
number of scenarios with different domain slopes (S),
inflow rates (Q), bed substrate roughness conditions (nb),
and vegetation cover fractions (Vf ) were considered. Based
on the simulation results, two methods were developed to
obtain the upscaled Manning coefficient. A predictive equa-
tion was developed using multiple regression and dimen-
sional analyses and verified with five different experimental
data sets and a proposed wave resistance equation. Finally,
the characteristic controls of several independent variables
on the roughness coefficient are described and evaluated.

2. Model Description and Simulation Setup
2.1. Model Description: tRIBS-OFM

[10] Overland flow is one of the most important phenomena
in the rainfall-runoff mechanism. Overland flow is described
by the propagation of shallow water waves using three differ-
ent formulations, i.e., the dynamic wave, the inertia-free, and
the kinematic wave approximations [Katopodes, 1982].
Under specific circumstances, such as the case of partial
inundation for a surface covered with stones or vegetation,
the inertia and pressure terms in the momentum equations
are relatively significant, and thus only the dynamic wave
formulation should be adopted for simulations. The model
used in this study is the Triangulated Irregular Network
(TIN)–Based Real Time Integrated Basin Simulator (tRIBS)
and Overland Flow Model (OFM). The tRIBS-OFM is a
coupled model consisting of a hydrologic model and a hydro-
dynamic model that can solve the two-dimensional Saint-
Venant (S-V) equations [Anderson, 1995] on an unstructured
triangular grid, as well as consider the hydrological processes
such as runoff generation, infiltration, etc. [Kim et al., 2012].
Since tRIBS-OFM can accurately calculate the inertia, pres-
sure, gravity, and friction terms without restrictions of applic-
ability, this model is able to capture the phenomena of
backwater and diverging-converging thread as well as a no-
ticeable change of flow variables (e.g., hydraulic jump). For
a more detailed description, the reader is referred to Ivanov
et al. [2004], Begnudelli and Sanders [2006], and Kim et al.
[2012].

[11] One logical question is whether a simplified form of
the Navier-Stokes equations, the Saint-Venant shallow

water equations, is an adequate approximation for simulat-
ing flows of relatively small depth and flows passing in nar-
row openings between vegetation stems. Specifically, the
first possible concern is whether the S-V equations can
accurately simulate very shallow flows. Such flows can be
affected by both bottom boundary layer and free surface
movement, and the vertically averaged S-V equations can-
not recognize these effects of bottom/free surface bounda-
ries. However, the major assumption in applying the S-V
equations is that depth (i.e., the vertical direction scale)
should be much smaller than the length scale of a flow phe-
nomenon in the horizontal direction. In an overland flow
condition with small depths and a large spatial scale of the
domain, this assumption is quite acceptable. A second con-
cern is whether the Manning’s parameterization used in the
S-V equations can adequately capture the energy loss due
to eddies generated around plant stems. Three-dimensional
turbulence modeling would appear to be a more suitable
method that can consider such effects and thus reduce the
uncertainty of simplifying assumptions of the S-V model.
However, the application of turbulence models presents a
number of challenges. First, several parameters still need to
be determined to close a system of turbulence equations,
e.g., k-epsilon, k-omega, SST, etc. for RANS models or
Smagorinsky constant in LES models. Second, in order to
accurately resolve turbulent eddies, appropriate representa-
tion scales have to be used and very fine mesh resolutions
are necessary; as a ‘‘rule of thumb,’’ mesh resolution has to
be at least 1 order of magnitude finer than the effective
eddy scale. For example, Stoesser et al. [2010] used time
steps satisfying the CFL condition of 0.5 and a very fine
mesh with nearly 30,000,000 grid points for a simulation
case with only 64 isolated stems. Although this study pre-
sented detailed results demonstrating various turbulent
characteristics, extending this approach to higher Reynolds
numbers and randomly distributed vegetation of a high
cover fraction is not feasible. This would require much
finer space-time scales of representation.

2.2. Simulation Setup

[12] For the estimation of Manning’s n for overland
flow, numerical simulations are carried out for an inclined
plane that is 1 m wide and 2 m long, using slopes ranging
from 10 to 110% (5.7 to 47.7�) at the 20% resolution of the
slope. Such a range of bed slopes represents possible hill-
slopes in a real watershed. The forcing for the domain is
specified in two forms: as a spatially uniform rainfall of 10
mm h�1 continuous intensity over the entire duration of the
simulation and inflow rates of 0.0001, 0.0005, 0.001, and
0.01 m3 s�1 uniformly distributed over the width of the
upstream boundary. The inflow rates were selected so as to
describe a variety of cases of hillslope hydrology. Specifi-
cally, the discharges of 0.0001, 0.001 and 0.01 m3 s�1 rep-
resent steady state flow rates at different locations of a
hypothetical 1-m wide planar slope at 10, 100, and 1000 m
downstream of the upstream boundary, assuming 36 mm h�1

excess rainfall (e.g., the kinematic wave solution yields
0.0001 m3 s�1 steady state flowrate at the bottom of a 10 m
hillslope as, etc.).

[13] Manning’s coefficients of 0.02, 0.03, and 0.04 were
chosen so as to represent a bare, rough plane surface with-
out vegetation. These will be referred to as ‘‘the base
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Manning’s coefficients’’ and denoted by nb. The values of
nb are used to represent various characteristics of bed, such
as the particle size and distribution, the roughness height,
and the degree of tillage. For example, a small value of nb

corresponds to an experimental condition of bare sand,
while a larger value is a representation of the condition
with irregular depressions and heavy protruding stones.
These constant base Manning coefficients only explain the
resistance caused by friction at the flow bottom and are
within a range of values reported in literature.

[14] Vegetation cover fractions (defined here as the frac-
tional areas of nonsubmerged ‘‘stems,’’ Vf ) of 0, 5, 10, 20,
30, and 50% were used. The locations of vegetation stems
were determined randomly within the simulation domain
for a given Vf (see Figure 1). From a computational stand-
point, each stem of vegetation is represented as a rigid,
infinitely long wall of hexagonal shape composed of six
triangles. The shape can be fit within a circle that has a di-
ameter of approximately 2 cm. Since for most practical sit-
uations the order of depths represented by the partial
inundation is very small as compared to the stem height of
plants, the assumption of a rigid, infinitely high wall is rea-
sonable. The free-slip boundary condition is applied to the
boundary of each stem cell, enforcing that the velocity nor-
mal to the cell interface is zero. Inside stem cells, depth
and velocity are consequently forced to be zero.

[15] The mesh spacing used to represent the simulation
domain is 0.01 m and the number of mesh nodes (vertices)
and triangular cells is 20,201 and 40,000, respectively. The
size of mesh is appropriate for representing the shape of a
vegetation stem. The time step during the simulation time
of 2 min is 0.002 sec for the three low-inflow rates and
0.0005 sec for the high inflow rate. The time step used is re-
stricted by the Courant-Friedrichs-Lewy (CFL) condition that
ensures the stability of the explicit numerical scheme [Kim
et al., 2012]. An impervious soil surface condition is assumed
to exclude the processes of infiltration and subsurface flow.

While the latter impact surface runoff generation, the aim of
the study is to investigate the effects of unsubmerged
obstacles on the flow process in conditions of clearly identifi-
able independent variables; the impact of runoff-generating
processes is indirectly accounted for through the boundary
inflow rate.

[16] Simulation cases are designed so that the following
characteristics are varied: vegetation cover fraction (Vf ),
plane slope (S), base Manning’s coefficient (nb), and inflow
rate (Q). Preliminary simulations demonstrated that the
effects of rainfall intensity were very minor, as compared
to an inflow rate. Therefore, only a single rainfall scenario
(10 mm h�1) was used.

3. Methods for Determining a Representative
Value of Resistance Coefficient

[17] This section describes methodologies of obtaining
the upscaled values of the total surface resistance (nt) based
on the results of numerical simulations. Two methods for
estimating nt, the ‘‘Equivalent Roughness Surface’’ (ERS)
and the ‘‘Equivalent Friction Slope’’ (EFS), are presented
in the following. The essential difference between the ERS
and EFS methods is whether information at internal data
points is used for the computation of roughness, and the
two methods contain their advantages and disadvantages.
As opposed to EFS, the ERS method does not require any
computations for the internal information but relies on a
relationship between the time of concentration of the flow
and the Manning coefficient of a bare, rough plane surface
without vegetation for a given inflow rate and plane slope.
The relationship should be determined beforehand and thus
additional simulations are necessary if a slope or a flowrate
is changed.

3.1. Equivalent Roughness Surface

[18] One method to obtain an upscaled value of roughness
is by using an ‘‘Equivalent Roughness Surface’’ method.

Figure 1. Illustrations of the simulation domain showing (a) triangular cells (zoomed-in) and locations
of vegetation stems corresponding to the (b) 10% and (c) 30% vegetation cover cases. Each stem has a
hexagonal shape consisting of six triangular cells.
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This method assumes that the resistance of a rough plane
bed without vegetation stems is equal to the resistance of a
smooth plane covered with vegetation stems. In other words,
the effect of the form and wave resistances generated by in-
ternal obstacles (i.e., stems in this study) is considered to
exert the same effect as the surface resistance of a rougher
bed without vegetation. This method finds an equivalent re-
sistance by analyzing the hydrographs at an outlet region;
specifically, it compares the times of concentration (tc) of
the simulated hydrographs for the flow case with vegetation
stems and the case of flow over a rough, bare soil plane
without any unsubmerged obstacles. When tc is matched,
the two hydrographs corresponding to these flow situations
are nearly identical.

[19] The determination of tc corresponding to the simu-
lated hydrographs plays a crucial role in computing nt: In
this study, tc is defined as the time that satisfies the follow-
ing two criteria:

dQðtcÞ
dt

<2 and QðtcÞ > 0:95Qsteady; (1)

where t is time; Q(t) is discharge at time t ; Qsteady is the
theoretical discharge at steady state, equal to the upstream
inflow rate plus the rainfall contribution; 2 is a tolerance
value assumed to be 10�5 in this study. The above criteria
are chosen to avoid numerically unrealistic values in tc

estimation.
[20] The derived relationship between tc and n (see

section 4.2) was assumed to be linear within intervals
between the simulated cases. The relationship was used to
find nt for any arbitrary tc through interpolation. To make
the assumption of linearity valid, numerous simulations with
small increments of n were performed for the bare plane
conditions, spanning a wide possible range of tc values.

3.2. Equivalent Friction Slope

[21] The second method used in this study uses an
‘‘Equivalent Friction Slope’’. It is based on information
simulated at internal points and computes an average value
of resistance that represents an upscaled value for the entire
simulation domain. In order to obtain the value of n, the
Manning’s equation is rearranged:

n ¼
R2=3S1=2

f

V
; (2)

where R is the hydraulic radius that can be replaced by the
water depth, h, under the sheet flow assumption; V is the
flow velocity, calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

; u and v are x and y
directional depth-averaged velocities, respectively; Sf is
the friction slope. The energy slope is typically replaced
with the bottom slope for uniform flow. However, using the
channel bottom slope is not appropriate in the case when
protruding vegetation or other obstacles exist. Thus, the
components of the friction slope are calculated as

Sf ;x ¼ �
@

@x
zb þ hþ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

2g

 !
;

Sf ;y ¼ �
@

@x
zb þ hþ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

2g

 !
; (3)

where Sf ;x and Sf ;y are the x and y directional energy slope
components; zb is the bed elevation; g is the acceleration

due to gravity; and, finally, Sf is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

f ;x þ S2
f ;y

q
.

The terms in the above friction slope equations represent
gravitational, pressure, and inertial forces, respectively.

Introducing a new variable, Ex ¼ zb þ hþ u
ffiffiffiffiffiffiffiffiffi
u2þv2
p

2g , its gra-

dient can be calculated numerically from the following
equation:

Z
A

@Ex

@x
dA ¼ @Ex

@x
A; (4)

under the assumption that the gradient of Ex is constant
inside a triangle cell with an area of A. When Green’s theo-
rem is applied in order to transform the area integral on the
left-hand side of equation (4) to a line integral, Ex is inte-
grated along the cell boundaries. Thus, the x directional
friction slope becomes

@Ex

@x
¼ ðy2 � y0ÞðEx;1 � Ex;0Þ � ðy1 � y0ÞðEx;2 � Ex;0Þ

ðy2 � y0Þðx1 � x0Þ � ðy1 � y0Þðx2 � x0Þ
; (5)

where the subscripts ‘‘0’’, ‘‘1’’, and ‘‘2’’ are used to denote
the three counterclockwise vertices of a triangle cell [Kim
et al., 2012]. The y directional component is obtained in a
similar fashion. Once the numerical model solves the mass
and momentum equations of the flow, one can obtain the
primary flow variables such as h, u, and v at any point of
the flow domain. Then, the upscaled value of n for the
entire domain can be computed by using the mean values
of h, V, and Sf obtained at steady state:

nt ¼ h
2=3

S
1=2
f V ; (6)

where nt is the upscaled value of n ; h and Sf are the means
of depth and friction slope for all triangle cells of the flow
domain; V is calculated by dividing the unit discharge (q)
by the mean depth (h). This approach relies on an assump-
tion that the representative value of Sf for the whole do-
main can be determined by averaging the corresponding
local values. Since Sf avoids negative values because of
the square root operation on the sum of its squared x and y
components, it does not loose information on the variability
of local friction slopes; this would be the case if a simple
arithmetic averaging of negative and positive values were
carried out.

4. Simulation Results
4.1. Overall Characterization of Flow Variables

[22] Flow characteristics are first analyzed. Figure 2
shows the spatial distribution of different flow variables
such as depth, velocity, and friction slope at steady state for
the case of S ¼ 30%, nb ¼ 0.02, and Q ¼ 0.001 m3 s�1.
The spatial distributions for the cases of bare soil and vege-
tated soil with Vf ¼ 30% are compared. In the case of bare
soil with these fairly large S and Q, the flow approaches a
uniform state with a depth of 0.0022 m and a velocity of
0.455 m s�1. These numerical values are also consistent
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with the results of the analytical steady uniform equation
for the ‘‘turbulent rough flow’’, one of the four principal
types of overland flow [Julien and Simons, 1985]. Specifi-
cally, Manning’s nb of 0.02 corresponds to a roughness
height of mm to cm scale (the mean diameter of sediment).
This roughness height is much larger than the thickness of
the boundary sublayer, 11:6�=�

ffiffiffiffiffiffiffiffiffiffi
ghSf

p
, and equal to

0.000144 m, which indicates that the flow regime of this
case is ‘‘turbulent rough’’. Furthermore, the effects of iner-
tia and pressure terms are minimized and the bottom fric-
tion is balanced by the gravitational force. The friction
slope under these conditions is thus almost the same as the
plane slope, which is equal to 0.3.

[23] If the flow occurs within a region with many pro-
truding obstacles (i.e., impermeable, rigid stems of vegeta-
tion), the flow is faster between stems and retarded behind
them. The flow depth and velocity vary appreciably over
short distances (Figure 2, bottom). The ‘‘spots’’ of white
color in Figure 2 (bottom) represent stem cells of vegeta-
tion and signify the imposed no-flow condition. The fea-
tures of converging, accelerating currents between stems,
and the formation of backwater upstream of the stems are
well illustrated in Figure 2.

[24] The friction slope Sf , a key variable for estimating
the roughness coefficient, is further investigated in terms of
its relation to flow variables in the vegetated case. A quali-
tative interpretation of Figure 2 indicates that backwater
regions have relatively larger depths, lower velocities, and
smaller friction slopes, while the converging areas have
higher velocities and friction slopes. In order to verify the
general applicability of such statements, three distinct inter-
vals of Sf magnitude are considered: small (Sf < 0.233),
medium (0.233 � Sf < 0.548), and high (Sf � 0.548). The
two critical values, i.e., 0.233 and 0.548, represent the first
and the fourth quartiles of the Sf spatial variability. This
implies that half of the Sf magnitudes fall within the me-
dium interval, while 25% of magnitudes fall within the
intervals corresponding to small and high Sf . Statistical
metrics, such as the means of h, V, and Sf and their mutual
correlation coefficients, are calculated for the entire domain
(the cases of Vf ¼ 0 and Vf ¼ 0.3), and the three subinterv-
als of Sf (the case of Vf ¼ 0.3). The results are shown in
Table 1.

[25] The areas of the domain with locally small values of
Sf are in good accordance with the above conceptual parti-
tion. For example, backwater regions have larger flow

Figure 2. An illustration of the spatial distribution of flow variables at steady state for the case of
domain slope of 0.3 and Q ¼ 0.001 m3 s�1. (a–c) Illustrations of the distributions for a bare soil surface
with nb ¼ 0.02; (d–f) the distributions for the case of vegetation with the stem cover fraction of 30%
(nb ¼ 0.02). Figures 2a and 2d illustrate the flow depth [m]; Figures 2b and 2e illustrate the velocity
magnitude [m s�1]; and Figures 2c and 2f the friction slope [-]. The white color refers to vegetation
stems; hydraulic variables are not simulated within these areas due to the imposed boundary condition
of an impermeable, rigid, infinitely long wall.
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depths and smaller velocities, as compared to the mean
conditions in the flow domain. However, using the values
of h, V, and Sf (corresponding to the interval of small Sf

values), the correlation coefficient between h and Sf is
�0.294, while between V and Sf , it is 0.404. Such a corre-
lation is not sufficiently high to allow any general
conclusion.

[26] The flow areas with high Sf correspond to flow con-
vergence and generally exhibit high-flow velocities. The
mean velocity for such areas is 0.3942 m s�1, which is
about 20% larger than the mean velocity for the entire do-
main (0.3293 m s�1). A conceptual dependence between
the state of flow and Sf is that flow retardation behind
obstacles makes Sf smaller, while flow acceleration in con-
stricted areas between obstacles makes it larger, as com-
pared to the case with a bare plane. For all domains, there
is no statistically significant correlation of Sf with the vari-
ables of h and Fr (e.g., correlation coefficients between Sf

and h or Fr are 0.082 and 0.14), while weak correlation
with the variables of V and Re (e.g., correlation coefficients
between Sf and V or Re are 0.29 and 0.37) for vegetated
hillslopes. These weak correlations make the generalization
or prediction of the degree of high variability of Sf at any
internal point difficult and unfeasible. Therefore, the vari-
ability should be numerically modeled with a relevant
detail in estimating roughness coefficients for problems in
which the value of Sf is necessarily needed for computa-
tions and plays a crucial role.

4.2. Results for the Method of Equivalent Roughness
Surface

[27] Hydrographs at the downstream boundary of the do-
main were obtained for 324 simulations (as summarized in
Table 2). They represent all possible permutations among 6
vegetation covers, 6 bed slopes, 3 base Manning coeffi-

cients, and 3 upstream boundary inflow rates. Figure 3
shows 18 different hydrographs for fixed S and nb. Since
overall trends shown in Figure 3 look similar to the trends
in the other 17 plots (not shown) with different S and nb,
only one plot (Figure 3) out of 18 obtained plots is illus-
trated. The figure shows the hydrographs for six different
values of Vf and three values of Q. The flow series with the
same peak discharge correspond to the cases with the same
Q ; the series with larger times of concentration correspond
to the cases with higher Vf values. Based on these simula-
tion results, it can be concluded that as nb and Vf increase,
and Q and S decrease, flow retardation becomes more pro-
nounced, which results in higher values of tc.

[28] In order to obtain a relationship between tc and n for
cases without vegetation, 144 additional simulations were
carried out. These are summarized in Table 3. Hydrographs
for the cases of S ¼ 10% are shown in Figure 4, which
includes 33 time series corresponding to 11 different n and
3 different Q values. It is evident that the flow is delayed
and peaks occur later as the bed surface becomes rougher.
The objective of these additional simulations was to de-
velop relationships between tc and n for exactly the same
plane slopes and flow rates as those used in the scenarios
with vegetation cover. For example, Figure 5 shows the
computed (using the criteria of equation (1)) tc’s for two
bed slopes (10% and 110%) and different inflow rates.
These relationships exhibit a positive, nonlinear depend-
ence of tc on n. Once tc is obtained for any given case with
vegetation cover, an equivalent nt can be estimated from
the tc-n relationships obtained for bare soil plane, such as
those illustrated in Figure 5.

4.3. Results for the Method of Equivalent Friction
Slope

[29] The method of Equivalent Friction Slope averages
spatially distributed flow depths and friction slopes and the
upscaled, domain-representative Manning coefficient is cal-
culated using equation (6). In order to investigate the dif-
ference between the upscaled coefficients obtained with the
two methods, i.e., the Equivalent Roughness Surface and
Equivalent Friction Slope methods, the estimates are com-
pared in Figure 6. The figure indicates that both methods
yield consistent estimates of nt with a coefficient of deter-
mination R2 ¼ 0.973. Values of nt obtained with the Equiv-
alent Friction Slope method are used for further analysis.

[30] Figure 7 shows nt dependencies obtained with the
Equivalent Friction Slope for all simulations summarized
in Table 2. The figure and the table reflect variations of
four independent variables: Vf , S, Q, and nb. Figure 7 illus-
trates the general trends of effects on nt of all independent
variables used in the study. For example, the effect of Vf

results in a positive dependence that is straightforward to
discern. However, other effects, such as those of Q or nb,
cannot be as clearly discerned in Figure 7. A discussion of
the effects of these independent variables on nt is presented
in section 5.

4.4. Predictive Equations for nt

[31] The values of nt obtained from the Equivalent Fric-
tion Slope are used to develop predictive equations for nt.
The relevant predictive variables and their corresponding

Table 1. Mean Values and the Correlation Coefficients for the
Entire Domain for the Cases of Both Vf ¼ 0 and Vf ¼ 0.3a

Vf ¼ 0,
All Sf

Vf ¼ 0.3

All Sf Sf < 0.233
0.233 � Sf

< 0.548 Sf � 0.548

Mean(h) 0.0022 0.0055 0.0067 0.0044 0.0064
Mean(V) 0.4602 0.3293 0.2463 0.3383 0.3942
Mean(Sf) 0.3000 0.4174 0.1325 0.3769 0.7830
Corr(Sf,h) – 0.0821 �0.2942 0.0582 0.3691
Corr(Sf,V) – 0.2969 0.4038 0.1941 �0.0639

aOnly a subset of cases with small, medium, and high friction slopes
were selected for the case of Vf ¼ 0.3. (Corr ¼ Correlation).

Table 2. A Summary of the Simulation Casesa

Vegetation Cover
Fraction

Domain
Slope

Manning
Coefficient

Inflow
Rate (m3 s�1)

Rainfall
(mm h�1)

0 0.1 0.02 0.0001 10
0.05 0.3 0.03 0.0005
0.1 0.5 0.04 0.001
0.2 0.7
0.3 0.9
0.5 1.1

aEach characteristic was permutated with all other variables. The total
number of simulations is 324.

W10540 KIM ET AL.: ROUGHNESS ON PARTIALLY SUBMERGED VEGETATED HILLSLOPES W10540

7 of 19



coefficients are determined by using a dimensional analysis
and a multiple linear regression.

[32] Previous research has revealed that resistance to
overland flow is influenced by many factors. Among them
are the Reynolds number, the Froude number, flow depth,
vegetation cover fraction, and the characteristics of rough-
ness elements such as size, shape, spacing and pattern
[Abrahams and Parsons, 1994]. The effect of the inflow
rate on the resistance is taken into account by the Reynolds
number. In this study, nt is assumed to be a function of the
following variables:

nt ¼ f ð�; �; g; h;V ; S;Vf ; nbÞ; (7)

where � is the density of water [ML�3]; � is the dynamic
viscosity of water [ML�1T�1] ; g is the acceleration due to
gravity [LT�2]. The Buckingham P-theorem is used to
select �, h, and V since these are repeating variables.
The relevant dimensional parameters in the functional rela-
tion are

nt� nb ¼ f
hV

v
;

Vffiffiffiffiffi
gh

p ; S;Vf

 !
: (8)

Since this predictive equation has been previously devel-
oped in the form of a power function [Hu and Abrahams,
2006], equation (8) can be expressed in the following
form:

nt � nb ¼ a
4hV

v

� �b
Vffiffiffiffiffi
gh

p
 !c

ðSÞdðVf Þe: (9)

The term on the left side of this equation expresses the
effect of vegetation on the total resistance coefficient, i.e.,
it accounts for the contributions of both the form and wave
resistances. The first term on the right side is multiplied by
4 to represent the Reynolds number and the second term
represents the Froude number. The domain-averaged values
of depth and velocity are used in the regression. The kine-
matic viscosity v is used as a constant with the value of
10�6 [m2 s�1], which corresponds to the temperature of
water of about 20�C. The evaluated coefficients a, b, c, d,
and e are 0.0264, 0.2794, �0.9859, 0.3060, and 0.9591,
respectively, with R2 ¼ 0.976 of the log linear form. Note
that this regression equation was developed for the cases
used in the simulations that exhibit a wide range of possible
scenarios of overland flow, i.e., Vf � 0:5; 0:1 � S � 1:1;
and 0:0001 � Q � 0:001.

[33] As opposed to using all four dimensionless variables
in equation (9), the consideration of only three dimension-
less variables at a time can show the relative importance of
the omitted variable in the variation of nt � nb. This proce-
dure indicates that the exclusion of each variable Re, Fr, S,
and Vf reduces the explained variation by 3.2, 7.2, 1.5, and
35.7%, respectively. Such a result implies that Vf is the
most dominant parameter in the determination of nt � nb.
Thus, in an effort of simplification, if one chooses only Vf

to be present in the regression equation, the resulting form
will be

nt � nb ¼ 0:5172ðVf Þ1:7087; (10)

Figure 3. Simulated hydrographs for the cases with different vegetation covers (0 to 50%) for the
plane slope of 10% and the base Manning’s coefficient of 0.02. The highest, middle, and lowest groups
of hydrographs correspond to the cases of different inflow rates.

Table 3. A Summary of Simulation Cases Used in Comparisons
With the Equivalent Roughness Surface Methoda

Vegetation Cover
Fraction

Domain
Slope

Manning
Coefficient

Inflow
Rate (m3 s�1)

Rainfall
(mm h�1)

0 0.1 0.05 0.0001 10
0.3 0.06 0.0005
0.5 0.07 0.001
0.7 0.08
0.9 0.09
1.1 0.10

0.15
0.30

aThe total number of simulations is 144.
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with R2 ¼ 0.873 (for the log linear form), i.e., log (Vf Þ can
account for about 87% variation in log ðnt � nbÞ. Alterna-
tively, if the regression equation is represented with an ex-
ponential function, the equation is

nt � nb ¼ 0:0033e8:8855Vf ; (11)

with R2 ¼ 0.918 (for the log linear form), which signifies a
slightly better predictive power than equation (10).

[34] A number of scenarios (Table 4) for the highest
inflow rate, Q ¼ 0.01 m3 s�1, were introduced. The objec-
tive was to further investigate the effect of partially sub-
merged obstacles on resistance for flow conditions that

Figure 5. The time of concentration as a function of Manning’s coefficient for the plane slopes of
(a) 10% and (b) 110%. The time of concentration was obtained using the Equivalent Roughness Surface
method.

Figure 4. Simulated hydrographs for the cases without vegetation for the plane slope of 10%. The
highest, middle, and lowest groups correspond to the cases of different inflow rates of 0.001, 0.0005, and
0.0001 m3 s�1, respectively.
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represent an extreme range for natural hillslopes, i.e., highly
infrequent. Another set of regression equations including
simulation data for all of the cases summarized in Tables 2
and 4 are reported. Adding simulation data for Q ¼ 0.01
m3 s�1 to the regression set, equation (9) becomes

nt � nb ¼ 0:0145
4hV

v

� �0:3504
Vffiffiffiffiffi
gh

p
 !�1:0293

ðSÞ0:3238ðVf Þ0:8925;

(12)

with R2 ¼ 0.969 (for the log linear form) and has the range
of applicability: Vf � 0:5; 0:1 � S � 1:1; and 0.0001 �
Q � 0.01 m3/s. Additionally, equation (11) becomes

nt � nb ¼ 0:0039e8:6799Vf ; (13)

with R2 ¼ 0.831 (for the log linear form). The regression
equations (11) and (13) confirm that vegetation exerts a
predominant effect on the roughness coefficient ; therefore,
the derived equations can be useful for estimating the
degree of vegetation effects, if information on other signifi-
cant variables is not readily available.

4.5. Verification of the Regression Equation

[35] Another set of simulation was carried out to verify
the proposed regression equation for flow and domain condi-
tions that were not used in the derivation of equations (9)
and (12). The cases used in this verification test are
described in Table 5. Specifically, they consist of 12 scenar-
ios: Vf is set to 0.25, nb is equal to 0.025, six different bed
slopes range from 0.1 to 1.1, and two inflow rates of 0.0003
and 0.0007 m3 s�1 are used. The values are within the ranges
of applicability of the regression equation (section 4.4).

The upscaled Manning coefficients are calculated by using
both the Equivalent Friction Slope and through the regres-
sion equations (9), (11), (12) and (13). The coefficients are
consequently compared to verify the appropriateness of the
derived equations, as shown in Figure 8. As seen, the differ-
ences between the coefficients obtained with the Equivalent
Friction Slope and the coefficients calculated from equations
(9) and (12) are fairly minor. However, there are nonnegli-
gible deviations for the cases of small domain slope, when
equations (11) and (13) are applied. This implies that for
these cases, the inclusion of only Vf is not sufficient to pre-
dict the upscaled roughness coefficients. Generally, one is
cautioned against the use of equations (11) and (13) for sit-
uations when other variables become significant (a relevant
discussion is also provided in section 5.1). On the other
hand, the developed regression equations (9) and (12) that
include all of the variables can become a useful tool for esti-
mating roughness of vegetated surfaces, once the primary
flow variables are known. However, note that equations (9)
and (12) should be used with caution for variables that are
beyond the range of hydraulic, geometric, and bed condi-
tions described in Tables 2 and 4.

4.6. Comparison of Results With Previous Studies

[36] Data obtained in previous laboratory and field con-
ditions are used in this study to provide a comprehensive
validation set for the simulated effects of large-scale rough-
ness elements. Data from five studies [Abrahams et al.,
1986; Rauws, 1988; Gilley et al., 1992a; Bunte and
Poesen, 1993; Hu and Abrahams, 2006] are summarized in
Table 6.

[37] In order to ensure the most proper use of the data,
and to represent the same flow situations in this study, a
number of assumptions had to be made. First, the effective
values of Vf were recomputed for data reported in Bunte
and Poesen [1993] and Abrahams et al. [1986] using auxil-
iary information reported in these studies. Specifically, in
the former study, rock fragments, regardless of submerged
conditions, were reported to range from 0 to 99% but some
of the rocks were submerged by the flow, and thus the frag-
ments did not contribute to Vf . This study specified the
effective widths by considering only portions of protruding
rocks; thus, we used the fraction of protruding rocks to
obtain an effective fraction of Vf , which resulted in the Vf

range of 0–17%. These values of Vf are used for computa-
tion with the regression equation (12) and the results are
shown in Figure 9. The uncertainty bounds are also shown,
which indicate 10% of variability for the used Vf .

[38] Further, Abrahams et al. [1986] did not provide any
detailed information on submerged gravel fractions by
specifying only the fractions greater than 2 mm. Therefore,
an assumption was made that only half of the gravel frac-
tion in Abrahams et al. [1986] could be considered as large
elements (i.e., partially submerged condition). The determi-
nation of the effective Vf was done through a summation of
fraction for the two types of partially submerged elements :
the reported vegetation fraction and half of the total gravel
fraction. As a result, Vf changed from the originally
reported range of 56.5–88.2% to 30.6–54.1%. Choosing the
50% ratio in order to get an effective Vf is an unavoidable
assumption and thus it influences the computation of the re-
sistance coefficient. The sensitivity of estimates to this ratio

Figure 6. A comparison of the upscaled Manning’s coef-
ficients obtained with the hydrograph and dynamic wave
analyses (section 4.3). The corresponding coefficient of
determination is 0.973. All simulation cases described in
Table 2 are used.

W10540 KIM ET AL.: ROUGHNESS ON PARTIALLY SUBMERGED VEGETATED HILLSLOPES W10540

10 of 19



is shown in the left plot of Figure 9: the black dots corre-
spond to the ratio of 50%, while the lower and upper
bounds correspond to the ratios of 40 and 60%, respec-
tively. It is found that the effective rock ratio between
30% and 60% shows a reasonable match with the predicted
values with limited deviations from the one-to-one regres-
sion line.

[39] Further, Gilley et al. [1992a] specified flow depths
that were larger than the dimension of the gravel material ;

consequently, 36 data points for the gravel bed and 20 data
points for the cobble bed are excluded to avoid the sub-
merged condition.

[40] In the study by Rauws [1988], the depth range of 0.5
to 1.5 mm for the subexperiment performed over the sand
bed has a similar order of magnitude as the dimensions of
the microscale sand bed (1.18 mm). In conditions of shal-
low flow over the sand bed, the effect of the surface resist-
ance induced by the sand bed may be much larger than that
of the form/wave resistances induced by the macroscale
roughness (only 3.5% of Vf ), and thus data of the sand bed
experiment are also excluded from this analysis.

[41] The objective of this study is to investigate the
effects of large-scale elements on the total resistance to
flow. One way to carry out an analysis is to explore the
fraction of the total resistance (nt) in reference to the resist-
ance caused by small-scale elements, i.e., with respect to
the surface resistance nb. The left plot in Figure 9 illustrates
a comparison of nt � nb computed from the regression
equation (12) and obtained from the reported data. It should
be noted that in all of the experimental studies, the value of
nt was given, but the value of nb was not provided in most
studies, except for the work of Hu and Abrahams [2006].

Table 4. A Summary of Simulation Cases With High Inflow
Ratesa

Vegetation Cover
Fraction

Domain
Slope

Manning’s
Coefficient

Inflow
Rate (m3 s�1)

Rainfall
(mm h�1)

0.05 0.1 0.04 0.01 10
0.1 0.3
0.2 0.5
0.3 0.7
0.5 0.9

1.1

aThe total number of simulations is 30.

Figure 7. Upscaled Manning’s coefficient values (nt) obtained with the equivalent friction slope
method for different vegetation fractions, slopes, inflow rates, and base Manning coefficients correspond-
ing to the cases summarized in Table 2. Among the total 324 scenarios, the results of cases with nonzero
vegetation cover (270 scenarios in total) are shown.
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Thus, the surface resistance was derived based on auxiliary
information provided for the small-scale roughness ele-
ments. In order to derive reasonable approximations, the
Strickler formula [Chow, 1959] nb ¼ 0:041D1=6

r is used,
where Dr is the diameter of roughness elements in meters.
We assumed the diameter of microscale elements : 500 mm
for loam in Abrahams et al. [1986] and 16 mm for fiberglass
in Gilley et al. [1992a]. We further found that the choice of
the size of roughness elements does not influence the deter-
mination of nb appreciably. Note that even though several
assumptions are made in the predicted nt � nb, the overall
deviations in this plot are relatively minor (R2 ¼ 0.898).

[42] A comparison of data points computed based on the
results of this study with the estimates of the prognostic
equation proposed by Hu and Abrahams [2006] is also pre-
sented. Specifically, these authors computed flow resistance
from their experimental data and proposed a wave resist-
ance (fw) formula for a fixed or mobile bed. The experi-
ments were performed on a flume that had the following
characteristics: 0.5 m wide, 4.9 m long, slope of 0.114,
covered with cylinders with the diameters of 0.02 or 0.031
m (served as large-scale roughness elements). The concen-
trations of cylinders ranged from 2 to 24%, and flows ranged
from 0.000185 to 0.0034 m3 s�1. Hu and Abrahams [2006]
first calculated the total roughness (ft), the surface roughness
(fs), and the form roughness (ff ); they subsequently obtained

fw by subtracting fs and ff from ft. They presented a regres-
sion equation for a fixed bed as follows

fw ¼ 79:38
h

Dr

� �0:25

Fr�0:5R�0:33
r Vf ; (14)

where Rr is the roughness Reynolds number, Rr ¼ VDr = v.
[43] Using the flow variables obtained in this study, we

can compute fw. Specifically, since the effects of resistance
due to rainfall and mobile bed on the total resistance are
neglected, the latter can be divided into three components
assumed to be additive. Therefore, fw is calculated with the
following equation:

fw ¼ ft � fs � ff ; (15)

where the above three components on the right side of the
equation are obtained from hydraulic results based on the

numerical simulations: ft ¼ 8ghSf =V
2
; fs can be substi-

tuted with ft calculated for the case of a domain without
vegetation; and ff is calculated by using the modified drag
model [Lawrence, 2000] for the case of partial inundation:

ff ¼
2fvCDAðh=kÞ
½1� fvV ðh=kÞ�3

; (16)

where Aðh = kÞ accounts for the change in the frontal area
with inundation, Vðh = kÞ. accounts for the occluded vol-
ume of the roughness elements, and CD is the drag coeffi-
cient equal to 1.2, which is the value used by Hu and
Abrahams [2006]. The above formulation was originally
developed for roughness elements with a hemispheric shape.
Thus, if we apply this for the elements with the hexagonal
column shape used in this study, we obtain Aðh = kÞ ¼
2Drh =Ar and Vðh = kÞ ¼ 1. Then, equation (16) becomes:

ff ¼
4DrVf CDh

Ar½1� Vf �3
; (17)

Table 5. A Summary of Simulation Cases Used for the Verifica-
tion of the Regression Equationa

Vegetation Cover
Fraction

Domain
Slope

Manning’s
Coefficient

Inflow
Rate (m3 s�1)

Rainfall
(mm h�1)

0.25 0.1 0.025 0.0003 10
0.3 0.0007
0.5
0.7
0.9
1.1

aThe total number of simulations is 12.

Figure 8. A comparison of the upscaled Manning coefficient obtained with the equivalent friction
slope and the regression equations (9), (11), (12), and (13). Vegetation cover fraction of 25% and the
base Manning’s coefficient of 0.025 were used for this verification set.
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where Ar is the area of the roughness element with the hex-
agonal shape. In order to verify the simulated results, we
compared fw computed from equation (15) (they axis in
Figure 9b) with fw predicted from equation (14) using the
characteristics of flow scenarios of this study (the x axis in
Figure 9b).

[44] As Figure 9b shows, the results of applying equation
(15) for Vf � 0:3 and 0:1 � S � 0:3 are fairly consistent
with the results obtained with equation (14) (R2 ¼ 0.90 in
log-transformed units), while the results outside of these
ranges are not, especially for the data with larger S and
Vf ¼ 0:5. This can be partially attributed to the fact that the
predictive equation (14) was derived for the conditions of
0:002 � Vf � 0:24 and S ¼ 0:114, while this numerical
study used a much larger range of slope magnitudes and
vegetation cover fractions. The plot exhibits two discerni-
ble characteristics: first, an increasing vegetation cover
implies an increase in wave resistance (a straightforward
and consistent conclusion following from equation (14)) ;
second, the higher the domain slope, the higher the differ-
ences between the compared fw values. The effect of slope
was not included in equation (14) developed by Hu and
Abrahams [2006] because they used a fixed domain slope,
but, in general, it should be accounted for in the computa-
tion of fw.

5. Discussion
5.1. Effects of Vegetation Cover Fraction

[45] It is apparent from the simulation results that as Vf

increases, nt also grows. This statement is also supported
by the high values of the determination coefficient result-
ing from the estimates obtained with equations (11) and
(13). Since in general hillslope flows have relatively small
discharges, (e.g., see Abrahams et al. [1986] for Walnut
Gulch Experimental Watershed), the results in cases pre-
sented in Table 2 are used in the following analysis.
Figure 10 shows 54 ensemble lines that correspond to 6 do-
main slopes, 3 inflow rates, and 3 bed roughness coeffi-
cients. If the mean and the standard deviation of these
ensemble lines are computed, the absolute contributions of
protruding vegetation stems to nt are as high as 0.0047,
0.0098, 0.0242, 0.0563, and 0.2787 for 5, 10, 20, 30, and
50% vegetation cover fractions, respectively (see also
Table 7). The effect of Vf is generally insignificant for
vegetation covers less than 10% but becomes more pro-
nounced for higher fractions. This observation is also con-
sistent with the results of Hirsch [1996]. Furthermore, an
increase in nt � nb for Vf less than 20% is well aligned

with a thesis of Einstein and Banks [1950] and Cowan
[1956] who proposed that an effect of isolated roughness
elements without mutual interference should be additive;
or, in other words, nt � nb should assume a linear growth.
Conversely, a nonlinear increase of nt � nb in the interval
of Vf from 30 to 50% is also observed. It is argued that a
large portion of roughness elements forms clumps of
obstacles, where a mutual interference of individual stem
effects can be observed. This leads to a relatively higher
retardation of the flow, as compared to the case with
nearly no interference for Vf less than 20%.

[46] The residuals computed as the difference between
the ensemble lines and the predicted values from the
regression equation (11) are calculated as the difference
between the natural logarithms of nt � nb obtained from
equation (11) and from the Equivalent Friction Slope
method. In the bottom plot of Figure 10, the mean of resid-
uals at each Vf is nearly zero and the standard deviation of
the residuals (in units of natural log-transform) is nearly
constant. This ensures that the regression equation (11) is a
consistent estimator.

[47] Equations (11) and (13) are derived only by consid-
ering the effects of vegetation fraction. Regardless of what
the values of the other variables are (e.g., Q or S), the val-
ues of nt � nb predicted with these equations are the same.
Predictions may therefore contain large errors in cases
where the effects of Q and S become significant, and thus a
caution should be used in using these equations. In particu-
lar, cases with small S or high Vf exhibit large effects of Q
and S, respectively. These are addressed in section 5.2.

5.2. Effects of Bed Slope

[48] As Figure 7 shows, it is difficult to infer a unique
trend of the resistance coefficient relative to changes in S
because nt may exhibit both negative and positive varia-
tions. The negative trend of nt with growing S is character-
istic for high-flow rates, while a positive trend of nt with
increasing S can be discerned at low-flow rates. These
changes are relatively minor for the cases with small vege-
tation cover. A positive trend with the domain slope at low-
flow rates also emerged in the experimental study by
Hessel et al. [2003], who used a discharge of about 6.67 �
10�5 m3 s�1. Their study used bed slopes less than 64%, a
relatively small inflow rate, and vegetation cover fractions
smaller than �30%. For a cropland area, they found an
increase in Manning’s coefficient with increasing slope.

[49] To further investigate possible trends, a set of simu-
lation scenarios summarized in Table 4 were considered in
addition to the cases described in Table 2. These included

Table 6. A Summary of Experimental Studies Used in the Comparisona

Publication
Macroscale

Element (cm)
Microscale

Element (mm) S (%) Re Fr Vf (%)
No. of Data Points

Reported/Used

Abrahams et al. [1986] stones:0.68–4.13 loam: 500 (assumed) 9.2–68.7 843–4378 0.24–2.64 30.6–54.1 108/108 (field)
vegetation

Bunte and Poesen [1993] pebble: 0.86–2.10 silica flour: 90 2.2 923–5615 0.25–1.12 0–17 12/12 (lab)
Gilley et al. [1992a] gravel: 2.54–3.81 fiberglass: 16 (assumed) 1.35 500–14,889 0.13–1.46 4–32 100/44 (lab)

cobble: 12.7–25.4
Hu and Abrahams [2006] cylinder: 2.0 & 3.1 aluminum 11.4 1397–28,380 0.51–2.81 2–24 68/68 (lab)
Rauws [1988] hemisphere: 1.6 silica flour: 240 1.7–20.8 122–2988 0.97–2.76 3.5 204/102 (lab)

sand: 1180

aNotation ‘‘lab’’ is used for data obtained in laboratory conditions; ‘‘field’’ is used to denote field studies.
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extreme cases with a higher inflow rate of 0.01 m3 s�1.
Flow rates reaching or exceeding such a magnitude are
unlikely to occur in real-world hillslopes, except for most
extreme hydrologic events. The four considered inflow
rates, i.e., 0.0001, 0.0005, 0.001, and 0.01 m3 s�1, therefore
span the likeliest possible range and extend the analysis to

‘‘limiting’’ flow conditions. Similar to previous results in
Figure 7, the set of simulation cases for Q ¼ 0.01 m3 s�1

exhibit a decreasing trend of nt with growing slope (not
shown).

[50] The effects of the difference in possible trends can
be explained by using the Manning’s equation. For a given
inflow rate, the spatial variability of nt is influenced by both
friction slope and depth:

nt ¼ h
5
3S

1
2
f =q: (18)

If the plane slope is increased, the friction slope will also
grow, and the flow depth will decrease. These two effects
exert a conflicting impact on the determination of nt and
thus are the reason of the two trends observed in the simu-
lation results for changes in the bed slope. A specific trend
(i.e., the growth or decay of nt with S) is observed depend-
ing on whether the contribution of one effect overwhelms
the contribution of the other. Selecting 10% bed slope as a
‘‘reference’’ slope and deriving the ratio of nt at any slope
with respect to nt;10% at this reference slope yields an equa-
tion in a logarithmic form:

log
nt

nt;10%

� �
¼ 5

3
log

h

h10%

� �
þ 1

2
log

Sf

Sf ;10%

 !
; (19)

which implies that nt varies according to its controlling var-
iables h and Sf . The three terms of equation (19) are shown
in Figure 11 for three different vegetation cover fractions
of 0, 10, and 30%. For Vf ¼ 0, the effects of h and Sf are
nearly identical in the absolute magnitude and thus nt is
almost constant. However, for larger stem fractions (e.g.,
Vf ¼ 0:3), the gradient @nt=@S is less than zero for larger
inflow rates and nearly always positive for the smallest
flowrate. The latter effect is because the relative rate of
increase of Sf with respect to Sf ;10% is higher than the rate
of decrease of h with respect to h10% ; the opposite holds
true for the higher-flow rates. One can consequently infer that
the gradient @nt=@S becomes zero or, equivalently, exhibits a
local minimum, where the two effects are balanced.

[51] In order to address these trends mathematically and
verify the condition of existence of a point of local mini-
mum, the regression equation (12) including Re and Fr is
rewritten through the unit discharge and flow depth, as
follows:

nt � nb ¼ 9:6580ðqÞ�0:6789ðhÞ1:544ðSÞ0:3238ðVf Þ0:8925: (20)

Given constant q and Vf , the derivative of @nt=@S is

@nt

@S
¼ 9:658ðqÞ�0:6789ðVf Þ0:8925ðhÞ0:544ðSÞ0:3238

1:544
@h

@S
þ 0:3238

h

S

� �
:

(21)

The first four terms in equation (21) are always positive.
The gradient @nt=@S therefore depends on the sign of the
expression in the brackets. To find a minimum point at

Figure 9. (a) A comparison of nt � nb values computed
from the regression equation (12) (y axis) and obtained
from the measured data (x axis) reported in five different
studies (R2 ¼ 0.90). (b) A comparison of the computed fw
from equation (15) and predicted fw from equation (14). In
Figure 9b, the coefficient of determination R2 ¼ 0.72
in log-transformed units for all of the values; R2 ¼ 0.90 in
log-transformed units for data corresponding to S ¼ 0.1 and
0.3. The circle, triangle, square, and diamond symbols rep-
resent the cases with Vf ¼ 5, 10, 20, 30, and 50%, respec-
tively. The red, blue, magenta, green, black, and cyan
symbols represent the cases with S ¼ 0.1, 0.3, 0.5, 0.7, 0.9,
and 1.1, respectively. All of the 270 scenarios (excluding
the 54 scenarios with zero vegetation fraction) summarized
in Table 2 were used.

W10540 KIM ET AL.: ROUGHNESS ON PARTIALLY SUBMERGED VEGETATED HILLSLOPES W10540

14 of 19



which the sign of dependency of nt on slope is changed, the
above equation is set to zero:

@h

@S
þ 0:2097

h

S
¼ 0; (22)

from this one obtains:

hS0:2097 ¼ constant: (23)

Because h=S is always positive, the variability of nt on S
is determined by the magnitude of @h=@S. The expression
in equation (22) shows that nt decreases only when the
gradient of depth with respect to the bed slope (@h=@SÞ is
large enough (absolute of negative value), as compared to
the ratio of depth and bed slope (h=S) ; conversely, nt

increases when @h=@S has only a relatively small negative
value. If the integration constant is known, the trend of nt

on S can be explicitly determined from equation (23).
Although the above equations are derived from an empiri-
cal regression equation, they indicate that the variability
of h with respect to S plays a key role in determining the
shape of nt on S.

5.3. Effects of Inflow Rate

[52] Implications of the change of the flowrate are such
that nt slightly increases with Q. An increase of the wetted
projected area of vegetation stems with growing Q can
explain this phenomenon [Abrahams et al., 1986]. How-
ever, for all cases, this trend does not represent a statisti-
cally meaningful result since Q is not highly correlated
with nt, and the standard deviation of the latter for each
flowrate is high, as compared to its mean. The coefficient
of determination, R2 of the regression equation between Q
and nt is less than 0.1 regardless of the selected equation
type, such as linear or log-transformed power, exponential,
or logarithmic functions.

Figure 10. The effect of vegetation cover fraction on Manning’s coefficient. (a) The dotted lines show
the results of 54 simulation cases (3 inflow rates, 3 base Manning coefficients, and 6 domain slopes were
permutated); the solid blue line illustrates the mean of simulations for a given Vf, while the vertical bars
show the standard deviation; and the red line illustrates the regression line based on equation (11) with
R2 ¼ 0.918 (log-transformed). (b) The regression residuals (circles), their mean values (red line), and the
standard deviations (red vertical bars). The residuals are calculated as the difference between the natural
logarithms of nt � nb obtained from equation (11) and from the equivalent friction slope method.

Table 7. Means and the Standard Deviations of the Difference Between the Upscaled and Base Manning’s Coefficient nt � nb
a

nb Statistics Vf ¼ 0 Vf ¼ 0.05 Vf ¼ 0.1 Vf ¼ 0.2 Vf ¼ 0.3 Vf ¼ 0.5

0.02 Mean 0.0006 0.0043 0.0090 0.0220 0.0526 0.2645
SD 0.0008 0.0030 0.0065 0.0138 0.0309 0.1236

0.03 Mean 0.0005 0.0047 0.0098 0.0241 0.0561 0.2780
SD 0.0009 0.0030 0.0063 0.0134 0.0299 0.1344

0.04 Mean 0.0005 0.0052 0.0108 0.0266 0.0601 0.2935
SD 0.0009 0.0026 0.0056 0.0124 0.0281 0.1481

All Mean 0.0005 0.0047 0.0098 0.0242 0.0563 0.2787
SD 0.0008 0.0028 0.0060 0.0131 0.0292 0.1337

aResults for all simulations are presented. (SD ¼ Standard deviation).
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[53] As seen in Figure 7, the effects of Q on nt are con-
veyed in two ways: an increasing trend of nt with Q, when
the domain slope is small, and a decreasing trend for a
steeply sloped plane. This effect of Q on nt can be
addressed in a fashion similar to the one used in section
5.2. Given constant S and Vf , the derivative of @nt=@q is

@nt

@q
¼ 9:658ðqÞ�0:6789ðVf Þ0:8925ðhÞ0:544ðSÞ0:3238

1:544
@h

@q
� 0:6789

h

q

� �
:

(24)

Since the first four terms in equation (24) are always posi-
tive, the gradient @nt=@q depends on the sign of the expres-
sion in the brackets :

@h

@q
� 0:4397

h

q
¼ 0: (25)

Since @h=@q is positive, nt can increase or decrease with q
depending on whether the gradient of depth with respect to
inflow rate (@h=@qÞ is larger than their ratio (h=q). Given
constant S and Vf , the variability of h with respect to q
plays a key role in determining the shape of nt on q.

5.4. Effects of Bed Surface Roughness Condition

[54] When overland flow occurs in areas with emerging
vegetation, characteristics of original soil, expressed here
as the base Manning’s resistance coefficient nb, may also
affect the domain-representative roughness coefficient nt.
Various conditions of the bed surface are represented with
different values of nb, e.g., a larger nb corresponds to a
rougher condition of the bed. The effect of nb on nt is illus-
trated in Figure 12 in which nt � nb is used as the variable
for they axis. This difference can be also recognized as the
net total contributions of the form and wave resistances,
which need to be accounted for in the presence of obstacles.

Note that an analysis of the effect of nb should be carried by
mutually comparing the sets of lines of different color: red
(nb ¼ 0.04), black (nb ¼ 0.02), and blue (nb ¼ 0.03) lines
(see Figure 12). The red lines are mostly above the black
lines, which implies that the rougher the surface of the
plane, the larger the effect of the form/wave resistances due
to vegetation. As compared to the smoother bed correspond-
ing to nb of 0.02, the rougher bed with nb of 0.04 leads to
increasing contributions of the form/wave resistances to nt

by about 21, 20, 21, 14, 11% for the vegetation cover of 5,
10, 20, 30, 50%, respectively (Table 7).

5.5. Relationship Between Flow Depth or Velocity and
the Manning Coefficient

[55] Patterns of a relationship between the upscaled
Manning’s coefficient nt and main flow variables (h and V)
are illustrated in Figure 13. For a fixed S and Q, nt is posi-
tively related to h and is negatively related to V. These rela-
tionships are consistent with the previous discussion of
relationships between nt and independent variables and cor-
roborate the results of studies by Fathi-Moghadam [2006].

5.6. Validity of Performance Skill

[56] Despite the simplified nature of the S-V equations
and the implications of underlying assumptions, the results
of this study are consistent with a broad range of data from
five experimental studies. While some of the reported data
required additional interpretations and thus resulted in a
larger uncertainty, no assumptions were made when recent
data by Hu and Abrahams [2006] were used (see section
4.6) and the obtained results showed an excellent skill. Fur-
thermore, the reported simulation results confirmed a
regression equation for the wave resistance proposed by Hu
and Abrahams [2006] (see section 4.6) and relationships
between resistance and depth/velocity proposed by Fathi-
Moghadam [2006] (see section 5.5). One possible reason of
why the application of the S-V equations has demonstrated
such a good performance could be due to a relatively minor
role that obstacle-induced eddies play in affecting larger-scale

Figure 11. The log-ratio of n, h, and Sf to their respective magnitudes at 10% bed slope. The thin, the
medium, and the thick lines correspond to the inflow rates Q of 0.0001, 0.0005 and 0.001 m3 s�1. Vege-
tation covers are (a) 0%, (b) 10%, and (c) 30%.
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characteristics of the flow. As Stoesser et al. [2010] illus-
trated, the time-averaged streamwise (horizontal) velocities
resulting from their 3-D LES model show similar patterns to
those obtained in this study: higher velocity between stems
and smaller velocities behind stems. Although there can be
no exact comparison between the two studies, one important
inference from Stoesser et al. [2010] is that the size/region of
wake behind a vegetation stem is relatively small as com-
pared to the stem diameter. This indicates that a possible
uncertainty region, due to inability to explicitly resolve eddies
with the S-V model, may be restricted to a single triangle cell
behind any given stem represented in this study.

6. Conclusions
[57] Using high-resolution, hydrodynamic numerical

simulation results performed at very fine space-time scales,
two methods were developed to obtain the upscaled Man-
ning coefficient, specifically, ‘‘the Equivalent Roughness
Surface’’ (ERS) and ‘‘the Equivalent Friction Slope’’ (EFS)
methods. The former approach assumes that the resistance
of a rough plane bed without vegetation is equal to the re-
sistance of a smooth plane covered with vegetation stems
or other obstacles. The latter method obtains the upscaled

resistance by using information on flow depth, velocity, and
friction slope simulated at steady state in internal points of a
domain. The values obtained with these two methods yield
nearly identical estimates of nt; the coefficient of determina-
tion of the relationship between them is R2 ¼ 0.973.

[58] The values of nt obtained in the simulation scenarios
described in Tables 2 and 4 were used to develop a predic-
tive equation. The relevant variables and their correspond-
ing coefficients were determined by using the dimensional
analysis and a multiple linear regression analysis. A general
relation accounting for the effect of four independent varia-
bles (i.e., S, Q, nb, and Vf Þ is given by equation (12), which
is applicable to conditions with Vf � 0:5; 0:1 � S � 1:1;
and 0:0001 � Q � 0:01.

[59] We compared nt � nb computed from the general
regression equation (12) with data reported in five different
studies, as presented in Table 6. Although certain assump-
tions had to be made, so as to derive representative values
of nb and Vf , the overall deviations were minor (R2 ¼
0.898). Also, the wave resistance coefficients obtained with
the Equivalent Friction Slope method were compared with
estimates from a predictive equation of Hu and Abrahams
[2006]. We found that the estimates are quite consistent
with the numerical results obtained in this study within the

Figure 12. The effects of the base Manning’s coefficient nb on upscaled nt for different vegetation frac-
tions. The results were obtained using the equivalent friction slope method. Note that while Figure 7
illustrates the total resistance, this figure shows the sum of the form and wave resistances, which implies
the net total contribution of resistances due to partially submerged vegetation to the total resistance.
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range of experimental conditions for which the equation of
Hu and Abrahams [2006] was developed. Overall, it fol-
lows that the predictive equation derived in this study is
well corroborated by reported experimental data and a pre-
viously developed formulation for wave resistance. Thus,
this framework can become a suitable tool for predicting
roughness coefficient for vegetated hillslopes.

[60] Furthermore, the effects of independent variables on
nt were investigated. First, the effect of Vf on nt is that as
Vf increases, nt also grows. This positive trend is repre-
sented by equation (11) and equation (13) with high values
of the determination coefficient of the log-transform linear
relationships. These equations can be useful in estimating
the degree of vegetation effects on resistance, when other
variables required by equations (9) or (12) are not avail-
able. However, they cannot be used in cases where effects
of other independent variables become significant : for
example, the effects of Q are significant in cases with small
S values, and the effects of S are nonnegligible for the cases
with high-Vf values. Second, in terms of effects of S on nt

for a fixed Vf and Q, two distinct trends exist : a positive
dependence at low-flow rates and a decreasing trend at
high-flow rates. These two trends are due to two conflicting
impacts determining nt : when S is increased, the friction
slope Sf grows, while the same is true for cases when the
flow depth h decreases. On the other hand, for a fixed Vf

and S, two distinct modes of the relationship between Q
and nt emerge: a positive dependence at mild slopes, and a
negative dependence at steep slopes. A regression analysis
shows that these two conflicting trends can happen depending
on whether the variability of flow depth with respect to S (or
Q) is greater than the ratio of h and S (or Q). Third, a rougher
bed with larger nb implies an increase of the form/wave resis-
tances due to vegetation. Last, this study corroborates earlier

research that nt grows as h increases and decreases with
higher V [Fathi-Moghadam, 2006].

Notation

A area of triangular cell.
Ar area of roughness element.
C Chezy resistance factor.

CD drag coefficient.
Dr diameter of roughness element.
Ex summation of bed elevation, depth, and velocity

head.
Fr Froude number.
Q inflow rate.

Qsteady discharge at steady state.
Q(t) discharge at time t.

R hydraulic radius.
R2 coefficient of determination.
Re Reynolds number.
Rr roughness Reynolds number.
S bed slope.
Sf friction slope.

Sf,x x directional friction slope.
Sf,y y directional friction slope.
Sf spatially averaged friction slope.
V velocity magnitude.
V spatially averaged velocity magnitude.
Vf vegetation cover fraction.

f Darcy-Weisbach friction factor.
ff form Darcy-Weisbach friction factor.
fs surface Darcy-Weisbach friction factor.
ft total Darcy-Weisbach friction factor.

fw wave Darcy-Weisbach friction factor.
g acceleration due to gravity.

Figure 13. Upscaled Manning’s coefficients (nt) shown with respect to average flow depth and veloc-
ity. The results were obtained using the equivalent friction slope method for different slopes, inflow
rates, and base Manning coefficients corresponding to the cases summarized in Table 2. Six points in
each line correspond to six vegetation fractions.
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h flow depth.
h Spatially averaged flow depth.
k characteristic height of roughness element.
n Manning roughness coefficient.

nb base Manning roughness coefficient.
nt total Manning roughness coefficient.
q discharge per unit width.
t time.

tc time of concentration.
u x directional velocity.
v y directional velocity.

zb bed elevation.
� dynamic viscosity of water.
� density of water.
2 a tolerance value used in equation (1).
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