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ABSTRACT

The method of matched asymptotic expansions is applied to some two- and

three-dimensional problems of a ship-to-wall interactions for the case of the

small lateral separations from the wall(s).

In the two-dimensional model (i.e., no underkeel clearance), the beam and

yaw angle of a ship are assumed comparable to the lateral separation from the

wall and much smaller than the ship length. The asymptotic solutions are con-

structed separately in the confined region between a ship and the wall (chan-

nel flow), in the vicinities of the bow and stern (edge flows), and outside of

the channel and edge flows (outer flow). These asymptotic solutions are then

matched in the overlap regions, and a uniformly valid solution is composed,

which is used to obtain formulas for the side-force and yaw-moment coefficients

for the ship moving close to the wall and in a canal.

In the three-dimensional case of ship motion in shallow restricted water,

the same technique is applied to solve the linearized far field problem on an

assumption that the lateral separation from the wall(s) is much smaller than

the ship length. Some analytical and numerical results are presented both for

steady and unsteady shallow-water motions of the ship close to a bank or in a

narrow canal. These results illustrate the influence of the yaw angle, rudder

deflection, blockage coefficient and Strouhal number on some hydrodynamic

coefficients.
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I. INTRODUCTION

Due to the increase in size of mammoth ships in recent decades, many

waterways that were formerly considered deep and unrestricted have now become

relatively shallow and narrow. As a consequence, even slight errors in traf-

fic control of superships may cause costly damage. Because of the complicated

character of ship-to-wall hydrodynamic interactions, intuitive decisions in

maneuvering are often either misleading or dangerous. Therefore the develop-

ment and operation of rudder control systems should be based on a thorough

examination of the hydrodynamics of the ship in restricted waters.

Due to the problems of scaling, which become very significant in re-

stricted water, experimental investigations are usually difficult and expen-

sive, so that development of the appropriate theoretical approaches becomes

rather important.

Many of the theoretical models of the ship-to-wall interactions proposed

in recent years have been developed on the basis of singular perturbation

techniques, in particular, using the method of matched asymptotic expansions.

This method has proven effective in quite a number of applied problems of ship

hydrodynamics (see Ogilvie (1977)). It often leads to success in those cases

when the convergence of numerical schemes drastically decreases. At the same

time, the asymptotic solutions are oftentimes relatively simple and give the

possibility to predict the hydrodynamic behavior of the ship for a wide range

of parameters and at low computation costs, which is essential for the develop-

ment of rudder control systems.

Some of the theoretical approaches are based on the idea that in shallow

water the flow is asymptotically two-dimensional, even if the clearance is not

negligible compared to water depth, provided that we do not look too close to

the ship. Tuck (1967) extended his sinkage and trim analysis to include the

case of a ship operating in a rectangular canal. Beck, Newman and Tuck (1975)

further extended the analysis to include the case of a ship travelling along

the centerline of a dredged channel surrounded on both sides by shallow water.

Beck (1976) studied the problem of a ship operating at zero yaw angle off the

centerline of a canal of rectangular cross-section in which, due to the

asymmetry, there exists a cross flow under the bottom of the ship. In this

case, the side force and yaw moment are not equal to zero. The cross flow in

Beck (1976) is handled in a manner similar to that developed by Newman (1969)

for the lateral flow past a slender body between two parallel walls.

-1-
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A theoretical model for prediction of lateral forces, rudder effective-

ness, and course-keeping stability of ships in shallow canals was proposed by

Hess (1976). In his model, Hess introduces the effects of yaw angle and rud-

der deflection, although no numerical results are presented.

The theoretical study of the hydrodynamic interactions of ships in shal-

low water, including unsteady effects associated with the vortex wake, was

carried out by Yung (1978) and King (1977).

All of the previously mentioned investigations have shown the importance

of including circulation and the Kutta-Joukowsky condition in the theoretical

model.

It should be noted that the theories developed in the studies cited above

are only valid if the lateral separation between the ship and the other object

(e.g., other ship or bank) is considerably greater than the ship's beam. How-

ever, the situations that are of most practical importance are those in which

the ship moves close to another ship or close to a bank. Some progress in

this direction has been achieved by Yeung and Hwang (1977), who applied the

slender-body theory to the problem of ship-to-ship interactions in shallow

water. They were able to obtain the solution without solving the outer pro-

blem. Their theory is essentially a "near-field" solution. It requires a de-

tailed knowledge of the hull geometry and accounts for it appropriately. How-

ever, as pointed out by the authors, "the computation time for such a mathema-

tical model of ship interactions is sufficiently large so that its applica-

tions to real time simulation appear to be impractical."

Tuck (1974) formulated the one-dimensional (hydraulic) approach for the

case of a ship operating in a very narrow canal, although so far this approach

does not seem to be effective in providing information about the forces and

moments acting on a ship. Tuck (1975) developed some asymptotic "small gap"

solutions of problems for vehicles moving close to a plane surface. His solu-

tions are valid in cases when the gap is very small compared to the lateral

dimensions of the vehicle.

Some other publications exist on the small-gap problems. Strand, Royce

and Fujita (1962) noted the "hydraulic" or channel-flow character of the

tightly-constrained flow between the body and the wall, and Widnall and

Barrows (1970) provided a complete asymptotic solution for the steady-flow

three-dimensional case, assuming in addition that the body's thickness and

camber are small compared to the clearance. Rozhdestvensky (1974, 1976, 1977)

extended this analysis to the unsteady three-dimensional case and also to a
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"non-linear" (camber and thickness comparable to clearance) two-dimensional

case. Tuck (1979) considered the lowest order "non-linear" solutions of some

steady and unsteady two-dimensional problems for the body moving very close to

a plane wall.

In this work we shall consider some problems of ship-to-wall interaction

using the method of matched asymptotic expansions, with the aim to obtain

relatively simple and readily computable formulae for the side force and yaw

moment acting upon the ship.

The report is divided into two main sections.

The first section deals with some two-dimensional ship-to-wall interac-

tion problems, which correspond to the case when the ship is wall sided and

there is no bottom gap. In particular, we consider the problem of a ship

moving in close proximity to a bank or one of the walls of a canal. The

method of matched asymptotic expansions is applied in a way similar to that of

Widnall and Barrows (1970) and Rozhdestvensky (1974, 1976). It is assumed

that the beam and yaw angle of the ship are comparable to the midstern dis-

tance from the bank and at the same time are considerably smaller than the

length of a ship ("nonlinear" approach). For the problem of a ship in a

canal, we shall consider two possible asymptotic solutions, corresponding to

the cases of the canal width (i) comparable to or (ii) much larger than the

midstern distance from the walls.

The asymptotic solutions are constructed separately in characteristic

regions of the flow and then matched in the overlap regions to account for

physical interactions of different parts of the flow and to provide mathema-

tical uniqueness.

The asymptotic formulae for the side force and yaw moment coefficients

for a given distribution of beam and prescribed yaw angle are derived with an

asymptotic error of 0(Z2 ) , where I is the midstern distance from the wall,

normalized by-ship length. Some results of the numerical computations are

presented for the theoretical parabolic-beam distribution.

In the second section, a similar, though linearized, approach is applied

to the two-dimensional far-field part of the three-dimensional shallow-water

flow past a ship in presence of the wall(s). To employ Beck's (1976) far-

field formulation, it is assumed that the beam, yaw, and lateral (unsteady)

displacements of a ship are comparable to the water depth and at the same time

are considerably smaller than the lateral separation from the wall(s). Having

thus formulated the far-field problem, and gathering the necessary information
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from the near field (e.g., the blockage coefficient distribution, etc.), we

then solve the far-field problem by matched expansions on the assumption that

the separation from the wall(s) is much smaller than the ship's length.

Although the practical validity of the assumptions in the second section

must be examined more thoroughly in the future, the method allows us to obtain

relatively simple final results for both steady and unsteady cases of ship

motion in restricted shallow water.

Some formulae and numerical results are given illustrating the dependence

of the hydrodynamic coefficients on such parameters as yaw angle, rudder

deflection, blockage coefficient, lateral separation from the wall, and

Strouhal number.



II. TWO-DIMENSIONAL SHIP-TO-WALL INTERACTION PROBLEMS*

A. Two-Dimensional Steady Flow Past a Ship Close to a Bank

As shown in Figure 1, consider the steady two-dimensional flow of an

inviscid and incompressible fluid past a ship in close proximity to a plane

rigid wall. The coordinate system Oxy is moving together with the ship at

constant velocity; the x axis is sliding along the wall, and the y axis is

directed outward from the wall and passes through midstern.

U

Figure 1. Two-Dimensional Problem for a Ship Moving Close to a Bank

In what follows, all values are nondimensional, the characteristic

quantities being the length L of a ship and its velocity U .

Define the distance of the midstern of the ship from the bank as Z

local beam as B(x) , yaw angle as $ (in radians). Introduce y = yr(x)

and y = yX (x) , functions describing the contours of the right and left side

of the ship. As seen from Figure 1,

1
yr = X + Sx + gb(x) , (2.1)

1
y= 1 + Sx - gb(x) . (2.2)

*The material of this section was discussed in a presentation to the Panel on
Analytical Ship/Wave Relations during the Annual Meeting of the Society of
Naval Architects and Marine Engineers in New York on November 15, 1979.
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The velocity potential 4(x,y) for the perturbation velocities due to the

ship has to satisfy the Laplace equation throughout the fluid domain and is sub-

ject to a kinematic condition on the wall and ship hull, an appropriate radia-

tion condition, and the Kutta-Joukowsky condition at the stern. Note that the

last condition allows us to take into account, though implicitly, some effects

of viscosity of the real fluid.

Thus, the problem for the velocity potential can be formulated in the

following way:

alt a2(
--- + - =0 in the fluid domain, (2.3)

ax a
= cos(n,x) at y = yr(x) and y = yX(x) , (2.4)

an

- = 0 at y = 0 + 0 , . (2.5)
ay

70 + 0 as x 2 + y 2 +o , (2.6)

plus the Kutta-Joukowsky condition at x = 0 , y = !L

Assume that the beam and the yaw angle of a ship are comparable in

magnitude to the midstern distance from a wall, all of these dimensions being

much smaller than the ship length. This allows us to define the orders of

magnitude of the parameters and functions characterizing the problem as

follows:

Sb(x) , yr(x) . ,yY(x) = O(.) <« 1.

Introduce the stretched parameters and functions

= S/I ; b(x) = b(x)/2 ; ir(x) = yr(x)/2 ; 71(x) = YX)/ 2*

Then

S , b(x) , 
7r(X) , 7 (x) = 0(1)

In addition we assume that

b'(x) , y'(x) , y'(x) = 0(Z),

where a prime denotes differentiation with respect to the argument. After the

orders of magnitudes have been defined, we can proceed to the solution of the
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problem, formulated above, by the method of matched asymptotic expansions.

Our method is similar to that of Widnall and Barrows (1970), who treated a

problem of a wing travelling parallel to a rigid boundary, using Z (<<1) as

a small parameter.

At first, the asymptotic solutions will be constructed separately in the

confined region between a ship and a bank (channel flow), in the vicinities of

the bow and the stern (edge flows), and outside of the channel and edge flows

(outer flow). These asymptotic solutions will then be matched in the overlap

regions to account for physical interactions of different parts of the flow

and to provide the uniqueness of solutions in the above-mentioned regions.

Characteristic regions of the flow are shown in Figure 2.

Further on, we shall use the subscripts "V" and "r" to denote quanti-

ties characterizing the flow respectively along the left and right sides of

the ship.

Figure 2. Characteristic Regions of the Flow Past a Ship Near a Bank

The Flow Between the Ship and the Bank (Channel Flow)

In a narrow region between the ship and the bank,

x =0(1) , y =0().) .

In order that this region not disappear in the limit Z + 0 , the vertical

coordinate y is stretched. Introduce "channel-flow" coordinates:



x = O(1) , Y = y/Z = O(1) as £ + 0 .

In the channel-flow region, we seek the corresponding potential (D2  in the

form of the following asymptotic expansion:

*

OZ = * + t + ... ;(2.7)

* 1
* = 0(1) ; * = #3 + #2RI ln + 43g * (2.8)

It will be shown further that the presumed asymptotic structure of *, given

by (2.8) satisfies the condition of matching with the bow and stern flows.

Insert the channel-flow coordinates x and y into the formulae of the

full problem, (2.3)-(2.6), and consider the problem for the velocity potential

= in the channel-flow region. We obtain

a~t 1 a2tz
----2+-- - = 0 in channel-flow region; (2.9)
ax2  z2 ag

.. 2 -- - ony = 7(x) , 1 > x > 0 ; (2.10)

-- = 0 at y = 0 + 0, x < o . (2.11)
ay

The condition at infinity and the Kutta-Joukowsky condition are lost in the

channel-flow problem.

After the substitution of the assumed asymptotic expansion (2.7) into

(2.9), we obtain

+ 2- _ 1 ---- +- 0 , +0 , x , fixed,
axax  2x2  z2 ay2  32

wherefrom

a29
= 0 , (2.12)

ay

-- + - - .(2.13)
ax2 a72
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Upon the substitution of (2.7) into (2.11), we obtain

--= 0 ,

-- = 0,

ay

7 = 0 + 0

=0 + 0.

(2. 14)

(2.15)

Integrating (2.12) with respect t'o 7 and taking into account (2.14), we

have

a-Y~

and so

=4~f,(x),

i.e., with asymptotic error of the order of O(£2) , the flow in the channel

is one-dimensional. Integrate (2.13) with respect to 7

*y
-87$~x

where i(x) is an unknown function of x

wherefrom

To determine , use (2.15),

42(x) = 0

Therefore

8*

37 3 x2
(2.16)

Substitute the assumed expansion for (DI
the part of the hull surface facing the bank,

into the boundary condition on

(2.10):

2

87 a7 a Lx x

Then

87 =7 -- 1
on 7y= it (x) .1 (2. 17)
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Combining (2.17) with (2.16) and requiring that 7 = 7g(x) in (2.16), we

obtain

-y -- 2- - =y' --- - 1 .-

Hence, finally, the equation for #g takes the form

d F<2
-- 12-- = , 0 < x < 1 , (2.18)
dx dxJ

where it is a given function which depends on the form of the hull, distance

from the wall, and the yaw angle:

1 =yt= 1 + [3x - b(x),

where I = a/l ; b(x) = b(x)/Z . Equation (2.18' represents mass conserva-

tion in the narrow channel between the port side of the ship and the bank.

The solution of the equation (2.18) is simple:

1+-
dx 2 (x)

dx
= x + R1 ---- + R2

yg (x)

The boundary conditions for * at points x = 0,1 (which will provide the

determination of the unknowns R1  and R2 ) are to be obtained through match-

ing with the bow and stern flows.

The Outer Flow

In the outer flow region, x,y = 0(1) as 2 + 0 . The corresponding

potential must satisfy

* a given normal velocity condition on the right side (starboard) of the

ship,

* no-normal-velocitly condition on the wall outside of the hull,

* condition at infinity.

We seek the outer-flow potential in the form of the following asymptotic

expansion:
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r = Z4r + O(!,2) , (2.19)

where $r is a solution of the problem

a2pr a2cr
- + = 0 in the upper half plane, y > 0 ; (2.20 )
3X2 -ay2

r = - 7'(x) , y = 0 + 0, 1 > x > 0 ; (2.21)
ay r

air--- = 0 , y = 0 + 0 , (x < 0 , x > 1) ; (2.22)
ay

Vr +0 as x 2 + y 2 +co .

The solution to the above formulated problem can be readily obtained by

the distribution along the segment 1 > x > 0 of sources (sinks) with density

equal to -2y'(x) . In principle, a point source (sink), dipole, or multipole
r

solution can be added at points x = 1 and x = 0 without violating the

normal-velocity conditions (2.21), (2.22) (see Figure 3).

Figure 3. Schematized Outer Problem in Case of a Ship Moving Close to a Bank

By means of matching with the bow and stern potentials, it can be veri-

fied that with the same asymptotic accuracy as in (2.19) it is sufficient to

keep only concentrated source. (sink) solutions, namely, to place a concentra-

ted source (sink) at the point x = 1 . A source (sink) solution at x = 0

( stern) must be excluded because it does not match with the Kutta-Joukowsky

stern solution.

Thus, we obtain the following expression for the outer potential on the

right side of the hull:
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rn r = ln(1-x) - fr( )lnIx-(d-] . (2.23)

The outer-flow problem is shown schematically in Figure 3. The strength IQ

of the concentrated source located at x = 1 is to be determined by matching.

Note that the expression for 0r is not uniformly valid in vicinities of the

edges, i.e., we have lost the details of the flow near the edges.

For matching, we shall need the "inner" asymptotic representations of (r
near the points x = 0, 1 (edges). The two-term inner expansion near the bow

of the one-term outer potential (2.23) is obtained by expanding in terms of

v = (x-1)/R :

(r = rb -ln(Zv) + -- ' (1)vln(Zv) + -A 1 v + -- , (2.24)
27r r

where

V = v/IZ

A1 = - '(1) - '(()-y'(1) ,

1

A2 = - '(()1n(1- . (2.24a)

0

The two-term inner expansion near the stern is obtained similarly by expanding

(2.23) in terms of v = -x/ :

92 - - 12 B1  _2,B2Or = ors ~- '(0)vln(Zv) + ---- v + , (2.25)

where

v = v/Z

~,1
1 d r.

B1 = gQ- y' (0) -J' (( - y' ( 0 ) - , (2.25a)

B2 = - '()nd . (2.25b)

0
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Bow and Stern Flows

Consider first the bow region, where y = O(Z) and x - 1 = v = 0(Z) .

After stretching of the bow coordinates (7 = y/2, v = v/t) , the magnified

bow region looks as in Figure 4.

Figure 4. "Magnified" Bow-Flow Region

If, as assumed previously, the beam-distribution x-derivative, b' (x) ,

is of the order of O(Z) , then the distance of a contour point from a hori-

zontal line 7 = 7 r(1) in a magnified bow region (see Figure 4) is also of

the order of O( Z) . Therefore in the edge-flow regions the linear formula-

tion is valid with an asymptotic error that is 0(Z 2 ) . In other words, the

normal-velocity condition can be satisfied to such degree of accuracy if it is

imposed on the line 7 = r( 1 ) in the vicinity of the bow and, similarly, on

the line 7 = 7 r(0) near the stern.

The bow-flow potential #b is governed by the 2-D Laplace equation and

the following boundary conditions:

- = 0 for |v| < °° , 7 = 0 + 0

~bDr for v < 0, Y = r(1) + 0,
ay

b-

= -Dr for v < 0 , 7 = 7Z( 1 ) - 0 ,
ay

(2.26)

(2.27)

(2.28)
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where Dr and DZ are constants to be determined by matching. The solution

of this problem can be shown to have the form

<fb = aj~h + X2*n + a32 2 v + a4 Z , (2.29)

where

ai are constants to be determined by matching;

h is the homogeneous solution, which satisfies a

zero-normal-velocity condition on the wall and on the hull,

representing the circulatory motion of the fluid in the

vicinity of the bow (and thus containing a square-root

singularity at the edge);

# is the nonhomogeneous solution, which satisfies the non-zero

normal-velocity conditions on the hull, (2.27), (2.28), and

generates no normal velocity on the bank;

a41 is a linear combination with respect to v, which automatical

satisfies the Laplace equation and creates no normal velocity

on the bank or the hull.

a3 Z2 v+ ly

y

The procedure for constructing solutions for Oh and On

Appendix A.

On the hull, #h is given by the expression

is shown in

h r(" "
Oh = 7r (2.30)

where

tv = r(l)(1 - e + fh)

It is demonstrated in the Appendix A that the perturbation velocity corre-

sponding to the homogeneous solution #h has a square root singularity at the

bow, as anticipated.

The nonhomogeneous solution can be obtained in the following form (on the

hull):

fundo
n. = und

0

(2.31)
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where

1
uni W([(Dr-DI)ln|1+(| + Dln|l |],

and ( is related to v by the formula

Wv = fr(1)(1+(+ln ) = (1+$) (1+E+lnE) .

The potential in the stern region is constructed similarly to that of the

bow region, but the homogeneous solution is excluded, because it does not

satisfy the Kutta-Joukowsky condition. With this in mind, we have near the

stern:

@s = 2 4n + Z2 bv + 2b3  , (2.32)

where v = -x/t and #n is given by

v

4n = undv

0

with

1
un = '[(ErEt)n1+EI + Egln|l]El.

The auxiliary variable E is related to v by the equation

WV Y= r(0)t1 + E + lnE] = 1 + E + ln .

The constants Er and EX are unknown and must be determined by matching.

Note that, in the general case of a flow with circulation, the parameter b3

in (2.32) takes different values on the right and left sides of the hull,

i.e. b3 * b3

Matching

The asymptotic solutions constructed so far in different parts of the

flow contain the unknown parameters:

channel flow: R1 and R2

outer flow: Q ,
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bow and stern flows: aj, Dr, DZ, b , Er, E9 ,

which have to be determined by matching.

First, match the outer-flow potential with the bow-flow potential. Take

Ib = a12 h + 124n + a3 L 2 v + 2a4 . (2.29)

Pass over to the outer coordinate v = 2v , fix v and require that +; 0

with y = yr(1) + 0 . Obtain the one-term outer expansion of the two-term bow

expansion (2.29) . The details of this procedure are shown in Appendix A. We

write down the final overlap asymptotic expansion for cDb

a1LWv ADrI v
=b " bhr ~""r(1)ln - +- -v In - - -1 + a32,v + a4

(2.33)

for V fixed, 2+ 0 , 7=Vr(1) + 0.

Return to the bow variable, v = v/L , in (2.33):

a1_t FIvv2Dr- - rv -

%br -yr(1))ln _- + --- v ln-- -1 + a3 Z2 v + a4 X,
irt L *Yr'' j

and compare the resulting expression with the previously obtained two-term bow

expansion of the one-term outer potential (2.24),

9 - 2 _-_ £
2A1- A2

frb ~- InIvI + -y'(1)vln( v) + --- v +
2r ir r , IT

wherefrom

Q_
a1 = - , Dr = (1)

2 7r(1 ) r

1 7

a3 = I-TA1)-y' (1)ln -- - 1 ,

1_

a4 = - A2-a1fr ( 1)ln ---- ,

7r rl

0
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-1

A2 = - f '(E)lnl1-E|dE .

0

Second, match the bow-flow potential with the channel-flow potential.

For this purpose write the two-term channel-flow expansion of the two-term bow

expansion (2.29) (see Appendix A):

ajir(1) Irv Dp v2

b = b__ ---- -1 + - -2v + a3 Lv + a4 L . (2.34)
S Yr(1) rr 2 Yr 1 )

This expression must match with the function

1
= Z g = $1t + #2AL ln1 + #3 , (2.35)

expanded for very small v = Lv . Comparing (2.34) and (2.35), one can easily

deduce the following formulae:

1 a1L
1)_= r(1) = $1 + #2Lln- + #3' = -~r( 1 ) + La4 , (2.36)

7r

or, taking account of the expression for a4 ,

#12(1) = 0 , (2.37)

a1 _
#2L( 1 ) - Yr( 1 ) , (2.38)

IT

#3L 1 ) = - A2-aYr (1) 1+ln _--- . (2.39)

In addition we obtain

a1 = ---- , (2.40)
dx

x=1

DL = yr(1---- -(2.41)
x=1I

The third step consists of the matching of the stern-flow potential with

the outer-flow potential. The one-term outer expansion of the two-term stern



-18-

potential solution has, as shown in Appendix A, the Eorm

s = sr -v
it

Ln t] V-1 + b 2 Lv + Lb3 (2.42)

for v fixed,

stern expansion

L+ 0 , 7 = 7 r( 0 ) + 0 = 1 + 0 . This must match the two-term

of the one-term outer potential, given by the formula (2.25):

-2 . . L2
B 1. 2B 2

r * 'rs -- '(0)v ln(Lv) + ---- v +

for v fixed, £ + 0 . Rewriting (2.25) in the outer-flow variable, v = £v

we obtain

2B 1  LB2

r = ors ~ -7'(0)vlnlv| + --- v + -.
iT riT . i

(2.43)

Requiring in the overlap

(2.43), we obtain

region that I rs = sr i.e, comparing (2.42) with

Er = '(O),

b2 =2[B1+'(0)(1-ln)],

+ B2
b3 =

(2.44)

(2.45)

(2.46)

where, as shown previously,

B1 =-Q -7'(0) - [(() - r( 0 )]"_

0

B2 = - f '( )ln d .

0

Fourth step: As mentioned before, because of the circulatory character

of the flow, the potential is discontinuous at the stern. Therefore the

matching of the stern flow to the channel flow is fulfilled using velocities
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rather than potentials. Take the two-term channel expansion of the two-term

expansion of the stern velocity (see Appendix A): -

do s ds y Eq
= - - -(rv-E) - Ab 2  . (2.47)

dx dx 1r

This expression must match the function

d _ d 1 C d02 1 1 dt 31
--- =--- + ---- in - + --- 1e (2.48)
dx dx dx , dx

expanded for very small v = 2v . Comparing (2.47) and (2.48), we obtain

d$ $ d021 1 d$43 1 XEX
-(0) =--- + --- ln- + -- ; = -- -b 2 , (2.49 )

dx dx dx I dx 1

or, recalling the expression for the parameter b2

-- (0) = 0 ,2.50
dx

dt2 EI-(0=(2.51)
dx IT

- (0) =--[B 1 -7(0) +r(0)(1-lnr)] (2.52)
dx n ( r

Besides, we find

d2 1

EL = --- (.3E d 2 
1 ;

(2.53)
dx2

x=0

Now, after the matching has been completed, the uniqueness of the

asymptotic solutions obtained in different parts of the flow is provided. A

uniformly valid expression for the potential can be constructed with help of

the additive composition (see Van Dyke (1975)):

On the right side of the hull (starboard):

c c r+$ ~ir+o s * (2.54)

On the left side of the hull (port) :

Ic=(DcZ= Dk+Ob-Oblt+ s-ts!t 0 (2.55)
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4c is the composite expansion for the velocity potential.

The Coefficients of the Side Force and Yaw Moment

The side force and yaw moment (with respect to midship) coefficients are

defined as follows:

1
2Y

Cy = ----- = J (pc ~pcr)dx , (2.56)
pU2Lh

0

1
2 Mz C1

Mz 2Lh u(Pc ~Pcr)(X2)
pU2 Lh j2(.7

0

where U is velocity of the ship, L is ship length, h is the undisturbed

depth of water (note that ship is assumed wall sided, having zero bottom gap),

and pci and pcr are composite pressure coefficients for the left and right

sides of the ship, respectively.

In the channel-flow region, where the perturbations are not necessarily

small (we did not linearize the channel-flow equations in the vicinity of the

horizontal line y = r(0) = 1 ), the pressure coefficient is defined as

d dM 2

p = 2-- -) (2.58)
dx dx

In the outer and edge regions, where linear formulations were used, we shall

employ the linear expression for the pressure coefficient:

dO
p = 2- . (2.59)

dx .

At first, we calculate the side force and yaw moment to the lowest order,

i.e., for very small distances from the bank. In this case

Oct ~#1Z = 0(1) ; cr = OU)*

The function #1 , as seen from (2.18), (2.37), and (2.50), is a solution of

the problem



-21-

dd

where

y x)= 1 + 3x - !b(x) ;S/ b(x) = b(x)/2.

It is easy to obtain

--- x - =1-dx y7 (x) 7Z(x)

Using this result and taking into account the formulae (2.40), (2041), and

(2.53), we can obtain the parameters a1 , DZ, and Et

al M)=1-dx
y (11

= :1x= r( 1
) 7j1)

= .-d d2 1(0) =y')

Side-force and yaw-moment coefficients to the lowest order can be

calculated with help of the following formulae :

Yl f jdx d-x Jd

0

1 1
= - dx f dx

J72 x) J 1~-()

2-- ( - +x-2(
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Solving similarly for '2 and $3& , we obtain

d# 21L 1 d* 2Z
dx 7g(x) dx

#32. 1 d*3
-- -- (0)

dx 7g(x) dx

d02 d#32
where -- (0) and --- (0) are given by the formulae (2.51) and (2.52).

dx dx

Using the expressions (2.56) and (2.57), the following formulae for Cy

and Mz can be obtained with the asymptotic error of the order of O(92)

Side-force coefficient:

C= + y2 ln + 3 + O(X2) , (2.60)

where

1
dx

Cy = 1 - -----
cyi =i~fY7(x)

01 0

CY2 T[ r(1) 1 + y'(0)(1-Cy)]

2
Y3 -=,B2-A2+[fr(1)-1] 1- a1 +ln ----

+ '(0) (lntr-1) + 7(0)-B1 (1-CY 1 )}

Yaw moment coefficient (calculated with respect to midships):

1
Mz "Mz + Mz2 Aln + Mz 3  , (2.61)

where

z1= J 2)1----d=- (x-x)----- ,

L Z



Mz 2 = [7oM~1  ((1 ])

M 3 = ? {L 7'(o)( 1n~ir) + Y' ()BijMz - -Fyr(ll)Llfln -(1)- a11

+ f L (.{) [(-. In j, -1] d}

0

In the above expressions for Cy and Mz , parameters B1  B 2 A 2  can be

determined from the expressions (2.24a), (2.25a) and (2.25b).

Particular case: parabolic beam distribution. Consider a theoretical

hull shape with a parabolic beam distribution. In this case,

b(x) = b(x) = -xX 4b 0 x(1 -x

where b0 = b = beam at midships. The side force coefficient as obtained

from the general formula (2.60) is

where

1 (+2b 0  - - 8b0 F R+2b0  R -2b 0 1
Cy1= 1- - + 2b0 -+---.Iarctan q - arctan.-q-.B

Cy =2R + (8+2b 0 ) (1-Cy}

C7 = 290 + [1+ln H~ + (1-C71) [( + 2b ) lnn -6b 0]

The yaw moment coefficient is

where
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M ~ 2( 1-b0 )+S 2 arta +2b0 actn -2b0
z Farctan - arctar

2(1+0) q q q

Mz2 - (S+2b0)Mz -12

Mz

Results of

= - (+2;0)lnwr-60] Mzi- 2 I k .

some computations are presented in Figures 5 and 6.

1

Figure 5. Side Force Coefficient versus Yaw Angle For Different Values of

the Beam (Parabolic Ship)

For zero yaw angle, the side force is always negative, representing a

suction force toward the bank. Positive yaw angle adds a repulsive bank

force, which can be large enough to cancel the suction force. The moment is

always in the direction tending to increase yaw angle.
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Figure 6. Yaw Moment Coefficient Versus Yaw Angle for Different Values of the

Beam (Parabolic Ship)
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B. Two-Dimensional Steady Flow Past a Ship in a Canal

Consider the steady potential flow past a ship in a canal bounded by

plane, rigid walls. The flow has a constant velocity U far upstream and

downstream of the ship. The picture of a ship in a canal, together with the

Cartesian coordinate system Oxy is given in Figure 7, where the following

notations are introduced: 2 is the distance of the midstern of the ship from

the left bank, b(x) the local beam, S the yaw angle, e the width of the

canal. As in the previous analysis for the case of a ship close to the single

wall, all values are nondimensional, characteristic quantities being the

length L of the ship and the stream flow velocity U . The coordinate

system is attached to the ship and moves with it. The contours of the right

and left sides of the ship are described by functions yr(x) and y2 (x)

1 0na
Figure 7. Coordinate System for a Ship in a Canal
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defined by the formulae (2.1) and (2.2).- The velocity potential @(x,y) is

governed by the equations (2.3)-(2.5) of the previous part, with the addi-

tional condition of no normal velocity on the right side wall of the canal,

that is,

-=0 on y=s-0 . (2.62)
ay

We assume that the beam, yaw angle (in radians), and midstern distance

from the left wall are all of the same order of magnitude and at the same time

are considerably smaller than the length of the ship, that is,

, Z , b(x) , yr(x) , y,(x) << 1 *

The asymptotic solution of the problem can take different form, depending on

the order relationship between the width of the canal, e , and the distance

of the ship from the left wall, . We shall consider the two cases: 1)

E = 0(1) and 2) s = 0(&)

1. Ship in a Wide Canal

We consider first the case that e = 0(1) , i.e., the canal width is com-

parable with the ship length; the ship is near the left bank but distant from

the right bank. From the methodological point of view, this problem, when

solved by matched expansions with I as a small parameter, is quite similar

to that of a ship moving close to a single wall (see Part A of this section).

Examining characteristic regions of the .flow shown in Figure S, one can see

that the channel-flow problem and the edge problems must be handled exactly as

before in Part A. The construction of the outer flow is somewhat different

and we shall focus attention on this part of the solution.

6:0(1)

Figure 8. Characteristic Regions of the Flow Past a Ship in a Wide Canal
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In

for the

the outer region ( x,y fixed,

outer flow potential (Dr (cf.

Z + 0 ), we come to the following problem

(2.19)-(2.22)):

rD *r = + O(L2) ;

a2 r - .0y

ax ay

air
=-y'(x),y=0+0

ay r
1 > x > 0 ;

0, x > 1)

< a ) (263

a#r

ay

y = 0 + 0 (x <
for

y = E '- 0 (|x| (2.63)

V#r+0 as x 2 +y 2 +c

The solution of this problem can be constructed by distributing along the

segment 1 > x > 0 sources (sinks) with density equal to -27' and in addi-
r

tion placing-a concentrated source of strength IQ at point x = 1 . Both

the distribution and the concentrated source must satisfy the no-normal-velo-

city condition on the right side wall of the canal (2.63) . The outer problem

is schematized in Figure 9. The potential of a unit source located on one

wall of a canal of width a is well known. On the wall y = 0 , it is given

by the function

0 =_ In sinh (x - x0) ,

where x 0  is the abscissa of the location of the source.

tation 6 = /2e and accounting for (2.64), we arrive at

pression for the outer flow potential on y = 0 :

(2.64)

Introducing the no-

the following ex-

I,I 1 1 I- / / / - 1 / / / / / i / / / /I , AL.-

gQ 0(i)

\
(cc)z

f .

Figure 9. Schematized Outer Problem in a Case of a Ship Moving in a Wide Canal



r~ = ln sinh[6(1-x)]- f '( ) ln sinh[ 6(x-E)]dF . (2.65)

0

The two-term bow and stern expansions of the one-term outer potential

(2.65) are given by the formulae (2.24) and (2.25) with A, A2 , B1 , and

B2  determined from the following expressions:

1

A1 = - ' (1) 1 + ln- ) -6 [Y'()-r'(1)] d , (2.66)
r 6 J r tanh[6(1-()]

0

11

A2 = ln6 - 'r()n sinh(6 (1- )(]tdh , (2.67)
0

B1 t=_- J'(0)[1 + lns -% r r[' ( )-' (0) ] d , (2.68)
2 t anh6 r shJ r r tanh(2

0

B2 = l n sinh6 - J'(()ln s-inh(65)dE . (2.69)

0

It can be shown that, in the limit e + (6 + 0) , the expressions (2.65)-

(2.69) become identical to the corresponding formulae (2.24)-(2.25) of Section

A. The side-force and yaw-moment coefficients may be calculated using formu-

lae (2.60) and (2.61) of Section A, with B1 , B2 , and A2  given by equa-

tions (2.68), (2.69) and (2.67), respectively.

Considering the asymptotic structure of the solution for the case e
0(1) , one can conclude that, when the width of a canal is comparable to the

ship length and the distance of the ship from one wall goes to zero, the

increment in forces acting on a ship caused by the presence of the second wall

is 0(i) . In other words, when e = 0(1) and i + 0 , the ship-to-wall

interaction forces are, with asymptotic error 0(t) , the same as for the ship

near the single wall.



2. Ship in a Narrow Canal.

Now let us pass over to the less trivial, more practical case 2), in

which the width of the canal is comparable to the distance of the ship from

the left side wall, i.e., E = 0(2.) as t + 0 . We shall solve this problem

by matched asymptotics with c (width' of the canal) as a small parameter.

The division of the flow into characteristic subflows is schematized in Figure

10. In this particular case, we have to construct separate asymptotic solu-

tions in two confined regions between the ship sides and the walls of the

canal (channel flows) and near the edges with no-normal-velocity condition on

both walls of the canal (edge flows). Then we shall match the edge flows to

the channel flows and to the upstream and downstream uniform flows.

C/7 Qfl-7te stoez,7frCuw .

Figure 10. Characteristic Regions of the Flow Past a Ship in a Narrow Canal

The Flows Between the Sides of the Ship and the Canal rWalls (Channel Flows)

To consider these flows with c + 0 and x = O(1) , it is necessary to

stretch the vertical coordinate y so that the channels do not disappear in

the limit. Introduce:

= y/s , = £/E , b(x) = b(x)/e , = S/c , r = Yr/E Y, = yt/E

In the channel flow regions we assume, as in Section A, the following

asymptotic expansions of the velocity potential:

In the right channel,

*

-b ~r + 'c2 r + ... ,
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In the left channel,

OX_ +£2 + ... ,

where

* *

Introducing the stretched coordinate y = y/E and the assumed asymptotic

expansions into the full problem, we obtain in exactly the same way as in

Section A the following equations for Or and *,

-- [( - 1) L] =y' , 1 > x > 0 ; (2.70)
dx dx r

d-(y.% = y' , 1 > x > 0 (2.71)
dx dxZ

Equations (2.70) and (2.71) can alternatively be written as follows:

) = c' , (2.72)
dx dx r

-' ) = c , (2.73)
dx dx

where cr and cX are the right and left side clearances, respectively,

cr(x) = E- yr(x) , c2 (x) = y2(x) , - (2.74)

and cr = cr/E , = ct/E . The solution of the channel-flow equations is

simple:

Or r=x + Rlr r +R2r

01 =4*X = x + Rlz ,, d +R2 *
c (x)

The boundary conditions for #r and *R at points x = 0,1 (which determine

the unknown constants Rir ,R2r , 1 , and R2Z ) are to be determined

through matching with bow and stern flows.

mo6 av zteev Cooda

Consider the bow region in stretched coordinates:

i =y/ , v =v/ ,where v 2x- 1 .
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In the magnified region, the bow-flow potential should satisfy the 2-D Laplace

equation and the linearized boundary conditions*

0 at |v| < ,y =0,1 , (2.75)
3y

aib ~ - Dr at v< 0 y Yr( 1 ) + 0(2.76)

ay

- = - D2  at v < 0 , y = y(1) - 0 , (2.77)

ay

where Dr and Dp are unknown parameters.

The solution of this problem has the form given by (2.29), i.e.,

(b= a1 eth + E2 #n + a3 e2 v + a4 e , (2.78)

where

at are constants to be determined by matching;

#h is the homogeneous solution, which satisfies a zero-normal-velocity

condition on the hull and on the canal walls;

#n is the nonhomogeneous solution, which satisfies a zero-normal-velo-

city condition on the canal walls and nonzero-normal-velocity

conditions, (2.76) and (2.77), on the hull.

The determination of the functions th and er is given in Appendix B.

For points on the hull, the homogeneous solution th is defined by the

formula (B.4) (see Appendix B)

- 1 '#hIV = - ln 1 - q + gexp(=) , (B.4)

where q = Yr () * The nonhomogeneous solution is

V

#n = undv on the hull, (2.79)

0

where

un = ((Dr - DZ)ln|1 + (| + Dgln|(I] , = v/e = (x - 1)/s

*Linearization of the edge-flow 'boundary conditions is based upon the same
considerations as in Section A.



and the relationship of ( with v is given by

wv = gln|I - nI1 q + q(| , ( < 0 , q = y(1)

The stern flow potential can be shown to be (cf. (2.32))

(s =c 2 #n + E2 b2 + eb 3  , (2.80)

where v = v/s = -x/s , b3 # b3  and On is given by the formula

In = undv

0

where

n 1 (Er - EL)ln|l + I + E2Lln|I1 ,

with unknown constants Er and E, , and ( related to v by (B.8) with q

replaced by qi = y(0) _

Matching

Looking through the results obtained so far, we see that they contain

several unknown parameters:

channel flows: Rr R2r R1 , R21

bow and stern flows: ai , Dr DI , bj , Er and EL . -

These parameters can be determined if we take into account the physical

interaction of different parts of the flow. Mathematically speaking, we have

to perform the matching of the corresponding solutions. We shall adopt the

same sequence of matching steps as in Section A and, in addition, match the

edge solutions with the upstream and downstream uniform flows.

First, match the right-channel-flow potential with the bow-flow poten-

tial. Take the two-term right-channel expansion of the two-term bow solution

( 2. 78) ( see Appendix B) :

l~ nq~ Dr F rv 2  evlng
~b =br ~- -- v +S-- + - - - + - -I- a3 ev + a4 s , (B.9)

where q = yr(1 . This expansion must match with the function
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r=#r + (s 2 ) (2.81)

expanded for very small v = ev . Comparing (B.9) and (2.81), we find

ea1 qlnq
r r() ~ =#lr1r(

1 ) + '2r( 1 ) = - + Ea4  (2.82)
r (1-q)

or

#1r(1) = 0 , (2.83)

#a2r( 1 ) = - - + 4 ,(2.84)
q-1

q-1 d1r 9q-1 d1r
a

1 
= -- ---. =--- -

q dv q dx
x=1

d2 #1r d2 #1r
Dr = ( q - 1) - -" = ( q - n 1) -" " *

dv2  dx2

x=1

Second step: Matching the left-channel potential with the bow potential

in similar fashion yields:

sa1
(1) = (1) = (1) + 0t22(1) = -- ln|1 - qj + sa4  , (2.85)

IT

or

011(1) = 0 , (2.86)

aj
#2_(1) = - lnl1 -. q| + a4  (2.87)

it

a 1 = -
dx

x=1

d2 fiS

d2

x= 1

Third step: Match the velocities in the right-channel and near the

stern. Take the two-term right-channel expansion of the two-term expansion of

the stern flow velocity ( see Appendix B) ,
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d~5  d(Dsr

dx dx j
Er (Tv

n(1-q 1 )
+ Elnq 1 )- b2c ; v = -x ,

and match it with

dOr _der

dx dx

d# Ir

dx

d 2r

dx

expanded for very small v = cv . We- obtain

do r
-- (0)

dx

dr

dx

4 1r

dx

d #2r0

dx ir (1 -q i) 2
(2.8-8).

or

d4 1 r
-(0) = 0

dx

#~2r
-(0)

dx

-~~ b2nq

rr(1-q 1 )

(2.*89 )

(2.90)

(2.91)

f

Er = (qi d....r

x=0

0

Fourth step: In analogous manner, match the velocities in the

left-channel and near the stern to obtain

-- (0)
dx

d4) 2
- -(0)

dx

d4 12'

dx

d4 22'
+ E--.(o) =

dx
cE9 lnI1-q - b2

IT g 1

I (2.92)

or

-C0) =0

dx

-(0)!
dx

E2,ln I 1-q 1 J

wqg1
I

(2.93)

(2.*94)

(2.95)Ex= c12 P12'
x=0

So far, we have the necessary information to comipute a1 , Dr
+

Er , EX' , R1ir , R2r , R , R2 1' . The parameters a4 , b3

, DR'

b3 , a3 ,
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and b 2  remain undetermined. To go on with our solution at the moment, we

need only to define the parameters a3  and b2 . This can be done through

matching of the edge flows to the upstream and downstream uniform flows:

The asymptotic behavior of the edge solutions for upstream and far down-

stream is analyzed in Appendix B. The one-term upstream expansion of the two-

term bow velocity turns out to be (cf. (B.16) and (B.17))

dcb _dbc 1- = - -[D 2,ln(1-q) - Drlnq] e +a 3 E . (2.96)
dx dx Tr

The one-term downstream expansion of the two-term stern velocity has the form

desZ dsc 1
-- -[Eln(1-q 1 ) - Erlnq]s - b2 e * (2.97)

dx dx T

The condition at infinity of the full problem requires that the flow be

uniform far upstream and far downstream from the ship, i.e., the perturbation

velocity at infinity should equal zero:

d4
-=0 . (2.98)
dx

Comparing (2.98) with (2.96) and (2.97), we find the expressions for the

parameters:

a3 = [Drlnq - D ln(1-q)], q = r(1) ; (2.99)

b2= rElnqj - Egln(1-qj)] , qi = =r(0) (2.100)

The uniformly valid expression (additive composition of the velocity

potential) is defined as in (2.54), (2.55).

The Coefficients of the Side Force and Yaw Moment

The side-force and yaw-moment (amidships) coefficients are determined as

in Section A, the pressure coefficients in the channels being defined by

(2.58). To the lowest order, i.e., for a very narrow canal, the composite

velocity potential can be approximated as

(Dcr ' fr + O(E) , DcZ 4= Ol + 0(E)
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the functions and j satisfying the equations

d r- ' ldx (IXr

dx dx

with boundary conditions

= 1iz(l) =0

d ir
-- (0)

dx
- -(O = 0

dx

where+

cr =1 - x b(x)

cz=Y= I+$x -b(x)

£ =Ze ,8=8c ,b(x) = b(x)/E

It is easy to see that

(2.101)

(2.102)

dx
1 - ____)

cr (x)
d. ~ ) = 1

dx cZ(x)
(2. 103)

where

cr(O) = 1 -2 c (O) =

Therefore, from the formulae given earlier, it follows that

a1 4 dx
*=~~~ .iL1 (1)-c 9 (0)

dx cL(NDr =(q 1)...~?(1)= -~r(0 C(1)=12 q
I

dx 3r(1) r 19-

D= d2AL1) = [1 - c(1)1c (O)I(1)

=_Z(i_-)t - _b'(1)J

( ,+s)2 2

1 ~
+ 2b1' (1)] I

Er (= 1- 1) _..,_ (0) =(, ).
dx Cr(O)

E= q 1 ._._,.2&.,- 0)== Z -b' (0) =Y
dx ~CR(0) 2 A

1"~

(0)
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Side-force and yaw-moment coefficients are, to the lowest order (very narrow

canal),

Cy =C 7 1 =

1f.2 -.21fJ [Cr (x) a- C () I &

Mzi =2 cx- (X) -C2 (X)]
0

Solving similarly for 2r~ and 2X , we obtain

-2. =Cr() ?.(0
dx ar(x) dx

____= ~') ±ai(o
dx C (x) dx

where -=(0) and -2(0) can be computed from formulae
dx dx

Using the expressions (2.56), (2.57), we arrive at the

for C and Mz (with respect to midships) in the case of

(2.90) and (2.94).

following formulae

a narrow canal:

Cy= Cy 1 + ECy2+ C(s2) (2. 104)

where

Cy me- 2 .. (o)Rli + y(0) (1-X)lnl1-I1 ] .+

+ q-4 ini-, + __+

1f ) 201 dx4

1

2;= dx

q =yr(l);

Mz = MZ1 + SMz 2 + Q(E 2 )F (2. 105)

where

Mz 1 =Sr -St
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Mz = - - ['(0)2,ln + '(0)+(1-flln(1-E)]- +
2 T1- r

(q-9,) i ln|1-q + -_c
2 q q 1-q

1 1

= m1 ~2 ~1 2

Sr = (X x) )dx , S = Cx - 2 (0)dx .
S (x 2) c (x 2) c (x

0 0

For the case when the yaw angle is much smaller than the canal width, i.e.,

a << 1 and b(x) = 0 , we obtain the linearized formulas for a flat plate

between the two walls:

= 1 - 4[2lnI + (1-2)ln(1-)] + O(e2) , (2.106)

Mz= _6 . 6e[lnI + (1-95)ln(1-I,)] + 0(E 2 ) . (2.107)
61(1- ) .

Passing to E = E/2 = 1/ , we derive from (2.106):

C = 1 + [(1-e)ln(E-1)+F1n] .(2.108)

The expression (2.108) is identical to the formula for the lift coefficient of

a flat plate moving between two parallel walls (Minami et al. (1974)).

It should be noted that the only case to which the previous two-dimen-

sional analysis can be applied directly is that of a wall-sided ship .moving in

water so shallow that the clearance between the ship bottom and the bottom of

the water can be neglected. In this case, provided free-surface effects are

negligible, i.e.; for sufficiently small Froude numbers based on water depth,

the flow becomes truly two-dimensional everywhere.

At the same time, the crossflow under the keel is reported to be of great

importance in shallow-water problems. Numerical calculations performed by

Beck (1976) and Yung (1978) indicate that even a slight gap can alter the flow

considerably. Crossflow effects are dealt with in the following chapter, both

for steady and unsteady linearized flows, where an attempt is made to combine

Beck' s (1976) shallow-water formulation with the method outlined above, aiming

at simplifying the final results.



III. THREE-DIMENSIONAL LINEARIZED PROBLEMS OF SHIP-TO-WALL INTERACTIONS IN
SHALLOW WATER

Consider the motion, steady or unsteady, of a slender ship near a bank in

shallow water or in a canal of rectangular cross section. The Oxy plane is

coincident with the calm-water level. The corresponding coordinate systems

are shown in Figures 11 and 12. The velocity potential, @(x,y,z,t) , repre-

senting the perturbations due to the ship motion must satisfy Laplace's equa-

tion everywhere in the fluid domain (except possibly in a trailing-vortex-wake

region). This velocity potential is also subject to a free-surface boundary

condition, kinematic conditions on the walls and on the ship hull, kinematic

and dynamic conditions in the wake, the Kutta-Joukowsky condition at the

stern, and an appropriate radiation condition.

Throughout this chapter, non-dimensional parameters and functions will be

used, characteristic quantities being L , the ship length, and U , the steady

forward velocity of the ship parallel to the wall(s). We shall introduce the

following notations:

a = yaw angle,

S(x) = cross-sectional area of ship at x

Z = midstern distance at the waterline from the bank or, in case of

a canal, from the left wall,

h = water depth,

s = canal width,

b(x) = local waterline beam of ship.

It is assumed that the beam and yaw angle of the ship are comparable to

the water depth and at the same time are considerably smaller than the mid-

stern distance from the wall, the latter being much smaller than the length of

a ship, that is

b(x), = O(h) << << 1 . (3.1)

In effect, we have two small parameters, (i) £ , as defined previously, and

(ii) a parameter, say a , indicating the [small] order of magnitude of beam

and yaw angle with respect to the ship/bank clearance. We keep only terms

that are linear in a , which yields an airfoil-type problem with boundary

conditions imposed on the undisturbed location of the center plane. With

respect to 2. , we develop an asymptotic solution in a manner quite similar to

that of the previous section.
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The practical usefulness of this approach must be examined more

thoroughly in the future. From a mathematical point of view, it allows us to

extend Beck's (1976) approach to the case that the distance of the ship from a

wall is small compared with ship length, i.e., << 1 . See Appendix D.

As a + 0 , we can consider a near-field problem and a far-field problem

in the sense of Newman (1969), Beck (1976), and Hess (1977), without regard to

whether or not 2 is small. The near-field problem is formulated in the

region very close to the ship, where y - I = O(beam) and x = O(1) . It

involves solving for a two-dimensional flow past the ship in planes transverse

to the ship. In the far field, i.e., at lateral distances much greater than

b(x) , the flow is also two-dimensional but parallel to the (x,y)-plane, and

the wetted hull (plus its reflections with respect to the water surface and

the water floor) behaves as a "porous" airfoil (Newman (1969)). The term

"porosity" implies that there exists leakage through the airfoil, which

corresponds to the crossflow under the ship bottom.

The matching of the far-field with the near-field shows that the leakage

velocity, say v 0 , of the crossflow is proportional to the jump of potential,

At , across the airfoil:

v 0 =
2C(x)

where C(x) is the so-called "blockage" coefficient (c.f. Tuck and Taylor

(1968)). The jump in potential is just the circulation around the part of the

ship forward of the station-at x , i.e.,

1

r(x) = Y(E)d ,

.x

where y(x) is the vorticity in the far-field representation of the flow.

Then the leakage velocity is given by

r(x)
v 0 = -- . (3.2)

2C(x)

The jump in potential comes from the solution of the two-dimensional Neumann

problem of a unit-stream flow past a body in a channel. If C(x) = 0 , there

is no blockage and hence no body present. The case C(x) = corresponds to

complete blockage (the body touches the bottom). The magnitude of C( x) can
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be uniquely determined from the form of the ship cross-section and draft and

the depth of the water. It should be noted that the blockage coefficient

C(x) is related to the section lateral added mass A (Newman, (1969)):

A = -2pSL 2 + 4phLC .

In the case of rectangular sections, the formulae for added mass were obtained

by Gurevich (1940) and Sedov (1965). Numerical values for A were computed

and published by Flagg and Newman (1971)'. The asymptotic matching technique

for obtaining blockage coefficients was developed by Taylor (1973).

Matching with the near-field also shows that "the push-aside flow," as

Yung (1978) calls it, due to thickness effects in the near-field produces in

the far-field a jump, Av1 , of the transverse velocity component across the

ship. The jump is proportional to the slope of the sectional area curve

S'(x) , namely,

Av1 =1h S'(x) = O(beam)*

Now, having gathered all necessary information supplied by matching with the

near-field, we shall focus our attention on the far-field two-dimensional pro-

blem for the "porous" airfoil moving near one wall or between the two walls,

either steadily and unsteadily. In what follows the far-field problem will

itself be treated as a singular perturbation problem and its solution will be

constructed by matched asymptotics with £ (midstern distance from the wall)

or e (the width of canal) as a small parameter. This problem (and its meth-

od of solution) is similar to that of Section II. There are only two signifi-

cant differences: (i) The boundary.conditions on the ship are linearized

with respect to a , and (ii) there is a transverse flow, the leakage flow,

through the body. Because of the first of these, we find some apparent dif-

ferences in orders of magnitude of the solution that follows.

A. Solution of the Far-Field Problem for the Case of Steady Motion of a Ship

Close to a Bank

Considering the steady motion of a ship close to a bank, we can formulate

the far-field two-dimensional problem in terms of a velocity potential as

*For the general unsteady case this formula should be modified and takes the

form given by (3.54a).
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follows:

t(x,y,z) = I(x,y) in the far-field ; (3.3)

a2 s a2t
- + - = 0 in the far-field flow region ; (3.4)
x2 ay2

a1-- = - S - -a(x) + K(x)r(x) , 1 ) x > 0 , y = £ + 0 ; (3.5)
3y 2

-t -a + la(x) + K(x)r(x) , 1 ) x > 0 , y = t - 0 ; (3.6)
ay 2

- = 0 , lxI < , y = 0 + 0 ; (3.7)
ay

V9+ 0 as x2 + y2 + ;' (3.8)

Kutta-Joukowsky condition at the stern (x = 0, y = Z) .

Here,
a(x) = S'(x)/h, K(x) = 1/2C(x) . (3.8a)

The formulated problem will be solved by matched expansions with I as a

small parameter. As in Section II, we subdivide the flow region into outer,

channel, and edge regions, solve for the velocity potential in each of the

regions, and then match the asymptotic solutions in the overlap zones.

In the channel-flow region, we stretch the vertical coordinate, y = y/!,

and assume the following aymptotic expansions for the potential:

1 *@ = # + ,(3.9)

with

1
#= #1 + #2!L1 lnj + #3Z + *(3.10)

Substitution of the stretched coordinate y and the assumed expansion (3.9)

into the far-field equations (3.3)-(3.8) yields the following relationships

for $g

*g= #g,(x) ,

---- S - -a(x) - K(x)r(x) , 1 > x > 0 . (3.11)
dx2 2
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Recalling that the circulation P(x) outside of the points x = 0,1 can be

written as

1 1
r(x) = r - = r - 11 - 421 ln --#!L

where (r is the outer flow potential, we arrive at the following sequence of

equations for # S !, #22 and #3

d2 41 1Z1
- = 8 -a(x) + Z(x)4 S(x) , (3.12)

dx 2  2

d2021 = Z(x)# 2  , (3.13)
dx2

d2 3&
- = K(x) (#3- r) , - (3.14)

dx2

where

K = K/t = 1/2ZC(x) = 0(1)

We need two conditions for each of these equations, one at x = 0 and one at

x = I . These must be determined by matching with the outer-flow potential at

the extremities of the body.

The problem for the outer-flow potential (r has the form

g2Or a2 sr

3x 2  ay2

a4r 1
-- = - - -a(x) + K(x)r(x)

ay2

1
= - R 1 -a(x) - W(x)#1(x) + 0(U)2

= - fr , 1 > x > 0 , y = 0 + 0 , (3.15)

-- = 0, y = 0+ 0, x < 0, x >1 ,
ay

7(?r+O0 as x 2 +y 2 + a

The solution is constructed as in Section II-A. On y = 0 + 0 , it is as

follows:



-rQIn t 1-xI -

Near the bow (x +1 -O0; v

takes the following asymptotic form:

= -lnjvIOr Or 2n 7

fr ( )1flIx- dE = 0(1)" (3. 16)

x - 1 + 0- 0 ) , the expression (3.16)

fr()VflVI Al A 2
fr(1)lntv + it +it

I

where

Al = - r( 1) cfr _frc1l>dlT A

A2 =- fr( )lnII-Id~

0

and, as in (3.15),

1
fr(x) = + -a(x) + K(x)~ 1 (x)

Near the stern (x =-v +0 +0)

1B 1  B
r 'rs =;fr(0)VlVI + V- +?

where

B1  - f(0 E - f (0)]a

0

B2 =- f fr ( )n1 d

0

Edge flows. In the bow region, we have a problem governed by the Laplace

equation and the following boundary conditions:



-47-

a(Db ,7= +
-- =0 , Y = 0 + 0 ,

a b1 1--- - )1[ + -a(1) - K(1)1'(1)] = - A[a - -a(1)] = - Afr( 1 ) , y= 1 + 0 ,
372 2

acib 1 1
--- = -2a[ - -a(1) - K(1)P(1)] = - X[S + -a(1)] = - ZfI(1) , 7 = 1 - 0 .

gg2 2

The fact has been used that the circulation (potential jump) at the bow is

zero. The solution has the general form

tb = a1th + X~n + a3v + a4 ,

where v = (x-1)/2 , Oh and #n are the homogeneous and nonhomogeneous

solutions obtained as in Appendix A (although we have to put 7r(1) = r (0)

= 1 ),

- h
v = 1-e +rth ,

Vh

On = undvo , un = -- (1)1n|1+|+fg(1)ln() ,

0

iv = 1 + + lnF , (<0 on the hull

and ai are constants to be determined by matching.

Similarly, near the stern, omitting the homogeneous term, we have

4s =Xn + b2Zv + b3

where v = -x/i ,

v

- 1
#nf undv , un = -[-a(0)lnI1+Ci + ft(0)lnJ ,

0

1
fg,(0) = S + 2-a(0) + K(0)*1R(0).

Matching of the flows as in Section II yields the following information:

$g() =- -- (1 + ln-) + -A 2 ,
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or

419, (1) = 0,

a1
#2i(3} = -- , (3.17)

$3, (1) = -- (1 + i) + -A 2  , (3.18)

with a1 = -Q= - (1) ; (3.18a)
2 dx

--- (0) = -[fg(0) - B1 + fr(0)(ln- 1) ,
dx

or

(0) = 0

d02 fr(O)
-- (0) = .----- , (3.19)
dx it

d3 1
(0) = - ,-[B3 -fL 0 ) + fr( 0 )( 1 - lnr)] . (3.20)

The uniformly valid expressions for the velocity potentials on the right,

Ocr and left, tcg , sides of. the hull are given by (2.54) and (2.55).

The side-force and yaw-moment (with respect to midships) coefficients are

defined as in (2.56) and (2.57). Because of the linearization of the problem

they take the form*

1 '

Cy = 2 f --- -d---- dx = 2 [cr( 0 ) - tcil(O) ]
dx dx

0

*Recall that #c and '4cr represent the composite solutions on left- and

right-hand sides of the body.



-49-

4cr(0 ) + cL( 0 ) - 2 ['ct(X) -cr(x)]dx

0

To the lowest order, we have

2
C C =- #1( 0 )

~-X4 + g(0) - $ g(x)dx ,

0

where # 1k(x) satisfies the equation

d21
- - K(x)1 = - -a(x) = r(x) , (3.21)

dx 2  2

01Y( 1
) = 0 ,

(0) = 0
dx

For a given yaw angle 8 , cross-sectional area curve S(x) , and distribution

of the blockage coefficient C(x) along the hull, the equation (3.21) can be

readily integrated numerically, for example, by the method of Runge-Iutta.

It is worthwhile to mention Beck's (1976) indication that the difference

in the side force and yaw moment between the case of constant blockage

coefficient and the actual blockage coefficient (which varies along the ship

length) is small. Now, assuming that the blockage coefficient C(x) is con-

stant (for example, equal to the value of the blockage coefficient at midship),

we can obtain an analytic solution of Equation (3.21) for any right-hand-side

function r(x) , using the method of variation of parameters, in the form

x

$1 = - r( )sinh a(x - () dE

1

1
sinh a(x-1)r

+ I r(() cosh a( d( , (3.22)
acosh aJ
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where

a = / .-

Side force and yaw moment coefficients to the lowest order are

1
2

Cy = Cy1 = ac r( )sinh a(1 -) dE ; (3.23)
XZacosh aJ

0

1 C x

z~ ~ z J- J r(()sinh a(x - ) dgdx

1
tanh a tanh a
- n aar ()cosha d4 . (3.24)

0

As the formulation of the problem is linear, the effects of yaw angle,

rudder deflection, and beam can be considered separately.

To determine the coefficients Cy and z due to the yaw angle, put

r(x) = 8 . In this case the formulae (3.22)-(3.24) yield

S Fcosh ax
1 = -- - 1 , a =~K

a2 cosh a

1 d# 1
a1 = - Q = ---- (1) =-tanha , (3.25)

2 dx

28 tanh a tanh
Cy=Cy 1 =- a2 ,(3.26)

1 28 tanh a
z = z 1= -- Cy 1 + -- 1 - - . (3.27)

1 2 i Aa2a

To compute the coefficients Cy and Z in case of no yaw angle and
1zero rudder deflection, we require that r(x) = - -a(x) = - S'(x)/2h . For

example, if the ship has constant draft d , rectangular cross sections and

parabolic beam distribution, we have

S(x) = 4db 0 x(1 - x) ,
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2db
0

r(x) =-----(1 - 2x)
h

4db0 2
C = C = -sinh a 1 - cosha , (3.28)7 =1 Zha2 cosh a Laa

118b 0 d cosha-1 -a sinh(3
z =z'1= -low y + --- ,h . (3.29 )

1 2Y ha cosh a

When a = $~ + 0 (purely two-dimensional case)

2b0 d
C + - -- , +0 .71 3th z

Note that in the three-dimensional case the yaw moment is not equal to zero

even if the ship is symmetrical fore and aft.

For the analysis of rudder effectiveness in maneuvering control one may

need to know the side-force and yaw-moment coefficients due to the rudder

deflection (e.g., see Hess (1979)). To obtain these coefficients to the

lowest order, we require that

0 when 1 > x > s ,

r(x) =_

6 s > x >0 ,

where:: is rudder deflection angle (positive for rudder to port), s is

rudder length. Using the formulae (3.19) and (3.20), we obtain

26 cosh a(1-s)
C y=C =---Y 1 - (3.30)

£a2 cosh a

1 26 sinh as

z z1 = -Cy. - --- + sinh a(1 - s) - a , (3.3'1)
z z 1 2 yl a3 cosh a

with a=/ .

Some computational results are presented in Figure 13 to show the effect

of underkeel clearance on the side-force coefficient. For K = 0 , there is

no clearance and thus no transverse flow (no "porosity" or "leakage") . As K

increases from zero, the side force resulting from either a ship yaw angle or

a rudder deflection decreases rapidly.
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0
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Figure 13. Side Force Coefficient Related to Its Value at No "Porosity"

Solving for the next term, which is of the order O(lnj) in (3.10), we

arrive at the following expression for $2 '

cosh ax d$ 2 1 sinh a(x-1)
2(x) = #2.( 1 ) + -(0) (3.32)

cosh a dx a cosh a

where 2(1) and ---- (0) are given by formulae (3.17) and (3.19). The
dx

corresponding increments in Cy and z are equal to

lt d~ 2  sin siha
21 d Lincrement E= [oa (0 ) sna -_ 22(1)1

increment z = ncr. C - 2

d$2 (1-cosh a)1
dx a2 cosh aJ
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For example, to this order, the side-force and moment coefficients for the yaw

problem are

tanh a tanh aln sinh a + tanh a (3.33a)

Y 7 ~~ al Ira cosha(

1

Mz - + 2 0 1 - tanha +T(tanh - tanh a)tanh a .(3.33b)

In order to determine the next term, which is of the order 0(1) , in

expansion (3.10), we have to solve for #3 , which was found in the form

31 (x) = [C 1 + UJ1 (x)]eax + [C2 + U2 (x)e-ax ,

where

U1(x) = - R(x,1) - 1  fr( 1)R(x,1)d(1 ,

0

U2(x) =aQRIx,-1) - fr(E1)R(Kr" 1)dE1

e-aE

R(x, 1 ) = e- tEi~a(E1 - x)] - Ei[a(E 1 - 1)]

+ ea( 1-1)n 1 - 1 - ea(( 1 - - x

The parameters C1  and C2  are determined from the system of equations

1 d$3,
C1 - C2 = - -- (0) - U1(0) + U 2 (0)

a dx

C1ea + C2e-a 4 31Z( 1 )

where 3(1) and -- (0) are given by (3.18) and (3.20) and the function
dx

fr(x) and the parameter Q are defined by the formulae (3.15) and (3.18a) ,

respectively.
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B. Steady Motion of a Ship in a Shallow Canal

It was mentioned earlier (see Section II-A) that the asymptotic solution

of the problem for a ship in a canal depends on the order relationship between

the width of a canal, e , and the ship distance from the left side wall, 2 .
Returning to our two-dimensional far-field description of the three-dimension-

al flow past a ship in a canal, we can consider two cases: (i) e = 0(1) (wide

canal); (ii) e = O(M) (narrow canal). As shown in Section II in case of a

wide canal, for which e = 0(1) , the additional forces due to the presence of

the right side wall are of the order of O(!,) , i.e., they are rather small.

Therefore we shall confine ourselves to the case of a narrow canal, which is

more interesting from the practical point of view. It appears that for this

very case the solution of the problem for the "porous" airfoil can be carried

out easily to the order of O(E)

As the procedure of the solution is very similar to what was demonstrated

previously, we shall simply give the outline and some final results.

The far-field potential 0 = (x,y) is described by the same set of

relationships as for the ship close to a bank (see (3.3)-(3.8)), although the

no-normal-velocity condition must be satisfied on both walls of the canal,

i.e., (3.7) applies on y = e - 0 as well as on y = 0 + 0 . For

E = O(2,) << 1 we shall seek the asymptotic solution of this problem by

matched asymptotic expansions with e as a small parameter. The characteris-

tic zones of the flow in the far field are the same .as shown in Figure 10. We

have two edge flows (bow and stern) and two confined channel flows. -

In the channel flows, using the same technique as before, we obtain the

following relationships for the potentials of the flow in the right channel

(r and the left channel (DI:
1 1

r =l4r + O(£) ; @ = - 41 + 0(e) ;%(3.34)

d2 r 1' 1
[=---- S - -a(x) + K( r - # )] , 1 > x > 0 ; (3.35)

d2~2
~.- [S - a(x) - K(tr - #%)] , 1 > x > 0 , (3.36)

where the tilda (~) is used to denote quantities divided by S , e.g.,

2, = Z/s , K = K/S , etc. One can readily see that we can conveniently write
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the equation for the difference r - I = r , which represents the circula-

tion-. Substracting (3.36) form (3.35), we obtain

2
E(r" - a0 1) = r 0 (x) , (3.37)

where

2 Ka0  ~ ~= ;14(3.37a)

1 1~
r 0 (x) =~ [ + -(x)(2. - 1)] . (3.37b)

2%(Z-1) 2

Passing over to the edge solutions and using techniques similar to those of

Appendix B, we obtain the following expressions for the bow and stern

potentials:

The bow-flow potential is

where Ib = a1*h + + n + a3 e + a4  ,

V = v/s , v = x - 1 .

The homogeneous solution is determined from the equation

V = th - O.ln 1 - Y + exp(.

The nonhomogeneous term is given by the expression

un = - -a(1)1nI1 + I + ,-[ + 1 a(1)]lnI , (3.38)
ir it 2

-n = undo , (3.39)

0

where, as in the previous analysis for the ship in a canal,

Irv = 1 [ln|t - In|ZI + k- 1|] .

The stern-flow potential is defined as follows:



where

v = -x

b3 * b3 -

#n is given by the formulae (3.38) and (3.39).

Matching

To solve the equation (3.37) for r we have to obtain the boundary

conditions on r at x = 0 and x = 1 . This can be done through matching.

Expanding the bow-flow potential in the channel-flow variable v far from the

bow in the right and left channel, we find the following asymptotic expansion

for the circulation r in the bow overlap region:

rb br - b a1 v ln|1- I - ,1 (3.40)

wherefrom we determine the asymptotic structure of r far from the edges:

r = -r1 + r2 + O(E) . (3.41)

Comparing (3.40) with (3.41) expanded for small v = ve , we obtain

r(1) = ir 1 (1) + r2(1) = - a in1 + ln ,(3.42)
E 1-1

or

r 1 (1) = 0 , (3.43)

r 2 (1) = ~ n[ln|1 - L+ --- ] (3.44)
1-_X

At the same time the parameter a1  is found to be

a1 = (I - 1)r'(1) . (3.45)

Matching in the stern overlap region is performed similarly and gives the

following results:

r'(0) -
1r?1(0) + ri(0) = -[r ~ l~ + f,0ln1I (3.46)

or
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P1 (0) = 0 , (3.47)

1 1 fr(0)lni ft (0)ln|1-A
ri(0) =- + j(3.48)

where

1
fr(0) = + -(0) K- (0)r 1 (0) , (3.49)

fX(0) = - -a(0) - K(0)r 1 (0) . (3.50)
2

Now it is not difficult to solve the equations for P1  and P2  using the

boundary conditions determined by the matching. The solution for P1  is

given by the expression (3.22) with 011 replaced by P1 , r(x) by r 0 (x)

(see (3.37b)), a by a0  (see (3.37a)). The side-force and yaw-moment

coefficients to the lowest order can be computed employing the formulae (3.23)

and (3.24) where again r(x) should be replaced by r 0 (x) and a should be

replaced by a0 -

For the particular case when only the yaw angle effects are considered,

we obtain

tanh a0 tanh a0

Cy = Cy,= (3.51)
1 EX(1-x) a0

128 tanh a0Mz zM1 =--C + 2 ,1-_tan. (3.52)z 1 2 1 E(1-Z,)a [ a0

It follows from the inspection of the formulae (3.26), (3.27) and (3.51),

(3.52), that to determine the yaw angle coefficients for the case of the ship

in a narrow canal to the lowest order we may simply take the coefficients

obtained for the case of a ship close to a bank for a = a0  and multiply them

by the factor

1 _E

1-, E-S

Turning to the next order of approximation, the following expression for

P2 (x) can be obtained:

cosh a0 x ' sinh a0(x-1)
P2(x) = P2 (1) + 2)

cosh a0 a0cosh ha0



where r 2 (1) and r 2 (0) are given by the formulae (3.44), (3.48). The

increment in Cy of the order 0(1) is found to be

2 F sinh al
r 2 (1) ~_F2 (0) *

cosh a0  a0

The increment in Mz of the order 0(1) is equal to

2' tanha0
+-tanh a0  I2(1) - r2(0)a 0a0 [a0

For the yaw-angle problem we arrive at the following formulae for Cy and

Mz

Cy 2 Ftanh a0 tanh ,0- 2stanh a0 l +
Cy "-"~ ~ 2 ~ira 0cosh a0 [ln+ (1 - R)In|1-R] ,

e1- ) a0 a 0

1 2$ tanh a0 s inh a0 ~~
Mz~ - 2-tha1 + ao [ln2, + (1 - Z)1n|1 - 2|1 .

2 Y lr(1-Z)a 0cosh a0  a0

It can be verified that these formulae, valid with the asymptotic error of the

order of O(s 2 ) , coincide in the limit a0 + 0 (no "porosity", purely two-

dimensional case) with the expressions (2.106) and (2.107) of Section I.

Some results of the computations of the function ZCy/ , with the help

of formulae derived above, are presented in Figure 14.

C. Unsteady Motion of a Ship in a Shallow Canal

It is known that unsteady problems are much more difficult to analyze in

the case of zero or small bottom gap, where the circulation becomes particu-

larly important and, as in the corresponding aerodynamic problem, vorticity is

shed continually from the trailing edge of the moving body. Progress in solv-

ing such problems for ship-ship interactions has been made recently by King

(1977), Yung (1978) and Kij ima (1979). Within the limitations of the assump-

tions adopted throughout this chapter, it becomes possible to obtain relative-

ly simple analytic results (at least to the lowest order) for some cases of

unsteady motions of a ship in a canal or close to a bank in shallow water. In

the following paragraphs we shall outline the solutions of the unsteady prob-

lems, omitting the parts of the solution techniques that are identical to

those displayed in detail in preceding sections. At the same time, the pecu-
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liarities of the solution due to the unsteady character of the problem will be

discussed in more detail.

Suppose the ship is moving with a'constant velocity parallel to the canal

walls and at the same time performs oscillatory motions of small amplitude.

In practice, these oscillatory motions may be the result of the superposition

of sway and yaw oscillations and also of heaving and pitching oscillations of

the ship.

The far-field two-dimensional problem for the corresponding "porous"

airfoil in unsteady motion between two rigid walls. in terms of velocity

potential has the form

alt alt
3x 2  ay2

at ayc ayc 1
= - -- + - - -a(x,t) + K(x)r(x,t) , 1 > x > 0 , y = + 0,

ay ax at 2

a ayc ayc 1
- = -- + --- + -a(x,t) + K(x)1(x,t) , 1 > x ) 0 , y = R - 0
y x at 2

at
- = 0 , lxi < , y = 0 + 0 , y = E - 0
ay

In the wake we should take account of the Thompson theorem:

S(0,2,t*) - t_(0,2,,t*) = +(x,,t) x,,t) , (3.53)

for

y = , x < 0 , t* = t + x

Condition (3.53) is equivalent to the condition of the continuity of pressure

across the wake.

The Kutta-Joukowsky condition at the stern is formulated as

p= p at x = 0 , y = 2' . (3.54)

Also, we require that

7 + 0 as x 2 +y 2 + c

In the above f ormulation we have used the following notations : yc( x ,t ) is



-61-

the function describing the instantaneous position of the ship centerline

(note that rudder- deflections can be included by considering the rudder

surface as a continuation of the centerline), K(x) = 1/2C(x), C(x) is the

blockage coefficient, p = 2 - - -- the pressure coefficient, and P(x,t)
ax at

the circulation.

It can be shown by matching with the near field, where y - =

O(amplitude of the oscillations), that the function a(x,t) is related to

the change of the cross sectional area S(x,t) both along the ship and in

time and is equal to

1 as asS
a(x,t) = - ----- . (3.54a)

h ax at

The solution to the problem is obtained as in the case of a steady motion of

the ship in a canal by matched expansions with e - as a small parameter. The

asymptotic velocity potentials in the bow and channel regions are determined

as in the steady case, although the parameters in unsteady case depend on time

(e.g., the parameters a1 , a3  and a4  of the bow-flow potential are func-

tions of time) . The analysis of the channel flows allows us to write the

equation for the circulation in the far field in the form

a2r 2
E - - a0 r = r 0 (x,t) , (3.55)

ax2  /

where

Er = r1 + Er 2 + o(E2 )

2 K
a0 = ~ ~

0 (1-2)

r 0 (x,t) = [as(x,t) + .a(x,t)(21 - 1)]
Z(A-1) 2

ayc ayc
a s(x ,t) = -- - - - .-

ax at

Matching with the bow-flow potential gives, as in the steady case, the

boundary condition for r at x = 1 and the value of the parameter a1 in

the bow solution:
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ea1 (t) ~ lnler(1,t) = P1(1,t) + er 2 (1,t) = a- ) ln.|1 - + --- ,

aj(t) = (& - 1)---(1,t) .
ax

Near the stern, the unsteady-flow velocity potential must satisfy not only the

normal velocity conditions on the hull and canal walls but also the condition

in the wake (3.53).

Passing over to the variable = v/E in the equation (3.53), we obtain

the following asymptotic condition in the wake in the vicinity of the stern:

(Ds+ - s-),t * s - +#s + (+- ~s-.)O,t + 0(e 2 ) . (3.56)

It can be seen from (3.55) that to the order of O(e) the values of the

stern-flow potential on the right and left sides of the wake differ by a

linear function of V . The expression for the stern-flow potential can be

written as follows:

s = en + bCEV+ b3

where $n is defined by formula (3.39), b2  # b2

the Kutta-Joukowsky condition at the stern ( v = -x/e

arrive at the following relationship between b2 and

left sides:

b+3

=0

b3

* b3 * Satisfying

, n.= 0 ) , we

on the right and

-2+ ab3
b2 + a

+ ab3
= b2 + -

at

Matching of the pressure jumps in the stern overlap region gives

boundary condition for the equation (3.55) at x"- 0

(ar ' ar e (fr(0,t)1n + fZ(0,t)1n|1-4I\
x + t r 1.

where

fr(O,t) = as(0,t) + .a(0,t) - 2(0)P 1 (0,t)

the necessary

(3.56)

(3.57)

f,(0,t) = as(0,t) - -. (0,t) - ~(0)P 1 (0,t)

Accounting for the asymptotic structure of r , we obtain from (3.56)

ar - ar =
0 at x 0

(3.58)

(3.59)
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ar 2  ar2 1fr(0,t)lnz +f(0,t)ln(1- )

ax 3at Tr 1-4 .

It is not difficult to obtain the analytic solution of the equation

(3.55) with boundary condition, assuming that the blockage coefficient is

constant and that the unsteady motions are harmonic, i.e.,

K = const.

r 0 (x,t) = r0(x)eikt

where

i =

wL
k = w- = Strouhal number ( w is the circular frequency)

Here we shall present some final results for one particular case of sway

oscillations of the hull (i.e., we assume that the ship translates at a con-

stant speed U parallel to the canal walls and at the same time performs very

small lateral harmonic oscillations with an amplitude 20 ). For this case,

the instantaneous position of the centerline can be written as

yc(x,t) =2£ + Z0sinkt = £ - i2 0 eikt

Then

ayc ayc ~ -
as(x,t) = - - -- = -2keikt

ax at

The sway-force coefficient to the lowest order is

Cy1 = Cy1 eikt 2eiktf (r1 - ikr 1 )dx

0

= 2eiktk 0  { -1i 4 11a 0 + ik(ea01)1 -ia0 + ik(1-e-a0)

(3.61)
where

=a 0 +ik(1-e-a0)
2a0 (a0 cosh a0+iksinh a0 )
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B a0 -ik(1-e-a0)
2a0 (a 0 cosh a0 +iksinh a0 )

Turning to the approximation of the order 0(1) , we finally find the

following expression for the sway force coefficient

ECy = ECy + EC72 + 0(E2 )

= eikt(e~ 1 + c ) + 0(e 2 ) ,'(3.62)

where

S_ 2eikt A2[a0 + ik(ea0-1)] -a

a2 a0 0  + [2 a0 -ik(e 0i]

and

r2(1)(a0+ik)+P2 (0)e-aO
A2=

2 (a 0 cosh a0 +iksinh a0 )

2(1)(a 0 -ik)-P 2 (0)ea0
B2 = 2(a 0 cosh a0 +iksinh a0 )

r 2 (1) = r 2 (1,t)e-ikt

( ar- ar(0)e-ikt

Lax at

For purposes of ship traffic control, it might be convenient to represent

the unsteady sway-force coefficient in the form

Cy = fcCyyc + YcCy yc ,(3.63)

where

=c 2 0 kcoskt

yc = -i 0k 2 sinkt

Cyic , CY c are derivatives of the sway force coefficients with respect to

the velocity yc and acceleration 6c of the sway oscillation.

It can be shown that-

£CyfC = 4je(e y) ,(3.64)



-65-

ECyc = 2 Im(eCy) (3.65)

Some results of the computations of the coefficients Cyfc and Cyyc versus

the parameter K = 1/2 C for different values of Strouhal number are

presented in Figures 15 and 16 (only the lowest-order solution being taken

into account).

The effects of yaw oscillations or of rudder oscillatory deflection can

be considered similarly. It is interesting to mention that, at least to the

considered order of the solution, the unsteady vortex wake located at

distances of the order 0(1) behind the stern does not influence the values

of force coefficients. This is due to the fact that the perturbations induced

by wake vortices located in a narrow canal decay exponentially at distances of

the order of 0(1) . Therefore, the unsteady effects in case of ship motion

in a narrow canal arise because of the free unsteady vortices within the ship

hull.

D. Unsteady Motion of a Ship Close to a Bank

Some intermediate results for this problem are presented in Appendix C.

The asymptotic solution is constructed with respect to the small parameter 2.

As shown in Rozhdestvensky (1977, 1979), the influence of the unsteady wake

manifests itself only at the approximation level of the order 0(1) , that is,

it is very small compared to the lowest order, O(1) . Physically it means

that as I + 0 the velocities induced on the hull by the unsteady vortices in

the wake at distances of the order 0(1) behind the stern are neutralized by

the induced velocities of the image vortices. Therefore when the ship moves

very close to a bank ( 2 + 0 ) , to the lowest order, the unsteady effects are

caused only by the free unsteady vortices generated on the hull within the

length of the ship.

Below we shall present some results for one particular case of the sway

oscillations of the amplitude 20 ( yc =. + 10 sinkt = 2. - i2 0exp(ikt) ). The

sway-force coefficient to the lowest order, as in steady case, can be computed

using the corresponding result for the ship in narrow canal (3.61) and

replacing a0 by a = /9( = K/. ) and 20/(1 - 2) by 20~

For the case when 2 +~ 0 , the problem becomes identical to the two-dimen-

sional problem of the thin airfoil oscillating near a rigid wall while moving

at constant speed parallel to the wall, for which, in Rozhdestvensky (1976,
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1979), the following formulae for the sway force coefficient was obtained

Cy = 'ccyyc + cyyc

1
i I'c = - 2+k2  lnT 2(1+k 2 )2+2-k2

2(1+k ) rr(1+k )

£ 3k 2 (1+k 2 )+2(1+lnr) [k 2 +(2+k2 ) (1+k 2 )] - k3 [(1-k2)J11+2kJ 2 1]}

n (2( 1+k ) ( 3.66 )

n 1

= 2-k 2  + (1-k 2 ) (2+k 2 )
6 (1+kz) n (1+k )2

2(1+lnI)-2k2 1ni(2+k2 )-k 2 {2kJ 1 1 +(k 2 -1 )J 2 1 (
+ T-21,k(3.67)

where

J11 = si(k)cosk + (2 lnk - ci(k))sink

J21 = si(k)sink - (2 lnk - ci(k))cosk ,

k = -- as previously (Strouhal number),U

si and ci are sine and cosine integrals.

Results of some computations are represented in Figures 17 and 18 by contin-

uous lines. For comparison, in the same figures we plot some results- obtained

by 1.1. Efremoff (1975) by a straightforward numerical solution of the inte-

gral equation of the airfoil near the rigid boundary for I = 0, 1 (dotted.

line).
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APPENDIX A. DETERMINATION OF THE BOW AND STERN POTENTIALS FOR THE PROBLEM OF
A SHIP MOVING CLOSE TO A BANK

To find the homogeneous solution $h in the vicinity of the bow, map the

bow-flow region onto an auxiliary upper halfplane Im{C} = n > 0 using the

Schwarz-Christoffel transformation. The correspondence of points in the

bow-flow plane z = v + i7 and auxiliary complex plane C = ( + in is shown

in Figure- Al. The mapping function is

z = ---- (1 + C + lnC) . (A.l)

For the case of a purely circulatory motion of the fluid (see Figure A2) around

the bow, the flow with the unit velocity at the left infinity is represented by

a band of a width yr(1) in the plane of the complex potential,

Fh = Oh + i~h

The mapping of this band onto the half plane Im{C} > 0 is fulfilled with the

help of the function

ir(1)
Fh = Oh + i~h = lnC . (A.2)

7r

Thus, the solution of the homogeneous problem is given by the formulae (A.1) and

(A.2). On the hull we have

z=v+iyr(1) , Fh4=h+iYr(l)

and so

- fh
Irv = yr(1)(1 - e + fh) , (A.3)

iT
where fhZT7.. 'h *

Yrf i)

It can be demonstrated that the velocity corresponding to the homogeneous

solution has square root singularity at the bow. In fact, as v + 0 , h + 0

S + 0 ) , and (A.3) yields

1 1
Tv~ ~ r(1)[1 - (1 + fh + pf2 + ...) + fhl ~ ~ rfih2,

or
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Figure A2. Picture of the Flow Corresponding to the Homogeneous Solution

df - constant n<o

For the matching with the outer and channel flows we shall need the asymap-

totic expression for h as v 4. ' 7 7r ( 1 ) ± 0

On the upper side of the slit (right side of the ship), v 4+ -

y7 7r ( 1) + 0 h -+ ( fh + Oo ) , and we have from (A.3)

f i;vY J1 T
l n --- or Oh = 4hr ir1  n

Y7r 1 ) I 7 r ( 1)
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On the lower side of the slit (left side of the ship), + -c,

= -r(l ) , #h + -e ( fh + c ) , and we can obtain from (A.3)

yr(1) v
fh ~1r """-- - 1 or h = #hi """""""7 - - 1 *

Yr f E 7 L Yr( 1 ) I

Now we pass over to the determination of the nonhomogeneous solution #n

Using the same mapping function (A.1), we arrive at the following problem for

the complex velocity wn = un - ivn in the auxiliary plane C : To find the

analytic function wn() in the upper halfplane Im{C} = Ti > 0 , given the

imaginary part, Im{wn} = -v , on the i-axis (see Figure A3) .

C a

Figure A3. Nonhomogeneous Problem in Auxiliary Plane

It can be verified that the following solution satisfies the above formu-

lated problem

1
wn = - [(Dr - DZ)ln(1 + C) + Dylng] .

On the hull, = ( < 0 , we have

1
un = Re{wn} =;, [(Dr - D )ln|1 + (| + Dgln|(|] . (A.4)

The corresponding nonhomogeneous potential can be found with the help of the

formula



On = undv .(A.5)

0

The variable ( = Re{C} is related to V on the hull in the following way:

V = Yr( 1 )( 1 + E + lnI|E) , < 0 . (A.6)

The flow picture corresponding to the nonhomogeneous solution is presented in

Figure A4.

Figure A4. Picture of the Flow Corresponding to the Nonhomogeneous Solution

For matching with the channel and outer flows, asymptotic estimates of un

and $n will be needed. For un , the desired results can be obtained directly

from (A.4) and (A.6). For the potential, we must carry out the integration in-

dicated in (A.5). This is done most easily in the C plane. We obtain the

following results:

On the upper side. of the slit (right side of the ship), where V + -0,

y = Yr(1) + 0 , +-m , we have

- r(1) u Dr
v .~.-----.(E , unr ~ ""In jII j ,

r

and so

Dr Iiv
un =un ~--in j--- . (A.7)

Substituting (A.4) and (A.6) into (A.5), integrating, and transforming back to

the z plane, we obtain



Dr - v

¢n = n ~--' v In ----- - 1 .
r inYr ])

On the lower side of the slit (left side of the ship), where V + - ,

y = Yr(1) - 0 , ( + 0 , we have

- Yr( 1 )
v = ---- (ln|(| + 1) (A.A)

and

Dg

un = un ~-- ln| , (A.9)

and so

un=un ~D - - - . (A.10)

Yr(A) J

From (A.5), we obtain

n Dn ~ F" 1""""""
n 27r(1)

Finally we can write down, in terms of the variable V = Zv , the follow-

ing asymptotic formulae f6! the bow-flow potential $b in the overlap regions:

On the right side of the ship, the one-term outer expansion of the two-term

bow expansion (2.29) is

a 11 rv EDr Irv

Ob =hr~"Yr (1) ln - + --- vIn ---- 1 + a 3 Zv + a4 tIT ir ( 1 ) i ir 1)

On the left side of the ship, the two-term channel expansion of the two-

term bow expansion (2.29) is

ai7r(1) F Iv ] DLF1v2
(bbb ~---- -r I + L-vr+ a3 v + a4(1.

In similar fashion we can derive the nonhomogeneous solution for the stern

flow. The homogeneous solution must be excluded from the expression for the

stern potential because it gives a square-root singularity for the velocity at

the edge and hence does not satisfy the Kutta-Joukowsky condition. The follow-

ing asymptotics are obtained for the matching:



On the right side of the ship, the one-term outer expansion of the two-term

stern expansion has the following form:

s = r ~ v [In - 1 + b2v + Lb3 *

On the left side of the ship, the two-term channel expansions of the two-

term stern expansions are obtained both for the potential and velocity:

s"s ~ -Zv]+b 2 v +Zb 3

dds_ dst ddst E
-= - -- - (rv - )- b2dx dx dv w



APPENDIX B. DETERMINATION OF THE BOW AND STERN POTENTIALS FOR THE PROBLEM OF
A SHIP MOVING IN A NARROW CANAL

To find the homogeneous solution for the flow around the bow, map the bow-

flow region onto the upper half of the auxiliary plane C = ( + in using the

following Schwarz-Christoffel transformation:

i = v + iY = [ CqlnC - ln(qC+q-1)] + i (B.1)

where q = yr(l) . Correspondence of the

in Figure B1. For the purely circulatory

geneous complex potential Fh = h + i~h

c-plane takes the form

points in z

flow shown in

('Ph = stream

and C planes is given

Figure B2, the homo-

function) in the

q -
Fh="nC * (3.2)

.vi N " N

z= 7- Y

I I I I I I / I
2 f f

I /
-

a3
8

Fl A

C

A ) 6 C. cI a
7 / / / / I I /I / I f, 1 7 I I 7 / / / 77-

-1 0

T

Figure B1. The Regions of the Flow in Physical and Auxiliary Planes

a)
/ / / / / /I / / / /

/ / / // //

/ / / /

Figure B2. The Picture of the Flow Corresponding to a) Homogeneous and

b) Nonhomogeneous Solutions
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Note that on the walls ( C =_ > 0 ) $h = 0 and on the hull (C < 0

$h = q * Thus the final though implicit expression for Fh is

z=Fh - In[ qexp - + q - .1 + i . (13.3)

On the hull, Fh = Oh + i~ h " h + iq , z = v + iq , and (B.3) yields

= th ~ g int1 - q + q exp (4)t. (B.4)

It can be easily verified that this solution has a square-root singularity for

the velocity at v = 0 (i.e., at the edge).

For matching with the channel-flow solutions, we shall need the asymptotic

expression for Oh as v+-- , Y = q ± 0 . On the upper side of the slit

(right side of the ship), as v + -*,th + , the exponential inside of the

logarithm prevails and we obtain

q ~ nq
th* hr ~ [v v +-j-

On the lower side of the slit (left side of the ship), as V + -- , y = q - 0 ,

Oh + - , the exponential vanishes, so that

h= 'h, ~V + n|1-q .

To determine the nonhomogeneous solution On we use the same function (B.1)

to map the z plane onto the upper C halfplane and formulate the following

problem for the complex velocity wn = un - ivn : Find the analytic function

wn in the upper halfplane, Im{C} = n > 0 , given the imaginary part Im{wnl

= -vn on the axis (see Figure B3). It can be shown that the following

function is a solution of the problem formulated above:

Dr-D D
wn = ln(1 + C) +-In C (B.5)

On the hull, C= < 0

1
un = Re{wn} E - (Dr - Dg)ln|1+(| + Dgln ( ] . (13.6)

The corresponding nonhomogeneous potential can be found as follows:
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6C CL a6

-1

Figure B3. Nonhomogeneous Problem in Auxiliary Plane

n = undo(B.7)

0

The variable = Re{;} is related to on the hull through the mapping

function

rv = qln lElIn l1-q-qEI ,l < 0 . (B. 8)

For matching with channel-flow solutions, the following asymptotic expan-

sions of un and n can be obtained: On the upper side of the slit (right

channel), v + "- , y = q + 0 ,E+

v ^ EClnI~I - lnlqEI) + =(!) [(q-1)lnI~I - lnq)

ununr^ D r lERI

n rDr
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On the lower side of the slit (left channel), v + -, = q - 0 , + + 0 ± 0:

V ~ [qln| I|i ln|1-ql] +O(q) ,

1
un= un O ~Uln|E| .

Combining the last two expressions, we obtain

un"ut~(nv + In I1-q I) , ui

n*n~ (ir + ln|-q) .

Finally, the asymptotic formulae for Ib (bow-flow potential) in the

overlap regions take the forms: On the upper side of the slit ( y ='q + 0 )

the two-term right-channel expansion of the two-term bow expansion (2.78) is

b Ihbr 1 ~ (v +e ) +- + -1 + a3 ev + a4 e . 9)
-q Tr 7 2(q-1) (q-1)

On the lower side of the slit ( y = q - 0 ) , the two-term left-channel expan-

sion of the two-term bow expansion (2.78) is

Db = ZbV+ ~ a1(vv + -ln|1-qi)-+-(- - + coln|1-q|) + a3 EV + a4e . (B.1O)n Tr q 2

The flow corresponding to the nonhomogeneous solution is sketched in -Figure

B2.

The nonhomogeneous solution for the stern flow is constructed in a similar

way. (The homogeneous solution in the vicinity of the stern is not included as

it does not satisfy Kutta-Joukowsky condition.) The following asymptotic ex-

pressions are obtained for matching the stern-flow with the channel flows:

On the upper side of the slit ( = q1 + 0 , q1 = yr(0) = 1 ) , the two-term

right-channel expansions of the two-term expansions of the stern potential and

velocity are

#s= sr ~ ~ 11 22+ evlnq1 ) + b2ev + Eb3 , (3.11)'

--- d--- -d--- ~ r (wv + clnq 1 ) - b2e * (B*12)
dx dx dv W(1-q 1 )



On the lower side of the slit ( y = q1 - 0 ) , the two-term left-channel ex-

pansions of the two-term expansions of the stern potential and velocity are

s * st ~--(-v 2 + evln|1-q1I) + b2 ev + b3 E , (B.13)
Eq1 2

ds dsi dlsi Et
- = = - ~- -- (rv + cln(1-q1 j) - b2 e . (B.14)

dx dx dv grrq1

Let us now consider the asymptotic behavior of the edge solutions far up-

stream and downstream. Far from the edge in the canal,

z +oo+ i , 1 > )>0

In the auxiliary plane, C + a (see Figure B1). Put

1-
a + 41 , |k1|+0 , a =- .

q

Then the expression for the mapping function yields

- lnC 1 +0O(1)

or

1 = exp(-rr) * (3.15)

It follows from formulae (B.2) and (B.15) that, when C + a

Fh = Fhc glna +qexp(-1rz)

_hc =d uhc - ihc =-

The formulae for the nonhomogeneous complex velocity wn and potential take

the forms

wn nw ~Dr-D ln + -1lnn + (exp(-r z))wn nc T~r q it q

Fn =Fnc ~ ncV9

The one-term upstream expansions of the two-term bow potential and velo-

city expansions are, finally,
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= Ibc tD~1n(1-q) -Dl)nq] sv + a3 ev + a4 E

d'Ob =dtbc d~bc 1
+ ,., _ [D~1n(1-q) _ Dr1nqJ E + a3 e , (B. 16)

dx dx dv ir
with v = x 1 and q = Yr ( 1 ) . The one-term downstream expansion of the

two-term stern velocity expansion can be obtained in a similar way:

d~ 5  d sc dMsc 1
= =1 -- E9ln(1-q1) - ErinlnqJe - b2 E , (B.17)

dx dx dv

with q 1 = 9 .



APPENDIX C. SOME INTERMEDIATE RESULTS FOR THE PROBLEM OF UNSTEADY MOTION OF A
SHIP CLOSE TO A BANK IN SHALLOW WATER

We use the solution techniques developed previously, subdividing the flow

into the outer flow, channel flow and edge flow regions. The outer solution

x = 0(1) , y = O(1) , I + 0 ) should satisfy the equations:

a2 4r r a2 'r

3x2 3y2

aor aYc ayc i
-- = K (x)r(x,t) - - + --- -a(x,t) = fr
y x 3t 2

, 1 > x > 0 ,

I

(D r

ay

air

ay

=- aw(x,t) , 0 > x > -a , y = 0 + 0

x>1 , y= + 0 ,

( + 0 as x2 + y 2 co I

where aw is the induced lateral velocity in the wake defined as in Rozhdest-

vensky (1974, 1977) (by consideration of the channel flow between the wake and

the bank):

W1 ax2 = at*2 t* = t + x

This problem has the following solution

1

'r = ln| (1-x)|I + ; q( ,t)lnlx-(|d(

where

Q(.t) = - 2fr(x,t) , 1 > x > 0 ,

-2aW(x, t) , 0 > x > -

For the case of harmonic oscillations,

awl = -k2 1(0,t*) = -k 2 (g 1 coskt* + g2sinkt*)

During the calculations of r , the following integrals have to be dealt with:
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I

I 1 = cosk( ln d ; I2 = s inky lng d

0 . 0

These integrals are divergent in a conventional sense, but they can be treated

in a generalized (Abel-Poisson) sense:

+0011 lim f -e coskE ln dd

6F+ k
0

= lim - - ln(k2 +62 ) + k arctan - + 6C = , (C.1)
6+0 k 2 +62  2  6 k

00
I2= rlim e" sink ln d = lim6arctan - - kC + k ln(k2+62

6+J 6+ 6 2 k
0

(ln k - C) when k > 0

0 when k = 0 , (C.2)

where C = 0.5772 is the Eiler constant. Physically, the generalized inte-

gration implies that we consider the oscillations with slightly decreasing am-

plitude which , in the limit, become constant amplitude oscillations. A simi-

lar approach was employed by Theodorsen for the calculation of integrals of

the type sink d and cosk dt in his work on the problem of harmonic

oscillations of a thin airfoil in unlimited fluid.

Taking into account (C.1) and (C.2), we obtain

4 1

(r = ln|1-x| - ifr(,t)1nx- |d5

0

k
+ - [(g 1T1 + g2T2 )coskt + (g2 T1 - g1T2)sinkt],

where

T1= Mcoskx + Nsinkx ,

T2= Msinkx - Ncoskx ,

M = si(kx) - sinkx Inx,

N = 2 lnk + coskx lnx - ci(kx),



and si(kx) and ci(kx) are sine and cosine integrals, defined as

kx

ci(kx) 'f cosk dE
kx

The asymptotic expansions for c r near the extremities are obtained in the

form:

Near the bow, v =x 1

Q1A 1  A2
=_' b mv + 1f r(1tvv+ v-1 + 2

where

A1= f(1,t) - [C ((,t) -f r( ]dt) -

1 r r rJ
0

-k
2 [(g 1T2 1 - q2T1 1 )coskt + (g 1T 11 + g2T2 1 )sinkt]

A2 =-f fr(Et)lnI 1-E de + k[(g1T1 1 + g2 T2 1)coskt + (g 2 T1 1 - g1T2 1 )sinkt)

withT1 = T 1 (1) , T 2 1 = T2(1)
Near the stern, v = -x:

B1 v B2
Or Os n r T

where



1

B2 = f fr( ,t)ln~d( + k[ (g 1 T1 0 + g2 T2 0 )coskt + (g 2 T1 0 - g1 T2 0 )sinkt]

0

with

T10 = T1(0) =- , T2 0 = T2 (0) = (C - ink)

Matching of the potentials near the bow and in the region to the right of

the stern gives

1 a41!t
a1 = = -2Q(1,t)

a3 = -[A 1 + fr(1,t)(1-1n ,

1
a4 = -(A 2 - al1nj]i ,

b1 = Aa = fr(0,t) - aw1 (0,t)

b+ = [B1 + Aa(1 - lnj] ] ,

+ 1
b3 *32 *

Application of the Kutta condition (3.54) at the stern leads to the equa-

tion

- 3b 3  + ab 3  1 it 3B2
b2 + -- = b2 + = --7[B 1 + Aa(1 - ln-) +-] .

atat rat

Boundary conditions for the channel flow potential OX are obtained in

the form

$g(1,t) = -[A 2 - a11+in) ,

&#2 &#iT aB2
a - at -(Aaln.+ .- B1) at x= 0 .

The asymptotic structure of the channel flow potential is identical to (3. 10).



APPENDIX D. ANALYSIS OF THE LIMITING FORM OF BECK'S (1976) INTEGRAL EQUATION
AS THE DISTANCE FROM ONE OF THE CANAL WALLS TENDS TO ZERO

In his report, "Forces and Moments on a Ship Moving in a Canal," R. Beck

arrives at the following far-field integral equation of the "porous" airfoil

in a canal (see Beck (1976), p. 14, eq. 2.13):

(1-cos2a) coth k 0 (x- ) 2w
day ( ) + ----- H (x-E )

cosh 2k 0 (x-E) - cos 2a C(x)

1U Tdsinh 2k0 (x-E)
- --2si lad( S(E)2 , (D.1)

wh sn[cosh 2k 0 (x-E) - cos 2a] 2

where, in Beck's notations,

a = ra/w ,

a = distance to starboard wall of canal

= [1 - Fr 21/2 ,

C(x) = blockage coefficient

w = canal width

k0 = r/2wS,

S = sectional area ,

y = strength of vorticity along the ship hull

in the near field ,

U = ship speed

h = water depth

Inspecting his equation, Beck concludes that "... as a + 0 , both the right-

hand side and the part of the kernel identifiable with the downwash of the

vortices and their image system go to zero. This is because mathematically

when the ship is right at the wall the problem is again symmetrical..."

However, it can be shown that the problem does not become symmetrical in

the limit a + 0 because the limit is singular .

We shall demonstrate that in the limit a + 0 the integral equation de-

generates into a much simpler one. Further on, we assume that w = 0(1) and

we put S = 1 for convenience. Performing an integration by parts in the

right-hand side of the equation, we can rewrite it as
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x

Y()Kd(x-9)d + + (2w) d

a(E) sin 2a d( , (D.2)

cosh 2k0 (x-i) - cos 2a

where

a = US'(x)/h

(1-cos a)coth k0 (x-)
K((x-() =

cosh 2k 0 (x-() - cos 2a

Now assume that a + 0 and try to obtain an asymptotic solution of the inte-

gral equation (D.2). First, we have to expand the right and left-hand sides

with respect to a + 0 . Expand the first term on the left-hand side of equa-

tion (D.2). It is obvious that the small parameter a is not always small

compared to (x-() . In order to single out the region (x-() 0(a) it is

convenient to subdivide the interval of integration

2 x-6 x+8 2,-

T = YKd= f +f + f =T 1 + T 2 + T 3

-ewX -X Xx-5 x+a

It can be shown (Rozhdestvensky (1977)) that the integrals T1  and T3  are

of the order of O(a 3 ) when a + 0 , + 0 , 8 /a + e , and the main contri-

bution of the order 0(a) is provided by

x+d3

T2 = YKd

Considering T2  with the new variable of integration,

_=(( -x) /a , a = na/w

we obtain for a +0 ( +0 )

T2 =- Yx+ a( .(D.3)

--- o/a(k 2 g2+i1)k
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Outside of the vicinities of the points x = 0 , x 1 the function y(x+ag)

can be expanded in Taylor series,

y(x+a ) y=Y(x) + ay'(x) + O(a 2 ) . (D.4)

Substituting (D.4) into (D.3), we obtain after integration, for a + 0

6+0, 6/

-2a6 -air
T2=--- y'(x) arctan - =--Y'(x)

2 k02 a k02

Performing similar operations with the right-hand side, we finally obtain the

limiting form for the equation (D.2) as a + 0

x

- Y' (x) + y(g)d =.. (D.5)
k0

2  C(x) k0

Recalling Beck's notations and introducing the circulation of the velocity as

x

F(x) = y(g)d ,

we arrive at the following equation with respect to P

a(" - K(x) (x)(D.6)

where

K(x) = 1/2aC(x)

which, as seen from Chapter II, could have been obtained by the method of

matched expansions.

Thus, we have proved that (i) Beck's integral equation is valid in the

limiting case as a + 0 and in this case it degenerates to take a much simpler

form, (ii) if w = 0(1) and a + 0 , the influence of another wall vanishes

in the limit (note that equation (D. 6) does not contain the canal width w ).
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