

A60.50

MAR. 29 1977

ANALYSIS OF LARGE TANKERS USING GRILLAGE AND FINITE ELEMENT METHODS

Edward A. Chazal, Jr. Jerry Marsh Payne

1

A dissertation submitted in partial fulfillment of the requirements for Professional Degrees of Naval Architect in The University of Michigan, 1971

Professional Degree Committee:

•

Professor Finn C. Michelsen, Chairman Professor Richard B. Couch Mister Arthur M. Reed

ABSTRACT

Two of the most important contributions to ship structure analysis have been the finite element method and the grillage method. Each has made its own important contribution, yet neither has been able to offer itself as a satisfactory design tool. The grillage method lacks the detailed stress patterns needed by the designer, and the finite element method has shown itself to be impractical when used to analyze a model as large as a ship hull. There is an obvious solution to this problem, for the weaknesses of one method are the strong points of the other. By using each method where it is best suited, the analysis can be performed with the necessary detail and without great expense.

This thesis presents a method developed by Dr. Pin-Yu Chang, ComCode Corporation, which combines the simplicity of the overall analysis using a grillage model and the fine analysis of the finite element technique for critical portions of the structure. Some results using this method are compared here to full scale test data. Computer programs for a longitudinal and a transverse analysis are also included.

ACKNOWLEDGEMENTS

All authors of technical dissertations draw from resources of talent quite independent of their own. This paper is no exception. Many persons have contributed substantially to its completion. It will be impossible to name all the contributors but they have not been forgotten.

The authors want to thank the faculty members of the Department of Naval Architecture and Marine Engineering and the Department of Engineering Mechanics, The University of Michigan. The knowledge and ability of the authors to conduct such a project as this is due largely to the patient efforts of various faculty members.

The authors received guidance and clarification many times from Dr. Pin-Yu Chang, the originator of the method presented in this paper. Particular thanks for their assistance must also go to Professor Raymond A. Yagle and LCDR C. S. Loosemore, USCG who were the sources for several obscure references. Professor Richard B. Couch and Mr. Arthur Reed of the thesis committee provide valuable advice in the practical aspects of the problem and computer programming respectively.

The authors are deeply grateful to Professor Finn C. Michelsen, the chairman of the thesis committee, who has provided us with the guidance and theoretical insight to approach the problem. Professor Michelsen has the ability to couple a very physical approach to problems with the mathematics required to effectively model those problems. He has been counselor, teacher, and the single most important influence in our academic endeavors.

Finally there are those who contributed through their administrative or supportive roles. Professor T. Francis Ogilvie has been our graduate program advisor and his enthusiasm and support

iii

were a real foundation for our efforts. The beauty and accuracy of the manuscript testify to the fine ability of the typist, Chris Seidl. To our wives Susan Chazal and Donna Payne who by their patience, understanding, proof reading skills, and advice contributed substantially in this project.

April, 1971 Ann Arbor, Michigan Edward A. Chazal, Jr. Jerry M. Payne

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLDEGEMENTS	iii

CHAPTER

•

I	INTRODUCTION		
II	LONGITUDINAL STRENGTH ANALYSIS	5	
III	TRANSVERSE STRENGTH ANALYSIS	12	
IV	DISCUSSION	21	
v	RECOMMENDATIONS	34	
VI	CONCLUSION	43	
BIBLIOG APPENDI	RАРНҮ Х	46	
А	RESULTS	A-1	
В	COMPUTER PROGRAMS	B - 1	

INTRODUCTION

The past decade has ushered in several numerical methods for achieving solutions to the ship structure analysis problem. Prior to this time most analyses were conducted on the basis of painstakingly accumulated empirical data. The empirical formulations produced satisfactory results for the first half of the twentieth century. In the late 1950's economic advantages produced a whole new size generation of tankers [16].

These ships were much larger than any prior vessels. They were so much larger that given hindsight, it can be seen that prior empirical analyses should not have been expected to produce accurate results. This is the case for the early jumbo tankers which exhibit a history of structural failures in the vicinity of the intersections of prime longitudinals and the transverse members. The failures showed quite often the characteristic features of deformation under excessive shear loads. We can see that these shear loads must be treated as an important factor [4].

- 1 -

These failures and the general lack of empirical data suggest a need for a more satisfactory design procedure. The basic nature of the problem suggests difficulty in ever achieving a completely accurate formulation. In order to attack the problem one must be cognizant of the many static and dynamic loadings imposed on the vessel. In addition there must be a satisfactory method for analyzing the structure itself.

There have been several advances in structural analysis that would appear to lend themselves well to the problem solution. Two prominent achievements have been the very elegant theory of grillages [5,11,20] and the versatile finite element method [6,7,10,12,17,22].

The finite element method has been used effectively for a number of years by civil and aeronautical engineers. The grillage theory was developed principally by naval architects. There are advantages and disadvantages to both methods. In order to be applied effectively and efficiently they both need a reasonable amount of skill or understanding of the art.

There are several published examples of applications of both techniques to the ship structure problem. Generally these are all limited to a particular area of interest. It is no accident that the particular areas chosen lend themselves quite well to solutions by the method selected. It seems reasonable to point out that the investigators selected the most efficient tool for solving the problem at hand.

In dealing with the whole ship analysis the complex nature of the problem demands even greater skill [10] (see Figure I-2). For some time the finite element method alone seemed to offer the best route to eventual success. The efforts of Kamel et al, at the University of Arizona, achieved reasonable results via this route with the DAISY program [6,7]. As published, this analysis makes use of a macro mesh to reduce round off error and computer expenses. The macro mesh solutions are then applied to

Figure I-2 Structure Detail of Typical Tanker [10]

a micro mesh analysis of the area in question. The actual cost of analysis for a typical ship using DAISY has not been published. Roberts commented on a similar effort in Great Britain that required 24 hours of computer time and several months of data preparation. As a design tool this type of approach is very expensive but it does give results. It is a complete analysis tool which solves the entire ship problem but it forces the finite element method to its limits. As a result, certain compromises are made to reduce computation time but they also reduce accuracy.

At this stage it seems entirely reasonable to seek methods that will allow the finite element technique optimum utilization. Extending the use of this method blindly to a point at which its results are questionable is merely a misuse of a good tool. A structural analyst, to be successful, must use all available information to his advantage. If he allows himself to stop thinking and merely feeds numbers into a computer, he has removed the benefit of his knowledge and judgement from the solution of the problem. St. Denis has suggested that the ship structure problem be solved by a judicious combination of many methods of analysis. The final tool he envisioned would make the best use of each technique and really would be no more than a synthesis of available methods each used to its best advantage [6].

It is against this background that Dr. Pin-Yu Chang formulated his approach to the entire ship structure problem. The total problem has not yet been solved and much work remains to be done. However Dr. Chang's effort clearly leads the way to a complete rational analysis. This analysis makes maximum use of the skill of the naval architect and should be more efficient than the brute force application of one particular method.

The technique uses grillage analysis for the overall ship problem and finite element methods for the local analyses. The employment of the grillage greatly reduces the computation time while the finite element methods allow a detailed analysis of stress patterns. The problem has been divided into two principal parts, the transverse and longitudinal strength analyses. The transverse problem depends upon certain output from the longitudinal problem.

The longitudinal analysis treats the hull as a grillage of simple shear beams. The result is the set of interaction forces between the members which are used in the transverse analysis as shear forces between the primary members of the structure. These shear forces along with the external loads complete the loading pattern which can be used to compute stresses and bending moments in the primary structural members.

The transverse analysis uses the grillage properties of the hull to uncouple the governing differential equations by means of coordinate transformation. This reduces the transverse analysis to a simple two dimensional problem which can be solved using finite elements. This reduces necessary computational time and avoids the use of finite elements in the macro analysis which seems to have questionable accuracy [4].

- 4 -

LONGITUDINAL STRENGTH ANALYSIS

For longitudinal strength consideration, the ship is treated as a grillage consisting of four longitudinal members and several transverse stiffeners (see Figure II-1). The prime longitudinal members are the side shells and two longitudinal bulkheads. The transverse members are bulkheads and web frames which act as stiffeners. Both longitudinal and transverse members include portions of the bottom and deck as flanges. This insures that the total moment of inertia of the model will be the same as that derived in the conventional manner. It is assumed that each member of the grillage behaves as a simple shear beam. This assumption has been verified by Vasta for medium size ships and there is no evidence that would invalidate it for large tankers [19]. The transverse beams are free at both ends and the longitudinals are simply supported. Since the external loads on the grillage are self balanced, the shear forces at the simply supported ends are nearly zero. Then the longitudinals are equivalent to freefree beams.

The external loads acting on the plate are transmitted to the longitudinals and then transferred to the transverses. The load is then distributed as concentrated forces on the transverse members. This loading transfer pattern emphasizes the importance of the shear forces at the intersections of the prime members. The primary deflections of the longitudinal members are computed by distributing the loads uniformly along a longitudinal between transverses.

Consider a particular (α -th) transverse supported by longitudinals and acted upon by a symmetrical loading system. In the following figure, the reactions R_1 and R_2 represent the shear forces on the longitudinals. Since the beam and the loading pattern are symmetrical, it is only necessary to consider half of the beam.

- 5 -

Figure II-2 Transverse Modeled as a Short Deep Beam with Symmetrical Loading [4]

Figure II-3 Model of Transverse Taking Advantage of Symmetry [4]

The load in the wing tank (q_w) and the load in the central tank (q_c) have been here assumed to be uniform. Since it will be necessary only to find the relative displacements along this member, the left end has been simply supported. The relative displacement between points (1) and (2) of the α -th transverse is Δd^{α} . Then

$$\Delta d^{\alpha} = W_2^{\alpha} - k_{22}^{\alpha} R_2^{\alpha} \qquad (II-1)$$

where W_2^{α} is the displacement of point (2) due to the external loads on the beam and k_{22}^{α} is an influence coefficient.

The influence coefficients (k_{ij}^{α}) of the α -th transverse are a set of deflections at x_i due to a unit load at x_j . Let S^n be a vector of state variables at station n such that

$$S^{n} = \begin{bmatrix} W \\ \theta \\ M \\ V \end{bmatrix}_{n}$$
(II-2)

where W is displacement, θ is rotation, M is bending moment and V is shear force. Then by line solution

w		ĺ	-a	$\frac{-a^2}{2EI_1}$	$\frac{-a^3}{6EI_1} + \frac{a}{GA_1}$	$q_{W} \frac{a^{4}}{24EI_{1}} - \frac{a^{2}}{2GA_{1}}$	ſ	w
θ		0	1	$\frac{a}{EI_1}$	$\frac{a^2}{2EI_1}$	$\frac{-q_w^{a^3}}{6EI_1}$		θ
м	=	0	0	1	a	$\frac{-q_w^{a^2}}{2}$		М
v		0	0	0	1	-q _w a		v
L 1 _	2	Lo	0	0	0	1	L	1]

where I_1 is the moment of inertia of section (1) of the beam, A_1 is the shear area and E , G , are constants of elasticity. This expression may for convenience be written

$$S^2 = L_1 S^1 \tag{II-4}$$

Similarly

$$S^{3} = L_{2}S^{2} \qquad (II-5)$$

Combining the above equations

$$S^{3} = L_{2}L_{1}S^{1}$$
 (II-6)

The boundary conditions for the beam being considered are

$$W^{1} = M^{1} = \theta^{3} = V^{3} = 0$$
 (II-7)

Letting $L^n = L_n L_{n-1} \cdots L_1$, (II-6) can be rewritten as

$$S^3 = L^2 S^1 \tag{II-8}$$

Let L_{ij}^{n} be a particular element in the L^{n} matrix. Using (II-7) in (II-6), the deflections at point two and three are found to be

$$W^{2} = L_{12}^{1} \theta^{1} + L_{14}^{1} V^{1} + L_{15}^{1}$$
(II-9)
$$W^{3} = L_{12}^{2} \theta^{1} + L_{14}^{2} V^{1} + L_{15}^{2}$$
(II-10)

in terms of the initial parameters θ^1 and V^1 . These parameters are also obtainable from the same equations since

$$L_{22}^{2} \theta^{1} + L_{24}^{2} V^{1} + L_{25}^{2} = 0$$
$$L_{42}^{2} \theta^{1} + L_{44}^{2} V^{1} + L_{45}^{2} = 0$$

or

$$\theta^{1} = \frac{L_{25}^{2} L_{44}^{2} - L_{24}^{2} L_{45}^{2}}{L_{22}^{2} L_{44}^{2} - L_{24}^{2} L_{42}^{2}}$$
(II-11)

$$V^{1} = \frac{L_{22}^{2} L_{45}^{2} - L_{25}^{2} L_{42}^{2}}{L_{22}^{2} L_{44}^{2} - L_{24}^{2} L_{42}^{2}}$$
(II-12)

The displacement W_2^{α} for the α -th transverse is the displacement which is needed in equation (II-1).

In order to find influence coefficients by this line solution method, the uniform loads $(q_w \text{ and } q_c)$ must be set equal to zero in the transfer matrices L^1 and L^2 . In addition a point matrix is added at the location of the required unit load. The point matrix is

$$\mathbf{L}^{\mathbf{p}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then $S^{i} = L^{i-1} S^{i}$

where
$$L^{i-1} = L_{i-1} L_{i-2} \cdots L_{j+1} L^{p}_{L_{j}} \cdots L_{1}$$
 (II-13)

Then the displacement W^{i} calculated from (II-10) is the influence coefficient

$$\mathbf{k}_{ij}^{\alpha} = \mathbf{L}_{12}^{i-1} \, \theta^{1} + \left(\mathbf{L}_{14}^{i-1} \, \mathbf{V} + \mathbf{L}_{15}^{i-1} \right)_{\alpha j} \quad (II-14)$$

The unknown reaction R_2^{α} can now be expressed in terms of these values by rewriting equation (II-1):

$$R_2^{\alpha} = \frac{1}{k_{22}^{\alpha}} W_2^{\alpha} - \Delta d^{\alpha}$$
(II-15)

Since \textbf{q}_{W} and \textbf{q}_{C} are uniform loads, then \textbf{R}_{1}^{α} can be expressed as

$$R_1^{\alpha} = aq_c^{\alpha} + bq_c^{\alpha} - R_2^{\alpha}$$
(II-16)

Now except for Δd^{α} all values are known and the reactions can be calculated.

Treating the four prime longitudinals as independent simple beams which are simply supported and distributing the external loads on these members, a set of displacements may be obtained from simple beam theory for each member. The longitudinals here are considered not to be supported by the transverse members. The deflection, d_m^{α} , is that of the m-th longitudinal at the location where it should be supported by the α -th transverse. Due to symmetry it is necessary to calculate only the deflections of one side shell (d_1^{α}) and a longitudinal bulkhead (d_2^{α}) . Now Δd^{α} can be computed as

$$\Delta d^{\alpha} = d_2^{\alpha} - d_1^{\alpha}$$

and the reactions R_m^{α} can be found.

Once these reactions between the grillage members have been found the external loading system is complete. By methods of elasticity, bending moments and shear stresses can be computed at points of interest.

TRANSVERSE STRENGTH ANALYSIS

The method of transverse analysis presented here is similar to other three-dimensional finite element solutions, except that a much finer mesh is used. This fine mesh can be adopted without increasing computer cost because uncoupling techniques used in the overall analysis substantially reduce the amount of required computer time. The basic effect of the uncoupling is that it reduces the three dimensional system mathematically into a set of two dimensional equivalent transverse members. Each of these members can then be analyzed in two dimensions.

The model used for this part of the analysis is a three dimensional body (figure III-1). The longitudinal members (side shell, bulkhead, deck, and bottom) are represented by bars and the transverse members are represented by plates which are reinforced by bars. Due to symmetry about the ship's center plane the model represents only half of the hull. The transverses are restrained from moving in the horizontal direction along their intersection with the center plane. In the analysis of an individual transverse, the section is restrained from moving vertically at the intersection of the longitudinal bulkhead and the bottom (figure III-2). The longitudinals are simple supported at both ends. It is assumed that all longitudinals are similar beams and that all transverses are of proportional stiffness.

External loads are transmitted from the plate to the longitudinals and then transferred to the transverses. The external loads can be expressed as a function of z which is the distance from the forward perpendicular in a direction perpendicular to the planes of the transverses. Then the α -th longitudinal is acted upon by $q_{\alpha}(z)$ and the horizontal and vertical reactions of the i-th transverse, $X_{i\alpha}$, $Y_{i\alpha}$. Let $d_{xi\alpha}$ be the deflection caused by $q_{x\alpha}(z)$ (in the x direction) and let $A_{ij}^{\alpha x}$ be the influence coefficients of the α -th longitudinal between z_i

- 12 -

13 -

and z in the x direction. Then the deflections of the longij tudinals can be expressed as

$$U_{i\alpha} = d_{xi\alpha} - \sum_{j} A_{ij}^{x} x_{j\alpha}$$
$$V_{i\alpha} = d_{yi\alpha} - \sum_{j} A_{ij}^{y} y_{j\alpha}$$
(III-1)

The deflections, $d_{i\alpha}$, and the influence coefficients, A_{ij} , are found by line solution methods as described in the longitudinal analysis section. It should be noted that A_{ij} is the same for each longitudinal since they are of similar stiffness. Let the reactions, $X_{i\alpha}$ and $Y_{i\alpha}$, be represented by a set of equivalent forces, $\overline{X}_{i\alpha}$ and $\overline{Y}_{i\alpha}$, which are available from the longitudinal analysis. Now the displacements at the intersection can be expressed as

$$\begin{split} \mathbf{U}_{\mathbf{i}\alpha} &= \sum_{\beta} \left[\frac{\mathbf{L}_{\mathbf{x}\mathbf{x}\alpha\beta}}{\mathbf{P}_{\mathbf{i}}} \left(\mathbf{X}_{\mathbf{i}\beta} - \overline{\mathbf{X}}_{\mathbf{i}\beta} \right) + \frac{\mathbf{L}_{\mathbf{x}\mathbf{y}\alpha\beta}}{\mathbf{P}_{\mathbf{i}}} \left(\mathbf{Y}_{\mathbf{i}\beta} - \overline{\mathbf{Y}}_{\mathbf{i}\beta} \right) \right] + \mathbf{U}_{0\mathbf{i}} \end{split} \tag{III-2} \\ \mathbf{V}_{\mathbf{i}\alpha} &= \sum_{\beta} \left[\frac{\mathbf{L}_{\mathbf{x}\mathbf{y}\alpha\beta}}{\mathbf{P}_{\mathbf{i}}} \left(\mathbf{X}_{\mathbf{i}\beta} - \overline{\mathbf{X}}_{\mathbf{i}\beta} \right) + \frac{\mathbf{L}_{\mathbf{y}\mathbf{y}\alpha\beta}}{\mathbf{P}_{\mathbf{i}}} \left(\mathbf{Y}_{\mathbf{i}\beta} - \overline{\mathbf{Y}}_{\mathbf{i}\beta} \right) \right] + \mathbf{V}_{0\mathbf{i}} \end{split}$$

where U_0 , V_0 are rigid body displacements of the transverse, and L_{xx} , L_{xy} , L_{yy} are influence coefficients of a general transverse. Since all transverses have proportional stiffness then the influence coefficient for the i-th transverse, say $L_{xx\alpha\beta}^{i}$, between the intersection with the α -th and β -th longitudinals can be expressed as $L_{xx\alpha\beta}/P_i$ where P_i is the relative stiffness factor for the i-th transverse. P_i is computed as the ratio of the shear area of a particular transverse to that of the general transverse. The rigid body displacements of the transverses are available from the longitudinal strength analysis. By multiplying (III-2) by ${\rm A}_{\mbox{ij}}$ and using (III-1), (III-2) can be expressed as

$$A_{ij} P_{j}U_{j\alpha} = L_{xx\alpha\beta}r^{\beta}A_{ij}^{\beta x} \left(X_{j\beta} - \overline{X}_{j\beta} \right) + L_{xy\alpha\beta} t^{\beta}A_{ij}^{\beta y} \left(Y_{j\beta} - \overline{Y}_{j\beta} \right)$$

$$+ A_{ij} P_{j}U_{0j} \dots \text{ (sum on j and } \beta)$$

$$(III-3)$$

where r^β and t^β are scalar factors such that

$$A_{ij} = r^{\beta} A_{ij}^{\beta x} = t^{\beta} A_{ij}^{\beta y}$$
(III-4)

Let

~ •

$$D_{ix\beta} = A_{ij}^{\beta x} X_{j\beta} , \quad \overline{D}_{xi\beta} = A_{ij}^{\beta x} \overline{X}_{j\beta}$$

$$\overline{U}_{i\alpha} = P_{i}^{\nu_{2}} U_{i\alpha}$$

$$A = \begin{bmatrix} A_{ij} \end{bmatrix} \qquad \dots \qquad (matrix)$$

$$P^{\nu_{2}} = \{P^{\nu_{2}}\} \qquad \dots \qquad (diagonal matrix)$$

then

$$P^{\nu_{2}}AP^{\nu_{2}}\overline{U}_{\alpha} = L_{xx\alpha\beta}r^{\beta} \left[P^{\nu_{2}} \left(D_{x\beta} - \overline{D}_{x\beta} \right) - \overline{U}_{\beta} \right]$$

$$+ L_{xy\alpha\beta}t^{\beta} \left[P^{\nu_{2}} \left(D_{y\beta} - \overline{D}_{y\beta} \right) - \overline{V}_{\beta} \right] + P^{\nu_{2}}APU_{0}$$

$$(III-5)$$

... (sum on β)

It can be shown that the matrix $P^{1/2}AP^{1/2}$ is symmetric. Then there exists a unitary matrix B such that

$$B^{T}P^{1/2}AP^{1/2}B = \left\{\lambda_{i}\right\}$$
 (III-6)

where B^{T} is the transpose of B and λ_{i} are the eigenvalues of the matrix $P^{1/2}AP^{1/2}$. Multiplying (III-5) by B^{T} , letting $\overline{U}_{i\alpha} = B_{ij}\overline{\overline{U}}_{j\alpha}$ and using (III-6), equation (III-5) can be rewritten as

$$\left\{ \lambda_{i} \right\} \overline{\overline{U}}_{\alpha} = \mathbf{L}_{\mathbf{X}\mathbf{X}\alpha\beta} \mathbf{r}^{\beta} \left[\mathbf{B}^{\mathrm{T}} \mathbf{P}^{1/2} \left(\mathbf{D}_{\mathbf{X}\beta} - \overline{\mathbf{D}}_{\mathbf{X}\beta} \right) - \overline{\overline{\mathbf{U}}}_{\beta} \right]$$

$$+ \mathbf{L}_{\mathbf{X}\mathbf{Y}\alpha\beta} \mathbf{t}^{\beta} \left[\mathbf{B}^{\mathrm{T}} \mathbf{P}^{1/2} \left(\mathbf{D}_{\mathbf{Y}\beta} - \overline{\mathbf{D}}_{\mathbf{Y}\beta} \right) - \overline{\overline{\mathbf{V}}}_{\beta} \right] + \mathbf{B}^{\mathrm{T}} \mathbf{P}^{1/2} \mathbf{A} \mathbf{P} \mathbf{U}_{0}$$

$$(III-7)$$

... (sum on β)

Let

$$\begin{split} \mathbf{C}_{\mathbf{x}\mathbf{i}} &= \sum_{\mathbf{j}} \mathbf{B}_{\mathbf{i}\mathbf{j}}^{\mathrm{T}} \mathbf{P}_{\mathbf{i}}^{1/2} \left(\mathbf{D}_{\mathbf{x}\mathbf{j}\alpha} - \overline{\mathbf{D}}_{\mathbf{x}\mathbf{j}\alpha} \right) \\ \mathbf{C}_{\mathbf{y}\mathbf{i}} &= \sum_{\mathbf{j}} \mathbf{B}_{\mathbf{i}\mathbf{j}}^{\mathrm{T}} \mathbf{P}_{\mathbf{i}}^{1/2} \left(\mathbf{D}_{\mathbf{y}\mathbf{j}\alpha} - \overline{\mathbf{D}}_{\mathbf{y}\mathbf{j}\alpha} \right) \\ \overline{\overline{\mathbf{U}}}_{0\mathbf{i}} &= \mathbf{B}^{\mathrm{T}} \mathbf{P}^{1/2} \mathbf{A} \mathbf{P} \mathbf{U}_{0\mathbf{i}} \\ \overline{\overline{\mathbf{V}}}_{0\mathbf{i}} &= \mathbf{B}^{\mathrm{T}} \mathbf{P}^{1/2} \mathbf{A} \mathbf{P} \mathbf{V}_{0\mathbf{i}} \end{split}$$

then

$$\lambda_{i}\overline{\overline{U}}_{i} = L_{XX}R \left(C_{Xi} - \overline{\overline{U}}_{i}\right) + L_{XY}T \left(C_{Yi} - \overline{\overline{V}}_{i}\right) + \overline{\overline{U}}_{0i} \qquad (III-9)$$

for each α , where $\left(L_{XX}RC\right)_{\alpha} = \sum_{\beta} \left[L_{XX\alpha\beta}r^{\beta}C_{\beta}\right]_{\alpha}$

Similarly

$$\lambda_{i}\overline{\overline{v}}_{i} = L_{xy}R \left(C_{xi} - \overline{\overline{v}}_{i}\right) + L_{yy}T \left(C_{yi} - \overline{\overline{v}}_{i}\right) + \overline{\overline{v}}_{0i} \qquad (III-10)$$

Equations (III-9) and (III-10) involving $\bar{\bar{U}}_{i\alpha}$, $\bar{\bar{V}}_{i\alpha}$ are uncoupled equations involving only one i. These equations can

be further simplified by letting

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{\mathbf{X}\mathbf{X}} & \mathbf{L}_{\mathbf{X}\mathbf{Y}} \\ \mathbf{L}_{\mathbf{X}\mathbf{Y}} & \mathbf{L}_{\mathbf{Y}\mathbf{Y}} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{T} \end{bmatrix}$$
$$\overline{\mathbf{W}}_{\mathbf{i}} = \begin{bmatrix} \overline{\mathbf{U}} \\ \overline{\mathbf{V}} \end{bmatrix}, \quad \mathbf{C}_{\mathbf{i}} = \begin{bmatrix} \mathbf{C}_{\mathbf{X}\mathbf{i}} \\ \mathbf{C}_{\mathbf{Y}\mathbf{i}} \end{bmatrix}, \quad \overline{\mathbf{W}}_{\mathbf{0}\mathbf{i}} = \begin{bmatrix} \overline{\mathbf{U}}_{\mathbf{0}\mathbf{i}} \\ \overline{\mathbf{V}}_{\mathbf{0}\mathbf{i}} \end{bmatrix}$$

Now (III-9) and (III-10) can be written as

$$\lambda_{i}\overline{\overline{W}}_{i} = L \left(C_{i} - \overline{\overline{W}}_{i}\right) + \overline{\overline{W}}_{0i}$$

or

$$\overline{\overline{W}}_{i} = \left(L + \lambda_{i} I \right)^{-1} \left(LC_{i} + \overline{\overline{W}}_{0i} \right)$$
 (III-11)

All values on the right hand side of this equation are known so $\overline{\overline{W}}_{i}$ can be computed. This is a set of transformed displacements which can be computed with relative ease. By applying the inverse transformation to these displacements, the real displacements can be computed.

$$\begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} \mathbf{P}^{-1/2} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}^{-1/2} \mathbf{B} \end{bmatrix} \begin{bmatrix} \overline{\overline{\mathbf{U}}} \\ \overline{\overline{\mathbf{V}}} \end{bmatrix}$$
(III-12)

With these deflections computed, equation (III-1) can be used to find the reactions, $X_{i\alpha}$ and $Y_{i\alpha}$. This completes the loading pattern on any particular section of the ship so stresses and bending moments can be found at particular points of interest.

Equation (III-10) is equivalent to the equation of the deformation of an elastic body which is supported by springs and is acted upon by a set of concentrated loads. These forces and spring factors are known so the deformations can be computed. This is a more economical computation if the stiffness of the longitudinals is much less than the stiffness of the transverses. Physically this appears to be a reasonable assumption. If $\lambda_{i} >> L_{\alpha\beta}$, then

$$\left(\mathbf{L} + \lambda_{\mathbf{i}}\mathbf{I}\right)^{-1} = \frac{1}{\lambda_{\mathbf{i}}} \left(\mathbf{I} - \frac{\mathbf{L}}{\lambda_{\mathbf{i}}} + \frac{\mathbf{L}}{\lambda_{\mathbf{i}}^{2}} + \cdots\right)$$
 (III-13)

Using this, equations (III-9) and (III-10) can be rewritten as

$$\begin{bmatrix} \overline{\overline{U}}_{i} \\ \overline{\overline{V}}_{i} \end{bmatrix} = \sum_{n=1}^{\infty} \begin{bmatrix} \mathbf{L}_{xx}^{R} & \mathbf{L}_{xy}^{T} \\ \mathbf{L}_{xy}^{R} & \mathbf{L}_{yy}^{T} \end{bmatrix} \begin{pmatrix} \underline{1} \\ \lambda_{i} \end{pmatrix}^{n} \begin{bmatrix} \mathbf{C}_{xi} - \lambda_{i}^{-1} & \overline{\overline{U}}_{0i} \\ \mathbf{C}_{yi} - \lambda_{i}^{-1} & \overline{\overline{V}}_{0i} \end{bmatrix} + \frac{1}{\lambda_{i}} \begin{bmatrix} \overline{\overline{U}}_{0i} \\ \overline{\overline{V}}_{0i} \end{bmatrix}$$
(III-14)

Now if we let

$$\begin{bmatrix} \overline{\overline{v}}_{i} \\ \overline{\overline{v}}_{i} \end{bmatrix}^{1} = \frac{L}{\lambda_{i}} \left(C_{i} - \overline{\overline{w}}_{0i} / \lambda_{i} \right)$$
(III-15)

and

、

$$\begin{bmatrix} \overline{\overline{v}}_{i} \\ \overline{\overline{v}}_{i} \end{bmatrix}^{n} = -\frac{L}{\lambda_{i}} \begin{bmatrix} \overline{\overline{v}}_{i} \\ \overline{\overline{v}}_{i} \end{bmatrix}^{n-1}$$
(III-16)

Then (III-14) can be written

$$\begin{bmatrix} \overline{\overline{U}}_{i} \\ \overline{\overline{V}}_{i} \end{bmatrix} = \sum_{n=1}^{\infty} \begin{bmatrix} \overline{\overline{U}}_{i} \\ \overline{\overline{V}}_{i} \end{bmatrix}^{n} + \frac{1}{\lambda_{i}} \begin{bmatrix} \overline{\overline{U}}_{0i} \\ \overline{\overline{V}}_{0i} \end{bmatrix}$$
(III-17)

The series term in (III-17) will converge rapidly, and generally only a few terms will be needed. The accuracy in this approach can be determined by applying the inverse transformation to the preceding equations.

First we can express the x-component of (III-15) as

$$\overline{\overline{U}}_{\alpha} = L_{\mathbf{x}\mathbf{x}\alpha\beta} \mathbf{r}^{\beta} (1/\lambda) C_{\mathbf{x}\beta} - \overline{\overline{U}}_{0}/\lambda + L_{\mathbf{x}\mathbf{y}\alpha\beta} \mathbf{t}^{\beta} (1/\lambda) C_{\mathbf{y}\beta} - \overline{\overline{V}}_{0}/\lambda \qquad (III-18)$$

But from (III-8)

and

$$C_{\mathbf{x}\beta} = B^{T}P^{1/2} \left(D_{\mathbf{x}\beta} - \overline{D}_{\mathbf{x}\beta} \right)$$

$$C_{\mathbf{y}\beta} = B^{T}P^{1/2} \left(D_{\mathbf{y}\beta} - \overline{D}_{\mathbf{y}\beta} \right)$$
(III-19)

Now substituting (III-19), (III-8), (III-12) into (III-18) results in

$$\begin{aligned} \mathbf{U}_{\alpha}^{1} &= \mathbf{L}_{\mathbf{x}\mathbf{x}\alpha\beta} \mathbf{r}^{\beta} \mathbf{P}^{-\nu_{2}} \mathbf{B} \lambda^{-1} \left[\mathbf{B}^{\mathrm{T}} \mathbf{P}^{\nu_{2}} \left(\mathbf{D}_{\mathbf{x}\beta} - \overline{\mathbf{D}}_{\mathbf{x}\beta} \right) - \lambda^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P}^{\nu_{2}} \mathbf{A} \mathbf{P} \mathbf{U}_{0} \right] \\ &+ \mathbf{L}_{\mathbf{x}\mathbf{y}\alpha\beta} \mathbf{t}^{\beta} \mathbf{P}^{-\nu_{2}} \mathbf{B} \lambda^{-1} \left[\mathbf{B}^{\mathrm{T}} \mathbf{P}^{\nu_{2}} \left(\mathbf{D}_{\mathbf{y}\beta} - \overline{\mathbf{D}}_{\mathbf{y}\beta} \right) - \lambda^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P}^{\nu_{2}} \mathbf{A} \mathbf{P} \mathbf{V}_{0} \right] \end{aligned}$$
(III-20)

Then using the relations of (III-6)

$$U_{\alpha}^{1} = L_{xx\alpha\beta} r^{\beta} P^{-1} A^{-1} \left(D_{x\beta} - \overline{D}_{x\beta} - U_{0} \right) + L_{xy\alpha\beta} t^{\beta} P^{-1} A^{-1} \left(D_{y\beta} - \overline{D}_{y\beta} - V_{0} \right) \quad (III-21)$$

Introducing (III-4) and the fact that $L_{xx\alpha\beta}^i = L_{xx\alpha\beta}/P_i$, (III-21) becomes

$$\mathbf{U}_{\alpha}^{i} = \mathbf{L}_{\mathbf{x}\mathbf{x}\alpha\beta}^{i} \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{x}} \left(\mathbf{D}_{\mathbf{x}j\beta} - \overline{\mathbf{D}}_{\mathbf{x}j\beta} - \mathbf{U}_{0j} \right) + \mathbf{L}_{\mathbf{x}y\alpha\beta}^{i} \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{y}} \left(\mathbf{D}_{\mathbf{y}j\beta} - \overline{\mathbf{D}}_{\mathbf{y}j\beta} - \mathbf{V}_{0j} \right) \quad (\text{III}-22)$$

A similar procedure can be used to give the following expression for the y-displacement:

$$\begin{aligned} \mathbf{V}_{\alpha}^{1} &= \mathbf{L}_{\mathbf{X}\mathbf{Y}\alpha\beta}^{\mathbf{i}} \overline{\mathbf{A}}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{X}} \left[\mathbf{D}_{\mathbf{X}\mathbf{j}\beta} - \overline{\mathbf{D}}_{\mathbf{X}\mathbf{j}\beta} - \mathbf{U}_{0\mathbf{j}\mathbf{j}} \right] + \mathbf{L}_{\mathbf{Y}\mathbf{Y}\alpha\beta}^{\mathbf{i}} \overline{\mathbf{A}}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{Y}} \left[\mathbf{D}_{\mathbf{Y}\mathbf{j}\beta} - \overline{\mathbf{D}}_{\mathbf{Y}\mathbf{j}\beta} - \mathbf{V}_{0\mathbf{j}\mathbf{j}} \right] \quad (III-23) \end{aligned}$$
where $\overline{\mathbf{A}}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{X}} = \left[\mathbf{A}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{X}} \right]^{-1}$
Also as in (III-16)
$$\mathbf{U}^{\mathbf{n}} = -\mathbf{L}_{\mathbf{X}\mathbf{X}\alpha\beta}^{\mathbf{i}} \overline{\mathbf{A}}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{X}} \mathbf{U}_{\mathbf{j}}^{\mathbf{n}-1} - \mathbf{L}_{\mathbf{X}\mathbf{Y}\alpha\beta}^{\mathbf{i}} \overline{\mathbf{A}}_{\mathbf{i}\mathbf{j}}^{\beta\mathbf{Y}} \mathbf{V}_{\mathbf{j}}^{\mathbf{n}-1} \end{aligned}$$

$$v^{n} = -L_{xy\alpha\beta}^{i}\overline{A}_{ij}^{\beta x} u_{j}^{n-1} - L_{yy\alpha\beta}^{i}\overline{A}_{ij}^{\beta y} v_{j}^{n-1}$$
(III-24)

Using the inverse transformation of (III-12), equation (III-14) reduces to

$$\begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix} = \sum_{n=1}^{\infty} \begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}^{n} + \begin{bmatrix} \mathbf{U}_{0} \\ \mathbf{V}_{0} \end{bmatrix}$$
(III-25)

As long as the external loading can be represented by a set of concentrated forces $\tilde{X}_{i\alpha}$, $\tilde{Y}_{i\alpha}$ then (III-25) can be written as

$$U_{i\alpha} = L_{xx\alpha\beta}^{i} \tilde{X}_{i\beta} + L_{xy\alpha\beta}^{i} \tilde{Y}_{i\beta} + \tilde{U}_{i\alpha} + \sum_{n=2}^{\infty} U_{i}^{n} + U_{i0}$$

$$V_{i\alpha} = L_{xy\alpha\beta}^{i} \tilde{X}_{i\beta} + L_{yy\alpha\beta}^{i} \tilde{Y}_{i\beta} + \tilde{V}_{i\alpha} + \sum_{n=2}^{\infty} V_{i}^{n} + V_{i0}$$
(III-26)

where

$$\begin{split} \widetilde{\mathbf{U}}_{\mathbf{i}\alpha} &= -\mathbf{L}_{\mathbf{x}\mathbf{x}\alpha\beta}^{\mathbf{i}} \left(\widetilde{\mathbf{X}}_{\mathbf{i}\beta} + \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{x}} \mathbf{U}_{0j} \right) - \mathbf{L}_{\mathbf{x}\mathbf{y}\alpha\beta}^{\mathbf{i}} \left(\widetilde{\mathbf{Y}}_{\mathbf{i}\beta} + \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{x}} \mathbf{V}_{0j} \right) \\ \widetilde{\mathbf{V}}_{\mathbf{i}\alpha} &= -\mathbf{L}_{\mathbf{x}\mathbf{y}\alpha\beta}^{\mathbf{i}} \left(\widetilde{\mathbf{X}}_{\mathbf{i}\beta} + \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{x}} \mathbf{U}_{0j} \right) - \mathbf{L}_{\mathbf{y}\mathbf{y}\alpha\beta}^{\mathbf{i}} \left(\widetilde{\mathbf{Y}}_{\mathbf{i}\beta} + \overline{\mathbf{A}}_{\mathbf{i}j}^{\beta\mathbf{x}} \mathbf{V}_{0j} \right) \end{split}$$
(III-27)

In examining (III-26), it can be seen that without the third and fourth terms, it is equivalent to a two dimensional analysis. In ignoring these terms, an error is introduced into the analysis. This error increases as the stiffness of the longitudinals increases relative to that of the transverses. There is in fact a limit at which the series term in (III-26) is divergent. Unless the condition of (III-13) is met, the analysis cannot be continued in this manner. Instead, the direct application of (III-11) is needed to complete the analysis.

DISCUSSION

Dr. Chang's analysis utilizes several well documented techniques of structural analysis. Each is covered in sufficient detail in the body of this paper to provide the reader with an adequate understanding of the problem as a whole. Those who are not familiar with one or more methods and who desire greater detail should study the suggested references.

The fundamental analysis tool is the finite element method. This very versatile technique is undergoing a state of constant change and improvement. One of the first applications of this method in the field of Naval Architecture was presented by J. R. Paulling in 1964. Since that time many investigators have used finite elements to solve difficult structural problems with much success. However, as increasingly larger problems were attempted using this method, the cost became greater and the results less accurate. The method is very appealing on the surface. It treats problems of varying complexity and size with equal respect. It therefore offers the practicing engineer a tool which requires very little thinking. Such a tool can be very dangerous if used without understanding and prudence.

The finite element method depends on four factors for accuracy. They are discretization, element type, number of elements and rounding error, and the accuracy of the boundary conditions. If conforming elements are used, the solution should converge to the exact solution as the element area approaches zero. Unfortunately, as the mesh size is decreased the accuracy limitations on the computer itself may result in an accumulation of round off errors. There always will be a limit where the increase in rounding error is larger than the decrease in discretization error. For a small structure, the actual error obtained in using the finite element method can be made quite small. In a ship, this limit may be reached when the actual error is still quite significant. Then a decrease in mesh size will cause deterioration in accuracy. Even if this limit has not been reached, the additional computation time may be uneconomical. One attempt at skirting this problem has been the use of a large mesh for the whole structure and then taking the results and applying them as boundary conditions of a smaller region analyzed with smaller elements. This procedure can then be repeated as often as necessary until the region of interest is isolated. This process breaks down however, because the known inaccuracy in the original whole structure analysis is applied on the smaller region. Improvements to this procedure are needed whether they be more highly developed elements or more reliable ways in which to subdivide the structure [6,7,10,12,17].

The method proposed by Chang combines the advantages of the finite element method in the analysis of individual transverse members and the advantage of grillage theory in the overall analysis. Chang's basic contribution is the application of coordinate transformation techniques of grillage analysis. This isolates the transverses of interest and treats them with a simple two dimensional finite element analysis. There are two basic grillage techniques available for use. The first, a grillage of infinite element technique, is usually associated with Wah. The second, grillage beam on elastic foundations, was revived by Vedler with the most notable recent developments attributable to Michelsen, Nielsen, and Chang [5,9,11,20]. The grillage techniques require that the analysis take into consideration the discrete nature of a system of stiffeners. It has been shown that as long as certain conditions are met the method produces reliable results in a very efficient manner.

At various points in Dr. Chang's analysis, beam solutions are required. Most of these calculations are performed using the line solution method. The line solution method had its origin over a hundred years ago in Germany. It was then developed in Russia and was reintroduced to the West when computers rendered its full potential useful. In general, the method provides solutions that describe static and dynamic response as well as stability criteria of structural members for various loading, geometry and boundary conditions. It is often called the method of initial parameters (Krilov, Clebsh, McCauley) and is closely related to the Laplace transform approach of Nielsen. It is a simple method which can handle both elementary and advanced structural response problems. The beauty of the approach lies in the simplicity which makes it understandable and useable to anyone with a moderate structural background [13].

Dr. Chang's technique contains no new theory, but rather is a careful application of existing theories. The general rationale is that each technique will be used in the area where it is most accurate and efficient. Unquestionably, a certain amount of skill must be applied in such a composite approach. The final result, however, is a design tool that is simple and relatively inexpensive to use. In applying these various techniques to the whole ship analysis certain justifications must be made. Many of these assumptions are obvious from the nature of the problem, but others may not be so apparent. The following paragraphs will clarify the reasoning behind those assumptions.

The shear forces in the deck and bottom plating are neglected in comparison to the reactions between the prime longitudinals and transverses at their intersections. This assumption is based on the fact that measured results indicate a difference of about an order of magnitude between the stresses at those locations. Roberts reported of tests on a 90,000 dwt tanker which gave the following picture of calculated and measured shear stresses [16].

We can see that the prime longitudinal and transverse intersections have shear forces that are at least on the average an order of magnitude greater than the average at the deck and bottom. Similar results were also found by Vasta [19].

- 23 -

Figure IV-1 Comparison between Measured and Calculated Shear Stresses in a 90,000 dwt Tanker [161

Excluding the deck and bottom shears simplifies the calculations and reduces computational time. Such an assumption is bound to introduce some error in the final results. It appears that this is a point for future improvement. It seems possible that a good approximation can be made for applying these shear forces in the deck and bottom. From Figure IV-1 it can be seen that the deck and bottom shears follow a simple linearly varying stepped function. Rather than neglecting these forces, they could be represented by a simple function and applied as loads in the transverse analysis.

The effect of the torsional rigidity of the longitudinals has been neglected because the typical member has an open cross section. It can be shown from the theory of elasticity that such cross sections have very little torsional stiffness. The longitudinals are not designed nor are they required to exhibit torsional stiffness in tankers. The torsional stiffness that is exhibited by the longitudinals is ignored because the plane finite elements used do not allow for in plane twisting at the nodal points. Since the weight of all arguments indicates that this type of analysis produces satisfactory results, the error introduced is negligible.

The assumption of similarity of transverses or, at the very least, proportional stiffness among the transverses is important because it reduces the computations to a single finite element analysis of a typical transverse. Then, using proportional stiffness, the effective spring constants of all transverses upon each longitudinal can be computed.

For very large ships the relative uniformity of cross section should allow one to conclude that at least the web frames are similar. Since the web frame is usually considered among the most critical of ship members, it is selected as the typical transverse.

The assumption maintains that oil tight and swash bulkheads have proportional stiffness to the web frames. Thus it is said that the influence coefficients of one transverse are directly proportional to those of any other transverse.

One can derive the relative stiffness factor by comparing deflections of two transverses when each is acted on by a unit load applied as shown at α .

The proportional stiffness factor is

$$P_{b} = \frac{d_{\alpha}^{b}}{d_{\alpha}^{w}}$$
 (IV-1)

where b, w represent the bulkhead the seb frame and d is deflection. The experiments of Roberts [16] show that both types of transverses can be treated as shear beams with little

- 25 -

Figure IV-2 Sample Transverse Showing Model for Obtaining Influence Coefficients [4]

bending deflection.

•

$$d_{\alpha}^{b} = \frac{x}{GA_{b}}$$
, $d_{\alpha}^{W} = \frac{x}{GA_{W}}$ (IV-2)

where G , A are the shear modulus and shear area. Simple substitution reduces (IV-1) to

$$P_{b} = \frac{A_{b}}{A_{w}}$$
(IV-3)

which is an approximate solution. The question of applying this same factor to other positions on the transverse, as for example at β , should be examined. It might be expected that this is a large source of error. That, however, is not the case. Dr. Chang shows that for a large tanker, an error in stiffness factor of 100% will produce an error of less than 1% in the results. He deliberately increased the stiffness factor by 100% for the oil tight bulkheads. The resultant changes in boundary forces were different by less than 0.5%. The results of this analysis are shown in table IV-1.

	Forces in kg's			
Longitudinal	P = 5.6	Р		
1	102,000			
2	70,180			

.

Longitudinal	P = 5.6	P = 11.2
1	102,000	102,100
2	70,180	70,210
3	70,200	70,140
4	105,300	105,100
5	140,200	140,100
6	105,200	105,300
7	70,070	70,150
8	70,200	70,180
9	70,060	70,090
10	105,100	105,100
12	-80,600	-80,510
13	-53,740	-53,800
14	-107,500	-107,300
15	-161,100	-160,000
16	-107,500	-107,500
17	-53,810	-53,700
18	-53,860	-53,850
19	-53,630	-53,750

P = Stiffness Factor

.

The Dominant Boundary Forces on Web Frame 127 Due to Two Different Stiffness Factors [P] for the Oil-Tight Bulkheads. [4] Table IV-1

The reason for this somewhat surprising result comes from simple beam theory. Consider a single longitudinal represented by a simply supported beam. Let that beam be acted upon by some loading function, q(x), and a linear spring with stiffness k attached at the mid-point of the beam.

Figure IV-3

The deflection, d_A , can be computed at some arbitrary point, A. If the spring stiffness, k, is allowed to vary, then d_A can be written as a function of k. The results for a simple example are plotted below.

Figure IV-4

This shows that for some value of k, say k*, the deflection, $d_A(k)$, will approach d*, the deflection for $k=\infty$. Thus for any k greater than k*, $d_A(k) \simeq d*$ (a constant).

It is obvious, then, that for a sufficiently rigid transverse, an error in computing the apparent spring factor of that member will induce a negligible error in the shear force between that transverse and the longitudinal. It is physically apparent that the prime transverses of a ship are very rigid. This has been verified by Chang's results.

Dr. Chang assumes that the load transfer pattern for the transverse analysis is that which is normally used in a grillage analysis. The uniform load is borne by the stiffeners which in turn transfer it as concentrated loads to the girders. In longitudinally framed ships, the longitudinals are the stiffeners in the three dimensional grillage. Then the uniform load on the plates is transfered to the longitudinals which in turn apply it as concentrated loads on the transverses. This assumption has long been recognized in theoretical naval architecture [15,20].

The technique, as presently coded for computer use, does not take into account the twisting of the entire hull due to unsymmetrical loads. This limits the use of the existing program to tankers and vessels of similar cross section which do not exhibit large openings in the deck. From basic elasticity we know that closed section thin wall members have great torsional rigidity in comparison to open section members of about the same configuration.

In tankers the hull forms a closed section and it is assumed that even unsymmetrical loads will produce very little twist. This assumption is not valid for container ships and ore carriers, indeed for any vessel with large deck or side openings that result in an open cross section in the hull. Of course, as long as loads are symmetrical, the existing code can easily handle the analysis for such vessels.
The theory as presented can be utilized in a partial analysis of the hull. Such an analysis offers several advantages: the greatest structural interest is centered on the mid-body; the smaller section of interest reduces input data and computation time; and, finally, the results should be accurate enough for design purposes.

The question of accuracy would seem to involve three significant parameters, which are load distribution, geometry of the structure, and the section being studied. The relationships of these parameters will be examined in order.

The load distribution is important because in a structure composed of a finite number of discrete elements certain conditions occur. The external loads are apportioned among the various elements in such a way that equilibrium and compatibility are satisfied throughout the structure. The stiffer elements or substructures will share more of the load than the weaker members. The actual sharing proportion within the structure or even the terminal forces on each element are difficult to resolve without a complete analysis of the whole structure. However, certain types of loadings may be determined with reasonable accuracy. Dr. Chang has considered two such special loads.

First, consider the ship-like composite box girder with equally spaced and identical transverses.

^{- 30 -}

If this structure is subjected to a uniform self-balanced external load, then each transverse will share the same amount of load independently of the longitudinal stiffness. This loading will reduce the problem to the point where the conventional twodimensional analysis will yield the same results as the three dimensional analysis for the same hull girder.

The second case is for a non-uniform, periodic load. Then the load-sharing will occur only within the several transverses.

Figure IV-6 Uniform Ship-Like Girder Subjected to Periodic Load

The parameter of structure geometry can be useful if certain conditions are met. The transverses of the box girder must be of proportional stiffness and must be arranged in the same regular pattern. The load distribution must also follow this pattern for a partial analysis to be successful.

Most ships are designed with the proportional stiffness and geometric conditions satisfied. One cannot restrict loads to this extent, so it must be anticipated that loads which depart from the regular pattern must induce error.

In order to assess the magnitude of this error, Dr. Chang returns to the longitudinal strength formulation (Chapter II). The deflection of the hull can be obtained from a grillage analysis. This deflection results in the rigid body motion of the transverses.

$$V_{oi} = A_{ij}^{Y} Y_{j}$$
 (IV-4)

where A_{ij}^{y} are the influence coefficients of the prime longitudinals treated as simple beams, and Y_{j} is the difference in shear force at the j-th transverse. Now, noting that the ship hull has the same length and same fixed conditions as a prime longitudinal, it seems reasonable that the A_{ij}^{y} can be approximated as a scalar proportion of the hull influence coefficients (a_{ij}) .

$$A_{ij}^{Y} = a_{ij}/F$$
 (IV-5)

Returning to equation III-26 in the transverse analysis, the last term will result in

$$\overline{a}_{ij}^{\beta Y} V_{oj} \simeq \frac{t^{\beta}Y}{F} i \qquad (IV-6)$$

where $\overline{a}_{ij} = a_{ij}^{-1}$. A similar result for the horizontal plane follows:

$$\overline{a}_{ij}^{\beta y} V_{oj} \simeq \frac{r^{\beta} X}{G} i$$
 (IV-7)

In examining the left hand side of these expressions, it can be seen that neither the length of the portion nor the fixed conditions of the longitudinals is present. It can be concluded that a partial analysis of the ship will result in the same first two terms in equations (III-26) and (III-27). The third term is almost the same as for the global analysis. The only significant difference occurs in the last term. If equation (III-24) is examined, the series represents the coupling effects of the transverse deformations. In a global analysis, all of the transverses are considered and all their coupling effects are accounted for. In a partial analysis, only those transverses within that section are considered. If the load distribution meets the aforementioned criteria, then the coupling will not include all transverses in any case. The case of identical transverses and uniform loads will result in all terms being negligible except the first two. It will reduce to the conventional two dimensional analysis.

This analysis and the computer code based on it have neglected the coupling effects of the sections of the structure not included in the partial analysis. The error induced by this omission will increase with the stiffness of the longitudinals. Dr. Chang believes that this error is probably less significant than conducting a full analysis which will introduce greater round-off error because of the increased degrees of freedom. In the total three dimensional finite element analysis, the error due to discretization by using a coarse mesh can also be significant.

RECOMMENDATIONS

The theory as presented thus far has been incorporated into a set of computer codes originally developed by Dr. Chang and more recently modified by the authors to permit usage on the Michigan Terminal System. There are limitations on the program as presented. The following should clarify these limitations and offer some possible future improvements.

The torsion and horizontal bending of the hull have been neglected. This limits the analysis to vessels with substantial horizontal and torsional stiffness for the hull. Torsional stiffness might be considered adequate for tankers and similar vessels of closed cross section and torsion might be ignored. Horizontal bending is another matter, since the response of the hull to horizontal loading seems to be approximately proportional to the vertical response for the same load. The proportional factor would be the ratio of the respective moments of inertia. In horizontal bending, only unsymmetric loads can introduce an effective horizontal load. Since stability questions arise from very unsymmetric loading, it appears that horizontal bending can be ignored in still water calculations.

The desirability of including both effects arises when considering dynamic loading. It is the dynamic problem that should generate the greatest interest. There have been several recent advances in ship motions and sea loads. The marriage of a good computer analysis in that field with the structural analysis is a natural one and should be ardently pursued. Dr. Chang has considered the horizontal bending and torsion problems and has proposed an extension to the existing program.

The basic assumption is that any deformation in the ship's structure is small enough to allow independent calculation of the stresses due to vertical bending, horizontal bending and

- 34 -

twisting. The method of calculating the horizontal bending is similar to the prior treatment of the vertical bending. The change is in the loads applied to obtain the results. In the vertical bending problem, only vertical loads were considered. Now the same calculation is repeated using the horizontal loading condition. The resulting stresses are then added to those obtained in the vertical bending calculations.

In order to analyze the twisting problem the hull is modeled as an open thin wall beam with braces as shown in Figure V-1.

Figure V-1 Ship-Like Model for Torsion Effects Showing the Longitudinal Stresses of Interest at Deck Openings

The assumption is made that the cross section between the braces is constant. The line solution method is then applied. The transfer matrix between the state variables between two stations without loads is

$$\begin{bmatrix} \phi \\ \psi \\ W \\ M_{B} \\ M_{T} \\ 1 \end{bmatrix}_{i+1}^{i} \begin{bmatrix} L_{11} & L_{12} & L_{13} & L_{14} & 0 \\ L_{21} & L_{22} & L_{23} & L_{24} & 0 \\ L_{31} & L_{32} & L_{33} & L_{34} & 0 \\ L_{31} & L_{42} & L_{43} & L_{44} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{i}^{i} \begin{bmatrix} \phi \\ \psi \\ M_{B} \\ M_{T} \\ 1 \end{bmatrix}_{i}^{i}$$

$$(V-1)$$

or $S_{i+1} = L_i S_i$ where

 $\phi = the twisting angle \\ \psi = the derivative of the twisting angle \\ M_B = the bending moment \\ M_T = the twisting moment \\ L_{ij} (i = 1,4; j = 1,4) are given in table IV-2. \\ \beta^2 = C_{\psi}/C_{\omega} \\ C_{\psi} = the torsional rigidity \\ C_{\omega} = the warping rigidity$

Table IV-2 - The Transfer Matrix
$$\left({}^{L}{}_{ij}
ight)$$

1	$-\frac{\sin\beta\left(x-a_{i}\right)}{\beta}$	$-\frac{(1-\cos\beta(x-a_i))}{C_{\omega}\beta^2}$	$\frac{-\beta (x-a_{i}) + \sin\beta (x-a_{i})}{C_{\omega}\beta^{3}}$
0	cosβ(x-a _i)	$\frac{\sin\beta\left(x-a_{i}\right)}{C_{\omega}\beta}$	$\frac{1-\cos\beta\left(x-a_{i}\right)}{C_{\omega}\beta^{2}}$
0	$-\beta C_{\omega} \sin\beta (x-a_{i})$	cosβ(x-a _i)	$\frac{\sin\beta\left(\mathbf{x}-\mathbf{a}_{\mathbf{i}}\right)}{\beta}$
0	0	0	1

- 36 -

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -M_{\rm T} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The global matrix L is formed in the standard way [13] as

$$S_{n+1} = L_n L_{n-1} \cdots L_0 S_0$$

or

$$S_{n+1} = LS_0$$

where $L = L_n L_{n-1} \cdots L_0$ (V-2)

If the effects of the braces are treated as redundant and if z_j is the total shear force across the middle section of the i-th brace, as shown in Figure V-1, then z_j can be computed as follows:

$$z_{j} = \frac{-d_{i}}{\alpha_{ij} + \delta_{ij}\beta_{j}}$$
(V-3)

where $d_i = \text{the deformation at the i-th brace due to external loads}$ $\delta_{ij} = \text{Dirac delta function} = 1$ if i = j or 0 if $i \neq j$ $\alpha_{ij} = \text{deformation at the i-th cutout due to unit load at}$ $\beta_j = \text{deformation at the j-th cutout due to deformation}$ $\beta_j = \text{deformation at the j-th brace.}$

 α_{ij} and d_i can be computed using the line solution method by treating the ship hull as a thin wall beam without using braces. B_j can be found using shear beam theory. Thus equation V-3 can be solved directly for Z_i . Now applying the line solution method with Z_j known, the real deformations and stresses on the hull can be determined. Again, due to the basic assumption of superposition, these stresses can be added to those for vertical and horizontal bending. Since it is a known fact that stress concentrations occur at the hatch corners, they should probably be analyzed by the finite element method using the known stress distribution for boundary conditions.

The effect of including the stresses due to horizontal bending and twisting will vary depending on the problem conditions. The principal factors would appear to be the magnitude of unsymmetrical loads, the relative dimensions of the openings to the hull dimensions, and the design of the cross braces.

In any program which is to be used as a design tool, data preparation is an important consideration. The user must expend a certain amount of effort due to the complexity of the problem, but this should be reduced wherever possible to minimize error. The input data preparation required for the use of the existing program is somewhat tedious. Automatic data generation routines could overcome this inconvenience. This is essentially a programming problem. Any changes made here should be considered as part of interfacing this program with a sea loads program. The other inputs to the program are very straight forward and could be made directly from a blueprint. The program graphically depicts much of the structural input so that errors are pictorially obvious. The authors included one small change in the Michigan version which allows the program to be stopped after all input and after the eigenvalues have been determined. This enables the batch user to stop the program and check the data At the same time he can check the eigenvalues and deterinput. mine how many should be used to attain the desired level of accuracy. This can be done at very low cost. When all the input errors are eliminated the code is changed and the program may be run to completion.

The efficiency of a program is determined by the type of machine the investigator is utilizing. The existing program of Dr. Chang is most efficient on computers with limited storage capacity. The running time on the Univac 1108 was about six minutes for the example used. The finite element routine used was developed by Paulling for an IBM 7094. The limited storage capacity of smaller computers necessitates temporary storage of intermediate data on some device in order to insure adequate core storage for computations. The original version is thus entirely satisfactory for limited storage computers.

The features of data removal and replacement within the program are time consuming and unnecessary for large machines such as the IBM 360/67. The authors modified the finite element routine extensively as far as data manipulation is concerned and were successful in cutting CPU time for this section in half for a small test case. This test run was a simple cantilever beam problem which was modelled using 33 nodes or 66 degrees of freedom and 30 quadrilateral elements. The analysis time after modifications was 43 seconds CPU time. In our experience this does not compare favorably with existing finite element method routines developed specifically for the Michigan Terminal System. The authors ran a similar plane problem having 72 nodes or 144 degrees of freedom with 105 triangular elements in 7.1 seconds of CPU time using such a program. It is our strong belief that adapting the analysis around a Michigan Department of Naval Architecture finite element routine would greatly reduce analysis time over all. Since the evidence indicates that the transverse analysis can be handled as a two dimensional problem there is no need to incorporate three dimensional elements. Perhaps the best combination would be two dimensional isoparametric elements and pin ended bars to represent plating and flanges. In order to appreciate the extent to which the finite element analysis dominates the computation time, consider that our experience shows it to be 90% of the total analysis time. Any improvement in efficiency of this section will substantially affect the total analysis.

- 39 -

Time has prevented the authors from initiating more changes themselves. A small test data set and results which can be run at minimal cost has been developed to encourage such a change, however.

The problems of unsymmetric loading in regard to horizontal bending and torsion have been discussed. In the case of vertical bending, the present program can handle unsymmetric loading as the sum of a symmetric and an antisymmetric system. Automatic data generation routines previously recommended should include computer breakdown of the unsymmetric loads into the two systems.

It has been assumed that the shear forces on the deck and bottom at each transverse are negligible in comparison with those in the longitudinal bulkhead and side shell. For programming purposes the shears on the prime longitudinals have been evenly distributed. This assumption is based on the findings of Roberts [16]. Examining Roberts' test example and the full scale tests reported by Vasta [19], both of these assumptions appear to be somewhat questionable. In fact these are the only assumptions of Dr. Chang which the authors believe are not well supported by current understanding of the problem. Dr. Chang himself admitted in commenting on results of his test analysis of a certain large tanker that the second assumption probably produced some error. On examining the full scale results of both Vasta and Roberts the authors believe that both shear conditions can be handled by a simple linear loading function. This function could be determined empirically from the existing full scale Then the reactions between the transverses and the test results. prime longitudinals could be distributed in a more realistic manner. There is essentially nothing wrong with the present approach except that some other linear distributions may result in better answers. This would be an easy step to accomplish and would not alter the analysis time appreciably.

- 40 -

The reduction of most problems to a partial analysis as presented by Dr. Chang and outlined in Chapter IV, seems reasonable for the present time. The authors believe that once again the potential user must be cautioned to weigh the restrictions this method implies. The error caused by this type of analysis will be negligible only if the coupling effects caused by the excluded structure are negligible. The parameters which affect They are load distributhis error have already been discussed. tion, structure geometry, and the section to be analysed. The geometric parameter should in general be satisfied for large tankers and other bulk carriers over a considerable portion of the mid-body. If one considers the entire ship, the bow and stern coupling effects would appear to be minimal. This would not be the case if analysis were limited to a small section of the parallel mid-body. In this example, the potential error will be introduced by the types of loadings in the excluded This difficulty would appear to increase when consisection. dering a dynamic analysis. The sea loads even at the bow and stern sections might be significant under certain conditions. Some means must be provided for including the coupling effects of the excluded sections in such a problem.

As a final recommendation for future study, these coupling effects must be examined and a means provided for entering them into the analysis. Dr. Chang offers some very convincing arguments as to why the partial analysis is preferable to the full ship analysis. There must exist a practical point at which his arguments are no longer valid. At this point the round-off and discretization errors may indeed be less than the partial error due to excluded coupling effects. Economic considerations weigh heavily for this partial analysis, but the user must have an idea of the error magnitude acquired by such an economic measure.

The authors favor an approach to the problem that will retain the basic economy of the partial analysis, without excluding any significant coupling effects. Perhaps a quasi-empirical approach for determining these effects, and then applying them as end conditions for the partial analysis would offer the greatest potential. Such an approach would admittedly contain error, but, like the deck shear function previously suggested, it would hopefully reduce the error incured by completely ignoring the effect. It seems reasonable to anticipate that not all of the coupling effects will prove significant. However, only further study can reveal the important ones.

The scope of this project as stated in our prospectus was The first objective was to produce a useable Michigan two fold. Terminal System version of the subject set of computer programs, and a user's guide was to be written for future utilization of the program. This objective has been accomplished. A direct comparison was made with the results of a full scale problem used by Dr. Chang to support his program. This comparison showed that the Michigan Terminal System version performs the same analysis as the original. The second objective was to make a search of related literature in order to obtain an understanding of the assumptions made and of the restrictions they impose on future The second objective has been accomplished uses of the program. and the remainder of this section is devoted to the authors findings in this area.

In conducting the literature search, it became apparent that most of the meaningful investigations of ships structures have occured within the last decade. In discussing the work of Vasta in 1958, St. Denis commented about the progress of structural analysis. He notes, "... one may well ask what new ideas have been introduced in ship structures during the past 25 years. The list is hardly impressive" [19]. That was a rather sweeping indictment of structures research prior to that time, but since then several important advances have been made. The most significant advance was the introduction of high speed computers. This encouraged the study of complex problems which had previously been avoided. The computer age soon produced results through three very important techniques which Dr. Chang has adopted for his work. These are the finite element, grillage, and line solution methods. During that decade the basic ship structure problem was studied in detail. Most of the basic assumptions used in this paper became popular and gained support within that period. These assumptions are discussed in Chapter IV. Some of

them restrict the use of the program to certain classes of ships and loading conditions.

There is one assumption which the authors believed was not fully supported. This assumption neglected the shear forces in the deck and bottom when compared with those in the prime longitudinals. This conclusion is not well supported, but is an assumption of convenience rather than necessity. The authors have suggested a program modification to handle this problem.

On the basis of their study, the authors believe that the concept is sound and workable. The restrictions introduced by certain of the assumptions must be observed. For most of these restrictions an alternate approach has been discussed in Chapter V, but additional computer coding will be needed to implement these extensions.

The potential of this technique is fantastic because the cost of an analysis can be made low enough to permit its use as a design tool. As it is presently coded, the analysis of a loading condition on a typical large tanker required 6 minutes of CPU time on a Univac 1108 and 23 minutes CPU time on an IBM 360/67, a medium speed computer. The principal cost area in the IBM 360/67 run is the finite element analysis of the transverse. This portion requires about 90% of the total time.

In summary, the concepts advanced by Dr. Chang are essentially sound and supported by current evidence. Because of its low cost his program has great potential as a design aid in the structural analysis of several types of ships. Certain changes in programming could be made to adapt the program to various computers. This would increase the efficiency for a given system. The data generation routines could be improved to reduce the preparation time; at present data preparation while not difficult is time consumming. The automatic generation of data will increase the value of the program as a design tool with a small cost penalty.

- 44 -

In order to increase confidence in the method, a limited number of additional studies of problems with known results should be made. This would serve to confirm the basic assumptions which investigators other than Dr. Chang have made concerning the analysis of this type of ship structure. Most of these assumptions were advanced during the past decade. As a result, those years were most fertile for ship structural analysis. If the next decade is to be as successful, the practicing naval architect must be willing to accept and use these new ideas.

BIBLIOGRAPHY

- 1. Abrahamsen, E., Nordenstrom, and Roren, E., "Design and Reliability of Ship Structures," SNAME Spring Meeting, April, 1970.
- Abrahamsen, E., "Recent Developments in the Practical Philosophy of Ship Structural Design," SNAME Spring Meeting, July, 1967.
- 3. Abrahamsen, E., "Structural Analysis of Large Ships," SNAME Annual Meeting, November, 1969.
- 4. Chang, Pin-Yu, "Report on Analysis of Large Tankers Using Grillage and Finite Element Techniques." (unpublished)
- Chang, Pin-Yu, "Elastic Analysis of Grillages Including Torsional Effect and Stability," The University of Michigan, 1967.
- 6. Kamel, H. A., et al., "An Automated Approach to Ship Structure Analysis," SNAME Transactions, Vol. 77, 1969.
- 7. Kamel, H. A., and Liu, D., "Application of the Finite Element Method to Ship Structures," soon to be published in Journal of Computers and <u>Structures</u>.
- 8. Hagiwara, Koichi, et al., "Structural Strength of Large Bulk Carriers," <u>Mitsubishi</u> <u>Heavy</u> <u>Industries</u> <u>Technical</u> <u>Review</u>, January, 1970.
- 9. Huang, Hou-Wen, "Transverse Strength of a Ship Hull Under Lateral and In-Plane Loads," Berkeley, California, 1967.
- Moe, J., "Finite Element Techniques in Ship Structures Design," Trondheim, Norway, 1969.
- 11. Nielsen, R. <u>Analysis of Plane and Space Grillages Under</u> <u>Arbitrary Loading by Use of the Laplace</u> <u>Transformation</u> <u>Technique</u>. Copenhagen, 1965.
- Paulling, J. R., "The Analysis of Complex Ship Structures by the Finite Element Technique," <u>Journal of Ship Research</u>, Vol. 8, No. 3, December, 1964.
- Pilkey, W. D., <u>Manual for the Response of Structural Members</u>.
 U. S. Department of Commerce, 1969.

- 14. Report of Committee Four, "Stress Distribution in Hull Structure," ISSC, Tokyo, 1970.
- 15. Report of Committee Five, "Stiffened Panels in 3-Dimensional Structures," ISSC, Tokyo, 1970.
- 16. Roberts, W. J., "Strength of Large Tankers," No. 55, Lloyd's Register of Shipping, London, January, 1970.
- 17. Roren, Elvald M. Q., "Transverse Strength of Tankers Finite Element Applications," <u>European</u> <u>Shipbuilding</u>, Vol. 17, Nos. 3, 4, 1968.
- Schade, H. G., "World-wide Survey of Ship Structure Research," Berkeley, California, 1967.
- 19. Vasta, John, "Lessons Learned from Full-Scale Ship Structural Tests," SNAME Transactions, Vol. 66, 1958.
- 20. Vedeler, G., "Grillage Beams in Ships and Similar Structures," Oslo, 1945.
- 21. Wah, Thein, <u>A Guide for the Analysis of Ship Structures</u>. U. S. Department of Commerce, 1960.
- 22. Zienkiewicz, O. C., The Finite Element Method in Structural and Continuum Mechanics. London, 1967.

The following sketch of a transverse web frame contains full scale results as well as results from the computer programs contained in this paper. Strain gage data from both sides of this plate are plotted. While this is not offered as absolute proof of the method, it does show that good correlation can be made using this method.

Figure A-1 Normal Stresses on Particular Web Frame of a Large Tanker [4]

APPENDIX B: COMPUTER PROGRAMS

`

Two computer programs are included here: one for longitudinal strength, one for transverse strength. Included with these programs are lists of input and output data for a test problem to be used with both programs.

in a start start start at the C. C C LONGITUDINAL STRENGTH ANALYSIS С C С С WRITTEN BY PIN YU CHANG С C ADAPTED FOR MTS BY С E. A. CHAZAL Ċ J. M. PAYNE С С THIS PROGRAM ANALIZES THE SHIP STRUCTURE LONGITUDINALLY MODELED AS С A GRILLAGE. FOR'MORE DETAILED INFORMATION, THE USER IS REFERED TO C THE USER'S GUIDE FOR THIS PROGRAM AND THE PROFFESSIONAL THESIS BY Ċ BY CHAZAL AND PAYNE, APRIL 1971. C С CALL LONGAL S10P END SUBROUTINE LONGAL С PRIMARY LONGITUDINAL STRENGTH ROUTINE С С DIMENSION A(3,2), YI(3,2), Q(50,2), AF(50,50), AE(50,50) DIMENSION IND(50,3), JD(50), T(50), R(50) DIMENSION YB(50), YC(50), D(50)DIMENSION DY(50,2),LO(50)DIMENSION DAP (50,50) DOUBLE PRECISION DAP READ(5,150) NPROB,MT PROBLEM NUMBER , NUMBER OF TRANSVERSES С READ(5,152) (JD(I), I=1, MT)READ (5,151)AI, AJ, XI, XJ, E, GNU, ZLEM READ (5.151) Y1, Y2, SM1, SM2, SN1, SN2 C AI.AJ....WEB AREA OF THE SHELLS AND THE LUNGITUDINAL BULKHEADS C XI,XU.....MOMENT OF INERTIA OF THE SHELLS AND BULKHEADS C ZLEN....LENGTH OF THE HOLDS Y1, Y2..... WIDTH OF THE WING AND CENTRAL TANKS С SM1, SN1....SECTION MODULI OF SHELL AT DECK AND BUTTINA С SM2, SNI....SECTION MODULI OF BULKHEAD AT DECK AND BOTTOM С READ (5, 151)(A(I, 1), I=1, 3)READ (5, 151)(A(I, 2), I=1, 3)C A(I.J)....SHEAR AREA OF THE WEB FRAMES, SWASH BULKHEADS AND OIL-С TIGHT BULKHEADS READ (5,151)(YI(I,1),I=1,3) READ (5, 151)(YI(I, 2), I=1, 3)C YI(I,J)...MOMENT OF INERTIA OF THE WEB FRAMES, SMASH BULKHEADS, AND DIL-TIGHT BULKHEADS С MY = MT + 1DO 77 I=1, MYREAD (5,154)(0(I,J),J=1,2),L0(I) 77 UNIFORM LOADS OF THE TRANSVERSES С WRITE(6,100) NPROB WRITE (6,101) WRITE (6,99) ZLEN, E, GNU, Y1, Y2

1

and the second second

45

```
er and the State of the State o
         WRITE (6,102)
                             WRITE (6,99) AI, AJ, XI, XJ
                     WRITE(6,106)
                     WRITE(6,99) SM1, SN1, SM2, SN2
                     WRITE(6,227)
                     WRITE(6,99) ((A(I,J), I=1,3), J=1,2)
                     WRITE (6,104)
                                                               ((YI(I,J),I=1,3),J=1,2)
                     WRITE (6,105)
                           DO 1 I=1, MY
                        WRITE (6,99) (O(I,J), J=1,2)
               1
                     WRITE(6, 155) (JD(I), I=1, MT)
                     SP= ZLEN/MY
                           DO 3 I=1.MT
                     X = I * SP
                           DO 2 J=1,2
                        DY(I,J)=0.
                           DO 2 K=1,MY
                           M = K - 1
                              IF (LO(K).EO.O) GO TO 2
                     X1 = M \times SP
                     X2 = K * SP
                          C = X_2 - X_1
                           XD=ZLEN-X1/2.-X2/2.
                              XW = \Omega(K, J)
                              XW = XW/E
                           R1 = XW \times XD / ZLEN
                        ADD=8 *R1*(X*X-ZLEN**2)*X
                        ADD=ADD+XW*X*(8.*XD**3-2.*X2*C*C+C**3)/ZLEN
                           IF'(X.GT.X2) GO TO 222
                        ADD = ADD + XW \times X \times 2 \cdot X C \times C
                           IF (X.LT.X1) GO TO 223
                        ADD=ADD-2 \cdot XW \cdot (X-X1) \cdot 4/C
                           GO 10 223
         222 ADD=ADD-8.*XW*(X-X1/2.-X2/2.)**3+XW*(2.*X2*C*C-C**3)
         223
                          DY(I,J)=DY(I,J)-ADD/48.
                       CONTINUE
               2
                           DO 39 J=1.MT
                        IF (I.GT.J) GO TO 224
                     B= ZLEN-J*SP
                        AF(I,J)=X*B/E*(ZLEN**2-B*B-X*X)/ZLEN/6.
                           GO 10 39
         224
                        AF(I,J) = AF(J,I)
            39
                        CONTINUE
               3 CONTINUE
            MINSUB IS DOUBLE PRECISION MATRIX INVERSION
   С
                     CALL MINSUB (AF, DAP, MT, DE)
                                                                                                                                                          r
                     IF (DE.E0.0.) GO TO 225
                          DO 4 I = 1 \cdot MT
                             DO 4 J=1,2
                           0(I,J)=0.
                           DO 4 K = 1, MT
                           O(I,J) = O(I,J) + AF(I,K) \times DY(K,J)
               4
                           WRIJE (6,226)
                     DD 900 I=1,MT
                        WRITE (6,99) (Q(I,L),L=1,2)
      900
                     WRITE (6,156)
                             DO 10 I=1,MT
                           X=FLOAT(I)*SP
                           DO 10 J=1.MT
                           IF (I.GT.J) GO TO 9
```

```
B = ZLEN - J * SP
       AC=X*B/E*(ZLEN**2-B*B-X*X)/ZLEN/6.
       AD=X*B/ZLEN/E*2.*(1.+GNU)
       AF(I,J) = AC/XI + AD/AI
       AE(I,J) = AC/XJ + AD/AJ
         GO TO 10
    9
        AF(I,J) = AF(J,I)
         AE(I,J) = AE(J,I)
   10
        CONTINUE
         DO 20 I=1, MT
         IJ=JD(I)
         A1=A(IJ,1)
         A2=A(IJ,2)
         B1=YI(IJ,1)
         B2=YI(IJ,2)
         Q1 = Q(I, 1) / Y1
         02=0(1,2)/Y2
         CALL DECO(B1, B2, A1, A2, Y1, Y2, 01, 02, XK, XD, 1)
         D(I) = XD
           WRITE (6,99) D(I), XK
          DO 18 J=1.MT
          AE(I,J) = AE(I,J) + AF(I,J)
         IF (I.NE.J) GO TO 18
         AE(I,J) = AE(I,J) + XK
   18
         CONTINUE
        DO 19 J=1,MT
        D(I) = D(I) + AF(I, J) * (O(J, 1) + O(J, 2))
   19
   20
        CONTINUE
       WRITE (6,157)
              WRITE (6,99) (D(K),K=1,MT)
   MINSUB IS DOUBLE PRECISION MATRIX INVERSION
С
       CALL MINSUB (AE, DAP, MT, DE)
       IF (DE.EQ.0.) GO TO 225
       GO TO 30
  225
         WRITE (6,21)
         S TOP
              WRITE (6,33) (K,K=1,2)
   30
         DO 40 I=1,MT
         R(I) = 0.
          DD 35 J=1,MT
   35
         R(I) = R(I) + AE(I,J) * D(J)
         T(I) = O(I, 1) + O(I, 2) - R(I)
       WRITE(7,103) T(I),R(I)
   40
       WRITE (6, 46) I, T(I), R(I)
        FORMAT (I15,2E16.5)
   46
         WRITE (6,62) (K,K=1,2)
       WRITE (6,65)
          XM=0.
          XN=0.
         DO 50 I=1,MT
       XN = XN + R(I) * (1 - FLOAT(I) / FLOAT(MY))
       XM = XM + T(I) * (1 - FLOAT(I) / FLOAT(MY))
   50 CONTINUE
         YB(1) = XM * SP
         YC(1) = XN * SP
         DO 60 I=2,MT
         J = I - 1
          XM = XM - T(J)
         XN = XN - R(J)
         YB(I) = YB(J) + XM \times SP
```

SB=YB(I)/SM1SD=YB(I)/SN1 $YC(I) = YC(J) + XN \times SP$ SC=YC(I)/SM2SE=YC(I)/SN2WRITE (6,64) I, YB(I), SB, SD, YC(I), SC, SE CONTINUE 60 **RETURN** FORMAI (//25H MATRIX SINGULAR 11) 21 2110//) FORMAT (//32H REACTIONS AT THE INTERSECTIONS 33 FORMAT(//28H BENDING MOMENT AND STRESSES I10, I20, //)62 FORMAT(14,6E15.4) 64 DECK STRESS BOTTOM STRESS M BULKHEAD FORMAT(12X. M SHELL 65 DECK STRESS BOTTOM STRESS ,//) 1 99 FORMAT((7E15.4))FORMAT(//, 'INPUTS FOR THE LONGITUDINAL STRENGTH: PROBLEM NUMBER', 100 +15.//)FORMAT (//40H LENGTH E GNU AND THE WIDTH OF THE TANKS (//) 101 FORMAT(//40H AREAS AND I OF THE LONG BHDS & SHELLS //) 102 EORMAT(2E15.5) 103 FORMAT(//37H MOMENT OF INERTIA OF THE TRANSVERSES //6E15.4) 104 11) FORMAT (//34H UNIFORM LOADS OF THE HOLDS 105 FORMAT(//57H SECTION MODULI OF SHELL AND BULKHEAD AT DECK & POITTON 106 11) + FORMAT(213) 150 151 FORMAT(7E10.5)152 FORMAT(5011) FORMAT(2F10.5,I3) 154 FORMAT(//, JD(I) =• • 50I2) 155 FORMAT (// 75H DEFLECTIONS AND INFLUENCE COEFFICIENTS OF SIMPLY SU 156 1PPORTED LONG. BULKHEAD //) FORMAT (// 31H DEFLECTIONS OF LONG. BULKHEAD //) 157 FORMAT(//35H UNIFORM LOADS OF THE TRANSVERSES //) 226 FORMAT(//25H AREAS OF THE TRANSVERSES //) 227 END . SUBROUTINE DECO(XI, YI, A1, A2, A, C, O1, O2, XK, XD, M) DETIRMINES DEFLECTIONS OF SIMPLY SUPPORTED LONGITUDIMALS С THIS IS FOR THE LONGITUDINAL STRESSES OF SHIPS. С DIMENSION T1(5,5),T2(5,5),T(5,5) CALL TM(A1,XI,A,01,T1,0.,M) CALL TM(A2,YI,C,O2,T2,O,M)CALL MULT (T,T2,T1,5) N=1OO = T(2,2) * T(4,4) - T(2,4) * T(4,2)1 U = T(2,4) * T(4,5) / QQ - T(2,5) * T(4,4) / QQV=T(2,5)*T(4,2)/QQ-T(2,2)*T(4,5)/QQ $X = T1(1,2) \times U + T1(1,4) \times V + T1(1,5)$ GO TO (2.3).N 2 XD = XDETIRMINES INFLUENCE COEF. XK С 11(1,5)=0.6 T1(2,5)=0.T1(3,5)=0. T1(4,5) = -1. $T_2(1,5)=0$. T2(2,5)=0.

```
T2(3,5)=0.

T2(4,5)=0.

CALL MULT (T,T2,T1,5)

N=N+1

GO TO 1

XK=X

RETURN

END
```

- c¥ -

3

```
SUBROUTINE MINSUB (AA,A,N,DD)
   MINSUB IS DOUBLE PRECISION MATRIX INVERSION
С
      DIMENSION AA(50,50), LL(50), M(50), A(N, N)
      DOUBLE PRECISION A.D
       THIS LOOP SCALES THE MATRIX TO APPROXIMATELY ONE (1)
С
      L=0
  10
      L=L+1
      AHQW = AA(L,L)
       SCALE=ABS(AHOW)
      IF(SCALE.EQ.O.) GO TO 10
      DO 5 I=1.N
      DO 5 J=1,N
 5
        A(I,J) = AA(I,J) / SCALE
      CALL MINV (A, N, D, LL, M)
       THIS LOOP REMOVES SCALING FACTOR
С
      DO 6 I=1.N
      DO 6 J=1.N
       AA(I,J) = A(I,J)/SCALE
   6
      DD=D
      WRITE (6,30) DD.SCALE
      FORMAT(//, MATRIX INVERSION - DETERMINANT IS', E15.5, /, 'SCALING FAC
  30
     1TOR IS', E15.5,//)
      RETURN
```

5

END

SUBROUTINE MINV(A, N, D, L, M) С С С SUBROUTINE MINV С С C PURPOSE INVERT A MATRIX С C USAGE С CALL MINV(A, N, D, L, M) C С DESCRIPTION OF PARAMETERS С A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY С RESULTANT INVERSE. С С N - ORDER OF MATRIX A D - RESULTANT DETERMINANT С L - WORK VECTOR OF LENGTH N С M - WORK VECTOR OF LENGTH N С С

Ć REMARKS MATRIX A MUST BE A GENERAL MATRIX С C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED С С NONE С C ME THOD THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT С IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT С С THE MATRIX IS SINGULAR. Ĉ С С DIMENSION $A(1) \cdot L(1) \cdot M(1)$ С С С С IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION C С STATEMENT WHICH FOLLOWS. С DOUBLE PRECISION A, D, BIGA, HOLD С С THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISIUN STATEMENTS С APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS С ROUTINE. С THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO С CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT С С 10 MUST BE CHANGED TO DABS. С С С С SEARCH FOR LARGEST ELEMENT С D = 1.0NK = -NDD 80 K=1.N NK = NK + NL(K) = KM(K) = KKK = NK + KBIGA=A(KK)DO 20 J=K,N $IZ = N \times (J-1)$ DD 20 I=K,NIJ=IZ+I10 IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20 15 BIGA=A(IJ) L(K) = IM(K) = J20 CONTINUE С С INTERCHANGE ROWS С J=L(K)IF(J-K) 35,35,25 25 KI=K-N DO 30 I=1.N KI = KI + N

```
HOLD = -A(KI)
       JI = KI - K + J
       A(KI) = A(JI)
   30 A(JI) = HOLD
С
C
        INTERCHANGE COLUMNS
С
   35 I = M(K)
       IF(I-K) 45,45,38
   38 JP = N*(I-1)
       DO 40 J=1.N
       JK = NK + J
       JI = JP + J
       HOLD = -A(JK)
       A(JK) = A(JI)
   40 A(JI) = HOLD
С
С
          DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
С
          CONTAINED IN BIGA)
C
   45 IF(BIGA) 48,46,48
   46 D=0.0
       RETURN
   48 DO 55 I=1,N
       IF(I-K) 50,55,50
   50 IK = NK + I
       A(IK) = A(IK) / (-BIGA)
   55 CONTINUE
С
С
          REDUCE MATRIX
С
       DO 65 I=1.N
       IK = NK + I
       HOLD=A(IK)
       I J = I - N
       DD 65 J=1,N
       IJ=IJ+N
      IF(I-K) 60,65,60
   60 IF(J-K) 62,65,62
,
   62 \text{ KJ} = IJ - I + K
       \Lambda(IJ) = HOLD * \Lambda(KJ) + \Lambda(IJ)
   65 CONTINUE
С
С
          DIVIDE ROW BY PIVOT
С
       KJ = K - M
       DO 75 J=1.N
       KJ = KJ + N
       IF(J-K) 70,75,70
   70 A(KJ)=A(KJ)/BIGA
   75 CONTINUE
С
          PRODUCT OF PIVOTS
.С
С
       D=D*BIGA
С
          REPLACE PIVOT BY RECIPROCAL
С
С
       A(KK) = 1.0/BIGA
   80 CONTINUE
```

C C C

С

المسار المراجع ويتعار

64

FINAL ROW AND COLUMN INTERCHANGE

8

	· 김 씨는 사람이 가 제품을 가지 않는 것이 있는 것이 있다.
	K = N
100	K=(K-1)
	IF(K) 150,150,105
105	$\mathbf{I} = \mathbf{I}_{-} (\mathbf{K})$
	IF(I-K) 120,120,108
108	JO = N*(K-1)
	JR = N * (I - 1)
	DO 110 J=1,N
	JK=J0+J
· .	HOLD=A(JK)
	JI=JR+J
	A(JK) = -A(JI)
110	A(JI) = HOLD
120	J = M(K)
	IF(J-K) 100,100,125
125	K I = K – N
	DO 130 I=1,N
	KI = KI + N
	HOLD=A(KI)
	J I =K I -K + J
	A(KI) = -A(JI)
130	A(JI) =HOLD
	GD TO 100
150	RETURN
	END

SUBROUTINE MULT(D,B,C,M) DIMENSION B(M,M),C(M,M),D(M,M) DO 1 I=1,M DO 1 J=1,M D(I,J)=0. DO 11 K=1,M 11 D(I,J)=D(I,J)+B(I,K)*C(K,J) 1 CONTINUE RETURN END

SUBROUTINE TM(A1.XI,A,0,T,R,M) SEE (E0 C-1) APP. C. CHANG LINE SOLUTION FOR BEAM DIMENSION T(5,5) DO 1 I=1,5 1 T(I,J)=0. 1(1,1)=1. EI=30000000.*XI T(1,2)=-A T(1,3)=-A*A/2./EI T(1,5)=0*A**4/24./EI E=30000000. G=E/2./1.3

```
AG=A1*G
T(4,4)=I.
T(4,5)=I.
T(2,2)=I.
T(2,2)=I.
T(2,3)=A/EI
T(2,5)==-0*A*A/2./EI
T(3,5)==-0*A*A/2.
T(3,3)=I.
T(3,4)=A
IF (M.EO.O) GD TD 2
T(1,4)=T(1,4)+A/AG
T(1,5)=T(1,5)=-0*A*A/2./AG
CONTINUE
RETURN
END
```

.

C LONGITUOINAL PROGRAM. CHAZAL-PAYNE APRIL 1971 C LONGITUOINAL PROGRAM. CHAZAL-PAYNE APRIL 1971

```
Ţ
                                                      ·000001
                                                                    00
                                                9.
                                                          .9*
                                          E+10
                                                    01+3
                                                               01+3 G*
                                          E+10
                                                9*
                                                    • e E+J0
                                                               01+3 S*
                                          +0+3 6E*
                                                    •55 E+0+
                                                               * 706E+03
                                          +0+3 8E*
                                                    +0+3 L1 *
                                                               £0+399*
          •17 E+08 •17 E+08
                               *I2 E+08
                                          80+3 SI.
                                                    •J E+0+
                                                              + 0+3 l*
0°SOE+JJ *SO2E+OJ 0*30E+O0 J*00E+0¢
                                          0*50E+11
                                                    70+305°0
                                                               0+205+0¢
                                                                     EEE
                                                                   53
```

τ

*00000I

00

See gift

\$COPY *SOURCE* -F \$RUN -LOAD#+-F MAP *** *** *** *** *** *** *** *** *** ENTRY = 500608 SIZE = 0.10E86NAME VALUE T RF NAME VALUE T RF NAME VALUE T RF GETSPACE 2140AE * FREESPAC 2143AE * ERROR# 21C10C * MTS# 210128 * CANREPLY 21E9D6 * GDINFO 21EA2A * POINT 21F028 *SCARDS# 21F7A8 * SPRINT# 21F7B8 * SPUNCH# 21F7C8 * SERCOM# 21F7D8 * READ# 21F848 *WRITE# 21F85A * LCSYMBOL 2204B0 * MINSUB 5000D8 5000D8 500608 500608 MINV 500710 LONGAL MAIN 503000 503000 TM . 50F000 50F000 DECO 50F398 50F398 MULT 50F890 50F890 REWIND# 50FB80 *50FB80 IBCOM# 510000 *510000 ADCON# 512000 *512000 FCVAO 5121FA * FCVEO 512A9A * FCVZO 512154 * FCVLO 512282 * 5125 88 * FCVIO FCVCO 512CAC * FIOCS # 5130A0 *5130A0 *** *** *** *** *** EXECUTION BEGINS INPUTS FOR THE LONGITUDINAL STRENGTH: PROBLEM NUMBER 2 LENGTH E GNU AND THE WIDTH OF THE TANKS 0.1000E 05 0.2050E 07 0.3000E 00 0.1000E 00 0.4001E 07 AREAS AND I OF THE LONG BHDS & SHELLS 0.5000E 04 0.4000E 04 0.2000E 11 0.2000E 11 SECTION MODULI OF SHELL AND BULKHEAD AT DECK & BOTTOM 0.1500E 08 0.1700E 08 0.1500E 08 0.1700E 08 AREAS OF THE TRANSVERSES 0.6600E 03 0.1700E 04 0.3800E 04 0.7060E 03 0.2200E 04 MOMENT OF INERTIA OF THE TRANSVERSES 0.5000E 10 0.6000E 10 0.6000E 10 0.5000E 10 0.6000E 10

	M SHELL	DECK STRESS	BOTTOM STRESS	M BULKHEAD	DECK STRESS
2	-0.1611E 09	-0.1074E 02	-0.9479E 01	0.5629E 09	0.3753E 02
3	0.3946E 08	0.2630E 01	0.2321E 01	0.2195E 09	0.1463E 02

•

.

STOP 0

EXECUTION TERMINATED

.

,

UNIFORM LOADS OF THE HOLDS 0.0 0.0 0.0 0.1000E 06 0.0 0.1000 ± 06 0.0 0.0 JD(I) = 3 3 3MATRIX INVERSION - DETERMINANT IS 0.38410E-01 SCALING FACTOR IS 0.57165E 04 UNIFORM LOADS OF THE TRANSVERSES 0.0 0.4643E 05 0.0 0.1143E 06 0.4643E 05 0.0 DEFLECTIONS AND INFLUENCE COEFFICIENTS OF SIMPLY SUPPORTED LONG. BULKHEAD 0.1376E 00 0.2281E-11 0.2281E-11 0.3388E 00 0.1376E 00 0.2281E-11 DEFLECTIONS OF LONG. BULKHEAD 0.2668E 00 0.5312E 00 0.2668E 00 MATRIX INVERSION - DETERMINANT IS 0.37617E 00 SCALING FACTOR IS 0.16418E-05 REACTIONS AT THE INTERSECTIONS 1 2 0.96025E 05 -0.49596E 05 0.96025E 05 -0.49596E 05 1 0.27477E 06 -0.16048E 06 2 -0.16048E 06 0.27477E 06 0.96023E 05 -0.49593E 05 3 0.96023E 05 -0.49593E 05

BENDING MOMENT AND STRESSES

1

2


```
701
      CONTINUE
         GO TO 777
  700
        WRITE (6,707)
          S TOP
       PF=0.
  777
      DO
           110
                I=1,NOTR
        PF=PF+ AF(I,I)/FLOAT(NOTR)
        P(I) = SORT(P(I))
  110
      DD
            112 I=1,NOTR
      DO 112 J=1.NOTR
      IF (I.GT.J) GO TO 111
       AP(I,J) = AF(I,J) * P(I) * P(J) / PF
             GO TO 112
 111
       AP(I,J) = AP(J,I)
 112
      DP(I, J) = AP(I, J) * PF
      CALL JESSIN (AP, EIG, NOTR, DAP, DAF, DEIG, BP)
      DO 670 J=1,NOTR
      WRITE (6,1964)
      WRITE(6, 671) EIG(J)
      WRITE(6,671)(AP(I,J),I=1,NOTR)
670
      FORMA1((7E15.6))
 671
  236
        DO 113
                     I=1, NOTR
           EIG(I) = EIG(I) * PF
  113
      CALL TRANS(RP, AP, 50, NOTR)
        CALL MULT (CP, DP, AP, 50, NOTR)
        CALL MULT(DP, BP, CP, 50, NOTR)
          WRITE (6, 114)
       WRITE (6,105)(EIG(I), I=1, NOTR)
      WRITE(6,315)
       WRITE (6,105)(DP(I,I),I=1,NOTR)
      NNN=NF
       DO 115 I=1, MMM
             PE=EIG(I)
            PD=(PE-DP(I,I))
             PE=PF*.01
            PD=ABS(PD)
         IF (PD.GT.PF) GO TO 116
       CONTINUE
  115
        GO 10 118
  116
       WRITE (6,117)
          60 10 1000
      INPUT THE LOADS FROM THE LONGITUDINAL BULKHEADS AND SHELLS
C,
  118
             NUM=NOTR
      CALL LOADS (NEILE, NSCR)
      WRITE(6, 181)
      READ(5,1001) IDENTQ
      WRITE(6,1002) IDENTO
      TE(IDENTO, E0:0) GO TO 1000
      CALL REWIND (7)
                           NUM=NF
         IF (NOTR.GT.NF)
      DO 130 I=1,NOLD
      CALL NFILRE(NROW, NODE, LOADC, SEX(I), SEY(I), PHI(I), DX, DY, DOTE)
         AMG = PHI(I)
               J=1,NUM
       DO 129
        CX(J)=0.
       CY(J)=0.
         IF (LOADC.E0.0)
                           GO TO 149
         DO 127 K=1,NOTR
        CX(1) = CX(1) + \nabla P(K^{\dagger}) * DX(K) * P(K)
```

```
127 CY(J) = CY(J) + AP(K, J) * DY(K) * P(K)
```
	BL(J,I)=SFX(I)*CX(J)*COS(ANG)-SFY(I)*CY(J)*SIN(ANG)
5 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1	<pre>BM(J,I)=SFX(I)*CX(J)*SIN(ANG)+SFY(I)*CY(J)*COS(ANG)</pre>
	GO 10 129
149	$BL(J,I)=O_{\bullet}$
190	CONTINUE
- 2 1	LNOD(I)=NODE
	LRDW(I) = NRDW
1.30	CONTINUE
	CALL SHIP1(NCARD, MACO)
	DO 2001 L=1, NULU
	DO 2001 J=1, KR
2001	LO(L) = LO(L) + NONO(J)
	NTO=0
	WRITE (6,109) (LU(1),1=1,NULU)
201	NTO=NTO+NONO(N) *2
e a la companya de la	$DO - 304 - NL = 1 \cdot NUM$
	SPRING=1./EIG(NL)
	DO 202 L=1,NTO
202	R(L) = 0.
	UT 203 L=1,MULD L=(1,D(1)=1)*2
	$J_1 = J_{+1}$
	$J_2 = J_2 = J_2$
	R(J1) = BL(NL+L)/EIG(NL)
203	R(J2) = RM(NL,L) / EIG(NL)
	(ALL SHP)(SPRING, 1, MACU)
	I = (1 (1 (1) - 1) * 2
	JI = J + I
	J = J + 2
	BL(NL,L) = R(JL)
205	BM(NL,L)=R(J/Z)
	CALL REWIND(3)
304	CONTINUE
	CALL MATINS(AF,50,NOTR,CP,50,0,DE,ID,IND)
	$IF (ID \cdot E0 \cdot 1) GO TO 60$
•	WRITE (0, 307) = 10
60	CALL REWIND(7)
	DO 405 J=1, NOLO
	CALL NFILRE(NROW,NODE,LOADC,SFX(J),SFY(J),PHI(J), DX,DY,GUTE)
	AN=PHI(J)
	$\begin{array}{c} (1) 4(1) 1 = 1, \text{ NULL R} \\ (2) (2$
	CX(1) = 0.
	DO 402 K=1, NUM
	$C \times (I) = C \times (J) + AP (I,K) * BL (K,J) / P (I)$
402	CY(I) = CY(I) + AP(I,K) * BM(K,J) / P(I)
4()[UDITE (6 107) I
	WRITE(6.250)
	WRITE $(6, 105)$ $(CX(M), M=1, NOTR, 2)$
	WRITE(6,251)
	WRITE $(6, 105)$ (CY(M), M=1, NOTR, 2)
	UL 403 III KONKANA KANA KANA KANA KANA KANA KANA K
이 가지 않는 것이 있는 것이 있다. 역사에서 가지 않는 것이 있는 것이 있 같은 것이 같은 것이 같은 것이 있는 것이 없는 것이 있는 것	

} .

```
DOX(I,J)=0.
        DOY(I, J) = 0.
        DO 403 K=1,NOTR
        ÐØX(I,J)=D0X(I,J)+AF(I,K)*(DX(K)-CX(K)*COS(AN)-CY(K)*SIN
     1 (AN) \approx SFX(J)
 403
       DQY(I,J)=DQY(I,J)+AF(I,K)*(DY(K)+CX(K)*SIN(AN)-CY(K)*COS
     1 (AN) \approx SFY(J)
 405
       CONTINUE
        WRITE (6,420)
       DO 404 I=1,NOTR
       WRITE (6,105) (DOX(I,N),N=1,NOLO)
 404
      WRITE (6, 105) (DOY(I,N),N=1,NOLO)
        WRITE (6,420)
       DO 430 I=1, IB
          L = JT(I)
       DO 431 J=1,NOLO
         AN = PHI(J)
         BL(I,J)=DOX(L,J)*COS(AN)-DOY(L,J)*SIM(AN)
        BM(I,J)=DOX(L,J)*SIN(AN)+DOY(L,J)*COS(AN)
       CONTINUE
 431
       WRITE (6,106) L
      WRITE(6,500)
      WRITE (6,105) (BL(I,J),J=1,NOLO)
      WRITE(6,501)
      WRITE (6,105) (BM(I,J),J=1,NOLO)
 430
      CONTINUE
       DO 450 I=1,IB
         IF (I.EO.1) GO TO 441
      CALL SHIP1(NCARD, MACO)
441
       DO 435 M=1.NTO
       R(M) = 0.
435
       DO 440 M=1, NOLO
         \Delta N = PHI(M)
       J = (L \cap (M) - 1) * 2
        J1 = J + 1
       J2 = J + 2
       R(J1) = BL(I,M)
 440
       R(J2) = BM(I,M)
     CALL SHP5(0.,0,MACO)
      ID=JPROB
       CALL SHIP4
 450
      CONTINUE
     RETURN
1000
      S TOP
     FORMAT
               (315, 5612, 5)
1
 100
      FORMAT(//20H TRANSFORMED FORCES
                                            -215)
      FORMA1 (10F7.2)
 101
     FORMAT (15)
104
105
     FORMA7((7E15.5))
 106
      FORMAT(//16H TRANSVERSE MO.
                                      I10 //)
107
     FORMAT(//, DEFLECTION OF LONGITUDINAL', IS, ' AT EVERY OTHER TRANSM
    + FRSE!)
 109
      FORMAT (1015)
114
     FORMAT(/10X, 'SCALED EIGENVALUES')
 117 FORMAI (10X,39H EIGENVALUE ERROR CHECK PROGRAM PLEASH//)
 181 FORMAT(//, 'ENTER O TO STOP PROGRAM HERE. ENTER 1 TO GO DN')
250
     EDRMAI(//,4X, 'X DEFLECTIONS',//)
251
     FORMAT(//,4X, 'Y DEFLECTIONS',//)
 307
      FORMAT (//20H MATRIX SINGULAR
                                            15)
315
     FORMAT(//,10X, 'DIAGONAL OF MATRIX OP')
```

420	FORMAT(// 33H REAL LOADS UPON THE TRANSVERSES //)
500	FORMAT(! X-FORCES TYPICAL !)
501	FORMATCI Y-FORCES TYPICAL ')
702	FORMAT(/ NUMBER OF EIGENVALUES TO BE USED!)
707	EDRMAT (//25H INPUT ERRORS IN TRANCO //)
1044	E O D M A T (/ / 1)
1001	
1001	EORMAT($//$, IDENTO VALUE IS! IS. $//$)
1.000	ENID
	SURPOLITINE RECIN(TR. IT)
Č DÍ	DUTINE INDUT RASIC SHID DARAMETERS
L & & & KI	DIMENCION IT/EN
	COMMON (MATCH/E C CAULALDHA, CONVE
	COMMON (SUTDINOIO INO(100) SEV(100) SEV(100). PHI(100).
	COMMUN /SHIP/NOLO,LNU(IUO),SFA(IUO),SFA(IUO),FAITUSAA
-	FNDIR, ZIR(50), ZLEN, P(50), XI, XA, MSEC
	WKIJE(0,100)
	WRITE(6,300)CUMVE
	WRI1E(6,10)
	READ(5,300)/LEN
	WRITE(6, 300)ZLEN
	ZLEN=ZLEN*CUNVE
	WRIIE(6, 12)
	READ(5,301)NULR
	WRITE(6, 301)NUTR
	YSUM=0.
	Y = Z L E N / (NOTR + 1)
	DO 25 K=1, NOTR
	Z TR(K) = YSUM + Y
25	Y SUM= Y SUM+Y
	WRITE(6,20)
	NSFC=1
	READ(5,302)XI,XA
· · · ·	WRITE(6,302)XI,XA
	XI = XI*(CONVF**4)
	XA = XA * (CONVE * * 2)
	WRITE(6,213)
	READ(5,302)E,GNU
	WRITE(6,302)E, GNU
	ALPHA=0.
	$G = E/2 \cdot / (1 \cdot + GNU)$
	WRITE (6.18)
	DO 9 I=1, MOTR
	READ (5,300) P(I)
9	WRITE(6.300) P(I)
	WRITE(6.14)
	READ (5.301) IB
	WRITE(6.301) IB
	WRITE(6.16)
	DO[8] I=1.IB
	READ (5.301) JT(I)
ß	WRITE($6,301$) JT(I)
() C	
10	EORMAT(/.! LENGTH OF LONGITUDINALS!)

14 FORMAT(/, ' NO. TRANSVERSES TO BE ANALYZED(5)') FORMAT(/, ' LIST TRANSVERSES TO BE ANALYZED BY POSITION FROM', 16 + STERN() 18 FORMAT(/, * LIST STIFFNESS FACTORS OF ALL TRANSVERSES' + IN ORDER FROM STERN') FORMAT(/, STANDARD LONGITUDINAL'/, MOMENT OF INERTIA, 20 + SHEAR AREA!) FORMAT(1HI, + TRANSVERSE STRENGTH ANALYSIS OF LONGITUDIN! 100 + ALLY FRAMED SHIPS +, /, 60(**) //) 213 FORMAT(/. YOUNGS MODULUS, POISSONS RATIO!) 237. FORMAT(/! CONVERSION FACTOR TO BE APPLIED TO ALL! +, ' DIMENSIONAL DATA ',/. +' INCLUDING COORDINATES, PLATE THICKNESS, BAR AREA',/, +! BUT NOT INCLUDING YOUNGS MODULUS!) 300 FORMAT (F15.5) 301 FORMAT(15) FORMA 1 (E15.5,F15.5) 302 END SUBROUTINE COMSI(TM, SI) C...ROUTINE TO COMPUTE INITIAL PARAMETERS OF BEAM MEMBER DIMENSION TM(5,5), SI(5,1)DEL=TM(1,2)*TM(3,4)-TM(3,2)*TM(1,4) SI(1,1)=0.SI(3.1)=0.SI(5,1)=1. SI(2,1)=(TM(3,5)*TM(1,4)-TM(1,5)*TM(3,4))/DEL SI(4,1)=(TM(3,2)*TM(1,5)-TM(1,2)*TM(3,5))/DFL RETURN END SUBROUTINE DIRCOS С DIRECTION COSINE SUBROUTINE FOR PLATE DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), P10(10) DIMENSION X(25,40),Y(25,40),E1(4),GNU1(4),DC(2,2), 1SK(6,6), DI(6,6),AI(6,6),AJ(6,6),AK(6,6),AL(6,6),SKAI(6,6), 2SKAJ(6.6).SKAK(6.6).SKAL(6.6).A1(6.6.4).A2(6.6.4).SKA1(6.6.4). 3 SKA2(6,6,4) COMMON K1,K2 Κ.4 MORG MIN] К3 ID , ND N1 IPO PIO COMMON UNITS NONO • E F1 • Y • Z Gall COMMON Х , IFGNU COMMON , MEMNO TESE LET GNU1 MEMTYP • JNIT JIVI 手巡击 COMMON IFJ , IFK IFL • , INK , JAL \mathcal{D} COMMON JNJ JMK Tidl . • PE COMMON P2 • P3 P4 , PA X (I 1) Ţ YK XL. YL. DC. SK COMMON • 9 • $\Lambda +$ SKAT SEAJ COMMON ΔI ΔJ AΚ ٠ ٠ 9 SKA1 . SKA2 SKAK , SKAL Δ1 $\Lambda 2$ COMMON COMMON ΙZ , NC • ХК X1 = X(INJ, JNJ) - X(INI, JNI)X2=Y(INJ,JNJ)-Y(INI,JNI)R1 = X(INK, JNK) - X(INI, JNI) $R_2 = Y(INK, JNK) - Y(INI, JNI)$ XJ = SORT(X1 * X1 + X2 * X2)

1.1.

1.0

```
DC(1,1)=X1/XJ

DC(1,2)=X2/XJ

DC(2,1)=-DC(1,2)

DC(2,2)=DC(1,1)

XK=R1*DC(1,1)+R2*DC(1,2)

YK=R1*DC(2,1)+R2*DC(2,2)

RFTURN

END
```

SUBROUTINE INFO(I) DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), PIO(10) DIMENSION X(25,40),Y(25,40),E1(4),GNU1(4),DC(2,2), 1SK(6.6), DI(6.6), AI(6.6), AJ(6.6), AK(6.6), AL(6.6), SKAI(6.6), 2SKAJ(6,6),SKAK(6,6),SKAL(6,6),A1(6,6,4),A2(6,6,4),SKA1(6,6,4), 3 SKA2(6,6,4) K4 ID MORO isisi1 COMMON K1,K2 КЗ • Νl IPO PIO NONO COMMON UNITS ND E E1 (GRU) Y Ζ. COMMON Х IFI IFGNU IFSF COMMON GNU1 MEMNO MEMTYP TINU IFJ IFK IFL INI JMI COMMON ٠ P1 JNJ INL JNL INK JNK COMMON P5P6 Х.Т P4 Ρ2 Ρ3 COMMON i) I SK YL DC COMMON YΚ XL SKAJ SKAI COMMON ΔĪ ΑJ ΔK $\Delta 1$ ą SKAS SKA1 Δ1 Δ2 SKAK SKAL COMMON • , DUMMY(7101) NC COMMON ΙZ COMMON/INTO/ IJ(14,500), TA(500) MEMNO=IJ(1,I) $MEMTYP=IJ(2 \cdot I)$ IFI=IJ(3,I) $IFJ=IJ(4 \cdot I)$ IFK=IJ(5,I)IFL=IJ(6, I)INI=IJ(7, I)JMI = IJ(8, I)INJ=IJ(9, I)JNJ=IJ(10,I)INK=IJ(11,I)JNK = IJ(12, I)INL=IJ(13,I)JNL=IJ(14,I)P1 = TA(I)WRITE(6,101) MEMNO, MEMTYP, IFI, IFJ, IFK, IFL, INT, JUL, 100, JWJ, TOK, JAL, +INL, JNL, P1 RETURM FORMAT(1H , 14, 1313, F13.5) 101 END

20

SUBROUTINE INPUT DIMENSION UNITS(4),ND(6),NDND(25),IPO(10),PIO(10) DIMENSION X(25,40),Y(25,40) ,GNU1(4),DC(2,2),NDB(25), ISK(6,6), DI(6,6),AI(6,6),AJ(6,6),AK(6,6),AL(6,6),SKAI(6,6), 2SKAJ(6,6),SKAK(6,6),SKAL(6,6),A1(6,6,4),A2(6,6,4),SKA1(6,6,4), 3SKA2(6,6,4),DUMY(7093),XI(6)

COMMON K1, MEMTO, NOMAT, MOB, ID, NORO, NN1 COMMON UNITS, ND, NONO, NOB, IPO, PIO COMMON X, Y, Z, E, NOBB, MCOM, NOBO, MCON, GNU COMMON GNU1, MEMNO, MEMTYP, FA, IFS, IFI INJ , IFL , INI , IFK JMI COMMON IFJ P1 INL JML INK JNK COMMON JNJ ХJ P6 Ρ5 P4 COMMON P2 P3 DI SK DC COMMON YK XL YL. SKAI SKAJ ΑJ AK ΔL COMMON AI , SKA2 AZ SKA1 COMMON SKAK , SKAL Α1 . ٠ COMMON IZ, NC, DUMY, ITEMP, ALPHA, XI WRITE(6,103) COMMON/INTO/ IJ(14,500), TA(500) READ(8,105,ERR=200) ID,NORO,NN1,NOMAT,ITEMP,(UNITS(1),I=1,4) READ(8,100, ERR=200) NOBO, MCON, NOBB, MCOM READ(8,100, ERR=200) (NOB(I), I=1, NOB() READ(8,100, ERR=200) MOB READ(8,106,ERR=200) FA READ(8,106, ERR=200) E, GNU, ALPHA READ(8 , 100, ERR=200) (NONO(I), I=1, NORA) DO 1 I=1, NOROJOE=NONO(I) DO 1 J=1.JOE ,101,ERR=200)X(I,J),Y(I,J) 1 READ(8)IFSF=0 I = 04 I = I + 1IFS=IFSF READ(8,107,ERR=200) IJ(1,I),IJ(2,I),MEMTO,IFSF,IJ(5,I),IJ(4,I),IJ(+5,I),IJ(6,I),IJ(7,I),IJ(8,I),IJ(9,I),IJ(10,I),IJ(11,I),IJ(12,I), +IJ(13,I),IJ(14,I),TA(I),P2,P3,P4,P5,P6 IF(IJ(2,I)) 3,3,43 MEMTO = I - 1DO 2 I = 1, NOROJOE=NONO(I) DO 2 J=1.JOE 2 WRITE (6,102)I,J,X(I,J),Y(I,J) GO TO 223 200 WRITE (6,221) S TOP WRITE (6,104) 223 RETURN 100 FORMA1(2513)101 FORMAT(3F10.2) 102 FORMAT(1H , 16, 17, 3F20.5) COORDINATES//14H RUM NODE,13%,7HX-COURD, 103 FORMAT(18H1NODE 113X,7HY-COORD//1H) 104 FORMAT (13H1MEMBER DATA// I I J Ι ٠ ل Ι Ι I J J 144H0 Μ М Ι Ι 211X, 2HP1/ M NI/ F F F F N N N M M ΑL 344H F E К К Ł. 11 444H М Μ Ι J К L Ι Ι J J 5 8H N T/ 6 8H 0 Y7 P) 7 8H 105 FORMAT (515, 4A6)FORMAT(E10.2, F7.2, E10.2) 106 FORMAT(13,711,812,6E15.7) 107 FORMAT (//25H INPUT ERROR IN NODEIN 11) 221 END

1.1.

	SUBROLITINE LESSIN (A.FIG.N.B.C.F.D)
	DIMENSION $A/FO = FO =$
	DEVENSION A(30,30) = 10(30) + 0(10,10) + 0
	$KEAL^{P}O DfUfE$
محمد مع محمد ا	− DOLL J= 1 γ (Na) sa
	DO 1 I = 1, N
1	B(I,J) = A(I,J)
	CALL JESS (N,N,B,N,C,E,&999)
	GD TO 2
999	WRITE (6.10)
10	EDRMAT ('ETGENVALUES ARE AT BEST WRONG')
2	
2	
2	$\int (1 - 3) = 1 + N$
3	$A(1, \mathbf{J}) = C(1, \mathbf{J})$
•	CALL REORD(EIG, $50.$, N, A, 0)
	RETURN
	END
,	SUBROUTINE K2RE(IRO,ICOL1,ICOL2,BK,ID,A,MACO)
C TH	IS ROUTINE RETRIEVES DATA FROM STORAGE MATRICES IN A CERTAIN URDER
	DIMENSION $BK(84.84) \cdot \Delta(MACO \cdot MACO)$
	COMMON/K23RW/KH(3.49), KHR(4.49), KJ, KJB, IED, JJ(4)
	TNITECED 42 I EN
	1COL1 = KHB(2, KJB)
1.	ICOL2=KHB(3,KJB)
	IF (ID) 4,5,6
4	I H = I COL 1
	JH=ICOL2
	GO TO 7
5	IH=ICOL1
`	JH=ICOL1
	GO TO 7
6	IH=ICOL2
	IH = ICOL1
7	
. 1	CALL DEAD(A_LEN_0.M.TED. 2999)
-	
ji s	
	$I = (K J R_{\bullet} E I_{\bullet} U)^{*} G U = I U = 8$
	$LJ(\mathbf{I}) = KHS(4, KJS)$
	$(\Delta LL PDINL(IFD, LJ, 1, 8999, 8999)$
	GO TO 9
8	DO 2 K=1,3
2	LJ(K) = 0
	CALL POINT(IFD,LJ,7,&999,8999)
9	CONTINUE
	RETURN

999 WRITE(6,70)KJB

st.

\$ 11

11.

STOP 70 FORMAT('ERROR IN READING FILE -A AT LINE',15) END

	SUBROUTINE K2WR(IRD,ICOL1,ICOL2,BK,ID,A,MACO)
C TH	IS ROUTINE TRANSFERS DATA TO STORAGE MATRICES IN A CERTAIN ORDER
	DIMENSION BK(84.84) . A(MACO. MACO)
	$COMMON/K23RW/KH(3.49) \cdot KHB(4.49) \cdot KJ \cdot KJB \cdot IFD \cdot LJ(4)$
	INTEGER*2 LEN
	LEN=MACO*MACO*4
	KJB=KJB+1
	CALL NOTE (TED.L.I)
	$KHB(1 \cdot KJB) = IRO$
	KHB(2,KJB) = ICD(1)
	KHB(3,K,IB) = ICO(2)
	$KHB(4 \cdot KJB) = 1.1(3)$
	IF (ID) 4.5.6
4	IH=ICO[1]
	$H = I C \Omega I 2$
	GO TO 7
5	THEICOLI
	$H = I C \Omega I I$
······	GO TO 7
6	IH=ICOL2
	JH = ICO(1)
. 7	
	$DO(1) J=1 \cdot JH$
	$D \cap 1$ I=1.IH
1	$A(\mathbf{J},\mathbf{J}) = BK(\mathbf{J},\mathbf{J})$
	$CALL WRITE(A \cdot I \in \mathbb{N} \cdot O \cdot M \cdot I \in \mathbb{D} \cdot (8999)$
	RETURN
999	WRTTE(6.70)KJB
	SIOP
70	FORMAT('ERROR IN WRITING FILE -A AT LINE', 15)
	END
• •	
	SUBROUTINE K3RE(IRO,ICOL1,ICOL2,BK,ID,A,MACO)
C TH	IS ROUTINE RETRIEVES DATA FROM STORAGE MATRICES IN A CERTAIN PROFE
	DIMENSION BK(84,84), A(MACO, MACO)
	COMMON/K23RW/KH(3.49),KHB(4.49),KJ.KJB,IFD,LJ(4)
	INTEGER*2 LEN
	LEN=MACO*MACO*4
, .	KJ = KJ + 1
	IRD = KH (1, KJ)
	ICOL1=KH (2,KJ)
	ICOL2=KH (3,KJ)
	IF (ID) 4,5,6
Ц.	IH=ICOL1
	JH=ICOL2
	GO TO 7
5	I H= I C OL 1
•	JH=ICOL1
	GO TO 7

	6	IH=ICOL2
		JH=ICOL1
eran ger e	7	CONTINUE
		CALL READ(A, LEN, 0, M, 3, 8999)
		DO 1 J=1,JH
		DO 1 I=1,IH
	1	BK(I,J)=A(I,J)
·		RETURN
	999	WRITE(6,70)KJ
		STOP
	70	FORMAT('ERROR IN READING FILES AT LINE', 15)
		END
	•	
		ang na sa

```
SUBROUTINE K3WR(IRO,ICOL1,ICOL2,BK,ID,A,MACO)
   THIS ROUTINE TRANSFERS DATA TO STORAGE MATRICES IN A CERTAIN ORDER
С
      DIMENSION BK(84,84),A(MACO,MACO)
      COMMON/K23RW/KH(3,49),KHB(4,49),KJ,KJB,IFD,LJ(4)
      INTEGER*2 LEN
      LEN=MACO*MACO*4
      KJ = KJ + 1
С
   MAIN PROGRAM FOR TRANSVERSE STRENGTH
      KH(1,KJ) = IRO
      KH(2,KJ) = ICOL1
      KH(3,KJ) = ICOL2
      IF (ID) 4,5,6
  4
      IH=ICOL1
      JH=ICOL2
      GO TO 7
    IH=ICOL1
  5
      JH=ICOL1
      GO TO 7
      IH=ICOL2
  6
      JH=ICOL1
  7
      CONTINUE
      DO 1 J=1,JH
      DO 1 I=1,IH
      A(I,J) = BK(I,J)
 1
       CALL WRITE(A, LEN, 0, M, 3, 8999)
      RETURN
 999
      WRITE(6,70)KJ
      S TOP
 70
      FORMAT( 'ERROR IN WRITING FILES AT LINE', 15)
      END
      SUBROUTINE LOADS(NEILE, NSCR)
C...ROUTINE TO INPUT LOADING CONDITION
      INTEGER DEFIN
      COMMON /WORK/XC(42),YC(28),NONO(25),MXC,NYC,
     +DEFIN, NODE(40,25), LROW(100), LNOD(100)
      COMMON /MATRL/E, G, GNU, ALPHA, CONVE
      COMMON /SHIP/NOLO,LNO(100),SFX(100),SFY(100),PF1(100),
     +NOTR, ZTR(50), ZLEN, P(50), XI, XA, NSEC
      COMMON /SAFE/LOADC(100), DX(50), DY(50), DBASE(50),
     +ZP(50), PC(50), ZO(20), O(20), ZPL(100)
      COMMON /SAFE/TM(5,5),TR(5,5),SI(5,1),SX(5,1),ODATA(8,50)
      COMMON /SAFE/ZI(20), EYE(20)
      COMMON /SAFE/DXL(50), DYL(50)
      COMMON /SAFE/B(50),T(50,2),ST(50,25,2),A(2),R(50,2),DHMY(3638)
      COMMON /INFLU/AF(50,50) ,DMMMY(353)
      7I(1)=0.
      FYE(1) = XI
      NSEC=1
  50
      NREC=0
      NMISC=0
       IERR=0
      WRITE(6,100)
```

4.1.

	WRITE(6,102)
	WRITE(6,103)
	WRITE(6,104)
	WRITE(6,105)
	DD 150 L=1, NDLO
1 6	LOADC(L) = 0
C 1 2	DU CUNTINUE.
	WDITE(4 155)
	READ(5, 300)NCETS
	WRITE(6.300)NSETS
	IF(NSETS)9998+9998+156
C	
15	6 DO 1000 NST=1, NSETS
	IF(NMISC)270,157,165
15	7 WRITE(6,160)NST
	WRITE(6, 162)
	READ (5,1) NP,NQ,NDIR
16	$ \begin{array}{c} \forall R \mid IE (D, I) \forall P, N D, N D I R \\ F TE (N D, 1 P O 1 P O 1 T O \\ \end{array} $
17	0 WRITE(6, 171)
	$K = 2 \times NP$
	DO 20 IL=1.K
	READ (5,2) ZPL(IL)
	20 WRITE (6,2) ZPL(IL)
· · · · · ·	DO 175 IL=1,NP
	PC(IL) = ZPL(2*IL)
	$1 = 2 \times (1 = 1) + 1$
` 17	
18	0 = IF(NQ)270.270.182
18	2 WRITE(6.183)
. · · · · ·	K=2*NO
	DO 21 IL=1,K
	READ(5,2) ZPL(IL)
	21 WRITE($6,2$)ZPL(IL)
	DO 185 IL=1, NO
	(1L) = ZPL(2*1L)/CUNVF
	11 = 2 + (11 - 1) + 1 7 - (11) - 7 - 7 - 7 + 1 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
18	5 CONTINUE
	GO TO 270
С	
C B	EGIN READING IN LONGITUDIMALS LOADED FOR SET
С	
20	$0 \text{WRIFE}(6, 201) \\ = \text{DELETE}(6, 201) \\ = \text$
20	5 READ(5,3) SEL,JRUI,JRUZ,ICULI,ICULZ
	J=JR01
· · · -	I=ICOL1
	WRITE(6,3) SFL, JR01, JR02, ICOL1, ICOL2
C	
~ 7	IF(JR01)1000,1000,210
۲۲ ۲-۲	U IFVJKULTJKUZIZIO(ZZU)(ZI) VEDICAL ADDAV OF LONCITHUINALS
21	5 IDIR=1
<i>c</i> L	GO TO 225
C	HORIZONTAL ARRAY OF LONGITUDINALS
2.2	0 + LDIR = 2

225 IF(NODE(I,J)-DEFIN)800,230,800 230 N=NODET(I,NODE,DEFIN,J,NXC,NONO(J)) C--CHECK IF NODE GIVEN HAS BEEN DEFINED AS A LONGITUDINAL DO 250 L=1,NOLO IF(J-LROW(L))250,240,250 240 IF(N-LNOD(L))250,260,250 250 CONTINUE IERR=1 WRITE(6,252)J.I IF(NMISC)1040,800,1000 260 LOADC(L)=1NREC=NREC+1 DO 265 K=1,NOTR GO TO (262,264), NDIR DX(K)=DBASE(K)*SFL/SFX(L) 262 DY(K)=0. GN TN 265 264 DY(K) = DBASE(K) * SEL/SEY(L)DX(K)=0. CONTINUE 265 CALL NSCRWR(J,N,DX,DY,NOTR) 1F(NMISC)1040,800,1000 NSCR=9(-----C THIS SECTION COMPUTES DEFLECTIONS FOR BASIC LONGITUDINAL 270 SFA=0. SFL=1.0 SFS=1.0 CALL SETOC(NSEC,ZI,EYE,NO,ZO,O,NP,ZP,PC,ZLEN,NOCC,UDATA) NCON=0CALL IMATT(XB, NB, ZLEN, TM, NOCC, NCON, ODATA, SES, SEL, SEA, E,G) CALL COMSI(TM, SI) NCON=0 DO 500 K=1, NOTR CALL IMATT(XR, NB, ZTR(K), TM, NOCC, NCON, ODATA, SES, SEL, SEA, E,G) CALL MMULT(TM,SI,SX,5,5,1) DBASE(K) = SX(1,1)500 CONTINUE C-----IF(NMISC)230,545,230 545 IF(NST-1)550,550,200 550 WRITE(6,551) DO 22 K=1, NOTR22 WRITE(6,4) K, DBASE(K) GD TD 200 800 GO TO (810,820),LDIR 810 J = J + 1IF(J-JR02)225,225,205 820 I = I + 1IF(I-ICOL2)225,225,205 1000 CONTINUE IF(NMISC)1040,1001,1005 1001 MMISC=1 WRITE(6,1002) WRITE(6,1003) 1005 READ(5,5) NP,NQ,NDIR,J,I WRITE(6,5) NP,NO,NDIR,J,I NSETS=1 IF(J)1020,1020,156

. . . .

LUZC	
i in a cairte da seconda da second Seconda da seconda da se	NSE TS=1
	SFL=1.0
	NP=NOTR
	WRITE(6,1021)
	WKIIE(6,6) IBBU,MNUUE
	WR11E(0,1023)
	A(1) = 0
	P(Z) = 0
	$PEAD(5,7) = B(1) \cdot (T(1,N) MEM) \cdot N(MEM=1,2)$
a an	B(1) = B(1) * CONVE
	$T(J \cdot I) = T(J \cdot I) * CONVF$
	$T(J \cdot 2) = T(J \cdot 2) * CONVF$
	WRITE(6,7) $B(J)$, (T(J,NLMEM), NLMEM=1,2)
	A(1) = A(1) + T(J, 1) * B(J)
	A(2) = A(2) + T(J, 2) * B(J)
1025	5 CONTINUE
	WRITE(6,1027)
	DD 1036 K=1,NOTR
	READ(5,8) (R(K,NLMEH),NLMEM=1,2)
	WRITE($6,8$) (R(K,NLMEM),NLMEM=1,2)
	DO 1035 NLMEM=1,2
	S = -R(K, NLMEM) / A(NLMEM)
1004	DU 1033 $J=1, MNUDE$
103	A = SI(K, J, NEMEM) = S*I(J, NEMEM)*B(J)
1035	
10.50	
1020	$\mathbf{D} = \mathbf{D} \mathbf{V} (\mathbf{K}) - \mathbf{O}$
11120	= 1 - 2
	NIMEM=2
	NDTR=2
	T=TBHD
	SFL=1.
103	7 N=NODET(I,NODE,DEFIN,J,NXC,NONO(J))
	DD 720 L=1,NOLO
Ň	IF(J-LROW(L))720,710,720
710	1 F(N-LNOD(L)) 720, 730, 720
720	O CONTINUE
	I FRR=1
	WRITE(6, 252) J, I
	$\begin{array}{ccc} (G11 & 111) \pm (1040) \\ O & O & O & O \\ \end{array}$
730	() NKEU-NKEU+1 NO 725 K-1 NOTO
	$\sum_{i=1}^{N} (N_i) = 0$
	$DV(K) = DV(K) + AE(K, M) \times ST(M, L, NLMEM) / SEV(L)$
72	$\mathbf{C} = \mathbf{C} \cap \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{H} \mathbf{F}$
100	T CONTINUE
יר, ז	CALL NSCRWR(J.N.DX.DY.NOTR)
	GD TD 1040
104	0 J = J + 1
<u>+</u> .	IF(J-MNODE)1037,1037,1041
104	1 I=1
д О т.	MNODE=MNODE-1

И		
		IF(NLMEM)1045.1045.1037
	1045	CONTINUE
		IF(IERR)1048,1048,50
	1048	CALL REWIND (7)
		DD 2000 L=1,NOLO
		DU = 1050 K=1, NUTR
		$D \times L(K) = 0$
	1050	CONTINUE
	10.20	CALL REWIND (9)
		DO 1500 NR=1, NREC
		CALL NSCRRE(J,N,DX,DY,NOTR)
		IF(J-LRNW(L))1500,1100,1500
	1100	IF(N-LNOD(L))1500,1200,1500
	1200	$\frac{111}{1250} K = 1, \text{NOTR}$
		DXE(K) = DXE(K) + DX(K)
	1250	CONTINUE
	1500	CONTINUE
	· · · · ·	CALL NFILWR(LROW(L), LNOD(L), LOADC(L), SFX(L), SFY(L), PHI(L), DXL, DYL,
	•	+NOTR)
	2000	
	0000	DETION
	9998	STOP
	1	FORMAT (315)
•	2.	FORMAT (E15.5)
	3	FORMAT (F15.5,415)
	4	FURMAT (I5,E15.5)
	5	FURMAT (515)
	7	EORMA1 (3E15.5)
	8	FORMAT (2E15.5)
	30	FORMAT (215,2E15.5)
	31	FORMAT (315,5E12.5)
	100	FORMAT(1H1, LOADING CONDITION')
	102	FURMAI(/' I. A LUAD SET IS A SET OF LUADS ACTIME IN'
		+ LOADS IS ALONG THE!./.! LENGTH OF A GIVEN LONGITUD!
		+'INAL')
	103`	FORMAT(/' 2. ANY LONGITUDINAL MAY BE LOADED WITH ANY!
		+' NUMBER OF LOAD',/,' SETS, WHICH MAY BE ONLY PART'
	104	+ IALLY APPLIED VIA',/,' A PROPORTIONAL FACTOR')
	104	+! EROM THE!./.! STERN!)
	105	FORMAT(/, 4. LOAD SET DIRECTION CODES ARE',/,
		+4X, '=1, X-DIRECTION', /, 4X'=2, Y-DIRECTION')
	155	FORMAT(/, ' NUMBER OF LOAD SETS')
· ···	160	FORMAT(1H1, 'LOAD SET'IS)
	162	FURMAI(' NU. CUNC. LUADS, NU. UNIF. LUADS, DIRECTIUM '
	171	FORMAT(/.! LIST LOCATION. P!)
	183	FORMAT(/, ' LIST START LOCATION, O')
	201	FORMAT(/, LIST LONGITUDINALS SO LOADED',/,
	···· · · · · · · · ·	+' FACTOR, ROW1, ROW2, COL1, COL2')
	252	FORMAT(" **ERROR-NODE ON ROW'I4,", COL'I4," HAS NULL
	300	TO DEED DEFINED AS A LUNGITUDINAL". FORMAT (15)
	551	FORMAT(/, COMPUTED DEFLECTIONS AT TRANSVERSES!)

740 FORMAT(1H1, + LONGITUDINAL DEFLECTIONS DUE TO LOADS!) 741 FORMAT(/, ' ROW', I3, ' NODE', I3) 742 FORMAT(10X, 'X-DEFLECTIONS') 743 FORMAT(10X, 'Y-DEFLECTIONS') 1002 FORMAT(/ MISC. LOADINGS') FORMAT(' NP,NO, NDIR, ROW, COLUMN') 1003 FORMAT(1H1, ' SHEAR LOADS ON TRANSVERSES') 1021 FORMAT(/, ! BHD COLUMN NUMBER, NUMBER OF ROWS FOR SHEAR!) 1022 FORMAT(/, ! WEB LENGTH, SHELL, BHD THICKNESS (CM) !) 1023 FORMAT(1H1, SHELL, BHD SHEARS PER TRANSVERSE STARTING! 1027 + FROM STERN) END and the second SUBROUTINE LONGI(NFILE) C...ROUTINE INPUTS LONGITUDINAL DATA COMMON /MATRL/E,G,GNU,ALPHA,CONVE COMMON /SHIP/NOLO,LNO(100),SFX(100),SFY(100),PHI(100), +NOTR,ZTR(50),ZLEN,P(50),XI,XA,NSEC INTEGER DEFIN COMMON /WORK/XC(42),YC(28),NONO(25),MXC,MYC, +DEFIN, NODE(40,25), LROW(100), LNOD(100) COMMON / INFLU/AF(50,50), EIG(50), DMMY(303) COMMON /SAFE/NN(25), NCR(51), DUMNY(7424) IERR=0WRITE(6,276) WRITE(6, 250)WRITE(6, 251)LOMAX = 100WRITE(6, 278)MOLO=02000 READ(5,300)XIX,XIY,AX,JROM,ICOL1,ICOL2 CALL SWTCH(ICOL1,ICOL2) C--HORIZ.SEQUENCE TERMINATES WITH ZERO ROW MUMBER..... WRITE(6,300)XIX,XIY,AX,JROM,ICOLL,ICOL2 IF(JROW)2020,2020,2005 2005 IF(XIX)2007,2007,2006 IF(XIY)2007,2007,2010 2006 IERR=12007 WRITE(6,2008) GD TO 2000 2010 DO 2015 I = ICOL1, ICOL2IF(NOLO-LOMAX)2011,2016,2016 2011 MOLO=MOLO+1N=NODET(I,NODE,DEFIN,JROW,NXC,NOND(JPON)) LROH(NOLO) = JROWI NOD (NOLO) = N CALL NOD (NONO, N, JROW, LNO (NOLO)) SFX(NOLO)=XIX*(CONVF**4)/XI SFY(NOLO)=XIY*(CONVF**4)/XI PHI(NOLO)=0. 2015 CONTINUE GO TO 2000 WRITE(6,288)LOMAX 2016 IERR=1GD TO 2000 2020 WRITE(6.279) 2030 READ(5,300)XIX,XIY,AX,ICOL,JR01,JR02

C VI	RICAL SENDENCE TERMINATES WITH ZERO COLOMN NOMBER
	WRITEF6,300)XIX,XIY,AX,ICUL,JRU1,JRU2
2025	IF(ILUL)2050,2050,2035
2035	1F(X1X)2037,2037,2036
2036	IF(XIY) 2037, 2037, 2040
2031	
let see the	WKIJE(6,2008)
2040	
2040	$\frac{100}{2045} = \frac{1}{2} \frac{1}{3} \frac{1}{$
20/1	1 + (NULU - LUMAX) 2041, 2047, 2047
2041	
	N=NUDEI(ICUL,NUDE,DEFIN,J,NXC,NONO(J))
	LKDW(NULU) = J
	CALL NUD(NUND, N, J, LNU(NULD))
	SFX(NOLD) = XIX*(UNVF**4)/XI
	SFY(NOLU) = XIY*(UNVF**4)/XI
2015	PHI(NULU)=0.
2045	
2017	
2041	MRITE(D, 288)LUMAX
2050	
2020	
2000	$\frac{1}{1} \frac{1}{1} \frac{1}$
2000	
	$\frac{PRITE(A, 2002)}{NN(1)} = 1 NN(2)$
	$P(1 = \{0, 0, 0, 0, 0\}, (NM(3), 3 = 1, NY(3)$
	$\frac{1}{10} \frac{1}{100} \frac{1}{$
	$\frac{1}{1} \frac{1}{2} \frac{1}$
• •	
3010	$\frac{11}{1000} \frac{11}{1000} \frac{11}{1000} 1000000000000000000000000000000000000$
	N-NODET/I NODE DEEIN I NYC MONO(I))
	DO = 3040 + 1 - 1, NOLO
	TE(1ROW(1) - 1)3040, 3015, 3040
3015	IF(ENON(E) = 0.0000, 0.000)
3020	NCR(1)=1NO(1)
	GO TO 3045
3()40	CONTINUE
3045	CONTINUE
	WRITE(6.3047)(NCR(1).1=1.WYC)
3050	CÓNTINUE
	IE(JERR)2060.2060.2055
2055	STOP
2060	$N = N \cap TR + 1$
	EI=E*XI
	Y=ZLEN/FLOAT(N)
	DD 2 I=1,NOTR
	DO 2 J=1, NOTR
	IF (I.GT.J) GO TO 1
	A = Y * FLOAT(J)
	$X = Y * F \perp OAT(I)$
	B=ZLEN-A
	GK=0.
	IF(XA.NE.O.)GK=X*B/XA/G/ZLEN
	AF(I,J)=B*X/6./EI*(ZLEN*ZLEN-B*B-X*X)/ZLEN+GK
	GO 10 2
1	AF(I,J) = AF(J,I)

2 CONTINUE RETURN 250 FORMAT(/' IX = MOMENT OF INERTIA OF LONGIT-L BENDING IN' + X-DIRECTION OF TRANSVERSE') 251 FORMAT(' IY = MOMENT OF INERTIA OF LONGIT-L BENDING IN' + Y-DIRECTION OF TRANSVERSE') 276 FORMAT(1H1,//' DEFINITIONS OF LONGITUDINALS') 278 FORMAT(/, ' LIST BY HORIZONTAL SEQUENCE'/ +1 IX, IY, A, ROW, COL1, COL2') 2008 FORMAT(* **ERROR-MOMENT OF INERTIA FOR ABOVE LONGITL' + NOT DEFINED) 279 FORMAT(/, ' LIST BY VERTICAL SEQUENCE'/ IX.IY.A. COLUMN. ROW1.ROW2!) +1 287 FORMAT(/, ' THERE ARE A TOTAL OF ', I6, ' LONGITUDINALS') FORMAT(** MAX. LONGITUDINALS = 18) 288 FORMAT(2E15.6,F15.6,3I5) 300 FORMAT(1H1, ' LONGITUDINAL NUMBERING SYSTEM') 3001 3002 FORMAT(//,1X,'C',/,1X,'O',5X,'ROW',/,1X,'L',25I3,/) 3047 FORMAT(/.2X.25I3)END FUNCTION MAXCOL(NN1, NONO, NORO) ORDERS COLUMN INTEGER VECTOR IN DECSENDING ORDER AND MULTIPLY HAX VALUE . C DIMENSION NONO(NORO), H(25) DO 1 I=1,NORO H(I) = NONO(I)1 N = NORO - 110 DO 20 I=1.N IF(H(I)-H(I+1))30,20,2020 CONTINUE GO TO 50 30 NH=H(I)H(I) = H(I+1)H(I+1) = NHGO TO 10 50 MAXCOL=H(1)*NN1 **RETURN**

END

SUBROUTINE MATINS(AA, JJ, N, CP, JK, M, DD, ID, INDEX) REAL*8 A(84,84) C THIS SUBROUTINE WAS NEEDED TO MAKE PROGRAM COMPATIBLE TO AN IRM SSP MATRIX AA IS MATRIX TO BE INVERTED CP, INDEX ARE NOT NECESSARY IN SUBROUTINE C DIMENSION AA(JJ,JJ),CP(JJ,JK),INDEX(JJ,JK) CALL MINSUB (AA, A, N, DD, JJ) IF(DD) 1,2,1 2 TD=2GO TO 3 1 ID = 1CONTINUE 3 RETURN END

	에 있다. 이렇게 잘 가 있다. 이렇게 가 있는 것은	
	SUBROUTINE MEM1	
С	TRIANGULAR PLATE SUBMATRIX SUBROUTINE	
	DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), P10(10)	
	DIMENSION $X(25.40) \cdot Y(25.40) \cdot E1(4) \cdot GNU1(4) \cdot DC(2.2)$	
	1SK(6,6), DI(6,6), AI(6,6), AJ(6,6), AK(6,6), AL(6,6), SKAI(6,6),	
	2SKAJ(6,6), SKAK(6,6), SKAL(6,6), A1(6,6,4), A2(6,6,4), SKA1(6,6,4),	
	3 SKA2(6,6,4)	
	DIMENSION BK(084.084), IM(4), JM(4), ZAI(6), ZAJ(6), ZAK(6), ZAL(6),	
	$1 \times I(6)$	
	COMMON K1,K2 , K3 , K4 , ID , NORD , MN1	
	COMMON UNITS , ND , NONO , N1 , IPO , PIO	
	COMMON X Y , Y , Z , E , E1 , GNU	
	COMMON GNUL , MEMNO , MEMTYP , IEGNU , IESE , IEI	
	COMMON IFJ , IFK , IFL , INI , JNI , INJ	
	COMMON JNJ , INK , JNK , INL , JNL , P1	
	COMMON P2 , P3 , P4 , P5 , P6 , XJ	
	COMMON YK , XL , YL , DC , SK , DI	
an a	COMMON AI , AJ , AK , AL , SKAI , SKAJ	
	COMMON SKAK , SKAL , A1 , A2 , SKA1 , SKA2	
	COMMON IZ , NC , XK , NOMEM , ICOUNT , BK	
	COMMON IM , JM , NA1 , NA2 , ZAI , ZAJ	
	COMMON ZAK , ZAL , ITEMP , ALPHA , XI	
	CALL DIRCOS	
	$CA = (1 \cdot 0 - GNU) / 2 \cdot 0$	
	$CB = E \times P1 / (2 \cdot 0 \times (1 \cdot 0 - GNU \times GNU) \times X J \times YK)$	
	SK(1,1)=CB*(YK*YK+CA*XK*XK)	
	SK(1,2) = -CB*CA*XJ*XK	
	$SK(1,3) = CB \times GNU \times XJ \times YK$	
	SK(2, 1) = SK(1, 2)	
	$SK(2,2) = UB \times UA \times X J \times X J$	
	SK(2, 5)=0.0	
	SK(3,1) = SK(1,3)	
	$SK(3,2)=U_{0}U$	
	C = CB - 1	
•	DD - I = 1.6	
	$DD 9 \downarrow = 1.6$	
	AT(I,J)=0	
	$AJ(\mathbf{I},J) = 0.0$	
	$\Theta \Delta K(I,J) = 0.0$	
	$DO \ 1 \ I = 1, 3$	
	$ \wedge \mathbf{I} (1, \mathbf{I}) = -\mathbf{D}\mathbf{C} (1, \mathbf{I}) $	
	AJ(1, I) = DC(1, I)	
	AK(1, 1) = 0.0	
	AI(2, I) = -DC(1, I) - CA * DC(2, I)	
	AJ(2,I) = CA * DC(2,I)	
	AK(2, I) = DC(1, I)	
	AI(3,I) = CC * DC(2,I)	
	A J (3, I) = -CB * DC (2, I)	
	1 AK(3, I) = DC(2, I)	
	IF(NN1-3) 4,5,5	
	4 NC = NN1	
	6 CALL MULIRD(AI, INI, JNI, SKAI)	
	CALL MULIRD(AJ,INJ,JNJ,SKAJ)	

CALL MULTRD (AK, INK, JNK, SKAK) IF(IFSF) 3,3,2 2 CA=E/(1.0-GNU*GNU)CB = E/((1.0+GNU)*(2.0*YK))DI(1,1)=CA/XJDI(1.2)=0.0 $DI(1,3) = CA \times GNU/YK$ $DI(2,1) = CA \times GNU/XJ$ $DI(2 \cdot 2) = 0 \cdot 0$ DI(2,3) = CA/YK $DI(3,1) = -CB \times XK / XJ$ DI(3,2) = CBDI(3,3)=0.0DD 7 I=1,3 DO 7 J=1,3 7 SKAL(I,J)=SK(I,J)3 IF(ITEMP) 8,8,10 $10 \times I(1) = \times J \times A \perp P H A$ XI(2) = XK * ALPHAXI(3) = YK * ALPHACALL TEMPCO(NC.IZ.SKAI.XI.ZAI) CALL TEMPCO(NC . IZ . SKAJ . XI . ZAJ) CALL TEMPCO(NC . IZ . SKAK . XI . ZAK) 8 PETURN

С

SUBROUTINE MEM2 OUADRILATERAL PLATE SUBMATRIX SUBROUTINE DIMENSION F(6,6), INDEX(6,3) DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), PIO(10) DIMENSION X(25,40), Y(25,40), E1(4), GNU1(4), DC(2,2),1SK(6,6), DI(6,6),AI(6,6),AJ(6,6),AK(6,6),AL(6,6),SKAT(6,6), 2SKAJ(6.6),SKAK(6.6),SKAL(6.6),A1(6.6,4),A2(6.6,4),SKA1(6.6.4), 3 SKA2(6.6.4) DIMENSION BK(084,084), IM(4), JM(4), ZAI(6), ZAJ(6), ZAK(6), ZAL(6), $1 \times I(6)$ К4 $\mathbf{I}(\mathbf{i})$ MORG [JAN] COMMON K1,K2 К3 PIG COMMON UNITS ND NONO 611 TPG F Y 7 F 1 CAU COMMON Х . GNU1 TESE COMMON MEMNO MEMTYP TEGNU THT THJ COMMON IFJ I FK. IFL TNI JUT 9 JNK JNJ . The 14 COMMON INK 1141 PS COMMON P2 P3 P4 PA Χ.Ε COMMON DC. SK DI YK Xt. YL SKAT SKAJ COMMON ΔT ΔJ ΔK AL. SKA1 SKA2 COMMON SKAK SKAL $\wedge 1$ 12 \mathbb{R}^{K} COMMON NC ΧК 的自然目的 TCOUME IΖ 7 A 1 7 A J COMMON JM NA2 ΙM NA1 COMMON ZAK ZAL ITEMP 0LPHA ХT CALL DIRCOS XXL=X(INL,JNL)-X(INI,JNI)YYL = Y(INL, JNL) - Y(INI, JNI)XL = XXL * DC(1,1) + YYL * DC(1,2)YL = XXL * DC(2,1) + YYL * DC(2,2)F(1,1) = XJF(1,2) = 0.0F(1,3) = -GNU + XJ

	F(1,4) = -5*X (*F(1,3))		
	E(1) =		
بالمراجع والمتعارية	$\frac{F(1+2)=0}{F(2-1)-Y}$	· · · · ·	· · · ·
	F(2,2) = XK + YK - 0 = 0 = X J + YK		
	F(2,3) = -GNU + XK		
	F(2, 4) = -, 2% (GNU % X K % X K + Y K % Y K)		
	$F(2, 5) = 2 \cdot 0 \times (1 \cdot 0 + GNU) \times YK$		
a an	$F(3,1) = -6NU \times YK$		
	$F(3,2) = \cdot 3^{\times} (XK \times XJ - XK \times XK - GNU \times YK \times YK)$		
	F(3,3) = YK		
	$F(3,4) = XK \times YK$		
	F(3,5)=0.0		
	F(4, 1) = XL		
	$F(4,2) = XL * YL - \cdot 5 * XJ * YL$		
	$F(4,3) = -GNU \times XL$		
	$F(4,4) =5 \times (GNU \times XL \times XL + YL \times YL)$		
	$F(4,5) = 2 \cdot 0 \times (1 \cdot 0 + GNU) \times YL$		
	F(5, 1) = -(SNI) * YL		
	F(5,2)=.5*(XL*XJ-XL*XL-GNU*YL*YL)		
	F(5,3) = YL	· ·	
	F(5,4) = XL * YL		
	F(5,5)=(0,0)		
	CALL MAIINS(F,6,5,DI,6,0,DD,M,INDEX)		
	$1 \vdash (M-1)$ 13,13,12		
12	WRITE (6,100)MEMNO		
100	FURMAI(31H SUMETHING WRUNG WITH MEMBER	, 15, 12H	IUUGH LUCK)
1.0	SINP		
13	BA=XL		
	HA = YL		
	BB=XL-XJ		
	HB=YL		
	BU = XL - XK		
	HL=YL-YK		
	HD = YL - YK		
···· ·· · · · · ·			
· · ·			
	YRE-RE/3 0		
	$\Lambda \Lambda - B \Lambda \times H \Lambda$		
	AB= 5×BB×HB	x	
	$\Lambda C = -5 \times B C \times H C$		
	$\Delta D = B D * H D$		
	$\Lambda F = -5 \times R F \times H F$		
	A = AA - AB - AC - AD - AF		
	$X\dot{M} = \Delta \dot{\Delta} * Y B \Delta - \Delta B * Y B B - \Delta C * Y B C - A D * Y B D - A E * Y B E$		
	$YM = \Delta A \times XBA - \Delta B \times XBB - \Delta C \times XBC - \Delta D \times XBD - \Delta E \times XBE$		
	XIA = AA * HA * HA / 3.0		
	$XIB=AB*(HB*HB/18_0+YBB*YBB)$		
	$XIC = AC * (HC * HC / 18 \cdot O + YBC * YBC)$		
	XID=AD*(HD*HD/12.0+YBD*YBD)		
	XIE=AE*(HE*HE/18.0+YBE*YBE)		

	XQ=XIA-XIB-XIC-XID-XIE
	$VIA = AA \times BA \times BA / 3$ 0
الشعية فالمحرار أتهد	
	$YID = ADA (DDA DD / IO \cdot UT A DDA A DD)$
	YIC=AC*(BC*BC/18+O+XBC*XBC)
	YID=AD*(BD*BD/12.0+XBD*XBD)
	YIE=AE*(BE*BE/18.0+XBE*XBE)
	YI=YIA-YIB-YIC-YID-YIF
	$A \downarrow (1, 1) = A A \times X B A \times Y B A$
tiperati se e a co	
•	$BJ = AB \times (AB \setminus I8 \cdot O + XBB \times ABB)$
	$CJ = AC * (AC / 18 \cdot 0 + XBC * YBC)$
	DJ=AD*XBD*YBD
	$FJ = \Delta F \times (\Delta F/18, 0 + XBF \times YBF)$
	$C_{R} = -C_{A} \times GNU$
	DI(1,1) = CA * A
	$DI(1,2) = CA \times XM$
	DI(1,3) = CB * A
	$DI(1, 4) = CB \times YM$
· · · · · · · · · · · ·	(1(1,2)=0,0
	$D1(2,2) = CA \times X G$
	DI(2,3)=CB*XM
	$DI(2,4) = CB \times XYJ$
	DI(2,5) = 0, 0
	$D_1(3,4) = CA \times YM$
	DI(3,5)=0.0
	$DI(4,4) = CA \times YI$
,	DI(4,5)=0.0
	DI(5,5) = CA*2 + O*(1, O+CNU)*A
	$D_1 (J_1 J_2 J_2 (J_1 + Z_2) J_2 (J_1 + U + U + U + U + U + U + U + U + U + $
•	DU = 5 = 1 = 2 + 5
	J(t) = 1 - 1
	$DO_3 = J = I + JOE$
3	DI(I,J) = DI(J,I)
	DD = I = 1.5
	$A_1(1,3) = 0.0$
	DD 9 K=1,5
9	AI(I,J)=AI(I,J)+DI(I,K)×F(K,J)
	$n_{10} 1_{1} = 1,5$
•	DD = 10 J = 1.5
	SK(1,1) = 0.0
1.0	(1) 10 n-1 (2)
	SK([1, J]) = SK([1, J]) + F(K, I) * AI(K, J)
	CA=YK/XJ
1. Sec. 1. Sec	CB=XK/XJ-1.0
	$CC = YI \setminus X_{s}$
	<u>CF=-XL/XJ</u>
	IF(NN1-3) 14,15,15
14	NC = NN1
	GO TO 16
15	
1 D	
<u> </u>	$C D U I I I = I \cdot b$
	$(DO, \underline{1} \neq \underline{J}, \underline{=}, \underline{1}, \underline{6})$
	$O_{\bullet}O = O_{\bullet}O$
	$\Delta J(I,J) = 0.0$
	$\Delta K(1, J) = 0.0$
17	AL(1,1) = 0.0
τı	

```
DO 5 J=1.NC
   AI(1,J) = -DC(1,J)
   AI(2,J) = -DC(1,J) - CA * DC(2,J)
   AI(3,J)=CB*DC(2,J)
   AI(4, J) = -DC(1, J) - CC * DC(2, J)
   AI(5,J)=CD*DC(2,J)
   AJ(1,J) = DC(1,J)
   AJ(2,J)=CA*DC(2,J)
   AJ(3,J)=CE*DC(2,J)
   AJ(4,J)=CC*DC(2,J)
   AJ(5,J)=CF*DC(2,J)
   AK(2, J) = DC(1, J)
   AK(3, J) = DC(2, J)
   AL(4, J) = DC(1, J)
 5 \text{ AL}(5, J) = DC(2, J)
   CALL MULTRD(AI, INI, JNI, SKAI)
   CALL MULTRD(AJ, INJ, JNJ, SKAJ)
   CALL MULTRD(AK, INK, JNK, SKAK)
   CALL HULTRD(AL, INL, JNL, SKAL)
   IF(ITEMP) 19,19,20
20 \times I(1) = XJ * \Delta L PHA
   XI(2) = XK * ALPHA
   XI(3) = YK * ALPHA
   XI(4) = XL * ALPHA
   XI(5) = YL * ALPHA
   CALL TEMPCO(
                         NC, IZ, SKAI, XI, ZAI)
   CALL TEMPCO(
                         NC, IZ, SKAJ, XI, ZAJ)
   CALL TEMPCOF
                         NC, IZ, SKAK, XI, ZAK)
   CALL TEMPCO(
                         NC, IZ, SKAL, XI, ZAL)
19 CONTINUE
   IF(IFSF) 8,8,7
 7 DO 6 I=1,5
   DO 6 J=1,5
   SKAL(I,J) = SK(I,J)
 6 DI(I,J)=E*F(I,J) *
 8 RETURN
```

END

COMMON

SKAK

SKAL

С

SUBROUTIN	E MEM5				
PIN-ENDED	BAR SUBMATRI	X SUBROUT	INE PIER	AR CROSS S	SECTION APEA
DIMENSION	UNITS(4), ND(6), NONO(25	5),M1(25),	IPO(10),+	ATO(10)
DIMENSION	X(25,40),Y(2	5,40),E1(4	4),GNU1(4)	,DC(2,2),	,
1SK(6,6),	DI(6,6),AI(6,	6), AJ(6,6)),AK(6.6),	AL(6,6),5	SKAL(6,6),
25KAJ(6,6)	.SKAK(6,6),SK	AL(6,6),A	1(6,6,4),0	2(6,6,4),	SKA1(6,6,4),
3 SKA2(6,6	, 4)				
DIMENSION	BK(084,084),	IM(4), JM(4	4), <u>7</u> AI(6),	ZAJ(6),Z/	K(6),ZAL(6),
1 XI(6)					
СОММОМ К	1,K2 , K3	, K4	• ID	+ MORD	9 NN 1
COMMON U	NITS , ND	, NONO	• iN[] -	, IPO	, PIO
СОММОМ Х	• Y	• 7	, E	, El	9 (21MT)
COMMON G	NU1 , MEMNE	, MENTYR	P, IEGNU	, IFSF	, IFI
COMMON I	FJ , IFK	, IFL	• I M I	• JNT	, INJ
COMMON J	NJ , INK	, JNK	, INL	, JNL	, P1
COMMON P	2 , P3	, P4	, P5	, P6	• X.J
COMMON Y	K , XL	, YL	, DC	, SK	, DJ
	τ. ΑΙ	- AK	- A1	SKAL	• SKAI

Δ1

Δ2

SKA1

SEA2

	DC(1,2) = X2 / XJ		
· · · · · · · · · · · · · · · · · · ·	$DC(2 \cdot 1) = -DC(1 \cdot 2)$		
	$DC(2 \cdot 2) = DC(1 \cdot 1)$		
3	$SKK=P1 \times F / X \downarrow$		
(SKAL(1,1) = SKK	· ·	
	T = NN1 * (JNI - 1)		
1	$L_1 = NN1 * (JNJ-1)$		
···· · · · · · · · · · · · · · · · · ·	15(NN1-3) 4.5.5		
4 N			
	20 TO 6		
5 1	NC-3		
5 (10 12 1 - 1 6		
r O	0 12 1-1 0	\$	
· · · · · ·			
,	AI (I,0)=0.0		
<i>μ</i>	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
12 0	SKAT(1, 0) = 0 = 0		
16 .			
l	(11 9 3) = 1, NC		
	$\frac{1}{1} \frac{1}{2} \frac{1}$		
	SKAI(1,JJ,I) = -OU(1,JJ) #SKK		
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$		
Ň	SNAI(1,00)-SNAI(1,00,1)		
3.			
· .	$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1}$		
~7	$\frac{1}{1} + \frac{1}{2} + \frac{1}$		
()	$AI(I_{ij}JJ_{ij}Z) = DU(I_{ij}JJ_{j})$		
	SKAI(I,JJJ,Z) = SKK*DU(I,JJ)		
I			
L	$I^{M}(Z) = I J_{*}$		
1	$A \cup \{ \pm, 0 \cup \} = \{ A, (\pm, 0 \cup 1) \}$		
	SKAJ(1,JJ) = SKAI(1,JJ,Z)		
(
, P 7	$AZ(1,\mathbf{J},1)=DC(1,\mathbf{J},\mathbf{J})$		
	SKA2(1,JJ,L) = SKK*DU(1,JJ)		
P			
•	$\int M(T) = T $		
	$\Delta J (1, JJ) = D (1, JJ)$		
	SKAJ(1,JJ) = SKAZ(1,JJ,I)		
9 (
1.0	1+(1+S+) $11+11+10$		
10 1	(1,1) = P1		
11	1F(11EMP) 13,13,15		
15 2		T VT 7 / 1 V	
(VI • XI • Z (VI)	
(DALL THMPCU(NU, LZ, SKA	J,XI,ZAJ)	
13 [
ŀ			

, NOMEM , NA2 COMMON IM , JM , NA1 , NA2 , ZA COMMON ZAK , ZAL , ITEMP, ALPHA , XI , ZAI

, ICOUNT , BK , ZAJ

SUBROUTINE MEMB1

COMMON IZ

IM

DC(1,1) = X1 / XJ

X1 = X(INJ, JNJ) - X(INI, JNI)X2=Y(INJ,JNJ)-Y(INI,JNI) $XJ = SORT(X1 \times X1 + X2 \times X2)$

, NC

• XK

BRANCH DISPLACEMENTS AND STRESSES FOR TRIANG PLATE SHIP 4

C S

DIMENSION STRESS(6) DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPQ(10), PIO(10) DIMENSION V(2100).UU(6).QO(6).AI(6.6).AJ(6.6).AK(6.6).AL(6.6). 1SKAI(6,6), SKAJ(6,6), SKAK(6,6), SKAL(6,6), DI(6,6) DIMENSION VTEE(6.3) COMMON MN1 K1.K2 • K3 Κ4 ID NORO UNITS IP() COMMON ND NONO PIQ N1 III COMMON NUMEO V KKK 17 КΚ , COMMON UU QQ MEMNO MEMTYP INI JNI . COMMON TNJ JNJ TNK JNK. TML JML COMMON IFSF IFI IFJ IFK IFL ΑI + • . COMMON AΚ AL SKAI SKAJ <u>ς κ</u> α κ AJ. COMMON SKAL DI VTEE DO 1 I=1,3 1 UU(I) = 0.0CALL SR14(KK, 3, JNI, AI, UU, III, KKK, INI, INI) CALL SR14(KK, 3, JNJ, AJ, UU, III, KKK, INI, INJ) CALL SR14(KK, 3, JNK, AK, UU, III, KKK, INI, INK) IF(IPO(1)) 11,11,9 I T=I I I DO 10 I=1.3 10 UU(I) = UU(I) - VTEE(I, IT)11 CONTINUE IF(IFSF-2) 7,2,2 2 CALL SR4A(DI,3,3,UU,STRESS) TA = (STRESS(1) + STRESS(2))/2.0TB = (STRESS(1) - STRESS(2))/2.0TC=SORT(TB*TB+STRESS(3)*STRESS(3)) PA = TA + 1CPB=TA-TC ANGLE=28.6478*ATAN(STRESS(3)/TB) IF(TB) 3,6,6 3 IF(STRESS(3)) 4,5,5 4 ANGLE=ANGLE-90.0 GD TD 6 5 ANGLE=ANGLE+90.0 6 WRITE (6,100)III, INI, MEMNO, (STRESS(I), I=1,3), PA, PB, AMGLE IF(IFSF-3) 7.8.8 7 CALL SR4A(SKAL, 3, 3, UU, 00) 8 RETURN 100 FORMAJ(1H0.19.110.16H TRIANG PLATE, 16, 4X, 5E14, 6, F10, 4, 4H DEG) END SUBROUTINE MEMB2 BRANCH DEFORMATIONS AND STRESSES FOR OUAD PLATE SHIP 4 DIMENSION STRESS(6) DIMENSION (UNITS(4), ND(6), NONO(25), N1(25), IPQ(10), P1Q(10) $DIMENSION V(2100) \cdot UU(6) \cdot OO(6) \cdot AI(6 \cdot 6) \cdot AJ(6 \cdot 6) \cdot AK(6 \cdot 6) \cdot AL(6 \cdot 6) \cdot$ 1SKAI(6,6), SKAJ(6,6), SKAK(6,6), SKAL(6,6), DI(6,6) DIMENSION VTEE(6.3) K1.K2 , КЗ NORG COMMON Κ4 ΙÐ NN] COMMON UNITS ND NOND NI IPO PIO КK III NUMEO V ККК <u>1</u>7 COMMON ٠ 00 MEMNO MEMTYP COMMON 1111 INI JMI **J**NL

JINK

TEK

SKAL

TEL

SKAJ

JNI.

SKAK

ΛŢ

COMMON INJ JNJ IWK • . COMMON IFSF IFI IFJ COMMON AJ AΚ AL

С

```
S=1./GA
    110
    120
           T(1,2) = -X
           T(1,3) = -X * X / 2 . / EI
           T(2,3) = +X/EI
           T(1,4) = -X * X * X / 6 \cdot / EI + S * X
           1(2,4) = +X \times X/2 \cdot /EI
           T(3,4) = +X
           IF(INFLU)150,150,999
    150
           O = PROP(3) * SFL
           RO = PROP(4)
           T(1,5)=-X*X*(Q*(-X*X/24./EI+S/2.)+RO*X*(-X*X/120./EI+S/6.))
           1(2.5) = -X \times X \times X \times (0 + R0 \times X / 4.) / 6. / EI
           T(3,5) = -X \times X \times (Q + RQ \times X / 3) / 2.
           1(4,5) = -X * (\Omega + R \Omega * X / 2)
           GO TO (999,200), IDF
           CALL IDENT(TC,5)
    200
           CF = PR \cap P(5) * SFL
           \exists C(4,5) = -CF
           CALL MMULT(T,TC,TR,5,5,5)
           CALL EQUAL(T,TR,5,5)
    999
           RETURN
           END
```

```
SUBROUTINE READIN(A, B, IZ, NC, K)
DIMENSION A(6,6), B(6,6,4)
DO 1 I=1, IZ
DO 1 J=1, NC
1 B(I, J, K)=A(I, J)
RETURN
END
```

```
SUBROUTINE REORD (ELAM, N, NTV, BP, BL)
C...ROUTINE ARRANGES EIGENVALUES IN DESCENDING ORDER WITH
C., THE CORRESPONDING RE-ARRANGING OF THE FIGENVECTORS
       DIMENSION ELAM(N), BP(N, N), BL(N, N)
       NTV1 = NTV-1
        DO 20 I=1, NTV1
   10
       IF (ELAM(I)-ELAM(I+1)) 30,20,20
   20
      CONTINUE
      GO TO 50
   30
        SAVE=ELAM(I)
      ELAM(I) = ELAM(I+1)
       ELAM(I+1)=SAVE
      DO 40 J=1.NTV
       BL(J,I) = BP(J,I)
      BP(J,I) = BP(J,I+1)
      RP(J,I+1) = RL(J,I)
   40
      CONTINUE
       GO TO 10
   50
      WRITE (6,100)
      RETURN
      FORMAT (// 30H EIGENVALUES AND EIGENVECTORS //)
  100
      END
```

	$DH''1''I'=1,5^{AL}$	• D1	, VIEE			
1	UU(I) = 0.0					
	CALL SR14(KK,5	, JNI, AI, U	IU,III,KKK	, INI, INI)		
	CALL SR14(KK,5	,JNJ,AJ,L	JU, III, KKK	, INI, INJ)		
	CALL SR14(KK,5	, JNK , AK , U	JU, III, KKK	, INI, INK)		
	LALL SK14(KK, 5	• JNL • AL • L	JU, 111, KKK	• 1 N 1 • 1 NL)		
19		11,17				
1. /	DO 10 I=1.5					
10	UU(I) = UU(I) - VT	EE(I,IT)				
11	CONTINUE					
	IF(IFSF-2) 3,2	,2				
2	CALL SR4A (DI,	5,5,00,ST	RESS)			
	WRITE(6,100)1	11,INI,ME	MMU, (SIRE	SS(1), 1=1	,5)	
2	1 - (1 - SP4 / SK / S	4 - 5 - 5 - 141 - 0	001	•		
4	RETURN	9 / 9 / 9 / 0 () 9 k	ist J			
100	FORMA1(1H0,19,	I10,14H	QUAD PL	ATE, I8,4X	,5E14.6)	
	END					
•						
BI	SUBROUTINE ME RANCH FORCES AND DIMENSION UNIT DIMENSION V(21)	MB5 D_STRESS S(4),ND(6 00),UU(6) (6,6),SKA	F()R PIN E),NONO(25 ,00(6),AI K(6,6),SK	NDED_BAR),N1(25),1 (6,6),AJ(6	IPQ(10), 5,6),AK()	P10(10) 6,6),4L(6,
BI	SUBROUTINE ME ANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON IFSF COMMON AJ COMMON SKAL DO 1 I=1,IZ	MB5 D STRESS S(4),ND(6 00),UU(6) (6,6),SKA (6,3) ,K3 ,ND ,V ,QQ ,JNJ ,IFI ,AK ,DI	FUR PIN E), NONO(25 ,00(6), AI K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE	NDED BAR),N1(25),T (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IFK , SKAI	IPQ(10), 5,6),AK(1(6,6) , NORO , IPQ , III , IMI , IMI , IML , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
1	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON NUMFO COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK.I	MB5 D STRESS S(4),ND(6 00),UU(6) (6,6),SKA (6,3) ,K3 ,ND ,V ,QQ ,JNJ ,IFI ,AK ,DI Z,JNI.AI.	F()R PIN E), NONO(25 , OO(6), AI , K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IEK , SKAI K,INJ,INT)	IPQ(10), 5,6),AK(1(6,6) , NOR() , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
1	SUBROUTINE ME ANCH FORCES AND DIMENSION UNIT DIMENSION V(21) LSKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON NUMFO COMMON INJ COMMON INJ COMMON IFSF COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II)	MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ,	FUR PIN E), NONO(25 ,00(6), AI K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK	NDED BAR),N1(25),T (6,6),AJ(6 AL(6,6),D] , ID , N1 , KKK , MEMTYP , JNK , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NORG , IPQ , III , IPI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , μΝ1 , ΡΙΩ , ΙΖ , JΜΙ , JNL , ΛΙ , SKAK
B1	SUBROUTINE ME ANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,I) IF(IPQ(1)) 11,	MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19	FUR PIN E), NONO(25 , QQ(6), AI , K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),T (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NORO , IPO , III , INI , INI , IFL , SKAJ	P10(10) 6,6),4L(6, , μΝ1 , ΡΙΩ , ΙΖ , ΙΜΙ , ΙΝL , ΑΙ , SΚΑΚ
BI 1	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON NUMFO COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,IZ IF(IPQ(1)) 11, IT=III	MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19	FUR PIN E), NONO(25 , 00(6), AI , 00(6), AI , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),I (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NOR() , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , PI0 , IZ , JMI , JML , AI , SKAK
BI 1 19	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(210 LSKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON NUMFO COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II) IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTE	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT)</pre>	FUR PIN E), NONO(25 ,00(6), AI K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D) , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NORO , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
BI 1 19 11	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) USKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,IZ IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VT CONTINUE OQ(1)=SKAL(1-	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1)</pre>	FUR PIN E), NONO(25 , OO(6), AI , K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D) , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NORO , IPO , III , INI , INI , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
B/ 1 19 11	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II) IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTE CONTINUE QQ(1)=SKAL(1, IF(IFSF-2) 3,23	<pre>MB5 D STRESS S(4),ND(6 00),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1) ,2</pre>	FUR PIN E), NONO(25 , OO(6), AI , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INJ,INJ) K,INJ,INJ)	IPQ(10), 5,6),AK(1(6,6) , NOR() , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
B/ 1 19 11 2	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(210 LSKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON UNITS COMMON NUMFO COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II) IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTE CONTINUE QQ(1)=SKAL(1, IF(IFSF-2) 3,23 STRESS=QQ(1)/D	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1) ,2 I(1,1)</pre>	FUR PIN E), NONO(25 ,00(6), AI K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D) , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INJ)	IPQ(10), 5,6),AK(1(6,6) , NOR() , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
B/ 1 19 11 2	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) USKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II) IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTE CONTINUE QO(1)=SKAL(1, IF(IFSF-2) 3,22 STRESS=QQ(1)/D WRITE(6,100)III)	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1) ,2 I(1,1) I,INI,MEM</pre>	FUR PIN E), NONO(25 , OO(6), AI , K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK NO, STRESS	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D] , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) K,INI,INI) K,INI,INJ)	IPO(10), 5,6),AK(1(6,6) , NORO , IPO , III , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , μΝ1 , ΡΙΩ , ΙΖ , ΙΜΙ , ΙΝL , ΑΙ , SΚΑΚ
BI 19 11 2 3	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) USKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,IZ IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTH CONTINUE QQ(1)=SKAL(1, IF(IFSF-2) 3,22 STRESS=QQ(1)/D WRITE(6,100)IIZ RETURN	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1) ,2 I(1,1) I,INI,MEM</pre>	FUR PIN E), NONO(25 , OO(6), AI , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK NO, STRESS	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D] , ID , N1 , KKK , MEMTYP , JNK , IFK , SKAI K,INI,INI) X,INI,INI)	IPQ(10), 5,6),AK(1(6,6) , NOR() , IPQ , III , INI , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , MN1 , PI0 , IZ , JMI , JML , AI , SKAK
BI 19 11 2 3 100	SUBROUTINE ME SANCH FORCES AND DIMENSION UNIT DIMENSION V(21) SKAI(6,6),SKAJ DIMENSION VTEE COMMON K1,K2 COMMON UNITS COMMON UNITS COMMON UNITS COMMON INJ COMMON INJ COMMON INJ COMMON AJ COMMON AJ COMMON SKAL DO 1 I=1,IZ UU(I)=0.0 CALL SR14(KK,II) CALL SR14(KK,II) IF(IPQ(1)) 11, IT=III UU(1)=UU(1)-VTI CONTINUE QO(1)=SKAL(1, IF(IFSF-2) 3,2) STRESS=QQ(1)/D WRITE(6,100)III RETURN FORMAT(1H0,I9,I)	<pre>MB5 D STRESS S(4),ND(6 OO),UU(6) (6,6),SKA (6,3) , K3 , ND , V , QQ , JNJ , IFI , AK , DI Z,JNI,AI, Z,JNJ,AJ, 11,19 EE(1,IT) 1)*UU(1) ,2 I(1,1) I,INI,MEM I10,7H</pre>	FUR PIN E), NONO(25 , OO(6), AI , K(6,6), SK , K4 , NONO , KK , MEMNO , INK , IFJ , AL , VTEE UU, III, KK UU, III, KK NO, STRESS BAR, I15, 4	NDED BAR),N1(25),1 (6,6),AJ(6 AL(6,6),D] , ID , N1 , KKK , MEMTYP , JNK , IEK , SKAI K,INI,INI) K,INI,INI) K,INI,INI) K,INI,INI)	IPO(10), 5,6),AK(1(6,6) , NORO , IPO , III , INI , INL , IFL , SKAJ	P10(10) 6,6),4L(6, , μΝ1 , ΡΙΩ , ΙΖ , JΜΙ , JΜL , ΑΙ , SKAK

-2.5

양 동안 같은 것 같아요.						
SUB	ROUTINE MUL	TRD(AA,IN	,JN,SKA)			
C PRE	MULTIPLIES	AA BY SK	THEN READS	5 AA INTO	A1 OR 42	AND)
C SKA	INTO SKA1	NR SKA2				
DIM	ENSION UNIT	S(4),ND(6), NONO(25)	I, N1(25),	IPO(10),P]	IO(10)
DIM	ENSION X(25	,40),Y(25	,40),E1(4)	,GNU1(4)	,DC(2,2),	
1 SK (6,6), DI(6,	6),AI(6,6),AJ(6,6),	AK(6,6),	AL(6,6),SH	<ai(6,6),< td=""></ai(6,6),<>
2 SKA	J(6,6),SKAK	(6,6),SKA	L(6, 6), A1((6, 6, 4), A	2(6,6,4),5	SKA1(6,6,4),
3 SK.	A2(6,6,4)					
DIM	ENSION BK(O	84,084)				
DIM	ENSION IM(4), $JM(4)$				
DIM	ENSION AA(6	,6),SKA(6	,6)		NODO	
СПМ	MON K1,K2	• K3	• K4	• 10	, MURH	• <u>NN1</u>
COM	MON UNITS	• ND	, NUNU	, N1	• 1P0	• P10
COM	MON X	, Y	• L	• E	, FL	9 (5'N() TET
COM	MON GNUL	• MEMMU	, MEMIYP			9 1E1 TNI
	MUN IFJ	, IFK	• IFL	9 <u>1 N L</u> T N L	• 101	• 100 • D1
COM COM		, 10K	, JWK	9 INC	• DAL	• 1.
COM		9 P 5	, F4	• FD	• SK	• DT
			• 1L	• Å	, SKAT	• SKAJ
COM	MON SKVK	• 2KVI	• 1	• 42	• SKA1	• SKA2
COM COM	MON 17	, NC	• XK	• NOMEM	. ICOUNT	• BK
COM	MON IM	• .IM	• NA1	. NA2	,	
00	1 1=1.17	,	,			
DO	1 J=1.NC					
SKA	(I,J)=0.0	<u>.</u>				
. DO	1 K=1,IZ					
1 SKA	(I, J) = SKA(I)	,J)+SK(I,	К)*АА(К,Ј)		
J I =	NN1*(JN-1)					
IF(IN-INI) 2,2	, 3				
2 NA1	=NA1+1					
IM(NA1) = JI					
CAL	L READIN(AA	• A1 • IZ • NC	,NA1)			
CAL	L READIN(SK	A, SKA1, 12	, NC, NAI)			
GO	1() 4					
3 NA2	= NAZ + 1					
して 「たっ」	NAZJEJI I DEADINUÂA	. A 2 . T 7 . NC	- NA2)			
		A SKA2 . 17	NC NA2)			
, CAL 4 DET	HRN		7			
FND						
C140						

na serie de la companya de la compan La companya de la comp

SUBROUTINE NOD(NONO, NODE, NROW, L) C ... ROUTINE COMPUTES THE LONGITUDINAL NUMBER FOR GIVEN C...ROW AND NODE DIMENSION NONO(25) L=NODE-NONO(NROW) DO 1 I=1, NROWL=L+NONO(I)1 RETURN END FUNCTION NODET(I,NODE,DEFIN,J,NXC,NONO) C...ROUTINE COMPUTES NODE NUMBER FOR GIVEN ROW AND COLUMN INTEGER DEFIN DIMENSION NODE(40,25) IF(NONO-NXC)20,10,10 10 NODET=I **RETURN** 20 NODET=0 DO 50 II=1.I IF(NODE(II,J)-DEFIN)50,30,50 30 NODE T=NODET+1 CONTINUE 50 RETURN END SUBROUTINE MINSUB (AA, A, N, DD, JJ) DIMENSION AA(JJ,JJ),LL(84),M(84),A(N,N) DOUBLE PRECISION A,D THIS LOOP SCALES THE MATRIX TO APPROXIMATELY ONE (1) С L=0 10 L = L + 1 $\cdot AHQW = AA(L,L)$ SCALE=ABS(AHQM) IF(SCALE.E0.0.) GO TO 10 DO 5 I=1,N DO 5 J=1,N. A(I,J) = AA(I,J) / SCALE5 CALL MINV (A, N, D, LL, M) THIS LOOP REMOVES SCALING FACTOR С DO 6 I=1,N DO 6 J=1.NAA(I,J) = A(I,J) / SCALE6 DD = DRETURN END

SUBROUTINE MINV(A,N,D,L,M)
SUBROUTINE MINV
PURPOSE INVERT A MATRIX
USAGE CALL MINV(A,N,D.L,M)
DESCRIPTION OF PARAMETERS A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY RESULTANT INVERSE. N - ORDER OF MATRIX A D - RESULTANT DETERMINANT L - WORK VECTOR OF LENGTH N M - WORK VECTOR OF LENGTH N
REMARKS MATRIX A MUST BE A GENERAL MATRIX
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE
METHOD THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT THE MATRIX IS SINGULAR.
DIMENSION A(1), L(1), M(1)
• • • • • • • • • • • • • • • • • • •
IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.
DOUBLE PRECISION A.D.BIGA.HOLD
THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISIUM STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS ROUTINE.
THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT 10 MUST BE CHANGED TO DABS.
••••••••••••
SEARCH FOR LARGEST ELEMENT

 $D = 1 \cdot 0$

4

00000000

41.4

```
NK=-N
       DO 80 K=1,N
       NK = NK + N
       L(K)=K
       M(K) = K
       KK = NK + K
       BIGA=A(KK)
       DO 20 J=K,N
       IZ = N \times (J-1)
       DO 20 I=K,N
       IJ=IZ+I
    10 IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20
    15 BIGA=A(IJ)
       L(K) = I
١
       M(K) = J
    20 CONTINUE
С
С
           INTERCHANGE ROWS
С
       J = L(K)
       IF(J-K) 35,35,25
    25 KI=K-N
       DO 30 I=1,N
       KI = KI + N
       HOLD = -A(KI)
       JI = KI - K + J
       A(KI) = A(JI)
    30 A(JI) =HOLD
С
С.
           INTERCHANGE COLUMNS
С
    35 I = M(K)
       IF(I-K) 45,45,38
    38 JP=N*(I-1)
       DO 40 J=1,N
       JK = NK + J
       JI = JP + J
       HOLD = -A(JK)
       A(JK) = A(JI)
   40 \quad A(JI) = HOLD
С.
           DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
С
С
           CONTAINED IN BIGA)
С
    45 IF(BIGA) 48,46,48
    46 D=0.0
       RETURN
    48 DO 55 I=1,N
       IF(I-K) 50,55,50
    50 IK = NK + I
       A(IK) = A(IK)/(-BIGA)
    55 CONTINUE
С
Ċ
           REDUCE MATRIX
С
       DO 65 I=1.N
       IK = NK + I
       HOLD=A(IK)
       I J = I - N
       DD 65 J=1,N
```

Fin 27

```
I J = I J + N
       IF(I-K) 60,65,60
 60 IF(J-K) 62,65,62
    62 \text{ KJ} = \text{IJ} - \text{I} + \text{K}
       A(IJ) = HOLD \times A(KJ) + A(IJ)
    65 CONTINUE
С
С
           DIVIDE ROW BY PIVOT
С
       KJ = K - N
       DO 75 J=1.N
       KJ = KJ + N
       IF(J-K) 70,75,70
    70 A(KJ) = A(KJ) / BIGA
    75 CONTINUE
С
           PRODUCT OF PIVOTS
С
С
       D=D*BIGA
С
С
           REPLACE PIVOT BY RECIPROCAL
С
       A(KK) = 1.0 / BIGA
    80 CONTINUE
С
           FINAL ROW AND COLUMN INTERCHANGE
С
С
       K = N
  100 \text{ K} = (\text{K} - 1)
       IF(K) 150,150,105
  105 I = L(K)
       IF(I-K) 120,120,108
  108 \ JQ = N * (K - 1)
       JR = N \times (I - 1)
       DO 110 J=1,N
       1K = 10 + 1
       HOLD=A(JK)
       JI = JR + J
       A(JK) = -A(JI)
  110 A(JI) = HOLD
  120 J = M(K)
       IF(J-K) 100,100,125
  125 KI=K-N
       DO 130 I=1,N
       KI = KI + N
       HOLD = A(KI)
       JI = KI - K + J
       A(KI) = -A(JI)
  130 A(JI) = HOLD
       GO TO 100
  150 RETURN
       END
```

SUBROUTINE NSCRWR(J,N,DX,DY,NOTR) DIMENSION DX(NOTR),DY(NOTR) WRITE (9,10) J,N WRITE(9,11) (DX(I),I=1,NOTR) WRITE(9,11) (DY(I),I=1,NOTR) RETURN FORMAT (215) FORMAT ((15E16.8))

END

 $\frac{10}{11}$

10

11

SUBROUTINE NSCRRE(J.N., DX, DY, NOTR) DIMENSION DX(NOTR), DY(NOTR) READ (9,10) J.N READ(9,11) (DX(I), I=1, NOTR) READ(9,11) (DY(I), I=1, NOTR) RETURN FORMA1(2I5) FORMAT ((15E16.8)) END

SUBROUTINE NFILRE(NA, NB, NC, SFX, SFY, PHI, DXL, DYL, NOTR) DIMENSION DXL(NOTR), DYL(NOTR) READ(7,14)NA, NB, NC, SFX, SFY, PHI READ(7,15)(DXL(I), I=1, NOTR) READ(7,15)(DYL(I), I=1, NOTR) RETURN-FORMAT(3I10, 3E16.8) FORMAT((15E16.8)) -9-5

END

14

15

SUBROUTINE NFILWR(NA,NB,NC,SFX,SFY,PHI,DXL,DYL,NOTR) DIMENSION DXL(NOTR),DYL(NOTR) WRITE(7,14)NA,NB,NC,SFX,SFY,PHI WRITE(7,15)(DXL(I),I=1,NOTR) WRITE(7,15)(DYL(I),I=1,NOTR) RETURN FORMAT(3110,3E16.8) FORMAT((15E16.8))

15 FORI END

14

SUBROUTINE OCCM(T,PROP,IDF,X,INFLU,SFS,SFL,SFA,F,G) C--OCCURRENCE MATRIX DEVELOPMENT DIMENSION T(5,5),PROP(5),TR(5,5),TC(5,5) CALL IDENT(T,5) EI=E*PROP(1)*SFS GA=G*PROP(2)*SFA S=0. IF(GA)120,120,110

```
SUBROUTINE SETOC(NSEC,ZI,EYE,NO,ZO,O,NP,ZP,P,ZLEN,HOCC,ODATA)
C--ROUTINE TO SET UP OCCURRENCE DATA VECTORS
      DIMENSION ZI(20), EYE(20), ZO(20), Q(20), ZP(50), P(50), ODATA(8,50),
     +70CC(70)
С
C--DETERMINE LOCATIONS FOR ALL OCCURRENCE CHANGES
      7 \cap CC(1) = 0.
      Z \cap CC(2) = ZLEN
      MDCC=2
C--FIRST ARRANGE X-SECTION CHANGES IN ASCENDING ORDER LEFT TO RIGHT
      ZI(NSEC+1)=ZLEN
      DO 20 N=1,NSEC
  10
      IF(ZI(N)-ZI(N+1))20,20,30
  20
      CONTINUE
      GO TO 40
  30
      SAVE=7I(N)
      ZI(N) = ZI(N+1)
      7I(N+1) = SAVE
      SAVE=EYE(N)
      FYF(N) = FYE(N+1)
       EYE(N+1) = SAVE
      GO TO 10
  40
      DO 50 N=1, NSEC
      NOCC = NOCC + 1
      Z \cap C C (N \cap C C) = Z I (N)
  50
С
      IF(NO)110,110,60
  60
     ZO(NO+1) = ZLEN
C--ARRANGE UNIFORM LOADS IN ASCENDING ORDER LEFT TO RIGHT.
  70
     DO 80 N=1,NO
       IF(ZO(N) + ZO(N+1)) 80, 80, 90
      CONTINUE
  80
      GO TO 95
  90
      SAVE=70(N)
       ZO(N) = ZO(N+1)
     ZO(N+1) = SAVE
       SAVE=O(M)
      O(N) = O(N+1)
       \cap (N+1) = SAVE
      GO TO 70
  05
      DO 100 N=1.NO
      NOCC = NOCC + 1
       7 \cap CC(N \cap CC) = 7 \cap (N)
 100
 110
      IE(NP)200,200,120
 120
      ZP(NP+1)=ZLEN
C--ARRANGE CONCENTRATED LOADS IN ASCENDING ORDER LEFT TO RIGHT
      DO 140 N=1.NP
 130
       IF(ZP(N)-ZP(N+1))140,140,150
 140
      CONTINUE
      GO TO 160
       SAVE=ZP(N)
 150
       7P(N) = ZP(N+1)
       7P(N+1) = SAVE
       SAVE=P(N)
       P(N) = P(N+1)
       P(N+1) = SAVE
      GO TO 130
```

- 4:7

```
160
      DO 170 N=1.NP
      NOCC=NOCC+1
      7 \cap CC(N \cap CC) = ZP(N)
 170
C--ARRANGE OCCURRENCE LOCATIONS IN ASCENDING ORDER LEFT TO RIGHT
 200
      CALL SORT(ZOCC, NOCC)
C
C--INSERT OCCURRENCE DATA
       NOCC=NOCC-1
      DO 500 J=1.NOCC
       DDATA(6,J) = ZOCC(J)
      ODATA(7, J) = ZOCC(J+1)
       \mathsf{ODATA}(8,J)=1.
C-- ODATA(8,J) INDICATES IF A CONCENTRATED CONDITION OCCURRS AT THE LEFT FM
  AN OCCURRENCE FIELD. IF SET TO 1, NONE EXISTS. IF SET TO 2, OME DOES.
C.
      DO 210 I=1.5
       ODATA(I,J)=0.
 210
      DO 230 N=1, NSEC
       IF(ZI(N)-ZOCC(J))220,240,250
 220
       IF(ZI(N+1)-ZOCC(J))230,230,240
 230
      CONTINUE
 240
      ODATA(1, J) = EYE(N)
 250
       IF(NO)300,300,260
 260
      DO 280 N=1,NO
       IF(ZO(N)-ZOCC(J))270,290,300
      IF(ZO(N+1)-ZOCC(J))280,280,290
 270
 280
       CONTINUE
 290
       \Pi D \wedge T \wedge (3, J) = O(N) 
 300
      IF(NP)400,400,310
 310
      DO 320 N=1,NP
       IF(ZP(N)-ZOCC(J))320,315,400
 315
      DDATA(5, J) = P(M)
       (0) \land T \land (8, J) = 2.
 320
      CONTINUE
 400
       CONTINUE
 500
      CONTINUE
       RETURN
       END
```

SUBROUTINE SHIP1(NCARD,MAC())	
CROUTINE DEVELOPS FINITE ELEMENT STIFFNESS MATRICES	
CFOR THE TRANSVERSE MEMBER	
C FORMATION OF STIFFNESS MATRICES	
DIMENSION BKK(84,84),BKH(84,84),BK(84,84),BK(84,84),MOB(25)	
DIMENSION UNITS(4),ND(6),NONO(25),N1(25),IPO(10),F1	」(主))
DIMENSION X(25,40),Y(25,40),GNU1(4),DC(2.2),	
<pre>ISK(6,6), DI(6,6),AI(6,6),AJ(6,6),AK(6,6),AL(6,6),SK</pre>	οΤ(6,6),
2SKAJ(6,6),SKAK(6,6),SKAL(6,6),A1(6,6,4),A2(6,6,4),S	(A)(6.6.4),
3 SKA2(6,6,4)	
DIMENSION IM(4),JM(4),ZAI(6),ZAJ(6),ZAK(6),ZAK(6),	X T (6)
DIMENSION AQX(84,84)	
COMMON K1, MEMTO, NOMAT, MOB, ID, NORO, NM1	
COMMON CUNITS , ND , NOMO , N1 , IPO	• F10
COMMON X,Y,Z,E,NOBB,MCOM,NUBU,MCON,GNU	
COMMON GNUL, MEMNO, MEMTYP, FA, IFSF, IFI	
COMMON IFJ , IFK , IFL , IMI , JAI	• 1 et 1
COMMON JNJ , INK , JNK , INK , INL , JNL	• P <u>1</u>
COMMON P2 , P3 , P4 , P5 , P6	• X.J

COMMON YK DC SK DI XL YL SKAJ COMMON AT $A_{,1}$ ΔK AL SKAL SKA1 SKA2 COMMON SKAK SKAL Δ2 Δ1 . COMMON 17 XK NOMEM ICOUNT RK MC • COMMON MA2 ZAI · 201 IM NA1 JM ٠ ٠ COMMON . ALPHA 7 AK ZAL ITEMP • XI COMMON/K23RM/KH(3,49),KHB(4,49),KJ,KJB,IFD,LJ(4) С IPO(1) = TEMPERATURE FLAG. ITEMPPIO(1) IS USED TO PASS THE TIME OF DAY С CALL INPUT IF (NORO.GT.25) GO TO 331 IF (NOMAT.GT.4) GO TO 331 $K_{1} = 1$ IJK=000 99 I=1.NOB0 90 NOB(T) = N1(T)IF (NOBO.GT.NORO) GO TO 331 IF (NOBB.GT.1) GO TO 331 IF (MCON.GT.1) GO TO 331 **(**. NOBO=NUMBER OF ROWS WITH BOUNDARY CONDITIONS С NOB(I) IMPLIES BOUNDARY CONDITION AT THE END OF NOB(I)TH ROW NOBB=1, FIXED IN X-DIRECTION, NOBB=0, FIXED IN Y DIRECTION С С MCON=NUMBER OF BOUNDARY CONDITION AT 1ST ROM. С MOB(I) IMPLIES BOUNDARY CONDITION AT MOB(I) TH NUDE С MCOM SAME AS NOBB BUT FOR BOUNDARY CONDITIONS OF 1ST ROW $K_{,1} = 0$ CALL REWIND(3) CALL REWIND (4) IPO(1) = ITEMPND(1) = 3ND(2) = 5ND(5) = 1GD TO 333 331 WRITE (6,332) S TOP 333 MACO=MAXCOL (NN1, NONO, NORO) NOMEM=0 ICOUNT=1N1(1)=0ICOL1=NN1*NONO(1) ICOL2=NN1*NONO(2)DO 9 I=1.ICOL1 00 9 J=1,ICOL1 9 BK(I,J)=0.0 IJK=IJK+111 CALL INFO(IJK) IF (INI-ICOUNT) 12,12,13 12 IF(MEMTYP) 13,13,26 26 IZ = ND(MEMTYP)IF(NOMEM.GT.O) GO TO 14 DO 24 I=1.ICOL1 DO 24 J=1,ICOL2 24 BKK(I,J)=0.DO 25 I=1, ICOL2 DO 25 J=1, ICOL2 25 $\mathsf{RKH}(I,J)=0$. CONTINUE 14 DD 20 K=1.4 IM(K) = 0 $J \vdash (K) = 0$

```
DO 20 I=1.IZ
      DO 20 J=1,NN1
      A1(I_{\bullet}J_{\bullet}K)=0.0
      A2(I.J.K)=0.0
       SKA1(I, J, K)=0.0
   20 SKA2(I,J,K)=0.0
      MA1=0
      NA2=0
      GO TO (1,2,5,5,5), MEMTYP
    1 CALL MEM1
      GO TO 10
    2 CALL MEM2
      GO TO 10
    5 CALL MEM5
        IFSF = 1
                         FORCE ONLY
C
С
        IFSF = 2
                         FORCE AND STRESS
С
        IFSF = 3
                         STRESS ONLY
        FOR THERMAL STRESSE PROBLEM IFSE MUST BE GREATER
С
C.
        THAN ZERO FOR ALL MEMBERS
   10 IF (IFSF) 22,22,23
     WRITE(4,3)MEMNO,MEMTYP,INI,JNI,INJ,JNJ,INK,JNK,INL,JML,IFSF,1+1,TH
  23
     1J, IFK, IFL, NC, AI, AJ, AK, AL, SKAI, SKAJ, SKAK, SKAL, DI
      N1(INI) = N1(INI) + 1
   22 DO 30 I=1,NA1
        IMM = IM(I)
        DO 30 J=1,NA1
        JMM = IM(J)
      CALL TRAMPS(A1, I, IZ, NC, SKA1, J, IMM, JME, BK)
 30
      IF(NA2)16,16,31
   31 DO 35 I=1,NA1
      IMM = IM(I)
      DO 35 J=1.NA2
       JMM = JM(J)
 35
       CALL TRAMPS(A1, I, IZ, NC, SKA2, J, IMM, JHM, BKK)
      DO 36. I=1, MA2
       IMM=JM(I)
       DO 36 J=1.NA2
       (L)ML=MML
      CALL TRAMPS(A2, I, IZ, NC, SKA2, J, IMM, JAMM, RKH)
 36
   16 CONTINUE
      NOMEM=NOMEM+1
       GO TO 11
   1.3 IRO=INI-1
        DO 49 IP=1,NOBO
          IF (IRO.NE.NOB(IP)) GO TO 49
         IK = NONO(IRO) * 2 - NOBB
          BK(IK,IK)=BK(IK,IK)*1000000.*FA
   49
         CONTINUE
          IF (IRO.NE.1) GO TO 233
       IK=MDB*2-MCOM
         BK(JK,JK)=BK(JK,JK)*1000000.*FA
 233
       CALL K3WR(IRD, ICOL1, ICOL2, BK, 0, AQX, MACO)
       IF(INI-NORO.GT.O) GO TO 999
       CALL K3WR(IRO,ICOL1,ICOL2,BKK,-1,AOX,MACO)
       DO 15 I=1, ICOL2
       DO 15 J=1, ICOL2
 15
       BK(I,J) = BKH(I,J)
       ICOL1 = NN1 \times NONO(INI)
         IF (INI, EO, NORD) GO TO 70
       ICUTS=WW1*NUNU(IWI+1)
```
```
GO TO 71
         ICOL2=ICOL1
   70
        ICOUNT=INI
   71
      N1(INI)=0
      NOMEM=0
      IF(JNI)11.11.12
 999
      KJ = 0
      CALL REWIND (3)
      CALL REWIND (4)
      WRITE (6.102)ID
      WRITE(6,100)ID, NORO, NN1, NOMAT, ITEMP, (UMITS(I), I=1,4)
      WRITE(6,110)NOBD,MCON,NOBB,MCOM
      WRITE(6, 110)(NOB(I), I=1, NOBO)
      MRITE(6,110) MOB, IFSF
      WRITE(6,103)FA
      WRITE(6,103) E, GNU, ALPHA
      WRITE(6,110) (NOND(L),L=1,NORO)
      RETURN
   3
      FORMAT(1615,/,(15E16.8))
   1.
      FORMAT(1215,/,(15E16.8))
  100 \text{ FORMAT}(515, 4A6)
  102 FORMAT (24H1DATA FOR PROBLEM NUMBER, T6)
  103 FORMAT(E10.2.F7.2.E10.2)
  110
      FORMAT(2013)
  332
       FORMAT (//25H INPUT ERKORS IN SHIP)
                                                   111
  400
       FORMAT (4E15.4)
      FND
      SUBROULINE SHP5(SPRING, MOR, MACH)
Ċ,
      MATRIX TRIANGULARIZATION
      INPUT OF FORCE DATA AND BACK SUBSTITUTIUM FOR FINAL
C.
      SOLUTION OF EQUATIONS
С
      DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), PIO(10),
     1 \text{ INDEX}(084,3)
       DIMENSION BK(84,84), BK2(84,84), BTEMP(84)
       DIMENSION AOX(84,84), DUMB(755)
      DIMENSION R(2100), VTEMP(84)
      COMMON/K23RW/KH(3,49),KHB(4,49),KJ,KJB.IFD,LJ(4)
                                , КА
                                          • ID
      COMMON
              K1.K2
                       , КЗ
                                                    , MARLI
                                                               - si st 1
                                                              .
                                                              , 91n
                       , ND

    NOND

                                          • All
                                                    • IPO
      COMMON
              UNITS
      COMMON NUMPO, R, BK2, BTEMP, VTEMP, DUMB
        COMMON/INFLU/AF(50,50),EIG(50),PY(50),wHILE, de, Loud(100))
     1 .LROW(100), DX(50), ME
      COMMON/SAFE/ RK, DMY(444)
      COMMON/SHIP/NOLO,LNO(100),SEX(100),SEY(100),2017(100),000 Y(105)
      EXTERNAL GETED
      INTEGER*4 ADROF
```

DATA FN/I-A I/

CALL RCALL(GETED,2,0,ADPOF(FM),1,1FP)

KKK = 0

KJ =0

KJR=0

CALL REWIND (3)

```
CALL K3RE(IRU, ICOL1, ICOL2, BK, 0, AOX, MACO)
```

```
DO 35 II=1, MORO
```

```
IF (MOR. EQ.O) GO TO 79
```

00 74 IK=1, NOLO

```
AN=PHI(IK)
      IF (II.NE.LROW(IK))
                              GO TO 74
         J1=LNOD(IK) \approx 2-1
         J_{2}=J_{1}+1
       A=C\cap S(AN)*SEX(IK)-SIN(AN)*SEY(IK)
         B=SIN(AN)*SFX(IK)+COS(AN)*SFY(IK)
       BK(J1,J1) = BK(J1,J1) + A \times SPRING
       BK(J2,J2) = BK(J2,J2) + B \times SPRING
 74
      CONTINUE
79
     CONTINUE
     CALL MATINS(BK,84,ICOL1,BK2,84,00,DD,M,INDEX)
     GO TO (36,38),M
  38 WRITE (6,111) IRO
     WRITE (6,121) II,DD
     S TOP
36
     CALL K2WR(IRO,ICOL1,ICOL2,BK,O ,AOX,MACD)
     IF(II-NORD) 40,39,39
40
     CALL K3RE (IRO, ICOL1, ICOL2, BK2, -1, AOX, MACO)
     CALL K2WR (IRO, ICOL1, ICOL2, BK2, -1, AOX, MACO)
     DO 44 J=1.ICOL1
     00 43 K=1, ICOL2
     BTEMP(K) = 0.0
     43 BIEMP(K)=BIEMP(K)+BK(I,J)*BK2(I,K)
     00 44 I = 1 \cdot ICOL2
 44 BK(I,J) = BTEMP(I)
     DO 42 I = 1, ICOL2
     IIK=KKK+ICUFI+1
     00 42 J=1,ICOL1
     IKK=KKK+J
> 42 R(IIK)=R(IIK)-BK(I,J)*R(IKK)
     KKK=KKK+ICOL1
     DO 50 K=1.ICOL2
     00 51 I=1, ICOL2
     RTEMP(I)=0.0
     00 51 J=1,ICOL1
 51 BIEMP(I)=BIEMP(I)+BK(I,J)*BK2(J,K)
     DO 50 I=1, ICOL2
 50 BK2(I,K) = BTEMP(I)
     CALL K3RF(IR0,ICOL1,ICOL2, BK, 0, A0X, MACO)
     DO 35 I=1.ICUL1
     DO 35 J=1,ICOL1
35 \text{ BK}(I,J) = \text{BK}(I,J) - \text{BK}(I,J)
29
    L \cup (1) = K \vdash B (4, K \cup P)
     CALL POINT (IFD, LJ.1)
     KJ = 0
     CALL REWIND (3)
      WRITE (6,110) K1,K2,K3,K4
     DO 47 II=1, MORO
     CALL K2RE(IRO, ICOL1, ICOL2, BK, 0 , AOX, MACO)
     DO 45 I=1, ICOL1
     VTEMP(I)=0.
     DO 45 J=1,ICOL1
     IKK=KKK+1
45
     V TEMP(I) = V TEMP(I) + BK(I,J) * R(IKK)
     DO 46 I = 1, ICOL1
     IKK=KKK+I
     R(IKK) = VTEMP(I)
46
     IF (II-MORO)
                      49.54.54
4.0
     EALL K2RE(IRO, ICOL1, ICOL2, BK, -1, AOY, MACD)
```

1. S.

```
KKK=KKK-ICOL1
     DO 47 I=1.ICOL1
    IKK = KKK + I
     DO 47 J=1, ICOL2
47 R(IKK)=R(IKK)-BK(I,J)*VTEMP(J)
54
     K.IB=0
       WRITE (6,400) (R(I), I=1, IKK)
     RETURN
3
     FORMAT (15)
      EORMAT(10I10)
110
111 FORMAT(1H0,17HSINGULAR IN ROW ,13,14H
                                                 TOUGH LUCK)
121 FORMAT (9H ROW NO =. 110.10H DETERM =. F20.5)
400
     FORMAT (4E15.4)
```

```
END
```

```
SUBROUTINE SHIP4
  DIMENSION JACK(25,40), FORCE(25,40,2)
  DIMENSION UNITS(4), ND(6), NONO(25), N1(25), JPO(10), P10(10)
  DIMENSION V(2100), UU(6), OO(6), AI(6,6), AJ(6,6), AK(6,6), AL(6,6),
 1SKAI(6,6), SKAJ(6,6), SKAK(6,6), SKAL(6,6), 01(6,6)
  DIMENSION VTEE(6.3)
                               Κ4
                 , K3
                                                    MARI
                                                              No.1
  COMMON
           K1,K2
                                         I ()
                              .
  COMMON
           UNITS
                     ND
                                NONO
                                          \mathbb{N}
                                                    IΡΟ
                                                               PIC
                   ,
                                                  ٠
                              •
  COMMON
           NUMER
                     V
                                          KKK
                                                               17
                                ΚK
                                                    III
                   ٠
                              ٠
                                        ٠
  COMMON
                     00
                                MEMNIO
                                          MEMTYP
                                                    INT
           UH
                                                               JNT
  COMMON
                     JMJ
                                IWK
                                          JAK
                                                    TEL.
                                                              Jul
           INJ
                                                  ,
                                                              ΑŢ
  COMMON
           IFSF
                     IFI
                                IFJ
                                         TEK
                                                   IFL
                                                              SKAK
  COMMON
           A.I
                     ٨K
                                AL
                                         SKAI
                                                  • SKAJ
                                                             .
  COMMON
           SKAL
                   , DI
                              , VTEE
                                              .DUMB(7606)
  COMMON/SAFE/JACK, FORCE, DMY (4500)
  WRITE (6.110) ID
  III=1
  WRITE (6, 100) UNITS(1), UNITS(2), UNITS(3), UNITS(4)
  CALL REWIND (4)
  KKK=NN1*NONO(1)
  KK = 0
  DO 2 I=1.NORO
  JOE=NONO(I)
  DO 2 J=1, JOE
  JACK(I,J)=0
  DO 2 K=1.NN1
2 FORCE(T, J, K) = 0.0
  DO 59 II=1.NORO
  JOE = N1(II)
  IF (JOF) 23,23,22
  CONTINUE
  DO 58 JJ=1,JOE
   READ(4,6)MEMNE,MEMTYP, INI, JNI, INJ, JAJ, TAK, JAK, TAL, JAJ, TESE, (F1, F)
 1J, IFK, IFL, NC, AI, AJ, AK, AL, SKAI, SKAJ, SKAK, SKAL, OT
  TZ = ND(MEMTYP)
  GO TO (4,5,8,8,8), MEMTYP
4 CALL MEMB1
  GO TO 20
5 CALL MEMB2
  GO TO 20
R CALL MEMB5
```

```
20 TF (IESE-2) 10,10,58
```

10 IF (IFI) 12,12,11 11 CALL SR15(AI.OO.INI.JNI.IZ.NN1) 12 IF(IFJ) 14,14,13 13 CALL SR15(AJ.00.INJ.JNJ.17.NN1) 14 IF(IFK) 16,16,15 15 CALL SR15(AK, OO, INK, JNK, IZ, NN1) 16 IF(IFL) 58,58,17 17 CALL SR15(AL, OO, INL, JNL, IZ, NN1) 58 CONTINUE 23 CONTINUE KK = KKK59 $KKK = KKK + NN1 \times NDND(II+1)$ WRITE(6,101) UNITS(1), UNITS(2) DO 24 I=1.NORO JOE=NONO(I) DO 24 J=1, JOE IF(JACK(I.J)) 24.24.25 25 WRITE (6,102)III, I, J, (FORCE(I, J, K), K=1, NM1) 24 CONTINUE 26 IK=1 TKK = NNTWRITE (6.103)UNITS(3), UNITS(4) 00 27 I=1.NORO IN=NONO(I)DO 27 II=1.IN WRITE (6,104)III, I, II, (V(IV), IV=IK, IKK) IK = IK + NN127 IKK = IKK + NN1RETURN 104 FORMA1(1H , 18, 219, 3X, 6E14.6) 103 FORMAT(23H1NODE DISPLACEMENTS IN .246.//, 127H LOAD SYSTEM ROW NODE, 10X, 7HX-DISP, 7X, 7HY-DISP) 102 FORMAT(1H ,319,3X,6E14.6) 101 FORMAT(21H1CUT NODE FORCES IN ,246,//, 128H LOAD SYSTEM NODE.9X, 7HX-FORCE, 7X, 7HY-FORCE) ROW EORMAT(1615,/,(15E16.8)) 6 100 FORMAT(20H1MEMBER STRESSES IN ,206,14H PER SOUARE ,206// ROW MEMBER TYPE AND MUMBER 1132H LOAD SYSTEM X-STRESS 2Y-STRESS SHEAR STRESS IST PRINC STR 2ND PRINC SIR ANGLE IST P 3RINC/44X,14H(TRIANG PLATE),58X,16HSTRESS TO X-AXIS//48X, 48HX-STRESS,6X,7HX-GRAD ,7X,8HY-STRESS,6X,7HY-GRAD ,5X, 512HSHEAR STRESS/46X,12H(OUAD PLATE)//48X,8HX-STRESS/50X,6H(BAR)//) 110 FORMAT(27H1RESULTS FOR PROBLEM NUMBER, 18) END SUBROUTINE SORT (X.N.) C... ROUTINE ARRANGES X-ARRAY IN ASCENDING ORDER AND THREES

C... DUT DUPLICATE VALUES

DIMENSION X(M)

- 5 NM1=N-1
- IF(NM1)99,99.10
- 10 DO 15 I=1,NM1

```
IF(X(I)-X(I+1))15,20,30
```

- 15 CONTINUE
- 99 PETURN

 $20 \times (1) = X(M)$

N=N-1 GO TO 5 30 SAVE=X(I) X(I)=X(I+1) X(I+1)=SAVE GO TO 10 END

Ċ

С

С

SUBROUTINE SR14(KK, N, JN, AIJK, OU, III, KKK, JIN, LIK) SR14 BRANCH DISPLACEMENTS OR FORCES SHIP 4 DIMENSION V(2100), AIJK(6,6), OU(6), W(6) DIMENSION UNITS(4), ND(6), NONO(25), N1(25), IPO(10), PIO(10) COMMON K1,K2,K3,K4,ID,NORO,NN1,UNITS,ND,NONO,N1,1P0,PI0 COMMON NUMFO,V IF (IJK-IIN) 3.3.4 $3 I \Omega = KK + NN1 * (JN - 1)$ GO TO 5 4 IO = KKK + NN1 * (JN - 1)5 DO 1 I=1, NN1 II = IO + I $1 \quad \text{id} (I) = \forall (II)$ DO 2 I=1,N DO 2 J=1,NN1 2 OU(I)=OU(I)+AIJK(I,J)*W(J) RETURN END.

SUBROUTINE SR15(AIJK,00,II,JI,N,NN1) SR15 NODE FORCES SHIP 4 DIMENSION AIJK(6,6),00(6),FORCE(25,40,2),JACK(25,40) COMMON/SAFE/JACK,FORCE,DMY(4500) DO 1 J=1,NN1 DO 1 J=1,NN1 DO 1 J=1,N 1 FORCE(II,JI,J)=FORCE(II,JI,J)-AIJK(I,J)*00(I) JACK(II,JI)=1 RETURN END

```
SUBROUTINE SR4A(A,M,N,B,C)
SR4A MATRIX MULTIPLICATION SHIP 4
DIMENSION A(6,6),B(6),C(6)
DO 1 I=1.M
C(I)=0.0
DO 1 J=1,N
1 C(I)=C(I)+A(I,J)*B(J)
RETURM
END
```

```
SUBROUTINE SWTCH(I1,I2)
IF(I1-I2)99,99,10
10 I=I1
I1=I2
I2=I
99 RETURN
END
```

```
SUBROUTINE TEMPCO( NC,IZ,SKA,XI,7A)
DIMENSION SKA(6,6),XI(6),ZA(6)
DO 2 I=1,NC
ZA(I)=0.0
DO 2 J=1,IZ
2 ZA(I)=ZA(I)+SKA(J,I)*XI(J)
RETURN
END
```

	SUBROUTINE TMATT(XB,NB,X,TM,NOCC,NCON, PDATA,SES,SEL,SEA,E,G)
CR	OUTINE TO COMPUTE OCCURRENCE MATRIX FROM LOCATION
C 7	ER TO X
	DIMENSION TM(5,5),TO(5,5),TR(5,5),PROP(5),ODATA(8,50)
	INFLU=0
	IF(NCON)110,110,100
100	IF(X-XB)110,120,120
110	CALL IDENT(TM,5)
	NB=1
	XB=0.
	NCON = 1
120	NBBENB
	DO 300 NENBB,NOCC
	$X1 = \Omega D \Delta T \Delta (6, N)$
	X = ODATA(7, N)
	IDF = ODATA(8,N)
	DO 130 I=1,5
130	$PROP(\mathbf{I}) = ODATA(\mathbf{I}, \mathbf{W})$
ССН	ECK IF POINT MATRIX HAS BEEN USED IN 1ST OCCURENCE
•	IF(N-NBB)140,140,160
140	IF(XB-X1)160,160,150
150	IDF = 1
160	NB = N
	IF(X-X2)180,170,190
170	NB = N + 1
180	NSTOP=1
	Y = X - X B
	XB = X
	GD TD 295
190	NSTOP=0
	Y = X 2 - X B
	XB=X2
	GN TN 295
295	CALL OCCM(TO, PROP, IDE, Y, IMELU, SES, SEL, SEA, F.G)
	CALL MMULT(TO,TM,TR,5,5,5)
	CALL EQUAL(TM, TR, 5, 5)
	IF(NS10P)300,300,400

300 CONTINUE 400 RETURN END

14

SUBROUTINE TRAMPS(A,KA,IZ,NC,SKA,KB,JAH,JMM,HK) DIMENSION A(6,6,4),SKA(6,6,4),BK(84,84) DO 1 I=1,NC DO 1 J=1,NC DO 1 K=1,IZ IBK=IMM+I JBK=JMM+J 1 BK(IBK,JBK)=BK(IBK,JBK)+A(K,I,KA)*SKA(K,J,KB) RETURN END 57

SUBROUTINE TRV(NCARD) C...ROUTINE INPUTS DEFINITION OF TRANSVERSE AND GENERATES C...ALL FINITE ELEMENT DATA INTEGER DEFIN, BLANK COMMON /WORK/XC(42), YC(28), NONO(25), MXC, NYC, +DEFIN, NODE(40,25), LROW(100), LNOD(100) COMMAN /SAFE/UNITS(4), IT1(50), IT2(50), +JT1(50), JT2(50), THK(50), AX(100), IB1(100), IB2(100), +JR1(100), JB2(100), IO(100), JO(100), NCP(51), NOB(25) COMMON /SAFE/IERR.XLBHD.DECL,DESH, + 1, J, JROW1, JROW2, ICOL1, ICOL2, BLANK, JD, MORO, +NOMAT.NN1.ITEMP.NOBB.MCOM.NOBO.MCOM.NM(25), +X,Y,Z,SLOPE,NTA,K,NPAR,IESE,NOUT,NOMAX,JR01,JR02, +ICOL, JROW, MXCM], IEGNU, MEMNO, JP1, IP1, MI1, MI2, MI3, MI4, +T, AX1, AX2, AX3, AX4, AX5, J1, J2, JJ, II, IF1, IFJ, IFK, IFL, +NUL, P.MEMTYP.MEMTO, N. DMMY(6383) COMMON /MATRL/E, G, GNU, ALPHA, CONVE KODE=0PLANK=0DEFIN=1 IERR=0WRITE(6,200) WRITE(6,201) READ(5,300)XLBHD, DECL, DESH MRITE(6,300)XLBHD, DECL, DESH (* *C**SET UP BASIC GRID COORDINATES WRITE(6,202) READ(5,1) NXC, NYC WRITE(6.1) NXC, NYC WRITE(6,203) 00 50 I=1, MXC 50 $READ(5,2) \times C(I)$ MXC = MXC + 1XC(MXC) = XLBHDCALL SORT(XC, NXC) WRITE(6,208)(I,XC(I),I=1,WXC)WRITE(6,204)

```
00 51 J=1.NYC
```

```
51 READ(5,2) YC(J)
       YC(NYC+1)=DECL
       YC(NYC+2)=DESH
       MYC=NYC+2
       CALL SDRT(YC, NYC)
       WRITE(6,208)(J,YC(J),J=1,NYC)
       DO 100 I=1, NXC
       DO 100 J=1, NYC
       NODE(I,J)=DEFIN
  100
 C**
 C**DEFINE VOID AREAS WITHIN TRANSVERSE
       WRITE(6,205)
       READ(5,3) JROW1, JROW2, ICOL1, ICOL2
  110
       CALL SWITCH(JROW1, JROW2)
       CALL SWICH(ICOL1, ICOL2)
       WRITE(6,3) JROW1, JROW2, ICOL1, ICOL2
 C--ZERO JROWI WILL STOP INPUT OF VOID DEFINITION DATA
       IF(JROW1)150,150,130
       DO 135 J=JRDW1.JROW2
  130
       DO 135 I=ICOL1, ICOL2
  135
       NODE(I,J)=BLANK
       GO TO 110
C--PLOT TRANSVERSE PROFILE
  150
       DO 155 J=1, NYC
  1.55
       MM(J) = J
       WRITE(6.207)(NM(J).J=1.NYC)
       DO 140 I=1,NXC
       WRITE(6,206)I, (MODE(I,J), J=1, NYC)
  140
       CONTINUE
 C**DEFINE NUMBER OF NODES PER ROW
       Dfi 410 J=1, MYC
       NONO(J) = 0
       DO 405 I=1. NXC
       IF(NODE(I,J)-DEFIN)405,404,405
       MONO(J) = MONO(J) + 1
  404
       CONTINUE
  4()5
  410
       CONTINUE
 C * *
 C**BEGIN WRITING ON NCARD FILE
       ID = 7777
       MORD=NYC
       MOMAT=1
       MM1 = 2
       ITEMP=0
       WRITE(6,210)
       READ(5,301)UNITS(1),UNITS(2)
       WRITE(6, 301)UNITS(1), UNITS(2)
       WRITE(6.211)
       READ(5,301)UNITS(3), UNITS(4)
       WRITE(6,301)UNITS(3),UNITS(4)
       CALL REWIND (8)
 C--NCARD
             8
        WRITE (8,212) ID, MORO, NN1, MOMAT, ITEMP, (UNITS(T), 1=1,4)
 C--DEFINITION OF BOUNDARY CONDITIONS
       MOBO=0
       DO 166 J=1,NYC
       IF(NODE(NXC, J)-DEFIN)166,167,166
  167
       NOBO = NOBO + 1
       BOB(NDBD) = J
       CONTINUE
  166
```

```
MCON=1
      DD 168 I=1,NXC
      IF(XC(I)-XLBHD)168,169,169
 168
      CONTINUE
      MOB=NODET(I,NODE,DEFIN,1,NXC,NONO(1))
 169
      MOBC = I
      WRITE(6,272)
      WRITE(6,273)
      READ(5,1) NOBB, MCOM
      MRITE(6,1) NOBB, MCOM
C--NCARD
                       NOBO, MCON, NOBB, MCOM
      WRITE(8, 274)
      WRITE (8.274)
                       (NOB(I), I=1, NOBO)
      WRITE(8,274) MOB
      WRITE(6,289)
      READ(5.2) FA
      WRITE(6,2) FA
      WRITE(8,214) FA
      WRITE(6,311)NOBO
      WRITE(6,312)(NOB(I),I=1,NOBO)
      WRITE(6,314)MOBC,MOB
      WRITE(6,313)E, GNU, ALPHA
      WRITE(8,214)
                       E, GNU, ALPHA
C--NCARD
      WRITE(8,215)
                       (NONO(J), J=1, NORO)
      WRITE(6,282)
      WRITE(6,207)(NN(J),J=1,NYC)
      DO 406 I=1,NXC
      00 407
               J=1,NYC
      NCR(J) = 99999
      IF(NODE(I,J)-DEFIN)407,408,407
      NCR(J)=NODET(I,NODE,DEFIN,J,NXC,NONO(J))
 408
 407
      CONTINUE
      WRITE(6,251)I,(NCR(J),J=1,NYC)
 406
      CONTINUE
C**
C**DEFINE COORDINATES FOR NODES
      Z=0.
      SLOPE=(DECL-DESH)/XLBHD
      DO 430 = J=1, NORO
      Y = YC(J) * CONVF
      DO 420 I=1,NXC
      IF(NODE(I,J)-DEFIN)420,411,420
 411
      X = XC(I)
      IF(J-NORO)415,412,412
 412
      IF(X-XLBHD)413,415,415
 413
      Y=DESH+SLOPE*X
      IF(Y-YC(J-1))414,414,416
      Y = Y + 0.01 * (YC(J) - YC(J-1))
 414
 416
      Y=Y*CONVF
 415
      X = X * CONVF
C--NCARD
                       X, Y, Z
      WRITE(8,216)
 420
      CONTINUE
 430
      CONTINUE
C * *
C**DEFINE AREAS OF THE TRANSVERSE FOR DIFFERENT PLATE INICKWESSES
      WRITE(6,220)
      WRITE(6,221)
      READ(5.4) NTA
```

```
WRITE(6,4) NTA
      WRITE(6,260)
      WRITE(6,222)
      DO 450 K=1.NTA
      READ(5,5) THK(K), JT1(K), JT2(K), IT1(K), IT2(K)
      CALL SWTCH(JT1(K), JT2(K))
      CALL SWTCH(IT1(K), IT2(K))
      WRITE(6.261)THK(K).JT1(K).JT2(K).IT1(K).IT2(K).K
 450
      CONTINUE
      WRITE(6.220)
      WRITE(6,207)(NN(J), J=1, NYC)
      DO 456 I=1.NXC
      DO 458
              J=1.NYC
      NCR(J) = 9999
      IF(NODE(I,J)-DEFIN)458,457,458
 457
      DO 455 K=1,NTA
      IF(JT1(K)-J)451,451,455
 451
      IF(JT2(K)-J)455,452,452
 452
      IF(IT1(K)-I)453,453,455
 453
      IF(IT2(K)-I)455,454,454
 454
      NCR(J) = K
 455
      CONTINUE
 458
      CONTINUE
 456
      WRITE(6,251)I,(NCR(J),J=1,NYC)
(**)
C**DEFINE BAR ELEMENTS
      WRITE(6,223)
      WRITE(6,224)
      READ(5.4) NBAR
      WRITE(6,4) NBAR
      IF(NBAR)484,484,459
 459
      WRITE(6,225)
      DO 470 \text{ K}=1, \text{NBAR}
      READ(5,5) AX(K), JB1(K), JB2(K), IB1(K), JB2(K)
      IF(IB1(K)-IB2(K))461,460,461
 460
      CALL SWTCH(JB1(K), JB2(K))
      GD TD 469
 461
      IF(JB1(K)-JB2(K))463,462,463
 462
      CALL SWTCH(IB1(K), IB2(K))
      GO TO 469
 463
      IF(IABS(JB2(K)-JB1(K))-IABS(IB2(K)-IB1(K)))464,465,464
.464
      IERR=1
      WRITE(6,262)
      GO TO 469
 465
      IF(JB1(K) - JB2(K)) 469, 469, 466
      CALL SHICH(JB1(K), JB2(K))
 466
      ITEMP=IB1(K)
      IB1(K) = IB2(K)
      TB2(K) = TTEMP
 469
      CONTINUE
      WRITE(6,261)AX(K), JB1(K), JB2(K), IB1(K), IB2(K), K
 470
      CONTINUE
C * *
C**DEFINE OUTPUT REQUIREMENTS
 484
     WRITE(6,226)
      WRITE(6,228)
      READ(5,4) IFSF
      WRITE(6,4) IFSF
      NOMAX=100
      NOUT=0
```

i.

1

 $\leq \phi$

	WRITE(6.227)
471	PEAD(5, 6) IPOW. (COL1, (COL2)
	CALL SWIGHTIOLI, ICOLZ)
e de la composition	WRITE(6,6) JRUW, ICULI, ICULZ
	IF(JROW)477,477,472
472	DO 475 I=ICOL1,ICOL2
	IF(NODE(I.JROW)-DEFIN)475.473.475
473	IE(NOUT-NOMAX)474,476,476
476	
	$I \cup (N \cup \cup I) = I$
	$J \Pi (N \Pi U \Gamma) = J R \Theta W$
475	CONTINUE
	GO TO 471
476	WRITE(6.229)NOMAX
• • •	TEDD-1
($\frac{1}{1} \frac{1}{1} \frac{4}{1}$
4//	WR11E(6,230)
478	READ(5,6) ICOL, JRO1, JRO2
	CALL SWTCH(JR01, JR02)
	WRITE(6,6) ICOL, JRO1, JRO2
	TE(TCOL)485.485.479
470	$P_{1}(1002, 100, 100, 100, 100, 100, 100, 100,$
417	$\frac{1}{10} \frac{1}{10} \frac$
	IF(NUDE(ICUE,J)=DEFIN)482,480,482
480	IF(NOUT-NUMAX)481,483,483
481	NOUT=NOUT+1
	IO(NOUT)=ICOL
	JO(NOUT) = J
482	CONTINUE
102	
× 0 7	
485	WRITE(D,229)MUMAX
	TEKK=T
	GO TO 478
485	CONTINUE
C * *	
C**8E(GIN SETTING UP ELEMENTS BY ROW
	$N \times C M = N \times C - 1$
	I ECNU-O
	100 ± 1000 $J=1$, NORO
	MEMNO=0
	JP1=J+1
•	DO 950 I=1,NXCM1
	IP1=I+1
	NII=NODET(I_NODE_DEEIN_L_NXC_NONO(L))
	NI2-NODET(IDI NODE DEEIN NYC NODO(1))
	NIZ-NODEL(IF), MODE DEEIN DI NYC MONO(DI)
	NI3=NUDEI(I,NUDE,DEFIN,JPI,NXC,WUMU(JPI))
	NI4=NODET(IP1,NODE,DEE)N,JP1,NXC,NONO(JP1))
	IF(J-NORA)605,675,675
() * *	
C**1F	ST FOR THICKNESS AREA
605	DD 650 K=1.NTA
5 5 5 C 20	IE(JT1(K)-1)610-610-650
610	I = (1 + 1 + 2) + (1 + 2) + (2 + 2
	$\frac{1}{1} \left[\left(\frac{1}{1} \right) \left($
615	$1 = (1 + 1) (K) = 1 + 0 \ge 0 + 0 \ge 0 + 0 \ge 0$
620	1+(1)(2(K)-1)(5)(+650+625)
625	J = THK(K) * CONVF
	GO TO 675
650	CONTINUE
	1=0.
	TE(NODE(I.I)-DEEIN)651.675.651
	and an

4/

```
SUBROWTINE SWTCH(I1,I2)
IF(I1-I2)99,99,10
10 I=I1
I1=I2
I2=I
99 RETURN
END
```

```
SUBROUTINE TEMPCO( NC,IZ,SKA,XI,ZA)
DIMENSION SKA(6,6),XI(6),ZA(6)
DO 2 I=1,NC
ZA(I)=0.0
DO 2 J=1,IZ
2 ZA(I)=ZA(I)+SKA(J,I)*XI(J)
RETURN
END
```

6a

SUBROUTINE TMATT(XB,NB,X,TM,NOCC,NCON,ODATA,SES,SEL,SEA,E,G) C...ROUTINE TO COMPUTE OCCURRENCE MATRIX FROM LOCATION C... 7 ER TO X DIMENSION TM(5,5), TO(5,5), TR(5,5), PROP(5), ODATA(8,50) INFLU=0 IF(NCON)110,110,100 100 IF(X-XB)110,120,120 110 CALL IDENT(TM,5) MB=1XB=0. NCON=1120 MBB = NBDD 300 N=NBB.NOCC X1 = ODATA(6.N) $X_2 = ODATA(7, N)$ IDF = ODATA(8,N)DO 130 I=1,5 130 PROP(I) = ODATA(I,N)C--CHECK IF POINT MATRIX HAS BEEN USED IN 1ST OCCURENCE IF(N-NBB)140,140,160 140 IF(XB-X1)160,160,150 150 IDF=1MB=N 160 IF(X-X2)180,170,190 170 MR = N+1180 NSTOP=1Y = X - X BXB = XGO TO 295 190 NSTOP=0 Y = X2 - XBXB = X2GO TO 295 295 CALL OCCM(TO, PROP, IDF, Y, INFLU, SFS, SFL, SFA, E, G) CALL MMULT(TO,TM,TR,5,5,5) CALL EQUAL(TM, TR, 5, 5) IF(NS10P)300,300,400

```
방송 경제에 쳐서 늦는 것 같은 것은 것 같이 다.
    651 IF(NODE(IP1, JP1)-DEFIN)675,652,675
          IF(NODE(I, JP1)-DEFIN)675,653,675
     652
    653
         IF(NODE(IP1,J)-DEFIN)675,655,675
          WRITE(6,235)I.J
     655
          IERR=1
   C**
   C**TEST FOR BAR ELEMENTS
     675
          A \times 1 = 0.
          AX2=0.
          AX3=0.
          \Delta X 4 = 0.
          AX5=0.
          IF(NBAR)770,770,676
          DD 750 K=1.NBAR
    676
   C.
   C--HORIZONTAL BARS....JB1=JB2
          IF(JB1(K)-J82(K))688,680,688
   C----BOTIOM BAR
         IF(JB1(K)-J)750,682,750
     680
          JF(IB1(K)-I)684,684,750
     682
          IF(IB2(K)-IP1)750,686,686
     684
     686
          AX2=AX(K)*CONVE*CONVE
          GO TO 750
    688
          IF(J-NORD)696,750,750
   С
   C--VERTICAL BARS .... IB1=IB2
    696
         __IF(IB1(K)-IB2(K))714,698,714
   C----LEET HAND BAR
         IF(IB1(K)-I)706,700,706
     698
          IF(JB1(K)-J)702,702,750
     700
          IF(JB2(K)-JP1)750,704,704
     207
          AX1=AX(K)*CONVF*CONVF
     704
          GO TO 750
   C----BIGHT HAND BAP
         IF(IB1(K)-IP1)750,708,750
     706
     708
          IF(JB1(K)-J)710,710,750
     710
         IF(JR2(K)-JP1)750,712,712
     712
          AX5=AX(K)*CONVF*CONVF
          GO TO 750
   С
   C--DIAGOMAL BARS
     714
          JI = JBI(K)
          J_2 = J_B_2(K)
          IF(IB1(K)-IB2(K))716,716,732
   C----BAR BOITOM LEFT TO TOP RIGHT
          IF(IB1(K)-I)718,718,750
     716
          IF(IB2(K)-IP1)750,720,720
     718
     720
          II = IB1(K) - 1
          DA 730
                  JJ=J1,J2
          II = II + 1
          IF(JJ-J)730,722,750
          IF(II-I)750,724,750
     722
     724
          AX3=AX(K)*COMVF*COMVF
          GN TN 750
     730
          CONTINUE
          GO TO 750
   C----BAR TOP LEFT TH BUTTOM RIGHT
         -IF(IB1(K)-IP1)750,734,734
     732
     734
          IF(IB2(K)-I)736,736,750
```

736 [I=IB1(K)+]

63

```
DD 740
               JJ=J1, J2
 1. 19
      II = II - 1
      IF(JJ-J)750,738,740
 738
      IF(II-IP1)750,739,750
      AX4=AX(K)*CONVF*CONVF
 739
      GO TO 750
 740
      CONTINUE
      GN TN 750
      CONTINUE
 750
С
C--CHECK FOR LAST COLUMN
      IF(IP1-NXC)755,770,770
C--DO NOT INCLUDE RIGHT VERTICAL BAR UNLESS LAST COLUMN
 755
      AX5=0.
С
C--CHECK NODES FOR OUTPUT SELECTION
      I F I = 0
 770
      IFJ=0
      IFK=0
      IFL=0
      NUL = 0
      P=0.
      DO 800 K=1,NOUT
      IF(JD(K)-J)800,772,780
 772
      IF(IO(K)-I)800,774,776
      IFI=1
 774
      GD TO 800
      IF(ID(K)-IP1)800,778,800
 776
 778
      IFJ=1
      GO TO 800
      IF(JO(K)-JP1)800,782.800
 780
      TF(IO(K)-I)800,784,786
 782
      IFK=1
 784
      GD TO 800
 786
      IF(IO(K)-IP1)800,788,800
 788
      IFL=1
 800
      CONTINUE
      IF(J-NORD)805,900,900
C
C--CHECK NODE DEFINITIONS FOR VOIDS
      IF(NODE(I,J)-DEFIN)830,810,830
 805
 810
      IF(NODE(IP1, J)-DEFIN)840,812,840
      IE(NODE(I, JP1)-DEFIN)850,814,850
 812
      IF(NODE(IP1, JP1)-DEFIN)860,816,860
 814
C.
C--OUADRILATERAL PLATE ELEMENT
      CONTINUE
 816
       IF (NCARD.E0.0) GO TO 10
      KODE=1
       GO TO 836
 10
      MEMMO=MEMNO+1
      MEM TYP=2
      WRITE(8,250)
                       - MEMNO, MEMTYP, IEGMU, TESH, IEI, TEJ, IEK, TEL,
      + J, NI1, J, NI2, JP1, NI3, JP1, NI4, T, P, P, P, P, P
      GD TO 900
C-- J. IP1 VOID - NO PLATE POSSIBLE
 822
       \Delta X 2=0.
       \Delta X 4 = 0
       ^{A}X5=0.
       66 TO 900
```

```
C-- JP1.I VOID - NO PLATE POSSIBLE
 824 AX1=0.
      AX4=0.
      GO TO 900
C-- JP1, IP1 VOID - NO PLATE POSSIBLE
 826
      AX3=0.
      AX5=0.
      60 TO 900
C. (I.J) VOID
 830 AX1=0.
      AX2=0.
      AX3=0.
      IF(NODE(IP1,J)-DEFIN)822,832,822
      IF(NODE(IP1, JP1)-DEFIN)826,834,826
 832
 834
      IE(NODE(I, JP1)-DEFIN)824,836,824
C--TRI-PLATE UPPER RIGHT
 836
     MEMNO=MEMNO+1
      MEMTYP=1
                        MEMNO, MEMTYP, IEGNU, TESE, TEJ, TEK, IEL, MUL,
      WRITE(8,250)
     +J,MI2,JP1,NI3,JP1,NI4,NUL,NUL,T,P,P,P,P,P
      IF (KODE.E0.1) GO TO 860
      GD TD 900
C..(I,J) DEF., (IP1,J) VOID
 840 AX2=0.
      AX4=0.
      A \times 5 = 0.
      IF(NODE(IP1, JP1)-DEFIN)826,842,826
 842
      IF(MODE(I, JP1)-DEFIN)824,844,824
C--TRI-PLATE UPPER LEFT
.844 MEMNO=MEMNO+1
      MEMTYP=1
      WRITE(8,250)
                       MEMPHI,MEMTYP,IEGNU,IESE,IEI,JEK,IEL,MUL,
     +J.NI1.JP1.NI3.JP1.NI4.NUL.NUL.T.P.P.P.P.P.P
      GD TO 900
C..(I,J);(IP1,J) DEF., (I,JP1) VOID
 850
      \Delta \times 1 = 0.
      \Delta X 4 = 0.
      IF(NODE(IP1, JP1)-DEFIN)826,852,826
C--- TRI-PLATE LOWER RIGHT
      MEMNO = MEMNO + 1
 852
      MEMTYP=1
      VRITE(8,250)
                        MEMNO,MENTYP,IEGNU,IESE,IEI,IEJ,IEL,MUL,
     +J, NI1, J, NI2, JP1, NI4, NUL, NUL, T, P, P, P, P, P
      GN TN 900
C--- IRI-PLATE LOWER LEFT
      MEMNO=MEMN()+1
 860
      AX3=0.
      \Delta X 5 = 0.
      MEM TYP=1
      WRITE(8,250) MEMNN, MEMTYP, IEGNU, IESE, IE1, IEJ, IEK, 101,
     +J, NI1, J, NJ2, JP1, NI3, NUL, MUL, T, P, P, P, P, P
      KODE=0
      GO TO 900
C--BAR ELEMENTS
900
     MEMTYP=5
      IF(AX1)904,904,902
902
     KEMNO=MEMNO+1
      PRTTF(8,250)
                        MEMNO, MEMTYP, IEGNU, IESE, IEI, IEK, ODL, MOL,
     +J,NI1,JP1,NI3,NUL,NUL,NUL,NUL,AX1,P,P,P,P,P
904
     LE(AX2)908,908,906
```

```
906
      MEMNO=MEMNO+1
                        MEMNO, MEMTYP, IEGNU, IFSF, IFI, IFJ, NUL, NUL,
      WRITE(8.250)
     +J,NI1,J,NI2,NUL,NUL,NUL,AX2,P,P,P,P,P
      IF(AX3)912,912,910
 908
 910
      MEMNO=MEMN(1+1)
                        MEMNO, MEMTYP, IEGNU, JESE, IEI, IEL, NUL, HUL,
      WRITE(8.250)
     +J.NII, JPI, NI4, NUL, NUL, NUL, NUL, AX3, P, P, P, P, P
      IF(AX4)916,916,914
 912
 914
      M \in MN \cap = M \in MN()+1
                        MEMNO, MEMTYP, IEGNU, IFSF, IFJ, IFK, NUL, MUL,
      MRITE(8,250)
     +J,NI2,JP1,NI3,NUL,NUL,NUL,NUL,AX4,P,P,P,P,P
      TF(AX5)950.950.918
 916
 918
      M \in M \in M \cap D = M \in M \cap D + 1
                        MEMNO, MEMTYP, IFGNU, IFSF, IFJ, IFL, MUL, MUL,
      WRITE(8,250)
     +J.NI2.JP1.NI4.NUL,NUL,NUL,AX5.P.P.P.P.P.P
 950
      CONTINUE
      MEMTO=MEMTO+MEMNO
      IF(MEMNO)975.975.1000
 975
      WRITE(8.250)
                      NUL, NUL, NUL, NUL, MUL, MUL, MUL, MUL, MUL,
     +J,NOL,NUL,NUL,NUL,NUL,NUL,NUL,NUL,P,P,P,P,P,P
1000
      CONTINUE
      J = MORO + 1
                        WRITE(8,250)
     + J. NUL . NUL . MUL . MUL . NUL . NUL . NUL . P. P. P. P. P. P. P. P.
      CALL REWIND (8)
      WRITE(6,281)MEMTO
      TE(TERR)9999.9999.9998
9998
      STOP
9999
      RETURN
      FORMA1 (215)
   1
   2
      EORMAT (E15.5)
   3
      FORMAT(415)
   4
      FORMAT (15)
   5
      FORMA1(F15.5.415)
   6
      FORMAT(315)
      EORMAI(1H1. TRANSVERSE FINITE ELEMENT DEFINITION!)
 200
      FORMAT(/ X-LBMD, DEPTH CL, DEPTH SHELL!)
 201
      FORMAI(/, ! NO. X-COORDINATES(40), NO. Y-COURDINATES(25)!)
 202
      FORMAT(/, ! LIST X-COORDINATES!/! CUL!,4X, 'X')
 203
      FORMAT(/, LIST Y-COORDINATES'/' ROW',4X,'Y')
 204
      FORMAT(1H1,/, ' DEFINITION OF VOIDS'/
 205
     + LIST ROW1 . ROW2 . COL1 . COL2!)
      FOPMAT(/.I3.1X.25(I1.2X))
 206
      FORMA1(//,1X, 'C',/,1X,'O',5X,'ROW',/,1X,'L',2513/)
 207
 208
      FORMAT(14, F12.3)
      FORMAT(1H1,// UNITS OF FORCE!)
 210
      FORMAT( ! UNITS OF LENGTH!)
 211
      FORMA1(515,4A6)
 212
      FORMAT(E10.2, F7.2, E10.2)
 214
 215
      FORMA1(25I3)
 216
      FORMAT(3F10.2)
      FORMAT(1H1,/, PLATE THICKNESS DEFINITION!)
 220
      FORMAT( ! NO. AREAS OF COMMON THICKNESS (50) !)
 221
      FORMAT( ! LIST T, ROW1, ROW2, COL1, CUL2!)
 222
      FORMAT(1H1,/, BAR ELEMENT DEFINITION!)
 223
 224
      FORMAI(! NO. BAR ELEMENTS (100)!)
 225
      FORMAT( LIST AX, ROW1, ROW2, COL1, COL2)
      EORMAT(1H1./.! OUTPUT SPECIFICATIONS!)
 226
      FORMAT(/, ! SELECTED NODES BY HORIZONTAL SEQUENCE!,/,
 227
      +1 ROW. COLL. COL2!)
```

```
228 FORMAT( ! ENTER (1)NODE FORCE ONLY !/7X ! (2)FORCE AND STRESS !
    +/7X*(3)STRESS (NLY*)
229 FORMAT( * **MAX.NODES FOR DUTPUT SET TO'I8)
230 FORMAT(/, SELECTED NODES BY VERTICAL SEQUENCE ! . / .
    + COLUMN, ROW1, ROW2')
235 FORMAT( *** ERROR-THICKNESS NOT DEFINED FOR ROW ', 13, ', COL'
    +, I3)
250 FORMA7(13,711,812,6E15.7)
    FORMAT(/, I3, I2, 24I3)
251
260 FORMAT( ! NOTE-THICKNESS AREAS FOR BOTTOM ELEMENTS SHOULD !
    +./. BE ENTERED FIRST')
     FORMAT(1X,F12,3,416,3X,'(',12,')')
261
    FORMAT( ! **ERROR-FOLLOWING BAR ELEMENT INTERSECTS SETWEEN'
262
    +' NODES')
                                          RESTRICTED X-DEFLECTION =1!/.
    FORMAT(/ BOUNDARY CONDITIONS'/,'
272
         RESTRICTED Y-DEFLECTION =0')
    +1
    FORMAT( ! RESTRICTION C.L. SUPPORTS, BOTTOM SUPPORTS !)
273
274 \quad \text{FORMAT}(2013)
     FORMAT(//' YOU HAVE JUST GENERATED', I8, ' ELEMENTS')
281
282 FORMAJ(1H1, ROW NODE NUMBERING SYSTEM!/)
289 FORMAT(/, 'BOUNDARY CONDITION WEIGHTING FACTOR')
 300 FORMAT(3F15.5)
     FORMAT(2A6)
301
     FORMAT(/, ' THERE ARE', I3, ' C.L. SUPPORTS')
311
312 FORMAT(/, ' C.L. SUPPORTS ARE DEFINED FOR ROWS'/,
    +25I3)
    FORMAT(/' E =',F15.1,/,' GNU =',F10.3,/,' ALPHA =',
313
    +F10.6)
     FORMAT(/, SUPPORT AT BOTTOM ON COLUMN'I3, '(NODE'12,
314
```

+')') END 4.7

CZZZZI FR5 IDENTS, IDENTS, IDENT SUBROUTINE IDENT(T,N) DIMENSION T(-N,N) DO 5 I=1,N 00 4 J=1,N 4 1(I,J)=0. 5 T(I,I)=1. RETURN END

CZZZZI FR5 EOUALS, EOUALS, EOUAL SUBROUTINE EOUAL(T, TR, NR, NC) DIMENSION T(NR, NC), TR(NR, NC) DO 5 I=1, NR DO 5 J=1, NC 5 T(I,J) = TR(I,J) RETURN END

CZZZZI FR5 MMULTS,MMULTS,MMULT SUBROUTINE MMULT(A,B,C,N1,N2,N3) DIMENSION A(N1,N2),B(N2,N3),C(N1,N3) DO 1 I=1,N1 DO 1 J=1,N3 C(I,J)=0. DO 1 K=1,N2 1 C(I,J)=C(I,J)+A(I,K)*B(K,J) RETURN END

CZZZZIE FR5 MULT,MULT,MULT SUBROUTINE MULT (A,B,C,L,M) DIMENSION A(L,L),B(L,L),C(L,L) DO 2 I=1,M DO 2 J=1,M A(I,J)=0.0 DO 1 K=1,M 1 A(I,J)=A(I,J)+B(I,K)*C(K,J) 2 CONTINUE RETURN

END

CZZZIE FR5 TRANS, TRANS, TRANS SUBROUTINE TRANS(A, B, M, N) DIMENSION A(M, M), B(M, M) DO 1 I=1, N DO 1 J=1, N 1 A(I, J)=B(J, I) RETURN END

C TRANSVERSE PROGRAM. CHAZAL-PAYNE APRIL 1971 C THIS REPRESENTS A SIMPLE TEST DATA SET TO BE USED AS INPUT DATA FOR TH

1									
0.1									
10000									
2	F+09	0							
2.05	E+06	.3							
1.		•				•			
1.					s				
1.									
1									
2									
1									
1000.		2000	•		2000.				
5 5									
$0 \cdot 0$									
500.									
1000.									
1500.									
2000									
0.0									
1000									
1500.									
2000.									
0.0									
KG									
CM									
].									
1.0									
1		1							
16.0		1	5	1	5				
4									
10000.		5	5	1	5				
10000.		1]	1	5				
10000.		1	5	1	1				
10000.		1	5	3	3				
2 1	G								
< 1 00	2								
4 1	5								
00									
3.0	E+09	2.0	۲+۲)4)	75000-		5	2	2
3.0	F+09	2.0	F+(19	75000		5	ζ.,	*)
3.0	E+09	2.0	E+C)9	75000.		1	2	2
3.0	E+09	2.0	F+(19	75000.		1	4	5
0.	F+00	0	• E+0	0	0.				
3.0	F+09	2.0	E+0	19	75000.		3	2	Ц.
3.0	E+09	2 . 0	Ĕ+(19	75000.		1	2	4.
0.	E+00	0.	F+(0	0.				
1	· .								
0 3	2								
	E+00								
1. S.	F + (1(1								

0.25 E+04 E-01 -0.4 7.5 E+03 0. E+00 750. 4 4 1 1 5 5 250. 1 1 00 00 3 4 00 19. 24.5 840. 24.5 19. 840. 840. 24.5 19. THIS DATA IS AVAILABLE AS PUNCHED OUTPUT FROM LONGITUDINAL PROGRAM С -0.4959 E+05 0.96020 E+05 -0.16048E+06 0.27476E+06 -0.4959 E+05 0.96020 E+05 1

71

CONVERSION FACTOR TO BE APPLIED TO ALL DIMENSIONAL DATA INCLUDING COORDINATES, PLATE THICKNESS, BAR AREA BUT NOT INCLUDING YOUNGS MODULUS 0.10000

LENGTH OF LONGITUDINALS 10000.00000

1938 1948

NO. TRANSVERSES ALONG LENGTH 3

STANDARD LONGITUDINAL MOMENT OF INERTIA, SHEAP AREA 0.20000E 10 0.0

YOUNGS MUDULUS, POISSONS RATIO 0.20500E 07 0.30000

LIST STIFFNESS FACTORS OF ALL TRANSVERSES 14 ORDER EPON STERN 1.00000

1.00000

1.00000

NO. TRANSVERSES TO BE ANALYZED(5)

LIST TRANSVERSES TO BE ANALYZED BY POSITION FROM STERM 2

NUMBER OF EIGENVALUES TO BE USED

TRANSVEPSE FINITE ELEMENT DEFINITION

X-LBHD, DEPTH CL, DEPTH SHELL 1000.00000 2000.00000 2000.00000

ND. X-COORDINATES(40), ND. Y-COORDINATES(25)

2012 - **5**. 1997 - **5**. 1997 - State St

LIST	X-COORDINATES
COL	X III III
1	0.0
2	500.000
3	1000.000
4	1500.000
4	1500.000

5 2000.000

LIST Y-COORDINATES

ROW Y

1	· · · · · · · · · · · · · · · · · · ·
2	50r.000
3	1000.000
4	1500.000

5 2000.000

ύ 0 0 0 Γι21 κυμι κομς του τι του ς ΟΕΕΙΝΙΙΟΝ ΟΕ ΛΟΙΟΖ

τιτιτι

ττ

1 7

I E

1

ی دیکند میک درو د ۲۰۰۰ د l

ττιτ

ד ד ד ד ד ר ד ד ד ד ד פ לא פ ד ד נ ל נ

51111

.

a han a share a		
UNITS OF FORCE		
UNITS OF LENGTH		
BOUNDARY CONDITI	IONS	
RESTRICTED X-1	DEFLECTION =1	
RESTRICTED Y-L	DEFLECTION =0 - Currents - Pottom Surphoris	
$\frac{\mathbf{RESTRUCTION}}{1} 0$	SOBKIST COLLER SOLLOWIS	
BOUNDARY CONDITI 1.00000	ION WEIGHTING FACTUR	
THERE APE 5 C.L	SUPPORTS	
C.L. SUPPORTS AF	RE DEFINED FCR ROWS	
SUPPORT AT BOTT	DM ON COLUMN: 3 (NODE 3)	
E = 2050000	0.0	
GNU = 0.300		

7-9-

•

.

ROW NODE NUMBERING SYSTEM C

بأ المترجع ومعالمة

.

O ROW <u>L 1 2 3 4 5</u>

1 1 1 1 1 1 2 Ź 2. 2 2 2

33 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

....

المعجر الدراج

PLATE THICKNESS DEFINITION NO. AREAS OF COMMON THICKNESS (50) 1 NOTE-THICKNESS AREAS FOR BOTTOM ELEMENTS SHOULD BE ENTERED FIRST LIST T,ROW1,ROW2,COL1,COL2 16.000 1 5 1 5 (1)

Ŧ

PLATE THICKNESS DEFINITION C C C 0 RIJW <u>1 2 3 4 5</u>

1 1 1 1 1 1

2 1 1 1 1 1

 $3 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

4 1 1 1 1 1

511111

and the second second

BAR ELEMENT DEFINITION NO. BAR ELEMENTS (100) 4 LIST AX, ROW1, ROW2, COL1, COL2 10000.000 5 5 1 5 (1) (2) 5 1 (3) 3 (4)

and an and a second second second

•

....

.

n interneting name in the second s

	.
OUTPUT SPECIFICATIONS	
ENTER (1)NODE FORCE ONLY	
(2) FURCE AND STRESS	
(3)STRESS UNLY	
an generalen 💪 herselsen en en en state en	
SELECTED NODES BY HORIZONTAL SEQUENCE	
RNW, COL1, COL2	
2 1 5	
SELECTED NODES BY VERTICAL SEQUENCE	
CULUMN, RUWI, RUW2	
25020100 1 1 2 1 0 0 0 0 0.9999991 02	
35020000 1 1 1 2 0 0 0 0 0.9999991F 02	
42020011 1 2 1 3 2 2 2 3 0.1599999E 01	
55020000 1 2 1 3 0 0 0 0 0.9999991E 02	
62020111 1 3 1 4 2 3 2 4 0.1599999F 01	
75020100 1 3 2 3 0 0 0 0 0.9999991E 02	
85020100 1 3 1 4 0 0 0 0 0 0.9999991F 02	
92021011 1 4 1 5 2 4 2 5 0.15999999E 01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2502100 2 1 2 2 5 1 5 2 0.10799990 01 = 2502100 2 1 3 1 0 0 0 0 0 0.09999991 02 = 02	
$32021100 \ 2 \ 2 \ 3 \ 3 \ 2 \ 3 \ 3 \ 0.1509999F \ 01$	
42021101 2 3 2 4 3 3 3 4 0.1599999E 01	
55021000 2 3 3 3 0 0 0 0 C.9999991E 02	
62021110 2 4 2 5 3 4 3 5 0.15999990 01	
120200003 1 7 2 4 1 4 2 9.15997900 01	
25020000 311 4 1 0 3 0 0 0.0000017 0 2	
32020000 3 2 3 3 4 2 4 3 0.1509999E 01	
42020101 3 3 3 4 4 3 4 4 0.1599999E 01	
= 55027000 - 3 - 3 - 4 - 3 - 0 - 0 - 0 - 0 - 9999991E - 02 - 43621000 - 3 - 4 - 5 - 6 - 15000000E - 03 - 4362100000E - 0362100000E - 0362100000E - 0362100000E - 0362100000E - 0362100000E - 03621000000E - 0362100000E - 0362100000E - 03621000000E - 0362100000E - 0362100000E - 03621000000E - 03621000000E - 0362100000E - 03621000000E - 03621000000E - 0362100000E - 0362100000E - 03621000000E - 03621000000E - 0362100000E - 03621000000E - 0362100000E - 0362100000E - 0362100000E - 03621000000E - 03621000000E - 03621000000E - 03621000000E - 0362100000E - 036210000000E - 03621000000E - 03621000000E - 0362100000000E - 036210000000000E - 0362100000000000000000000000000000000000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
32020000 4 2 4 3 5 2 5 3 0.15999996 01	
42020101 4 3 4 4 5 3 5 4 0.1509999F 01	
55020000 4 3 5 3 0 0 0 0 0.0999991E C2	
62021010 4 4 4 5 5 4 5 5 0.1599999E 01	
15020030 5 1 5 2 0 0 0 0 0.9999991E 02	
25020000 5 2 5 3 0 0 0 0 0.99999916 02	
35020100 ちょちち くしつ 0 0 0,9999991102 45021000 ちょちち ぐっつ 0 00000015 02	
	С. О
	5. • 5.*

YOU HAVE JUST GENERATED 32 ELEMENTS

DEFINITIONS OF LONGITUDINALS

IX = MOMENT OF INERTIA OF LONGIT-L BENDING IN X-DIRECTION OF TRANSVERSE IY = MOMENT OF INERTIA OF LONGIT-L BENDING IN Y-DIRECTION OF TRANSVERSE

LIST BY HORIZONT	AL SEQUENCE				
IX, IY, A, ROW, C	OL1, COL2				
0.30000E 10	0.200000E 10	7500 0.000000	5	2	2
0.300000E 10	0.200000F 10	75000.000000	5	4	5
C.30000E 10	0.20000E 10	75000.000000	1	2	2
0.300000F 10	0.20000F 10	75000.000000	1	4	5
0.0	0.0	0.0	Ğ	0	0
LIST BY VERTICAL	SEQUENCE				
IX, IY, A, COLUMN	, ROW1, ROW2				
C.300000E 10	0.2C0000E 10	75000.000 660	3	2	4
0.300000E 10	0.20000E 10	75000.000000	1	2	4
0.0	C.O	Ŭ . 0	Ō	0	Ú.

THERE ARE A TOTAL OF 12 LONGITUDINALS

•

LONGITUDINAL NUMBERING SYSTEM

C O ROW I 1 2 3 4 5	
0 6 11 16 0	
2 0 0 0 22	
0 8 13 18 0	
4 0 0 0 24	
5 0 0 0 25	
EIGENVALUES AND EIGENVECTORS	· · · · · · · · · · · · · · · · · · ·
0.500000E 00 0.707107E 00	0.50000E 00
0.176470E 00	
-0.707108E 00 0.101763E-05	C.707106E 00
0.391455E-01	
0.499999E 00 -0.707107E 00	0.500001F CO
SCALED FIGENVALUES	
0.100226+03 0.635166-05	0.14089h-Ch
DIAGONAL OF MATRIX DP	
0.10022E-03 0.63516E-05	0.14090E-05

LOADING CONDITION

1. A LOAD SET IS A SET OF LOADS ACTING IN A GIVEN X OR Y DIRECTION. THE EXTENT OF THESE LOADS IS ALONG THE LENGTH OF A GIVEN LONGITUDINAL

2. ANY LONGITUDINAL MAY BE LOADED WITH ANY NUMBER OF LOAD SETS, WHICH MAY BE ONLY PARTIALLY APPLIED VIA A PROPORTIONAL FACTOR

and the second second

1

.

3. LOCATIONS OF LOADS ARE DISTANCES MEASURED FROM THE STERN

4. LOAD SET DIRECTION CODES ARE = 1, X-DIRECTION = 2, Y-DIRECTION

1

NUMBER OF LOAD SETS

.....

	•	- -	Z 3		C C	
		÷.;	P SC			
			- <u>わ</u> ・			NC ON 4 L C
• •			0 ממא ס			5000 P 3.
:		i	DIN IR,		- 63 - 63	
			n S S S S S S S S S S S S S S S S S S S	000	510	04 04
			• MC	ROW		
	· ·	1. S.	0	ν γ νγ − − Ο	02 02 02 02	
			E Ur		A	0 4
•		•	02			
		4 1		CC	RAN	
			4	054F 8	SVE	OA
		,			RS	SC •
		1	i		S	IO
						REC
					<u>:</u>	
						CO
						Ŭ

00 (14

SHEAR LOADS ON TRANSVERSES

المتحم ورديستوه والمعاول

e e la la construcción de la constr

BHD COLUMN NUMBER, NUMBER OF ROWS FOR SHEAR 3 4

WEB LENGTH, SHFLL, BHD THICKNESS (CM)

0.0	0.0	0.0
84.00000	2.45000	1.900.00
84.00000	2.45000	1.90000
84.00000	2.45000	1.90000

. ..

SHELL, BHD SHEARS PER TRANSVERSE STARTING FROM STERN 0.96020E 05 -0.49590E 05 -0.16048E 06 0.27476E 06 0.96020E 05 -0.49590F 05

the second s

ENTER O TO STOP PROGRAM HERE. ENTER 1 TO GO ON

IDENTO VALUE IS 1

* NODE COORDINATES

4

ې په مې د چې کې د د

r RCW	NODE	X-COORD	Y-COURD
1 - E i -	1	$\mathbf{O} \cdot \mathbf{O}$	0.0
1	2	50.00000	⊙ • 0
1	3	100.00000	0.0
1	4	150.00000	C • O
1	5	200.00000	0.0
2	1	0.0	50.00000
?	2	50.00000	50.00000
. 2	3	100.00000	50.00000
Ž	4	150.00000	50.0000 °
2	5	200.00000	50.00000
3	1	0.0	100.00000
3	2	50.00000	100.00000
3	. 3	100.00000	100.00000
3	4	150.00000	100.00000
3	5	200.00000	100.00000
4	1	0.0	150.00000
4	2	50.00000	156.00000
4	3	100.00000	150.00000
4	4	150.00000	150.00000
4	5	200.00000	150.00000
5	1	0.0	200.0000
5	2	50.00000	200.00000
5	3	100.00000	200.00000
5	4	150.00000	200.00000
`5	5	200.00000	200.00000

8.6
M	M	1	I	T	T	I	J	I	J	I	J	Ţ	J	P 1
E	Ε	F	F	F	F	N	N	N	N	N	Ň	N	N	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
M	М	1	J	K	L	I	T	J	្ស	ĸ	K	L	Ľ	
N	Ţ					in the second			ананананананананананананананананананан					
0	Y	a da Frista	n di					-						
	ч 2	6	0	· · · · · · ·			1	,	2	2	ı		0	1 / 6 10 1
1	5	0	1	1	1	1	1	1	2	4	1		- 6 - 15	1.00001 20.00001
2	5	ñ	ñ	ŏ	n	1	1	1	2	0	0	á	r.	99.99991
4	2	ŏ	ŏ	ĩ	1	ī	2	1	3	2	2	2	3	1.60000
5	5	0	Ō	ō	ō	ì	2	i	3	ō	0	0	C	99,99991
6	2	0	1	1	1	· 1	3	1	4	2	3	2	4	1.60000
7	5	0	1	0	0	1	3	2	3	ΰ	0	0	0	90,99991
8	5	0	1	0	0	1	3	1	4	0	0	0	С	99.99991
9	2	1	0	1	1	1	4	1	5	2	4	2	5	1.60000
10	5	1	0	C	0	1	4	1	5	0	0	0	$\hat{\mathbf{C}}$	93. <u>9</u> 9991
1	2	1	1	0	ð	2	1	2	2	3	1	3	2	1.60000
2	5	1	0	0	0	2	1	3	1	0	0	Û.	C	99.99991
- 3	.2	1	1	0	0	2	2	2	3	3	2	3	3	1.60000
4	2	1	1	0	1	2	3	2	4	3	3	3	۲ţ	1.60000
5	5	1	0	0	Ŭ	2	3	3	3	0	C	$\langle 0 \rangle$	C	99.49991
6	2	1	1	1	0	2	4	2	5	3	4	3	5	1.60000
- 1	2	- Q.	0	Q	0	3	1	3	2	4	1	4	2	1.60000
2	5	Ç	0	-0	10	3	1	4	1	0	0	()	£.,	99.09901
3	2	. 0	0	0	0	3	2	3	3	4	2	4	3	1.60000
4	2	0	1	0	1	3	3	3	4	4	3	4	4	· 1.60000
1. S.	5	<u>_</u>	0	U	0	3	3	4	3	C.	- ()	- Ŏ	{ <u>`</u>	99 . 96461
Э	2	1	0	1	0	- -	4	5	5	4	4	4		1.60000
1	ے ۔ ح	0 0	0	0	0	4	1	· '4	2	ר יי		2	Č,	1.00000
		~ 0	0	.0	<u> </u>	4	1	5	1	U C	<u>.</u> ,			dd*câdoI
2	2	- U - O	् ा	- 0	ן: ז	4	2	4	3	י) ב	Ľ.	5	î,	1.51.591
5	2	0	1	0	1	4	5 2	4 E	4	ר 0	<u>د</u>	ر. ر	4	1.00001
-, 	2	1	0	U.		4	2	2	5	U r	Q Z	~	4. T	44.4444T
С 1	с Б	ຸ <u>າ</u> ດ	- 0 - 0	L	U A	4	4	4			4	2 · · · ·	2	-L.60000
1	ר ג	0	0	0	С	5 6	1	С С	2	0	0	- C - C	C Z	23.00-00-01 23.02221
2	5	i di	1	0	. O	ງ ຮ	2	ר ה	3 - 6	- 12 - 1 - 12	0	12 - 13	<u>,</u>	23•22271 23•22271
4	5	1	5 0	0	0	י ה	5	י, ג	-+ 5	С		0		20 COOC1
n`	0	ñ	ñ	õ	0.	6	- -	0	ر ن	\cap	0	C.	ð	0.0
•	-			~	0	<u> </u>	•./	<u> </u>	. 0	1		· ·	57	•

81

MEMBER DATA

DATA FOR PROBLEM NUMBER 7777 7777 5 2 1 0 KG CM 5 1 1 0 2 1 3 4 5 3 2 0.10F 01 0.30 0.0 0.20E 07 5 5 5 5 5 8 13 18 6. 5 22 24 25 2 4 11 1.6 3 32 1 1 -0.1190E-01 -0.5442E-02 -0.13826-01 -0.5147E-02 -0.83418-01 -0.6310E-02 -0.7541E-02 -0.1788E-08 -0.7227E-09 -0.8032E-01 AT EVERY CTHER TRANSVERSE DEFLECTION OF LONGITUDINAL 1 **X DEFLECTIONS** 0.41908E-02 0.41908E-02 Y DEFLECT IONS -0.95904E-02 -0.95904E-02 DEFLECTION OF LONGITUDINAL 2 AT EVERY OTHER TRANSVERSE X DEFLECTIONS 0.22039E-02 C.22039E-02 Y DEFLECTIONS -0.17856E-01 -0.17856E-01 DEFLECTION OF LONGITUDINAL 3 AT EVENY OTHER TRANSVERSE X DEFLECTIONS 0.24190F-09 0.24190F-09 Y DEFLECTIONS

-0,19843E-01 -0,19843E-01

88

DEFLECTION OF LONGITUDINAL 4 AT EVERY OTHER TRANSVERSE

X DEFLECTIONS

-0.27212E-02 -0.27212E-02

Y DEFLECTIONS

-0.69410E-C2 -0.69410E-02

DEFLECTION OF LONGITUDINAL 5 AT EVERY OTHER TRANSVERSE

X DEFLECT IONS

-0.31550E-02 -0.31550E-02

Y DEFLECTIONS

-0.41703E-01 -0.417C3E-01

DEFLECTION OF LONGITUDINAL 6 AT EVERY CTHER TRANSVERSE

X DEFLECTIONS

-0.36133E-09 -0.36133E-09

Y DEFLECTIONS

-0.40161E-01 -0.40161E-01

DEFLECTION OF LONGITUDINAL 7 AT EVERY CITER TRANSVERSE

X DEFLECTIONS

0.26321E-02 0.26321E-02

Y DEFLECTIONS

-0.85547E-02 -0.85547E-02

DEFLECTION OF LONGITUDINAL 8 AT EVERY CTHER TRANSVERSE

X DEFLECTIONS

0.28638E-02 0.28638E-02

Y DEFLECTIONS

-0.11813E-01 -0.11813E-01

DEFLECTION OF LONGITUDINAL 9 AT EVERY OTHER TRANSVERSE

X DEFLECTIONS

0.28850E-02 0.28850E-02

Y DEFLECTIONS

-0.12972E-01 -0.12972E-01

DEFLECTION OF LONGITUDINAL 10 AT EVERY OTHER TRAMSVEPSU

X DEFLIECTIONS

-0.10056E-02 -0.10056E-02

Y DEFLECTIONS

-0.61349E-02 -0.61349E-02

DEFLECTION OF LONGITUDINAL 11 AT EVERY CIHER TRANSVEPSE

X DEFLECTIONS

0.69279E-03 0.69279E-03

Y DEFLECTIONS

-0.63144E-02 -0.63144E-02

DEFLECTION OF LONGITUDINAL 12 AT EVERY OTHER TRANSVERSE

X DEFLECTIONS

0.26294E-02 0.26294E-02

Y DEFLECTIONS

-0.66346E-02 -0.66346E-02

REAL LOADS UPON THE TRANSVERSES

-0.62724E 02	-0.32987E 02	-0.36205E-05	0.40729E 02	0.47222E 02
-0.42864E 02	-0.43181E 02	0.15051E (2	-0.10369E 02	-0.39355E 02
0.95695E 02	0.17817E 03	0.19800E 03	0.69258E C2	-0.34404E 05
0.16649E 05	0.16661E 05	-0.31946E G5	-0.319445 05	0.66201E 02
-0.88707E 02	-0.46651E 02	-0.51203E-05	0.57601E 02	0.66782E 02
-0.60619E 02	-0.61068E 02	0.21285F 02	-0.14665F 02	-0.55657E 02
0.13533E 03	0.25197E 03	0.28002E 03	0.97948E 02	-0.851288 05
-0.91421E 05	-0.91405E 05	0.53580E (5	0.53583E US	1).93626F 02
-0.62724E 02	-0.32986E 02	-0.36205E-05	0.40729E 02	6.472221 02
-0.42865E 02	-0.43181E 02	0.15051E C2	-0.10369E 02	-0.393555 02
0,95695E 02	0.17817E 03	0.19300E 03	0.69253E 02	-0.34402F 05
0.16649E 05	0.16660E 05	-0.31946E C5	-0.31944E 05	0.662015 02

REAL LOADS UPON THE TRANSVERSES

2

TRANSVERSE NO.

X-FORCES TYPICAL -0.83707E 02 -0.46651E 02 -0.51203E-05 0.576C1E 02 0.66782E 02 -0.60619E 02 -0.61068E 02 0.21285E 02 -0.14665F 02 -0.55657E 02 Y-FORCES TYPICAL 9.13533E 03 0.25197E 03 0.28002E 03).97948E 02 -0.851288 05 -C.91421E 05 -0.91405E 05 0.53580F 05 0.53583F 05 0.936268 02 1 32 1 3 -C.3369E-01 -0.942(F-02 0.2487E-01 -0.3135E-01 -0.2649E-01 -0.4045E-08 -0.11315 00 -0.16138-01 -0.1639E-08 -0.1126E 00

91

	22																	9	$\stackrel{\sim}{\rightarrow}$
	U PRINC STR	HEAR STRESS		-0.320006E 03		•	0.639529E 02		-0.863481E 03	•		0.541458E 00		-0.337212E 03	•	-0.417941E 03	-0.384406E 03		-0.224874E 03
	ST PRINC STR 24	Y-GRAD S		-0.358900E 00			-3-358310E 02	•	0.570058E 02			-0.171835£ 02		-0.562993E 01		-0.817517E 01	0.192011E 02		0.927667E 01
SOUAR E CM	SHEAR STRESS 1	Y-STRESS		01 0.107625E 03			01 2.115113E 33	:	00 -0.162308E 04			02].127345E 04		01 -0.781944E 02		01 -0.2875305 03	JI -J.721149E 03		01 0.167119E 03
BER SA	Y-STRESS	X-GRAU		3 -0.22229E	2	2	2 0.768242E	· ·	3 -0.986928E	4	3	3 -0.165591E	Ĵ,	2 0.305032E	2	3 -0.790029E	3 -0.557664E	3	2 -J.1J2272E
RESSES IN	X-STRESS TRI ANG PLATE)	X-STRESS (QUAD PLATE)	X-STRESS (BAR)	0.123152E 0	0.873468E 0	0.935565E 0	-0.396903≣ 0	0.194508 <u>5</u> 0	0.354897E 0	-0.172215E Û	0.414278E D	0.898370E 0	0.645210E 0	-0.832408E U	-0.760996E 0	0.431056E 0	0.292595E U	-0.766353E 0	-0.6303515 0
MEMBER ST	D NUMBER			1	5	()	4	Ţ	0	7	3	6	10		~	3	4	5	¢
•	MEMBER TYPE AN	•	•	QUAD PLATE	BAR	BAR	QUAD PLATE	BAR	QUAD PLATE	BAR	БАК	QUAD PLATE	BAR	QUAD PLATE	BAR	QUAD PLATE	· QUAD PLATE	BAR	QUAU PLATE
	M	•		-1	7	-1	-4		-		-4	1	-1	\sim	2	2	2	2	2

RUI

•

.

.

3	BAR	2	-0.291269E	03	
3	QUAD PLATE	3	0.114820E	03 -0.513956E 01 -0.202429E 03 -0.107545E 01 -0.535979E	03
3	QJAD PLATE	4	0.505080E	02 -0.538672E 01 -0.277349E 03 0.701484E 01 -0.132087E	03
3	BAR	5	-0.252101E	03	
3	QUAD PLATE	6	-0.197285E	03 -0.118032E 01 0.306030E 02 0.365557E 01 -0.990100E	02
4	QUAD PLATE	1	-0.143525E	02 -0.206385E 01 -0.103865E 03 0.422200E 00 -0.307030E	03
4	BAR	2	-0.840802E	02	

-0.787172E 02 -0.507384E 01 -0.124639E 03 0.427182E 01 -0.453643E 03 QUAD PLATE 3 4 0.536743E 02 -0.131335E 01 -0.275325E 02 -0.181982E 03 -0.564692E 01 QUAD PLATE 4 4 0.150621E 03 5 BAR 4 QUAD PLATE -0.288258E 03 -0.363629E 01 -0.287964E 02 0.177049E 01 -0.232211E 02 6 4 -0.895526E 02 5 BAR 1 2 -0.327056E 03 BAR 5 -0.470581E 03 5 BAR 3

> <u>و</u>... س

5 BAR 4 - Ú.474713E 03

CUT NODÉ FORCES IN KG

LOAD SYSTEM	ROW	NODE	X-FORCE	Y-FORCE
1		4	-0.666875E C2	0.851277E 05
1	2	1	-0.213008E 02	-0.535802E.05
	2	2	-0.312500E-01	-0.546875E-01
	2	3	0.555977E C2	0.914663E 05
1	2	4	-0.156250F-01	-0.199219F 00
친구에 너 가 봐야 해요?	2	5	-0.196695E 05	-0.132813E 00
	3	4	-0.781250E-C1	-C.503906E 00
	4	4	-0.156250E-C1	-0.238281F 00
$\mathbf{\hat{r}}_{\mathbf{i}}$, $\mathbf{\hat{r}}_{$	5	4	0.467031E 02	-0.251861E 03

1040	SYSTEM	RUM	NODE	Y-DISP	V-019
,	1	1	1001	-0.3368885-01	0 2487446.
		1		-0.313499E-C1	-0.942021E
		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2	-0.264872E-01	-0 4045216
			5		-0.112071E
· • • • • •	· · · · · · · · · · · · · · · · · · ·			-0.163032-01	-0.113071E
	1	1	ر ۱	-0.1959145-01	-0.1120496
	1	2	2		0.2705816-
	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2	2	-0.190204E-01	-0./58516E
	1	2		-0.435466E-02	-0.4305378
	ing and an	2	4	0.4568631-02	-0.848670E-
م بين بين المنه	1	. (5	-0.676641E-09	-0.105921E
		3	. 1	-0.414483F-02	0.251556E-
	1	3	2	-0.170880E-03	-0.166250E-
	1	3		0.381948E-C2	-0.622125E-
	1	3	4	0.584703E-02	-0.800244E-
	1	3	5	0.6053638-09	-0.894825E-
	. 1	4	1	0.135214F-01	0.173739E-
	1	4	2	0.138624E-01	-0.215832E-
	1	4	3	0.120283E-01	-0.685151E-
	1	4	4	0.732242E-02	-0.775585E-
	1	4	5	0.909923E-09	-0.824471E-
	1	5	1	0.340475E-01	0.157719E-
	1	5	2	0.318087E-C1	-0.231575E-
	1	5	3	0.236323F-01	-0.647495E-
	1	5	4	0.118678F-01	-0.754347E-

....

95

STOP 0

EXECUTION TERMINATED

 $(m_{i}) = \left\{ m_{i} \in \mathbb{C}^{n}, \dots, m_{i} \in \mathbb{C}^{n}, \dots, m_{i} \in \mathbb{C}^{n} \right\}$

