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On the_ Deve lopment of Low-Wave Re s i s tance Hull Forms by Means of
Off-Centerline SingularltaDistributions.

1. Introduction.

It has been one of the objectives of recent research under-

taken at The University of Michigan under contract with Maritime

Administration to develop suitable hull forms for high-speed cargo

liners (Speed range: 1 .001.-2) . This task has been at-

tacked experimental ly and theoret i call] y.

The present report summarizes the theoretical work, which was

done under Task 5 and chiefly under Task 6. By the end of Task 6

the project had not yet reached its final aims, but it was carried

to the point of yielding the first optimized hull form results.

The theoretical work was undertaken as an independent enter-

prise, but with the same practical purpose as the experimental

work. This purpose was the design of technically feasible cargo

liner hulls of good performance in the speed range of 1.0 /g/O

1.2. This is the range of the so-called second hump in the wave

resistance coefficient curve which was in general avoided by ship

designers in the past.

A fresh approach to this problem was encouraged by the success

reached in recent years in the application of wave resistance

theory to ship design by such scientists as inui and Pien, -ref.

(1), (2), (3) and (4). In view of thei r resul ts, It§appears feas-

ible now to find practical low wave resistance hull forms in this

and other "unfavorable" speed ranges by di rect use of the theory.

It seems, in fact, most important to seek the guidance of the



theory when the speed range is "unfavorable".

The application of theoretical methods is further encouraged

because it allows the hull shape selection to be made in a compre-

hensive and systematical way. As a result a much greater variety

of possible hull forms is explored than could practically be inves-

tigated by experiment.

When at the beginning of our work the possibilities of hull

form optimization were examined and the existing techniques were

reviewed the conclusion was reached that the given practical task

could best be solved by means of singularity systems located out-

side the centerplane similar to those applied by Pien in his recent

work, ref. (2), (3) and (4). The main reason for this is that

methods based on centerplane distributions of singularities, or

similar simple concepts, find it impracticable to generate beamy

and full enough hull shapes within the restraints that are imposed

on normal ship forms.

It is true that the off-centerplane distribution technique

as developed by Pien has met with some fundamental objections, the

most serious being raised against the use of linearized wave resis-

tance theory for "fat" ships, and with regard to the uniqueness

of the solution. (Cf. the discussions of ref. (3) by Newman and

by Eggers).

The question whether nonlinear effects are of such magnitude

and type that their neglect seriously impairs the optimization of

"fat hulls" cannot be answered on a purely theoretical basis at

the present state of scientific knowledge. It seems plausible at
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least, that the wave pattern of some nearly optimal hull forms is

in better conformity with the linearized free surface condition

than that of a hull form that is not optimal in wave resistance.

The uniqueness problem can also not be resolved before satis-

factory nonlinear solutions to the wave resistance are found. It

should be no surprise indeed that there are several linear approxi-

mations, i.e. several ways of representing a hull by singularity

systems such that the linear free surface condition is satisfied.

These distributions are associated with different approximation

errors so that they lead to different wave resistance predictions.

But the working assumption usually made in optimization work

is that the classes of singularity systems that are used, while

they may differ in wave resistance prediction, still lead to equi-

valent and practically acceptable hull forms. This certainly does

not hold for some misconstrued singularity systems; whether any

particular system is suitable for optimization work or not, can

presently be judged only by its practical success.

In conclusion, although some of the objections raised deserve

further scientific attention they do not give any cogent reason

why the off-centerline optimization method should fail. This is

a sufficient pragmatic justification for examining the usefulness

of the method as an engineering tool. No other consistent optimi-

zation technique by which to generate full and beamy hulls is in

existence. Optimization based on nonlinear wave resistance theory

is not yet feasible at present. The off-centerplane distribution

method on the other hand has already led to some encouraging re-

sults (4).

- 3 -



Since the purpose and approach of this study are closely re-

lated to Pi en' s work the differences are mainly in scope and empha-

sis. The project was more limited here in its objectives and fi-

nancial support. The work was begun with just one specific design

task in mind. Computing time was an essential cost factor and

much attention had to be devoted to the organization of computer

programs in the most time-saving way without sacrificing accuracy.

There are also a few basic differences from Pien's approach

In procedural respects as will be discussed in more detail in

sections 2.2 and 2.3 below.

'Ur

I

i
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2. Mathematical Formulation.

A brief outline of the general procedure of hull optimization

is given by the block diagram in figure 1. The assumptions and

steps will be explained in more detail in the following, but with

no emphasis on derivations since most of these can be found in the

work of Havelock (6), Inui (1), (5), Pien (2), (3), H. C. Kim (7)

and others. The original steps will be described more elaborately.

Wherever possible Pien's notation has been used.

2.1 Singularity Distributions for the Main Hull.

The singularities are arranged outside the centerplane and

somewhat inside the hull surface so that sufficiently full and

beamy shapes can be generated. In order to deal with a relatively

simple configuration it can be assumed that the singularities,

i.e. the sources and sinks, are spread continuously over the four

vertical side planes of a rhombical body as shown in figure 2.

The coordinate system is Cartesian with the origin amidships in the

load waterline. The rhomb is symmetrical forward and aft, and the

angle of inclination of each side plane relative to the centerplane

is .tan . The coordinates are nondimensionalized, using one half

of the length of the rhomb:

4/ / (1)

The situation is illustrated in figure 2. The coordinates x, y, z

of a field point, when used subsequently, are normalized in the

same manner.



[BLOCK DIAGRAM OF OPTIMIZATION METHOD

ASSUMED SINGULARITY DISTRIBUTION (MAIN HULL):

WAVE RESISTANCE COEFFICIENT:

STEP 1: CALCULATION OF Cij kl

STEP 2: OPTIMIZATION OF MAIN HULL

Cond i t i ons:

0 w(Ritz conditions)

tg W-_.Wy, (Restraints)

STEP 3: FEASIBILITY CHECK OF BULB

SINGULARITIES ON THE BASIS OF

HAVELOCK'S FREE WAVE AMPLITUDE

EXPRESSIONS.

STEP 4: TRACING OF STREAMLINES

BY RUNGE-KUTTA METHOD

f

Figure 1
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9
Figure 2

Coordinates and rhombic body on whose sides

the singularity distribution is arranged.
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The singularity distribution is thus located on the surface:

i -tv -(/-/6/) /r

and its intensity is expressed by the polynomial:

VA7- (2)

which is normalized by unit ship speed, and is therefore dimension-

less. The total singularity strength must vanish (body closure

condition) :

s(i2a)

The magnitude of the coefficients a is to be determined from the

condition of minimal wave resistance within the given restraints.

For this purpose the wave resistance coefficient must first be ex-

pressed in terms of the a.

2.2 Wave Resistance Expressions.

The wave resistance associated with the source distribution

of eq. (2) can be written as follows, ref. (2)

whr(3)
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with

r

aKOC F=y L

These expressions are practically the same as in ref. (2) except

that PLQ, are truly dimensionless which has resulted in the

factor /16 in eq. (3). The integrals in (3a) and (3b) must be

taken over the positive half of the rhomb only.

The wave resistance coefficient is correspondingly

______ / 7

Let

p op~ t 62 (5)

where
SL Ira o7'./,

cYPJ J(

CC
. e c D - ecp

(S/=' T56

Let further

(6)
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so that:

o
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(6c)

)
Then, if the eqsa (5) through (6d) are substituted in eq. (4):

where

/

z ' E

-2g. '~ki

(7)

(6a) can be evaluated by the fo

(8)

(8a)

The integral ]]owing closed express-

ions: 0 30

&a

zoom
monk

seGz0 p(le
I-Al

d

(9)

(00 /) 67,010

Gay

e

The i nteg rals;Iand2 jcan also be evaluated in closed form. P i en' s

eqs. (44) and (45) in ref. (2) are immediately applicable since
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his integrals and are identical to andifX' , respec-

tively.

It shoul d be noted that A' vanishes whenever i i s an odd nu

ber because in that event the integrand is an odd function of

with respect to the origin. Xe vanishes for even values of i.

Consequently, whenever an odd value i occurs in comb i nat i on with

an even value of k in eq. (8), or vice versa, so that the sum of

the two subscripts i and k is odd, the integrand of (8a) vanishes

and Cijkl is zero in this event.

This result is not in conformity with Pien's tabulated wave

resistance coefficients Cijkl published in ref. (2), Table 1.

There, all coefficients differ from zero.

This was a puzzling discrepancy at first since the equations

used here to compute the coefficients Cijkl were identical to those

given by Pien in the same reference. But it could be clarified

in a later discussion with Pien that the Cijkl tabulated in ref. (2)

are only forebody wave resistance coefficients. This means, as

we presume, that the integrations for Xpg and XQ, eqs. (6b) and

(6c), were carried from = 0 to = 1.0 only.

The motivation in applying forebody wave resistance coeffi-

cients was clarified in Pien's subsequent paper, ref. (3). We
quote: The most frequent use made of the theory in ship

u design problems is to optimize the wavemaking resistance
of a whole ship wi thout checking the forebody free-surface

disturbance alone. it is conceivable that the optimum

I



value so obtained might be attributable not to the fact

that both the bow and stern produce very small free waves

but rather to the favorable theoretical interference ef-

fect of large bow and stern free wave systems. Due to

the viscosity effect, the existing theory cannot accur-

ately predict either the amplitude or the phase of the

stern free waves, so that the favorable interference ef-

fect as predicted by the theory may not always be realized

in practice, thus leading to a large wavemaking resistance.

Therefore, it is rather important to minimize the forebody

firee-surface disturbance. "

Thus,. if we interpret Pien's statements correctly, he has apparently

used only the forebody singularity system and forebody wave resis-

tance coefficients Cijkl when searching for a singularity system

producing minimal wave resistance. The afterbody singularity sys-

tem was disregarded in this optimization step. The same procedure

had also been used and recommended by anui, ref. (5), but with the

Warning that it must be limited to singularity distributions with

moderate interference effects. Generally, the wave resistance can

be represented by a term due to the bow half singularity system,

one due to the stern half singularity system, and an interference

term. Optimizing the forebody separately can lead to consistent

results only if the interference term is negligible.

This condition may have been satisfied in the cases treated

by Pien and Inui, but it becomes too restrictive when other types

of singularity distributions are used.

- 12 -



I t was therefore decided here to follow, for the time being,

the approach that bases the optimization on the wave resistance

coefficients of the total singularity systiem.

2.3 Optimization of the Main HulL

Every singularity distribution of some assumed type describes

a great number of possible hull shapes which can be generated by

varying the free coefficients a" 1 of the singularity strength func-

tion, eq.. (2). It is true that the variation in shape is limited

by the number of terms assumed and by the location of the singular-

ity system. But there are normally some hull shapes of low wave

resistance even within the most limited family of singularity dis-

tri butions.

Wave resistance optimization techniques have the aim of selec-

ting a singularity distribution within the family that results in

the lowest wavemaking resistance compatible with all practical re-

straints of the design.

This problem can be formulated more rigorously in the follow-

ing manner: The wave resistance is a function of the whole set

of parameters a. of the singularity function:

This function describes a "surface" in the multidimensional para-

meter space, and we want to find a minimum on this surface that

compl ies wi th the g iven res trai nts. The absol ute mi nimum exi sts,

but it is trivial because Cw is zero, of course, when all para-

meters a.. vanish, but then the displacement is zero, too. Since
ij

Cw is a continuous function of every parameter, however, there must

- 13



also exist at least one relative minimum at which the displacement

differs. from zero, and the restraints are satisfied.

The restraints are related to certain prescribed properties

of the singularity distribution or of the hull shape. They are

sometimes simple, sometimes complicated functions of the parameters

a... The following restraints e.g. are of linear, i.e. relatively

simple type:
-e/

B =

BT= (10)TL)(Y/

T=

These restraints are expressed in terms of the singularity distri-

bution, but they bear a certain physical meaning by their relation

to displa.cement, midship area, and entrance angle of the waterlines.

The scale of these relations must be established by cal ibration from

case to case.

In order to obtain a straight keel or a flat bottom and simi-

lar features, more complicated restraints must be introduced.

Two equivalent solution techniques exist for solving the opti-

mization problem with restraints. The elimination method makes

use of the restraints by substituting them into the Cw - function

so that the number of free parameters is reduced by one per resraint.

The minimum of Cw is then sought in terms of the remaining unre-

stri cted variables in the usual manner of an extreme problem or

- 14



free variational problem. The conditions for a minimum are

V r, a ' r( 11 )

This results in a linear system of equations for the unknowns a ..

The parameters previously el iminated can be found by substitution

into the restraints. The approach outlined above was used by Pien,

ref. (2).

An alternative solution technique is the method of Lag rangian

multipliers. According to this method, ref. (9), the restraints

are written the form

/a,/a2//0/ ''t62 ' ' $( 11 a)

and one undetermined mul tipl ierAi s introduced for each restraint.

The optimization problem with restraints can then be transformed

into a free variational problem of the modified function

The minimum of this function is sought by means of

This yields as many equations as there are a.., and the restraints,

eq. (lla), furnish the missing equations allowing to find all un-

knowns includ ing the /g

T he two me thods may d i ffe r somewhat f rom nume r ical po in ts of

v iew, but they s houl d bot h l ead to equ ival en t sol ut ions of t he op-

t imi zat ion probl em. Al though thei r use i s recommendabl e for di rect

optimization purposes none of the two methods was used here because

- 15 -



a somewhat different question was posed in the exploratory stage

of our work that is reported here.

Whenever the attention is fixed upon finding the optimal hull

one tends to overlook the variety of other favorable hull shapes

that exist within a certain family. The pure optimization methods

do not reveal the full picture. But this would be desirable, for

among the second-best shapes there may be some that are superior

to the others from the standpoint of seagoing ability, propuwsive

performance, ballast performance or the like. If the wave resis-

tance of these hulls is still acceptably low one may choose the

most suitable shape from these secondary aspects.

There are certainly many systematic ways of exploring the

wave resistance properties of a hull shape family under given re-

straints. The establishment of a comprehensive evaluation method

should be given some more thought in the future.

In order to generate just a few other hull shapes, satisfying

the restraints, but maybe somewhat less than optimal, the following

procedure was applied here: Only one restraint was used, the di s-

placement restraint of eq. (10). Then in eq. (lla) all minimum

conditions but one were satisfied; the disregarded condition was

replaced with the restraint so that a determinate system of equa-

tions for the a.. was obtained.

The decision which minimum conditt-ion to ignore i s of course

arbi trary, and i n order to exhaust the poss ibil1i ti es, the condi tion

being replaced was varied in a cyclic manner. In this way a whole

set of distributions was obtained all satisfying the same displace-

ment restraint, but resulting in quite distinct shapes. The

- 16 -



procedure and the results are discussed further by an example be-

low.

It is not claimed that the hull shapes so obtained have to be

anywhere close to optimal. By disregarding certain minimum condi-

tions we have ignored the influence of the associated coefficients

upon the wave resistance in our "optimization" method. But our

primary purpose is only to generate a set of distinct shapes that

differ in a systematic way.

The wave res i stance properties of these hul l s have been eval-

uated for only a few examples, which are discussed below. The re-

sistance seems to be favorably low for a variety of different shapes

But this must be interpreted with caution because the hulls have

not been traced yet, and even though the displacement restraint is

the same the displacement may differ.

2.4 The Selection of Bulbous Bows.

Although the singularities for the main hull are selected on

the basis of optimum considerations there is sometimes room for

improvement because the assumed type and location of the singular-

i ties cover only a limi ted scope of variations. I t can in partic-

ul ar be checked whether the results become bet te r if a bul bous bow

is fitted to the main hull.

riIt was I nui 's o r ig inal i dea to appl y Havel ock 's concep t of

the far rear free wave pattern to answer this question and, in fact,

jto des ign bul bs, ref s. (1l) and (5 ). P ien has devel oped t h is s cheme

further, and it is along these lines that we proceeded, ref. (2).

Havelock, ref. (6), has shown that the wave resistance of a

-17-



hu I can be expressed as

Sf/ p(12)

I 
Ii

where Ac (9) and As (9) represent the cosine and sine components

of the "elementary" free wave amplitudes in the far rear. The ob-

jective in low wave resistance hull design is to minimize these am-

plitude functions in the important range of angles 9, ie where

the factor cos 3 9 is still of significant magnitude. This can be

achieved by adding bulb singularities to the main hull singularity

system.

Pien has derived expressions for the amplitude functions pro-

duced by the main hull singularities, and the following are the

equivalent equations in dimensionless form

-- %. 21k/?4
_/Oz ~t -/ P 2( 3

Let

. -' (15)
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+/ r

Then

(11)

~P

The integrals (15) and (16) can be written so that it becomes

apparent which contributions are caused by the bow, midship, and

stern wave systems respectively. It is the idea of Inui's and

Pien's work to use the bulb singularities to cancel out only those

free waves that are caused by the forebody of the main hull. The

rest is ignored because its relation to the bulb waves is less

immediate, and because it seems to be the practically less signi-

ficant part.

If therefore the functions X and X are replaced with the

part due to the forebody only one obtains

~ ~ -(19)

p - (20)

which conforms with eq. (48) and (49) of ref. (2). The functions

Ci(1) and S.(1) are defined there too by a series expression, eq.(42)

19



C 7( (20a)

b t A ., lp 20ab)

r5 6'/ 4o r le..

It is now assumed that vertical lines of sources or alterna-

tively of doublets are arranged along the front edge of the rhombic

body inside the hull in order to generate bulbs. Their strength

is

Source line:

Doublet line: (21)

The corresponding free wave amplitudes are

Source line, cosine component:

-- =2 S zj(22)

Doublet line, sine component:

4/e ' eZF g (23)
The -s ine componen t of the sour ce i ne, and t he cos ine componen t

of t he doubl et i ne van ish.

I n many cases i t i s e it he r t he s ine o r t he cos ine componen t

of the mai n hullI f ree wave ampl itude fun ct ion t ha t i s p redomi nan t

- 20 -



in the wave resistance expression, eq. (12). The resistance can

then be minimized simply by using only a source or only a doublet

line at the bulb. If e.g. the cosine component of the main hull

system is negligible it is sufficient to minimize the integral:

I=J§4&- e e6z3&6/6' B(24)

This can be achieved by substituting eqs. (20) and (23) into (24),

and by solving for those doublet strength coefficients d that make

(24) a minimum. One equation is obtained for every value p of the

subscript j:

W2N)
0p,(25)

a p a d 3

Let

The system

comes:

77 o

(26)

of equations to be solved for the coefficients d. be-

I bOb

I n a practical case the amplitude functions AS (9) and A (9) of

the main hull are discussed first. If one of them is excessive the

appropriate bulb singularity, either a source line or a doublet

- 20 -



line, is selected, and its strength distribution is determined using

the far rear wave amplitude concept as expressed in eq. (27).

It should be pointed out that this concept, while it does pro-

mise improvements over the main hull, differs from the optimization

concept used in general in optimizing the main hull. The principal

reason for using this alternative method is its simplicity. It

would be tedious, although not impossible in principle, to optimize

the bulb by the extreme value and restraint method as before.

Despite the practical merits of this bulb selection method it

should be realized that by the type of singularity we choose we

are limiting the changes to the neighborhood of the bow, and we

are only finding such improvements that can be obtained by differ-

ent bow configurations. We would not be led to such improved ver-

sions of the design that necessitate changes throughout the fore-

body, and might result in bulbless forms.

Generally speaking, the fact that two selection techniques

are used, the second of which is of less generality, somewhat ob-

scures the picture. The Inui and Pien approach favors bulbs because

it uses them to correct for insufficiencies in the main hull, but

this does not allow the conclusion that there are no equivalent

bulbless hull shapes.

2.5 Streamline Tracing.

When the optimal singularity distribution is known the shape

of the hull must be determined. There is no shortcut relationship

be tween s ingul ar it ies and hullI shape i ke for the Mi chellI sh ip so

that the con tour s of the body mus t be f ound by t rac ing t he cl os ing

- 22 -



streamline around the s i ngular i ties. The differential equation of

a streamline is

(28)

From this the streamline itself can be traced by the Runge-Kutta

method or similar approximate integration procedures. The stream-

lines inside the closing streamline end on the singularity surface,

and i t takes a few trial and error steps before the starting point

of the closing streamlines can be estimated properly.

The velocities u, v, w are induced by the singularities on

the rhombic body. The following velocity expressions can be de-

rived (compare the elaborate derivation and discussion by H. C. Kim

in ref. (7)).

71~~~~4- 
1 I 0f0 

/ 7( 

9

(29

where

= the distance from the source point (Yhf)

on the singulari ty surface to the field point (x, y, z)

at which the velocities are to be determined

- 23 -



and -

= the slope of the singularity surface at the

source point with respect to the - di rection.

Let { /<

and further 30)

I t(31)

II

(32)

G-I
and, as shown in ref. (6)

me.,

The evaluation of these integral expressions and hence the tra-

cing in general are most time-consuming processes, in the order

of magnitude of ten to twenty minutes computing time per waterline

with the IBM 7090 computer. Many measures have therefore been ap-

plied here to organize the computer programs in the most time-sav-

ing manner;

1. A fast and accurate integration subroutine based

on the Romberg method ( ref. (8)), was wri tten.

2. Since the integrands in the three veloci ty express-

ions (32) are similar, the integration was organi zed in

a parallel manner so that the common factor had to be

- 24 -



determined only once.

3. The inner integrals I. of eq. (30) were calculated

beforehand in tabular form and stored on magnetic tape.

The interpolation of these values during the subsequent

evaluation of the expressions (32) in tracing is about

twice to three times faster than a direct computation.

The time required to compute the tables and the access

times to the tapes must be added as overheads. but when

the number of coefficients a.. was greater than 5, defi-
IJ

nite savings were obtained. Every optimized set of coeffi-

cients a.. forms a case stored on tape separately. But
IJ

the integrals I. are also saved on tape so that parameter

variations that result in changes of the a.. can be exe-
IJ

cuted conveniently at any later time.

Although these measures have resulted in appreciable reductions

of computing time the present time requirements are still much high-

er than desirable. Further reductions can be achieved however. In-

stead of computing a great number of flow velocities along every

streamline, it is possible, e.g. to compute only a few selected func-

t,ion values at important locations and to crossfair this array man-

ually so that enough data are then available for the tracing routine

to interpolate.

- 25 -



3. Results.

The general status of the project is that all basic programs

have been completed and checked out, but the time was not sufficient

to complete the given design task. This would require further sys-

tematic evaluation of the existing possibilities along with the in-

troduction of proper restraints (flat bottom).

The examples for which calculations have been carried out so

far have the basic properties dictated by the Maritime Administration

design task, but they al so happen to be i n the range for which some

data were published by Pi en in ref. (2) so that the results could

be compared and checked conveniently.

The design speed-length ratio was selected as VK /T= 1.05

for the test example (Froude number F = 0.32). Since, however, ex-

Perience shows that the wave resistance curves computed by theory

are shifted to somewhat higher speeds in comparison with tests,

the actual calculations were carried out for VK//i7= 0.92 (F =

0.28). The following parameters were selected in accordance with

Pien' s calculations to facilitate checking:

Draft - length ratio of the rhombic body

t = 0.03

Sl ope of s idewallIs of r homb

Number of terms provi ded i n surface s ingular ity pol ynomial

j = 0, ... ,32 Maximum of 20 terms: actually

i = 1,...,5J only up to 10 so far.

* Number of terms in line singularity polynomials at bow
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For this set of parameters the wave resistance coefficients Cijkl

of the main hull, eq. (8) and (8a), were computed first. The in-

tegrals (6a), (6b), (6c) which are required for this purpose were

tabulated on punched cards for the important range of 9 - values,

ard an interpolation routine was written to use these tables in

evaluating (8a). Table 1 shows a set of the coefficients Cijkl

obtained for the same case that Pien has published in ref. (2).

It has been mentioned in section 2.2 of this report that there

are some differences between Pien's assumptions and ours, and that

under our assumptions the Cijkl must vanish whenever (i + k) is

odd. There are also some other differences in the results. The

fact that some of the Cijkl are negative here while all results

are positive in Pien's work is of minor importance because he prob-

ably nondimensionalized his values differently. Some of the coeffi-

cients are in fairly good agreement, in particular for i = 1, where

only a -few percent difference occur which may be attributable to

integration inaccuracies. Other results differ more substantially,

e.g. when i = k = 4 (Pien up to about 45% lower). When this was

discovered the results obtained here were checked very carefully

by alternative-methods and by increasing the accuracy of integra-

tion repeatedly. The checks confirmed the validity of the figures

obtained, but gave no indication what the reason for the deviations

in Pien's results may have been.

The optimal singularity distribution was determined for two

examples of polynomial expressions:
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CASE A:

1, 3

fa (33)

which is the case of a uniform draftwise singularity distribution

and

CASE B: M< , / (u~a eo f ao t ao -o "(34)

in the first case, five Ritz conditions of form eq.s (10) are

obtained

C!/OD' a/o +C
2 ,00 Gz O

-Ic~i o4X30 ,# 4 /OO ' y0 5 /O r rc9

C/ 00 #aip f z2oa 6Z e 0 -f viz oo 30 ¢ v fzoo fo ' ' f.2oo a.ro - "'

6,?00a~ '6, ( 30 0 rco f X3300 "'3o'c 6 a ( cr7oo r4Aso (35)

- cf azd 6 3y 6s~ /-r -o

In matrix form with numerical values inserted, this becomes:

0
a 692c?1oa-

0, 939 - /0- 3

6, 9962"%3
0

0

72 '/&9 
9 /o,8 2W /0

0
0,Y 6'/3

I"

0
661 hfa

(36)
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The coefficient matrix is symmetrical. It can also be seen that

in the present case row 2 and row 4 are contradictory conditions.

Hence, it is necessary here to eliminate one of these two equations

and to replace it with a restraint.

The "displacement" restraint, eq. (10) is chosen for this

purpose, e.g. V = 0.35:

I lf '- 3o / 1 L lw35 (3 7)

It now has to be decided whether eq. (37) shall replace the second

or the fourth row of the system (35). Both alternatives were in-

vestigated. The solutions are:

When (37) replaces row 2 (Case A I):

When (37) replaces row 4 ( Case A II):

The resulting singularity functions are plotted in figure 3. Only

Case A I yields a positive value of the singularity function at the

bow. Case A II is not feasible because the entrance angle of the

waterlines would be negative.

This means that under the restraints assumed only one feasible

solution remains. It is, however, likely that with more restraints,

e. g. one for the entrance angle, we could have obtained more than

one feasible solution, by using the same principle of cyclic perm-

utat ion.

The hull of Case A I was traced, and is shown in figure 4.

It has the following characteristics:
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L/B = 6.4

B/H = 3.25

CB = 0.645

C = 0.766

It is similar to-Pien's first model 4946, ref. (2), in its overall

appearance. But the differences in wave resistance coefficients

Cijkl have caused a distinct displacement distribution longitudin-

ally and the cusp in the waterline at the bow is notable. The feas-

ibility of adding a bulbous bow has not yet been investigated. It

would likewise be of importance to test this hull shape experimen-

tally to examine the success of the method. The next stage of de-

velopment will also necessitate bottom singularities to generate

still more practical shapes.

Case B with ten unknown polynomial terms has been treated

in the same manner as Case A. The "displacement" restraint, eq.

(10) with V = 0.35, obtains the following form:

/3 a o3 ,y/ Q3 1 / IY / a4'40 3 6 11Oz #/(38)

This condition was substituted for each of the ten Ritz conditions

consecutively and ten solutions were obtained. Only three of these,

however, had positive singularity strength at the bow. These three

promise to yield feasible hull shapes with positive entrance angles.

The corresponding singularity distributions are plotted in figure 5

for the draft at the bottom of the rhombic body. The other drafts

would look similar. It is interesting to note that the three sing-

ularity distributions differ greatly. Case B X has the most
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pronounced bulbous bow singularity peak, incorporated in the

main hull system. Case B VIII probably has a medium or small size

bulb while Case B VI is most likely associated with a cusp shaped

waterline entrance like Case A I.

The wave resistance coefficients for these distributions are

all low, but they differ, and surprisingly with a tendency in favor

of the bulbless shapes. This, however, should not let somebody

leap on the conclusion that the cusp shapes must be favored, for

the hulls have not been traced yet; it is possible that they differ

in displacement, too, although the "displacement" restraint in the

same.

In any event, the question posed by these results is whether

there exist a number of quite distinct shapes with good and almost

equivalent wave resistance properties. We feel that this is a

very important question from a practical point of view, and much

attention should be devoted to it in the continuation of this work.

The far rear elementary wave amplitude functions both for the

main hull, i.e. A b(9) and A ij (9), eqs. (17) and (18), and for

the source and dipole lines at the bow, i.e. A (9) and ADj I

eqs. (22) and (23), were computed for a few cases. Table I I shows

an example of the results. These function values conform fully

with Pien's results under corresponding conditions.

A few optimal bulb singularity distributions have been de-

termined for some of the main hulls which were considered so far.

But since these hulls have not been traced as yet, and no evalua-

tion can be made it is considered too early to present the results.
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4. Conclusion.

The task of designing practical low wavemaking resistance hull

shapes in the speed range of 1-,6 VK /7T 1.2 has been attacked

by means of continuous off-centerplane distributions of sources

and sinks located on the surface of a rhombic body. The possi-

bility of adding special bulb singularities is provided.

The status of the project is that all basic programs have

been completed and checked out; the time was, however, not suffi-

cient for completing the systematic evaluation of the design possi-

bil i ties. A flat bottom restraint still needs to be incorporated.

Our hull shape selection methods differed somewhat from those

used by Pien. Consequently, the calculations carried out here lead

to different hull shapes. One example that has been traced can be

compared with Pien's model 4946 theoretically. It is hoped that

tests will be carried out under future contracts so that the results

can be examined experimentally.

I t would be desirable to extend the work into the di rect ion of

more systematic exploration of favorable hull shapes. This should

be done by means of a faster tracing procedure which can be devel-

oped along the lines suggested by current experience.

I
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Table 1

TABLE OF WAVE RESISTANCE COEFFICIENTS C(I,J,K,)_____
FRODE-NO.= 2800,DRAF-LNTH ATOF RHOMBIC BODY 2T/L= .030,SLOPE OF RHOMI BOYEA=*10

IKJL C(I,J,K,L) IKJL C(I,J,K,L) IKJL C(I,J,K,L) IKL CIKLlKJL C(I,J,KL

T0-0o .11138E-02 1200- 0 1300 .93939E-03 1400 0 5W 691E0
1101 -. 46219E-03 1201 0 1301 -. 38989E-03 1401 .0 __151 -280E0

1102~ .28675E-03 1202 0 1302Y .249E-03 - 14020152 170-3
1103 -. 20677E-03 1203 0 1303 -. 17328E-03 1403 0153 -139E0

1111 .20291E-03 1211 0 1311 .16988E-03 1411 0151 127E0
1112 -. 12726E-03 1212 0 1312 -. 10613E-03 1412 0 11 .45E0

1122 .72252E-04 1222 0___ 1322 .66534E-04 1422 0152 463E0
1123 .52449E6~4' 1.I2 T----0_ T323"-. .4i45E04V4----T3--3--8E-.

1133 .38105E-04 1233 0 1333 .34868E-04 1433 0153 243E0

2200 .99590E-03 2300 0 2400 .97168E-03 2500 0
-2-201--'-.41370E-0'3 '-2'-301 02410403E-OS - X501._ .__._.-0_

2202 .25551E-03 2302 0 2402 .25263E-03 2502 0
2-203~ - .18366E-03--.._ 2.30Y3 -......- 0-_12~0~2
2211 .17999E-03 2311 0__ 2411 .17824E-03 2511 0
2212 -, 1.123ZE-03 2 3" W0 7412 -. 1 143 25120
2213 .81079E-04 2313 0 __ 2413 .60520E-04 2513 0
22Z2 * 70O325 E-04_-.-2 322_---.-U- -2422--- 69STE04---- -.Z5-22 -_ .. 0.
2223 -. 50844E-04 2323 0 2423 -. 50578E-04 2523 0

3300 .83533E03 00 0 5-- 68601E-03T
3301 -. 35201E-03 3401 0 3501 -. 27618E-03
3302 .21664E-03 .. 3402 _0.___.-'3502-- -*16B54E-03.

3303 - -. 15543E-03 3403 0 3503 -. 12035E-03
~3311 - 15225E=03-...--3411_ ..0---_ -'3517 771E-03
3312 -. 94759E-04 3412 0 3512 -. 72143E-04

T .7 3T6 -04 34T30 3513 *2226E-04333322 .59200E-04 3422 0 3522 .45153E-04
3323 -42751E04- 3423 - - 0 - 352-3---32486E-04.
3333 .30900E-04 3433 0 3533 .23397E-04

4400 .99379E-03 4500 0
44 207-03 4501T

4402 .26148E-03 4502 0
4403. -18845E-03 4503-

441 .18481E-03 4511 0
._.2_-..11-577E= 3 4T2 ~ _

4413 .83751E-04 4513 0
4422 .72743E-04 4522 0

4423 -. 52701E-04 4523 __ 0
4433__38209E -O4___453_ 0

5500 .59577E-63---
5501 -. 23796E-03

5502 *14428E-03
5503 -. 10265E-03__

- 5511 .f 0028E=63
5512 - .61628E-04
53513 *.44104E-04

I in in"



_ _iE -~1K N N blN _ - -1K1,1

F = .28, 2T/L = .03, ETAO = .12

ANGLE=10.O DEGREES- _- _____

A(J )-VECTOR FOR SOURCE LINE DISTRIBUTION _ _ _ ___

J0._ _ 1_ 2 3_ __ _ _ _

EUJ) .105375 3E 00 . -. 4923195E-01 .3171483E-01 -*.330168E-OI.

-- A(J)--VECT(OR FOR DIPOLE LINE DISTRIBUTION-_ _ _ _____

J 0 1 3FE() -. 68240O35E 00 .3183229E 00 --. 2053832E 00 .1509002E 00

AS(I,J)- ANID AC(I,J)-MA~fRICES FUR 'MAIN SOURCE DISTRIBUTION ON DIAMOND_

J COMP. F(I=1,J) F(I-2,J) F(I=3,J) F(1=41,J) F15J

0 ASIN .1627911--01 1550103E-0Ol .1394485E3-01 .1183413E3-0.6190-2
0 ACES .251603 7(3-02 ._50320751E-02 .7187016E3-02 .86197-64(3-0.1277-0

1 ASIN -760561973- 02 --. 7242170E--02 --. 651.5118E3-02 -.. 5528977E-02 -4963-2
1- ACOS -. 117550717-0.2 - -. 2851015E3-02 --. 335'7816E--02 -. 4027204E3-2--4735E0

2 ASIN .4899529E-02 .4665348E-02 .4196987E3-02 .3561723E-02 .84.2-2
2 ACUS .. __.75725253-03 .1514505E3-02 .2163078E3-02 . 2594293E3-02 .715E
3 AS IN -. 3599807E3-02 -. 3427749E-02 -. 3083632E3-02 -. 26168871-022237-0

3 ACCOS .-. 5563724E1-03 -. 1112745(3-02 -. 1589268E3-02 -. 1906092E3-0 -221K6-2

FW.
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