$M S B-6$
A60.50

ANALYSIS OF LARGE TANKERS USING GRILLAGE AND FINITE ELEMENT METHODS

Edward A. Chazal, Jr. Jerry Marsh Payne

A dissertation submitted in partial fulfillment of the requirements for Professional Degrees of Naval Architect in The University of Michigan, 1971

Professional Degree Committee:
Professor Finn C. Michelsen, Chairman Professor Richard B. Couch Mister Arthur M. Reed

ABSTRACT

Two of the most important contributions to ship structure analysis have been the finite element method and the grillage method. Each has made its own important contribution, yet. neither has been able to offer itself as a satisfactory design tool. The grillage method lacks the detailed stress patterns needed by the designer, and the finite element method has shown itself to be impractical when used to analyze a model as large as a ship hull. There is an obvious solution to this problem, for the weaknesses of one method are the strong points of the other. By using each method where it is best suited, the analysis can be performed with the necessary detail and without great expense.

This thesis presents a method developed by Dr. Pin-Yu Chang, ComCode Corporation, which combines the simplicity of the overall analysis using a grillage model and the fine analysis of the finite element technique for critical portions of the structure. Some results using this method are compared here to full scale test data. Computer programs for a longitudinal and a transverse analysis are also included.

ACKNOWLEDGEMENTS

All authors of technical dissertations draw from resources of talent quite independent of their own. This paper is no exception. Many persons have contributed substantially to its completion. It will be impossible to name all the contributors but they have not been forgotten.

The authors want to thank the faculty members of the Department of Naval Architecture and Marine Engineering and the Department of Engineering Mechanics, The University of Michigan. The knowledge and ability of the authors to conduct such a project as this is due largely to the patient efforts of various faculty members.

The authors received guidance and clarification many times from Dr. Pin-Yu Chang, the originator of the method presented in this paper. Particular thanks for their assistance must also go to Professor Raymond A. Yagle and LCDR C. S. Loosemore, USCG who were the sources for several obscure references. Professor Richard B. Couch and Mr. Arthur Reed of the thesis committee provide valuable advice in the practical aspects of the problem and computer programming respectively.

The authors are deeply grateful to Professor Finn C. Michelsen, the chairman of the thesis committee, who has provided us with the guidance and theoretical insight to approach the problem. Professor Michelsen has the ability to couple a very physical approach to problems with the mathematics required to effectively model those problems. He has been counselor, teacher, and the single most important influence in our academic endeavors.

Finally there are those who contributed through their administrative or supportive roles. Professor T. Francis Ogilvie has been our graduate program advisor and his enthusiasm and support
were a real foundation for our efforts. The beauty and accuracy of the manuscript testify to the fine ability of the typist, Chris Seidl. To our wives Susan Chazal and Donna Payne who by their patience, understanding, proof reading skills, and advice contributed substantially in this project.

April, 1971
Ann Arbor, Michigan

Edward A. Chazal, Jr. Jerry M. Payne

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLDEGEMENTS iii
CHAPTER
I INTRODUCTION 1
II LONGITUDINAL STRENGTH ANALYSIS 5
III TRANSVERSE STRENGTH ANALYSIS 12
IV DISCUSSION 21
V RECOMMENDATIONS 34
VI CONCLUSION 43
BIBLIOGRAPHY 46
APPENDIX
A RESULTS A-1
B COMPUTER PROGRAMS $B-1$

The past decade has ushered in several numerical methods for achieving solutions to the ship structure analysis problem. Prior to this time most analyses were conducted on the basis of painstakingly accumulated empirical data. The empirical formulations produced satisfactory results for the first half of the twentieth century. In the late l950's economic advantages produced a whole new size generation of tankers [16].

First Tanker

Calculation
Formula

These ships were much larger than any prior vessels. They were so much larger that given hindsight, it can be seen that prior empirical analyses should not have been expected to produce accurate results. This is the case for the early jumbo tankers which exhibit a history of structural failures in the vicinity of the intersections of prime longitudinals and the transverse members. The failures showed quite often the characteristic features of deformation under excessive shear loads. We can see that these shear loads must be treated as an important factor [4].

These failures and the general lack of empirical data suggest a need for a more satisfactory design procedure. The basic nature of the problem suggests difficulty in ever achieving a completely accurate formulation. In order to attack the problem one must be cognizant of the many static and dynamic loadings imposed on the vessel. In addition there must be a satisfactory method for analyzing the structure itself.

There have been several advances in structural analysis that would appear to lend themselves well to the problem solution. Two prominent achievements have been the very elegant theory of grillages $[5,11,20]$ and the versatile finite element method $[6,7,10,12,17,22]$.

The finite element method has been used effectively for a number of years by civil and aeronautical engineers. The grillage theory was developed principally by naval architects. There are advantages and disadvantages to both methods. In order to be applied effectively and efficiently they both need a reasonable amount of skill or understanding of the art.

There are several published examples of applications of both techniques to the ship structure problem. Generally these are all limited to a particular area of interest. It is no accident that the particular areas chosen lend themselves quite well to solutions by the method selected. It seems reasonable to point out that the investigators selected the most efficient tool for solving the problem at hand.

In dealing with the whole ship analysis the complex nature of the problem demands even greater skill [10] (see Figure I-2). For some time the finite element method alone seemed to offer the best route to eventual success. The efforts of Kamel et al, at the University of Arizona, achieved reasonable results via this route with the DAISY program [6,7]. As published, this analysis makes use of a macro mesh to reduce round off error and computer expenses. The macro mesh solutions are then applied to

Figure I-2 Structure Detail of Typical'Tanker [20]
a micro mesh analysis of the area in question. The actual cost of analysis for a typical ship using DAISY has not been published. Roberts commented on a similar effort in Great Britain that required 24 hours of computer time and several months of data preparation. As a design tool this type of approach is very expensive but it does give results. It is a complete analysis tool which solves the entire ship problem but it forces the finite element method to its limits. As a result, certain compromises are made to reduce computation time but they also reduce accuracy.

At this stage it seems entirely reasonable to seek methods that will allow the finite element technique optimum utilization. Extending $+^{*} \geq$ use of this method blindly to a point at which its results are questionable is merely a misuse of a good tool. A structural analyst, to be successful, must use all available information to his advantage. If he allows himself to stop thinking and merely feeds numbers into a computer, he has removed
the benefit of his knowledge and judgement from the solution of the problem. St. Denis has suggested that the ship structure problem be solved by a judicious combination of many methods of analysis. The final tool he envisioned would make the best use of each technique and really would be no more than a synthesis of available methods each used to its best advantage [6].

It is against this background that Dr. Pin-Yu Chang formulated his approach to the entire ship structure problem. The total problem has not yet been solved and much work remains to be done. However Dr. Chang's effort clearly leads the way to a complete rational analysis. This analysis makes maximum use of the skill of the naval architect and should be more efficient than the brute force application of one particular method.

The technique uses grillage analysis for the overall ship problem and finite element methods for the local analyses. The employment of the grillage greatly reduces the computation time while the finite element methods allow a detailed analysis of stress patterns. The problem has been divided into two principal parts, the transverse and longitudinal strength analyses. The transverse problem depends upon certain output from the longitudinal problem.

The longitudinal analysis treats the hull as a grillage of simple, shear beams. The result is the set of interaction forces between the members which are used in the transverse analysis as shear forces between the primary members of the structure. These shear forces along with the external loads complete the loading pattern which can be used to compute stresses and bending moments in the primary structural members.

The transverse analysis uses the grillage properties of the hull to uncouple the governing differential equations by means of coordinate transformation. This reduces the transverse analysis to a simple two dimensional problem which can be solved using finite elements. This reduces necessary computational time and avoids the use of finite elements in the macro analysis which seems to have questionable accuracy [4].

LONGITUDINAL STRENGTH ANALYSIS

For longitudinal strength consideration, the ship is treated as a grillage consisting of four longitudinal members and several transverse stiffeners (see Figure II-1). The prime longitudinal members are the side shells and two longitudinal bulkheads. The transverse members are bulkheads and web frames which act as stiffeners. Both longitudinal and transverse members include portions of the bottom and deck as flanges. This insures that the total moment of inertia of the model will be the same as that derived in the conventional manner. It is assumed that each member of the grillage behaves as a simple shear beam. This assumption has been verified by Vasta for medium size ships and there is no evidence that would invalidate it for large tankers [19]. The transverse beams are free at both ends and the longitudinals are simply supported. Since the external loads on the grillage are self balanced, the shear forces at the simply supported ends are nearly zero. Then the longitudinals are equivalent to freefree beams.

The external loads acting on the plate are transmitted to the longitudinals and then transferred to the transverses. The load is then distributed as concentrated forces on the transverse members. This loading transfer pattern emphasizes the importance of the shear forces at the intersections of the prime members. The primary deflections of the longitudinal members are computed by distributing the loads uniformly along a longitudinal between transverses.

Consider a particular ($\alpha-$ th) transverse supported by longitudinals and acted upon by a symmetrical loading system. In the following figure, the reactions R_{1} and R_{2} represent the shear forces on the longitudinals. Since the beam and the loading pattern are symmetrical, it is only necessary to consider half of the beam.

$$
\begin{aligned}
& \text { Figure II-2 Transverse Modeled as a Short Deep } \\
& \text { Beam with Symmetrical Loading [4] }
\end{aligned}
$$

(2)

Figure II-3 Model of Transverse Taking Advantage of Symmetry [4]

The load in the wing tank. $\left(q_{w}\right)$ and the load in the central tank (q_{C}) have been here assumed to be uniform. Since it will be necessary only to find the relative displacements along this member, the left end has been simply supported. The relative displacement between points (1) and (2) of the α-th transverse is Δd^{α}. Then

$$
\begin{equation*}
\Delta \mathrm{d}^{\alpha}=\mathrm{W}_{2}^{\alpha}-\mathrm{k}_{22}^{\alpha} \mathrm{R}_{2}^{\alpha} \tag{II-l}
\end{equation*}
$$

where W_{2}^{α} is the displacement of point (2) due to the external loads on the beam and k_{22}^{α} is an influence coefficient.

The influence coefficients ($k_{i j}^{\alpha}$) of the $\alpha-t h$ transverse are a set of deflections at x_{i} due to a unit load at x_{j}. Let S^{n} be a vector of state variables at station n such that

$$
S^{\mathrm{n}}=\left[\begin{array}{c}
\mathrm{W} \tag{II-2}\\
\theta \\
\mathrm{M} \\
\mathrm{~V}
\end{array}\right]_{\mathrm{n}}
$$

where W is displacement, θ is rotation, M is bending moment and V is shear force. Then by line solution
where I_{1} is the moment of inertia of section (1) of the beam, A_{1} is the shear area and E, G, are constants of elasticity. This expression may for convenience be written

$$
\begin{equation*}
S^{2}=I_{1} S^{1} \tag{II-4}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
S^{3}=L_{2} S^{2} \tag{II-5}
\end{equation*}
$$

Combining the above equations

$$
\begin{equation*}
S^{3}=L_{2} L_{1} S^{1} \tag{II-6}
\end{equation*}
$$

The boundary conditions for the beam being considered are

$$
\begin{equation*}
W^{1}=M^{1}=\theta^{3}=V^{3}=0 \tag{II-7}
\end{equation*}
$$

Letting $L^{n}=L_{n} L_{n-1} \ldots L_{1}$, (II-6) can be rewritten as

$$
\begin{equation*}
S^{3}=L^{2} S^{1} \tag{II-8}
\end{equation*}
$$

Let $L_{i j}^{n}$ be a particular element in the L^{n} matrix. Using (II-7) in (II-6), the deflections at point two and three are found to be

$$
\begin{align*}
& \mathrm{W}^{2}=\mathrm{L}_{12}^{1} \theta^{1}+\mathrm{L}_{14}^{1} \mathrm{~V}^{1}+\mathrm{L}_{15}^{1} \tag{II-9}\\
& \mathrm{~W}^{3}=\mathrm{L}_{12}^{2} \theta^{1}+\mathrm{L}_{14}^{2} \mathrm{~V}^{1}+\mathrm{L}_{15}^{2} \tag{II-10}
\end{align*}
$$

in terms of the initial parameters θ^{1} and V^{1}. These parameters are also obtainable from the same equations since

$$
\begin{aligned}
& L_{22}^{2} \theta^{1}+L_{24}^{2} V^{1}+L_{25}^{2}=0 \\
& L_{42}^{2} \theta^{1}+L_{44}^{2} V^{1}+L_{45}^{2}=0
\end{aligned}
$$

or

$$
\begin{align*}
& \theta^{1}=\frac{\mathrm{L}_{25}^{2} \mathrm{~L}_{44}^{2}-\mathrm{L}_{24}^{2} \mathrm{~L}_{45}^{2}}{\mathrm{~L}_{22}^{2} \mathrm{~L}_{44}^{2}-\mathrm{L}_{24}^{2} \mathrm{~L}_{42}^{2}} \tag{II-11}\\
& \mathrm{~V}^{1}=\frac{\mathrm{L}_{22}^{2} \mathrm{~L}_{45}^{2}-\mathrm{L}_{25}^{2} \mathrm{~L}_{42}^{2}}{\mathrm{~L}_{22}^{2} \mathrm{~L}_{44}^{2}-\mathrm{L}_{24}^{2} \mathrm{~L}_{42}^{2}} \tag{II-12}
\end{align*}
$$

The displacement W_{2}^{α} for the α-th transverse is the displacement which is needed in equation (II-l).

In order to find influence coefficients by this line solution method, the uniform loads $\left(q_{w}\right.$ and q_{C}) must be set equal to zero in the transfer matrices L^{1} and L^{2}. In addition a point matrix is added at the location of the required unit load. The point matrix is

$$
L^{p}=\left|\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

Then $S^{i}=L^{i-1} S^{1}$
where $L^{i-1}=L_{i-1} L_{i-2} \ldots L_{j+1} L^{p} L_{j} \ldots L_{l}$
Then the displacement W^{i} calculated from (II-l0) is the influence coefficient

$$
\begin{equation*}
k_{i j}^{\alpha}=L_{12}^{i-1} \theta^{1}+\left(L_{14}^{i-1} v+L_{15}^{i-1}\right)_{\alpha j} \tag{II-14}
\end{equation*}
$$

The unknown reaction R_{2}^{α} can now be expressed in terms of these values by rewriting equation (II-I):

$$
\begin{equation*}
\mathrm{R}_{2}^{\alpha}=\frac{1}{\mathrm{k}_{22}^{\alpha}} W_{2}^{\alpha}-\Delta \mathrm{d}^{\alpha} \tag{II-15}
\end{equation*}
$$

Since q_{w} and q_{C} are uniform loads, then R_{l}^{α} can be expressed as

$$
\begin{equation*}
\mathrm{R}_{1}^{\alpha}=\mathrm{aq} q_{c}^{\alpha}+b q_{c}^{\alpha}-R_{2}^{\alpha} \tag{II-16}
\end{equation*}
$$

Now except for Δd^{α} all values are known and the reactions can be calculated.

Treating the four prime longitudinals as independent simple beams which are simply supported and distributing the external loads on these members, a set of displacements may be obtained from simple beam theory for each member. The longitudinals here are considered not to be supported by the transverse members. The deflection, d_{m}^{α}, is that of the m-th longitudinal at the location where it should be supported by the α-th transverse. Due to symmetry it is necessary to calculate only the deflections of one side shell $\left(\alpha_{1}^{\alpha}\right)$ and a longitudinal bulkhead $\left(\alpha_{2}^{\alpha}\right)$. Now Δd^{α} can be computed as

$$
\Delta d^{\alpha}=d_{2}^{\alpha}-d_{1}^{\alpha}
$$

and the reactions R_{m}^{α} can be found.
Once these reactions between the grillage members have been found the external loading system is complete. By methods of elasticity, bending moments and shear stresses can be computed at points of interest.

The method of transverse analysis presented here is similar to other three-dimensional finite element solutions, except that a much finer mesh is used. This fine mesh can be adopted without increasing computer cost because uncoupling techniques used in the overall analysis substantially reduce the amount of required computer time. The basic effect of the uncoupling is that it reduces the three dimensional system mathematically into a set of two dimensional equivalent transverse members. Each of these members can then be analyzed in two dimensions.

The model used for this part of the analysis is a three dimensional body (figure III-1). The longitudinal members (side shell, bulkhead, deck, and bottom) are represented by bars and the transverse members are represented by plates which are reinforced by bars. Due to symmetry about the ship's center plane the model represents only half of the hull. The transverses are restrained from moving in the horizontal direction along their intersection with the center plane. In the analysis of an individual transverse, the section is restrained from moving vertically at the intersection of the longitudinal bulkhead and the bottom (figure III-2). The longitudinals are simple supported at both ends. It is assumed that all longitudinals are similar beams and that all transverses are of proportional stiffness.

External loads are transmitted from the plate to the longitudinals and then transferred to the transverses. The external loads can be expressed as a function of z which is the distance from the forward perpendicular in a direction perpendicular to the planes of the transverses. Then the $\alpha-$ th longitudinal is acted upon by $q_{\alpha}(z)$ and the horizontal and vertical reactions of the i-th transverse, $X_{i \alpha}, Y_{i \alpha}$. Let $d_{x i \alpha}$ be the deflection caused by $q_{x \alpha}(z)$ (in the x direction) and let $A_{i j}^{\alpha x}$ be the influence coefficients of the α-th longitudinal between z_{i}

and z_{j} in the \mathbf{x} direction. Then the deflections of the longitudinals can be expressed as

$$
\begin{align*}
& U_{i \alpha}=d_{x i \alpha}-\sum_{j} A_{i j}^{x} X_{j \alpha} \\
& V_{i \alpha}=d_{y i \alpha}-\sum_{j} A_{i j}^{Y} Y_{j \alpha} \tag{III-1}
\end{align*}
$$

The deflections, $d_{i \alpha}$, and the influence coefficients, $A_{i j}$, are found by line solution methods as described in the longitudinal analysis section. It should be noted that $A_{i j}$ is the same for each longitudinal since they are of similar stiffness. Let the reactions, $X_{i \alpha}$ and $Y_{i \alpha}$, be represented by a set of equivalent forces, $\bar{X}_{i \alpha}$ and $\bar{Y}_{i \alpha}$, which are available from the longitudinal analysis. Now the displacements at the intersection can be expressed as

$$
\begin{align*}
& U_{i \alpha}=\sum_{\beta}\left[\frac{L_{x x \alpha \beta}}{P_{i}}\left|x_{i \beta}-\bar{x}_{i \beta}\right|+\frac{L_{x y \alpha \beta}}{P_{i}}\left(Y_{i \beta}-\bar{Y}_{i \beta}\right)\right]+U_{0 i} \\
& V_{i \alpha}=\sum_{\beta}\left[\frac{L_{x y \alpha \beta}}{P_{i}}\left|x_{i \beta}-\bar{x}_{i \beta}\right|+\frac{L_{y y \alpha \beta}}{P_{i}}\left(Y_{i \beta}-\bar{Y}_{i \beta}\right)\right]+V_{0 i} \tag{III-2}
\end{align*}
$$

where U_{0}, V_{0} are rigid body displacements of the transverse, and $L_{x x}, L_{x y}, L_{y y}$ are influence coefficients of a general transverse. Since all transverses have proportional stiffness then the influence coefficient for the i-th transverse, say $L_{x x \alpha \beta}^{i}$, between the intersection with the α-th and β-th longitudinals can be expressed as $L_{x x \alpha \beta} / P_{i}$ where P_{i} is the relative stiffness factor for the $i-t h$ transverse. P_{i} is computed as the ratio of the shear area of a particular transverse to that of the general transverse. The rigid body displacements of the transverses are available from the longitudinal strength analysis.

By multiplying (III-2) by $A_{i j}$ and using (III-1), (III-2) can be expressed as

$$
\begin{align*}
A_{i j} P_{j} U_{j \alpha}= & L_{x x \alpha \beta} r^{\beta} A_{i j}^{\beta x}\left|x_{j \beta}-\bar{X}_{j \beta}\right|+L_{x y \alpha \beta} t^{\beta} A_{i j}^{\beta y}\left(Y_{j \beta}-\bar{Y}_{j \beta}\right) \\
& +A_{i j} P_{j} U_{0 j} \ldots \text { (sum on } j \text { and } \beta \text {) } \tag{III-3}
\end{align*}
$$

where r^{β} and t^{β} are scalar factors such that

$$
\begin{equation*}
A_{i j}=r^{\beta} A_{i j}^{\beta x}=t^{\beta} A_{i j}^{\beta y} \tag{III-4}
\end{equation*}
$$

Let

$$
\begin{aligned}
& D_{i x \beta}=A_{i j}^{\beta x} X_{j \beta}, \\
& \bar{D}_{x i \beta}=A_{i j}^{\beta x} \bar{X}_{j \beta} \\
& \bar{U}_{i \alpha}=P_{i}^{1 / 2} U_{i \alpha} \\
& A=\left[A_{i j}\right] \\
& P^{1 / 2}=\left\{P^{1 / 2}\right\}
\end{aligned} \quad \ldots \text { (matrix) } \quad \begin{array}{ll}
\\
& \ldots \text { (diagonal matrix) }
\end{array}
$$

then

$$
\begin{gathered}
P^{1 / 2} A P^{1 / 2} \bar{U}_{\alpha}=L_{x x \alpha \beta} r^{\beta}\left[P^{1 / 2}\left|D_{x \beta}-\bar{D}_{x \beta}\right|-\bar{U}_{\beta}\right] \\
+L_{x y \alpha \beta} t^{\beta}\left[P^{1 / 2}\left|D_{y \beta}-\bar{D}_{y \beta}\right|-\bar{V}_{\beta}\right]+P^{1 / 2} A P U_{0} \\
\ldots(\text { sum on } \beta)
\end{gathered}
$$

It can be shown that the matrix $P^{1 / 2} A P^{1 / 2}$ is symmetric. Then there exists a unitary matrix B such that

$$
\begin{equation*}
B^{T} P^{1 / 2} A P^{1 / 2} B=\left\{\lambda_{i}\right\} \tag{III-6}
\end{equation*}
$$

where B^{T} is the transpose of B and λ_{i} are the eigenvalues of the matrix $P^{1 / 2} A P^{1 / 2}$. Multiplying (II I-5) by B^{T}, letting $\overline{\mathrm{U}}_{i \alpha}=\mathrm{B}_{\mathrm{i} j} \overline{\bar{U}}_{j \alpha}$ and using (III-6), equation (III-5) can be rewritten as

$$
\begin{align*}
\left\{\lambda_{i}\right\} \overline{\bar{U}}_{\alpha}= & \left.L_{x x \alpha \beta} r^{\beta}\left[B^{T} P^{1 / 2} \mid D_{x \beta}-\bar{D}_{x \beta}\right)-\overline{\bar{U}}_{\beta}\right] \tag{IIIT}\\
& +L_{x y \alpha \beta} t^{\beta}\left[B^{T} P^{1 / 2}\left(D_{y \beta}-\bar{D}_{y \beta}\right)-\overline{\overline{\mathrm{V}}}_{\beta}\right]+B^{T} P^{1 / 2} A P U_{0} \\
& \ldots \text { (sum on } \beta \text {) }
\end{align*}
$$

Let

$$
\begin{aligned}
& C_{x i}=\sum_{j} B_{i j}^{T} P_{i}^{1 / 2}\left(D_{x j \alpha}-\bar{D}_{x j \alpha}\right) \\
& C_{y i}=\sum_{j} B_{i j}^{T} P_{i}^{1 / 2}\left(D_{y j \alpha}-\bar{D}_{y j \alpha}\right) \\
& \overline{\bar{U}}_{0 i}=B^{T} P^{1 / 2} A P U_{0 i} \\
& \overline{\bar{v}}_{0 i}=B^{T} P^{1 / 2} A P V_{0 i}
\end{aligned}
$$

then

$$
\begin{equation*}
\lambda_{i} \overline{\bar{U}}_{i}=L_{x x} R\left(c_{x i}-\overline{\bar{U}}_{i}\right)+L_{x y}^{T}\left(c_{y i}-\overline{\bar{v}}_{i}\right)+\overline{\bar{U}}_{0 i} \tag{III-9}
\end{equation*}
$$

for each α, where $\left|L_{x x}{ }^{R C}\right|_{\alpha}=\sum_{\beta}\left[L_{x x \alpha \beta} r^{\beta} C_{\beta}\right]_{\alpha}$
Similarly

$$
\begin{equation*}
\lambda_{i} \overline{\bar{v}}_{i}=L_{x y}^{R}\left|c_{x i}-\overline{\bar{U}}_{i}\right|+L_{y y}^{T}\left(c_{y i}-\overline{\bar{v}}_{i}\right)+\overline{\bar{v}}_{0 i} \tag{III-10}
\end{equation*}
$$

Equations (III-9) and (III-10) involving $\overline{\overline{\mathrm{U}}}_{i \alpha}$, $\overline{\overline{\mathrm{V}}}_{i \alpha}$ are uncoupled equations involving only one i. These equations can
be further simplified by letting

$$
\begin{gathered}
L=\left[\begin{array}{ll}
L_{x x} & L_{x y} \\
L_{x y} & L_{y y}
\end{array}\right]\left[\begin{array}{ll}
R & 0 \\
0 & T
\end{array}\right] \\
\overline{\bar{W}}_{i}=\left[\begin{array}{c}
\overline{\bar{U}} \\
\overline{\bar{V}}
\end{array}\right], \quad c_{i}=\left[\begin{array}{l}
c_{x i} \\
C_{y i}
\end{array}\right], \quad \overline{\bar{W}}_{0 i}=\left[\begin{array}{c}
\overline{\bar{U}}_{0 i} \\
\overline{\bar{V}}_{0 i}
\end{array}\right]
\end{gathered}
$$

Now (III-9) and (III-10) can be written as

$$
\begin{gather*}
\lambda_{i} \overline{\bar{W}}_{i}=L\left(c_{i}-\overline{\bar{W}}_{i}\right)+\overline{\bar{W}}_{0 i} \\
\left.\overline{\bar{W}}_{i}=\left(L+\lambda_{i} I\right)^{-1} \mid L C_{i}+\overline{\bar{W}}_{0 i}\right) \tag{III-11}
\end{gather*}
$$

or

All values on the right hand side of this equation are known so $\overline{\bar{W}}_{i}$ can be computed. This is a set of transformed displacements which can be computed with relative ease. By applying the inverse transformation to these displacements, the real displacements can be computed.

$$
\left[\begin{array}{l}
\mathrm{U} \tag{III-12}\\
\mathrm{~V}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{P}^{-1 / 2} \mathrm{~B} & 0 \\
0 & P^{-1 / 2} B
\end{array}\right]\left[\begin{array}{c}
\overline{\bar{U}} \\
\overline{\bar{V}}
\end{array}\right]
$$

With these deflections computed, equation (III-l) can be used to find the reactions, $X_{i \alpha}$ and $Y_{i \alpha}$. This completes the loading pattern on any particular section of the ship so stresses and bending moments can be found at particular points of interest.

Equation (III-10) is equivalent to the equation of the deformation of an elastic body which is supported by springs and is acted upon by a set of concentrated loads. These forces and spring factors are known so the deformations can be computed. This is a more economical computation if the stiffness of the longitudinals is much less than the stiffness of the transverses.

Physically this appears to be a reasonable assumption. If $\lambda_{i}>L_{\alpha \beta}$, then

$$
\begin{equation*}
\left(I+\lambda_{i} I\right)^{-1}=\frac{1}{\lambda_{i}}\left(I-\frac{L}{\lambda_{i}}+\frac{L}{\lambda_{i}^{2}}+\ldots\right) \tag{III-13}
\end{equation*}
$$

Using this, equations (III-9) and (III-10) can be rewritten as

$$
\left[\begin{array}{c}
\overline{\bar{U}}_{i} \tag{III-14}\\
\overline{\bar{V}}_{i}
\end{array}\right]=\sum_{n=1}^{\infty}\left[\begin{array}{ll}
L_{x x^{R}} & L_{x y}{ }^{T} \\
L_{x y}^{R} & L_{y y^{T}}
\end{array}\right]\left(\frac{1}{\lambda_{i}}\right)^{n}\left[\begin{array}{l}
c_{x i}-\lambda_{i}^{-1} \\
\overline{\bar{U}}_{0 i} \\
c_{y i}-\lambda_{i}^{-1} \\
\overline{\bar{V}}_{0 i}
\end{array}\right]+\frac{1}{\lambda_{i}}\left[\begin{array}{l}
\overline{\bar{U}}_{0 i} \\
\overline{\bar{V}}_{0 i}
\end{array}\right]
$$

Now if we let

$$
\left[\begin{array}{c}
\overline{\bar{U}}_{i} \tag{III-15}\\
\overline{\bar{V}}_{i}
\end{array}\right]^{1}=\frac{L}{\lambda_{i}}\left(c_{i}-\overline{\bar{W}}_{0 i} / \lambda_{i}\right)
$$

and

$$
\left[\begin{array}{c}
\overline{\bar{U}}_{i} \tag{III-16}\\
\overline{\bar{V}}_{i}
\end{array}\right]^{n}=-\frac{L}{\lambda_{i}}\left[\begin{array}{c}
\overline{\bar{U}}_{i} \\
\overline{\bar{V}}_{i}
\end{array}\right]^{n-1}
$$

Then (III-14) can be written

$$
\left[\begin{array}{c}
\overline{\bar{U}}_{i} \tag{III-17}\\
\overline{\overline{\mathrm{~V}}}_{i}
\end{array}\right]=\sum_{n=1}^{\infty}\left[\begin{array}{c}
\overline{\overline{\mathrm{U}}}_{i} \\
\overline{\overline{\mathrm{~V}}}_{i}
\end{array}\right]^{n}+\frac{1}{\lambda_{i}}\left[\begin{array}{l}
\overline{\overline{\mathrm{U}}}_{0 i} \\
\overline{\overline{\mathrm{~V}}}_{0 i}
\end{array}\right]
$$

The series term in (III-17) will converge rapidly, and generally only a few terms will be needed. The accuracy in this approach can be determined by applying the inverse transformation to the preceding equations.

First we can express the x-component of (III-15) as

$$
\begin{equation*}
\overline{\bar{U}}_{\alpha}=I_{x x \alpha \beta} r^{\beta}(1 / \lambda) C_{x \beta}-\overline{\bar{U}}_{0} / \lambda+I_{x y \alpha \beta} t^{\beta}(1 / \lambda) c_{y \beta}-\overline{\bar{V}}_{0} / \lambda \tag{III-18}
\end{equation*}
$$

But from (III-8)

$$
C_{x \beta}=B^{T} P^{1 / 2}\left(D_{x \beta}-\bar{D}_{x \beta}\right)
$$

and

$$
\begin{equation*}
C_{y \beta}=B^{T} P^{1 / 2}\left(D_{y \beta}-\bar{D}_{y \beta}\right) \tag{III-19}
\end{equation*}
$$

Now substituting (III-19), (III-8), (III-12) into (III-18) results in

$$
\begin{align*}
U_{\alpha}^{1}= & L_{x x \alpha \beta} r^{\beta} P^{-1 / 2} B \lambda^{-1}\left[B^{T} P^{1 / 2}\left(D_{x \beta}-\bar{D}_{x \beta}\right)-\lambda^{-1} B^{T} P^{1 / 2} A P U_{0}\right] \tag{III-20}\\
& +L_{x y \alpha \beta} t^{\beta} P^{-1 / 2} B \lambda^{-1}\left[B^{T} P^{1 / 2}\left(D_{y \beta}-\bar{D}_{y \beta}\right)-\lambda^{-1} B^{T} P^{1 / 2} A P V_{0}\right]
\end{align*}
$$

Then using the relations of (III-6)
$U_{\alpha}^{1}=L_{x x \alpha \beta} r^{\beta} P^{-1} A^{-1}\left(D_{x \beta}-\bar{D}_{x \beta}-U_{0}\right)+L_{x y \alpha \beta} t^{\beta} P^{-1} A^{-1}\left(D_{y \beta}-\bar{D}_{y \beta}-V_{0}\right)$
Introducing (III-4) and the fact that $L_{x x \alpha \beta}^{i}=L_{x x \alpha \beta} / P_{i}$, (III-2I) becomes
$U_{\alpha}^{1}=L_{x x \alpha \beta}^{i} \bar{A}_{i j}^{\beta x}\left(D_{x j \beta}-\bar{D}_{x j \beta}-U_{0 j}\right)+L_{x y \alpha \beta}^{i} \bar{A}_{i j}^{\beta y}\left(D_{y j \beta}-\bar{D}_{y j \beta}-V_{0 j}\right)$

A similar procedure can be used to give the following expression for the y-displacement:
$V_{\alpha}^{1}=L_{x y \alpha \beta}^{i} \bar{A}_{i j}^{\beta x}\left(D_{x j \beta}-\bar{D}_{x j \beta}-U_{0 j}\right)+L_{y y \alpha \beta}^{i} \bar{A}_{i j}^{\beta y}\left(D_{y j \beta}-\bar{D}_{y j \beta}-V_{0 j}\right)$
where $\bar{A}_{i j}^{\beta x}=\left[A_{i j}^{\beta x}\right]^{-1}$
Also as in (III-16)

$$
\begin{align*}
& U^{n}=-L_{x x \alpha \beta}^{i} \bar{A}_{i j}^{\beta x} U_{j}^{n-1}-L_{x y \alpha \beta}^{i} \bar{A}_{i j}^{\beta y} V_{j}^{n-1} \\
& V^{n}=-L_{x y \alpha \beta}^{i} \bar{A}_{i j}^{\beta x} U_{j}^{n-1}-L_{y y \alpha \beta}^{i} \bar{A}_{i j}^{\beta y} V_{j}^{n-1} \tag{III-24}
\end{align*}
$$

Using the inverse transformation of (III-12), equation (III-14) reduces to

$$
\left[\begin{array}{l}
\mathrm{U} \tag{III-25}\\
\mathrm{~V}
\end{array}\right]=\sum_{\mathrm{n}=1}^{\infty}\left[\begin{array}{l}
\mathrm{U} \\
\mathrm{~V}
\end{array}\right]^{\mathrm{n}}+\left[\begin{array}{l}
\mathrm{U}_{0} \\
\mathrm{~V}_{0}
\end{array}\right]
$$

As long as the external loading can be represented by a set of concentrated forces $\tilde{X}_{i \alpha}, \tilde{\mathrm{Y}}_{\mathrm{i} \alpha}$ then (III-25) can be written as

$$
\begin{align*}
& U_{i \alpha}=L_{x x \alpha \beta}^{i} \tilde{X}_{i \beta}+L_{x y \alpha \beta}^{i} \tilde{Y}_{i \beta}+\tilde{U}_{i \alpha}+\sum_{n=2}^{\infty} U_{i}^{n}+U_{i 0} \\
& V_{i \alpha}=L_{x y \alpha \beta}^{i} \tilde{X}_{i \beta}+L_{y y \alpha \beta}^{i} \tilde{Y}_{i \beta}+\tilde{V}_{i \alpha}+\sum_{n=2}^{\infty} V_{i}^{n}+V_{i 0} \tag{III-26}
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{U}_{i \alpha}=-L_{x x \alpha \beta}^{i}\left(\tilde{X}_{i \beta}+\bar{A}_{i j}^{\beta x} U_{0 j}\right)-L_{x y \alpha \beta}^{i}\left(\tilde{Y}_{i \beta}+\bar{A}_{i j}^{\beta x} V_{0 j}\right) \\
& \tilde{v}_{i \alpha}=-L_{x y \alpha \beta}^{i}\left(\tilde{X}_{i \beta}+\bar{A}_{i j}^{\beta x} U_{0 j}\right)-L_{y y \alpha \beta}^{i}\left(\tilde{Y}_{i \beta}+\bar{A}_{i j}^{\beta x} V_{0 j}\right) \tag{III-27}
\end{align*}
$$

In examining (III-26), it can be seen that without the third and fourth terms, it is equivalent to a two dimensional analysis. In ignoring these terms, an error is introduced into the analysis. This error increases as the stiffness of the longitudinals increases relative to that of the transverses. There is in fact a limit at which the series term in (III-26) is divergent. Unless the condition of (III-13) is met, the analysis cannot be continued in this manner. Instead, the direct application of (III-ll) is needed to complete the analysis.

Dr. Chang's analysis utilizes several well documented techniques of structural analysis. Each is covered in sufficient detail in the body of this paper to provide the reader with an adequate understanding of the problem as a whole. Those who are not familiar with one or more methods and who desire greater detail should study the suggested references.

The fundamental analysis tool is the finite element method. This very versatile technique is undergoing a state of constant change and improvement. One of the first applications of this method in the field of Naval Architecture was presented by J. R. Paulling in 1964. Since that time many investigators have used finite elements to solve difficult structural problems with much success. However, as increasingly larger problems were attempted using this method, the cost became greater and the results less accurate. The method is very appealing on the surface. It treats problems of varying complexity and size with equal respect. It therefore offers the practicing engineer a tool which requires very little thinking. Such a tool can be very dangerous if used without understanding and prudence.

The finite element method depends on four factors for accuracy. They are discretization, element type, number of elements and rounding error, and the accuracy of the boundary conditions. If conforming elements are used, the solution should converge to the exact solution as the element area approaches zero. Unfortunately, as the mesh size is decreased the accuracy limitations on the computer itself may result in an accumulation of round off errors. There always will be a limit where the increase in rounding error is larger than the decrease in discretization error. For a small structure, the actual error obtained in using the finite element method can be made quite small. In a ship, this limit may be reached when the actual error is still quite
significant. Then a decrease in mesh size will cause deterioration in accuracy. Even if this limit has not been reached, the additional computation time may be uneconomical. One attempt at skirting this problem has been the use of a large mesh for the whole structure and then taking the results and applying them as boundary conditions of a smaller region analyzed with smaller elements. This procedure can then be repeated as often as necessary until the region of interest is isolated. This process breaks down however, because the known inaccuracy in the original whole structure analysis is applied on the smaller region. Improvements to this procedure are needed whether they be more highly developed elements or more reliable ways in which to subdivide the structure $[6,7,10,12,17]$.

The method proposed by Chang combines the advantages of the finite element method in the analysis of individual transverse members and the advantage of grillage theory in the overall analysis. Chang's basic contribution is the application of coordinate transformation techniques of grillage analysis. This isolates the transverses of interest and treats them with a simple two dimensional finite element analysis. There are two basic grillage techniques available for use. The first, a grillage of infinite element technique, is usually associated with Wah. The second, grillage beam on elastic foundations, was revived by Vedler with the most notable recent developments attributable to Michelsen, Nielsen, and Chang [5,9,11,20]. The grillage techniques require that the analysis take into consideration the discrete nature of a system of stiffeners. It has been shown that as long as certain conditions are met the method produces reliable results in a very efficient manner.

At various points in Dr. Chang's analysis, beam solutions are required. Most of these calculations are performed using the line solution method. The line solution method had its origin over a hundred years ago in Germany. It was then developed in Russia and was reintroduced to the West when computers rendered
its full potential useful. In general, the method provides solutions that describe static and dynamic response as well as stability criteria of structural members for various loading, geometry and boundary conditions. It is often called the method of initial parameters (Krilov, Clebsh, McCauley) and is closely related to the Laplace transform approach of Nielsen. It is a simple method which can handle both elementary and advanced structural response problems. The beauty of the approach lies in the simplicity which makes it understandable and useable to anyone with a moderate structural background [13].

Dr. Chang's technique contains no new theory, but rather is a careful application of existing theories. The general rationale is that each technique will be used in the area where it is most accurate and efficient. Unquestionably, a certain amount of skill must be applied in such a composite approach. The final result, however, is a design tool that is simple and relatively inexpensive to use. In applying these various techniques to the whole ship analysis certain justifications must be made. Many of these assumptions are obvious from the nature of the problem, but others may not be so apparent. The following paragraphs will clarify the reasoning behind those assumptions.

The shear forces in the deck and bottom plating are neglected in comparison to the reactions between the prime longitudinals and transverses at their intersections. This assumption is based on the fact that measured results indicate a difference of about an order of magnitude between the stresses at those locations. Roberts reported of tests on a 90,000 dwt tanker which gave the following picture of calculated and measured shear stresses [l6].

We can see that the prime longitudinal and transverse intersections have shear forces that are at least on the average an order of magnitude greater than the average at the deck and bottom. Similar results were also found by Vasta [19].

$$
\begin{aligned}
& \text { Figure IV-1 Comparison between Measured and Calculated } \\
& \text { Shear Stresses in a } 90,000 \text { dwt Tanker [161 }
\end{aligned}
$$

Excluding the deck and bottom shears simplifies the calculations and reduces computational time. Such an assumption is bound to introduce some error in the final results. It appears that this is a point for future improvement. It seems possible that a good approximation can be made for applying these shear forces in the deck and bottom. From Figure IV-l it can be seen that the deck and bottom shears follow a simple linearly varying stepped function. Rather than neglecting these forces, they could be represented by a simple function and applied as loads in the transverse analysis.

The effect of the torsional rigidity of the longitudinals has been neglected because the typical member has an open cross section. It can be shown from the theory of elasticity that such cross sections have very little torsional stiffness. The longitudinals are not designed nor are they required to exhibit
torsional stiffness in tankers. The torsional stiffness that is exhibited by the longitudinals is ignored because the plane finite elements used do not allow for in plane twisting at the nodal points. Since the weight of all arguments indicates that this type of analysis produces satisfactory results, the error introduced is negligible.

The assumption of similarity of transverses or, at the very least, proportional stiffness among the transverses is important because it reduces the computations to a single finite element analysis of a typical transverse. Then, using proportional stiffness, the effective spring constants of all transverses upon each longitudinal can be computed.

For very large ships the relative uniformity of cross section should allow one to conclude that at least the web frames are similar. Since the web frame is usually considered among the most critical of ship members, it is selected as the typical transverse.

The assumption maintains that oil tight and swash bulkheads have proportional stiffness to the web frames. Thus it is said that the influence coefficients of one transverse are directly proportional to those of any other transverse.

One can derive the relative stiffness factor by comparing deflections of two transverses when each is acted on by a unit load applied as shown at α.

The proportional stiffness factor is

$$
\begin{equation*}
P_{b}=\frac{d_{\alpha}^{b}}{d_{\alpha}^{W}} \tag{IV-1}
\end{equation*}
$$

where b , w represent the bulkhead the eb frame and d is deflectic: The experiments of Roberts [16] show that both types of transverses can be treated as shear beams with little

$\begin{aligned} & \text { Figure IV-2 } \text { Sample Transverse Showing Model } \\ & \text { for Obtaining Influence Coefficients [4] }\end{aligned}$
bending deflection.

$$
\begin{equation*}
d_{\alpha}^{b}=\frac{x}{G A_{b}}, \quad d_{\alpha}^{w}=\frac{x}{G A_{w}} \tag{IV-2}
\end{equation*}
$$

where G , A are the shear modulus and shear area. Simple substitution reduces (IV-1) to

$$
\begin{equation*}
P_{b}=\frac{A_{b}}{A_{w}} \tag{IV-3}
\end{equation*}
$$

which is an approximate solution. The question of applying this same factor to other positions on the transverse, as for example at β, should be examined. It might be expected that this is a large source of error. That, however, is not the case. Dr. Chang shows that for a large tanker, an error in stiffness factor of 100% will produce an error of less than 1% in the results. He deliberately increased the stiffness factor by 100% for the oil tight bulkheads. The resultant changes in boundary forces were different by less than 0.5%. The results of this analysis are shown in table IV-1.

Forces in kg's

Longitudinal	$P=5.6$	$\mathrm{P}=11.2$
1	102,000	102,100
2	70,180	70,210
3	70,200	70,140
4	105,300	105,100
5	140,200	140,100
6	105,200	105,300
7	70,070	70,150
8	70,200	70,180
9	70,060	70,090
10	105,100	105,100
12	-80,600	-80,510
13	-53,740	-53,800
14	-107,500	-107,300
15	-161,100	-160,000
16	-107,500	-107,500
17	-53,810	-53,700
18	-53,860	-53,850
19	-53,630	-53,750

```
P = Stiffness Factor
```

Table IV-1 The Dominant Boundary Forces on Web Frame 127 Due to Two Different Stiffness Factors [P] for the Oil-Tight Bulkheads. [4]

The reason for this somewhat surprising result comes from simple beam theory. Consider a single longitudinal represented by a simply supported beam. Let that beam be acted upon by some loading function, $q(x)$, and a linear spring with stiffness k attached at the mid-point of the beam.

Figure IV-3

The deflection, d_{A}, can be computed at some arbitrary point, A. If the spring stiffness, k, is allowed to vary, then d_{A} can be written as a function of k. The results for a simple example are plotted below.

Figure IV-4

This shows that for some value of k, say k^{*}, the deflection, $d_{A}(k)$, will approach d^{*}, the deflection for $k=\infty$. Thus for any k greater than $k^{*}, d_{A}(k) \simeq d^{*}$ (a constant).

It is obvious, then, that for a sufficiently rigid transverse, an error in computing the apparent spring factor of that member will induce a negligible error in the shear force between that transverse and the longitudinal. It is physically apparent that the prime transverses of a ship are very rigid. This has been verified by Chang's results.

Dr. Chang assumes that the load transfer pattern for the transverse analysis is that which is normally used in a grillage analysis. The uniform load is borne by the stiffeners which in turn transfer it as concentrated loads to the girders. In longitudinally framed ships, the longitudinals are the stiffeners in the three dimensional grillage. Then the uniform load on the plates is transfered to the longitudinals which in turn apply it as concentrated loads on the transverses. This assumption has long been recognized in theoretical naval architecture $[15,20]$.

The technique, as presently coded for computer use, does not take into account the twisting of the entire hull due to unsymmetrical loads. This limits the use of the existing program to tankers and vessels of similar cross section which do not exhibit large openings in the deck. From basic elasticity we know that closed section thin wall members have great torsional rigidity in comparison to open section members of about the same configuration.

In tankers the hull forms a closed section and it is assumed that even unsymmetrical loads will produce very little twist. This assumption is not valid for container ships and ore carriers, indeed for any vessel with large deck or side openings that result in an open cross section in the hull. Of course, as long as loads are symmetrical, the existing code can easily handle the analysis for such vessels.

The theory as presented can be utilized in a partial analysis of the hull. Such an analysis offers several advantages: the greatest structural interest is centered on the mid-body; the smaller section of interest reduces input data and computation time; and, finally, the results should be accurate enough for design purposes.

The question of accuracy would seem to involve three significant parameters, which are load distribution, geometry of the structure, and the section being studied. The relationships of these parameters will be examined in order.

The load distribution is important because in a structure composed of a finite number of discrete elements certain conditions occur. The external loads are apportioned among the various elements in such a way that equilibrium and compatibility are satisfied throughout the structure. The stiffer elements or substructures will share more of the load than the weaker members. The actual sharing proportion within the structure or even the terminal forces on each element are difficult to resolve without a complete analysis of the whole structure. However, certain types of loadings may be determined with reasonable accuracy. Dr. Chang has considered two such special loads.

First, consider the ship-like composite box girder with equally spaced and identical transverses.

Figure IV-5 Uniform Ship-Iike Girder Subjected to Uniform Load

If this structure is subjected to a uniform self-balanced external load, then each transverse will share the same amount of load independently of the longitudinal stiffness. This loading will reduce the problem to the point where the conventional twodimensional analysis will yield the same results as the three dimensional analysis for the same hull girder.

The second case is for a non-uniform, periodic load. Then the load-sharing will occur only within the several transverses.

Figure IV-6 Uniform Ship-Like Girder Subjected to Periodic Load

The parameter of structure geometry can be useful if certain conditions are met. The transverses of the box girder must be of proportional stiffness and must be arranged in the same regular pattern. The load distribution must also follow this pattern for a partial analysis to be successful.

Most ships are designed with the proportional stiffness and geometric conditions satisfied. One cannot restrict loads to this extent, so it must be anticipated that loads which depart from the regular pattern must induce error.

In order to assess the magnitude of this error, Dr. Chang returns to the longitudinal strength formulation (Chapter II). The deflection of the hull can be obtained from a grillage analysis. This deflection results in the rigid body motion of
the transverses.

$$
\begin{equation*}
V_{o i}=A_{i j}^{Y} Y_{j} \tag{IV-4}
\end{equation*}
$$

where $A_{i j}^{Y}$ are the influence coefficients of the prime longitudinals treated as simple beams, and Y_{j} is the difference in shear force at the j-th transverse. Now, noting that the ship hull has the same length and same fixed conditions as a prime longitudinal, it seems reasonable that the $A_{i j}^{Y}$ can be approximated as a scalar proportion of the hull influence coefficients $\left(a_{i j}\right)$ -

$$
\begin{equation*}
A_{i j}^{Y}=a_{i j} / F \tag{IV-5}
\end{equation*}
$$

Returning to equation III-26 in the transverse analysis, the last term will result in

$$
\begin{equation*}
\bar{a}_{i j}^{\beta y} V_{o j} \simeq \frac{t^{\beta} Y}{F} i \tag{IV-6}
\end{equation*}
$$

where $\bar{a}_{i j}=a_{i j}{ }^{-1}$. A similar result for the horizontal plane follows:

$$
\begin{equation*}
\bar{a}_{i j}^{\beta y} V_{O j} \simeq \frac{r^{\beta} X}{G}{ }_{i} \tag{IV-7}
\end{equation*}
$$

In examining the left hand side of these expressions, it can be seen that neither the length of the portion nor the fixed conditions of the longitudinals is present. It can be concluded that a partial analysis of the ship will result in the same first two terms in equations (III-26) and (III-27). The third term is almost the same as for the global analysis. The only significant difference occurs in the last term. If equation (III-24) is examined, the series represents the coupling effects of the transverse deformations. In a global analysis, all of the transverses are considered and all their coupling effects are accounted for. In a partial analysis, only those transverses within that section
are considered. If the load distribution meets the aforementioned criteria, then the coupling will not include all transverses in any case. The case of identical transverses and uniform loads will result in all terms being negligible except the first two. It will reduce to the conventional two dimensional analysis.

This analysis and the computer code based on it have neglected the coupling effects of the sections of the structure not included in the partial analysis. The error induced by this omission will increase with the stiffness of the longitudinals. Dr. Chang believes that this error is probably less significant than conducting a full analysis which will introduce greater round-off error because of the increased degrees of freedom. In the total three dimensional finite element analysis, the error due to discretization by using a coarse mesh can also be significant.

RECOMMENDATIONS

The theory as presented thus far has been incorporated into a set of computer codes originally developed by Dr. Chang and more recently modified by the authors to permit usage on the Michigan Terminal System. There are limitations on the program as presented. The following should clarify these limitations and offer some possible future improvements.

The torsion and horizontal bending of the hull have been neglected. This limits the analysis to vessels with substantial horizontal and torsional stiffness for the hull. Torsional stiffness might be considered adequate for tankers and similar vessels of closed cross section and torsion might be ignored. Horizontal bending is another matter, since the response of the hull to horizontal loading seems to be approximately proportional to the vertical response for the same load. The proportional factor would be the ratio of the respective moments of inertia. In horizontal bending, only unsymmetric loads can introduce an effective horizontal load. Since stability questions arise from very unsymmetric loading, it appears that horizontal bending can be ignored in still water calculations.

The desirability of including both effects arises when considering dynamic loading. It is the dynamic problem that should generate the greatest interest. There have been several recent advances in ship motions and sea loads. The marriage of a good computer analysis in that field with the structural analysis is a natural one and should be ardently pursued. Dr. Chang has considered the horizontal bending and torsion problems and has proposed an extension to the existing program.

The basic assumption is that any deformation in the ship's structure is small enough to allow independent calculation of the stresses due to vertical bending, horizontal bending and
twisting. The method of calculating the horizontal bending is similar to the prior treatment of the vertical bending. The change is in the loads applied to obtain the results. In the vertical bending problem, only vertical loads were considered. Now the same calculation is repeated using the horizontal loading condition. The resulting stresses are then added to those obtained in the vertical bending calculations.

In order to analyze the twisting problem the hull is modeled as an open thin wall beam with braces as shown in Figure v-l.

The assumption is made that the cross section between the braces is constant. The line solution method is then applied. The transfer matrix between the state variables between two stations without loads is

$$
\left[\begin{array}{c}
\phi \\
\psi \\
M_{B} \\
M_{T} \\
1
\end{array}\right]_{i+1}=\left[\begin{array}{lllll}
L_{11} & L_{12} & L_{13} & L_{14} & 0 \\
L_{21} & L_{22} & L_{23} & L_{24} & 0 \\
L_{31} & L_{32} & L_{33} & L_{34} & 0 \\
L_{41} & L_{42} & L_{43} & L_{44} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]_{i}\left[\begin{array}{c}
\phi \\
\psi \\
M_{B} \\
M_{T} \\
1
\end{array}\right]_{i}
$$

$$
\text { or } \begin{aligned}
\mathrm{S}_{\mathrm{i}+1} & =\mathrm{L}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}} \text { where } \\
\phi & =\text { the twisting angle } \\
\psi & =\text { the derivative of the twisting angle } \\
\mathrm{M}_{\mathrm{B}} & =\text { the bending moment } \\
\mathrm{M}_{\mathrm{T}} & =\text { the twisting moment } \\
\mathrm{L}_{\mathrm{ij}} & (\mathrm{i}=1,4 ; j=1,4) \text { are given in table IV-2. } \\
\beta^{2} & =\mathrm{C}_{\psi} / \mathrm{C}_{\omega} \\
\mathrm{C}_{\psi} & =\text { the torsional rigidity } \\
\mathrm{C}_{\omega} & =\text { the warping rigidity }
\end{aligned}
$$

Table IV-2 - The Transfer Matrix ($L_{i j}$)

1	$-\frac{\sin \beta\left(x-a_{i}\right)}{\beta}$	$-\frac{\left(1-\cos \beta\left(x-a_{i}\right)\right)}{C_{\omega} \beta^{2}}$	$\frac{-\beta\left(x-a_{i}\right)+\sin \beta\left(x-a_{i}\right)}{C_{\omega} \beta^{3}}$
0	$\cos \beta\left(x-a_{i}\right)$	$\frac{\sin \beta\left(x-a_{i}\right)}{C_{\omega} \beta}$	$\frac{1-\cos \beta\left(x-a_{i}\right)}{C_{\omega} \beta^{2}}$
0	$-\beta C_{\omega} \sin \beta\left(x-a_{i}\right)$	$\cos \beta\left(x-a_{i}\right)$	$\frac{\sin \beta\left(x-a_{i}\right)}{\beta}$
0	0	0	1

The transfer matrix for a concentrated twisting moment, M_{T}, is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -\mathrm{M}_{\mathrm{T}} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The global matrix L is formed in the standard way [13] as

$$
S_{n+1}=L_{n} L_{n-1} \cdots L_{0} S_{0}
$$

$$
\text { or } \quad S_{n+1}=L S_{0}
$$

$$
\begin{equation*}
\text { where } \quad L=L_{n} L_{n-1} \cdots L_{0} \tag{V-2}
\end{equation*}
$$

If the effects of the braces are treated as redundant and if Z_{j} is the total shear force across the middle section of the i-th brace, as shown in Figure $V-1$, then Z_{j} can be computed as follows:

$$
\begin{equation*}
z_{j}=\frac{-\alpha_{i}}{\alpha_{i j}+\delta_{i j} \beta_{j}} \tag{V-3}
\end{equation*}
$$

where $d_{i}=$ the deformation at the i-th brace due to external
$\delta_{i j}=$ Dirac delta function $=1$ if $i=j$ or 0 if $i \neq j$
$\alpha_{i j}=\begin{aligned} & \text { deformation at the } i-t h \text { cutout due to unit load at } \\ & j-t h \text { cutout }\end{aligned}$
$\begin{aligned} \beta_{j}= & \text { deformation at the } j-\text { th cutout due to deformation } \\ & \text { of the } j-\text { th brace. }\end{aligned}$
$\alpha_{i j}$ and d_{i} can be computed using the line solution method by treating the ship hull as a thin wall beam without using braces. B_{j} can be found using shear beam theory. Thus equation $V-3$ can be solved directly for Z_{j}. Now applying the line solution
method with Z_{j} known, the real deformations and stresses on the hull can be determined. Again, due to the basic assumption of superposition, these stresses can be added to those for vertical and horizontal bending. Since it is a known fact that stress concentrations occur at the hatch corners, they should probably be analyzed by the finite element method using the known stress distribution for boundary conditions.

The effect of including the stresses due to horizontal bending and twisting will vary depending on the problem conditions. The principal factors would appear to be the magnitude of unsymmetrical loads, the relative dimensions of the openings to the hull dimensions, and the design of the cross braces.

In any program which is to be used as a design tool, data preparation is an important consideration. The user must expend a certain amount of effort due to the complexity of the problem, but this should be reduced wherever possible to minimize error. The input data preparation required for the use of the existing program is somewhat tedious. Automatic data generation routines could overcome this inconvenience. This is essentially a programming problem. Any changes made here should be considered as part of interfacing this program with a sea loads program. The other inputs to the program are very straight forward and could be made directly from a blueprint. The program graphically depicts much of the structural input so that errors are pictorially obvious. The authors included one small change in the Michigan version which allows the program to be stopped after all input and after the eigenvalues have been determined. This enables the batch user to stop the program and check the data input. At the same time he can check the eigenvalues and determine how many should be used to attain the desired level of accuracy. This can be done at very low cost. When all the input errors are eliminated the code is changed and the program may be run to completion.

The efficiency of a program is determined by the type of machine the investigator is utilizing. The existing program of Dr. Chang is most efficient on computers with limited storage capacity. The running time on the Univac 1108 was about six minutes for the example used. The finite element routine used was developed by Paulling for an IBM 7094. The limited storage capacity of smaller computers necessitates temporary storage of intermediate data on some device in order to insure adequate core storage for computations. The original version is thus entirely satisfactory for limited storage computers.

The features of data removal and replacement within the program are time consuming and unnecessary for large machines such as the IBM 360/67. The authors modified the finite element routine extensively as far as data manipulation is concerned and were successful in cutting CPU time for this section in half for a small test case. This test run was a simple cantilever beam problem which was modelled using 33 nodes or 66 degrees of freedom and 30 quadrilateral elements. The analysis time after modifications was 43 seconds CPU time. In our experience this does not compare favorably with existing finite element method routines developed specifically for the Michigan Terminal System. The authors ran a similar plane problem having 72 nodes or 144 degrees of freedom with 105 triangular elements in 7.1 seconds of CPU time using such a program. It is our strong belief that adapting the analysis around a Michigan Department of Naval Architecture finite element routine would greatly reduce analysis time over all. Since the evidence indicates that the transverse analysis can be handled as a two dimensional problem there is no need to incorporate three dimensional elements. Perhaps the best combination would be two dimensional isoparametric elements and pin ended bars to represent plating and flanges. In order to appreciate the extent to which the finite element analysis dominates the computation time, consider that our experience shows it to be 90% of the total analysis time. Any improvement in efficiency of this section will substantially affect the total analysis.

Time has prevented the authors from initiating more changes themselves. A small test data set and results which can be run at minimal cost has been developed to encourage such a change, however.

The problems of unsymmetric loading in regard to horizontal bending and torsion have been discussed. In the case of vertical bending, the present program can handle unsymmetric loading as the sum of a symmetric and an antisymmetric system. Automatic data generation routines previously recommended should include computer breakdown of the unsymmetric loads into the two systems.

It has been assumed that the shear forces on the deck and bottom at each transverse are negligible in comparison with those in the longitudinal bulkhead and side shell. For programming purposes the shears on the prime longitudinals have been evenly distributed. This assumption is based on the findings of Roberts [16]. Examining Roberts' test example and the full scale tests reported by Vasta [19], both of these assumptions appear to be somewhat questionable. In fact these are the only assumptions of Dr. Chang which the authors believe are not well supported by current understanding of the problem. Dr. Chang himself admitted in commenting on results of his test analysis of a certain large tanker that the second assumption probably produced some error. On examining the full scale results of both Vasta and Roberts the authors believe that both shear conditions can be handled by a simple linear loading function. This function could be determined empirically from the existing full scale test results. Then the reactions between the transverses and the prime longitudinals could be distributed in a more realistic manner. There is essentially nothing wrong with the present approach except that some other linear distributions may result in better answers. This would be an easy step to accomplish and would not alter the analysis time appreciably.

The reduction of most problems to a partial analysis as presented by Dr. Chang and outlined in Chapter IV, seems reasonable for the present time. The authors believe that once again the potential user must be cautioned to weigh the restrictions this method implies. The error caused by this type of analysis will be negligible only if the coupling effects caused by the excluded structure are negligible. The parameters which affect this error have already been discussed. They are load distribution, structure geometry, and the section to be analysed. The geometric parameter should in general be satisfied for large tankers and other bulk carriers over a considerable portion of the mid-body. If one considers the entire ship, the bow and stern coupling effects would appear to be minimal. This would not be the case if analysis were limited to a small section of the parallel mid-body. In this example, the potential error will be introduced by the types of loadings in the excluded section. This difficulty would appear to increase when considering a dynamic analysis. The sea loads even at the bow and stern sections might be significant under certain conditions. Some means must be provided for including the coupling effects of the excluded sections in such a problem.

As a final recommendation for future study, these coupling effects must be examined and a means provided for entering them into the analysis. Dr. Chang offers some very convincing arguments as to why the partial analysis is preferable to the full ship analysis. There must exist a practical point at which his arguments are no longer valid. At this point the round-off and discretization errors may indeed be less than the partial error due to excluded coupling effects. Economic considerations weigh heavily for this partial analysis, but the user must have an idea of the error magnitude acquired by such an economic measure.

The authors favor an approach to the problem that will retain the basic economy of the partial analysis, without excluding any significant coupling effects. Perhaps a quasi-empirical approach
for determining these effects, and then applying them as end conditions for the partial analysis would offer the greatest potential. Such an approach would admittedly contain error, but, like the deck shear function previously suggested, it would hopefully reduce the error incured by completely ignoring the effect. It seems reasonable to anticipate that not all of the coupling effects will prove significant. However, only further study can reveal the important ones.

The scope of this project as stated in our prospectus was two fold. The first objective was to produce a useable Michigan Terminal System version of the subject set of computer programs, and a user's guide was to be written for future utilization of the program. This objective has been accomplished. A direct comparison was made with the results of a full scale problem used by Dr. Chang to support his program. This comparison showed that the Michigan Terminal System version performs the same analysis as the original. The second objective was to make a search of related literature in order to obtain an understanding of the assumptions made and of the restrictions they impose on future uses of the program. The second objective has been accomplished and the remainder of this section is devoted to the authors findings in this area.

In conducting the literature search, it became apparent that most of the meaningful investigations of ships structures have occured within the last decade. In discussing the work of Vasta in 1958, St. Denis commented about the progress of structural analysis. He notes, "... one may well ask what new ideas have been introduced in ship structures during the past 25 years. The list is hardly impressive" [19]. That was a rather sweeping indictment of structures research prior to that time, but since then several important advances have been made. The most significant advance was the introduction of high speed computers. This encouraged the study of complex problems which had previously been avoided. The computer age soon produced results through three very important techniques which Dr. Chang has adopted for his work. These are the finite element, grillage, and line solution methods. During that decade the basic ship structure problem was studied in detail. Most of the basic assumptions used in this paper became popular and gained support within that period. These assumptions are discussed in Chapter IV. Some of
them restrict the use of the program to certain classes of ships and loading conditions.

There is one assumption which the authors believed was not fully supported. This assumption neglected the shear forces in the deck and bottom when compared with those in the prime longitudinals. This conclusion is not well supported, but is an assumption of convenience rather than necessity. The authors have suggested a program modification to handle this problem.

On the basis of their study, the authors believe that the concept is sound and workable. The restrictions introduced by certain of the assumptions must be observed. For most of these restrictions an alternate approach has been discussed in Chapter V, but additional computer coding will be needed to implement these extensions.

The potential of this technique is fantastic because the cost of an analysis can be made low enough to permit its use as a design tool. As it is presently coded, the analysis of a loading condition on a typical large tanker required 6 minutes of CPU time on a Univac 1108 and 23 minutes CPU time on an IBM 360/67, a medium speed computer. The principal cost area in the IBM $360 / 67$ run is the finite element analysis of the transverse. This portion requires about 90% of the total time.

In summary, the concepts advanced by Dr. Chang are essentially sound and supported by current evidence. Because of its low cost his program has great potential as a design aid in the structural analysis of several types of ships. Certain changes in programming could be made to adapt the program to various computers. This would increase the efficiency for a given system. The data generation routines could be improved to reduce the preparation time; at present data preparation while not difficult is time consumming. The automatic generation of data will increase the value of the program as a design tool with a small cost penalty.

In order to increase confidence in the method, a limited number of additional studies of problems with known results should be made. This would serve to confirm the basic assumptions which investigators other than Dr . Chang have made concerning the analysis of this type of ship structure. Most of these assumptions were advanced during the past decade. As a result, those years were most fertile for ship structural analysis. If the next decade is to be as successful, the practicing naval architect must be willing to accept and use these new ideas.

BIBLIOGRAPHY

1. Abrahamsen, E., Nordenstrom, and Roren, E., "Design and Reliability of Ship Structures," SNAME Spring Meeting, April, 1970.
2. Abrahamsen, E., "Recent Developments in the Practical Philosophy of Ship Structural Design," SNAME Spring Meeting, July, 1967.
3. Abrahamsen, E., "Structural Analysis of Large Ships," SNAME Annual Meeting, November, 1969.
4. Chang, Pin-Yu, "Report on Analysis of Large Tankers Using Grillage and Finite Element Techniques." (unpublished)
5. Chang, Pin-Yu, "Elastic Analysis of Grillages Including Torsional Effect and Stability," The University of Michigan, 1967.
6. Kamel, H. A., et al., "An Automated Approach to Ship Structure Analysis," SNAME Transactions, Vol. 77, 1969.
7. Kamel, H. A., and Liu, D., "Application of the Finite Element Method to Ship Structures," soon to be published in Journal of Computers and Structures.
8. Hagiwara, Koichi, et al., "Structural Strength of Large Bulk Carriers," Mitsubishi Heavy Industries Technical Review, January, 1970.
9. Huang, Hou-Wen, "Transverse Strength of a Ship Hull Under Lateral and In-Plane Loads," Berkeley, California, 1967.
10. Moe, J., "Finite Element Techniques in Ship Structures Design," Trondheim, Norway, 1969.
11. Nielsen, R. Analysis of Plane and Space Grillages Under Arbitrary Loading by Use of the Laplace Transformation Technique. Copenhagen, 1965.
12. Paulling, J. R., "The Analysis of Complex Ship Structures by the Finite Element Technique," Journal of Ship Research, Vol. 8, No. 3, December, 1964.
13. Pilkey, W. D., Manual for the Response of Structural Members. U. S. Department of Commerce, 1969.
14. Report of Committee Four, "Stress Distribution in Hull Structure," ISSC, Tokyo, 1970.
15. Report of Committee Five, "Stiffened Panels in 3-Dimensional Structures," ISSC, Tokyo, 1970.
16. Roberts, W. J., "Strength of Large Tankers," No. 55, Lloyd's Register of Shipping, London, January, 1970.
17. Roren, Elvald M. Q., "Transverse Strength of Tankers - Finite Element Applications," European Shipbuilding, Vol. 17, Nos. 3, 4, 1968.
18. Schade, H. G., "World-wide Survey of Ship Structure Research," Berkeley, California, 1967.
19. Vasta, John, "Lessons Learned from Full-Scale Ship Structural Tests," SNAME Transactions, Vol. 66, 1958.
20. Vedeler, G., "Grillage Beams in Ships and Similar Structures," Oslo, 1945.
21. Wah, Thein, A Guide for the Analysis of Ship Structures. U. S. Department of Commerce, 1960.
22. Zienkiewicz, O. C., The Finite Element Method in Structural and Continuum Mechanics. London, 1967.

APPENDIX A: RESULTS

The following sketch of a transverse web frame contains full scale results as well as results from the computer programs contained in this paper. Strain gage data from both sides of this plate are plotted. While this is not offered as absolute proof of the method, it does show that good correlation can be made using this method.

$\begin{aligned} \text { Figure A-1 } & \text { Normal Stresses on Particular } \\ & \text { Web Frame of a Large Tanker [4] }\end{aligned}$

APPENDIX B: COMPUTER PROGRAMS

Two computer programs are included here: one for longitudinal strength, one for transverse strength. Included with these programs are lists of input and output data for a test problem to be used with both programs.


```
C
C LONGI TUDINAL STRENGTH ANALYSIS
C LONGI TUDINAL STRENGTH ANALYSIS
```

C

```

```

C
C WRITTEN RY PIN YU CHANG
C
C ADAPTED FOR MTS RY
C E. A. CHAZAL
C
C
C

```


```

C THE USER'S GUIDE FOR THIS PROGRAM ANO THE PROFFESSIONAL THESIS LIY
C. BY CHAZAL AND PAYNE, APRIL 1971.
C
CALL LONGAL
SiOP
END

```

SIIRROUTINE LONGML
\(C\)
C. PRIMARY LONGITIIIINAL STRFNGTH RIIUTINE
    DIMENSION \(A(3,2), Y I(3,2), 0(50,2), A F(50,50), \triangle E(50,50)\)
    DIMENSION IND \((50,3), J[)(50), T(50), R(50)\)
    DIMENSIDN YR (50), YC (50), 1)(50)
        DIMENSION DY \((50,2), L 0(50)\)
        DIMENSIIN DAP \((50,50)\)
        DOUBLE PRECISION DAP
        RFAD (5. 150 ) NPROR, MT
C. PROBLFM NUMBER , NUMBFR IJF TRANSVFRSES
    READ (5, 152) (JП(I), I=1, MT)
        READ (5,151)AI, AJ,XI,XJ,F,GNH, ZI,FM
        READ (5,151)Y1,Y2,SM1,SM2,SN1,SN2
    CAI.AJ.....NER AREA OF THF SHFLLS AND THF LHMGITIIITNAL BHLKHFADS
C, XI,X, ..... NOMENT OF INERTIA OF THF SHELLS AKI BHLKHFAUS
C ZLFN.....LENGTH OF THF HOLOS
C Y1,Y2....WIDTH MF THE WING AND CENTRAL TANKS
C SMI, SNI....SSCTION MODULI OF SHFLL AT DECK Ani) RUTTMA
C SM2, SNI....SECTION MODULI OF RUHKHFAN AT DFCK MMU ROT TOA:
        READ \((5,151)(A(I, 1), I=1,3)\)
        READ \((5,151)(A(I, 2), I=1,3)\)
C A(I.J)... SHEAR AREA OF THE WER FRAMES, SWASH BULKHEADS AMM III-
C. TIGHT BULKHEADS
    RFAD \((5,151)(Y I(I, 1), I=1,3)\)
    RFAn \((5,151)(Y I(I, 2), I=1,3)\)
C. YI(I, J)...MOMENT DF INERTIA OF THE WER FRAMFS, SWASH AULRHEAOS,
C. AND OIL-TIGHT RULKHEADS
        \(M Y=N i T+1\).
        Dก \(77 \mathrm{I}=1, \mathrm{MY}\)
    \(77 \operatorname{READ}(5,154)(\cap(I, J), J=1,2), L O(I)\)
C. WNIFORM LIAAIS OF THE TRANSVERSES
    WRITE (6.100) NPROH
        WRITE \((6,101)\)
        WRITE (6,O9) ZLEN,E,GNU,Y1,Y?
```

 WRITE (6.102)
 WRITE (6,99) AI,AJ,XI,XJ
 WRITE(6.106)
 WRITE(6,99) SM1,SN1.,SM2,SN2
 WRITE(6,227)
 WRITE(6,99) ((A(I,J),I=1,3),J=1,2)
 WRITE (6,104) ((YI(I,J),I=1,3),J=1,2)
 WRITE (6,105)
 DO 1 I=1,MY
 1 WRITF (6,99) (O(I,J),J=1,2)
 wRITE(6,155) (JD(I),I=].,MT)
 SP= ZLEN/MY
 DO 3 I= 1,MT
 X=I*SP
 DO 2. J=1,2
 DY(I,J)=0.
 DO 2 K=1,MY
 M=K-1
 IF (LO(K).EO.O) GO TO 2
 XI=M*SP
 x2=K}*S
 C=X2-XI
 XD=ZLFN-X1/2.-X2/2.
 XW=O(K,J)
 XW=XW/E
 Rl=XW*XD/ZLFN
 ADD=8.*RI*(X*X-ZLFN**2)*X
 ADD=ADD)+XW*X*(R.*XD**3-2.*X2*C*C+C**3)/ZLENN
 IF.(X.GT.X2) GO TO 222
 ADD=AD[O+XW*X*2.*C*C
 IF (X.LT.XI) Gח TO 223
 ADD=ADO-2.*XW*(X-X1)**4/C
 GO 70 223
 222. ADD =ADD-8.*XW*(X-X1/2.-X2/2.)**3+XM*(2.*X2*(% * - C**3)
 223 DY(I,J)=DY(I,J)-ADD/48.
 2 CONTINUF
 DO 39 J=1,MT
 IF (I.GT.J) G\cap TO 224
 B= ZLEN-J*SP
 AF(I,J)=X*R/E*(ZLEN**2-R*R-X*X)/7LEN/6.
 GO 10 39
 224 AF(I,J)=AF(J,I)
 39 CONTINUE
 3 CONTINUE
 C. MINSIJR IS DOURLE PRECISIUN NIATRIX INVERSION
CALL MINSUR (AF,DAP,MT,DE)
IF (DE.FO.O.) GO TO 2.25
D\cap 4 I=1,MT
OO }4,J=1,
O(I,J)=0.
OO 4 K=1, (viT
4 0(I,J)=O(I,J)+AF(I,K)*DY(K,J)
WRITF (6,226)
D\cap 900 I=1,MT
900 WRITE (6,99) (0)(I,L.),L=1,?)
WRITE (6,156)
DO 10 I= l,MT
X=FLDAT(I)*SP
OП 10 J=1,MT
IF (I.GT.J) GO TOQ

```
```

 B=ZLEN-J*SP
 AC=X*B/E*(ZLEN**2-B*B-X*X)/ZLEN/6.
 AD=X*B/ZLEN/E*2.*(1.+GNU)
 AF(I,J)=AC/XI+AD/AI
 AE (I,J)=AC/XJ+AD/AJ
 GO TO 10
 9 AF(I,J)=AF(J,I)
 AE(I,J)=AE(J,I)
 CONTINUE
 DO 20 I= 1,MT
 IJ=JD(I)
 A1=A(IJ,1)
 A 2=A(IJ,2)
 B1=YI(IJ,1)
 B2=YI(IJ,2)
 Q1=0(I,1)/Y1
 02=0(I,2)/Y2
 CALL DECO(B1,B2,A1,A2,Y1,Y2,O1,02,XK,X0,1)
 D(I)=XD
 WRITE (6,99) D(I),XK
 DO 1& J=1,MT
 AE(I,J)=\DeltaE(I,J)+\DeltaF(I,J)
 IF (I.NF.J) GO TO 1.8
 AE(I,J)=AE(I,J)+XK
 CONTINUE
 OO 19 J=1,MT
 D(I)=D(I)+AF(I,J)*(O(J,1)+0(J,?))
 CONTINUE
 WRITE (6,157)
 (WRITE (6,99) (D(K),K=1,MT)
 C MINSIJB IS DOUBLE PRECISION MATRIX INVERSION
CALL MINSUB (AE,DAP,MT,DE)
IF (DE.EO.O.) GO TO 225
GO TO 30
WRITE (6,21)
STOP
WRITE (6,33) (K,K=1,2)
OO 40 I=1,MT
R(I) =0.
D\cap 35 J=1,MT
R(I)}=R(I)+AE(I,J)*门(J
T(I)=0(I,I)+0(I,2)-R(I)
WRITE(7.103) T(I),R(I)
WRITE (6,46) I,T(I),R(I)
FORMAT (IIS,2F16.5)
WRITE (6,62) (K,K=1,2)
miRITE (6,65)
XM=0.
XN=0.
DO 50 I= 1,MT
XN=XN+R(I)*(I.-FL\capAT(I)/FI_OAT(NY))
XM=XM+T(I)*(1.-FLOAT(I)/FL\capAT(MY))
50 CONTINIIF
YR(1) =XM*SP
YC(1) =XN棌SP
DO KO I=2,MT
J=I-1
XM=XM-T (J)
XN=XN-R(J)
YB(I)=YR(J)+XM*SP

```
```

 SB=YB(I)/SMI
 SD=YR(I)/SN1
 YC(I) =YC(J)+XN*SP
 SC=YC(I)/SM2
 SE=YC(I)/SN2
 WRITE (6,64) I,YB(I),SB,SD,YC(I),SC,SE
 GO CONTINUE
 RETURN
 2.1 FORMAT (//25H MATRIX SINGILLAR //)
 33 FORMAT (//32H REACTIONS AT THE INTERSFCTIONS 2ILO//)
 62 FORMAT(//28H BENDING MOMENT AND STRFSSFS IIO,I2U,//)
 64 FORMAT(I4,6E15.4)
65 FORMAT(12X,'M SHELE DECK STRESS ROTTONG STRFSS IV RULKHEAII
1. DECK STRESS BOTTOM STRESS',//I
99 FORMAT((7E15.4))
100 FORMATI//,'INPUTS FOR THE LONGITUDINAL STRENGTH: PKORLEM NUMIRFR'.
+I5,//)
101 FORMAT (//4OH LENGTH E GNU ANO THE WIOTH OF THE TANNKS //)
102 FORMAT(//4OH AREAS AND J OF THE LONG RHOS \& SHELLS //)
103 FORMAT(2EI5.5)
104 FORMAT(//37H MOMENT OF INFRTIA OF THE TRANSVERSES //GF15.4)
105 FORMAT (//34H UNIFORM LOADS OF THE HOLDS //)
IOK FORMAT(//57H SECTION MODULI OF SHELL ANO RULKHFAO AT DFCK \& HOTTHM
+ //1
150 FORMAT(2I3)
151 FORMAT(7E10.5)
15? FORMAT(50I1)
154 FORMAT(2F10.5,I3)
155 FORMAT(//,'JD)(I)= ',50I2)
156 FORMAT (// 75H DEFLFCTIONS AND INFLUFNCF COFFFICIENTS HF SIGHLY SU
1PPIORTED LONG. RIILKHFAD //)
157 FORMAT (// 31H DEFLECTIONS OF LONG. KULKHFAI) //)
2?G FORMAT(//35H UNIFORM LOAIS OF THF TR\triangleNSVERSFS //)
2.7 FORMAT(//25H AREAS OF THE TRANSVERSES //)
END

```

C. DETIRMINES DEFLECTIONS OF SIMPLY SUPPORTFD LONGITUUIMALS
C. THIS IS FOR THE LONGITUDINAL STRFSSES IF SHIPS.
                DIMENSION T1 \((5,5), T 2(5,5), T(5,5)\)
                CALL TM(A1,XI, A, O1,T1,O.,M)
                CALL TM (A2,YI, C, O2,T2, O., Ni)
                CALL MULT (T,T2,T1,5)
            \(N=1\)
        \(1.00=T(2,2) * T(4,4)-T(2,4) * T(4,2)\)
            \(U=T(2,4) * T(4,5) / \cap(0-T(2,5) * T(4,4) / 00\)
                        \(V=T(2,5) * T(4,2) / 00-T(2,2) * T(4,5) / 00\)
        \(X=T 1(1,2) * 11+T 1(1,4) * V+T 1(1,5)\)
            GO \(T \cap(2,3), N\)
        2 \(\quad \mathrm{XI}=\mathrm{X}\)
C DETIRMINES INFLUENCE COFF. XK
    G \(\quad T 1(1,5)=0\) 。
        T1 \((2,5)=0\).
        T1 (3.5) =0.
        T1 \((4,5)=-1\).
            T2 \((1,5)=0\) 。
        \(T 2(2,5)=0\).
```

 T2(3,5)=0.
 T2(4,5)=0.
 CALL MULT (T,T2,T1,5)
 N=N+1
 GO TO 1
 3 XK=X
 RETURN
 FND
    ```
        SURROUTINE MINSUB ( \(A A, A, N, I D D)\)
C
    MINSUB IS DOUBLE PRECISION MATRIX INVERSION
        DIMENSION AA 50,50\(), L L(50), M(50), A(N, N)\)
        DOUIILE PRECISION A,D
C THIS LOOP SCALES THE MATRIX TO APPROXIMATELY ONE (I)
        \(L=0\)
    \(10 \quad L=L+1\)
        \(A H O W=\triangle A(L, L)\)
            SCALE \(=A B S(A H O W)\)
        IF(SCALE.EO.O.) GO TO 10
        DO \(5 \mathrm{I}=1, \mathrm{~N}\)
        [) \(5 \mathrm{~J}=1, \mathrm{~N}\)
            \(\Delta(I, J)=\Delta A(I, J) / S C A L E\)
        CALL MINV (A,N,D,LL,M)
C THIS LOOP REMIVES SCALING FACTOR
        1) \(6 \quad I=1, N\)
        门ก \(6 J=1, N\)
    \(6 \quad A \Delta(I, J)=A(I, J) / S C A L E\)
        \(\cap \cap=1)\)
        WRITE (6,30) DIO.SCALE
    30 FORMAT(//, 'MATRIX INVERSION - DETERMTNANT IS',F15.b, /, 'SCALTAG FAC
    ] TOR IS', E15.5.//)
        RETURN
        END
    Surroutine minv (a, N, i), L, m)
C
c
C
C
c
C
C.
C.
C
    USAGE
            CALL MINV(A,N,D,L,M)
        DESCRIPTINN OF PARAMETERS
            A - INPUT MATRIX, DESTROYED IN COMPUTATInN ANH RFPLACHO \&Y
                RESULTANT INVFRSE.
            n - ORDER OF MATRIX A
            D - resultant meterminant
            L - WORK VECTOK OF LENGTH N
            M - WIRRK VECTOR OF LENGTH M

REMARKS
\[
n=1.0
\]
\[
\cap \cap 80 \mathrm{~K}=1, \mathrm{~N}
\]
\[
K K=N K+K
\]
\[
R I G A=A(K K)
\]
\[
\text { DO } 20 \mathrm{~J}=\mathrm{K}, \mathrm{~N}
\]
\[
\text { I } 7=N *(J-1)
\]
\[
0 \cap 20 \mathrm{I}=\mathrm{K}, \mathrm{~N}
\]
\[
I J=I Z+I
\]
\(10 \operatorname{IF}(D A B S(B I G A)-\cap A B S(A(I J))) 15, ? 0, ? n\)
15 RIGA=A(IJ)

20 CONTINUE
SURROUTINES AND FUNCTION SURPROGRAMS REGUIRED NONE

METHOD THE MATRIX IS SINGULAR. STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A,D,BIGA,HOLD ROIITINE. 10 MUST BE CHANGFD TO DABS.

\section*{SEARCH FOR largest EIEMENT}
\[
N K=-N
\]
\[
N K=N K+N
\]
\[
L(K)=K
\]
\[
M(K)=K
\]
\(L(K)=I\) \(M(K)=J\)

THE STANDARD GAUSS-JORDAN METHON IS USED. THE DETERMINANT IS also calculated. a determinant of zfro invicates that

If a double precision version of this routine is desiren, the C IN COLUMN 1 SHOULD RE REMOVED FROM THE DOIJRLE PKECISIM:

THE C MUST ALSO BE REMOVED FROM DOMRLF PRECOSIUN STATEWFFTS APPEARING IN OTHER ROUTINES USFI IN CONJUNCTION WITH THIS
the double precisimin version bif this surroutine must alsh CONTAIN DOURLE PRECISION FORTRAM FUNCTIONS. ABS IN STATEFFHI
```

 HOLD=-A(KI)
 JI=KI-K+J
 A(KI)=A(JI)
 30 A(JI) =HOLD
 C
C
C
35I=M(K)
IF(I-K) 45,45,38
38 JP=N*(I-1)
DO 40 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A(JK)
A(JK)=A(JI)
40.A(JI) =HOLD
C
C DIVIDE COLUMN BY MINUS PIVOT (VALIJF OF PIVOT FLENENT IS
C CONTAINED IN RIGAI
C
45 IF(RIGA) 48,46,48
46 D=0.0
RETIIRN
4R DO 55 I=1,N
IF(I-K) 50, 55,50
50 IK=NK+I
A(IK)=A(IK)/(-RIGA)
55 CONTINUE
C
C
C
C
C
C
KJ=K-N
nn }75\textrm{J}=1.
KJ=KJ+N
IF(J-K) 7\cap,75,70
7\cap A(KJ)=A(KJ)/RIGA
75 CONTINISF
C
C
C
C
C
C

```

```

 A(KK)=1.O/RIGA
 8O CONTINUE
    ```
```

C
C
C
FINAL ROW AND CDLUMN INTERCHANGF
K=N
100 K=(K-1)
TF(K) 150,150,105
105 I=L(K)
IF(I-K) 120,120,108
108 J0=N*(K-1)
JR=N*(I-1)
OO 110 J=1,N
JK=JO+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
110 A(JI) = HOLD
120 J=M(K)
IF(J-K) 100,100,125
125 KI=K-N
DO 130 I= 1,N
KI=KI+N
HOLD=A(KI)
JI=K I -K+J
A(KI)=-\Delta(JI)
130 A(JI) =HOLD
GO TO. 100
150 RETURN
END
SURRRIITINE MULT(D,R,C,M)
DIMENSI\capN R(M,M),C(N,M), D(M,N)
O\cap 1 I=1,M
\capO 1 J=1,M
D(I,J)=0.
DO 11 K=1.M
11 D(I,J)=D(I,J)+R(I,K)*C(K,J)
1 CONTINUE
RETURN
FND
SIIRRMUTINF TM(AI,XI,A,O,T,R,M)
C SFF (EO C-1) APP. C. CHANG LINF SOLIITIHN FOR HFAN
OIMENSION T(5,5)
D\cap 1 I = 1,5
DO 1 J=1,5
1 T(I,J)=0.
T(1, 1)=]. .
FI=300000000.*XI
T(1,2)=-A
T(1,3)=-A*A/2./EI
T(1,4)=-A**3/6./ET
T(],5)=0*A***/24./FI
F=30000000.
G=E/2./1..3

```

I.00000I
I. 00000 I
\(80+7 \angle T \cdot 80+\exists L I \cdot 80+\exists 5 T \cdot\) \(70+700^{\circ}\) I




\$COPY *SOURCE* -F
\$RUN -LOAD\#t-F MAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Entry = & 500608 & SIZE \(=\) & 0 10E86 & & & & & \\
\hline NAME & value & T RF & NAME & value & T RF & NAME & value & T RF \\
\hline GETSPACE & 2140AE & * & freespac & 2143AE & * & ERROR\# & \(21 \mathrm{C10C}\) & * \\
\hline MTS\# & 21C128 & * & Candeply & 21E9D6 & * & GDINFO & 21EA2A & * \\
\hline POINT & 21F028 & * & SCARDS\# & 21F7A8 & * & SPRINT\# & 21F7B8 & * \\
\hline SPUNCH\# & 21F7C8 & * & SERCOM & 21P7D8 & * & READ\# & 21F848 & * \\
\hline WRITE\# & 21 F8.5A & * & LCSYMBOL & \(2204 \mathrm{B0}\) & * & MINSUB & 5000D8 & 5000D8 \\
\hline Main & 500608 & 500608 & MIN & 500710 & 500710 & LONGAL & 503000 & 503000 \\
\hline TM & 50 FO 00 & 50 PO 00 & DECO & 50F398 & 50 F393 & MULT & 50F890 & 50 F 890 \\
\hline REWIND* & 50FB 80 & * 50FB 80 & I BCOM\# & 510000 & *510000 & ADCON\# & 512000 & *512000 \\
\hline FCVZO & 512154 & * & PCVAO & 5121 FA & * & ECVLO & 512282 & * \\
\hline FCVIO & 5125A8 & * & FCVEO & 512A9A & * & fevco & 512CAC & * \\
\hline Frocs\# & 5130A0 & * 5130 A 0 & & & & & & \\
\hline
\end{tabular}

EXECUTION BEGINS

INPUTS FOR THE LONGITUDINAL STRENGTH: PROBLEM NUMBER 2

LengTh E GNU and the width of the tanks
\[
\begin{array}{lllllll}
0.1000 \mathrm{E} 05 & 0.2050 \mathrm{E} 07 & 0.3000 \mathrm{E} 00 & 0.1000 \mathrm{E} 00 & 0.4001 \mathrm{E} 07
\end{array}
\]

AREAS AND I OF THE LONG BHDS \(\mathcal{E}\) SHELIS
\[
\begin{array}{lllll}
0.5000 \mathrm{E} 04 & 0.4000 \mathrm{E} 04 & 0.2000 \mathrm{E} 11 & 0.2000 \mathrm{E} 11
\end{array}
\]

SECTION MODULI OF SHELL AND BULKHEAD AT DECK \(\varepsilon\) BOTTOM
\[
\begin{array}{llllll}
0.1500 \mathrm{E} 08 & 0.1700 \mathrm{E} 08 & 0.1500 \mathrm{E} 08 & 0.1700 \mathrm{E} 08
\end{array}
\]

AREAS OF THE TRANSVERSES
0.6600 E 03
0.1700 E 04
0.3800 E 04
0.7060 E 03
\(0.2200 \mathrm{E} \quad 04\)

MOMENT OF INERTIA OF THE TRANSVERSES
0.6000 E 10
0.6000 E 10
0.5000 E 10
0.6000 E

10
```

 M SHELL DECK STRESS BOTTOM STRESS M BULKHEAD DECK STRESS
 | 2 | -0.1611 E 09 | -0.1074 E 02 | -0.9479 E | 01 | 0.5629 E | 09 | 0.3753 E | 02 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.3946 E | 08 | 0.2630 E 01 | 0.2321 E | 01 | 0.2195 E | 09 | 0.1463 E | 022

STOP
O
EXECUTION TERMINATED

```

\section*{UNIFORM LOADS OF THE HOLDS}
```

0.0 0.0
0.0
0.0
0.0
0.1000E 06
0.1000 E 06
0.0
JD(I)=333

```
```

MATRIX INVERSION - DETERMINANT IS 0.38410E-01

```
MATRIX INVERSION - DETERMINANT IS 0.38410E-01
SCALING FACTOR IS 0.57165E 04
```

SCALING FACTOR IS 0.57165E 04

```
UNIFORM LOADS OF THE TRANSVERSES
\begin{tabular}{ll}
0.0 & \(0.4643 \mathrm{E} \mathrm{O5}\) \\
0.0 & \(0.1143 \mathrm{E} \mathrm{O6}\) \\
0.0 & \(0.4643 \mathrm{E} \mathrm{O5}\)
\end{tabular}
deflections and Influence coefficients of simply supported long. bulkhead
\begin{tabular}{lll}
0.1376 E & 0 & 0 \\
0.3388 E & 0 & \(0.2281 \mathrm{E}-11\) \\
0.1376 E & 0 & 0
\end{tabular}
deflections of long. bulk head
\(0.2668 \mathrm{E} 00 \quad 0.5312 \mathrm{E} 00 \quad 0.2668 \mathrm{E} 00\)
MATRIX INVERSION \(-\operatorname{deterMINANT}\) IS \(\quad 0.37617 E 00\)
SCALING FACTOR IS \(0.16418 \mathrm{E}-05\)
\begin{tabular}{|c|c|c|}
\hline 0.96025 E 05 & \[
\begin{array}{r}
-0.49596 \mathrm{E} \mathrm{O5} \\
0.96025 \mathrm{E} 05
\end{array}
\] & -0.49596E 05 \\
\hline -0.16048E 06 & 0.27477 E 06 & \\
\hline 2 & -0.16048E 06 & 0.27477 E 06 \\
\hline 0.96023 E 05 & -0.49593E 05 & \\
\hline 3 & 0.96023 E 05 & -0.49593E \\
\hline
\end{tabular}

\section*{C TRANISVERSE STRENGTH ANALYSIS}

C
C
C WRITTEN RY PIN YU CHANG
C ADAPTED FOR MTS RY
C F. A. CHAZAL
C.J. J. PAYNE

C
C
C THIS PROGRAM ANALYZES THE ENTIRE SHIP STRUCTURE mUUFLFI AS A
O 3-D GRILLAGE. the governing egujatimns are unicoupleli via
c. COIORDINATE TRANSFOMATION. PHYSICALIY THIS ISTLATLS AUY

C PARTICULAR TRANSVERSE ANI PRODUCES THE NFCESSARY EOUMDARY
C CONDITIONS TO ANALYZE THAT TRANSVERSE USING FINITE ELEGETS.
C FOR DETAILEO INFORMATION SEE PROFESSIUNAL THESIS UF CHAYAL
\(C \quad \triangle N D\) PAYNE, APRIL 1971.
C
 CALL TRANCO(IB) STIT
END

SIIBRIIITINE TRANC(I IR)
C... PRIMARY TRANSVERSF STFENGTH ROUTINE
1) IMENSIDN JT (5), LO(100), IND (50.3)

DIMENSION \(\triangle P(50,50), R P(50,50), C P(50,50)\)
OIMFNS ION DP \((50,50)\), RL \((5,100), \operatorname{HM}(5,300)\)
DIMFNSION DOX (50, 100), DOY (50, 100), CX(100), CY(10(.)

DIMENSION R (2100), मWMFY(7979)
REAL*R DAP (50, 50), DAF (50, 50), ПFIG(50)
CONGON Kl, K2, K3, K4, II, NGRO, NNI,






COMMON/SAFF/KP,CP, DP
COMMION / MATRL/Z, G, GNUI, ALPHA,COWYF
COMMON / WORK/DUMY (1298)
EOUIVALFNCE (OOX (1, 1), R(1)), (1OOY(1, 1), HP(1, 1))
NSCR \(=9\)
NFIIE \(=7\)
NCARO=8
C. IPROR IS THE PRORLFM NUMRFK SEIFCTFH AT YMUR COMVGNIKMC,

READ (6. 104 ) JPRDí
CALL REGIN(IR,JT)
WRITE(6,7ロ2)
READ (5, 104) NF
WRITE(6,104)NF
CALL TRV(NCARD))
CALL LONGI (NFILE)
DO \(701 \mathrm{I}=1\), I K
IF (JT(I)-NOTR) \(701,701,700\)
```

701 CONTINLE
GO TO 777
700 WRITE (6.707)
STOP
777 PF=0.
DO 110 I= I,N\capTR
PF=PF+AF(I,I)/FLOAT(NOTP)
110 P(I)=SORT(P(I))
n\cap 112,I=1, NOTR
OM 112 J=1,NOTR
JF (I.GT.J) GOTO TO1.
AP(I,J)=AF(I,J)*P(I)*P(J)/PF
GO TO 112
111. }AP(I,J)=AP(J,I
112 DP(I,J)=AP(I,J)*PF
CALL JESSIN (AP,EIG,NOTR,DAP,DAF,DEIG,RP)
OO 670 J=1,NOTR
WRITE (6,1964)
WRITE(6,671) EIG(.J)
670 WRITE(G,G71)(AP(I,J),I=1,NOTR)
671. FTIRMAT((7E15.6))
236 DO 113 I= ,NOTR
113 FIG(I)=EIG(I)*PF
CALL TRANS(RP,AP,50,NOTR)
CALL MIILT (CP,DP,AP,50,NOTR)
CALL MULT(DP,RP,CP,5O,NOITR)
MRITE (6,114)
ARITE (6,105)(EIG(I),I=],NOTTR)
WRITE(6,315)
WRITF (6,105)(DP(I,I),I=1,N\capTP)
NNN=NF
OO . . 15 T= 1, M且
PF=FIG(J)
P!)=(PF-\capP(I,I))
PE=PF*.0I
PD=ABS(PD)
IF (PO.GT.PF) G\cap TO 11G
1.5 CONTINUS
GO 7O118
1]G URITE (6,1.17)
GO 10 1000
C. INPUT THE LMADS FROM THE LGNGITUDINAL BIIKHFAMS AGU SHHIIS
1.18 NUM=NOTR
CAI.L LOADS(NFILF,NSCR)
HRITF(6,181)
RFAN(5,1001) IMENTO
WRTTF(6,]O\cap?) TOFNTO
IF(IOENTO.EN.O) GO TO IOOO
CALI RFWINIO (7)
IF (NOTR.GT.NF) NUM=NF
DO 130 I=1,NOLO
CALL NFILRF(MRIW,NODE,LOADC,SFX(I),SFY(I),YHI(I),UX,MY,MIVF)
\triangleNG=PHI(I)
DO 120 J=, NUM
CX(J)=0.
CY(J)=0.
IF (LOADC.FO.O) GO TO 149
O\cap J27 K=1,N\capTR
C,X(J)=CX(J)+AP(K,J)*DX(K)*P(K)
127CY(J)=CY(J)+AP(K,J)*|Y(K)*P(K)

```
\(R L(J, I)=S F X(I) * C X(J) * C \cap S(A N G)-S F Y(I) * C Y(J) * S I N(A N G)\) \(B M(J, I)=S F X(I) * C X(J) * S I N(A N G)+S F Y(I) * C Y(J) * C O S(A N G)\) GO 70129
\[
\begin{aligned}
& 149 \quad B L(J, I)=0 \\
& 129 \operatorname{CONT}, \\
&\operatorname{CNO}, I)=0 \\
& \operatorname{LROW}(I)=\operatorname{NODE} \\
& \operatorname{LROW}(I)=N R O W
\end{aligned}
\]

130 CONTINUE
CALL SHIPI(NCARO, MACO)
DO \(2001 L=1\), NOLO
\(K R=L R O W(L)\)
\(L \cap(L)=\operatorname{LNOD}(L)-N O N O(K R)\)
\(002001 \quad J=1, K R\)
2001. LO(L) \(\operatorname{LO}(L)+\operatorname{MONO}(J)\)

NTO=0
WRITE (6,109) (LO(I),I=1,NOLO)
กO 201. \(N=1, N O R O\)
2O1. \(N T \Pi=N T O+N T N O(N!) * 2\)
Dr) \(304 \mathrm{NL}=1\), NUM
SPRING=1./EIG(NL)
DO \(202 \mathrm{~L}=1, \mathrm{NTO}\)
\(R(L)=\).0 .
\(0 \cap 203 \mathrm{~L}=1\), MOL
\(J=(L \cap(1)-1) * ?\)
\(\mathrm{J} 1=\mathrm{J}+1\)
\(1 ?=\mathrm{J}+2\)
\(R(J l)=R L(N L \cdot L) / E T G(N L)\)
\(203 \quad R(J 2)=P M(N L, L) / E I G(N L)\)
CALL SHP5(SPRING,,\(M A C O)\)
DO \(205 \mathrm{~L}=1\), NOL
\(J=(L O(L)-1) * ?\)
\(\mathrm{J}]=\mathrm{J}+1\)
\(\mathrm{J} ?=\mathrm{J}+\) ?
\(B L(N L, L)=R(11)\)

\(K . J=0\)
CALL RFBINP(2)
\(3 \cap 4\) CONTINUF
CALL MATINS (AF, 50, NOTR, CP, 5O, O, DF, JH, IMM)
IF (ID.EO.I) GO TO GO
WRITF (6, 307) ID)
GO TO 1000
GO CALL PEWINI)(7)
DO) \(405 \mathrm{~J}=1\), NTIL

\(\Lambda N=P H I(J)\)
OO \(401 \mathrm{I}=1\), NOTR
\(C X(I)=0\) 。
\(C Y(I)=0\).
กП 4n? \(K=1\), inla

\(407 \quad C Y(I)=C Y(I)+\Delta P(I, K) * R M(K, J) / P(I)\)
401 CONTINUE
WRITF (6, 107) J
WRITE (6, 250)
MRITE ( \(6,1 \cap 5\) ) (CX(M), M=1, MOTR,?)
wRITE( W, 251)
WRITF (6,105) (CY(N), \(N=1\), NOTR,2)
On \(403 \mathrm{I}=\) ? , NOTR
```

 DOX(I,J)=0.
 DQY(I,J)=0.
 DO 403 K=1, NOTR
 DOX(I,J)=DOX(I,J)+AF(I,K)*(DX(K)-CX(K)*COS(AN)-CY(K)*SIN
 1 (AN))*SFX(J)
 403 DOY(I,J)=DOY(I,J)+AF(I,K)*(DY(K)+CX(K)*SIN(AN)-CY(K)*COS
 1 (AN))*SFY(J)
 405 CONTINUE
 WRITE (6,420)
 DO 404 I=1,NOTR
 WRITE (6,1O5) (DOX(I,N),N=1,NOLO)
 404 WRITE (6,105) (DOY(I,N),N=1,NOLO)
 WRITE (6,420)
 DO 4.30 I=1,IR
 L=JT(I)
 DO 4.31 J=1,NOIO
 AN=PHI(J)
 BL(I,J)=DOX(L,J)*COS(AN)-DOY(L,J)*SIM(AN)
 BM(I,J)=DOX(L,J)*SIN(AN)+DOY(L,J)*C,OS(AN)
 CONTINUE
 WRITE (6,106) L
 WR I TE(6,500)
 WRITE (6,105) (RL(I,N),J=1,NOLO)
 WRI TE(6,501)
 WRITE (6,105) (RM(I,J),J=1,NOLO)
 4.30
 ONTINHE
 \cap\cap 450 I=1, IR
 IF (I.E\cap.1) GO TO 441
 CALL SHIPI(NCARD,MACO)
 OO <35 M=1, NTO
 R(M)=0.
 DO 440 M=1,MOLO
 \DeltaN=PHI (N)
 J=(L\cap(M)-1)*2
 Jl=\ +1
 J2=J+2
 R(JI)=RL(I,M)
 440. R(J2)=BM(I, M)
 CALL SHP5(O.,O,MACO)
 ID=JPR\capR
 CALL SHTP4
 45O CONTINUE
 RFTIJRN
 10OO STMP
 1 FOPMAT (3I5.5F3).5)
 100 FORMAT(//2OH TRANSFORWED FORCFS , ?IG)
 101 FIIRMAT (1OF7.2)
 104 FORMAT (I5)
 105 FORMAT((7E15.5))
 IOG FORMAT(//InH TRANSVERSF MO. IlO //)
    ```

```

 +FRSE')
 100 FORMAT (10I5)
 114 FORMAT(/10X,'SCALED EIGEMVALUFS')
117 FORMAT (10X,39H FIGENVALUF FRRIR C.HFCK FROGRAG FIEASG//)
181 FORMATI//,'ENTER O TO STOP PROGRAO HERF. ENTFR 1 IN NO IM:)
250 FMRMAT(//,4X,'X DEFLFCTIONS',//)
251 FORMAT(//,4X,'Y INEFLECTIONS1,//)
307 FORMAT (//2OH MATRIX SINSILLAR I5)
33.5 FORMAT(//, JOX, 'OIAGONAL GF MATRIX DP')

```
```

 420 FORMATI// 33H RFAL LOADS UPON THE TKANSVERSES
 500 FORMAT(' X-FORCES TYPICAL ,)
 501 FORMAT(' Y-FORCES TYPICAL ')
 702 FORMATI/' NINHER OF EIGENVALUES TO RE IISFD')
 707 FORMAT (//25H INPUT FRRORS IN TRANCO //)
 1964 FORMAT(//'......')
1001 FORMAT(I1)
1OO2 FORMAT(//,'IDENTO VALUE TS',I5,//)
FAID
C...RTUUTINE INPUT RASIC SHIP PARAMETERS
DIMENSION JT(5)
COMMON /MATRL/E,G,GNU,ALPHA,CONVF
COMMONN / SHIP/NOLO,LNO(1OO),SFX(100),SFY(100),PHI(1,OO),
+NHTR, ZTR(50), ZLEN,P(50),XI,XA,NSEC
WRITE(K,100)
MRITE(6,237)
READ(5,300)CONVF
WRITE(6,300)CMNVF
URITE(6,10)
RFAD(5,300)ZLFN
WRITE(6,30O)ZLEN
7.LEN=7LEN*CON\F
MRITE(6,12)
RFAD(5,301)NOTR
WRI TE(6,301)NOTR
YSUM=O.
Y=ZLFM/(NOTR+1)
OO 25 K=1, NMTR
Z TR(K)=YS|M+Y
25 YSUMM=YSUNA+Y
WRITE(6,20)
NSFC=1
READ(5,302)XI,XA
MRITE(6,3\cap2)XI,XA
XI=XI*(CON\FF**4)
XA=XA*(CONVF***2)
WRITE(6,2.13)
READ(5,302)E,(SNU
MRI TE(6,302) E,GNH
ALPHA=0.
G=F/2./(1.+GN(J)
MRITE(6,18)
D\cap 9 I=1,NOTR
PFAD (5,300) P(I)
9 WPITE(6,300) P(I)
WRITE(6,.l4)
RFAD (5,301) IA
MRITE(6,301) IR
WRITE(6,],6)
OO R I=1,IB
READ (5.301) JT(I)
\& WRITE(6,301) JT(I)
RFTIIRN
1\cap FORMAT(/,' I.FNGTH OF LIMGITUIIINALS')
1.2. FORMAT(/,' NG). TRANSVERSES ALIING LFMGTI:')

```
```

 14. FORMAT(/'' NO. TRANSVERSES TO BE ANALYZED(5)')
 16 FORMATI/,'LIST TRANSVERSES TO RE ANALYZED BY POSITTOM FKOM',
 +' STERN')
 18 FORMAT(/,' list StIFFNESS FACTORS OF ALL TRANSVERSES'
 +' IN ARDER FROM STERN')
 20 FORMAT(/,' STANDARD LONGITIOINAL'/,' MOMENT OF INERTIA,'
 +' SHEAR AREA')
 100 FMRMATIIHI,' TRANSVERSE STRENGTH ANALYSIS OF LONGITIININ'
+IALYY FRAMED SHIPSi,l,GO(1*1)//)
2.13 FORMATI/,' YOUNGS MIDULIIS, POISSONS RATII:')
237. FIRMAT(/' CONVERSION FACTIIR TO BE APPLIE!) TOI ALL'
+,' DIMENSIDNAL DATA',/,
+' INCLUDING COORDINATES, PLATE THICKNESS, BAR AREA',/,
+' BUT NOT INCLUOING YOUNGS MODULUS')
300 FORMAT (F15.5)
301. FORMAT(I5)
302 FORMAT (E15.5,F15.5)
END

```
            SIIRROIITINE COMSI(TM,SI)
C... ROUTINE TO COMPUTE INITIAL PARAMFTERS IIF REAM MEGREK
    DINENSION TM(5,5),SI(5,1)
    D \(E L=T M(1,2) * T M(3,4)-T M(3,2) * T M(1,4)\)
    \(\mathrm{S} I(1,1)=0\).
    \(\operatorname{Si}(3,1)=0\).
    SI( 5,1\()=1\).
    \(S I(2,1)=(\operatorname{TM}(3,5) * T M(1,4)-T M(3,5) * T M(3,4)) / D F I\).
    \(S I(4,1)=(\operatorname{TM}(3,2) * T M(1,5)-\operatorname{TM}(1,2) * T M(2,5)) / 0 F 1\)
    RETURN
    FAD
    SIbroutine dircos
c. DIRECTIMN CISINF SURROUTIME FOR PLATE
    DIMENSION INITS(4), ND(6), NONO(25), MI (25), IPO(10), FIO(10)

    ISK \((6, G), ~ D I(G, G), A I(6,6), A J(G, G), A K(G, G), A L(6, G), \forall K I I(f, G)\),

    3 SKAZ ( \(\mathrm{G}, \mathrm{K}, 4 \mathrm{4})\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline C．OMMnM & K1，k？ & ，K3 & ， K .4 & －If & ，Mgrio & ，mal \\
\hline conmmina & UNITS & ，ND & ，Monio & ，碞 & ，IPO & ，PTG \\
\hline crmanas & \(x\) & － Y & ， 7 & ，F & ，F1 & ，Gma \\
\hline comman & gnold & －mimblin & ，MEMTYP & ，JFGOM & ，TFSF & IFi \\
\hline comman & IF．J & ，IFK & －IFL & ，thit & ，Jivi & ，1\％．j \\
\hline COMMOM & JNJ & ，INK & ，Jak & ，［idl & ，小近 & ，！ \\
\hline C．CMPMON & P2 & ，P3 & ，P4 & － p & ，Pri & ，\(\quad \times 1\) \\
\hline CTIMMIN & YK & ，XI． & ，YL． & ，or & －Sk & い！ \\
\hline C．CMmMn & A I & ， \(\mathrm{A}_{\text {，}}\) & ，AK & ，A & ，SKA & －Sbas \\
\hline commines & SKAK & ，SKAL． & ， 41 & ， \(\mathrm{A}^{2}\) & ，くkA & ，S只： \\
\hline C．RMMMA & Iz & ，NC， & ，XK & & & \\
\hline \multicolumn{7}{|l|}{\(x_{1}=x(\) mJ，JnJ）－x（INT，JNI \()\)} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Rl＝x（INK，JNK）－X（INI，JNI）} \\
\hline \multicolumn{7}{|l|}{\(R ?=Y(I N K, J N K)-Y(I N I, J N I)\)} \\
\hline \multicolumn{3}{|l|}{\(x J=\operatorname{SORT}(x) * x 1+x 2 * x 2)\)} & & & & \\
\hline
\end{tabular}
```

DC(1,1)=X1/XJ
DC(1,2)= X2/XJ
DC(2,) = - DC (1,2)
DC(2,2)=DC(1,1)
XK=R1*DC(1,1)+R2*DC(1,2)
YK=R1*DC (2,1)+R2*DC(2,2)
RFTURN
FND

```

SUFBROUTINE INFO（I）
DIMENSION UNITS（4），NO（6），NONO（25），N］（25），IPO（10），HIO（10）
DIMENSION X \((25,40), Y(25,40), E 1(4), G N U 1(4), D C(2,2)\),
ISK（ 6,6\(), ~ D I(6,6), A I(6,6), A J(6,6), A K(6,6), A L(6,6), S K A J(6,6)\), 2SKAJ \((6,6), \operatorname{SKAK}(6,6), \operatorname{SKAL}(6,6), A 1(6,6,4), A 2(6,6,4), S K A 1(6,6,4)\) ， 3 SKA2（6，6，4）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMMON & K 1，K2 & ，K3 & － K 4 & ，If & ，Mmrat & ，Mnil \\
\hline COMMON & UNITS & ，ND & －NONO & ，NI & ，IPO & ，PIr \\
\hline COMMON & \(X\) & ，Y & ， 7 & ，F & ，E！ & ，GM1 \\
\hline COMMON & GNIJJ & －NEMNO & ，MEEMTYP & ，IFGN（I） & ，IFSF & ，IFI \\
\hline COMMON & IFJ & ，IFK & ，IFL & ，IMI & ，JNI & ，T以， \\
\hline COMMMON & JNJ & －INK & ，JNK & ，IMI & ，JNL & ，P1 \\
\hline COMMON & P2 & －P3 & －P4 & ，P5 & ，P6 & ，\(\times .1\) \\
\hline COAMMON & YK & －XL & －YL & －Dr & ，SK & ，リI \\
\hline COMMON & \(\triangle I\) & ，AJ & －\(\quad\) MK & ， 4.1 & ，SKAJ & ，バ介兄 \\
\hline COMIMON & SKAK & ，SKAL & －Al & ，i＞ & S！al & S1号 \\
\hline
\end{tabular}
COMMON IZ ，NC，DHMMY（710］）

COMMON／INTO／IJ（14，500），TN（500）
MEMNO \(=I J(1, I)\)
MEMTYP \(=I J(2, I)\)
\(I F I=I J(3, I)\)
\(I F J=I J(4, I)\)
\(I F K=I J(5, I)\)
\(I F L=I J(6, I)\)
\(I N I=I J(7, I)\)
\(J N I=I J(8, I)\)
\(J N J=I J(0, I)\)
\(J N J=I J(10, I)\)
INK \(=I J(11, I)\)
，JNK＝IJ（12，I）
\(I N L=I J(13, I)\)
\(J N L=I J(14, I)\)
\(P l=T A(I)\)

＋INI．，JMI．PI
RETURN
101
FORMAT（1H，I4，13I3，F13．5）
END．

\section*{SIIRROIITINE INPUT}

OIMENSION UNITS（4），NO（6），NONO（25），IPO（10），PIO（16）

ISK（ 6,6\(), ~ D I(6,6), A I(6,6), \Delta J(6,6), A K(6,6), N(6, G), \Delta K \leq I(6, G)\),
 3SKA2（6，6，4），DUMY（7093），XI（6）
```

 COMMDN K1,MEMTO,NOMAT,MOE,IO,NORO,NN1
 COMMON UNITS,ND, NDNO,NOB, IPO, PIO
 COMMDN X,Y,Z,E,NOBB,MCON,NORO,MCON,GOU
 CONMON GNUI,MEMNO,MEMTYP,FA,IFS,IFI
 COMMDN IFJ, IFK , IFL , IMI , JMI, INJ
 COMMON JNJ, , INK, JNK , INL , JNI, PI.
 COMMON P2, P3, P3 , P5 , PK , Y,J
 C\capMMON YK , XL YL , DC, SK DT
 COMMON AI, , AJ, AK , AL SKAI , SKAJ
 CПMMON SKAK, SKAL , A1 , SL , SKA1 ,SKA2
 COMMON IZ,NC,DUMY,ITEMP,ALPHA,XI
 WRITE(6,103)
 CONMMON/INTO/ IJ(14,500),TA(500)
 RFAD(8,105,ERR=200) ID,NORO,NNI,NOMAT,ITEmP,(|MITS(I),I=1,4)
 READ(8,100,ERR=200) NOBO,MCON,NORB,MCOM
 REAO(8,100,ERR=200) (NOB(I),I=1,NORO)
 READ(8,100,ERR=200) MOR
 READ(8,106,ERR=200) FA
 READ(8,106,ERR=200) E,GNU, ALPHA
 READ(8, 100,ERR=200) (NONO(I), I=1,NORO)
 OO 1 I =1,NORO
 JOE=NONO(I)
 O\cap 1 J=1,JOF
 1 READ(R , 101,FRR=200)X(I,J),Y(I,J)
 IFSF=0
 I=0
 4 I = I +1
 IFS=IFSF
 READ(8,107,ERR=200) IJ(1,I),IJ(2,I),MFWTO,IFSF,I,I(=,I),I,I(4,I),T,1(
 +5,I),IJ(6,I),IJ(7,I),IJ(8,I),IJ(C,I),I,I(ID,I),IJ(1I,I),J,J(I`,I),
 +IJ(13,I),IJ(14,I),TA(I),P2,P3,P4,P5,Pn
 IF(IJ(2,I)) 3,3,4
 3 NEMITO=I-]
 O\cap 2 I =1,NORO
 JOF=NONO(I)
 DO 2 J=1,JDE
 ? WRITE (6,lO?)I,J,X(I,J),Y(I,J)
 GO TO 223
 200 WRITF (6,22))
 STOP
 2?3 INITF (6,104)
 RETURN
 100 FORMAT(25I3)
 101 FORMAT(3F10.2)
 102 FORMAT(1H,IK,IT, 3F20.5)
    ```

```

 112X,7HY-COOPD//1H)
 1O4 FORNAT (13HIWFMBER DATA//
 144H0 M M I I I I I J I , I I I I J.
 211X,2HP1/
 344H F F F F F F NM N N NM MN N
 444H M M I J K L I I J J J K K L. I./
 5 RH N T/
 O.RH O Y/
 7 OH P)
 105 FORINAT (5I5,4A6)
1OK FORMAT(E10.2,F7.2,E1O.2)
107 FORMAT(I3,7I1,8I2,GE15.7)
221 FORMAT (//25H INPUT ERROR IN NODEIM //)
FND

```
```

 SUBROUTINE JESSIN (A,EIG,N,R,C,E,D)
 DIMENSION A(50,50),EIG(50),B(N,N),C(N,N),E(N),D(50,50)
 REAL*8 B,C,F
 DO 1 J=1,N
 DO 1 I =1,N
 1.R(I,J)=A(I,J)
 CALL JFSS (N,N,R,N,C,E,&999)
 GO TO 2
 999 WRITE (6.10)
 10 FORMAT ('EIGENVALUES ARE AT REST MRONG')
 STOP
 2 CONTINUE
 OO 3 J=1,N
 FIG(J)=E(J)
 D\cap 3 I=1,N
 3. A(I,J)=C(I,J)
 CALL REORO(FIG,50.,N,A,D)
 RETURN
 ENO
 SURRONUTINE K2RE(IRO,ICOLI,ICOL.?,BK,ID, A,V:ACO)
 C THIS ROUTINE RETRIFVES DATA FROM STORAGF MATRICFS IM A CGRTAIM URUFR
DIMENSION RK(84,84), A(MACO,MACO)
COMM\capN/K23RW/KH(3,49),KHR(4,49),KJ,KJR,TFD,LJ(4)
INTEGER*? LEN
1. FN=MACח*MACO*4
IRO =KHR(1,KJR)
ICOLI=KHR(2,KJR)
ICOL2=KHP}(3,KJB
IF (I\cap) 4,5,6
4 IH=ICOL.]
JH=ICOL?
GO TO 7
5. IH=ICOILI
, HH=ICOLI
GO TO }
6 IH=ICOL2
JH=ICOLI
7 CONTINUE
CAIL RFAD(A,LFN,O,M,IFO,\&.999)
\capO 1 J=1,JH
\Gamma\cap\ 1. I=1.IH

1. HKK(I,J)=A(I,J)
KJR=K,IR-1
TF(K, FR.FO.O) GO TO \&
L.J(1)=KHR(4,K.IR)
CALL POINT(IFD,LJ,1,8.999.8999)
(an) TO 9
8)\cap 2 K=1.3
2. L.J(K)=0
CALL POINT(JFO,L,1,7,8999,8999)
9 CONTINUE
RETURN
```
70. FORMATIERROR IN READING FILE - A AT LINE', I5) END

\section*{SUBROUTINE K2WR(IRD, ICOL1,ICOL2,BK,IO, A, WACO)}

C THIS ROUTINE TRANSFERS DATA TO STORAGE NATRICES IM A CERTAIW GROFK
DIMENSION BK (84,84), A(MACO, MACO)
COMMON/K23RW/KH(3,49), KHB(4,49), KJ,KJR,IFO,LJ(4)
INTEGER*2 LEN
\(L E N=M A C \Pi * M A C O * 4\)
\(K J B=K \cdot J B+1\)
CALL NOTE(IFD,LJ)
\(K H R(1, K J B)=I R \cap\)
\(K H B(2, K J B)=I C O L 1\)
\(K H R(3, K J R)=I C \cap L\) ?
\(K H R(4, K J B)=L J(3)\)
IF (ID) 4,5,6
\(4 \quad \mathrm{I} H=\mathrm{ICOL} 1\)
\(J H=I C O L 2\)
GO TO 7
\(5 \quad I \mathrm{H}=\mathrm{ICOL} 1\)
\(J H=I C O L 1\)
GO TO 7
s \(\quad \mathrm{IH}=\mathrm{ICOL} 2\)
JH=ICOI. 1
7 CONTINUE
ก) \(1 \mathrm{~J}=1, \mathrm{JH}\)
in \(1 I=1\), IH
\(1 \quad A(I, J)=B K(I, J)\)
CALL WRITE(A,LEN, O,M,IFO, 8999\()\)
RETIJRN
999 WRJTE(6,70)KJR
STMP
70 FORMAT('ERROR IN WRITING FIIE - A AT LIAE', I5)
END

SURROUTINE K3RE(IRO,ICOLI,ICOL?,RK, II), A, IIACO)

DIMENSIUN RK (84, 84), A (MACO, MACO)

[ NTEGER*2 LEN
I FN =MACח \(\quad\) MAC O \(\because 4\)
\(K J=K J+1\)
\(I R O=K H(1, K J)\)
\(I C O L I=K H(2, K J)\)
ICOL2 \(=\mathrm{KH}(3, \mathrm{KJ})\)
IF (ID) 4,5,6
4. IH=ICOLI
\(J H=I C O L ?\)
GO TO 7
\(5 \quad I \mathrm{H}=\mathrm{IC}\) CIL 1
\(\checkmark H=I C \cap L .1\)
(G) TO 7
```

 G
 IH=IC\capL2
 JH=ICOL1
 7 CONTINUE
 C.ALL READ(A,LEN,O,M,3,8.999)
 DM 1 J=1,JH
 DO 1 I=1,IH
 1 RK(I,J)=A(I,J)
 RETURN
 999 WRITE(6,70)KJ
 STOP
 70 FORMAT('ERROR IN READING FILF3 AT LINF',I5)
 END
    ```

SURROUTINE K3WR(IRO, ICOLI, ICOL2,BK,ID, A, MIACO)
C THIS ROUTINE TRANSFERS DATA TO STORAGE MATRICES IN A CERTAIM MEMEP DIMENSION BK \((84,84)\), \(A(M A C O, M A C, 7)\) COMMON/K23RW/KH(3,49), KHB(4,49),KJ,KJR, IFD,LJ(4)
INTEGER*2 LEN
\(L E N=M A C O * M A C O * 4\)
\(K J=K J+1\)
C. MAJN PROGRAM FOR TRANSVERSE STRENGTH
\(K H(1, K J)=I R O\)
\(K H(2, K J)=I C O L 1\)
\(K H(3, K J)=I C O L 2\)
IF (ID) 4,5,6
\(4 \quad \mathrm{IH}=\mathrm{ICOL} 1\)
\(J H=I C O L 2\)
GO TO 7
\(5 . I H=I C \cap L 1\)
\(J H=I C \cap L I\)
GO TO 7
\(6 \quad I H=I C O L 2\)
\(J H=I C \cap L 1\)
7 CINTINUF
DO \(1, J=1, \mathrm{JH}\)
DO \(1 \mathrm{I}=1, \mathrm{I} \mathrm{H}\)
\(1 \quad A(I, J)=B K(I, J)\)
CAIL WRITE (A,LEN, O, Vi, 3, \&999)
RETURN
999 WRITE (6,70)KJ
STOP
70 FORMAT('ERROR IN WRITING FILES AT LINF', I5) END

SUBROUTINE LOAMS (NFILE,NSCR)
C... ROUTINE TO INPIJT LOADING CONDITION

INTEGER DEFIN
C.OMMON / WORK/XC(42), YC(29), NONN (25), MXC, MYC,
+DEFIN, NODE (40, 25), LROW (100), LNOM (10O)
COMMON /MATRL/E,G,GNU, ALPHA, COWVF
COMMON /SHIP/NOLO,LNO(1OO), SFX(1OO), SFY(10O), PFT(10i)),
+NOTR, ZTR (50), ZLEN,P(50), XI, XA,NSEC.
CONMMN /SAFE/LOANC(100), 1)X(50), DY(50), OHASE(50),
+Z.P(50), PC(50), ZO(20), O(20), ZPL(100)

COMMON / SAFE/ZI (20), EYE (20)
COMMON /SAFF/DXL (50), DYL. (50)

COMMINN / INFLII/AF (50,50) , DMMMY (353)
7.I(1)=0.

FYE(1)=XI
NSEC=1.
50 NREC \(=0\)
NMISC \(=0\)
JFRR=0
WRITE(6,IOO)
```

 WRITE(6,102)
 WRITE(6,103)
 WRITE(6,104)
 WRI TE(6,1.05)
 DO 150 L=1,NOLO
 LOADC(L)=0
 150 CONTINUE
 C
WRITE(6,155)
READ(5,300)NSETS
WRI TE(6,300)NSETS
IF(NSETS)9998.9998,156
C
156 DO 1000 NST=1,NSETS
IF(NMISC)270,157,165
157 WRITE(6,160)NST
WRITE(6,162)
REAN (5,1) NP,NO,NDIR
HRITE (6,1) NP,NO,NDIR
165 IF(NP)180,180,170
1.70 WRITE(6,171)
K=2*NP
DO 20 IL =1,K
READ (5,2) ZPL(IL)
20 wRITF (6,2) ZPL(IL)
DO 175 IL=1,NP
PC(IL)=ZPL(?*IL)
I I = 2*(IL-1)+1
Z.P(IL)= ZPI..(II)*CONVF
175 CONTINUE
1.80 IF(NO)270,270,1.82
182. जIRITE(6.183)
K=2*NO
ח\cap 21 IL=1,K
RFAD(5,?) ZPL(IL)
2.1 WRITE(6,2)ZPL(IL)
Oח185 IL=1,NO
O(IL)=7PL(2*IL)/CONVF
II=2*(IL-1)+]
ZO(IL)=ZPL(II)*CONVF
185 CONTINHE
GO TO 270

```

```

C. REGIN READING IN LONGITIMINNLS LONOFO FOR SFT
C.......................
200 wRITE(6,201)
205 READ(5,3) SFL,JROI,JRU2,ICOLI,ICOH?
CALL SWTCH(JRO1,JRO2)
CALL SWTCH(ICOLI,ICOL?)
J=JR\cap1
I=ICOLI
MRITE(G,3) SFL, JROI, JROR, ICOL.J, IC,ILL?
C
IF(JRO])].000,1000,210
210 TF(JRO1-JRO2)215,220.215
C--VERTICAL ARRAY MF LONGITIIINALS
215 LDIR=1
GO TO 225
C--HORI7.ONTAL ARRAY IF LONGTTIIINALS
220 LDIR=2

```
```

 225 IF(NODE(I,J)-DEFIN)800,230,800
 230 N=NODET(I,NODE,DEFIN,J,NXC,NONO(J))
 C--CHECK IF NDDE GIVEN HAS BEFN DEFINED AS A LONGITUNINAL
 OO 250 L=1,NOLO
 IF(J-LROW(L)) 250,240,250
 240 IF(N-LN\capD(L)) 250,260,250
 250 C,ONTINUE
 IERR=1
 WRITE(6,252)J,I
 IF(NMISC)1040,800,1000
 260 LDADC(L)=1
 NREC=NRFC+1
 O\cap 265 K=1,NOTR
 G\cap TO (262,2.64),NDIR
 262 חX(K)=DRASE(K)*SFL/SFX(L)
 \capY(K)=0.
 GO TO 265
 2K4 DY(K)=DRASE(K)*SFL/SFY(L)
 DX(K)=0.
 265 CONTINUE
 CALL NSGRUR(J,N,DX,OY,NOTR)
 IF(NMISC)1040,800,1000
 C-------------NSCR=9
 C-----------------
 C THIS SECTION COMPUTES DEFLECTIONS FOR RASIC LONGITIIIINAL
 270 SFA=0.
 SFL=1.0
 SFS=1.0
 CALL SETOC(NSEC,ZI,EYE,NO,Z\cap,O,NP,7P,PC,7LFN,MHCC,OHATA)
 NCON=0
 CALL TMATT(XR,NTR,ZLEN,TM,NOCC,NCON,MDATA,SFS,SFL,SFA,F,G)
 CALL COMSI(TM,SI)
 NCON=O
 ION 50\cap K=1, NOITP
 CALL TMATT(XR,NF,ZTR(K),TM,NOCC,NCFIN,(IINATA,SFS,SFL,SFA,F,G)
 CALL MMMULT(TM,SI,SX,5,5,1)
 ORASF(K)=SX(1,1)
 5OO CONTINUE
 C--------------
 C--------------
 IF(NMISC)230,545,230
 545 IF(NST-1)550,550,200
 550 WRITE(6,551)
 O\cap 2? K=1,N\capTR
 22.WRITE(6,4) K,\)PASE(K)
 GO TO 200
 8OO GO TM (RIO,Q2O),LDIR
 810 J=J+1
 JF(J-JRO2)225,225,205
 R70 I = I + 1.
 IF(I-IC\capL2)225,225,205
 1000 CONTINUE
 IF(NMISC)IO4O,1001,1005
 1001 NMISC=1
WRITE(6,IO\capつ.)
1.NRITE(6,100.3)
1005 RFAD(5,5) NP,NO,NDIR,J,I
WRITE(6,5) NP,NO,NDIR,J,I
NSETS=1
IF(J)1020,1020,156

```
```

1020 NMISC=-1
NSFTS=1
SFL=1.0
NP=NOTR
NO=0
WRI TE (6,1021)
WRI TE(6,1022)
READ(5,6) IRHD,MNODE
WRITE(6,6) IBHD,MNODE
WRITE(6,IO23)
A(1)=0.
A(2.)=0.
\cap\cap 1025 J=1,MNODE
READ(5,7) B(J) \& T(J,NLMFM),NLMEN=1,?)
R(J)=R(J)*CONVF
T(J,1)=T(J,1)*C,ONVF
T(J,2)=T(J,2)*CONVF
GRJTE(G,7) R(J),(T(J,NLMEM),NLMFM=1,2)
\Delta(1) =A(1) +T(J,1)*B(J)
A(2)=A(2)+T(J,2)*B(J)
1025 CONTINIJE
WRITE(6,1027)
O\cap 1036 K=1,NOTR
READ(5,8) (R(K,NLMEM),MLMEM=1, 己)
WRITE(6,8) (R(K,NLMFM),NLMEM=1, ?)
DO 1035 NLMEM=1,2
S=-R(K,NLMEM)/\triangle(NLMFM)
DO 1033 J=1, UNODE
103ミ ST(K,J,NLMEM)=S*T(J,NLMFM)*R(J)
1035 CONTINUE
1036 CONTINIIE
OO 1038 K=1,NOTR
1038 n)
J=?
NLMFM=?
NDJR=2
I= IRHD
SFL=1.
1037 N=NODET(I,NODE,DFFIN,, NXC,NONO(J))
\cap\cap 720 L=1,NOLO
IF(J-LROW!(L))720,710,770
710 IF(N-LNOD(L))720,730,720
720 CONTINUE
IFRR=].
HRITE(6,252)J.I
G\cap TO 1040
730 NRFC=NREC+1
\cap\cap }7.35\textrm{K}=1,N\capT
DY(K)=0.
DN 7.34 N=1,NOTR
DY(K)=DY(K)+\triangleF(K,M)*ST(M,J,NLMFM)/SFY(L)
734 CONTINUE
735 CONTINUF
C\triangleILL NSCRWR(J,N,I)X,\capY,NOTR)
GO TO 1040
1040 J=J+1
IF(J-MNODE)1037,1037,1041.
1.041 I= 1
MN\cap\capE=MND\capE-I.
NLMEM=NLMEM-1.

```
\(11 \quad J=2\)
IF(NLMEM) \(1045,1045,1037\)
1045 CONTINUE IF (IERR) 1048, 1048,50
1048 CALL REWIND (7)
DO \(2000 \mathrm{~L}=1\), NOLO
DO \(1050 \mathrm{~K}=1\), NOTR
\(D \times L(K)=0\).
DYL \((K)=0\) 。
1050 CONTINIF
CALL RFWIND (9)
กП 1500 NR=1, NREC
CALL NSCRRE(J,N,DX,DY,NOTR)
IF (J-LROW(L))1500,1100,1500
\(1100 \mathrm{IF}(\mathrm{N}-\mathrm{LNOD}(\mathrm{L})) 1500,1200,1500\)
1200 门O \(1250 \mathrm{~K}=\mathrm{I}\), NOTR
\(D X L(K)=D X L(K)+D X(K)\)
\(\square Y L(K)=D Y L(K)+D Y(K)\)
1250 CONTINUE
1500 CONTINUE
CALL NFILWR(LRחW(L), LNOD(L), LOADC(L), SFX(L), SFY(I_),PHI(L), DXI, DYI,
+NOTR )
2000 CONTINUE
CALL REWIND (7)
9999 RETURN
\(999 \% \quad S T \cap P\)
1 FITRMAT (3I5)
2. FORMAT (E15.5)

3 FIORMAT (F15.5,4I5)
4 FORMAT (I5,E15.5)
5 FORMA 7 (5I5)
h FORMAT (2I5)
7 FORMA 7 (3F15.5)
8 FORMAT (2E15.5)
30 FORMAT (2I5.2F]5.5)
31 FORMAT (3I5,5E12.5)
100 FORMAT(IH1,' LOADING CINNDITION')
102. FORMATI/! 1.A LDAD SET IS A SET OF LUADS ACTIMS IGU +1 A GIVEN', \(1,1 \times\) OR Y DIRFCTION. THE EXTENT OF THESF'
\(+\prime\) LOADS IS ALONG THE', \(1, '^{\prime}\) LENGTH OF A GIVEN LONGITUD:
+'INAL')
103. FORMATE/' 2. ANY LONGITUDINAL MAY RE LOANEI) WITH ANY' +' NUMBER DF LOAD', ',' SETS, WHICH MAY FIF IINI.Y PART'
+'IALLY APPLIED VIA', /.' A PROPORTIUNAL FACTOR')
FORMATI/' 3. LOCATIONS OF LOADS \(\triangle R E\) IISTANCFS MEASUKFO'
+' FROMI THE', /,' STERN')
1.05 FORMAT(/,' 4. LOAD SET DIRECTION CODES ARE', /,
\(+4 X, '=1, \quad X\)-DIRECTION', \(\left.1,4 X^{\prime}=2, Y-D I R E C T I O N '\right)\)
FORMAT(/,' NUMRER OF LOAD SETS')
1 KO FORMAT(1H1, 1--LLOAD SETII5)
162. FORMAT( NO. CONC. LOADS, NO. UNIF. LOANS, NJRFCTIUR:
+ 'CODE')
171. FORMAT(/,' LIST LOCATION, PI)
1.83 FORMAT(/,' LIST START LMCATION, O')
201. FORMAT(/,' LIST LONGITUDINAI.S SO LOAOFOI, /,
+' FACTMR, ROUl, ROW2, COL. \(1, ~ C O L 2 ')\)
 +1 REEN DEFINED AS A LONGITIJINAL')
300 FORMAT (I5)
551 FORMAT(/, COMPUTED DFFLECTIONS AT TRANSVFRSES')
```

740 FORMAT(1H1,' LONGITUDINAL OEFLECTIONS DUE TO LOAUS')
741 FORMAT(/,' RDW',I 3,' NODE',I3)
742 FORMAT(10X, 'X-D)EFLECTIONS')
743 FORMAT(JOX,'Y-DEFLFCTIONS')
1002 FORMAT(/' MISC. LOADINGS')
1003 FORMAT(' NP,NO, NDIR, RON, COLUMN')
1021 FORMAT(1H1,' SHEAR LOADS ON TRANSVERSES')
1022 FORMAT(/,' BHD COLUMN NUMRER, NUMPIFR IF ROWS FOR SHEAH'I
1023 FORMAT(/,' WER LENGTH, SHELL, BHD THICKNFSS (CM)')
1027 FORMAT(1HL,' SHELL, BHD SHEARS PER TRANSVERSE STAKTING'
+' FROM STERN')
FND

```

SIJRROUTINE LONGI(NFILE)
C... ROUTINE INPUTS LONGITUIINAL DATA

COMMON /MATRL/E,G,GNU, ALPHA, CONVF
COMMON /SHIP/NDLD,LNO(1OO), SFX(10O), SFY(IOO), PHT(100), +NחTR, 7 TR (50), ZLEN,P(50), XI, XA,NSCO
INTEGFR DEFIN
COMMON /WORK/XC(42), YC(28), NONO(25), UXC, WYC,
+OEFIN, NODE ( 40,25 ), LROM ( 100 ), LMOO(100)
C.OMMON / JNFLU/AF (50,50), ETG(50), DWMY( 303 )

COMMON / SAFE/NN (25), NCR (51), DUMNY (7424)
TFRR=0
HRITE(6,276)
mRITE(h, 2.50)
4R I TE(6, 251)
I OMAX = InO
WRITE(6,278)
NOL \(\cap=0\)
200n READ(5, 300)XIX,XIY,AX, JPCM,ICOLI.ICH.
CALI SWTCH(ICMLI, ICOL? )

HRITE(6, 300)XIX,XIY, AX, IR In, ICOL J, IC.ML’
IF (JROW) 2020, 2020, 2005
2005 IF (XIX)2007,2007,2006
2nOK IF (XIY)2007,2007,2010
2007 JFRR=]
MRTTE 6,2008\()\)
GO TO 2000
2010 i) \(2035 \quad I=I C O L I \cdot I C O L 2\)
IF (NOIIO-L OMAX) \(2011,2016.2016\)
2011 MOLO=NOL \(n+1\)

LROH (NOLO) \(=\) JR RIW
1. NOD (NOLO) \(=N\)

CALL NOD (MONO, N, JROW, LNO(MOL(1))
SFX(NOL \(\cap)=X T X *(C \cap N V F * * ム) / X I\)
SFY \((\) NOL \(\cap)=X T Y *(C\) ONVF \(* * *) / X I\)
\(\mathrm{PHI}(\mathrm{NOL} \cap)=0\) 。
2015 CONTINUE
GO TO 2000
2016 WRITE(6.288)LOMAX
I FRP = 1
GO TO 2000
2020 WRITE (6,279)
2030 READ (5, 300)KIX,XIY,AX,ICOL, JROI, JRF?
```

 GALL SWTCH(JRO1,JRO2)
 C--VERTICAL SEQUENCE TERMINATES WITH ZERO COLUNNI NUNARER.........
WRITE(6,300)XIX,XIY,AX,ICOL,JRO1,JRO2
IF(ICOL) 2050,2050,2035
2035 IF(XIX)2037,2037,2036
2036 IF(XIY)2037,2037,2040
2037 IFRR=1
WRITE(6,2008)
GOT TO 2030
2040 n\cap 2045 J=JR\cap1,JRO2
IF(NOL\cap-LOMAX)2041, 2047,2047
204]. AOLO=NOLOD+1
N=N\capDET(ICOL,NODF,DEFIN,J,NXC,NONO(J))
LON(NOLO)=J
LNOD(NOLO)=N
CALL NOD(NONO,N,J,LNO(NOLO))
SFX(NOLO)=XIX*(CONVF**4)/XI
SFY(NOLO) = XIY*(CONVF**4)/XI
PHI(N\capLO)=0.
2045 CONTINUE
GOTO }203
2047 WRITE(6,288)LMMAX
IFRR=1.
GO TO 2030
2050 WRITE(6,287)NOLO
O\cap 3000 J=1,NYC
3000 MN(J)=J
WRITE(K,3001)
WRITE(6,3002)(NN(J),J=1,NYC)
I)\cap 3050 I= 1,NXC
\cap\cap 3045 J=1,NYC
MCP(J)=9990
IF(NODF(I, J) -DFFIN) 3045,3010,3045
301\cap NCR(J)=0
M=NOMET(I,NODF,DIFFIN,J,NXC,NONO(J))
OO 3040 L=1,NOLO
IF(LROW(L)-1)3040,3015,3040
3015 IF(LNOD(L)-N) 3040,3020,3040
3020 NCRR(J)=LNO(L)
GO TO 3045
3040 CONTIMIE
3045 C.ONTINUE
WRITE(6, 3047)(NCR(J), I=]. ,NYC,)
3050 C.ONTINUE
TF(IFRR)2060, 2060.2055
205.5 STMP
2OGO N=N\capTR+1
EI=E*XI
Y=7.FN/FLNAT(N)
OП 2 I = 1, NOTR
OO2 J=1,NOTR
IF (I.GT.J) GO TO I
A=Y*FLDAT(J)
X=Y*FL\capAT(I)
R=ZLEN-A
「K=0.
IF(XA.NF.O.)GK=X*R/XA/G/ZLEN
AF(I.J)=R*X/G./EI*(ZLFN*ZLFN-R*B-X*X)/ZIEN+GK
G\cap 7ח 2
1. AF(I,J)=AF(J,I)

```
```

 2. CONTINLE
 RETURN
 250 FORMATI/'IX = MOMENT OF INERTIA OF LONGIT-L RENDING IN'
 +I X-DIRECTION OF TRANSVERSE')
 251 FORMAT'' IY = MOMENT OF INERTIA OF LONGIT-L. BENDING IN'
 +' Y-DIRECTION OF TRANSVERSE')
 276 FORMAT(1HI,//' DEFINITIONS OF LONGITUDINALS')
 278 FORMATI/,' LIST BY HORIZONTAL SEOUENCE'/
+' IX,IY,A, ROW, COL1, COL2')
2OO8 FORMAT(' **ERROR-MOMENT OF INERTIA FOR \triangleBOVF LONGITL'
+' NOT DFFINED')
279 FORMAT(/,' LIST RY VERTICAL SEOUENCE'/
+' IX,IY,A, COLUMMN, ROWI,ROW2')
287 FORMAT(/,'' THERE ARE A TOTAL OF',IG,' LONGITUIINALS')
288 FORMAT(' **MAX. LONGITUDINALS = I8)
300 FORMAT(2E15.6,F15.6.3I5)
3001 FORMAT(1HI,' LONGITUDINAL NUNBERING SYSTEM')
3002 FORMAT(//,1X,'C',/,1X,'O',5X,'ROW',/,IX,'L',25I 3,/)
3047 FORMAT(/,2X,25I3)
END
FUNCTION MAXCOL(NNI,NONO,NORO)
C ORDFRS COLUMN INTEGER VECTDR IN DECSENDING OPDFR AMD GIITIPLY MAX VALUF
DIMENSION NONO(NORO),H(25)
DO 1 I = 1,NORO
1 H(I)=NONO(I)
N=NORO-1
10 ก\cap 20 I=1,N
IF(H(I)-H(I+1))30,20,20
7O CONTINUF
GO TO 50
30 NH=H(I)
H(I)=H(I+I)
H(I+1)=NH
GO TO 10
50 MAXCOL=H(1)*NN1
RETURN
END
SURROUTINE MATINS(AA,JJ,N,CP,JK,M,DI,II,IWIFX)
RFAL*R A(84,84)
C. THIS SURROUTINE WAS NFEDED TO MAKF PROGRAG COMPATTBLF IO AN TRM SSF BATMIM
C AA IS MATRJX TO RF INVERTED CP, INDEX ARF MOT NECESSARY TG SIIRPMIGILG\&
DIMENSION AA(JJ,JJ),CP(JJ,JK),INDEX(JJ,JK)
R,ALL MINSUR (AA,A,N,DD,N,I)
IF(DD) 1, 2, I
?. I I = ?
GO TO 3
1 IO=1
3 CONTINUE
RETURN
END

```
```

 SIIRROUTINE MEMI
 TRIANGILAR PLATE SURNIATRIX SURROUTINE
 DIMENSION UNITS(4),ND(6),NONO(25),N1(25),IPO(10),H10(10)
 DIMENSION X (25,40),Y(25,40),E1(4),GNO1(4),OC(2,2),
 ISK(6,G), DI(G,G),AI(G,G),\DeltaJ(G,h),AK(G,G),AL(G,G),SKAT(G,G),
 2SKAJ(6,6),SKAK(6,6),SKAL(6,6),Al(6,6,4),A2(6,6,4),SKAl(6,6,4),
 3 SKA2(6,6,4)
 0IMENSION BK(O84,084),IM(4),JM(4),ZAI(6),ZAJ(6),ZAK(6),7AL(6),
 I XI(6)
 | COMIVION | Kl，K2 | ，K3 | ，K4 | ，I0 | ，Nmpro | ，MPT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COMMMAN | UNITS | －ND | ，NONO | －N］ | ，IPO | ，PTO |
| COMMON | X | ，Y | ，Z | ，E | ，EI | Cinl |
| COMMON | GNUI | ，MEMNO | ，MEMTYP | ，IFGNO | ，TFSF | ，IFI |
| COMMON | IFJ | ，IFK | ，JFL | ，INT | ，JNI | ，IM， |
| COMMON | JNJ | ，INK | ，JNK | ，INL | ，JN！ | ，P1 |
| COMIMON | P2 | ，P3 | ， $\mathrm{P} 4+$ | ，P5 | ，P6 | ，XJ |
| COMMON | YK | ，XLL | ，YL | ，DC． | ，SK | ， 11 T |
| COMMON | AI | ，$\triangle J$ | －$A K$ | ， 11 | ，SKAI | ，SK．${ }^{\text {，}}$ |
| COMMON | SKAK | ，SKAL | ，$\Delta 1$ | ，A？ | ，$S K A 1$ | ，Skム？ |
| COMMDN | I 7 | ，NC | ，XK | NRmEd | ，Tronme | ら以 |
| COMMMON | IM | －JM | ，NA1 | ，MA？ | ， 7 AT | ，7．1． |
| COMMIN | ZAK | 7AL | ITEMP | ALPHA | X I | |

 CALL DJRCOS
 CA=(1.0-GNO)}/2.
 CR=E*P1/(2.0*(1.n-GM|*GOM1)*XJ*YK)
 SK(1, I)=CR*(YK*YK+CA*XK*XK)
 SK(1,2)=-CR*C,\Delta*XJ*NK
 SK(1,3)=CB*GNU*XJ*YK
 SK(2,1) =SK(1, 2)
 SK(2,2)=CB*CA*XJ*XJ
 SK}(2,3)=0.
 SK(3,1)=SK(1,3)
 SK}(3,2)=0.
 SK(3,3)=CR*XJ*XJ.
 C. A = YK/X.
 CR=XK/XJ
 CC=C,P-1.O
 DO 9 I = I,h
 กก 9 , 1 =. . 6
 AT(I,J)=0.
 A.l(I,.l) = 0.0
 c }\\textrm{K}(\textrm{I},\textrm{J})=0.
 ก\cap 1 I=1,3
 AT(I,T)=-ПC(I,I)
 A.\(I,I)=OC(I,I)
 AK(1, I) =0.O
 AI(2,I)=-DC(1,I)-CA*DC(2,I)
 AJ(2,I)=CA*DC(2,I)
 AK(2,I)= [)C(1, I)
 AI(3,I)=CC*DC(2,I)
 AJ(3,I)=-CB*DC(2,I)
 1. }AK(3,I)=OC(2,I
 IF(NN1-3) 4,5,5
 4 NC=NN].
 GOTOG
 5 NC=3
 6 CALL MULTRO(AI,INI,JNI,SKAI)
 CALL MULTRD(AJ,INJ,JN,J,SKAJ)
    ```

\section*{CALL MLLTRD（AK，INK，JNK，SKAK）}

IFIIFSF）3．3．2
2 \(C A=E /(1.0-G N(J * G N U)\)
\(C R=F /((1.0+G N U) *(2.0 * Y K))\)
\(\operatorname{DI}(1,1)=C A / X J\)
\(\operatorname{DI}(1,2)=0.0\)
DI \((1,3)=C A * G N(J / Y K\)
\(D I(2,1)=C A * G N U / X J\)
DI \((2,2)=0.0\)
DI \((2,3)=C A / Y K\)
\(\operatorname{CI}(3,1)=-C R * X K / X J\)
1）\(I(3,2)=C B\)
\(\operatorname{DJ}(3,3)=0.0\)
กी \(7 \quad I=1,3\)
กก \(7 \mathrm{~J}=1,3\)
7 SKAL（I，I）\(=\) SK（I，J）
3 IF（ITFMP）8，8，10
\(X I(1)=X J * A L P H A\)
XI \(I(2)=X K * A L P H A\)
\(X I(3)=Y K * A!P H A\)
CAIL TFMPCO（ NC，IZ，SKAI，XT，TAI）
CALL TEMPCO（ NC，IT．SKAJ，XI，ZAJ）
CAIL TEWPCO（ NC，IZ，SKAK，XI，ZAK）
9 PFTIIRN
FNTI

SIIRPMUTINE MFMZ
C OUADRIL \(\triangle\) TERAI PLATE SURMATRIX SURRIIITTHF
DIMENSIDN \(F(6,6)\) ，INDEX \((6,3)\)

1）IMENSION \(X(25,40), Y(25,40), E 1(4)\) ，GNU1 \((4), 1) C(2,2)\) ，


3 SKA2（i，K，4）
 1．\(X I(6)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMMOn & K1，K？ & －K3 & － K 4 & －I！ & ，mrers & －Mi \\
\hline COMMMIDA & UNITS & ，NO & －Mringror & －W！ & ，Tpr & ，PT： \\
\hline comman & \(X\) & ，Y & ， 7 & ，F & ，Fl & ，Coll \\
\hline C．OMmin & GNiUl & ，刚ENNO & ，MFMTYP & －1FGMU & ，TFSF & ，IF！ \\
\hline COMmOn & IFJ & ，IFK． & －IFL & ，TNT & ，JnT & ，Tid， \\
\hline C．Ommonim & JNJ & ，INK & ，JNK & ，TV1． & ，IN： & ，1． 1 \\
\hline commma & P2 & ，P3 & －P4 & －pr & ，PK & ，x．1 \\
\hline commana & YK & ，XI． & －YL & －ir & ，SK & ，lit \\
\hline Comman & AI & －AJ & ，\(\Delta K\) & ，il & ，SkAI & －SK，a， \\
\hline C，CRAMON & SKAK & －SKAL & －A1 & ，in & ，Si¢AI & ，Sk』？ \\
\hline Combivon & IZ & ，NC & ，XK & ，MnnFi． & ，TCmmor & ，以4 \\
\hline Crimman & ［ M & ，Jivi & －NA1 & ，Mो？ & ， 7 AT & －7a， \\
\hline Combun & 7．AK & ，7AL & －ITOMP & ，S1．piti & ，X T & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{CAII MIRCOS}} \\
\hline \multicolumn{2}{|l|}{\[
X \times L=X(I N L, J N L)-X(I N I, J N I)
\]} & & & & & \\
\hline \multicolumn{7}{|l|}{\(Y Y L=Y(I N L, J N L)-Y(I N I, J N I)\)} \\
\hline \multicolumn{7}{|l|}{\(X 1 .=X X I * D C(1,1)+Y Y L * O C(1,2)\)} \\
\hline \multicolumn{7}{|l|}{\(Y \mathrm{~L}=X X L * D C(2,1)+Y Y L * D C(2,2)\)} \\
\hline \multicolumn{7}{|l|}{\(F(1,1)=X J\)} \\
\hline \multicolumn{7}{|l|}{\(F(1,2)=0.0\)} \\
\hline \multicolumn{7}{|l|}{\(F(1,3)=-G N H 1 * X .1\)} \\
\hline
\end{tabular}
```

 F(1,4)=.5*XJ*F(1,3)
 F(1,5)=0.0
 F(2,1)=XK
 F(2,2)=XK*YK-. 5*XJ*YK
 F(2,3)=-GNU*XK
 F(2,4)=-. 5*(GN(U*XK*XK+YK*YK)
 F(2,5)=2.0*(1.0+GN(1)*YK
 F(3,1)=-GNU*YK
 F(3,2)=.5*(XK*XJ-XK*XK-GN(J*YK*YK)
 F(3,3)=YK
 F(3,4)=XK*YK
 F(3,5)=0.0
 F(4,1)=XL
 F(4,2)=XL*YL-. 5*XJ*YL
 F(4,3)=-GNU*XL
 F(4,4)=-. 5*(GNU*XL*XL+YL*YL)
 F(4,5)=2.0*(1.0+GNU)*YL
 F(5,1)=-GNU**YL
 F(5,2)=.5*(XL*XJ-XL*XI-GNU*YL*YI)
 F(5,3)=YL
 F(5,4)=XL*YL
 F(5,5)=0.0
 CALIL MATINS(F,R,5,DI,G,O,DN,M,INDEX)
 IF(M-1.) 13,13,12
 1? WIRITE (6,100)MEMNO
 1OO FORMAT(31H SOMETHING WRONG WITH MEDRF!? ,I5,I2H TOU(GH IUCK)
ST\capP
13 BA=XL
HA=YL
BR=XL-XJ
HR=YL
BC=XL-XK
HC=YL-YK
BD=XK
H\cap=YL-YK
BE=XK
HE=YK
XRA=.5*RA
YRA=.5*HA
XBR=XL-RB/3.0
YBR=HR/2.0
XBC=XK+BC,13.0
YRC=YL-HC/3.0
XRD=.5*XK
YRD=YK+.5*HO
XRF=RE/3.0

```

```

 AA=RA*HA
 AR=.5*RR*HR
 AC=.5*RC*HC
 A \cap=RO*H\cap
 AF=.5*RE*HE
 A=AA-AP-AC-AD-AF
 XM=AA*YBA-AR*YRB-AC*YFiC-AI)*YRO-AF*YRF
 YMI=AA*XRA-AB*XRR-AC*XRC-AD*XRD-\triangleF*XRF
 XIA=A\Lambda*HA*HA/3.0
 XIP=AR*(HB*HR/18.0+YRR*YRR)
 XIC=AC* (HC*HC/1, & 0 +YBC*YRC)
 XID=A\cap*(HD*HD)/12.0+YRO*YBD)
 XIE=AE*(HE*HE/18.0+YRE*YRF)
    ```
```

 XO=XIA-XIR-XIC-XID-XIE
 YIA=AA*BA*BA/3.0
 YIR=AR*(RF*RR/18.0+XBR*XBR)
 YIC=AC*(BC*RC/18.0+XBC*XRC)
 YID=AD*(BD*BD/12.0+XBD*XBD)
 YIE=AE*(BE*BE/18.0+XBE*XBE)
 YI=YIA-YIB-YIC-YID-YIE
 AJ(1,1)=AA*XBA*YBA
 BJ=AB*(AB/18.0+XBB*YBB)
 C,J=AC*(AC/18.0+XBC*YBC)
 DJ=AD*XBD*YBD
 EJ=AE*(AE/18.0+XBE*YRE)
 XYJ=AJ(1,1)-BJ-CJ-DJ-EJ
 CA=E*P1
 C,B=-CA*GNU
 DI(1,1)=CA*A
 DI(1,2)=CA*XM
 DI(1,3)=CB*A
 DI(1,4)=CB*YMI
 DI(1,5)=0.0
 DI(2,2)=CA*X0
 DI (2,3) =CB*XM
 DI (2,4)=CB*XYJ
 DI (2,5)=0.0
 DI(3,3)=DI(1,1)
 DI (3,4)=CA*YM
 D) I (3,5)=0.0
 DI (4,4) = CA*YI
 DI (4,5) =0.0
 DI (5,5)=CA*2.0*(1.0+GNU)*A
 DO 3 I =2,5
 JOE=I-1
 \capO 3 J=l,JOE
 3 DI(I,J)=DI(J,I)
 0ก 9 I=1,5
 DO O J=1,5
 AI(I, J)=0.0
 00 9 K=1.5
 9 AI(I,J)=AI(I,J)+DI(I,K)*F(K,J)
 \capก 1\cap I=1,5
 \capก 1\cap J=1,5
 SK(I, J)=0.0
 \capO 10 K=1,5
 10 SK(I,J)=SK(I,J)+F(K,I)*^I(K,J)
C. }A=YK/X
CR=XK/XJ-1.0
CC=YL/XJ
C.D=XL_/X,-1-1.0
CF= = XK/XJ
CF=-XL/XJ
IF(NN1-3) 14,15,15
14 NC=NN1.
GO TO 1G
15 NC=3
36 Dก 17 I = 1.,6
0n 17 J = 1,6
\DeltaI(I,J) = 0.0
\DeltaJ(I,J) = 0.0
AK(I,J) = 0.0
17 AL(I,J) = 0.0

```

4
```

 DO }5\textrm{J}=1\mathrm{ ,NC
 AI(1,J)=-DC(1,J)
 AI(2,J)=-DC(1,J)-CA*DC(2,J)
 AT (3,J)=CB*DC(2,J)
 AI (4,J) =-DC(1,J)-CC*DC,(2,J)
 AI(5,J)=CD*DC(2,J)
 AJ (1,J)=DC(1,J)
 AJ (2,J)=CA*DC(2,J)
 AJ (3,J)=CE*DC (2,J)
 AJ(4,J)=CC*DC(2,J)
 AJ(5,J)=CF*DC(2,J)
 AK (2,J)=DC(1,J)
 AK}(3,J)=DC(2,J
 \DeltaL(4,J)=DC(1,J)
 5 AL (5,J)=DC(2,J)
 CALL MULTRD(AI,INI,JNI,SKAI)
 CALL mULTRD(AJ,INJ,JNJ,SKAJ)
 CALL M!JLTRD(AK,INK,JNK,SKAK)
 CALL FIULTRD(AL,INL,JNL,SKAL.)
 IF(ITENP) 19,19,20
 20 XI(1)=XJ*ALPHA
 XI(2)=XK*ALPHA
 XI(3)=YK*ALPHA
 XI(4)=XL*ALPHA
 XI(5)=YL*ALPHA
 CALL TEMPCO(NC,IZ,SKAI,XT,ZAJ)
 CALL TEMPCO(NC,I7,SKAJ,XI,ZNJ)
 CALL TEMPCOF NC,IZ,SKAK,XI,?\triangleK)
 CALL TEMPCO(NC,IZ,SK&L,XI,TAL)
 19 contimue
IF(IFSF) 8,8,7
7006 I=1,5
DO 6 J=1,5
SKAL(I,J)=SK(I,.,)
6 DI(I,,) = E*F(I,J)
8 RETURN
END

```
        Surroutine mems
C PIM-EMNED RAR SURMATRIX SMPROUTINE PT=RAR CROSS SEGTTME ARF:
        DIMENSTON UMITS(4), ND(6), NOMO(25), M3(25), IPO(10), FIO(IG)
        DIMENSION \(X(25,40), Y(25,40), E](4), G M i](4), 0)(2, ?)\),


        3 SKA2(h,h,4)

        1 XI(6)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMMDN & K1，K？ & － K 3 & \(k 4\) & ，IT & －minpr & ，Hn！ \\
\hline COITMMS & UNITS & ND & ，vibno & ，以了 & ，ipa & ，PTO \\
\hline convinom & \(x\) & ，Y & － 2 & ，E & ，El & ，Gmi \\
\hline C．IMMON & GN［1］ & ，meming & ，winmity & IEGNi！ & TFSF & ，IfI \\
\hline common & IFJ & ，IFK & －IFL & ，In土 & ，WNT & ，Ind \\
\hline C Cumben & JNJ & ，INK & ，JNK & ，Ial & ，MML & ，PI \\
\hline c．Ommani & P2 & ，P3 & ，P4 & ， P 5 & Pr & －X．\({ }^{\text {r }}\) \\
\hline COMMMOM & YK & ，XL & ，YIL & ，nc． & SK & ，DT \\
\hline COMMOM & A I & ，AJ & ，AK & ，川 & skn & sua \\
\hline COMMON & SKAK & －SKAL & & & －くkal & \\
\hline
\end{tabular}


13 RFTURN
FND

DIMENS ION STRESS（ 6 ）
DIMENSION UNITS（4），ND（6），NONO（25），N1（25），IPO（10），PIO（10）
DIMENSION V 2100 ），UU（ 6 ），OO（ 6\(), A I(6,6), A J(6,6), A K(6,6), A L(6,6)\),
\(1 \operatorname{SKAI}(6,6), \operatorname{SKAJ}(6,6), \operatorname{SKAK}(6,6), \operatorname{SKAL}(6,6)\), ， \(1(6,6)\)
DIMENSIDN VTEE \((6,3)\)
COMMON K1，K2，K3 ，K4 ，ID ，NORO ，NN1
COMMON UNITS ，ND ，NONO ，N1，IPO ，PIO
CDMMON NUMFO，\(V\) ，KK ，KKK ，III ，IT．
COMMON UU， 00 ，MEMNO ，MEMTYP ，INI ，JNI
COMMON INJ ，JNJ ，INK ，JNK ，INL ，JNL
COMMON IFSF ，IFI ，IFJ ，IFK ，IFL ，AI
COMMON AJ ，AK ，AL ，SKAI ，SKAJ ，SKAK
COMMON SKAL ，DI ，VTEE
DD \(1 \quad I=1,3\)
\(111(1)=0.0\)
CALL SRI4（KK，3，JNI，AI，UU，III，KKK，IMI，IMI）
CALL SR14（KK，3，JNJ，AJ，UU，III，KKK，INI，INJ）
CALL SR14（KK，3，JNK，AK，UU，III，KKK，INI，INK）
IF（IPO（1））11，11，9
9 IT＝II
Dก \(10 \quad \mathrm{I}=1,3\)
10 リ川（I）＝1川（I）－VTEE（I，IT）
11 CONTINUE
IF（IFSF－2）7，2，2
？CALL SRCA（DI，3， \(3, U U, S T R E S S)\)
\(T A=(S T R E S S(1)+S T R E S S(2)) / 2.0\)
TR＝（STRESS（1）－STRESS（2））／7．0
\(T C=S O R T(T R * T R+S T R E S S(3) * S T R E S S(3))\)
\(P A=T A+T C\)
\(P R=T A-T C\)
\(\triangle N G L E=28.6478 * A T A N(S T R E S S(3) / T R)\)
IF（TB）3， 6.6
3 IF（STRESS（3））4，5，5
4 ANGLE＝ANGLE－90．0
GO TO \(h\)
5 ANGLE＝ANGLE＋90．0
6 WRITE（h，100）III，INI，MENNH，（STRESS（I），I＝I，3），PA，PB，MGGLE
IF（IFSF－3）7，8，8
7 CALI SR4A（SKAL，3，3，（JU，OO）
8 RETURN

END

SIRRRUTINE MEMRZ
C．RRANCH DEFORMATIINS AND STRESSES FGR OUAI PLATE SHIP 4 DIMENSION STRESS（6）
DIMENSION UNITS（4），ND（6），NONO（25），N1（25），IPD（10），PlG（16）
 ISKAI（ 6,6\(), \operatorname{SKAJ}(6,6), \operatorname{SKAK}(6,6), \operatorname{SKAL}(h, G), \mathrm{OI}(6,6)\)
DIMENSION VTEF（ 6,3 ）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMMON & Kl，K2 & K3 & K4 & In & N0R2i & －Nin？ \\
\hline CTIMMON & UNITS & ，ND & nono & M & IP（） & －PTor \\
\hline COMMMA & numpo & ，V & ，KK & ККК & III & I 7 \\
\hline C．IMMITAN & 111 & ， 00 & MEMNO & MFMTYP & 1世I & ，13： 1 \\
\hline COMMMN & INJ & ，JNJ & INK & Juk & ，JNL． & ，Jial． \\
\hline C．CMMON & IFSF & ，IFI & IFJ & ，IFK & ，IFL． & a \\
\hline CTMMMON & AJ & ，AK & AL & skaI & SKAJ & S \\
\hline
\end{tabular}
```

110 S=1./GA
120 T(1,2) =-X
T(1,3)=-X**X/2./EI
T}(2,3)=+X/E
T(1,4) =-X*X*X/G./EI + S*X
1(2,4)=+X*X/2./EI
T(3,4) =+X
IF(INFLU) 150,150,999
150 0=PROP(3)*SFL
RD=PROP(4)
T(1,5)=-X*X*(0*(-X*X/24./EI+S/2.)+RO*X*(-X*X/l20./EI+S/6.))
1(2,5)=-X*X*X*(0+RQ*X/4.)/6./EI
T(3,5)=-X*X*(0+R(0*X/3.)/2.
T(4,5)=-X*(0+R0*X/2.)
GO TO (999,200),IDF
200 CALL IDENT(TC,5)
CF=PR\capP(5)%SFL
TC(4,5)=-CF
CALL MMULT(T,TC,TR,5,5,5)
CALL EOUAL(T,TR,5,5)
999 RETURN
FND

```
    SURROITTINE READIN(A,B,IZ,MC,K)
    DIMENSION \(A(6,6), B(6,6,4)\)
    Oก 1 I=1, IZ
    ก \(11 \mathrm{~J}=1, \mathrm{NC}\)
    \(1 R(I, J, K)=A(I, J)\)
    RETURN
    ENO
    SURROUTINE REORD (FIAM,N,NTV,RP,RL)
C... ROUTTNE ARRANGES EIGENVALUES IN DFSCFNDING ORMFR IWI Iti
C.. THF CORRESPONDING RE-ARRANGING OF THF FTGFNVECTIRS
        OIMENSION ELAM(N), RP(N,N),BL(N,N)
        NTVI = NTV-1
    \(10 \quad 0 \cap 20 \mathrm{I}=1\), NTV1
        IF (ELAM(I)-ELAM(I+1)) 30.20,20
    20 CONTINUE
    GO TO 50
    \(30 \quad S A V E=E L A M(I)\)
        Fl.AM(I) \(=\operatorname{ELAM}(I+1)\)
        \(\operatorname{FLAM}(I+1)=S A V E\)
        D) \(\cap 40 J=1\), NTV
            \(R L(J, I)=R P(J, I)\)
        \(R P(J, I)=R P(J, I+1)\)
        \(R P(J, I+1)=R L(J, I)\)
    40 CONTINUE
        GO TO 10
    50 WRITF \((6,100)\)
        RETURN
    IOO FORMAT (// 3OH EIGFNVALIJFS AND FIGFNVFCTIRS //)
        FND
```

 GRMMON=1:SKAL , DI , VTEE
 1 U|(I)=0.0
 CALL SR14(KK,5,JNI,AI,UH,III,KKK,INI,INI)
 CALL SR14(KK,5,JNJ,AJ,U|,III,KKK,INI,IM,J)
 CALL SRI4(KK,5,JNK,AK,UU,III,KKK,INI,INK)
 CALL SR14(KK,5,JNL,AL,(J),III,KKK,INI,INL)
 IF(IPO(1)) 11,11,19
 19 IT=III
DO 10 I = 1,5
10 UU(I)=UU(I)-VTEE(I,IT)
11 CONTINUE
IF(IFSF-2) 3,2,2
2 CALL SR4A (DI,5,5,UU,STRESS)
WRITE(6,100)III,INI,MEMNO,(STRESS(I),I=1,5)
IF(IFSF-3)3,4,4
3CALL SR4A(SKAL,5,5,UU,00)
4 RETURN
100 FORMAT(1HO,I9,I10,14H OUAD PLATE,TR,4X,5F14.6)
FND
SURROIITINE NIEMRS
C. BRANCH FORCES AMIN STRESS FOR PIN EMINFH BAK
DIMENSION UNITS(4),ND(6),NONO(25),N1(25),IPO(10), FI(.)(10)
DIMENSION V(2100),UU(6),0\cap(6),AI(6,G),AJ(6,6),aK(0,G),AL(6,6),
I.SKAI(6,6),SKAJ(6,G),SKAK(6,6),SKAL(6,f),O)J(6,6)
DIMENSION VTEE(6,3)
COMMDN K1,K2 , K3 , K 4 , I! , WORII , BMI
COMMON UNITS , ND, NONO , NI , IPO, PIO
COMMON NUMFO , V , KK , KKK , III IZ
CTMMON UU, QO, MEMNO, NFMTYP , IMI , , JMT
COMMON INJ, JNJ, INK , JNK , INL , JNL
COMMON IFSF , IFI , IFJ , IFK , IFL , I
COMMON AJ , AK , AL , SKAI , SKAJ , SKAK
COMMON SKAL , DI , VTEF
DO 1 I= 1.IZ
1 |川(I)=0.0
CALL SRI4(KK,IZ,JNI,AI,III,III,KKK,JNT,TNT)
CALL SR14(KK,IZ,JNJ,AJ,UIJ,III,KKK,JNT,INJ)
IF(IPG(1)) 11,11,19
19 I T=I I I
U(!(1)=U|(1)-VTEE(1,IT)
11 CONTIN(JF
O\cap(1)=SKAL_(1,1)*UU(1)
JF(IFSF-2) 3,2,2
2. STRESS=OQ(1)/DI(1,1)
WRITE(G,10O)III,INI,MEMNO,STRESS
3 RETURN
100 FORMAT(1H0,I9,I10,7H RAR,I15,4X,E14.6)
END

```

SURRDUTINE MIJLTRD(AA, IN, JN, SKA)
C PREMULTIPLIES AA BY SK THEN READS AA INTO AI OR AZ ANI
C SKA INTO SKA1 OR SKA2
DIMENSION UNITS(4),ND(6), NONO(25),N1 (25), IPO(10), HIO(10)
DIMENSION \(X(25,40), Y(25,40), F 1(4), G N 11(4), D C(2,2)\),
1 SK ( 6,6\(), \operatorname{DI}(6,6), A I(6,6), \Delta J(6,6), \Delta K(6,6), \Delta L(6,6), S K A I(6,6)\),
2SKAJ \(6,6,6\), \(\operatorname{SKAK}(6,6), \operatorname{SKAL}(6,6), A 1(6,6,4), A 2(6,6,4), \operatorname{SKAl}(6,6,4)\).
3 SKA2( \(6,6,4)\)
DIMENSION RK (084,084)
DIMENSION IM(4),JM(4)
DIMENSION \(A A(6,6), S K A(6,6)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMMON & K1. K2 & - K3 & - K4 & - In & - minrio & , NNI. \\
\hline COMMON & UNITS & - ND & , NOMTS & , M1 & , IPO & , PTO \\
\hline COMMON & \(X\) & , Y & , 2 & , E & , Fl & , Gnll \\
\hline COMMION & GNUI & , MEMNO & - MEMTYP & , IFranll & , IFSF & , IFI \\
\hline COMMON & IFJ & , IFK & , IFL & , INT. & , JNI & , INJ \\
\hline COMMON & JNJ & , INK & , JNK & , INL & , JNL & , P] \\
\hline COMMMAN & P2 & , P3 & , P4 & , P5 & , P6 & , XJ \\
\hline COMMM & YK & , XL & , YL & , DC & , SK & , 1.I \\
\hline CONMMEN & AI & , AJ & - \(\Delta \mathrm{K}\) & , Al & , SKAI & , SKAJ \\
\hline COMMMN & SKAK & , SKAL & - \(A 1\) & - 42 & , SK』1 & , SKAD \\
\hline COMMON & I 7 & - NC & - XK & - nomitir & , ICOUNT & , HK \\
\hline COMMON & IM & , JM & , NA1. & - Naz & & \\
\hline
\end{tabular}

OO \(1 \quad \mathrm{I}=1, \mathrm{I} \mathrm{Z}\)
DO \(1 \mathrm{~J}=1\), NC
\(S K A(I, J)=0.0\)
门) \(1 \mathrm{~K}=1\), IZ
1 SKA(I,J)=SKA(I,J)+SK(I,K)*AA(K,J)
\(J I=N N 1 *(J N-1)\)
IF(IN-INI) 2,2,3
2. \(N A l=N A 1+1\)
\(\mathrm{IM}(\mathrm{NA} 1)=\mathrm{I} \mathrm{I}\)
CALL RFADIN(AA,A1,IZ,NC,NA1)
CALL. READIN(SKA,SKAI, IZ,NC,NAI)
GП TП 4
\(3 N A 2=N A 2+1\)
\(J M(N A 2)=J I\)
CALL RFADIN(AA, A2,IZ, NC, NA2)
CALL READIN(SKA,SKA2,IZ,NC,NA2)
4 RETURN
END
```

 SUBROUTINE NOD(NONO,NODE,NROW,L)
 C...ROUTINE COMPUTES THE LONGITUDINAL NUMBER FOR GIVEN
C...ROW AND NODE
DIMENSION NONO(25)
L=NODE-NONO(NROW)
DO 1 I=1,NROW
1 L=L+NONO(I)
RETURN
END
FUNC TION NODET(I,NODE,DEFIN,J,NXC,NONO)
C...ROUTINE COMPUTFS NODE NUMBER FOR GIVEN RIW AND COLUMIN
INTEGFR DEFIN
DIMENSION NODE (40,25)
IF(NONO-NXC)20,10,10
10 NODET=I
RETURN
20 NODET=0
DO }50 IT=].I.
IF(NODE(II,J)-DEFIN) 50,30,50
30 NODET=NODET +1
5 0 ~ C O N T I N U E ~
RETURN
END
SURROUTINE MINSUR (AA,A,N,MD,JJ)
DIMENSITIN AA(JJ,JJ),LL(R4),M(R4),A(N,N)
TOITRLF-PRECISION A,D
C. THIS LOOP SCALFS THE MATRIX TO APPROXIMATELY ONE (1)
L=0
10 L=L+1
AHOWI=AA(L,L)
SCALE=ABS(AHOm)
IF(SCALE.EO.O.) GO TO 1O
DO 5 I = 1,N
OO 5 J=1,N
A(I,J)=AA(I,J) /SCALE
CALL MINV (A,N,D,LL,M)
THIS LOOP REMOVES SCALING FACTOR
D\cap 6 I =1,N
\cap\cap f J=1,N
f AA(I,J)=A(I,J) /SCALE
DD=0
RETURN
END

```
subroutine minv
PURPOSE
INVERT A MATRIX
usage
CALL MINV(A,N,D,L,M)
DESCRIPTIGN OF PARAMETERS
A - INPUT MATRIX DESTROYED IN COMPUTATIDN AMD REPLACED BY RESULTANT INVERSE.
N - ORDER OF MATRIX A
D - RESULTANT DETERMINANT
L - WORK VECTOR OF LENGTH N
M - WORK VECTOR OF LENGTH N
REMARKS
MATRIX A millst re a general matrix
SURROUTINES AND FUNCTION SURPRRIGRAMS PEOUIREE NONE

METHOD
THE STANDARD GAllSS-IMRDAN METHill IS USED. THE DETFRMINAMT IS ALSO CALCUIATED. A DETERMINANT MF ZFRO IWIICATFS THAT THE MATRIX IS SINGULAR.

DIMENSION A(1),L(1),M(1)

IF A DOUBLE PRECISION VFRSION MF THTS ROUTTMF IS MFSTPFR, THE
 STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A,D,RIGA,HOIG
the c must also re remived from onurle prfersiun stat-mants APPEARING IN OTHER ROUTINES USEN IN CONJUNCTIMN WTH THTS ROIITINE.

THF DOURLE PRFCISION VERSION OF THTS SURROIITINE MIST ALSO CONTAIN DOURLE PRECISION FORTRAN FUNCTIONS. abs I: STATFWFMI 10 MUST BF CHANGED TO DABS.
```

 SEARCH FIR LARGEST ELFMENT
    ```
\(n=1.0\)
```

 NK=-N
 DO 80 K=1.N
 NK=NK+N
 L(K)=K
 M(K)=K
 KK=NK+K
 RIGA=A(KK)
 D\cap 20 J=K,N
 I Z =N*(J-1)
 DO 20 I=K,N
 I J=IZ +I
 10 IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20
 15 RIGA=A(IJ)
 L(K)=I
 M(K)=J
 20 CONTINUE
 C
C
C
J=L(K)
IF(J-K) 35,35,25
25 KI=K-N
DO 30 I=1,N
KI=KI+N
HOLD=-\Delta(KI)
JI=KI-K+J
A(KI)=A(JI)
30 A(JI) =HOLD
C
C. INTERCHANGF COLUMNS
C
35I=M(K)
IF(I-K) 45,45,38
3R JP=N*(I-1)
DO 40 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A(JK)
A(JK)=A(JI)
4\capA(JI)=HOLD
C
C
C
C
45 IF(BIGA) 48,46,48
46 I=0.0
RETIIRN
4R DO 55 I=1,N
IF(I-K) 50,55,50
50 IK=NK+I
A(IK)=A(IK)/(-RIGA)
55 CONTINUE
C
C. RFDUCE MATRIX
C
I)O 65 I=1,N
IK=NK+I
HOLD=A(IK)
I J=I-N
O\cap 65 J=1,N

```
```

 I J=I J+N
 IF(I-K) 60,65,60
 60 IF (J-K) 62,65,62.
 G2 KJ=IJ-I +K
 A(IJ)=HOLD*A(KJ)+A(IJ)
 G5 CONTINUE
 C
C DIVIDE ROW BY PIVOT
C
KJ=K-N
OO 75 J=1,N
KJ=KJ+N
IF(J-K) 70,75,70
70 A(KJ)=A(KJ)/BIGA
75 CONTINUE
C
C PRODUCT IJF PIVOTS
C
D=D*BIGA
REPLACE PIVOT BY RECIPROCAL
A(KK)=1.0/BIGA
8O CONTINUE
F FINAL ROW ANT COLUMN INTERCHANGE
C
, K=N
100 K=(K-1)
IF(K) 150,150,105
105 I =L(K)
IF(I-K) 120.120,108
108 J0=N*(K-1)
JR=N*(I-1)
DO 110 J=1,N
JK=JO+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
110 A(JI) =HOLD
120 J=M(K)
IF(J-K) 100,100,125
125 KI=K-N
DO 130 I=1,N
KI=KI+N
HOLD=A(KI)
JI=KI-K+J
A(KI)=-A(JI)
130 A(JI) = HOLD
GO TO 100
150 RETURN
END

```
    SUBROUTINE NSCRWR (J,N,DX,DY,NOTR)
        DIMENSION DX(NOTR), DY(NOTR)
    WRITE \((9.10) \mathrm{J}, \mathrm{N}\)
    شRITE(9,11) (DX(I), I=1, NOTR)
```

 WRITE(9,11) (DY(I),I=1,NOTR)
 RETURN
 10 FORMAT (2I5)
11 FORMAT ((15E16.8))
END

```
```

SURROUTINE NSCRRE(J,N,DX,DY,NOTR)
DIMENSION DX(NOTR),DY(NOTR)
READ (9,10) J,N
READ(9,11) (DX(I),I=1,NOTR)
READ(9,11) (DY(I),I=1,NOTR)
RETURN
10 FORMAT(2I5)
11 FORMAT ((15E]6.8))
END

```
```

SURROUTINE NFILRE(NA,NR,NC,SFX,SFY,PHI,DXL,DYL,GMGK)
DIMENSION DXL(NOTR),DYL(NOTR)
READ(7,14)NA,NR,NC,SFX,SFY,PHI
READ(7,15)(DXL(I),I=I,NOTR)
RFAD(7,15)(1)YL(I),I=1,NOTR)
RETURN
14 FORMAT(3I10,3FIG.8)
15 FORMAT ((15ElG.R))
FND

```
    SURROUTINE NFILMP(NA,NR,NC, SFX, SFY, PHI, DXI, חYI, ©UTK)
    DIMENSION DXI. (NOTR), DYL (NOTR)
    WRITE 7,14 )NA, NB, NC, SFX,SFY, PHI
    WRITF(7, ].5)(DXL (I), I = ]. NOTR)
    WRITE(7,15)([DYL(I), I=1, N(ITR)
    KETURN
    14 FORMAT(3I10,3E16.8)
    15 FORMAT ( (15E16.8))
        END
    SIIRROUTINE ICCM (T, PROP, INF, X, INFLU,SFS, SFL,SFA,F, G)
C--IICCURRENCE MATRIX MEVELOPNENT
    i) IMENSIUN \(T(5,5), \operatorname{PROP}(5), T R(5,5), T C(5,5)\)
    CALL IDENT \((T, 5)\)
    \(E I=E * P R \cap P(J) * S F S\)
    \(G A=G * P R \cap P(2) * S F A\)
    \(S=0\) 。
    IF(GA) \(120.120,110\)
```

 SUPIROUTINE SETOC(NSEC,ZI,FYF,NO,ZO,O,NP, YP,P,ZLEN,MOCC,IIMATA)
 C--RIUTINE TO SET UP ICCIJRRENCF IIATA VECTIRS
DIMENSION ZI(20), EYE(20),70(20),0(20),7P(50),P(50),(0|ATA(R,50),
+7\capCC(7\cap)
C
C--IOFTHRMINF I.OCATIONS FOR ALI OCCIIRRENCF CHANGFS
7ICC,(1)=0.
7MCC(2)= ZLEN
N\capCC=2
C--FIRST ARRANGE X-SFCTIMN CHANGES IN ASCFGMING ORIER IGFT TG KIGHT
7.I(NSEC+1)=7.LEN
lO DO 2O N=1,NSEC
IF(7I(N)-ZI(N+1))20,20,30
20 CONTINHE
GO TO 40
3O SAVE=7I(N)
ZI(N)=7I(N+I)
7.I(N+1)=SAVE
SAVF=FYE(N)
FYF(N)=FYE(N+1)
FYE(N+1)=SAYF
GO TO 1?
40 NO 50 N=1.NSFC
MMC,C=M!MCC+1
50 7\capCO(NOCC)=ZI(N)
C
IF(NO)11n,11\cap,G\cap
GO 70(NON+1) = 7. LFM
C--MRRANGF UNIFIRM LIAADS IN \triangleSCFWIING GRNFS I.FFT TM RIGHT
70 nO 80 N= J, MO
JF(7\cap(N)-70(N+1))8N,80,00
SO CONTIMMF
C.OTH TO5
9O SAVF=7O(N)
7.\cap(N)=7O(N+1)
7\cap(N+J)=SAVF
SAVE=O(M)
O(N)=O(N+1)
n(N+1)=S\DeltaVE
BOTO TO
O5 nn 10\cap N=?, NO
AOC=OMC.C+1
10\cap 7OCC(MOCC)=7ח(N)
1.0 IF(NP)?00,200,1>0
1?O 7P(NP+1)=71. EN
C--ARRANGE CONCENTRATED LOANS JN ASCENIING MRMFR LFFT TG RTGHT
130 ON 14O N=1,NP
IF(7P(N)-ZP(N+1))140,140,150
34O CONTINHE
GO TO 1GO
150 SAVE=ZP(N)
7P(N)=7P(N+])
7.P(N+1)=SAVE
SAVE=P(N)
P(N)=P(N+1)
P(N+])=SAVF
m,n TM 130

```
```

160 DO 170 N=1,NP
NOCC=N\capCC+1
170 7\capCC(N\capCC)= ZP(N)
C--ARRANGE DCCURRENCE LOCATIONS IN ASCENDING ORIER LEFT IG RIGHT
200 CALL SORT(ZOCC,N\capCC)
C
C--INSERT OCCURRENCE IAATA
N\capCC=NOC, -1
n) 500 J=1,NOCC
\capПATA(R,J)=Z\cap\CC(J)
\capПATA(7,J)=7\capCC(J+1)
\capDATA (8,J)=1.
C-- ODAT^(8,J) INDICATES IF A CONCENTRATED CONDITIUN UROURRS AT THE IGFI -H:G
C. AN MCCURRENCE FIELD. IF SET TO 1, NONE EXISTS. IF SFT TH %, IIMF IO:S.
nO 210 I=1,5
210 OПATA.(I,J)=0.
O\cap 230 N=1,NSEC
IF(ZI(N)-ZOCC(J))220,240,250
220. IF(ZI(N+1)-7OCC(J)1230.230,240
230 CONTINUE
24\cap ODATA(1,J)=EYE(N)
250 IF(NO)300,300,260
2hn DO 2RO N=1,NO
IF(7\cap(N)-7\capCC(J))270.290.300
2.70 IF(ZO(N+1)-Z\capCC(J))280.280.290
2@O COONTINMF
?O\cap П\capATA(Z,|)=0)(N)
300 IF(NP)400,400,310
310 OM 320 N=1, NP
TF(7P(N)-ZOCC(J))320,315,400
315 ПD\TA(5,N)=P(N)
\capПATA(R,J)=2.
370 CONTIMUE
4OO C.ONTINUE
5On CONTINUE
RETURN
FND

```
SIRRROITTNE SHIPI(NCARD.MACO)
C... ROUTINE OFVELOPS FIMITF FLENFNT STIFFNFSS VATRICFS
C... FOP THE TRANSVEPSE MFMRFR
C. FORMATION OF STIFFNESS MATRICFS


    OIEMENSIGN \(X(25,40), Y(25,40), G N(1)(4), 1) C(?, ?)\),


    3 SKA? ( \(九, h, 4)\)

        DIMENSION \(\triangle O X(84,84)\)
    CDMMON K1, MEMTO, NOMAT, MIIR, ID, NTRI, WH?
    COVMMN , UNITS , ND , MOMO , M? , THO , bil
    COMMON X,Y, C , E, NORRB, MCOM, MIBEI, WCON, COU
    COMMMN GNUI, MEMNO, WFMTYP,FA, IFSF, IFI

```

COMMDN	YK	, XL	, YL	- $\cap \mathrm{C}$	- SK	, U) I
COMMON	AI	, AJ	, $\Delta \mathrm{K}$, ΔL	, SKAI	, SKAJ
COMMON	SKAK	- SKAL	, A1	, A?	, SKAI	, SKA?
COPMON	I Z	, NC	- XKK	, MomFor	- ICOUNi	, RK1
COMMON	IM	, Jivi	- NAI	- Ma?	, 7. 4 I	, 72.J
COMMMON	Z AK	, ZAL	, ITFMP	, ALPHA	, \times I	

COMNON/K23RH/KH(3,49),KHP(4,49),KJ,KJR,IFO,L.J(4)
C IPO(1) = TFMPFRATURE FL^O, ITFMP
C. PIO(1) IS USED TO PASS THE TIME OF IDY
CALL INPUT
IF (NORO.GT.25) GO TH 3.31.
IF (NOMAT.GT.4) GO TO 331
KI=].
I},JK=
I)ח 99 J=1,NORO
go NOR(I)=N](I)
IF (NORO.GT.NORO) GO TO 3.31
IF (NOHR.GT.1) GO TII 331
IF (NCON.GT.I) GO TO 331
C. NOB\cap=NUMPER \capF ROWS WITH RIUNNDARY COHDTTITUS
C. NOR(I) IMPLIES BOUNDARY CONDITION AT THF ER!) IF MH|(I)TH R!!:
NORR=1,FIXED IN X-DIRECTION,MOBK=O,FIXFO IG Y DIKECTIMA
MCON=MUNIRER OF ROUNDARY CONDITION IST IST POH
NIMB(I) IMPLIFS BOUNDARY CONDITJON AT mrik(I) TH wU|F
MCOM SAME AS AOBB RUT FOR BOUNDARY C,OMMITIUMS IF IST HO!:
K.l =0
CALL RENINI(3)
CALL RFWIND (4)
IP\cap(1)=ITEMP
NO(1)=3
ND(2)=5
ND(5)=1
GO T\cap 333
321 mkITE (6,332)
STHP
333 MACH=MAXC,OL (MN1, NONO,NORM)
NOwEM=0
ICOUNNT=1
N1(1)=0
ICOLJ=NNI *NONO(1)
ICOL ?=NNI*NONO(2)
D\cap 9 I = 1, ICOL-1
O\cap 9 J=1, ICOLI
O PK (J,J)=0.0
1.1 I JK=IJK+1
CALL INFO(IJK)
IF (INI-ICOUNT) 12,1.2.12
12. IF(MFMTYP) 13,13,26
26 IZ=ND(MEIVITYP)
TF(NOMEM.GT.O) GO TO }1
On 24 I= 1, ICOL. I
\cap\cap 24 J=1,ICOL2
24 RKKK(I, 1)=0.
O\cap) 25 I=1,ICOL?
0ก) 25, I=1, ICOI?
25 RKH(I,J)=0.
14 CONTINUE
@) 20 k=1,4
TN(K)=?
, 1F(K)=?

```
```

 DO 20 I=1,IZ
 DO 20 J=1,NN1.
 A1(I,J,K)=0.0
 A 2(I,J,K)=0.0
 SKA1(I,J,K)=0.0
 20 SK^2(I,J,K)=0.0
 NA1=0
 NAD=0
 GO T\cap (1,2,5,5,5),MEMTYP
] CALL MFM1
 GO TO 10
 2 CALL MEM2
 GO TO 10
 5 CALL MEM5
 C. IFSF=1 FORCE ONLY
C. IFSF=2 FORCE \triangleNT) STRFSS
C, IFSF=3 STRESS ONLY
C FOR THERMAL STRESSE PRORLFM
C THAN ZERO FOR ALL MEMBERS
10 IF (IFSF) 22,22,23
23 WRITE(4,3)MEMNO,MEMTYP,INI,JNI,INJ, JNJ,INK,JNK,INL, JHL,IFSF,IFI,IF
1,J,IFK,IFI,NC,AI,AJ,AK,AL,SKAI,SKAJ,SKAK,SKAL,!I
N1(INI)=N1(INI)+1
22. \capO 30 I=1,NAI
IMM=IN(J)
D\cap 30, J=1,NAI
JMM=IM(J)
30 CALL TRAMPS(AI,I,IZ,NC,SKAI,J,IMM, JN:, (iK)
IF(NA2)16,16,31
3]. П\cap 35 I=l,NA1
INM=IM(I)
DO 35 J=1,NA2
JMM=, IN(.J)
35 CALL TRAMPS(AI,I,IZ,NC,SKA?,J,INM,NHM,KKK)
On 36.I=1,NA?
Im=JM(I)
OO 36 J=1,NA?
MMM= JM(J)
36 CALL TRAMPS(A2,I,IZ,NC,SKA?,J,IMM, Imm,RKH)
16 CONTIMMF
MOMEM=MOINFEM+1
GO TOT 11
12 IROT=INI-1.
\GammaO40 IP=1, WITRO
IF (IRO.NF.NOOR(IP)) GOI TO 40
IK=M\capNO(IRO)*?-N\capRR
RK(IK,IK)=RK(IK,IK)*IOOOOOOO.*FA
C.ONTINIIF
IF (IRO.NE.].) GO TO 233
, IK=M\capO*2-MC,ON
PK(JK,JK)=RK(JK,JK)*1OOOOOOC.*FA
232 CALL K3HP(IRO,ICOLI,ICOLZ,BK,O,AOX,FACO)
IF(INI-NORO.GT.O) GO TO 990
CALL K3WR(IRO,ICOLI,ICOLZ,RKK,-1,AOX,NNCii)
Юก 15 I= 1,ICOL?
DO 15, J=1.,ICOL.?
RK(I, J)=RKH(I, \)
ICOL.I=NNJ *NONN(INI)
IF (TMI. EO.NOROI) GO TH 7O

```

\(\mathrm{N} 1(\mathrm{INI})=0\)
NOMEM＝0
IF（JNI）11，11，12
\(999 \mathrm{KJ}=0\)
CALL REWIND（3）
CALL REWIND（4）
WRITE \((6,102)\) ID
WRITE（G，IOO）ID，NORD，NNI，NGMAT，ITENP，（UNITS（I），I＝1，4）

HRITE（ 6,110 ）（NHR（I），\(I=1, N O B O)\)
WRITE（ \(6,1.10\) ） \(\operatorname{MNOR}\) ，IFSF
WRITE（6，103）FA
WRITE（6，I03）E，GNU，ALPHA
HRITE（6，110）（NONO（L），L＝］，MORO）
RETIIRN
3 FORIMAT（JGI5，1，（15E16．8））
4 FMRMAT（12I5，／，（15E16．8））
100 FORMAT（5I5，4AK）
1O2 FORMAT（24HIDATA FOR PRIIBLFM MINMRER，TK）
103 FORMAT（EIO．2．FT．2，E1O．2）
110 FORMAT（2013）
332．FORMAT（／／25H INPUT EREURS［N SHTP］／／）
40 FORMAT（4F1．5．4）
FND

SIIRROUITMF SHPS（SPRING，mQR，MACII）
C．bATRIX TRIANGILIARIZATICN

C．SOIUTION MF FOUATIOWS

］．INDEX（ \(\cap 8<, 3)\)
DIMENSIINN BK（ 84,84 ），RK \(2(84,84)\) ，RTFGH（： 4 ）
DJMENSIMN AOX（ 84,84 ），D（MA（755）
DIMENSITN R（ 7 IOn），VTENP（R4）

CRMMON KI，K？，K3 ，Kム ，IV ，以斤？， 11



］． 1 RRIH（100），\(\because \times(50), \mathrm{MF}\)
（CDumin／SAFF／RE，DiviY（444）

FXTFRNAL GFTFO

1：ATA FNi／B－A 1／

\(K K K=0\)
\(K J=0\)
\(K J R=0\)
CALL RENINI）（3）
CALL K3RE（IR！！，ICOLI，ICHL？，RK，O ，ANX，MACO）
OH \(35 \mathrm{I} I=1\) ，MRRI
JF（mind．FO．O）GO TH 79
กก \(74 . T K=1\) ，MTI．\(n\)
```

 AN=PHI(IK)
 IF (II.NE.LROW(IK)) GO TO }7
 J1=LN\capO(IK)*2-1
 J2= J1+1
 A=C\capS(AN)*SFX(IK)-SIN(AN)*SFY(IK)
 R=SIN(AN)*SFX(IK)+COS(AN)*SFY(IK)
 RK(, J,J1)=RK(J],JI)+A*SPRING
 BK}(,J2,J2)=BK(, 12,J2)+R*SPRING
 74 CONTINUF
 79 CONTINUJE
 CALL MATINS(RK, 24,ICOLI,RK2,84,OO,DD,M,INDEX)
 Gn TO (3A,3R), w
 3R UPITE (6,11])IR\cap
 IRITE (6,1\].) II,DD
 STOP
 36 CAIL K2WR(TRO,ICOLI,ICOLZ,RK,D,AOX,WACO)
IF(II-NORO) 40,39,39
4O CNLL K3RF (IRO,ICOLI,ICOL?,RK2,-1,AOX,HACO)
CAIL K2WR (IRO,ICOLI,ICOL2,RK2,-1, AOX,WMCO)
A\cap 44,J=1, ICOLI?
1)\cap 4.3 K= ., ICOL?
BTEMP(K)=0.0
IO 4.3 I=1,TCO! 1.
43 FTFMP(K)=RTFKP(K) +BK(I,J)*BK2(I,K)
ण\Pi 4.4 J=1,IC,IL?
44. FKK(I,J)=RTFFiP(I)
П\cap 42. I=I, ICกIL?
IIK=KKK+IC[!LI I I
i)f 4.2 J=1,IC.IL.]
IKK=KKKK+J
4? R(IIK)=R(IIK)-PK(I,.I)*R(IKK)
KKK=KKK+IC\capL!
\cap\cap 50 K=1,ICOL?
Dก 51. I=1,ICOL?
NFMP(I)=0.0
On 51. I=1,ICOLI
51. RTEMP(I)=RTEMP(T)+RK(I,J)*RK2(J,K)
O\cap 50 I=1,ICOL%
5n RK2(T,K)=BTFWP(I)
CALL K3RF(IRO,TCHLI,ICOL?,RK,O,AMX,MACO)
An 35 I= I,ICOMI
\cap\cap 35 J=1, [COL.1
-35 RK(I,,I)=RK(J,,1)-RK2(I,J)
ic) 1., (1) =KHF(\&, < JF)
CALL POIMT(IFi),I,J,!)
KJ=0
CALL PFMIN! (3)
WRITF (K,1]O) kl.K?,K3,K\&
On 47 II= , W!RO
CNLL K\PE(IRO,ICOLI, ICOL?,HK,O ,AOX,FACiM)
OM 45 I= I, ICOL.].
\TFMP(I)=0.
MO}45,|=1,ICOLI
T.KK=KKK+J
45. VTFMMP(I) =VTFNP(I)+RK(I,J)*R(IKK)
DO 46 I= ., ICrll]
IKK=KKK+I
4\& R(IKK)=\TFWP(I)
TF (IT-NOPTO) 4.9,54,54
40 CALL KつRE(TRO,TCMLI,Ir.OI?,RK,-1, ANy,M,Ar,i)

```
```

 KKK=KKK-ICOL1
 DO 47 I=1,ICOL]
 IKK=KKK+I
 \cap\cap 47,J=1,IC\capL2
 47.R(IKK)=R(IKK)-RK(I,J)*VTEMP(J)
 54:KJR=0
WRITE (6,400) (R(I),I=1,IKK)
RFTIJRN
FORMAT (I5)
FIIRMAT(I\capIIO)
111 FORMAT(IHO,17HSINGILLAR IN ROIW, I.3,144 T!!|OH LUCK)
121. FOIRMAT (9H ROU NO = I IO,IOH DFTFRM =, F2O.5)
4OO FIIRMAT (4EJ5.4)
FND

```
    SURROIITINF SHTP4
    NIMENSION JACK (25,40),FORCF(25,40,2)



    ПIMENSTIIN VTFF ( 6,3\()\)

    COMMOM INITS , ND , NONO , NT , IPO , PT
    COMMON NHMFO , \(V\), KK , KY※ , TIT , TY

    COMMON IFSF , IFI , IFJ , IFK , IFI. AT
    COMMVMM AJ , AK , AL , SKAI , SKA, , SKMK
    COMMOM SKAL , DI , YTEE , HIHB(7大OK)
    COMMON/SAFE/JACK, FORPCE, DMY ( 4500 )
    WRITE (h,IIN)In
    I I \(\mathrm{I}=1\).
    WRITF (6, IOO)HNITS(1), MNITS(2), UNTTS(2), UNTTS(4)
    CALL REUINO (4)
    KKK=Nill *NOND(1)
    \(K K=0\)
    กn \(2 I=1\), NOR !
    IMF = NOMO (I)
    円П \(2, J=1, J \cap E\)
    - JACK (I,J)=0
    MO ? K=1, MMI
    \(\rangle F \cap R C F(T, J, K)=0\).
    Mก 50 II = 1, MinR
    \(\checkmark \cap E=N 1(I I)\)
    TF (JOF) 23,23,22
2? C.INTINIF
    DП \(58 \quad J J=1, J \cap F\)


    \(\mathrm{J} 7=\mathrm{ND}\) (MFMTYP)
    GO T T ( \(4,5,8,8,8)\), NFMTYP
    4 CALI MFFRR1
    (G) TO 20
    らCALI MFMR?
    Gi? T ? ?
    a CALI FFRRS
    クOTF (TFSFー? ) 10, 1O, 5R

10 IF (IFI) \(12,12,11\)
11 CALL SRI5(AI,OO,INI,JNI,I7,NN1)
1)? IF(IF.J) 14,14,13

13 CALL SR15(AJ,OO,INJ,JNJ,I\%, NN1)
14 IF(IFK) 16,1K,15
15 CALL SR15(AK,OO, TNK,JNK,I7,NN1)
16 IF (IFI) 58,58,17
17 C.ALL SR15(AL, OO, INL, INL,I\%, NNI)
58 CONTINIIF
23 CNNTINUE
\(K K=K K K\)
5.) KKK =KKK+NNI *NONO (II + 1)

WRITE(6,101) UNITS(1),IINITS(2)
กП \(24 I=1\), NOR
\(\cdots \cap \mathrm{F}=\mathrm{NOMO}(\mathrm{I})\)
D) \(24 \mathrm{~J}=\mathrm{I}, \mathrm{J} \cap \mathrm{F}\)
\(\operatorname{IF}(J A C K(I, J)) 24,24.2 .5\)

24 CONTINHE
2 h IK=1
\(I K K=N N 1\).
WRITE (6.103)UNITS(3), (INITS(4)
I) 27 I = 1, NORT
\(T N=N \cap N \cap(I)\)
กП 2.7 II \(=1, I N\)
WRITE (6,104)III,I,II,(V(IV),IV=IK,I«K)
\(I K=I K+N N_{1} 1\)
27 TKK=IKK+NNI
RETIIRN

JO. 3 FIRMAT(2 3HINOTF OISPLACFMFMTS TH. 2AK.//,

10ク FORMAT(IH, 3IG, \(3 \times\), RE14.6)
1OI FOQMAT(2IHICUT WIOE FORCFS IN , ZAK, //,

K FOQMAT(16I5,/,(15F1K.8))
IOO FOPMAT(?OHIMFMSFP STRFSSES JM, ?AK, IムH PFR SOMARE , ?AA//

2Y-STRESS SHEAR STRESS IST PRINC STR DMM PQTNC SIR AMAF IS! \(\because\) 3RINC/44X, 14H(TRIMNG PLATE), 58X, IGHSTHFSS TO X-iXTS//\& 4RHX-S TPFSS, 6X, 7HX-GRAD , 7X, RHY-STRESS, GX, 7HY-ARA! , \(\because\),

 Fill

SIIRROIITINE SIRRT \((X, N)\)

C... Illl MUPIICATE VAIMES

HIMENSIMN X (M)
\(5 \quad N M 1=N-1\).
IF (Nim1.)90, COC. 10
10 inf \(15 \quad I=1\), NMT
\(\operatorname{IF}(X(I)-X(I+1))] 5,20,30\)
15 COMTINUE
9O RETIRN
ว) \(\quad \forall(T)=X(: 1)\)
```

 N}=\textrm{N}-
 G\cap T\cap 5
 3\cap SAVE=X(I)
 X(I) = X(I+1)
 X(I+I)=SAVE
 GO TO 10
 EN(D
 SUIRROUTINF SRI4(KK,N,JN, AIJK,OIU,IJI,KKK,IIN,T,IK)
 C SRI4 SRANCH DISPLACENENTS OR FORCFS SHTP 4
DIMFNSION V(21OO), AIJK (6,6),O(j(6),m(6)
DIMENSION UNITS(4),ND(6),NONO(25),N](25),IPO(10), HIO(1O)
COMMON K1,K2,K3,K4,In,NORO,NNl,!JITS,ND,NONO,N],IPO,PTO
COMMON NUPMFO,V
IF (I,JK-IIN) 3.3,4
3 IO=KK+NNI*(JN-1)
GOO TO 5
4 IO=KKK+NN1 *(JN-].)
5
cap l I = 1, NNT
I I= I 0+I
1. W(I) = V (II)
nO 2 I=1,N
MO 2 J=1,NN1
? ()|(I)=O!l(I)+AI,MK(I,J)*W(,)
RETIJRN
ENO
SHRROIITINE SR15(AI,N,OO,II.JI,M,NMI)
C. SRI5 NONE FIRCES SHIP \&
DTMFNSION AIJK(6,6),OO(6),FORCF(25,4O, 2),JAR.K(25,4U)
CIINMON/SAFE/JACK,FORCF,DGY(45ON)
I)O 1 J=1, MiNI
!M 1 J=1,N
1. FIORCF(II,JI,J)=FGRCE(II,.II,.\)-^IJK(I,.|)*いO(T)
, ACK(II,JI)=l
RFTIJRN
ENO
SIJRROIITINE SR4A(A,M,N,R,C.)
r. SR4A NATRIX MUIITIPLICATION SHIP 4
OINIFNSION A(G,G),B(G),C(G)
\cap\cap]. I=1.,
r.(J)=0.0
nO 1 }\quad\textrm{l}=1,

1. C(I) =C(I)+\Delta(I, I)*R(, 1)
RETHRM
FNO
```
```

 SURROUTINE SWTCH(I],12)
 IF(I1-I2)99,99,10
 10 I= I1
 11=1?
 I 2 = I
 90 RETIIRN
FND

```
SIPROUTINF TEMPCO( NC, IZ,SKA,XT, フA)
    DIWENSION SKA(G, G), XI (6), ZA(6)
    DM 2 \(I=1, N C\)
    \(7 A(I)=0.0\)
    กก \(2, ~ J=1\), IZ
    27 7 (I) \(=7 \Delta(I)+S K A(J, I) * X I(J)\)
        RETIJRN
        (HNT)

C... ROIITINE TO CMMPUTE MCCURPFNCF MATPIX FF!! IGCATTU
C....FER TOX
            1) JMENSTON TM \((5,5), \operatorname{TO}(5,5), \operatorname{TR}(5,5)\), PH1P(5), M) \(T A(:, ~(:)\)
            TMFI_U=0
            IF (NCON ) 11n, 110.100
    \(100 \quad \operatorname{IF}(X-X+3) 110,120,120\)
    110 CALL I!)ENT (Tw, 5)
            \(N R=1\)
            \(X R=0\) 。
            ACON=1
120 NRB=NE
            Dก 3 OO M=NRR. NRICC
            \(X 1=\) ODA TA (K,N)
            \(X 2=0 \cap A T A(7, N)\)
            \(\mathrm{J} \cap F=\cap \cap \mathrm{TA}(\Omega, N)\)
            Пก \(130 \mathrm{I}=1,5\)
    130 PROP (I) = OПATA (T, N)
C--CHFCK IF POINT AATRTX HAS REFN IISFO Ti, IST HCCHRFBCF
            IF (N-NRR) 140, 140,160
    \(140 \operatorname{IF}(X B-X 1) 160,160.150\)
    \(150 \quad\) IDF \(=1\)
    \(160 \quad N R=N\)
        JF \((X-X 2) 180,170,190\)
    \(17 \cap \quad N R=N+1\)
    180 HSTOP \(=1\)
            \(Y=X-X B\)
            \(X R=X\)
            (二ก TO 205
10R NSTIP \(=0\)
            \(Y=X ?-X R\)
            \(\times R=x ?\)
            (in TO 295

            CALL mivill. T (TO,TM,TR,5,5.5)
            CALL ENUAL (TM,TR,5,5)
            IF (NS TOP) 3nO, 300, 400
```

300 CONTINUE
400 RETURN
END

```
    SURROUTINE TRAMPS (A,KA,IZ, NC, SKA,KK, IF, JWH, KK)
        DIMENSIAN \(\cap(6,6,4), \operatorname{SKA}(6,6,4), R K\left(R 4_{+}, 84_{+}\right)\)
    in \(1 . I=1\), NC
    กก \(1 \mathrm{~J}=1\), NC
    กП \(1 K=1, I Z\)
    \(I R K=I M M+I\)
    \(J B K=J N_{i} M+J\)
    \(1 B K(I B K, J B K)=R K(I B K, J B K)+A(K, I, K A) * S K I(K, I, K R)\)
    PETURN
    END
    SURRIIITINE TRV(NCARD)
C... ROUTINE INPUTS DFFINITION OF TRANSVFRSF AGO GFMERATES
C...ALL FINITF FLFMFNT DATA
    JNTFGER OFFTY, PLANK
    COMMINN /WORK/XC(42), YC( 28 ), NOMO (25), WXC., HYC,

            COVNMN /SAFF/HEITS(4), ITI(50), TT? (5i) ,


            COMMSN/SAFF/IFRP, XLEHO, OFCI, DFSH,





    +NII., P, MFMTYP, WEWTO, N, חNMY (639.3)

            KのDIE = O
            P.LASK = O
            DFFIN=I
            TFRR=0
            WRITF( \(K, 2 \cap 0)\)
            WPITF (6, 20])

            WRITE ( 6,300\() \times 1 . H H O, D F C\), , WESH
「米*

            VRETE (6. 20? )
    RFAD(5, 1) NXC, MYC
    WPITF(G.I) MKC, NYC.
    MRITE( - , ? ○ 3\()\)
    Mn \(50 \quad I=1\), MXC.
    50 RFAD(5.?) XC(I)
    \(N \times C=N \times C+1\)
    \(\times C(M X C)=X L R H O)\)
    C.ALI. SMRT (XC, NXC)


    Пก \(51,1=1\). NYC
```

 51. READ(5,2) YC(J)
 YC(NYC+1)=DEC,
 YC (NYC+2)=nFSH
 NYC=NYC+?
 CALL SMRT(YC,NYC)
 WRITE(6,208)(J,YC(J),J=1,NYC)
 f)\cap 10\cap I= 1.NXC
 I)O 100 J=1,NYC
 IOO NODE(I,J)=DEFIN
 C**
C**DEFINF VIID ARFAS MITHIN TRANSVFRSF
WRITE(6,205)
110 READ(5,3) JROW1,JROW2,ICOLJ. ICOIL?
CALL SWTCH(JR\capW!1,JR[OW2)
CALL SHTCH(ICOLI,TCOH?)
WRITE(6,3) JROW], JROW2, ICOL], ICOL?
C--7FRO JROMI WILL STOP INPUT OF WUIO DFFIMITION IMATA
TF(JRONI)150,150,130
130 DO 135 J=JPON1,JROM?
\cap\cap 135 I=ICOLI,ICOL2
1.35 NODE (I,J)=RLANK
G\cap T\cap 1]O
C--PLOT TRANSVERSE PROFILE
150 I) }155\textrm{J}=1.,NY
3.55 MN(J)=J
HRITF(K,?O7)(NG(J),J=1,HYC)

```

```

 MPITF(6,2OG)I,(MODE(I,J),J=1,NYC,)
 14\cap COM&T TNHF
 C.**NFFTNF NOWRFP OF NOMFS PFR RISW
DO 4.70 I= 1.WYC.
NONO(, 1)=?
1\cap\cap 405 I=1,M\times0.
IF(NONFF(I, J)-nFFIN)\&055,404,4005

```

```

 405 COMNTINIIF
 41O CONNTINIE
 C**
C**RFGTN UPTTTMG ON NCARO FILE
TN= 1777
MORO=NYC
HחM^T=1
NN! = ?
ITFMP=O
MRITF(f,2]0)
QFAH(5,301)|NITS(1),|NTTS(?)
MRITE(6,30])!INTTS(1).UNTTS(?)
MRITF(K,?11?)
RENO(5, 30])|NITS(3), NNITS(4)
HRITE(6,30])MNTTS(2), |NGTS(4)
CAIL REMINO (\&)
r.-MNCARN \&

```

```

C,--IFFTNITIFIN OF KOUNDARY CONOITIMNS
M\capRO=0
ION 1.6K J=1, \YR,
IF(NODF(NXC,N)-DEFIN)166,J67,166
1\&7 NHRO=MOROO+1
WMR (NOBO)=, J
MGK COMTTMIF

```
```

 MCON=1
 DO 168 I =1,NXC
 IF(XC(I)-XLBHD)168,169,169
 IG8 CONTINUE
 169 MOR=NODET(I,NODE,DEFIN,1,NXC,NONO(1))
 MORC=I
 WRITE(6,272)
 WRITE(6,273)
 READ(5,1) NORB,MCOM
 HRITE(6,1) NORB,NCOM
 C--NCARD
WRITE(8,274) NOBO,MCON,NORR,MCNW
WRJTE (8,274) (NOR(I),I=1,N\capB\cap)
WRITE (8,274) MOIR
MRITE(6,209)
READ(5,2) FA
WRITE(6,2) FA
WRITE(8,214) FA
WRIT TE(6, 31.].)NORO
WRI TE (6,312)(NOB(I),I = 1,N\capB\cap)
WRI TE(6,314)MORC,M\capR
WRI TE (6,31.3)F,GNUI, ALPHA
mRITE(8,214) E,GNU,ALPHA
C--NCARD
WRITE(8,2]5) (NONO(J),J=1,NORI)
WRI TE(6,282)
mRRITE(6,207)(NN(J),J=1,NYC)
DO 406 I=1,NXC
DO 407 J=I,NYC
MCR(J)=9999
IF(NODE(I,J)-DFFIN)4\cap7,40\Omega,407
408 NCR(J)=NODET(I,NODF,NFFIN,J,NXC,MONO(, N))
407 CONTINUE
WRITE(n,251)I,(NCR(N),J=1,NYC)
4OK CONTINUF
C,**
C**DFFINF COORDIMATFS FOR MODFS
7=0.
SL\capPE=(חECL_-1)ESH)/XLRHI)
D\cap 4.30 J=1,N\capRO
Y=YC(1))*C\capNVF
OO 420 I=1,NXC
IF(N\capDF(I,J)-DFFIN)420,411,420
411 }X=XC(I
IF(J-N\capR\cap)415,4]2,41?
412 IF (X-XI_RHD)413,415,415
413 Y=DESH+SLIPE*X
IF(Y-YC(J-1))414,41.4,416
414 Y=Y+0.01*(YC(J)-YC(J-1))
416 Y=Y*CONVF
415 X=X*CONVF
C--NCARD
HRITE(8,216) X,Y,7.
420 CONTINUE
430 CONTINUE
C**
C**OEFINF AREAS OF THE TRANSVFRSE FOP ITFFFRFMT PIATH THICKッFS<゙トS
MRITE(G,220)
WRITE(K,2?1)
RFAR(5,4) NTA

```
```

 WRITE(6,4) NTA
 WRITE(6,260)
 WRITE(6,222)
 DO 450 K=1, NTA
 READ(5,5) THK(K),JTI(K),JT2(K),IT1(K),IT?(K)
 CALL SWTCH(JTl(K),JT2(K))
 CALL SWTCH(ITI(K),IT2(K))
 WRITE(6,261)THK(K),JTI (K),JT2(K),ITl(K),IT2(K),K
 450 CONTINUF
 WRITE(6,220)
 lnRITE(6,207)(NN(J),J=1,NYC)
 \capO 456 I=1,NXC
 DO 458 J=1,NYC
 NCR(J)=9999
 IF(NODE(I,J)-DFFIN)458,457,458
 457 D\cap 455 K=1,NTA
 IF(JTl(K)-J)45l,451,455
 451. IF(JT2(K)-J)455,452,452.
 452. IF(ITI(K)-I)453,453,455
 453 IF(I T2(K)-I)455,454,454
 454 NCR(J)=K
 455 CONTINUE
 458 CONTINUE
 456.WRITE(6,251)I,(NCR(J),J=1,NYC)
 C**
C**[DFFINF RAR ELENFNTS
HRITE(K,22.3)
WRITE(6.224)
RFAD(5,4) NBAR
WIRITE(6,4) NRAR
IF(NRAR)484,484,459
459 WRITE(6,225)
D\cap 470 K=1,NPAR
RFAD(5,5) AX (K),JRI(K),,IK2(K),IRI(K),IF2(K)
IF(IBI(K)-I\&2(K))461.460.461
46O C,ALL SWTCH(JB1(K),JR2(K))
GO T\cap 4K9
461. IF(JBI(K)-JR2(K))463,462,463
46? CALL SHTCH(IRI(K),IH2(K))
(in TO) 469

```

```

464 IFRR=1
WRTTE(6,262)
GO TM 469
465 IF(JRI(K)-, IR7(K))469,464,466
4KK C.ALI. SWTCH(JRI(K),JR2(K))
I TFMP=IR](K)
IRI(K)=IR2(K)
IR2(K)=ITENMP
469 CMNTINIF
WRTTE(G,2G1)AX(K),JRI(K),VR2(K),IRI(K),TR2(K),K
47O CONTINUE
C.*冰
C**DFFINE OUTPUIT REOUIREMENTS
484 WRJTE(6,226)
wRITE(6,2 28)
REAO(5,4) IFSF
WRITE(6,4) TFSF
WOMAX=100
\because\cap|T=0

```

WRITE(6,227)
\(471 \operatorname{READ}(5,6)\) JROW, ICOLI, ICOL2
CALL SWTCH(ICOLI, ICOL2)
WRITE(6, 6) JROW, ICOLI, ICOL2
IF (JROW) 477,477,472
472 DO \(475 \mathrm{I}=\mathrm{ICOL} 1, \mathrm{ICOL} 2\)
\(\operatorname{IF}(\operatorname{NODE}(I, J R O W)-D E F I N) 475,473,475\)
473 IF (NDUT-NOMAX) 474,476,476
474 NOUT \(=\) NOUT +1
\(I O(\) NOUT \()=I\)
\(J \cap(N O U T)=J R O W\)
475 CONTINUE
GO TO 471
476 WRITE (6,229)NOMAX
I \(E R R=1\)
FO TH 471
477 WRITE(6,230)
\(478 \operatorname{PEAD}(5,6)\) ICOL,JRO1,JRO2
CALL SHTCH(JRO1,JROZ)
HRITE( \(\mathrm{H}, \mathrm{G})\) ICOL, JROI, JPO2
IF (ICOL) 485,485,479
479 กロ. \(482 \mathrm{~J}=\mathrm{JRO1}, \mathrm{JRO2}\)
IF (NOOE (ICOL, J)-DEFIN) \(482,480,48\) ?
480 IF
481. NOUT=NOUT+1
\(I \cap(N O U T)=I C \cap L\)
\(J \cap(\) NOUT \()=J\)
482 continue
GO TO 478
483 WRITE (6,229) MOMAX
\(I E R R=1\)
GO TO 478
485 CONTINUE
C. **

C**REGIN SETTING UP FLEMENTS HY ROW
NXCMI \(=\) NXC -1
TEGNII=0
MEMTO \(=0\)
ON 1000 JEI, NORO
MEMNO=0
\(J P 1=J+1\)
กก 950 I \(=1\), NXC.M. 1
I P1 \(=1+1\)
NII = NODET (I, MODF, DFFIN, J, NXC, MMNO(.1))
NI \(2=\operatorname{NODET}(I P]\), MDDE, DEFIN, 1 , NXC, MMAM(1))
NI \(3=\) NONET (I, NODE, DFFIN.JPI, NXC, NMAN(IP!)
MI4 = NחDET(IPJ, NODE, DEFJN, JPI, NXC, NMAN(, IP1))
IF (J-NחRO)605,675,675
C. \(\%\).

C**TFS 7 FOR THICKNESS AREA
605 DO \(650 \mathrm{~K}=1\), NTA
IF(JT1 (K)-, 1)6]0,610,050
610 IF \(\operatorname{IJT}(\mathrm{T}(\mathrm{K})-\mathrm{J}) 650,650,615\)
615 IF(ITI (K)-I) \(620,620,650\)
620 IF(IT2(K)-I) \(550,650,625\)
625 T \(=\) THK (K) \(*\) CONVVF
GO TO) 675
650 CONTINUE
\(1=0\) 。
IF (NODE (I, J)-DEFIN) 6. \(1,675,651\)

SURRNHTINE SWTCH(II, I 2)
IF (I1-J2)99,99,10
\(10 \quad I=I 1\)
\(\mathrm{II}=\mathrm{I}\) ?
\(I 2=I\)
GO RETIIRN
FNO

SUPROUTINF TEMPCO( NC, IZ,SKA,XT,TA)
DIMENSION SKA(K, K), XI (K), ZA(K)
!n \(2 \mathrm{I}=1\), NC ,
\(7 \Delta(I)=0.0\)
门ก ? J=1, IZ
\(27 A(I)=Z A(I)+S K A(J, I) * X I(J)\)
RETURN
END

SIIRROIITINE TWATT (XR, NR, X, TM, NOCC, MCON, ODATA, SFS, SFL, SFA,F,G)
C...RIIITINE TO COMPUTF OCCURRFMCF MATRIX FROM I.OCATIOO
C...7FR TH \(X\)

INFLU=0
IF (NCONT) \(110,110,100\)
\(100 \operatorname{IF}(X-X B) 110,120,120\)
1.1○ CALL IDENT (TM,5)
\(N B=1\)
\(X R=0\) 。
\(N C \cap N=1\)
\(12 \cap \quad N K R=N F\)
NO \(3 \cap O\) N NRR , NOCC
\(X 1=O \cap \triangle T \Delta(G, N)\)
\(X_{2}=\cap \cap \triangle T \Delta(7, N)\)
\(J D F=\cap \cap A T A(R, N)\)
DO \(130 \mathrm{I}=1,5\)
130 PROP(I) = OПATA (T,N)
C--CHFCK IF POINT HAATRIX HAS REEN ISED IN IST OCCURENCF
IF \(F(N-M R R) 140,140,160\)
140 IF \((X B-X 1) 160,160,150\)
1.50 IDF \(=1\)
\(160 \quad N R=N\)
IF (X-X2) 180, 170,190
\(170 \quad N R=N+1\)
\(180 \quad N S T \cap P=1\)
\(Y=X-X R\)
\(X R=X\)
GO TO 295
lon NSTOP \(=0\)
\(Y=X 2-X B\)
\(X R=X 2\).
GOTO 295
295 CALL חCCM(TO,PROP,IDF,Y,INFLU,SFS,SFI, SFA,F,FI)
C.ALL MIMIILT(TO,TM,TR,5,5,5)

CALL EOUAL (TM,TR,5,5)
IF (NS TOP \(300,300,400\)
```

 651 IF(NDDE(IPJ,JP1)-DFFIN)675,652.675
 657 IF(NODE(I,JP1)-DEFIN)675,653,675
 653 IF(NONE(IP1,J)-INEFIN)675,655,675
 655 WRITE(6,235)I,.1
 IFRR=1.
 C%*
C**TFSI FOR BAR FLFMFNTS
675 AXI=0.
AX2=0.
A X 3=0.
A K4=0.
A P5=0.
TF(NP,AR)770,77(,.676
G7K ON 750 K=1, NRAR
O
C--HTRIITINTAL RARS.....JiI=JR?
IF(JBI(K)-Jn?(K))69%,680,698
C----ROTTOM RAR
K\&O IF(,JR](K)-.J)75R.682,75r
6只 TF(IRI(K)-I)684,K84,750
684 IF(IF?(K)-IP1)75م,686,686
G\&\& AX?=AX(K)*C,TW\F*\&,ONVF
G\cap Tn 750
GgQ IF(J-MOIROIKGG,750,750
C.
C--VFPTICAL RANS.....IRI=IR?
696 IF(IRI(K)-IN7(K))714,G90,714
C----LFFT HAND BAP.
698 IF(IHI(K)-I)70K,700,70K
700 IF(JRI(K)-J)70?,702,750
70? IF(JR?(K)-JPI)750,704,704
704. AX1=AX(K)*C,TNVF*CONVF
G\cap TM 750
C,----R IGHT HAB! Hap
70K IF(IRI(K)-TP1)75n.70\&.75に
70. IF(JR](K)-J)710.710,750
710 IF(JR2(K)-JP1)750,71?,71%
717 AX5=AX(K)*CMNYF*CONVF
GO TO 750
C
r.--ПIAGMMAL HARS
7]4 , 1l=\21(K)
J?=JR\(K)
IF(IR1(K)-Iん?(K))716,71K.732
C-ー--RAD ROTTON LFFT TH TOIP RTGHT
71K [F(IRI(K)-I)7I*.718,750
718 IF(IP?(K)-IPI)T50,720,720
720 II=IRI(K)-I
\capก 730 \J=, 1, 17
II=II + l
IF(JJ-J)730,7?2,750
7?? IF(II-I)750,724,750

```

```

 Gn TM 750
 73n CONTINUF
 GO TO 750
 C----BAR TMP LEFT TH BHTTHA RIGHT
737 TF(IRI(K)-IP1.)750,734.7%4
734 IF(IR2(K)-I)736,736,750
736 TI=IR1(以)+1.

```
```

 0\cap 740 JJ=J1,N2
 II=II-1
 IF(JJ-J)750,738,740
 738 IF(II-IP1)750,739,750
 739 A A 4 =AX(K)*CONVF*CONVF
 GOTO }75
 740 CON TINUE
 GO TO 750
 750 CONTINUE
 C
C.-CHECK FOR LASST COI_UMN
IF(IP1-NXC)755,770,7.70
C-ODO NOT INCLUDE RIGHT VERTICAL BAR UNIESS I. AST CIILMMG
755 A X5=0.
C
C--CHEGK NODFS FOR OUTPIIT SELECTION
770 IFI=0
IFJ=0
IFK=0
IFL=0
N|l=0
P}=0\mathrm{ .
On 800 K=3, NOUT
IF(,J!(K)-J)POn,772,780
772 IF(IO(K)-I)800,774,776
774 IF I = 1
(Gi) TO 800
776 IF(In(K)-IP1)8\cap0.778.800
778 IFJ=1
GO TO 800
780 IF(J\cap(K)-JP1)80\cap,782.80n
782. TF(IO(K)-I)800,784,7R6
7贝4 IFK=1
GO TO 800
7R6 IF(I\cap(K)-IPI)RO0,78%,8OO
7R\Omega IFL=1
BOO CONTINUE
IF(J-NIIRO)RO5,900,900
C
C--CHECK NOIF DFFINITIONS FOR VOIDS
805 IF(NOME(J,J)-DEFIM)830, \&10,830
Q1\cap IF(N\capOF(IPI,J)-DFFIN)R4O,8]2,840
812 IF(NO\capNF(I,JPI)-DEFIN!850,R14,850
814 IF(NODF(IP1,JP])-DFFTN)RGO,816,86O
C
C--O|AMRILATERAL PLATF FLFMENT
\&lG CONTINMF
IF (NCARD.EO.O) GOT TO IO
K\capDE=?
GO T\cap \&36
10 WFWFMO= =WFMNO+1
ME简TYP=?

```

```

 +I,NII,J,NI?,JPI,NI3,JPI,NI4,T,F,F,F,ト,H
 G\cap TO 900
 C-- J.IPI VOIO - MO PLATE PIISSIFLF
Q.2. AX?=0.
0\times4=0.
^人ら=0.
\&@ T0 Ono

```
```

C--JP1,I VOID - NO PLATE POSSIRLE
824 AXI=0.
A\times4=0.
G\cap T\cap 900
C--JPI,IP1 VOID - NO PL\triangleTE PNSSIBLE
826 }A\timesB=0
A X5=0.
fn Tn 900
C..(I.J) VOIO
830 AX1=0.
A P2=0.
A X 3=0.
IF(NODE(IP1,|)-NEFIN)822,832,R22
832 IF(NODE(IPI,JPI)-DEFIN)826,824, \&2人
834 IF(NODE(I,JP1)-DEFIN) 824,836,8?4
C--TRI-PLATE IIPPER RIGHT
236 WFWNO=MEMNOT +1
MEMTYP=1.
WRITE(8,?50) mEMNO,MEMTYP,IEGF!I,TFCF,TFJ,TFK,IFL,Gill,
+J,NI?,JP1,NI3,JPI,NI4,NIL,NUL,T,P,P,F,P,P
TF (K\capD)E.EO.1) GO TO 2GO
GO TO 900
C..(J,.J) DFF., (IPI,J) V\capII)
840 AX2=0.
A < 4 =0.
N\times5=0.
IF(NOOF(IP1,JPI)-DEFIN)826,84?,吹年
442. IF(NONE(I,JPI)-NFFIN) 824,044,824
C--TRI-PLATE UPPER LFFT
844 WEMNO=MEMNIO+1
MFMTYP=1.
WRITF(R,250) mFMW|,MFMTYP,IFGN!,IFSF,IFI,IFK,IH:,OH,
+J,NII,JPI,NI3,JPI,NI4,NHL,NHL,T,P,P,P,P,P
G\cap TO 9OO
C..(I,J):(IPI,J) DFF., (I,JPI) VMID
8,50 \DeltaX1=0.
A }\times4=0
IF(NONE(IP1,JPl)-DFFIN)826,852,826
C--TRI-PLATE LOMER RIG:HT
8.52 MEMNO=MFMNOT I
NiFMTYP=1
URITF(R,250) MFNNG, MFNTYP,IFRN|,IFSF,IFI,IFJ,IrL,M,L!
+J,NII,J,NI2,JPI,NI4,NUL,NUL,T,P,P,P,P,P
GO T\cap O\capO
C--7RI-PLATF I.OWFR LFFT
RGO MEMNO=MFMNO+1
A X 3 =0.
A 55=0.
NFMTYP=1
HRITF(R,250) MFMNN,MFBTYP,IFGN|,IFSF,TFI,IF,1,1FK,1..!,

```

```

 KOINE=O
 Gil TO 900
 C--PAR FII FMFNTS
 COO MENTYP=S
 JF(AX1)904.904.00?
 C)(OD LFFMNO=MFWNOT+1
    ```


```

 On4 TF(\triangleXつ)OO8,O\capR,90n
    ```

MEMND= MEMNO+1
WRITE 8,250 ) MEMNO, MEMTYP, IEGNU, IFSF, IFI, IF, N, NU, NUII,
\(+J, N I 1, J, N I 2, N U L, N H L, N H L, N U L, A X 2, P, P, P, P, P\)
908 IF \(\quad\) I \(A 31912.912 .910\)
Q10 MENNO=MFMN(I) 1
WRITE \((8,250)\) MFMNO, MEMTYP, IFGNU, IFSF, JFT, IFI, MUL, MU,
+J, MII, JP1, NJ4, NUL, NIUL, NUI, NIJ, \(A \times 3, P, P, P, P, P\)
Q17 IF \((\Lambda \times 4) 916,016,914\)
914 WFMNO=WFMNO+1.
HRITE (R, 250) MFMNH, MEMTYP, IEGNI, IFSF, IFJ, TFK, NUL, WHL,
+J, NI 2, JP1,NI 3,NUL, NUL, NUL, NUL, AX4, P, P, P, P, P
IF \((\Delta X 5) 950,950,918\)
\(\begin{array}{ll}916 & \text { IF }(\triangle X 5) 950,95 \\ 018 & M F M N D=M E M N O\end{array}\)
MRITE (8, 250) MEMNO, MFMTYP, IFGNI), IFSF, IF,I, TFI, MUL, MII,
\(+J, N I 2, J P 1, N I 4, N H L, N U L, N U L, N U L, ~ A X 5, P, P, P, P, P\)
950 COMTINHF
MEMTO=MEMTO WEMNO
IF (MEANO) \(975.975,1000\)
975
HRITE 8,250 NUL, NUL, NUL, NUL, MU1, , ※נl, M11, M11,
+ , NIJL, NHI, NIJ, NUH, NHL, NUL, NUL, P, P, P, P, P, P
IOOO CONTIMUE
\(1=\mathrm{MORRO}+1\)

+, N, NHL NHL, HIH, MUL, NHL ,NHL,NHL, P, P, P, P, P, F
CAIL RFGIMO (R)
WRITE ( \(\kappa, ~\) ? 91 ) \(\because F H T D\)
IF (IERR)9999,9999,9498
9998
STIP
9999 RETURN
FORMAT (2I5)
FIIRMAT (F15.5)
FORNMAT(4I5)
FORMAT (I5)
FORMAT (F.5.5.4I5)
FORMAT(315)

FORM』T(/, X-LBM! , DFPTH C... , I)FPTH SHFI!')





FnPMAT(/, I 3, 1X.25(I 1, 2X) )

FORMAT (I4.F12.3)
FORMAT(IHI, //' IINTTS GF FGRCF')
FIRRMAT( I INITS OF LENGTH')
FORMAT (5I5,4ヘ6)
FMPMAT(F]O.2,F7.2, E1O.?)
FIRRMAT(75I3)
FIRMAT(3F1O.?)
FORMAT(IHI, /, PLATE THICKNFSS DFFTMTTTIN:
FORMAT(' NO. ARFAS IF COMVION THJCKMESS (5O)')

FORMAT(JHI,/,' BAR ELEMFNT DFFINITIMN')
FORMAT(' NOT. BAR ELEFFNTS (1OO)')
FORMAT(' LIST AX,ROWI, RMW?,COLI, CHL?')
FGRMAT(JHI., , OUTPUT SPFCIFICATJUMSI)
 +1 ROW, COL?, COL? ')
```

228 FORMAT(' ENTER (1)NODE FORCE ONLY'/7X'(2)FORCE ANU STRESS'
+/7X'(3)STRESS ONLY')
FORMAT('**MAX.NODES FOR OUTPUT SET TO'IR)
230 FORMAT(/,' SELECTED NODES BY VERTICAL SEOUENCE',/,
+' COLUMN, ROW1, ROW2')
235 FORMAT('**ERROR-THICKNESS NOT DEFINED FOR ROM'I,I j,'', CI:L'
+, (3)
250.FORMAT(I3,7I1, ,I2,GE15.7)
251 FORMAT(/,I3,I2,24I3)
260 FORMAT(' NOTE-THICKNESS ARFAS FOR BOTTOM ELFMENTS SHFIILI'
+,/,' BE ENTERED FIRST')
261 FORMAT(1X,F12.3,4I6,3X,'(',I2,''')
262 FORMAT(' **ERROR-FOLLOWING BAR ELEMENT INTERSFCTS \thereforeEIWFFN'
+' NODES')
272. FORMATI/' ROUNDARY CONDITIONS'/,' RESTRICTED X-ULFLFCTIGA:=1'/,
+' RESTRICTEN Y-DEFIEECTION =0')
27.3 FORMAT(' RESTRICTION C.L. SUPPORTS, ROTTOM SUPPORTS')
274 FORMAT(20I3)
281 FORMAT(//' YOU HAVE JUST GENFRATFD',IR,' ELEMENTS')
282 FORMAT(1H1,' ROW NODF NUMRERING SYSTFM'/)
289 FORMAT(/,' BHONDARY CONIITION WEIGHTIMG FACTOR')
300 FORMAT(3F1.5.5)
301. FORMAT(2AK)
311 FORMAT(/,'' THERE \triangleRE',I3.' C.L. SIIPPIIRTS')
312 FORMAT(/,' C.L. SUPPORTS ARE DEFINFI) FIIR RIMS'/,
+25I3)
313 FORMATI/'E=1,F15.1,/,'GNU = , F1O.3,1,' ALPHA =1,
+F10.6)
3].4 FORMAT(/;' SUPPORT AT BOITTOM ON COLUWN'I3,'(NIOHF'!<,
+')')
FND

```
```

CZZZZI FR5 IDENTS,IDENTS,IDENT
SUBROUTINE IDENT(T,N)
DIMENSION T(NN,N)
DO }5\textrm{I}=1,
DO }4\textrm{J}=1,
4-7(I,J)=0.
5 T I I,I)=1.
RETURN
END
CZZZZI FR5 EOUALS,EOUALS,EOUAL
SUBROUTINE EOUAL(T,TR,NR,NC)
DIMENSION T(NR,NC),TR(NR,NC)
DO }5\textrm{I}=1,N
DO }5J=1,N
5 T(I,J)=TR(I,J)
RETURN
END
CZZZZI FR5 MIFULTS,MMULTS,MMULT
SURROUTINE MNOULT(A,B,C,N1,N2,N3)
DIMENSION A(N1,N2),B(N2,N3),C(N1,N3)
DO 1 I=1,N1
DO 1 J=1,N3
C(I,J)=0.
DO 1 K=1,N2
1 C(I,J)=C(I,J)+A(I,K)*B(K,J)
RETURN
END
CZZZZIE FR5 MULT,MULT,MULT
SUBROUTINE MULT (A,B,C,L,M)
DIMENSION A(L,L),B(I,L),C(L,L.)
DO 2 I=1,M
DO 2 J=1,M
A(I,J)=0.0
DO 1. K=1,M
1 A(I,J)=A(I,J)+B(I,K)*C(K,J)
2 CONTINUE
RETURN
END
CZZZZIE FR5 TRANS,TRANIS,TRANS
SUBROUTINE TRANS(A,B,M,N)
DIMENSION A (M,NI),B(M,N)
DO 1 I I= 1,N
D\cap 1 J = 1,N
1. A(I,J)=R(J,I)
RETURN
FND

```
```

C. TRANSVERSE PROGRAM. CHAZAL-PAYNE APRII 107I
C THIS REPRESENTS A SIMPLE TEST DATA SET TO RE USED AS INPUT IATA FUR TH
1
0.1
10000.
?.0.05 F+09 % 006 0, 0
1.
1.
1.
l
?
1.
1000. 2000. 2000.
0.0
5nO.
1000.
150n.
2000.
0.0
500.
1000.
1500.
2000.
On
KF
CM
].
1.0
l
1.h.0
1 5 5 1 5
10n00.
10000.
10000.
10000.
?
2 1 5
0
4. 1 5
O
3.0 F+09

2.0	$E+09$	75000.
2.0	$F+09$	$75000 \cdot$
2.0	$E+09$	75000.
2.0	$F+09$	75000.
0.	$E+00$	0.
2.0	$E+09$	75000.
2.0	$E+09$	75000.
0.	$F+00$	0.

 l
 0.3.
    ```
```

0.25
750.
250. 1. 1 5 5
00
0
3 4
0
840. 24.5 19
840. 24.5
840. 24.5
19.
19.
C THIS DATA IS AVAILARLE AS PUNCHED OUTPUT FRON LONGITU!INAL PROGRAB
0.96020 E+05 -0.4959 E+05
-0.1.6048E+06 0.27476E+06
0.9607.0 E+05 -0.4959 E+05
l

```
```

M

```
CONVFRSION FACTOR TO BF APPLIED TO ALL DIMENSIONAL DATA
```

CONVFRSION FACTOR TO BF APPLIED TO ALL DIMENSIONAL DATA
INCLUDING COORDINATES, PI. ATF THICKNESS, PAR ARF:A
INCLUDING COORDINATES, PI. ATF THICKNESS, PAR ARF:A
BUT NOT INCLUOING YOUNGS MOOITUS
BUT NOT INCLUOING YOUNGS MOOITUS
0.10000
0.10000
LENGTH OF LGNGITUOINALS
LENGTH OF LGNGITUOINALS
10000.00000
10000.00000
NO. TRANSVERSES ALONG LENGTH
NO. TRANSVERSES ALONG LENGTH
3
3
STANCARD LONGITUOINAL
STANCARD LONGITUOINAL
MOMENT OF INFRTIA, SHEAP ARFA
MOMENT OF INFRTIA, SHEAP ARFA
O.2OnOOF 10 O.E
O.2OnOOF 10 O.E
YOUNGS MMDULUS, POISSCNS RATIO
YOUNGS MMDULUS, POISSCNS RATIO
O.20500E 07 0.3000O

```
    O.20500E 07 0.3000O
```



```
        1.00000
```

 1.00000
 1.50con
 1.50con
 1.0n000
 1.0n000
 NO. TRANSVERSES Ti] RE ANALYZEO(5)
NO. TRANSVERSES Ti] RE ANALYZEO(5)
l
l
LIST TRANSVFRSES TO BE ANALYZEO RY POSITIGNFX! SFOO
LIST TRANSVFRSES TO BE ANALYZEO RY POSITIGNFX! SFOO
?
?
NUMBEF OF EIGFNVALUES TO GE USFO
NUMBEF OF EIGFNVALUES TO GE USFO
l

```
    l
```

X-LBHD, DEPTH CL, DFPTH SHELL
$1000.00000 \quad 2000.00000 \quad 2000.0000$
NO. X-COORDINATES(40). NO. Y-COORDINATES (25)
$5 \quad 5$
LIST X-COORDINATES
COL X
$1 \quad 0.0$
; 2 50C.000
3 11000.000
$4 \quad 1500.000$
5. 2000.000

LIST Y-COMRDINATES
ROW Y
$1 \quad 0.0$
2 5nr.000
31000.000
$4 \quad 1500.000$
5 20!0.000


```
1,
    UNITS OF FORCE
        KC
    UNITS OF LENGTH
        CM
    BOUNDADY CONDITIONS
        RESTRICTEI X-DFFLTCTION = I
        RESTPICTED Y-DFFLFCTION = N
    RESTRICTINN C.L. SUPPORTS, ROTTTMM SUPHMETS
        10
BCUNDARY CONIITION WEIGHTING FAC TUR
    1.00000
    THERE APF 5 C.L. SUPPOETS
    C.L. SUPPORTS ARE DEFINFD FCR RCIWS
    1% % 4 5
    SUPPORT AT BOTTOM ON COLUMA: 3(NODE 3)
    F= 2059000.0
    GNU = 0.300
    ALPHA = 00
```

ROW NDOF NUMBERING SYSTEM

$$
\begin{array}{llllll}
\text { C } & & & & & \\
\text { O } & & \text { ROW } & & \\
\mathbf{L} & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}
$$

PLATE THICKNESS DEFINITION
NO. $A R E A S$ OF COMMON THICKNESS (50)

 1
 NOTE-THICKNESS AREAS FOR BOTTOM ELEMENTS SHOULU:
BE ENTERED FIRST
LIST T,ROW1,ROW2,COL1,COL? 16.00011515

PLATE THICKNESS DEF INITION

| C | | ROI | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 1 | 1 |
| 3 | 1 | 1 | 1 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 1 |
| 5 | 1 | 1 | 1 | 1 | 1 |

BAR ELEMENT DEFINITION
NO. BAR ELEMENTS 11001
LIST AX, ROW 1, ROW 2, COL 1, COL 2 $10000.000 \quad 5 \quad 5 \quad 1 \quad 5 \quad 111$ $10000.000 \quad 1 \quad 1 \quad 1 \quad 5 \quad 121$ $\begin{array}{lllllll}10000.000 & 1 & 5 & 1 & 1 & 1 & 31\end{array}$ $\begin{array}{llllll}10000.000 & 1 & 5 & 3 & 3 & (4)\end{array}$

```
OUTPUT SPECIFICATIONS
ENTER \IINODE FORCE INLY
    (2) FORCE ANO STRESS
        (3)STRESS ONLY
    2
```


SELECTED NODES BY VERTICAL SEQUENCE COLUMN, ROWI, ROW Z

| 4 | 1 | 5 |
| :--- | :--- | :--- |

$0 \quad 0 \quad 0$

[^0]```
IX = MOMENT OF INERTIA OF LONGIT-L RENIING IN X-DIRECTIOM OF TRANSVERSE
IY = MOMENT IIF INERTIA OF LONGIT-L BENDING IN Y-DIRECTICIN OF TRANSVERSE
```

LIST BY HORIZONTAL SEQUFNCE
IX,IY,A, ROW, COLI, COL2

0.300000 E	10	0.200000 E	10	75000.000000	5	2	2
0.300000 E	10	0.200000 F	10	75000.0000 O	5	4	5
0.300000 E	10	0.200000 E	11	75000.00000	1	2	2
0.300000 F	10	0.200000 F	10	75000.000000	1	4	5
0.0	0.0	0.0	0	0	0		

    List by vertical seouence
        IX,IY,A, COLUMN, ROW1,ROW2
        C. 20000 E \(10 \quad 0.2 C O C O O F 10 \quad 75000.0000\) Ci \(\quad 3 \quad 2 \quad 4\)
        \(\begin{array}{ccccccc}0.300000 E & 10 & 0.200000 E & 10 & 75000.0 C 00 C O & 1 & 2 \\ 0.0 & 0.0 & 0 & 0 & 0 & 0 & 0\end{array}\)
    THERF ARE A TOTAL OF 12 LONGItUDINALS
    ```
C
0 ROW
1 1 1 2 3 4 5
 0}61116
 2000022
 0}8\quad8\quad1318\quad
 400024
 500025
 EIGFNVALUES ANO EIGENVFCTORS

 0.278438E Ol
 0.5000NOE 00 0.707107F OO O. 5OCOOOE O?
.••••
 0.176470E On
 -C.TO71ORE OO O.1O17E3E-05 S.7C7106E OO
 0.391455E-01
 0.400990F nO - -.707107E |O 0.501001F CO
 SCALFO FIGENVALUES
 O.1002つF-O3 O.635l6T-.5 O.14CROF-C5
 OIAGONAL IF MATRIX OP
 O.10O22E-03 O.63516E-C5 G.14045E-05
```

```
1. A LOAD SET IS A SET OF LOADS ACTING IN A GIVFN
X OR Y DIRECTION. THE EXTENT OF THESF LOAOS IS ALONG THF
LENGTH OF A GIVEN LONGITUDINAL
```

2. ANY LONGITUDINAL MAY BE LOADED WITH ANY NUMBER OF LOA!
SETS, WHICH MAY BE ONLY PARTIALLY APPLIEO VIA
A PROPORTIONAL FACTOR
3. LORATIONS OF LOADS ARE DISTANCES MEASUFEF FFOA THE
STERN
```
4.LOAO SET DIRECTION COUES ARE
 =1. X-DIRECTION
 =2, Y-DIRECTION
```

NUMBFR OF LOAD SETS
1

$$
\begin{gathered}
--\angle D A D S E T \\
N_{0} \text { CONC. LOADS, NO. UNIF. LOADS, OIRECTION CODE } \\
0
\end{gathered}
$$

$$
\begin{aligned}
& \text { LIST START LOCATION, } Q \\
& 0.0 \\
& 0.0 \\
& 0.25000 E 04 \\
& -0.40000 E-01 \\
& 0.75000 E 04 \\
& 0.0
\end{aligned}
$$

SHEAR LOADS ON TRANSVERSES
BAD COLUMN NUMBER, NUMBER OF ROWS FOR SHEAR $3 \quad 4$

WEB LENGTH, SHELL, BHD THICKNESS (CM)
$0.0 \quad 0.0 \quad 0.0$
$84.00000 \quad 2.45000 \quad 1.90000$
$84.00000 \quad 2.45000 \quad 1.90000$
$84.00000 \quad 2.45000 \quad$ 1.90000
SHELL, BHD SHEARS PER TRANSVERSE STARTING FROM STERN
$0.96020 E \quad 05 \quad-0.49590 E O 5$$-0.16048 E$ 06 0.27476E 06

$$
0.96020 \text { E } 05 \quad-0.49590 \text { F } 05
$$

ENTER O TO STOP PROGRAM HERE. ENTER 1 TC OO ON
IDENTQ VALUE IS ..... 1

NODF CDORDINATES

| $\triangle$ RCW | NODE | $x-$ COORD | r-conro |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0.0 | 0.0 |
| 1 | 2 | 50.00000 | 0.0 |
| 1 | 3 | 160.00000 | 0.0 |
| 1 | 4 | 150.00000 | 0.0 |
| 1 | 5 | 200.00000 | 0.10 |
| 2 | 1 | 0.0 | 50.00000 |
| $?$ | 2 | 50.00000 | 50.00000 |
| 2 | 3 | 100.00000 | 50.0000 n |
| 2 | 4 | 150.00000 | 50.00000 |
| $?$ | 5 | 200.00000 | 50.00008 |
| 3 | 1 | 0. $n$ | 100.0000: |
| 3 | 2 | 50.00000 | 1ac.onorad |
| 3 | 3 | 100.00000 | 106.00000 |
| 3 | 4 | 150.00000 | 100.000nor |
| 3 | 5 | 200.00000 | 100.000.co |
| 4 | 1 | 0.0 | 156.00000 |
| 4 | 2 | . 50.00000 | 15r.00000 |
| 4 | 3 | 100.00000 | 150.00000 |
| 4 | 4 | 150.00000 | 150.00000 |
| 4 | 5 | 200.00000 | 159.00000 |
| 5 | 1 | 0.5 | 20\% .900\% |
| 5 | 2 | 50.00000 | 200.03006 |
| 5 | 3 | 100.00000 | zec.rous |
| ¢ | 4 | 150.09000 | zuconeo |
| 5 | 5 | 20c.0none | $2 \%$ ¢6\% |

$\left.\begin{array}{rrrrrrrrrrrrrr}\text { M } & \text { M } & \text { I } & I & I & I & I & J & I & J & I & J & I & J\end{array}\right]$


```
\begin{tabular}{lllll}
5 & 1 & 1 & 0 & \\
1 & 2 & 3 & 4 & 5
\end{tabular}
3?
0.1\capF O1
0.2OE 07 [0.30
11 16
 -0.5147F-02
 -0.7541E-02 -0.1788E-08 -0.6310E-0? -0.83410-31
 -0.7227E-09%-0.8032E-01
 DEFLECTION OF LONGITUDINAL 1 AT FVEPY CTHER TRANSVEFSE
 x DEFLECTITNS
 0.41908E-02 0.41708E-02
 Y METLECTIONS
 -0.95904E-02 -0.95c04E-N2
 DEFLFGTION OF LONGITUDINAL }2\mathrm{ \TEVERY ITHE: TRAISVFRSF
 x DEFLECTIONS
 0.22039E-02 C.22039E-02
 y OEFLECTIONS
 -0.17856F-01 -0.17856F-01
DEFLHCTION OF LONGITUOINAL 3 AT EVEHY TH!G T!:NGVFSN
 x neflectidns
 0.741.30F-09 0.24190F-CO
 y beflectijNs
 -0.19843F-1 -0.19543E-01
```

```
DEFLECTION OF LONGITUOINAL }4*\mathrm{ AT EVERY OTHER TRANSVFFSF
 * DEFLECTIONS
 -0.27212E-02 -0.27212E-02
 Y DFFLECTIONS
 -0.69410E-C2 -0.59410E-02
 DEFLECTION OF LONGITUDINAL 5 at EVERY ITHER TraI!SVERSE
 X DEFLECTIONS
 -0.31550E-02 -0.31550E-02
```

        Y DEFLECTIONS
        \(-0.41703 E-01 \quad-0.417 C 3 E-01\)
    DEFLFCTION OF LONGITUDINAL 6 at fVERY CThER TQMiSVEFSE
$x$ DEFLECTIONS
$-1) .36133 \mathrm{E}-09 \quad-0.36133 \mathrm{E}-13$
y beflections
$-8.40161 \mathrm{E}-01$-0.40161E-01
DEFLFCTIGN OF LONOITUDINAL 7 AT EVFPY ithfa TRANSVERSF
$\times$ DFflections
$0.203215-02 \quad 0.263225-02$
$\checkmark$ DEFLECTIONS
$-0.85547 F-02 \quad-0.85547 E-?$

## $\times$ DEFLECTIONS

```
 0.28638E-02 0.28638E-02
 y DEFLfCTIONS
 -0.11813E-01 -0.11813E-Cl
DEFLFCTION OF LONGITUDINAL }9\mathrm{ AT EVERY OTHER TRANSVERSE
 x DEFLECTIONS
 0.28850F-02 0. 28850F-02
 Y DEFLECTIONS
 -0.12972E-01 -0.12972E-01
DEFIECTINN OF LONGITUDINAL 10 AT EVERY IITHFF FRN:SVEFS:
 y DEFLECTIONS
 -0.10056E-02 -0.10056F-N2
 Y OTFLECTIINS
```

        \(-61349 \mathrm{E}-02\)-0.61.34のF-02
    
$x$ nfflections
.60279E-03 0.09279E-03
y DEFIECTIGNS
$-6.63144 \mathrm{E}-02 \mathrm{-1)} .63144 \mathrm{C}$ - 0 ?
$x$ DEFLECTIONS

$$
0.26294 \mathrm{E}-02 \quad 0.26294 \mathrm{E}-02
$$

## Y DEFLECTIONS

$$
-0.66346 \mathrm{~F}-02 \quad-0.66346 \mathrm{~F}-02
$$

real lodad upon thf transverses
$\begin{array}{rrrr}-0.62724 E & 02 & -0.32987 E & 02 \\ -0.42864 E & 02 & -0.43181 E & 02 \\ 0.95695 E & 02 & 0.17817 E & 03 \\ 0.16649 E & 05 & 0.16661 E & 05 \\ -0.89707 E & 32 & -0.46651 E 0 ? \\ -0.60619 F & 02 & -0.61069 E & 02 \\ 0.13533 E & 03 & 0.25197 E & 03 \\ -0.91421 E & 05 & -0.91405 E & 05 \\ -0.62724 E & 02 & -0.32986 E & 02 \\ -0.42865 E & 72 & -0.43181 E & 0 ? \\ 0.05695 E & 02 & 0.17817 E & 03 \\ 0.16649 E & 05 & 0.16660 E & 05\end{array}$

$$
\begin{array}{rrrr}
-0.62724 E & 02 & -0.32987 E & 02 \\
-0.42864 E & 02 & -0.43181 E & 02 \\
0.95695 E & 02 & 0.17817 E & 03 \\
0.16649 E & 05 & 0.16661 E & 05 \\
-0.89707 E & 32 & -0.46651 E & 0 ? \\
-0.60619 F & 02 & -0.61069 E & 02 \\
0.13533 E & 03 & 0.25197 E & 03 \\
-0.91421 E & 05 & -0.91405 E & 05 \\
-0.62724 \mathrm{E} & 02 & -0.32986 \mathrm{E} & 02 \\
-0.42865 E & 02 & -0.43181 E & 02 \\
0.95695 E & 02 & 0.17817 E & 03 \\
0.16649 E & 05 & 0.16660 E & 05
\end{array}
$$

$-0.36205 \mathrm{E}-05$
0.15151 F （2
？．19800E O3
.31946 E 05
$-0.51203 E-05$
（．21285F 0？
0.28002 E 03

$-0.36205 F-05$
©． $15051 E$ ？
O．1930CE 6
-0.31946 E （．5

$$
\begin{aligned}
& 0.4 \mathrm{C} 72 \mathrm{~F} \text { ? } \\
& \text {-0. } 10369 \mathrm{O} \text { ? } \\
& \text { 万. } 69258 \mathrm{~F} \text { (? } \\
& -0.219445 \text { ○ } \\
& 0.576 \mathrm{G} \text { ? ? } \\
& -1.24665 \mathrm{~F} \text { ? ? } \\
& 1.9794 \mathrm{KF} \mathrm{O} \\
& .53583 \mathrm{~F} \text { 15 } \\
& .40720 \mathrm{~F} \text { ? } \\
& 0 \cdot 10360 \mathrm{~F} \text { 门2 } \\
& \text { 0.69253F O2 } \\
& \text {-1). } 31944 \mathrm{~F} \text { S }
\end{aligned}
$$

－47222E ン2
－）．39：55E 02
$-0.34404 \mathrm{O} 0$
9．06201E 门？
ก． 667 万二E 02
$-.55057 \mathrm{E} 02$
－ 8.812805
1.93626 J.

1．47222． 3 ？
-0.3935500 ？
$-0.34+02 F$ ） 05


REAL LIADS UPON THE TRANSVERSES

TRAMSVERSE NO．
2

$$
\begin{aligned}
& -51202 F-6 \\
& 0.21256
\end{aligned}
$$

$$
\because 576(1 f \quad 3 ?
$$

$$
0.60722 E \quad 02
$$

$$
0.21285 \mathrm{E} 02
$$

$$
-1) .140,5 \mathrm{~F}
$$

$$
0.20002 F \quad 63
$$

$$
.97048 \mathrm{~F} \text { 32 }
$$

$$
-6.95128 \mathrm{y}
$$

$$
0.53580 \mathrm{~F} \text { O5 }
$$

$$
65353 \mathrm{~F}
$$

$$
\because 02 t, 26 E=2
$$

$$
-0.31350-1
$$

$$
-.042(F-0)
$$

$$
-0.1613[-0
$$

$$
-.1131!20
$$

$$
\begin{aligned}
& \text { X-FGRCFS TYPICAL } \\
& -0.60619 E \quad 02-0.61068 E 02 \\
& \text { Y-FIRCES TYPICAL } \\
& \text { ?. } 13533 \mathrm{~F} 330.25197 \mathrm{E} 03 \\
& -6.91421 E 05 \quad-3.91405 E 05 \\
& 32 \\
& -6.33695-01 \\
& 0.2487 \mathrm{E}-\mathrm{C} 1 \\
& -9.2649 E-01 \quad-0.4045 E-08
\end{aligned}
$$




| LOAD | SYSTEM | ROW | NODE | $X-F O R C E$ | Y-FOPCE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 4 | -0.666875 F C? | の.251277E 心5 |
|  | 1 | 2 | 1 | -0.213008E C? | -0.535302E 05 |
|  | 1 | 2 | 2 | $-0.312500 E-C 1$ | -0.546075E-01 |
|  | 1 | 2 | 3 | $0.555977 E$ C2 | 0.914663 F 05 |
|  | 1 | 2 | 4 | -0.156250F-01 | - 6.179219 F |
|  | 1 | 2 | 5 | -0.136.695E C5 | -. 132.813 O |
|  | 1 | 3 | 4 | -0.781250E-C1 | - C.5)3906E UO |
|  | 1 | 4 | 4 | -0.15625cE-C1 | -0.238281F on |
|  | 1 | 5 | 4 | 0.467031 E O2 | -п.251P61E 03 |


| 1040 | SYSTEM | ROW | NODE | x-DISP | Y-DISP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 1 | -0.336888E-01 | 0.248744E-01 |
|  | 1 | 1 | 2 | -0.313499E-C1 | -0.942021E-02 |
|  | 1 | 1 | 3 | -0.264872E-C1 | -0.404521E-OS |
|  | 1 | 1 | 4 | -0.161303E-Cl | -0.113071E OO |
|  | 1 | 1 | 5 | -0.163923E-08 | -0.112645E 00 |
|  | 1 | 2 | 1 | -0.185814E-C. 1 | 0.270581F-01 |
|  | 1 | 2 | ? | -1).190204E-01 | -0.758516E-C? |
|  | 1 | 2 | 3 | -0.455466E-02 | -0.430537E-C1 |
|  | 1 | 2 | 4 | 0.456863E-02 | -0.843670E-01 |
|  | 1 | 2 | 5 | -0.676641E-09 | -0.105921E OO |
|  | 1 | 3 | 1 | -0.414483F-02 | 0.251556E-01 |
|  | 1 | 3 | 2 | -0.770880E-03 | -0.16. $250 \mathrm{E}-\mathrm{Cl}$ |
|  | 1 | 3 | 3 | 0.381948E-C2 | -0.622125E-Cl |
|  | 1 | 3 | 4 | 0.584703E-C2 | -0.0. $21244 \mathrm{E}-\mathrm{Cl}$ |
|  | 1 | 3 | 5 | 0.605363F-C9 | -0.894825F-01 |
|  | 1 | 4 | 1 | $0.135214 \mathrm{~F}-01$ | $0.173739 \mathrm{E}-1$ |
|  | 1 | 4 | 2 | $0.138624 \mathrm{E}-01$ | -0. $715832 \mathrm{E}-01$ |
|  | 1 | 4 | 3 | $0.120283 \mathrm{~F}-\mathrm{Cl}$ | -0.635151E-01 |
|  | 1 | 4 | 4 | $0.732242 \mathrm{E}-02$ | -0.775595F-01 |
|  | 1 | 4 | 5 | $0.909923 \mathrm{E}-\mathrm{Ca}$ | -0.824471E-01 |
|  | 1 | 5 | 1 | ). $340475 \mathrm{C}-01$ | 0.157719F-01 |
|  | 1 | 5 | 2 | J.318087E-C1 | -0.231575E- 1 |
|  | 1 | 5 | 3 | 0.236323F-01 | -i.6474955-0.1 |
|  | 1 | 5 | 4 | $0.118678 \mathrm{~F}-01$ | -0.734 $347 \mathrm{E}-\mathrm{Cl}$ |
|  | 1 | 5 | 5 | $0.118784 \mathrm{E}-\mathrm{C} 8$ | -0.7311020-01 |

STOF 0
EXECUTION TERMINATEO

March 20,1981


[^0]:    (1)

