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On the Development of Low-Wave Resistance Hull Forms by Means of

Off-Centerline Sinqularity Distributions.

1. Introduction.

It has been one of the objectives of recent research under-
taken at The University of Michigan under contract with Maritime
Administration to develop suitable hull fbrms for high-speed cargo
liners (Speed range: LOQ%WQLZ). This task has been at-
tacked experimentally and theoretically. | ‘

The present report summarizes the theoretica]fﬁork; which was
done under Task 5 and chiefly under Task 6. By the end of Task 6
the project had not yet reached its final aims, buf it was carried
to the point of yielding the first optimized hull form results.

The theoretical work was undertaken as an independent enter-
prise, but with the same practical purpose as the experimental
work. This purpose was the design of technically feasible cargo
liner hulls of good performance in the speed range of 1.0< k;/%;;
1.2. This is the range of the so-called second hump in the wave
resistance coefficient curve which was in general avoided by ship
designers in the past.

| A fresh approach to this problem was encouraged by the success
reached in recent years in the application of wave resistance
theory to ship design by such scientists as inui and Pien; -gef.
(1), (2), (3) and (4). In view of their results,ziiééppears feas-
ible now to find practical low wave resistance hull"forms in this
and other '"unfavorable' speed ranges by direct use of the theory.

It seems, in fact, most important to seek the guidance of the



theory when the speed range is 'unfavorable'.

The application of theoretical methods is further encouraged
because it allows the hull shape selection to be made in a compre-
hensive and systematical way. As a result a much greater variety
of possible hull forms is explored than could practically be inves-
tigated by experiment.

When at the beginning of our work the possibilities of hull
form optimization were examined and the existing techniques were
reviewed the conclusion was reached that the given practical task
could best be solved by means of singularity systems located out-
side the centerplane similar to those applied by Pien in his recent
work, ref. (2), (3) and (4). The main reason for this is that
methods based on centerplane distributions of singularities, or
similar simple concepts, find it impracticable to generate beamy
and full enough hull shapes within the restraints that are imposed
on normal ship forms.

It is true that the off-centerplane distribution technique
as developed by Pien has met with some fundamental objections, the
most serious being raised against the use of linearized wave resis-
tance theory for "fat' ships, and with regard to the uniqueness
of the solution. (Cf. the discussions of ref. (3) by Newman and
by Eggers).

The question whether nonlinear effects are of such magnitude
and type that their neglect seriously impairs the optimization of
""fat hulls" cannot be answered on a purely theoretical basis at

the present state of scientific knowledge. |t seems plausible at



least, that the wave pattern of some nearly optimal hull forms is
in better conformity with the linearized free surface condition
than that of a hull form that is not optimal in wave resistance.

The uniqueness problem can also not be resolved before satis-
factory nonlinear solutions to the wave resistance are found. |t
Should be no surprise indeed that there are several linear approxi-
mations, i.e. several ways of representing a hull by singularity
systems such that the linear free surface condition is satisfied.
These distributions are associated with different approximation
errors so that they lead to different wave resistance predictions.

But the working assumption usually made in optimization work
is that the classes of singularity systems that are used, while
ihey may differ in wave resistance prediction, still lead to equi-
valent and practically acceptable hull forms. This certainly does
not hold for some misconstrued singularity systems; whether any
particular system is suitable for optimization work or not, can
presently be judged only by its practical success.

In conclusion, although some of the objections raised deserve
further scientific attention they do not give any cogent reason
why the off-centerline optimization method should fail. This is
a sufficient pragmatic justification for examining the usefulness
of the method as an engineering tool. No other consistent optimi-
zation technique by which to generate full and beamy hulls is in
existence. Optimization based on nonlinear wave resistance theory
is not yet feasible at present. The off-centerplane distribution
method on the other hand has already led to some encouraging re-

sults (4).-



Since the purpose and approach of this study are closely re-
lated to Pien's work the differences are mainly in scope and empha-
sis. The project was more limited here in its objectives and fi-
nancial support. The work was begun with just one specific design
task in mind. Computing time was an essential cost factor and
much attention had to be devoted to the organization of computer
programs in the most time-saving way without sacrificing accuracy.

There are also a few basic differences from Pien's approach
in proceduraf fespects as will be discussed in more detail in

sections 2.2 and 2.3 below.
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2. Mathematical Formulation.

A brief outline of the general procedure of hull optimization
is given by the block diagram in figure 1. The assumptions and
steps will be explained in more detail in the following, but with
no emphasis on derivations since most of these can be found in the
Work of Havelock (6), Inui (1), (5), Pien (2), (3), H. C. Kim (7)
and others. The original steps will be described more elaborately.

Wherever possible Pien's notation has been used.

2.1 Singularity Distributions for the Main Hull.

The singularities are arranged outside the centerplane and
somewhat inside the hull surface so that sufficiently full and
beamy shapes can be generated. In order to deal with a relatively
simple configuration it can be assumed that the singularities,

i.e. the sources and sinks, are spread continuously over the four
vertical side planes of a rhombical body as shown in figure 2.

The coordinate system is Cartesian with the origin amidships in the
load waterline. The rhomb is symmetrical forward and aft, and the
angle of inclination of each side plane relative to the centérplane
is‘taﬁlfb . The coordinates are nondimensionalized, using one half

of the length of the rhomb:

L/g / 7:/—/2 ; éﬂé/z (M

The situation is illustrated in figure 2. The coordinates x, y, z
of a field point, when used subsequently, are normalized in the

same manner.



BLOCK DIAGRAM OF OPTIMIZATION METHOD

ASSUMED SINGULARITY DISTRIBUTION (MAIN HULL):
/54(%?457 2252557229{ ff, gféP

WAVE RESISTANCE COEFFICIENT:

Ch =Z§§§ﬁy 45['[9,5[

z

STEP 1: CALCULATION OF Clel

STEP 2: OPTIMIZATION OF MAIN HULL

Conditions:

@Cv
Oay -
ga/ﬁ/ 7y (Restraints)

(Ritz conditions)

STEP 3: FEASIBILITY CHECK OF BULB
SINGULARITIES ON THE BASIS OF
HAVELOCK'S FREE WAVE AMPLITUDE
EXPRESSIONS.

STEP 4: TRACING OF STREAMLINES
BY RUNGE-KUTTA METHOD

Figure 1




Figure 2

Coordinates and rhombic body on whose sides
the singularity distribution is arranged.
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The singularity distribution is thus located on the surface:

2o (1~181) | Sor ~/<E </

"and its intensity is expressed by the polynomial:

ME &) - 2262 {ff (2)

which is normalized by unit ship speed, and is therefore dimension-

less. The total singularity strength must vanish (body closure

[ dg o

The magnltude of the coefficients aj i ] is to be determined from the

condition of minimal wave resistance within the given restraints.

condntuon)

For this purpose the wave resistance coefficient must first be ex-

pressed in terms of the aij'

2.2 Wave Resistance Expressions.

The wave resistance associated with the source distribution

of eq. (2) can be written as follows, ref. (2)

o, -sphl /(mg/f,a@w 5

%6 7

where Zg% //gffez’%ré’/m[ L/;m@‘;,mgfec&]»«-
*“’[5» 2‘/55”‘9 7“"‘5/”"9]}”/50(; (32)
QR - 224 //g ;/e"ﬂo /fw[f z fmﬁ*/’wéﬂf“]

‘,z—.wu,[é, Z/gma-ﬁ;,é/”g@yﬁjg/; (3b)
- 8 - " )
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These expressions are practically the same as in ref. (2) except

wi th =.-aéE:
b2

that P, Q, é,? are truly dimensionless which has resulted in the
factor - /16 in eq. (3). The integrals in (3a) and (3b) must be
taken over the positive hatf 7’7"7'(/-/5/ of the rhomb only.

The wave resistance coefficient is correspondingly

Y
Let
P-FFayly, md Q-ZEay )
where

/;/ e s 5/5 cre fﬁ?éj'M/Zo %%f/;//{i)/{

e s

5b
wit, t=-27_ (50)

Let further

Z /WWW

(6)
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@=Z/X& ) wncl QZ/’Z/«X;DL (6c)

so that:

Then, if the eqgs. (5) through (éd) are substituted in eq. (4):

chgzzﬁq @e}'@éf-fjkg (7)

é'fé’f )’rF“/?/D/ M"’Q Q,(,J fec@y[é’ (8)
/ f% Zz(z’ X+ Ko, /Qé)f(ff@%é’

_AfW‘F‘f (8a)

The integral (6a) can be evaluated by the following closed express-

Z ':/aé%é—%;éﬂ/; -
éi’://gfre ;25;;9 éé é’ fﬁ/
- /,/} ﬂ’*// z //__hé"/ ‘74?'7 -

The integralsj;yandjaycan also be evaluated in closed form. Pien's

where

ions:

(9)

eqs. (L4) and (45) in ref. (2) are immediately applicable since

-10 -



his integralszyzyand‘ngare identical to ;Eé' and.j}{ , respec-
tively.

It should be noted that zgﬁ'vanishes whenever i is an odd num-
ber because in that event the integrand is an odd functicn of
with respect to the origin,.jﬂgf vanishes for even values of i.
Consequently, whenever an odd value i occurs in combination with
an even value of k in eq. (8), or vice versa, so that the sum of
the two subscripts i and k is odd, the integrand of {8a) vanishes
and Cijkf is zero in this event.

This result is not in conformity with Pien's tabulated wave
resistance coefficients Cijkl published in ref. (2), Table 1.
There, all coefficients differ from zero.

This was a puzziing discrepancy at first since the equations

used here to compute the coefficients Ci‘ were identical to those

jkl
given by Pien in the same reference. But it could be clarified

in a later discussion with Pien that the Cijkl tabulated in ref. (2)
are only forebody wave resistance cocefficients. This means, as

we presume, that the integrations for Xp; and Xg;» egs. (6b) and
(6c), were carried from §= 0 tog= 1.0 only.

The motivation in applying forebody wave resistance coeffi-
cieﬁts was clarified in Pien's subsequent paper, ref. (3). We
quote:

"The most frequent use made of the theory in ship
design problems is tc optimize the wavemaking resistance

of a whole ship without checking the forebody free-surface

disturbance alone. |t is conceivable that the optimum
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value so obtai
that both the
but rather to
fect of large
the viscosity

ately predict

ned might be attributable not to the fact
bow and stern produce very small free waves
the favorable theoretical interference ef-
bow and stern free wave systems. Due to
effect, the existing theory cannot accur-

either the amplitude or the phase of the

stern free waves, so that the favorable interference ef-

fect as predicted by the theory may not always be realized

in practice, thus leading to a large wavemaking resistance.

Therefore, it

is rather important to minimize the forebody

free-surface disturbance."

Thus, if we interpret Pi

en's statements correctly, he has apparently

used only the forebody singularity system and forebody wave resis-

tance coefficients Cijkl

when searching for a singularity system

producing minimal wave resistance. The afterbody singularity sys-

tem was disregarded in this optimization step. The same procedure

had also been used and recommended by inui, ref. (5}, but with the

warning that it must be

limited to singularity distributions with

moderate interference effects. Generally, the wave resistance can

be represented by a term due to the bow half singularity system,

one due to the stern hai

f singularity system, and an interference

term. Optimizing the forebody separately can iead to consistent

results only if the interference term is negligible.

This condition may

have been satisfied in the cases treated

by Pien and Inui, but it becomes too restrictive when other types

of singularity distributions are used.



It was therefore decided here to follow, for the time being,
the approach that bases the optimizaticn on the wave resistance

coefficients of the total singularity system.

2.3 Optimization of the Main Hull.

Every singularity distribution of some assumed type describes

a great number of possible hull shapes which can be generated by

varying the free coefficients aij of the singularity strength func-
tion, eq. (2). It is true that the variation in shape is limited
by the number of terms assumed and by the location of the singular-
ity system. But there are normally some hull shapes of low wave
resistance even within the most limited family of singularity dis-
tributions.

Wave resistance optimization techniques have the aim of selec-
ting a singularity distribution within the family that results in
the lowest wavemaking resistance compatible with all practical re-
straints of the design.

This problem can be formulated more rigorously in the follow-
ing manner: The wave resistance is a function of the whole set
of parameters a; i of the singularity function:

cn/‘ 7[(@/0 a,,/ﬂ,z/,,,/ﬁg_,j”»/ﬁm,,/
This function descrlbes a "surface'" in the multidimensional para-
meter space, and we want to find a minimum on this surface that
complies with the given restraints. The absolute minimum exists,
but it is trivial because CW is zero, of course, when all para-
meters aij vanish, but then the displacement is zero, too. Since

Cy is a continuous function of every parameter, however, there must

i
i.
H
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also exist at least one relative minimum at which the displacement
differs from zero, and the restraints are satisfied.

The restraints are related to certain prescribed properties
of the singularity distribution or of the hull shape. They are
sometimes simple, sometimes complicated functions of the parameters
The following restraints e.g. are of linear, i.e. relatively

aij‘
simple type

v ff,’wé’ 1) Edg 4 - F T it (44
[ 8)48d¢ - 2E Tty (7

gy t) = F 20y 5

These restraints are expressed in terms of the singularity distri-

lve)]
Il

—
i

bution, but they bear a certain physical meaning by their relation
to displacement, midship area, and entrance angle of the waterlines.
The scale of these relations must be established by calibration from
case to case.

In order to obtain a straight keel or a flat bottom and simi-
lar features, more complicated restraints must be introduced.

Two equivalent solution techniques exist for solving the opti-

mization problem with restraints. The elimination method makes

use of the restraints by substituting them into the Cw - function
so that the number of free parameters is reduced by one per resraint.
The minimum of Cu is then sought in terms of the remaining unre-

stricted variables in the usual manner of an extreme problem or



free variational problem. The conditions for a minimum are

dlar _ - 6 = ZZZQ/ 7 (11)
0 ag

This results in a linear system of equations for the unkncwns aiJ
The parameters previously eliminated can be found by substitutiocon
into the restraints. The approach outlined above was used by Pien,

ref. (2).

Arn alternative solution technique is the method of Lagrangian

multipliers. According to this method, ref. (9), the restraints

are written the form

ﬁ/'(ﬁla/ Q// Q/Z/",/QZé/"' Qh’lh/ = 0 (Ha)

and one undetermined mu]tiplier'ﬂiis introduced for each restraint.
The optimization problem with restraints can then be transformed

into a free variational problem of the modified function

Cov = Cov +EA7 O o)

The minimum of this function is sought by means of

0, g Vw54, O \
79_54 9@7 7‘-&2 9@/7 (11c¢)

This yields as many equations as there are aij’ and the restraints,
eq. (11a), furnish the missing equations allowing to find all un-
knowns including the Aé,

The two methods may differ somewhat from numerical points of
view, but they should both lead to equivalent solutions of the op-
timization probfem° Although their use is recommendable for direct

optimization purposes none of the two methods was used here because

- 15 -



a somewhat different question was pocsed in the exploratory stage
of our work that is reported here.

Whenever the attention is fixed upon finding the optimal hull
one tends to overlook the variety of other favorable hull shapes
that exist within a certain family. The pure optimization methods
do not reveal the full picture. But this would be desirzile, for
among the second-best shapes there may be some that are superior
to the others from the standpoint of ssagoing ability, propuisive
performance, ballast performance or the like. if the wave resis-
tance of these hulls is still acceptably low one may choose the
most suitable shape from these secondary aspects.

There are certainly many systematic ways of exploring the
wave resistance properties of a hull shape family under given re-
strainfs, The establishment of a comprehensive evaluation method
should be given some more thought in the future.

In order to generate just a few other hull shapes, satisfying
the restraints, but maybe somewhat less than optimal, the foliowing
procedure was applied here: Only one restraint was used, the dis-
placement restraint of eq. (10). Then in eq. (1laj all minimum
conditions but one were satisfied; the disregarded condition was
replaced with the restraint so that a determinate system of equa-
tions for the ajj was obtained.

The decision which minimum condition to ignore is of ccurse
arbitrary, and in order to exhaust the possibilities, the condition
being replaced was varied in a cyclic manner. In this way a whole
set of distributions was obtained all satisfying the same displace-

ment restraint, but resulting in quite distinct shapes. The



procedure and the results are discussed further by an example be-
lTow.

It is not claimed that the hull shapes so obtained have to be
anywhere close to optimal. By disregarding certain minimum condi-
tions we have ignored the influence of the associated coefficients
upon the wave resistance in our "optimization'" method. But our
primary purpose is only to generate a set of distinct shapes that
differ in a systematic way;

The wave resistance properties of these hulls have been eval-
uated for only a few examples, which are discussed below. The re-
sistance seems to be favorably low for a variety of different shapes.
But this must be interpreted with caution because the hulls have
not been traced yet, and even though the displacement restraint is

the same the displacement may differ.

2.4 The Selection of Bulbous Bows.

Although the singularities for the main hull are selected on
the basis of optimum considerations there is sometimes room for
improvement because the assumed type and location of the singular-
ities cover only a limited scope of variations. [t can in partic-
ular be checked whether the results become better if a bulbous bow
is fitted to the main hull.

It was Inui's original idea to apply Havelock's concept of
the far rear free wave pattern to answer this question and, in fact,
to design bulbs, refs. (1) and (5). Pien has developed this scheme
further, and it is along these lines that we proceeded, ref. (2).

-Havelock, ref. (6), has shown that the wave resistance of a



hull can be expressed as

Kw =T p //;?—A /5}] / 4/7wfﬁd/ﬁ (12)

where AC () and AS (@) represent the cosine and sine components

of the "elementary' free wave amplitudes in the far rear. The ob-
jective in low wave resistance hull design is to minimize these am-
plitude functions in the important range of angles ©, i.=2. where

3

the factor cos” © is still of significant magnitude. This can be
achieved by adding bulb singularities to the main hull singuiarity
system.

Pien has derived expressions for the amplitude functions pro-

duced by the main hull singularities, and the following are the

equivalent equations in dimensionless form

cect®

M. 250 10 [ 1T by efitly
ot seo
SOz, i [ e TS byt

wi L, s _Secd g,fc’cﬁ'ﬁnﬂ

r = 2/:& ) Zf.?/

Let

75l fof K g el
f} TosFY /4” & 4{-57/’7’ Z/’ (14)
2 ndl /ar e case of the rhombic éw{} 7“‘/ //'/é/

X ff /m/% //-/e;) &wafﬂfg /{7' (15)
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Then

A, [/'224/ X | (17)

Lsz ‘

Aal6) =
“_%Ze_._-.-zij.;?@,/ 2;; X (18)

The integrals (15) and (16) can be written so that it becomes

apparent which contributions are caused by the bow, midship, and
stern wave systems respectively. It is the idea of Inui's and
Pien's work to use the bulb singularities to cancel out only those
free waves that are caused by the forebody of the main hull. The
rest is ignored because its relation to the bulb waves is less
immediate, and because it seems to be the practically less signi-
ficant part.

If therefore the functions X? and X? are replaced with the

part due to the forebody only one obtains

A /5/ Z’S@, 7[{/} Zéf“'/ 45“&/ (19)

Lz
A(@) .r—__-' . = Iy "4 >
P ZZay G S FEF Ay

which conforms with eq. (48) and (49) of ref. (2). The functions

Ci(]) and Si(]) are defined there too by a series expression, eq.(42).
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Sp0) -4 500 5.0

It is now assumed that vertical lines of sources or alterna-

f20a)

tively of doublets are arranged along the front edge of the rhombic
body inside the hull in order to generate bulbs. Their strength

is

Source line:
S(g)= SJ Z/
Doublet line: (21)

@/;/,?5'%/7. ;}

The corresponding free wave amplitudes are

Source line, cosine component:

4
: e ==
4l -=5Z - Ay (22)

Doublet line, sine component:

4(9)_ sec® , - . o
y =y B ==y

Z753 T2 F2 (23)

The sine component of the source line, and the cosine component
of the doublet line vanish.
In many cases it is either the sine or the cosine component

of the main hull free wave amplitude function that is predominant

...20_



in the wave resistance expression, eq. (12). The resistance can
then be minimized simply by using only a source or only a doublet
line at the bulb. |If e.g. the cosine component of the main hull

system is negllglble it is sufficient to minimize the integral:

Z- f[A (6)- Ay (8] @’ A8 (24)

This can be achieved by substituting eqs. (20) and (23) into (24),
and by solving for those doublet strength coefficients dj that make
(24) a minimum. One equation is obtained for every value p of the

subscript j:

'o?r "}"54/, HM,«(&//“M ///%{/ﬁ/[{s/éj/fm?’@a/él
(25)

%
- -4 jA ‘) %, /e/af@/ﬂffz iy 8) t, (8) 0’048

/

Let

// %/ﬁj'm (9) Wt OAE
]A (6) 8oy (8) o0 AE

The system of equations to be solved for the coefficients dj be-

<§E§7 §Z>/p ‘Qé{ "’;o

(26)

comes:

In a practical case the amplitude functions AE (9) and AE (9) of
the main hull are discussed first. |If one of them is excessive the

appropriate bulb singularity, either a source line or a doublet

_20-



‘line, is selected, and its strength distribution is determined using

the far rear wave amplitude concept as expressed in eq. (27).

It should be pointed out that this concept, while it does pro-
mfse improvements over the main huli, differs from the optimization
concept used in general in optimizing the main hull. The principal
reason for using this alternative method is its simplicity. It
would be tedious, although not impossible in principle, to optimize
the bulb by the extreme value and restraint method as before.

Deépite the practical merits of this bulb selection method it
should be realized that by the type of singularity we choose we
are limiting the changes to the neighborhood of the bow, and we
are only finding such improvements that can be obtained by differ-
ent bow configurations. We would not be led to such improved ver-
sions of the design that necessitate changes throughout the fore-
body, and might result in bulbless forms.

Generally speaking, the fact that two selection techniques
are used, the second of which is of less generality, somewhat ob-
scures the picture. The Inui and Pien approach favors bulbs because
it uses them to correct for insufficiencies in the main hull, but
this does not allow the conclusion that there are no equivalent

bulbless hull shapes.

2.5 Streamline Tracing.

When the optimal singularity distribution is known the shape
of the hull must be determined. There is no shortcut relationship
between singularities and hull shape like for the Michell ship so

that the contours of the body must be found by tracing the cloéing

- 22 -
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streamline around the singularities. The differential equation of

a streamline is

Ax_ _ 2y _ Az (28)

Mf(/(,‘vq'h/

From this the streamline itself can be traced by the Runge-Kutta

method or similar approximate integration procedures. The stream-
lines inside the closing streamline end on the singularity surface,
and it takes a few trial and error steps before the starting point
of the'closing streamlines can be estimated properly.

The velocities u, v, w are induced by the singularities on
the rhombic body. The following velocity expressions can be de-
rived (compare the elaborate derivation and discussion by H. C. Kim

in ref. (7)).

éﬁ-—-/——Z’Z’m'/]%df'//j‘—y—’?ﬂ"f/‘ft"/é

_/‘

s g Zay|[ G dg G 7) 6 2E oo
W;’“Zg/f/'é"“’g 1y g AE

R :Z:;x—§/f// 7/ ‘ol - f/_/

the distance from the source point (é?,f7,§f)

on the singularity surface to the field point (x, y, z)

at which the velocities are to be determined

_23_



and é?/ ==JﬂgZ‘==

= the slope of the singularity surface at the

, &
il 4N

source point with respect to the.}ﬁ direction.

-%—%5 122,47/ whee 4/}.;/,*0/7 ) //

nd furthe 30)
.ZT .leEZ;EE?j a<;§j 62[' j{?’ (31)
4r J /
7?(&w' 4/
Z/Z;’(xo /a(é

L]

=14
/I ;(y -y ) A8 (52
and, as shown in ref. (6) .

W = ZJ(ZT -Z;+// 50/5

The evaluation of these integral expressions and hence the tra-
cing in general are most time-consuming processes, in the order
of magnitude of ten to twenty minutes computing time per waterline
with the IBM 7090 computer. Many measures have therefore been ap-
plied here to organize the computer programs in the most time-sav-
ing manners;

1. A fast and accurate integration subroutine based

on the Romberg method (ref. (8)), was written.

2. Since the integrands in the three velocity express-

ions (32) are similar, the integration was organized in

a parallel manner so that the common factor had to be

- 24 -
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determined only once.

3. The inner integrals 'j of eq. (30) were calculated
beforehand in tabular form and stored on magnetic tape.
The interpolation of these values during the subsequent
evaluation of the expressions (32) in tracing is about
twice to three times faster than a direct computation.
The time required to compute the tables and the access
times to the tapes must be added as overheads. But when
the number of coefficients aij was greater than 5, defi-
nite savings were obtained. Every optimized set of coeffi-
cients aij forms a case stored on tape separately. But
the integrals Ij are also saved on tape so that parameter
variations that result in changes of the aij can be exe-
cuted conveniently at any later time.

Although these measures have resulted in appreciable reductions
of computing time the present time requirements are still much high-
er than desirable. Further reductions can be achieved however. In-
stead of computing a great number of flow velocities along every
streamline, it is possible, e.g. to compute only a few selected func-
tion values at important locations and to crossfair this array man-
ually so that enough data are then available for the tracing routine

to interpolate.
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3. -Results.

The general status of the project is that all basic programs
have been completed and checked out, but the time was not sufficieHE
to complete the given design task. This would require further sys-
tematic evaluation of the existing possibilities along with the in-
troduction of proper restraints (flat bottom).

The examples for which calculations have been carried out so
far have the basic properties dictated by the Maritime Administration
design fask, but they also happen to be in the range for which some
data were published by Pien in ref. (2) so that the results could
be compared and checked conveniently.

The design speed-length ratio was selected as VK 7I7= 1.05
for the test example (Froude number F = 0.32). Since, however, ex-
perience shows that the wave resistance curves computed by theory
are shifted to somewhat higher speeds in comparison with tests,
the actual calculations were carried out for VK/(/I7= 0.92 (F =
0.28). The following parameters were selected in accordance with
Pien's calculations to facilitate checking:

Draft - length ratio of the rhombic body
t = 0.03

Slope of sidewalls of rhomb

¢Q= 0.12

Number of terms provided in surface singularity polynomial

j=0,...,3 Maximum of 20 terms: actually
i = l,...,Sf only up to 10 so far.

Number of terms in line singularity polynomials at bow
j=0,...,3



For this set of parameters the wave resistance coefficients Cijkl
of the main hull, eq. (8) and (8a), were computed first. The in-
tegrals (6a), (6b), (6c) which are required for this purpose were
tabulated on punched cards for the important range of © - values,
and an interpolation routine was written to use these tables in
evaluating (8a). Table 1 shows a set of the coefficients Cijkl
obtained for the same case that Pien has published in ref. (2).

| It has been mentioned in section 2.2 of this report that there
are some differences between Pien's assumptions and ours, and that
under our. assumptions the Cijkl must vanish whenever (i + k) is
odd. There are also some other differences in the results. The
fact that some.of the Cijkl are negative here while all results

are positive in Pien's work is of minor importance because he prob-
ably nondimensionalized his values differently. Some of the coeffi-
cients are in fairly good égreement, in particular for i =1, where
only a few percent difference occur which may be attributable to

integration inaccuracies. Other results differ more substantially,

e.g. when i = k = 4 (Pien up to about 45% lower). When this was

d}scovered the results obtained here were checked very carefully
by_alternative methods and by increasing the accuracy of integra-
tion repeatedly. The checks confirmed the validity of the figures
obtained, but gave no indication what the reason for the deviations
in Pien's results may have been.

The optimal singularity distribution was determined for two

examples of polynomial expressions:
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CASE A: /k7/?;/<;//=:6ae"4§ *‘720 'é?“i'égo' §?37442?;,'éf?i‘6207ffpf;3)

which is the case of a uniform draftwise singularity distribution

and

v / 2 23 }; Gr gyafof-
CASE_B: /f,g/’ 4/05*4205*4305:9”5? + T, (34)
+/ﬂ,, 5"“4&/ 5&7‘42/5*ﬂl’" 5 1y f/éﬂ

in the first case, five Ritz conditions of form eq. (10) are

obtained

Crroo 1o+ Carag "y + (3/00'4307" (waa"?ya" 4700 Ay =0
C/a 00 '4/0 7 (ZZM Aoy * C&Zaa'430 +C‘raoo'4?o "'(Qoo Ao = &~
Crz00"Quo * (3300720 # (33 00" 430 +'(§300 o * Crzap D50 :&(‘35)

C/‘No"Q/o * CZ?M/ Q20 +63‘1N A3, 1‘4%)0 Ayy +Cippy ‘Qro =0
Crrop'@ro* Corpe @oo * Casoo Q0™ Cyrog App * 700 Qe =0
In matrix form with numerical values inserted, this becomes:
- ) ) A ;
o.111416 o gt 0 06BN @]
Z 0996107 0 0.9726° 0 | |l
0,939 fo s 0 0,807 /0'3 ) . 0.64):/0 | 4y, -
0 0.970:/0° 0 0,99 10 0 Gy
- & 059600° | |
-—OI 6?‘2'/0 0 ﬂ’éfﬂ '// 0 I} B J‘”J
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The coefficient matrix is symmetrical. |t can alsc be seen that
in the present case row 2 and row 4 are contradictory conditions.
Hence, it is necessary here to eliminate one of these two equations
and to replace it with a restraint.

The "displacement' restraint, eq. (10) is chosen for this

purpose, e.g. V = 0.35:
_ L L /[, +L L - 37
/'- S Q/a ""? 420 4’? 430 4 @fa + 7 4}.0 = (0,35 (37)
It now has to be decided whether eq. (37) shall replace the second
or the fourth row of the system (35). Both alternatives were in-
vestigated. The solutions are:

When (37) replaces row 2 (Case A l)

= RGN Bp= 402} By == 00105 Bg==3.43 4y =577 '

When (37) replaces row 4 (Case A II)
/f7/0 Grp= 2 [ A3y= =300 (0% Py = =403 ] Ao 140107

The resulting sungularlty functlons are plotted in figure 3. Only
Case A | yields a positive value of the singularity function at the
bow. Case A Il is not feasible because the entrance angle of the
waterlines would be negative.

This means that under the restraints assumed only one feasible
eolution remains. |t is, however, likely that with more restraints,
e.g. one for the entrance angle, we could have obtained more than
one feasible solution, by using the same principle of cyclic perm-
utation.

The hull of Case A | wes traced, and is shown in figure L.

It has the following characteristics:
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L/ = 6.4

B/y = 3-25
Cg = 0.645
C =0.766

It is similar to Pien's first model 4946, ref. (2), in its overall
appearance. But the differences in wave resistance coefficients
Cijkl have caused a distinct displacement distribution longitudin-
ally and the cusp in the waterline at the bow is notable. The feas-
ibility of adding a bulbous bow has not yet been investigated. It
would likewise be of importance to test this hull shape experimen-
tally to examine the success of the method. The next stage of de-
-velopment will also necessitate bottom singularities to generate
still more practical shapes.

Case B with ten unknown polynomial terms has been treated
in the same manner as Case A. The ''displacement' restraint, eq.
(10) with Vv = 0.35, obtains the following form:
/’fﬁm v";/ 4, #{_ 4, 4—3—/49;” #-7/- Ay *ZLQ// +£./42/ 4—/;/ 4, +/~ZZ 4, %145_/':3%{5‘

This condition was substituted for each of the ten Ritz conditions
consecutively and ten solutions were obtained. Only three of these,
however, had positive singularity strength at the bow. These three
promise to yield feasible hull shapes with positive entrance angles.
The corresponding singularity distributions are plotted in figure 5
for the draft at the bottom of the rhombic body. The other drafts
would look similar. It is interesting to note that the three sing-

ularity distributions differ greatly. Case B X has the most
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pronounced bulbous bow singularity peak, incorporated in the

main hull system. Case B VIII| probably has a medium or small size
bulb while Case B VI is most likely associated with a cusp shaped
waterline entrance like Case A |.

The wave resistance coefficients for these distributions are
;Il low, but they differ, and surprisingly with a tendency in favor
of the bulbless shapes. This, however, should not let somebody
leap on the conclusion that the cusp shapes must be favored, for
the hulls have not been traced yet; it is possible that they differ
in displacement, too, although the ''displacement'! restraint in the
same.

In any event, the question posed by these results is whether
there exist a number of quite distinct shapes with good and almost
equivalent wave resistance properties. We feel that this is a
very important question from a practical point of view, and much
attention should be devoted to it in the continuation of this work.

The far rear elementary wave amplitude functions both for the
main hull, i.e. As?j(G) and ACﬁj (9), eqs. (17) and (18), and for

the source and dipole lines at the bow, i.e. A (9) and ADj (9),

Sj
egs. (22) and (23), were computed for a few cases. Table || shows
an example of the results. These function values conform fblly
with Pien's results under corresponding conditions.

A few optimal bulb singularity distributions have been de-
termined for some of the main hulls which were considered so far.

But since these hulls have not been traced as yet, and no evalua-

tion can be made it is considered too early to present the results.



L. Conclusion.

The task of designing practical low wavemaking resfstance hull
shapes in the speed range of l,é=VK//7:t£ 1.2 has been attacked
by means of continuous off-centerplane distributions of sources
and sinks located on the surface of a rhombic body. The possi-
bility of adding special bulb singularities is provided.

The status of the projeét is that all basic programs have
been completed and checked out; the time was, however, not suffi-
cient for completing the systematic evaluation of the design possi-
bilities. A flat bottom restraint still needs to be incorporated.

Our hull shape selection methods differed somewhat from those
used by Pien. Consequently, the calculations carried out here lead
to different hull shapes. One example that has been traced can be
compared with Pien's model 4946 theoretically. It is hoped that
tests will be carried out under future contracts so that the results
can be examined experimentally.

It would be desirable to extend the work into the direction of
more systematic exploration of favorable hull shapes. This should
be done by means of a faster tracing procedure which can be devel-

oped along the lines suggested by current experience.
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Table 1

TABLE OF WAVE RESISTANCE COEFFICIENTS C{I,JsKsL)
0,SLOPE OF RHOMBIC BODY ETAD= .1200

HUOMB

L= .03

P B E E EEEEFENNENNE N N N N N N N _J

«19602E-04

ClIyJsK,L) TKJL C(I,J+K,L) IKJL Cl{I+J,K,L) IKJL Cl{I+JsKyL)
.I1138E-02 1200 0 1300 «93939E-03 0 1500 <69214E-03
—+46219E-03 1201 Q 1301 -+38989E-03 .0 1501 —+28130E-03
T 28675E-03 1202 0 1302 +24092€-03 0 1502° «17209€-03
—+20677E-03 1203 0 1303 ~.17328E-03 0 1503 —«12309E-03
«20291E-03 1211 0 1311 < 16988E-03 0 1511 «12047E-03
-«12726E-03 1212 Q 1312 -+10613E-03 0 1512 ~«74655E-04
T .83080E-04  TT12I37 0 TTI313TT T T6666E-04 0 T TTTIBI3 T U53886E-04
«72252E-04 1222 0 1322 «66534E-04 0 1522 «46463E-04
T-.52449E-04" T 1223 0 13237 "= 48Y45E-04 0 TUTTIS237 T=033482E-04
«38105E-04 1233 0 1333 +34868E-04 0 1533 «24153E-04
+99590E-03 2300 0 2400 «97168E-03 0
T =e41370€-0377 72301 TTT 07T 72401 T=U40803€6-03 o
+25551E-03 2302 [ 2402 «25263E-03 0
- -<18368E-03 " 2303 0 2403 -.18182€E-03 0
«17999E-03 2311 0 2411 «l7824E-03 0
-« 11232E-03 2312 0 2412 -.11T43E-03 0
+81079E-04 2313 [ 2413 «80520E-04 0
«7T0325E=04"""72322 0 2422 . 69887TE=04%4 0
~+50844E-04 2323 0 2423 =+«50578E-04 0
TUBETETE=04 T T2333 T T TT0 T T 2433TT U366 1E-04 T 2533 T T
+85153E-03 3400 0 3500 .68001E-03
—+35201E-03 3401 0 3501 -.27618E-03
T L21T664E-03 T 3402 TTTTTTTOTTTTTT 3502 77 J16854E-03
—«15543E-03 3403 0 3503 —«12035E-03
TTOGL5225E=03 7 T340 T 0T T U381 T UTUTLTTIE-03 T
—+94759E-04 3412 0 3512 ~.72743E-04
«68306E-04 3413 0 3513 «52226E-04
«59200E-04 3422 0 3522 «45153E-04
—e42751€~04 " 3423 0T T 735737 TT=U32486E-04
«30900E-04 3433 0 3533 «23397E-04
«99379E-03 4500 0
—«42107E-03 4501 0
+26148E-03 4502 0
" —.18845E-03 " T 4503 TTTTTOT T
«18481E-03 4511 0
T=CIN5TTE-03T TTR512 0
«B3751E-04 4513 0
- 12743E-04 4522 0
—«52701E-04 4523 0
TU38209€-04 T T 45337 T 0
C «59577TE-037 7T
—«23796€E-03
«14428E-03
—«10265E-03
T T J10028E-03
—+.61628E-04
_____ «44104E-04
-38055E-04
—e21296E-04
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= .28, 2T/L = 03, ETAO = .12

ANGLE 10.0 DEGREES T

A(J)=VECTOR FOR SDURthLINF DISTRIBUTION

0

1 - ,2 - 3 ,‘ : o .

oS
TFTY

S1053753E 00

~e4923195€-01

«3171483E-01 —+2330168E-01

 ALJ)-VECTOR FOR DIPOLE LINE DISTRIBUTION
b0l 3 I
F(J) -.6324035€ 00 <3188229E 00  ~-.2053832E 00 .1509002E 00
CAS(I,J)~ AND AC(I,J)-MATRICES FOR MAIN SOURCE DISTRIBUTION ON DIAMOND o
4o comp.RUIELIY Fli=z, ) FUI=3,0)  FlI=4,d) RARGEIELE S
0 ASIN .1627911E-01  .15501035-01 +1394485€-01 .1183413E-01 +9615940E-02
T 0 ACOS 2516037602 .5032075E-02 .7187016E-02 «B619T64E-02  .91422776-02
1 ASIN  -.76056970-02  -.72421706-02  —.65151188-02  =.5528977E-02  7.4492623E=02 = _
1. ACOS T =J11755071(-02 ~-.2351015E-02 =.3357816E-02 = -.4027204E-02  -.4271325E-02
2 ASIN < 4899529E-02 -4665348E-02  .4196987E-02  .3561723E-02  .28941126-02
2 ACOS —  .T7572525E-03  .1514505E-02 +2163078E-02 «2594293€-02 £2751554E-02 -
3 ASIN  -.3599B07E-02  -.3427749E-02  -.30836326-02 -.2616887E-02 -.2126377E-02
-3 ACOS 5563724E-03"  —.1T127456-02 -.1589268E-02 -.1906092E-02  -.2021636E-02
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