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SYMBOLS AND ABBREVIATION

A

a(t)

B

E[g]

E[u(g)]

e

F(t)

f(t)

g

I

i

k

n

R

r

S

Sc

Future amount of money

Continuous receipts

Present worth of future amounts
of money

Value of expectation of the return
or expectation of the return

Expectation of the utility

Revenue

Failure distribution function

Failure distribution density

Return g = e - k

Investment

Annual interest rate

Cost

Number of years

Probability of safety or reliability

r = ln(l + i)

Equivalent of certainty

Salvage value at end of life T of
a ship

Life of ship

Time

Utility function

Resultant loss to the shipowner due
to collision of his ship

Resultant loss due to a collision,
where the ship remains afloat

Resultant loss due to a collision,
where the ship sinks, Vs VL + VE

T

t

u(g)

V

V
n

V
5



VL

VE

w

A, B, V, etc.

x
A

0

Loss of cargo, cost of home
transport of crew, etc.

Cost of replacement ship

Probability that a ship will
not sink after a collision

Values of expectation of A,
B, V, etc.

A = E[A], B E[B], V = E[V]

Failure rate

Average number of collisions
per year

Density distribution of the
loss V

Density distribution of the
loss Vn, which occurs if the

ship does not sink

Density distribution of the
losses, Vs, which occur if

the ship sinks

Sp
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Ships are, generally speaking, a very secure means

of transport. Nevertheless, from a modern technological

point of view they are not as secure as they might be.

Thus, freighters are generally less able to withstand

flooding than are passenger vessels of equal size. At

the same time, a higher standard of safety could be

achieved for many passenger ships. The same may be said

about securing a ship against capsizing: If one compares,

for example, the pertinent requirements of some navies

with current practice in merchant ship design, one comes

to the conclusion that merchant ships are less safe in

this regard, too.

The reason for this state of affairs is certainly

not that technological possibilities are overlooked or

that mistakes are actually made; the question is, rather,

one of compromise between the requirements of safety

and profitability. Unfortunately, it must be said, one

rarely mentions this, in my opinion, necessary com-

promise. This reluctance is understandable. Thus, it

would be considered bad advertising to say of a pas-

senger ship that safety had to be sacrificed to keep

passenger fares at a low level. Preferred practice

in this case would be to talk of maximum safety without

being specific.

Yet, in principle, there is no reason not to talk

about the relationship between profitability and safety.

There is an often voiced but invalid argument that ship
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safety is concerned mainly with the protection of human

life, which cannot be given a monetary value, and con-

sequently, that questions of safety should not be viewed

from the standpoint of economics. In actuality it is

exactly because human lives are irreplaceable that we

have to examine carefully how to attain the greatest

feasible safety whenever it is not possible to provide

the maximum physically possible safety. This is true

in most practical cases. An optimization in this sense,

however, is only possible if the relationships between

safety and profitability are clearly understood.

One frequently finds the opinion that safety can--

not be reconciled with profitability. The idea is that

it is indeed possible to calculate the necessary ex-

penditures for a certain standard of safety but that it

is impossible to calculate the profit resulting from this

higher safety. This opinion could not be contradicted

as long as safety was considered an intangible factor.

In the recent past, however, safety has been made more

amenable to quantitative analysis (see reference 1 and

additional reference cited in reference 1). It is pos-

sible now to take the next step in trying to find quanti-

tative relationships between safety and profitability. In

the following pages methods of finding such relationships

are demonstrated. We start with very simple cases and

then gradually treat somewhat more complex questions.

Quantitative statements about safety are probability

statements (reference 1). If a consideration of profit-

ability follows, this leads to so-called risk situations.

These have been treated in detail in numerous papers (e.g.,

references 2-5). Some familiarity with this field will be

presupposed in the following.
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II

2.1 Let us consider the simple case of a rocket:

If it reaches the target, this means a revenue, e, for

the company which produces the rocket. Let k(R) be the

cost for the production of the rocket; k is a function

of the probability, R, that the rocket will reach its

target. Hence, R is a measure of the "safety" that the

rocket will work properly and therefore is also called

the probability of "safety," or reliability. As a higher

reliability also causes higher expenditures, k(R) is a

function which increases monotonously with R. If we

have a complicated rocket (e.g., in space technology),

there will be an upper limit for R, the so-called "safety

barrier," which will be less than 1. This limit is set

by the present state of our knowledge and cannot be

exceeded, no matter how high our efforts and expenses are.*

Figure 1 shows an example of the function k(R).

We now have to answer the question of what amount

of expenditures, k, is justified for the safety, R, or

in other words, which probability of "safety" is, under

the given circumstances, the most favorable one for the

company that makes the rocket. Let us consider the

following: If the rocket works properly, the return is

g = e - k; if it does not reach the target, we have a

loss of the magnitude k, which also can be denoted as

the negative return, g = -k. The probability for the

It will be presumed here that time for the construction
of the rocket is limited. If monetary resources and time
were unlimited, the "safety barrier" could be shifted more
and more toward 1 in the course of time.
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first event is R; for the second event, 1 - R. A measure

of the merit that can be achieved, considering these

chances, is the expected value of the return. It is

E[g] (e - k(R)) * R - k(R) * (1 - R) .

The function E[g] is drawn in the lower part of Figure 1.

The condition that E[g] has a maximum is

dE[g] - 0
dR

and after substitution of the corresponding magnitudes

(see also Figure 1),

dk(R)
dR -e.

This result shows that the optimal value of the probability

of safety depends only on the revenue, e, and on the cost

slope and that it is independent of the absolute value of

the cost. The latter, however, becomes important if we

want to determine the maximum expected value-of the return

and whether or not it possibly represents a loss.

This example only served to illustrate a way of

determining the optimal safety in a simple case, and the

questions of if and how we can determine the revenue, e,

and the cost, k, and its dependence on the probability of

safety was of minor importance in this context. Figure 2

from reference 6, however, shows that it is also practically

possible to determine the probability of safety. If R versus

cumulative cost had been plotted in Figure 2 instead of R

versus time, this would have shown the relationship between

k and R.

2.2 In the previous example, the expected value of

return had been optimized. This is an approximation
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which gives useful results only in cases where the pos-

sible loss, k, as well as the possible return, e - k, are

small in relation to the assets of the company that

produces the rocket. If, for example, the possible loss,

k, were so high that it could ruin the company, it would

mean much more to the company than its cost in dollars.

Many companies would not risk such a loss, which after all

has the probability (1 - R), even if the return they could

receive with the probability of R would be extraordinarily

high. They would not accept the risk of an even somewhat

smaller loss and the associated troubles unless they had

the chance of a very high return.

This manner of decision-making shows that in situa-

tions of risk it is not return and loss that are directly

balanced against each other, but the associated utility and

damage (which may also be expressed as negative utility).

In terms of mathematics this means that it is not the

expectation of the return that matters, but the expecta-

tions of the utility.

This idea of utility goes back to Daniel Bernoulli

(1738). Essential foundations for the practical applica-

bility of the concept of utility were laid by von Neumann

and Morgenstern in their paper which was published in 1944

(reference 7). It also has been possible to show that

optimization of the expectation of the utility can be

regarded as a rational basis for decision-making (see, for

instance, references 2 and 8). More details on the prac-

tical determination of the utility function (i.e., the

dependence of utility on financial return or loss) and

some examples of the utility functions for various com-

panies are found in reference 4.

Let us now determine the optimal probability of

safety for the previously treated example, using the utility
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function as defined by Bernoulli (or von Neumann and

Morgenstern). Let the utility function be shown by

the curve u(g) in Figure 3. Using this function we can

determine the utility of the return, u(e - k), and of

the loss, u(-k), as a function of the probability of

safety (see Figure 4). Hence, the expectation of the

utility will become

E[u(g)] = u(e - k) R + u(-k) (1 - R)

The lower part of Figure 4 shows E[u(g)] as a function

of the probability of safety, R. The maximum of the

utility expectation follows from

dE[u(g)] = O
dR

or

(du(e- k) R + du(-k) (1 - R) = u(e - k) - u(-k)
dR dR R) ue-k (k

A comparison of Figure 1 and Figure 4 shows that the

optimal value of the probability of safety has hardly

been changed by the introduction of the utility conception.

From the value of expectation of the utility we

now can calculate the so-called equivalent of certainty, S:

S = u (E[u(g)]) .

In this equation, u denotes the inverse function of u.

The equivalent of certainty has the following meaning:

It is the c.ertain return which is equivalent to the pos-

sibilities of the risk case (here: to make a return (e - u)

with probability R or to make a loss k with probability

(1 - R)).
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In our example, the equivalent of certainty, S, is

considerably smaller than the expectation of the return,

E[g] (see Figure 5). The reason is that we used a

utility function that expressed risk aversion.

If the revenue, e, due to the successful performance

of the rocket is smaller, the equivalent of safety can

become negative even if R is chosen optimally. This

means that under the present utility concept of the

company, the production of the rocket is equivalent to a

certain loss. This statement could not have been made

using the expectation of the return (see also Figure 6).

So far it has been shown by a simple example that it is

possible to measure the economical consequences caused by

the uncertainties in the performance and that safety and

profitability can be reconciled.

2.3 At the end of this paragraph we want to quote

the reasons which allowed us to deal with this example

in such a simple manner: It was assumed that return or

loss occur at a certain point of time, namely, after the

flight of the rocket.* At this point of time there were

only two possibilities: either the rocket would work

properly and would reach the target or it would not.

Dealing with questions of ship safety is a more sophisti-

cated matter. For example, an engine can fail not only

once but several times during the life of a ship. The

time of failure is always random. The consequences of

a failure can be very different too. A ship which is no

longer maneuverable may be lost with all its cargo, or

during salvage or repair perishable cargo may spoil.

But it is also possible that the failure results only

In reality, production costs are spread over a longer
interval of time; by taking interest into account, however,
they could be converted to any appropriate point of time.
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in a time loss of hours or a few days. In the following

paragraphs we will have a closer look at how to deal with

these circumstances .
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III

3.1 In this section we will try to find out how

the fact that a failure may occur at any random future

time influences the profitability of a ship. At first

we have to deal with the question of how profitability

is to be defined. There are quite a lot of criteria of

profitability today. Which one (or ones) we have to

choose in each single case depends on the goals of the

shipping company, its organization and the subjective

preferences of its leading managers (for more details

on this subject see, for instance, references 9 and 10).

The use of present worth is very common as an economic

measure of merit. Its application may be shown in a

simple example: disbursements and receipts for a ship

are due at different times (see Figure 7). At first

an amount, I, has to be invested to get a ship. After

this disbursement there will be certain returns, A, in

the following time. They are the difference between

the revenues for the transport of cargo and the operating

cost. In the evaluation of these returns it is important

to consider at what time they occur. For example, an

amount which is due in ten years has less value than the

same amount due immediately. The latter could be invested

and would yield a certain interest during these ten years.

If we consider an annual interest rate, i, the present

amount, B, would be equal in ten years to the amount

A B(1 + i)n
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Conversely, an amount A, n years hence, would have a

correspondingly smaller present worth of

B = A(1 + i)-n

We denote B as the present worth of the future amount A.

The calculation of B from a given amount A is also known

as discounting of A, and the term (1 + i)- is called the

present worth factor.

For the following considerations it is useful to

use an interest rate based on continuous compounding and

equivalent to the annually compounded interest rate, i.

In this case

B = Ae-rt

where

r = ln(l + i)

and t is taken in years. Whereas n meant discrete instants

of time in units of one year each (i.e., n = 1, 2, 3, ...

T years), t denotes continuous time, 0 < t < T, where T

equals the life of the ship (see Figure 8). If allowance

is made for the fact that in annual compounding linear

interpolation between two succeeding years is usual, it will

be realized that for our purposes both kinds of discounting

are completely equivalent. To further simplify calculations,

we will replace the discrete receipts, A, by continuous

receipts per unit time a(t) (similar to the conversion of

many discrete forces to a uniformly distributed load). The

investment, I, however, continues to be regarded as a dis-

crete amount although it is spread over a certain space of

time too. Compared with the life of a ship, however, this

time interval is very small. The error due to these simpli-

fications will certainly be smaller than all the inaccuracies

which cannot be avoided in such calculations.
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With all these assumptions the cash flow shown in

Figure 7 can now be represented as shown in Figure 9.

For the present worth, here chosen as a criterion, we get

/T
0

a(t)e-rtdt - Ie-r0

This equation is valid only in cases where no damage occurs.

3.2 Let us now consider an actual case of damage.

The following assumptions are made: at a random time, t 1 ,

the ship is involved in a collision. The ship is assumed

to have neither bulkheads nor bilge pumps; so it will

sink. From the time of the ship's loss, t 1 , until time

T (which is the originally chosen life of the ship) the

shipowner does not build a new ship. Under these cir-

cumstances the loss caused by the damage is equivalent

to the loss of the receipts, a(t), during the time interval

t < t _ T. The present worth, Bv, of this loss naturally

depends on the time at which the damage occurs, t 1 . There-

fore, it is a function of t:

Bv (t 1 )

tl

a(t)e-rtdt for t 1 < T

Bv 1) = 0

This leads to a total present worth of

for t 1 _ T.

t
B(t 1 ) =B0 - Bv( 1 1 a(t)e-rtdt - I for t 1 < T

for t 1 > T.B(t 1 ) = B0

T

01;a(t)e-rtdt - I
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These relations may be illustrated by the following example.

Letting a(t) = constant = a, we have

B (t ) = a -rt - e-rT) for t < T
v 1 r

B (t ) = 0 for t > T
V 1 1=

B(t ) a=(1 - e-rt1) - I for t < T1 r

B(t ) = ( - e rT) - I for t z T.1 r 1-

Figure 11 shows B(t 1 ) versus t 1 . Although it is fairly

obvious, it should be pointed out again that this is not

the representation of a cash flow, but the representation

of all possible present worths which can be received

from this ship as a measure of merit for its economic

success. Which one of these present worths will actually

occur is random. Yet, the following statement can be

made: The probability that the actual present worth will

lie between B(t 1 ) and B(t1 + dt1) must be equal to the

probability that the collision occurs between t 1 and

t + dt 1 .

Reference 1, paragraph 5.1, shows the density dis-

tribution of time where a collision occurs:

-X tf(t) = e tfor t >011 0

where Ae is the average number of collisions per year

and per ship exposed to the risk of collision.
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We are now able to calculate the expectation of the

present worth:

00

E[B(t )] = B(t ) -f(t1)dt .

0

For the above example we get

a (o f -(A +r)T\
E[B(t=)] a -1y- _)- e o) - I.

0

This result has been plotted versus X0 in Figure 12.

3.3 For the shipowner the expectation of the present

worth is of minor significance. The amount of money

involved is so great that in most cases it will not be

possible to assume the utility to be proportional to the

return or the loss. The collision of a comparatively

new ship would, under the given assumptions (no insurance!),

mean the ruin of the shipowner. Instead of calculating

the expectation of the present worth, B, it therefore would

be better to determine the expectation of the utility,

u(B). If the utility function of the shipowner is known

(see the corresponding notes in Section 2.2), the value

of expectation of the utility is

E[u(B(t 1 ))] u(B(t 1 )) f(t 1 )dt 1

This gives us the possibility of calculating the equivalent

of certainty. This is the present worth (occurring with

certainty), which is equivalent to the possible random

present worths:
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S = u (E[u(B(t ))])

where u is the inverse function of u. Let us now

assume in our example that the utility function of the

shipowner may be sufficiently approximated by the

following function:

u(B) = 0.625 - 0.4(1.25 - B)2 for B 1

u(B) = 0.6 + 0.2(B - 1) for B > 1,

where B has to be taken in millions of DM. The equivalent

of certainty, S, calculated for this example has been

plotted in Figure 12.

3.4 We are now able to solve, for example, the fol-

lowing optimization problem: By better nautical equip-

ment of the ship we can decrease the collision rate X0 .

Yet, at the same time we have to increase the investment,

I, for this kind of equipment by the additional cost AI.

What expenditure AI will give us a maximum equivalent of

certainty, S?

Thus far, our analysis is based on rather unrealistic

suppositions. Let us therefore avoid further treatment

of this question now. We will pick up this subject later

and discuss it under more realistic suppositions. We will

instead draw some conclusions which, in principle, are

independent of our previously made assumptions.

Figure 12 shows that the equivalent of certainty, S,

versus the collision rate, a0 , decreases very quickly at

the beginning and becomes negative at relatively small

values of X . This may be interpreted in the sense that

the possible high losses in shipping business may easily

discourage a cautious businessman. In reality, however,
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the shipowner has the possibility of shifting the risk

to an insurance company. If an insurance company replaces

the loss of the shipowner in exchange for his payment

of a premium with the present worth, BP, the resulting

present worth for the shipowner will be

BVers = B0 - Bp

This present worth is a determinate amount independent of

when or if he loses the ship. Therefore, this present

worth, BVers, equals its equivalent of certainty. The in-

surance company has to calculate the premium such that

BP equals the expected value of the loss, BV, plus the

insurance company's overhead and profit. This results

in a somewhat smaller value of BVers than the expectation

value E[B(t 1 )] shown in Figure 12.

If we take an annual premium of 2 percent of the

investment, as an example, we get

B - 0.021 - e~rdt

Taking this result into account and assuming a collision

rate ao = 1.5-10-2 (i.e., out of 100 ships, 15 ships

will, on the average, collide within 10 years), and

using the results of the previously discussed example,

we get the value of BVers, shown in Figure 12. We realize

that despite all the simplifications we made, at least

the order of magnitude of BVers is correct.
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IV

4.1 Let us consider a ship's engine plant. Its

failure causes a loss, A. It may be that the plant does

not fail during the time interval from 0 to T, which

represents the life of the ship; or maybe it fails after

a time t 1 (where 0 < t 1 < T); or it fails for the first

time after t 1 and after t 2 for the second time (where

0 < t 1 + t2 < T), etc. (See Figure 13.)

At first we compute the present worths for the

respective losses. They are a function of t 1 , t 2 , t 3 '
etc.

BAl(t1)

BAl(tl)

BA2 (tl, t 2 )

BA2 (tl, t 2 )

= Ae-rti, for 0 < t lS T

=0 for t > T

= Ae-r(tl+t 2 ) for 0 < t +t2 < T

=0 for t1+t2 > T

BA3 (tl, t 2 , t 3 )

BA3(tl' 2, t3)

= Ae-r(t+t2+ta) for 0 < t 1 +t 2 +t3 T

=0 for
t1+t2+t3>T,

etc. In order to be able to predict the failure times with

greater accuracy, we need the failure density distribution,

f(t), of the plant (for additional information see, for
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example, reference 1, especially equations 2 and 5a).

Thus, the probability of a failure in the time interval

(t1; t1 + dt1) is

W{failure in (t 1 , t 1 + dt)} = f(t 1 )dt.

If one assumes that repair of the plant does not influence

the failure density distribution, the following probabil-

ities for two or more failures can be given (for the defini-

tion of t 1 , t 2 ' t 3 , etc., see Figure 13):

W{a failure in (t 1 , t 1 + dt 1 ) and

a failure in (t 2 ' t2 + dt 2 )} = f(t 1 )f(t 2 )dt 1 dt 2

W{a failure in (t 1 , t 1 + dt 1 ) and

a failure in (t 2 , t 2 + dt 2 ) and

a failure in (t 3 , t 3 + dt3 ~ lf(t)f(t 2 )f(t 3 )dt dt 2 dt 3

etc. We assume further that the present worth of the losses

A. is relatively small, so that Bernoulli's utility of the

present worths may be treated as linear. The safety equi-

valent of the present worths of the losses is then equal to

the expectation of these present worths:
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E BAi ='...(BAl(tl) + BA2 (t + t2
i ~t=0 t1= t=0

+ ... )f(t 1 )f(t 2 ) ... (dt 1 dt 2 ).

(With respect to the limits of this integral, compare the

definition of the BAi as functions of the respective time

intervals.)

4.2 Let us illustrate the above formula by an ex-

ample. For many well-maintained plants, the assumption

of a time independent mean failure rate, X, is a very

useful approximation that serves our purpose. With this

assumption the failure density distribution is (see ref-

erence 1)

f(t) = Xe .

For the calculation of the preceding integral we use the

relationship that the expectation of a sum equals the

sum of the expectations of the terms of this sum:

E[ BAil = E[BAl] + E[BA 2 + ... ,

where
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p[ ] 00
t 0 t00

t1 2

*eeBAl(tl)f(t 2 )...dtl1dt 2 ..

00

/1= BAl(tl)f(tl)dtl

ELBA 2] f0_

00 00

t1=0 t 2 =0

.SBA 2 (tl, t2)f(t 1 )f(t 2 )...dt 1 dt 2 ..

BA2 (tl, t 2 )f (t 1 )f(t 2 )dt 1 dt 2 2

etc. If we now replace Bi with the expressions derived

in 4 .1 for Bi and also insert the function of the failure

density distribution, we get

T

ELBAl] =1 Aertl le ' ldt = A x (r - e-(Xr)T)

T T-t
E[BA 2I i] : Ae-r(tl+t 2 ) 2e-X(t + t2) tde 1 2 d 1 dt 2

= A {(E + r)2 (1 -(A+r)T)-XAr ATe (A r)T}



28

3-TT-t T-t-t)
E[BA 3  JTt 2  Ae-r(t+t2+t3) 3e- t1+t

dt 1 dt 2 dt 3

A X 3 -(X+r)T _(_ 2 A-(a+r)T

1___ \2-(X+r)T
- + r -TVe),

etc. After some simple transformations we get the following

simple relationship for the sum of the expectation values:

E BAiI = E[BAi] = A l - e-rT

1 1

Figure 1'4 shows a graph of this sum and of its first two

terms as a function of the failure rate, X (for 0 < A < 0.1).

The figure shows that the sum converges quickly, especially

for small failure rates. This means that the expectation

of the present worth of the losses is caused primarily by

the first failure and to a lesser extent by the second

failure. Further failures during the time T are so unlikely

that they contribute little to the expectation of the total

present worth of the losses.

4.3 The supposition that the present value of the

losses is relatively small, or, in other words, the assump-

tion of a linear utility function in the relevant range

makes it possible, in a simple way, to adapt our subject

still better to reality. In many cases the damage caused
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by the failure of a plant will not be of a precise magni-

tude, but will be a random variable. This means that the

magnitude of the loss depends on the circumstances at the

time of the failure. To take this into account, let us

formulate again the sum of the expectation values of the

present worths of the first, second, third, etc. losses:

EE[BAi] A -,b 1 (X, r, T) + A b 2 (X, r, T) + A

b5-( ,r, T) + ....

The factors b., functions of X, r, T, follow from the

solutions of the respective integrals in Section 4.2. A

is a random variable; therefore, the sum on the left side

of the above equation is a random variable too. According

to a theorem in probability theory, the expectation of a

sum of linear functions of random variables is equal to the

sum of the same functions of the expectation of the random

variables. This yields

E E[BAi] E[A](b + b2 + b3 + .... )

= E[A] (1 - e rt).

To account for the random distribution of the losses, A,

it is sufficient to substitute, instead of a determinate

value of the loss, the expectation of A.

4.4 It would not be difficult to proceed similarly

to Section 2 from a relationship between investment cost

and the failure rate and thus determine the plant with

the optimal safety. To avoid a repetition, however, let
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us consider now a different example. We want to discuss

the question of whether or not it is worthwhile to in-

stall a second plant in order to increase the safety of

the first plant.

Where we have a choice between two possibilities:

1. We can keep the second plant permanently in

operation along with the first one (parallel

operation)

2. We can install it as a reserve, to be used only

if the first plant fails.

The previously derived formulas are valid in cases of

parallel operation, as well as of a reserve plant, if

we use the appropriate failure density distributions for

the respective cases.

Denoting the distribution function for' one plant

as F(t), the failure distribution function for two plants

operating parallel, F2 P, is (see reference 1, section 4.3)

F2 P(t) = F(t) F(t)

and the failure density distribution for two plants oper-

ating parallel, f 2 P, is

F2 (t)
f (t) = 2f(t)F(t)

2P dt

If we use the second plant as a reserve, we get the failure

density distribution for both plants together by convolu-

tion of the densities of each single plant separately
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(see reference 1, section 4.4):

f2Re(t) = f(t) * f(t)

Figure 15 shows as an example the failure density distri-

butions for the case of a single plant as well as for the

case of parallel operation or reserve when two plants are

used.

As an example, let us regard a small cargo refrigera-

tion plant. If it fails, the losses will vary according

to the value of the cargo which has been affected. Let

the loss expectation be E[A] = A. Furthermore, let the

failure density distribution for one refrigeration plant

be

f(t)=Xe-at

For the calculation of the expectation values of the pres-

ent worths of the losses in case only one refrigeration

plant is used, we may apply the results of Section 4.2.

As an alternative, let us regard a plant which has

a second refrigeration machine serving as a reserve. At

first we calculate the expectation of the losses for this

case. The failure density distribution is

f2Re(t) = f(t) * f(t) =X2te-Xt

If we insert this result in the integrals on page 19 (we

will denote the expectation value with E* now, to indicate

that it has been calculated by using f2Re '
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T
is.

E [BA1 ]_ Aertl 2 t 1e-xtI dt 111

- E _ 12 )2 -(X+r)T ( x)2 +( a JET)

B~ [] 1 1 T-t 1
A t1+t2) A4t t e-- 1+tdt dt

1 2 1 2

+ + 2 -2T2e (A ~)AQ T3+) A

+ r A2T + r) A 3)

EL] TfT-t1fT-tl-t 2
Ae-r(tl+t 2 +t 3 ) A 6 tt 2t

13

" e-X(tl+t2+t3) dt dt dt 3

A[A+ r)6 - e(ArT( A+( T

+ (a)4x 2T2 ( r)3 A3T3 +(a )2 aii

+ A 3 2!)\ +r/ 3!)]r 4
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etc. After some transformations, the sum of the expected

values is

00 CO

E*[ BA.] = E*[BAi]
1 1

2 2. ___-__ _ -A -rT 2
='A Lr(2x + r) ~err( 2X + r) coshXT

+ r(2 + r) sinh AT

Figure 16 shows the sum of the expectation values and the

first term of this sum as a function of the failure rate, X.

The convergence in the regarded range of A is even better

than in our previous example (see Figure 14). The losses

to be expected are now also considerably lower.

For a valid comparison of the two alternatives, it

is not sufficient to consider only the losses caused by

the failure of one or of both refrigeration plants. The

receipts are the same in either case. The alternative

with two refrigeration plants, however, requires additional

disbursements for investment and maintenance. Let us

denote the present worth of these additional- disbursements

with Z. The economic difference between these two alterna-

tives may now be determined for the respective resultant

present worths of all those quantities which are not equal

in the two alternatives:



35

Without reserve plant:

B = E BAi =A (1 - )

With reserve plant:

B2 = E [EBAi] + Z

x2 _-X+r)T( r)
-r(2a + r) - er2a + r) cosh AT

+r.2 + r) sinh XT + Z.r(2X + r)

As these present worths are losses, the plant with the

smaller present worth is the better one.

Figure 17 shows the results of calculations for dif-

ferent values of A, A, and Z. We realize that a high

failure rate, A; a high cargo value, A; and comparatively

low cost, Z, favor the installation of a reserve plant.

This result agrees with our intuition. The advantage of

calculation, however, is a quantitative evaluation of

these otherwise unmeasurable influences and tendencies.

This now allows us to make decisions on a rational rather

than intuitive basis.
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V

5.1 In this section we will resump the discussion

of some problems concerned with the safety of ships in

case of collision (see Section 3.2). Let us consider

the following model (see also Figure 18): Let I be the

initial investment necessary to acquire the ship. The

difference between operating revenues and operating costs

is assumed to be continuous and is denoted a(t). At the

end of its life, T, the ship is assumed to have a scrap

value Sc.

During the life, T, of the ship there may be no

collision, or a collision may occur after the time t1,

or after the time t 2 , following the first collision,

there may be a second collision, etc. In case the ship

should sink after a collision we assume that it will be

replaced by an equivalent ship. Equivalent here means

that the life of the replacement ship shall be equal to

the time which the first ship could still have been

operated if it had not sunk.

Every collision means a loss, V. The cost of an

eventual insurance premium for ship and cargo may be taken

into account with a(t). In case of damage, the payment

of the insurance company will be subtracted from the actual

damage. Therefore, V represents the resultant loss to

the shipowner. Statements about V in the following sec-

tions shall only serve as examples for further clarifica-

tion and shall not mean a restriction with regard to other

interpretations.
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5.2 Losses resulting from collision may be very

different in magnitude. The ship may remain afloat or

may sink. In the first case, costs for its salvage arise.

These may be low if the collision occurs near a harbor

and the ship is still maneuverable. They may be very

high if the ship has to be towed over a long distance

under unfavorable weather conditions. Furthermore, there

are costs for repair. These also may be very different

depending on the extent and the nature of the damage.

Costs, for instance, are substantially higher if the damage

leads to a flooding of the engine room than if only the

plating has been damaged in the area of a tank. Additional

costs which may be very different are loss of returns,

damage of the cargo, etc. In a manner similar to the de-

termination of the distribution of the extent of damage

to be expected after a collision on the basis of collision

damage statistics, it is possible in our problem to de-

termine a distribution of the costs, Vn, which are caused

by a collision in which the ship does not sink.

In the second case, where the ship sinks after a col-

lision, the loss can be very different, too. We will de-

note these costs as Vs and we will split them up into two

separate amounts. The first part, VL, shall comprise the

loss of the cargo, the home transport of the crew and

similar items. It is quite clear that VL is a random

variable. The second part will be denoted VE It comprises

the cost of the replacement ship which has to be acquired

in case of a total loss, according to the above assumptions.

VE depends on the collision time: If the collision takes

place shortly after the ship started its service, then an

almost new ship has to be replaced; if it is after a time
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which is not much shorter than T., the cost for the

"equivalent" replacement ship will be much smaller than

I. Therefore, Vs is a random variable and its distri-

bution contains the collision time as parameter:

VS(t) = VL + VE(t)

From the distribution cO of the losses V which occur if
n n

the ship does not sink, and from the distribution Ps of

the losses V in case the ship sinks, we may now determine

the distribution of the loss V which applies to both cases.

To accomplish that, we still need the probability, W, that

a ship will not sink after a collision and the complemen-

tary probability, (1 - W), that it will sink. (For the

determination of this probability, see, for instance, ref-

erences 13-15.) We can now establish the following equa-

tion (see also Figure 19):

((V;t) = W - (V) + (1 - W) - (V;t)

where t represents the collision time. The relationship

between the expectation V of V and the expectation V andn
V (t) of V and V , respectively, can be easily given now:

s n s

V(t) = WV + (1 - W)V (t)

Let us now consider a more concrete example and introduce

the following relation. The replacement cost of the ship

may decrease in direct proportion to t from the initial
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value of I at time t = 0 to the final value Sc at time

t = T:

VE(t) = I - Sc tE T

Correspondingly, we may say that

V (t) = V + I -I - Sc t
s L T

and

7 (t) = 7 + I - I - Sc ts( L T

5.3 To determine the expectation of the resultant

present worth we need the present worths of all amounts

occurring during the time of consideration. For the cal-

culation of the present worths of the losses we may use

what has been said in Section 4.3: Instead of using the

random losses, V, we can take their expectation values,

V. For the first, second, and third, etc. collision

we get the following present worths for V:

B v (t 1 ) = V(t 1 )e-rtl for 0 < t T; or else 0

BV2 t , t 2 ) V(t + t 2 )e

for 0 < t 1 + t 2 < T; or else 0
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BV3 (t , t 2 , t 3 ) =J(t 1 + t 2 + t)-r(t 1 +t 2 +t 3 )

for 0 < t 1 + t2 + t 3 < T; or else 0,

etc. If we now insert the relations we have chosen before

as an example, we get

Bv(t 1 ) = W(Vn) + (1 - W) (VL + I -(' I -Sc tl)} -rtl

BV2 (ti lt 2 ) =[w(7) + (1 - W) (VL + I _ I - Sc (t + t 2 )

(e-r(ti+t2)

BV3 (ti, t 2 , t3 [W(vn) + (1 - W) VL + I -TSc)

(t + t 2 + t 3 ) e-r(ti+t 2 +t3)

etc.; Bi= 0 in the same intervals, as previously stated!

The present worth of the returns a(t) is

Ba a(t)e-rtdt
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Now we need the distributions of the times when a collision

occurs. If we take the density distribution of the time

when a collision occurs, introduced on page 12, and use

analogously the statements on the probability of one, two,

etc. failures made, on page 17, we get

W{collision at t } I f(t )dt X e~0t 1dt ,

W{collision at t and t 2 } = f(t 1 )f(t)dt dt 2

X2 -X0(t +t2) dt dt ,
0 1 2

W{collision at t and t2 and t3} = f(t )f(t )f(t )dt dt dt3

=3 -X (t +t2+t3 )
e 1dtdt3dt

etc. This results in the following equation for the ex-

pectation of the resulting present worth:

E[Bs ft 1 =Q j . Ba - I ~ vl(l -1 V2(l, t 2

... f.dt dt



44L

B - I -(a It1=o B(ti) f(t )dt -2j f20B 2

(t 1 , t 2 )f(t 1 f(t2)dt 1 dt 2 - ..

If we insert the relations of our example, we get

LE B]=Ba - I -W(V) feTi X o eotidtl

ift' er(ti+t2) -2 e -xt+2
A X~t+t 2~dtldt 2

+ 1-W)1I(V L + I){f erti Xoe-XotI dt1

f fT-t 1
e-r(t1+t2) -2 -X (t 1+t 2)doe o dt 1 dt 2

+ +(I -sc)(JT t e rt 1  Xotcd1 0

+/T4Ptl
(tl + t 2 )Xoe-x0(tl 1+t2) dtldt 2 +..

If we now analogously apply the result derived on page 20,

we can replace the above sums written in {,..};
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The integrals of the last sum in the equation for ECBrs

yield

jT
tle 't do e oldt 1

A
0

_

_(X)+)+ 01+1) _ T

e o _ _ D0

J2 T T-tl tl+ t2)e-r t+t 2 ) 0 e Ao t+2dtldt

-2 -2

= 0+ r)3 ( o+r)3 (X 0+.r)2

+ 1

(X0 + r)

/XT2)

.2~
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J3 jTjT-tijT-ti-t 2  (t 1 + t 2 + t 3 )er(tl +t 2 +t 3 )

X~eX A(t 1 +t 2 +t 3) dtldtdt 3

0 -(X +r)T
-e 0 + ° A

°X + r) 3 0
0

- 2T2 3T3
+0 ___ 0 T + l11

(Xa + r) 2! + +) 3! I

etc. After some transformations we get for the sum

EJ. - [1 - e.
r

-rT (1 + rT)1

If we let a (t) = a, we get for the expectation of the

resulting present worth

E[B ] = a (1 - e-rT) - I - W(V ) 0 (1 - erT) -C1 - W)*res r n r

(~VL+ I) (1 - e r) - I-S [1 - e-r
r T

(1 - rT)I)



47

In Figures 20 and 21 the results of a numerical example

are plotted. Figure 20 shows how the parts of E[Bres '
owing to V and Vs, change versus the probability, W.

n
Figure 21 shows the dependency of E[Bres] on the collision

rate, X, and on the probability of surviving damage, W.

The increase of E[Bres], shown in Figures 20 and 21

(equivalent to an improvement of profitability with in-

creasing probability, W), is only valid when I is constant.

It could be used to find out what is economically feasible

if it should be possible to increase the probability, W,

without additional expenses (for example, by better placing

of bulkheads).

More -important in practice, however, is the case that

in increasing the probability, W, the construction cost,

and, therefore, I, will increase. In this connection it

would be interesting to know how much W has to be increased

to justify the expenditure AI necessary to increase W,

that is, how much W may decrease when expenditures are cut

down by -ALI without decreasing profitability at the same

time.

To answer this question we have to proceed as follows:

We calculate for a ship I, a(t), W, and E[Bres]. With

these data we may now compute the least amount that W has

to rise lest an expenditure to raise W (i.e., additional

cost, +AI; possibly reduction of returns, a(t)) cause

a decrease of E[Bres (i.e., the profitability). In a

similar manner, we can find out the most that W may de-

crease through a reduction of the expenditures by -AI

before profitability drops. Figure 21 shows an example of

such a limit of profitability. If in this example one

changes the ship under consideration with respect to its
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ability to survive flooding, the cost, +AI, or savings,

-AI, resulting from this change are only justified if

the probability due to this change exceeds the limit

curve.

5.4 Let us now calculate the expectation of the

utility of the resulting present worth. First, we have

to look at the resulting- present worth. Its definition

depends on the times when a collision occurs, t

Bres = Ba

for t > T

B = B - I- B (t )
res a vl l

for t 1 < T, t 1 +t 2 > T

Bres Ba I vl l v2 1 2)

fort 1 + t 2 < T, t 1 + t 2 + t 3 >T.

In the third and in all following equations of those just

given for Bres, the sums contain two or more random vari-

ables, B .. The density distributions of Bvi ,fB' canvivi B
easily be evaluated from the density distribution of V,

'P(V; t), which was introduced on page 28. The density

distributions fi contain t 1 , t 2 , ... t~ as parameters.

With the values of fBi, the density distribution of the

sum

B.= B + B + ... B ,
Bvi vl v2 v

n
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f n, may be easily determined by convolution of the density
distributions 'of the terms of the sum

fn ( Bv; t , t2, . .. t = fBl fB2 ''' . ZBn '

If also the utility function u = u(B ) is given, we will

get the following equation for the value of expectation of

the utility:

E[u(B )] .{= u(Ba - I)f 1 (t 1 )dt 1 +
T t1 =0 t2 1

00

0 u(Ba - I - Bvl(tl))fBl(Bvl; t 1 )f 1
Bvl=

(t )f 2( )dB vdt dt 2 0T -t -t/t / 2  O Tt-tt

u(Ba I - B 2i)fz2 ( vi; t 1 , t 2 )

B .=0 2 2
2 vi

fz(t)f 2 (t 2 )f 3 (t 3 )d( Bvi)dt 1 dt 2 dt 3 , + etc.

2

We will not evaluate this equation. any further here.

Its solution for a special case is more elaborat.e than would

be suitable for an example within the limits of this paper.

This will be the subject of a separate paper, to be written

later.
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VI

Finally, to round off my quantitative considerations

in this paper, I want to add some general conclusions about

the relationship between safety and profitability. In

reference 16* the statement is made that from the viewpoint

of the best possible protection of human lives, the strength

of structures in today's ships is too great. This is

established as follows: Because the dimensions of the ship's

hull girders are more than ample, a breakdown of ships and,

thus, danger to, or loss of, the crew is made almost im-

possible today. It would, however, be one-sided to draw

the conclusion from this fact that we have thus achieved

the maximum possible protection of human lives. The pro-

duction of ship construction steel also involves dangers.

(We only have to remember the inevitable accidents in coal

and ore mines as well as industrial accidents in steelworks.)

Taking this into account, the optimal protection of human

lives, according to reference 16, will be achieved by build-

ing ships of less weight (hence, which are less safe against

breaking).

Without agreeing completely on the conclusions drawn

in reference 16, I can say, nevertheless, that these con-

siderations are very useful or even necessary. Cheap

possibilities of transport are an important means of reach-

ing material welfare, which, if wisely used, is essential

to secure human life (for example, by securing sufficient

food at the lower end of the class scale or by utilization

of expensive medical facilities, etc. at the upper end).

The hint at this paper I owe to Professor Harry Benford.
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Taken all together, the general demand for especially

high safety, therefore, may be very well disadvantageous.

This fact applies even more .to naval construction than

to commercial shipping. In either case, it seems neces-

sary to me to consider explicitly the relationships be-

tween safety and profitability.
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