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Abstract 

Desire and dread can be produced in medial nucleus accumbens shell in a rostrocaudal gradient 

along which hyperpolarizing microinjections of the AMPA receptor antagonist DNQX can 

generate appetitive behavior (in rostral shell) and fearful behaviors (in caudal shell). Additionally, 

environmental ambience retunes the valence of behavior elicited by glutamate receptor blockade 

in the accumbens, increasing positively motivated behavior in a home environment, and 

increasing defensive behavior in a stressful environment. Despite producing intense eating, 

rostral shell DNQX has previously been reported to produce a conditioned place aversion under 

standard laboratory conditions. The purpose of this study was to determine whether the 

comfortable, home environment could allow DNQX to illicit a conditioned place preference. 

Here, DNQX was shown to establish a conditioned place preference in rats with far rostral 

microinjection sites, but it did not establish a conditioned place preference in rats with more mid 

rostral microinjection sites. This effect contrasts with DNQX effects on unconditioned appetitive 

behavior (eating), which is increased by DNQX at both far and mid rostral locations. Appetitive 

behaviors produced by corticolimbic glutamate signals are influenced by emotional ambience, 

even in the case of conditioned behaviors.  
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Place Preference Can Be Conditioned by Corticolimbic Glutamate Blockade of 

Accumbens Shell in a Familiar Environment 

 Different theories exist regarding what underlies emotion in the brain. Some researchers 

argue for a categorical theory of emotion, which would suggest that emotions – inherited and 

reflexive modules such as anger, happiness, fear, or disgust – could be classified into discrete 

groups (Eckman, 1972). People across the world are capable of categorizing particular 

expressions, and people blind from birth still generate particular emotional expressions, even 

though they have never visualized these expressions, providing evidence for universality in 

emotion (Eckman, 1972). This may mean that the brain is utilizing a separate systems approach 

to generating emotion in which a certain emotion is elicited and coded for by a discrete system in 

the brain. However, in disagreement with these notions, there is evidence that brain activations 

observed from fMRI occur in concurrence with more than one different emotion – such as the 

amygdala’s role in not just fear, but also possibly reward (Barrett & Wager, 2006).  Moreover, 

emotions have been linked to brain activations in more than one region such as linkage between 

sadness and not only the anterior cingulate cortex but also the medial prefrontal cortex (Phan, 

Wager, Taylor, & Liberzon, 2002; Murphy, Nimmo-Smith & Lawrence, 2003). 

 Interestingly, fMRI studies have consistently found common culprits involved in almost 

all emotions – amygdala, nucleus accumbens, orbitofrontal and cingulate cortex – including 

positive emotions in response to money or trust and negative emotions in response to pain or fear 

(Knutson et al, 2004; O’Doherty et al, 2004; Singer et al, 2004; Morris & Dolan, 2004). Posing 

another problem for the hypothesis that specific brain systems govern specific emotions or 

motivations is the neuronal plasticity observed for hypothalamic circuits: stimulation of the 

lateral hypothalamus can result in either feeding or drinking behavior, depending on the 
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availability of food (Valenstein, Cox & Kakolewski, 1969). Rats that typically eat following 

lateral hypothalamic electrode stimulation can be ‘turned into’ drinking rats if they are 

stimulated with free water availability but no food. When the food is returned, however, these 

rats will again eat following hypothalamic stimulation (Valenstein et al, 1969). This would seem 

that there is some sort of shared component in these neurons that is malleable. Could it be that 

affective components can be built flexibly into emotion? 

 For instance, appetitive and fearful motivation may share a form of motivational salience 

– incentive salience in the case of appetitive motivation and fearful salience in the case of fearful 

motivation (Berridge, 2004). A brain structure of particular interest due to its role in motivated 

behaviors is the nucleus accumbens (Reynolds & Berridge, 2002, 2003). Positive motivational 

behavior and defensive, fearful behavior can be generated by hyperpolarizations induced by 

either the stimulation of GABAA receptors or blockade of glutamate AMPA receptors in the 

nucleus accumbens shell (Maldonado-Irizarry, Swanson & Kelley, 1995; Stratford & Kelley, 

1999; Reynolds & Berridge, 2001). There exists a rostrocaudal gradient in the accumbens shell 

in which varying rostrocaudal locations produce increased appetitive behavior (positive 

motivation) or increased defensive behavior when neurochemically altered with either a GABAA 

agonist or glutamate AMPA antagonist (Reynolds & Berridge, 2001, 2003). The rostrocaudal 

gradient is analogous to a limbic ‘affective keyboard,’ capable of producing many different 

combinations of appetitive and defensive behaviors, each of which correspond to the specific 

location of injection sites of neuron-hyperpolarizing drugs into the accumbens shell. 

Microinjections into rostral sites generate strong appetitive motivation, characterized by 

increased eating behavior and food intake, and injections into caudal sites generate negative 

fearful motivation (Reynolds & Berridge, 2001, 2003). The behavior most easily characterized as 
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fearful is ‘defensive treading,’ in which a rodent will attempt to bury a negative stimulus using 

rapid forward thrusts of the forepaws. In nature, the stimulus could be a predator; while in the lab, 

the stimulus could be a probe that sends a shock into the foot of the rat (Treit, Pinel & Fibiger, 

1981). 

 When microinjected into the nucleus accumbens shell, the GABAA receptor agonist 

muscimol demonstrated a similar rostrocaudal gradient for hedonic impact – liking and disliking 

– and conditioned place preference/avoidance; yet the glutamate AMPA receptor antagonist 6,7-

dinitroquinoxaline-2,3-dione (DNQX) failed to modulate these hedonic reactions (Reynolds & 

Berridge, 2002, 2003; Faure, Richard & Berridge, 2010). This demonstrates a clear difference in 

the glutamatergic and GABAergic circuits and how they govern different behaviors. The 

glutamatergic circuit receives top-down input from structures such as the prefrontal cortex, 

basolateral amygdala and the hippocampus, while the GABAergic circuit receives bottom-up 

input from the ventral pallidum and ventral tegmentum area as well as other GABAergic neurons 

from the nucleus accumbens (Faure et al, 2010). This different type of processing involed in the 

glutamatergic and GABAergic circuits could explain why even though both circuits are shown to 

be equally responsible in generating motivated behaviors such as positive, appetitive behavior 

and negative, fearful behavior, these circuits differently govern emotion responses such as 

hedonics and place preference.  

 A pattern of conditioned place preference and avoidance could be observed in accordance 

with the rostrocaudal gradient of the nucleus accumbens following muscimol microinjection: 

rostral microinjection produces a positive place preference, whereas more caudal microinjections 

produce a negative place aversion (Reynolds & Berridge, 2002). However, microinjections of a 

glutamate blocker, DNQX, into accumbens shell resulted in only avoidance, which progressed, 
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on average, from mild to strong along the rostrocaudal gradient (Reynolds & Berridge, 2003). 

That DNQX did not demonstrate this rostrocaudal gradient is of particular interest, and we 

propose that the top-down processing that is sensitive to environmental change is impacting 

DNQX’s ability to generate conditioned place preference. Environmental ambiance has also been 

shown to affect the valence of motivational behavior induced by DNQX microinjections into the 

accumbens shell (Reynolds & Berridge, 2008). The valence simply refers to whether the 

behavior elicited in a rat can be classified as positive (appetitive) or negative (fearful). The 

environmental influence on the rostrocaudal gradient of the accumbens shell can provide more 

insight into the mechanism that controls certain complex disorders of motivation. Reynolds and 

Berridge’s (2008) study featured rats exposed to one of three different environments. Rats tested 

in the home environment were tested in the actual room in which they were housed, featuring 

familiar sounds, smells and lighting – intended to be of positive valence. A standard laboratory 

environment was used as a control. Finally, the stressful environment was both brightly lit and 

featured loud music, a stark contrast from the dimly lit and quiet, home environment (Reynolds 

& Berridge, 2008).  

The nucleus accumbens can be divided into zones, based on the type of behavior that is 

elicited from a microinjection of a hyperpolarizing agent. The ‘positive zone’ exists rostrally in 

the nucleus accumbens shell and microinjections into this zone result in appetitive behavior. 

Conversely, the ‘negative zone’ exists caudally in the nucleus accumbens shell and 

microinjections into this zone result in fearful behavior. Changing the environment in which rats 

were tested for motivated behaviors showed that the ‘positive zone’ and ‘negative zone’ 

increased in size when rats were tested in the comfortable, home environment and in the stressful 

environment, respectively (Reynolds & Berridge, 2008). That is, when rats were placed in the 
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home environment, injection sites in the rostrocaudal gradient that previously resulted in either 

ambivalent or negative behavior (in the standard environment) now resulted in positive, 

appetitive behavior (Reynolds & Berridge, 2008). Testing in the home environment increased the 

appetitive behavior, especially that which is activated by neurons in the middle rostrocaudal zone 

(between +1.2 and 1.8 mm ahead of bregma) of the accumbens shell.  Because hyperpolarization 

of these neurons usually elicits equal amounts of appetitive or defensive behavior in the standard 

environment, the middle of the accumbens shell features the greatest abundance of neurons that 

are likely to flip valence of behavior as a result of environmental influence (Reynolds & 

Berridge, 2008). In the home environment, glutamate blockade resulted in appetitive behavior 

elicited by a larger number of activation sites than the standard, control environment. In the 

stressful environment, glutamate blockade resulted in defensive behavior elicited by a larger 

number of activation sites than the standard environment, especially sites in the middle 

rostrocaudal zone (Reynolds & Berridge, 2008). Contrastingly, the GABAergic was less 

sensitive to environmental change (Richard & Berridge, 2011). 

 The testing paradigm for rats is, by nature, a stressful experience for rats. The 

microinjection procedure takes 8-10 minutes, and the testing chamber is unfamiliar. With 

glutamate circuits being so sensitive to the environment, this could explain why the rostral 

portion of the nucleus accumbens – which produces positively motivated eating behavior 

following DNQX microinjection – would still produce a conditioned place avoidance. Such an 

uncomfortable experience for rats does not allow the positive effects of DNQX to overcome the 

stress of the place preference test.  

 This brings about the question of whether neuronal plasticity could possibly change the 

observed place avoidance resulting from DNQX (glutamate antagonist) microinjection into 
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accumbens shell (Reynolds & Berridge, 2002, 2003, 2008). Following glutamate antagonist 

microinjection, emotional environments were shown to retune the valence of motivation in the 

nucleus accumbens, particularly with regards to those neurons in middle rostrocaudal zone. 

While DNQX microinjections in accumbens shells established a rostrocaudal gradient of 

negative conditioned place avoidance, rostral sites featured only 25% mean avoidance while 

caudal shell featured 55% mean avoidance (Reynolds & Berridge, 2003). That far rostral sites 

only demonstrated moderate conditioned place avoidance makes the neurons in that region of 

accumbens our target. The far rostral sites in the accumbens did not demonstrate the flip of 

valence that medial sites did, but this could be because these sites already produced robust eating 

effects following DNQX microinjection (Reynolds & Berridge, 2003, 2008). It would seem, 

however, that a soothing environment has the potential to make positive zones more positive, 

which would enable the far rostral sites of the nucleus accumbens to overcome the stress of 

testing. 

 The purpose of this study is to uncover whether the same neuronal plasticity for 

increasing appetitive zones in the comfortable, home environment could result in new, 

conditioned place preference following microinjections of glutamate into far rostral sites of the 

accumbens shell. To confirm the effects of DNQX microinjection into rostral shell on motivated 

behaviors, a group of rats were assigned to behavioral testing to examine whether these rodents 

demonstrated an increase in eating behavior. We found that the far rostral sites of the nucleus 

accumbens produced a conditioned place preference effect that was a result of rats avoiding the 

vehicle-paired chamber while their time spent in the DNQX-paired chamber remained the same. 

Rats with mid rostral microinjection sites did not demonstrate any conditioned place preference, 

and they largely avoided both chambers. Here, we saw the same retuned valence of motivational 
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salience that was observed in Reynolds and Berridge’s (2008) study. While the testing procedure 

was still stressful, testing in a more familiar environment allowed DNQX’s positive motivational 

effects to make the DNQX-paired chamber a preferred experience for at least some of the 

microinjection sites in medial shell. 

Methods 

Subjects 

 Male Sprague Dawley rats (N=28 [amphetamine validation group, N=10; DNQX place 

preference group, N=12; DNQX unconditioned motivation group, N=6] 280–350 g at the time of 

surgery) were group housed (21°C; 12 hr light/dark cycle) with ad libitum food (Purina Rat 

Chow) and water (tap water). 

Microinjection cannula surgery 

 Rats (N=18) were pretreated with atropine sulfate (0.05 mg/kg) and anesthetized with a 

combination of ketamine (80 mg/kg, i.p.) and xylazine (5 mg/kg). To prevent damage to the 

lateral ventricles, rats were placed in a stereotaxic apparatus in a slanted position with the incisor 

bar set to 5.0 mm above interaural zero. Chronic microinjection guide cannulae (23 gauge) were 

implanted bilaterally to end 2 mm above rostral sites in the medial nucleus accumbens shell. 

Coordinates for rostral sites were chosen on the basis of the capacity of rostral sites to maximally 

evoke positively motivated behavior following DNQX microinjection (Reynolds and Berridge, 

2003). Rats received cannulae targeted in the rostral half of the accumbens shell [targeted at 

anteroposterior (AP) +3.1-3.3 mm ahead of bregma, mediolateral (ML) ±1.0 mm from bregma, 

dorsoventral (DV) -5.7 mm below skull], although actual placements also included some rats 

with more intermediate sites. Microinjection cannulae were anchored to the skull with bone 

screws and acrylic cement. A stainless steel obturator was inserted into each microinjection 
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guide cannula to help prevent occlusions. After surgery, each rat received subcutaneous injection 

of cefazolin (75 mg/kg) to prevent infection and carprofen (5 mg/kg) for pain relief. Rats 

received carprofen again 24 hours later and were afforded at least 7 days to recover before 

testing. 

Drugs and Microinjections 

 DNQX (6,7-dinitroquinoxaline-2,3(1H,4H)-dione), an AMPA/kainite receptor glutamate 

antagonist, was dissolved in 50% DMSO/50% 0.15 M saline, which was also used for vehicle 

control microinjections. The DNQX dosage (500 ng/0.5 µl per side) that was chosen was based 

on that used to produce rostrocaudal gradients of eating and defensive treading behaviors via 

microinjections into medial shell in recent studies (Faure et al, 2010; Reynolds & Berridge, 

2008). Microinjection cannulae (29 gauge), extending 2 mm beyond the ventral tip of the guide, 

were attached to a syringe pump via PE-20 tubing, and rats were gently hand-held as they were 

bilaterally infused with a microinjection volume of 0.5 µl at a rate of 0.30 µl / min as used in 

prior studies (Faure et al, 2010; Reynolds & Berridge, 2008). After infusion, the injectors 

remained in place for an extra 60 seconds to ensure drug diffusion before they were withdrawn 

and replaced with the obturators. Immediately after microinjection, rats were placed into the 

behavioral testing chamber. DNQX and vehicle microinjections were spaced 48 hours apart, and 

counterbalanced across rats. 

Place Preference Apparatus 

 Conditioned place preference training occurred in a three-compartment apparatus that 

was located in the rats’ home environment in which they live, under the dim red lighting used for 

their reverse light cycle with minimal unfamiliar noise (Reynolds & Berridge, 2008). The 

apparatus featured two large side chambers (28 x 21 x 21 cm) surrounded a smaller central 
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compartment (12 x 21 x 21 cm) (Reynolds & Berridge, 2002). One side compartment was 

cleaned using Versa-Clean and had black-colored walls and a wire grid floor. The other side 

compartment was cleaned using 70% Ethanol and had white walls and a wire mesh floor. Before 

this experiment, the effectiveness of our place conditioning procedure was confirmed using a 

separate group of rats (N=10), successfully conditioned to have a place preference for a 

compartment paired with amphetamine administration (1 mg/kg, i.p) (Reynolds & Berridge, 

2002). 

Pre-exposure 

 For this test (day 0), rats were not given microinjections. They were taken from the home 

cage and placed into the central compartment of the place preference apparatus and allowed to 

freely explore the entire apparatus for 30 minutes. Their location during this session was 

videorecorded and scored for cumulative time (seconds) spent in each compartment. A camera 

was positioned above the testing chamber, mainly focused on the middle apparatus. The 

experimenter could see the entrance point to all three chambers. A rat was considered to be in a 

particular compartment whenever its head and both forelimbs were inside. Rats who exhibited a 

strong place preference (> 70% time spent on either side) prior to conditioning were excluded 

from further conditioning/testing. 

Place Conditioning Training Procedure 

 Each rat (N=12) was assigned in a counterbalanced manner to have one side 

compartment paired with DNQX microinjection. Rats received six conditioning trials (spaced 48 

hours apart) containing three DNQX microinjections paired with their assigned compartment 

alternating with three vehicle microinjections paired with the other compartment, 

counterbalanced for order. On conditioning days, rats received bilateral microinjections (0.5 µl), 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   12	
  

as described above, before immediately being placed in the appropriate side compartment, where 

they were confined for 30 minutes. 

Conditioned place preference test 

 Following the six days of conditioning, rats were tested for conditioned place preference 

(day 7) utilizing the same procedure from the pre-exposure. 

Tests of spontaneous motivated behavior 

 On a test day, rats (N=6) received one of the microinjection conditions described above 

(either DNQX or vehicle) and were immediately placed in a transparent test chamber for 

behavioral testing. The floor was covered with granular bedding (crushed corn cob) spread 3 cm 

deep (to support defensive treading behavior), and the chamber contained pre-weighed food 

chow pellets (~20 g) and a water spout (to support eating and drinking behaviors). Spontaneous 

behavior was videotaped for 60 min for subsequent off-line analysis (Reynolds & Berridge, 2002, 

2003). DNQX-induced motivated behaviors typically directed toward appropriate stimuli in the 

environment. Appetitive behavior is directed to food pellets or a waterspout in the chamber. 

Defensive treading behavior is typically directed toward light-reflecting corners and the most 

exposed transparent wall of the experimenters, open room, and glittering corners appear to be the 

most threatening stimuli in the chamber, and perhaps for that reason are most defended against 

by vigorous defensive treading behavior stimulated by DNQX (Reynolds & Berridge, 2002, 

2003). Defensive treading stimulated by DNQX microinjection in caudal shell typically results in 

rats building a mound of the granular bedding placed in corners or between the rat and the 

transparent wall that reveals the outside experimenter (Reynolds & Berridge, 2002, 2003).  

 The videotaped behavior of each rat was scored in an analysis of eating, defensive 

treading, and other behaviors by an experimenter blind to drug treatment. Behavior was analyzed 
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for cumulative time (seconds) spent in (1) eating, (2) drinking, (3) defensive treading, (4) 

grooming, (5) burrowing (insertion of head under corn-cob bedding, with downward and forward 

thrust), and (6) burrow treading (combination of burrowing head thrust and paw-treading 

movements), and for the total number of occurrences of (7) rearing and (8) locomotion (crossing 

of line that divides the front and back of the cage) as seen in prior studies (Reynolds & Berridge, 

2003, 2008) 

Amphetamine Validation 

 In order to determine that our procedures could successfully condition a place preference, 

a subset of rats was conditioned with amphetamine. Rats (N=10) were pre-exposed to the testing 

chamber as described above. 2 rats were excluded from further conditioning because they 

demonstrated a strong place preference (> 70% time spent on either side) prior to conditioning. 

On conditioning days, rats received injections of amphetamine or saline (1 mg/kg, i.p.), 

counterbalanced for order and chamber in which amphetamine was received as described above 

in the procedure for DNQX conditioning. Following the six days of conditioning, rats were 

tested for conditioned place preference using the testing procedure and videoscoring methods as 

previously described. 

Histology 

 Following all testing, rats were deeply anesthetized with an overdose of sodium 

pentobarbital and decapitated. Brains were removed and fixed in 10% paraformaldehyde 

overnight, and then cryoprotected in 25% sucrose solution for at least 2 days. Brains were then 

sliced at 60 µm on a freezing microtome, and stained with Cresyl violet for verification of 

microinjection sites. Bilateral microinjection sites were placed on coronal slices from a rat brain 
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atlas and were used to extrapolate placements in a sagittal view of medial shell (Paxinos & 

Watson, 2007) 

 Statistical analysis 

 Effects of amphetamine injections on conditioned place preference were analyzed by 

comparing duration(s) spent in each chamber using 2-way within-subjects ANOVA (test day [pre 

vs. post] X drug condition [saline vs. amphetamine]). Additionally duration spent in each 

chamber following conditioning was compared using paired-samples T-test (post-test time spent 

in saline-paired chamber vs. post-test time spent in amphetamine-paired chamber). Effects of 

DNQX microinjections on conditioned place preference were analyzed by comparing duration(s) 

spent in each chamber using 3-way mixed ANOVA (test day [pre vs. post] X drug condition 

[vehicle vs. DNQX] X placement [far rostral vs. mid rostral]). Rats were then split by placement 

(far rostral and mid rostral) and effects observed in each microinjection placement respectively 

were analyzed using 2-way within-subjects ANOVA (test day [pre vs. post] X drug condition 

[vehicle vs. DNQX]). Food intake behaviors were each analyzed using paired-samples T-test and 

were then analyzed to determine any differences in behavior based on placement using 2-way 

ANOVA (behavior [DNQX vs. Vehicle] X Placement). 

Results 

Intraperitoneal Amphetamine injection causes a conditioned place preference when tested in the 

familiar home environment 

 Intraperitoneal amphetamine injection successfully conditioned a place preference in the 

rats’ home environment. Rats (N=8), on average, increased their time spent in the amphetamine-

paired chamber following conditioning and decreased their time spent in the saline-paired 

chamber following conditioning (interaction of drug X pre vs. post test, F(1,7) = 20.03, p = 0.003; 
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Fig. 1A). The rats’ percentage of time spent in the saline-paired chamber decreased from 46.38% 

before conditioning to 30.30% following conditioning (Fig. 1A). In actual time, rats spent 836.15 

seconds in the saline-paired chamber before conditioning. Following conditioning, rats spent 

545.37 seconds in the saline-paired chamber, a decrease of 290.77 seconds. Percentage of time 

spent in the amphetamine-paired chamber increased from 36.36% before conditioning to 50.33% 

following conditioning (Fig. 1A). Rats spent 655.95 seconds in the amphetamine-paired chamber 

prior to conditioning, and they increased their time spent in the amphetamine-paired chamber 

following conditioning by 250.15 seconds to an average of 906.10 seconds. Following 

conditioning, rats avoided the saline-paired chamber and preferred the amphetamine-paired 

chamber, and they spent more time in the amphetamine-paired chamber than in the saline-paired 

chamber (post-conditioning time spent in amphetamine-paired chamber vs. post-conditioning 

time spent in saline-paired chamber, T(7) = 2.24, p = 0.060; Fig. 1A). 

Far rostral sites elicit place preference while mid rostral sites elicit no reaction 

 Microinjections of the glutamate AMPA receptor antagonist DNQX into the far rostral 

shell of the nucleus accumbens caused a stronger place preference than microinjections into the 

mid rostral shell (main effect of microinjection placement on place preference, t(7) = 2.75, p = 

0.029; difference in pre vs. post time, interaction of drug and placement, F(1,7) = 7.55, p = 0.029; 

Fig 1B and 2B). The place preference score (calculated as the difference between the percentage 

of time spent in the DNQX-paired chamber [post – pre] and the percentage of time spent in the 

vehicle-paired chamber [post – pre]) of rats with far rostral microinjection sites was on average 

13.96%, demonstrating a positive place preference; in comparison, rats with mid rostral 

microinjection sites (N = 5) had a place preference score of -2.95 %, indicating a slight aversion 

to the DNQX-paired chamber, or no preference (Fig. 1B and 2B). While the place preference 
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conditioned in the home environment differed in far rostral microinjection sites and mid rostral 

microinjection sites, there was no difference in the strength of the conditioned place preference 

between rats conditioned with intraperitoneal amphetamine and rats conditioned with far rostral 

microinjection of DNQX into accumbens shell (Amphetamine place preference score versus Far 

rostral place preference score, t(10) = 1.53, p = 0.156; Fig. 1B and 2B). The place preference 

conditioned by intraperitoneal amphetamine was stronger than the place preference conditioned 

by mid rostral DNQX microinjection in accumbens shell (Amphetamine place preference score 

versus Mid rostral place preference score, t(11) = 3.69, p = 0.004; Fig. 1B and 2B). 

 On average, rats with far rostral microinjection sites (N = 4) spent 846.83 seconds in the 

vehicle-paired chamber before conditioning with DNQX and 596.16 seconds in the vehicle-

paired chamber following conditioning, a decreased of 250.675 seconds less in the vehicle-paired 

chamber after conditioning. The rats spent 47.04% of their time in the vehicle-paired chamber 

prior to conditioning, and they spent 34.20% of their time in the vehicle-paired chamber 

following conditioning (Fig. 1C and 2B). Differently from time spent in the vehicle-paired 

chamber, rats’ time spent in the DNQX-paired chamber was unchanged (interaction of drug X 

pre vs. post test, F(1,3) = 5.662, p = 0.098; Fig. 1C). The rats spent 615.66 seconds (34.20% of 

their time in the testing apparatus) in the DNQX-paired chamber prior to conditioning, and they 

spent 616.20 seconds (34.23% of their time in the testing apparatus) in the DNQX-paired 

chamber following conditioning, virtually no change (Fig 1C and 2B).  

 Rats with mid rostral microinjection sites spent, on average, 857.76 seconds (47.64% of 

time spent in the testing apparatus) in the vehicle-paired chamber before conditioning and 793.43 

seconds (44.10% of time spent in the testing apparatus) in the vehicle-paired chamber following 

conditioning (Fig. 1D and 2B). These rats spent 630.50 seconds (35.02% of time spent in the 
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testing apparatus) in the DNQX-paired chamber prior to conditioning and 513.63 seconds 

(28.53% of time spent in the testing apparatus) in the chamber following conditioning. The rats 

spent 63.82 seconds less in the vehicle-paired chamber following conditioning, and they spent 

116.87 seconds less in the DNQX-paired chamber following conditioning (time spent in the 

DNQX-paired chamber X time spent in the Vehicle-paired chamber, F(1,4) = 0.99, p = 0.377; Fig. 

1D and 2B). 

 Additionally, one rat with a caudal microinjection placement spent a great amount of time 

in the DNQX-paired chamber following conditioning (1523.29 seconds, or 84.62% of time in the 

testing apparatus) compared to just 44.52 seconds (2.47% of time spent in the testing apparatus) 

spent in the vehicle-paired chamber following conditioning (Fig. 1E and 2B). Compared to the 

rat’s pre-conditioning numbers (the rat spent 884.7 seconds [49.14%] in the DNQX-paired 

chamber and 624.95 seconds [34.71%] in the Vehicle-paired chamber), this rat increased its time 

spent in the DNQX-paired chamber and decreased its time spent in the vehicle-paired chamber 

(Fig. 1E and 2B). With only one caudal rat, however, no comparisons could be made. 

Additionally, because of the nature of the testing chamber and where the video camera was 

situated, it was impossible to determine if the rat’s locomotive activity was reduced. It is likely 

that this rat simply fell asleep on one side of the chamber, which would explain why it spent such 

a majority of its time there. 

DNQX microinjections increased eating behavior but did not affect other behaviors. 

 On vehicle, rats (N=5) did not exhibit any appetitive behavior. They all ate for 0 seconds 

and consequently did not ingest or carry any food. On DNQX, rats ate for, on average, 146.2 

seconds. They consumed an average of 1.24 grams of food and carried their food an average of 4 

times. DNQX microinjection caused increases in all three of these appetitive behaviors (food 
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intake: main effect of DNQX, t(4) = 1.619, p = 0.181; Fig. 2A and 3A; eating time: main effect of 

DNQX, t(4) = 2.239, p = 0.089; Fig. 2A and 3B; food carries: main effect of DNQX, t(4) = 2.384, 

p = 0.076). None of these tests carried any statistical significance, but the p-values for time spent 

eating and food carries demonstrate a trend of increased eating behavior. Moreover, since the rats 

did not exhibit any of these behaviors following vehicle microinjection, it is clear that these 

behaviors, on average, did increase. The only eating behavior that was largely unaffected by 

DNQX was the amount of time rats sniffed their food, which demonstrated a minimal increase 

from 6.6 food sniffs on vehicle to 8.8 food sniffs on DNQX (food sniffs: main effect of DNQX, 

t(4) = 0.648, p = 0.553). Rats with far rostral microinjection sites (N = 2) did not exhibit any 

eating behavior that differed from rats with mid rostral microinjection sites (N = 3) (eating time: 

DNQX – Vehicle X Placement, F(1,3) = 0.016, p = 0.906; food intake: DNQX – Vehicle X 

Placement, F(1,3) = 0.220, p = 0.671; food carries: DNQX – Vehicle X Placement, F(1,3) = 2.751, 

p = 0.196). That far rostral and mid rostral microinjection sites had no difference in appetitive 

behavior differs from what we observed in the conditioned place preference tests in which there 

was a difference in behavior between rats with far rostral and mid rostral microinjection sites. 

DNQX microinjection into rostral accumbens shell can produce increased appetitive behavior, 

but only the far rostral portion of accumbens shell is susceptible to environmentally influenced 

conditioned place preference. 

 No rats exhibited any defensive behavior (treads, burrows or burrow-treads). Additionally, 

rats did not demonstrate any change in general locomotor activities (drinking time: main effect of 

DNQX, T(4) = 0.049, p = 0.963; sleeping time: main effect of DNQX, T(4) = 0.473, p = 0.661; 

grooming: main effect of DNQX, T(4) = 0.910, p = 0.414; cage crosses: main effect of DNQX, 

T(4) = 0.110, p = 0.918; rearing: main effect of DNQX, T(4) = 0.096, p = 0.928). Drinking time 
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was almost identical on both DNQX (21.60 seconds spent drinking) and vehicle (21.80 seconds 

spent drinking). Rats slept for an average of 210.8 seconds on vehicle, and they slept for 165.00 

seconds on DNQX. Rats groomed on average 5.8 times on vehicle and 8.00 times on DNQX. 

The amount of times that rats crossed their cage (front to back or back to front) was also largely 

identical for both experimental conditions. Rats cross 29.8 times on vehicle and 30.8 times on 

DNQX. Finally, rats reared 74.2 times on vehicle and 76.6 times on DNQX. With a sample size 

of only 5 rats (one rat was eliminated from statistical testing due to a brain infection), it is 

expected that the difference in eating behaviors exhibited within rats following DNQX and 

vehicle microinjection would be greater if more rats were included for testing.  

Discussion 

 In the comfortable, home environment, DNQX microinjection in the nucleus accumbens 

established a conditioned place preference in rats with far rostral microinjection sites, but failed 

to do so in rats with mid rostral microinjection sites. This finding is of great importance because 

previous study found that DNQX at all sites in medial shell (even at far rostral sites) produced a 

conditioned place aversion, and we have found that under the right conditions DNQX in far 

rostral sites of the nucleus accumbens can produce a conditioned place preference. Following 

conditioning, rats should be able to make a decision on which side of the chamber is more 

rewarding (i.e. made them feel good or perhaps ‘less bad’), and that would be the chamber that 

they would spend more time in following conditioning. The home environment ought to serve as 

a means of making the DNQX-paired chamber a more soothing experience, therefore more 

rewarding and worth returning to during the post-conditioning test. The conditioned place 

preference observed in the rats with far rostral microinjection sites was a product of rats avoiding 

the vehicle-paired chamber, while demonstrating no real change in time spent in the DNQX-
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paired chamber. The microinjection experience is generally a stressful one for rats, and through 

conditioning, they learned to associate the vehicle-paired chamber as an unpleasant experience. 

In contrast, rats did not associate the DNQX-paired chamber as an unpleasant experience. This 

would indicate that when DNQX is injected into the far rostral portion of the nucleus accumbens 

shell, the experience is made less aversive. Rats with mid rostral microinjection sites were 

conditioned to have a slight aversion to the DNQX-paired chamber, or no preference at all. 

Despite the fact that far rostral microinjections of DNQX into the nucleus accumbens can 

successfully condition a place preference and mid rostral microinjections cannot, DNQX 

microinjections at both sites increased appetitive behaviors (food intake, time spent eating and 

food carries), regardless of particular rostral location. 

 Since amphetamine has been demonstrated to have rewarding properties to rats, we used 

intraperitoneal amphetamine injections to demonstrate that rats could be conditioned to prefer a 

drug-paired chamber to a saline-paired chamber in the same testing conditions that were used for 

the DNQX conditioned place preference procedure. Following conditioning, rats increased their 

time spent in the amphetamine-paired chamber and decreased their time spent in the saline-

paired chamber. This proves that these experimental conditions could produce a conditioned 

place preference, provided that the drug-paired chamber is a rewarding enough experience to 

combat the stressors of the test – similar to our findings of the DNQX-induced conditioned place 

preference in rats with far rostral microinjection sites. 

 DNQX acts antagonistically on AMPA receptors, ligand-gated ion channels that require 

glutamate to bind to the receptor for proper functioning (Wang et al, 2006). Glutamatergic inputs 

into the nucleus accumbens come from the medial prefrontal cortex, orbitofrontal cortex, 

hippocampus, and basolateral amygdala (Kelley, Domesick & Nauta, 1982; Groenewegen et al, 
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1999; Kelley, Baldo, Pratt & Will, 2005; Cardinal, Parkinson, Hall & Everitt, 2002). The 

prefrontal cortex has been implicated in complex cognitive behavior, emotion and decision-

making, and the orbitofrontal cortex is a cortical region with extensive connections to the 

basolateral amygdala as well as other cortical and subcortical regions that might act in reward 

(Miller, Freedman & Wallis, 2002; Cardinal et al, 2002). So, the prefrontal cortex could be 

sending down signals to accumbens shell that determine whether environmental cues (the 

chamber and the microinjection experience) are of a negative or aversive nature. This could 

explain why rats find the conditioning experience so aversive. Only in the home environmental 

conditions could the prefrontal cortex send signals to the nucleus accumbens that weren’t 

predisposed to be fearful. The basolateral amygdala, receiving projections from the prefrontal 

cortex, sends projections heavily to the nucleus accumbens shell and is involved in mediating the 

effects of emotional arousal and memory (Cardinal et al, 2002). The amygdala has also been 

discovered to have a significant role in fear conditioning, linking external stimuli to defensive 

responses (LeDoux, 2002). With such a heavy involvement in sending fearful signals, the 

projections that the amygdala sends to the nucleus accumbens could be predisposing the 

accumbens to determine signals as fearful. The hippocampus monosynaptically projects to the 

nucleus accumbens shell and could play a role in the fear conditioning process as it converts 

information from short-term to long-term memory (French and Totterdell, 2002). In this case, the 

hippocampus would be playing a role similar to the amygdala, sending fearful signals to the 

nucleus accumbens and potentially negating the positive effects on emotion that DNQX could 

have. 

 The ability of changes in environmental ambience to modify conditioned behaviors 

produced by glutamate circuits indicates that top-down processing could have a distinct role in 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   22	
  

why DNQX fails to produce a conditioned place preference under standard laboratory conditions, 

and instead produces an aversion (Reynolds & Berridge, 2003). The experience of receiving the 

microinjection could be so unpleasant that the normal appetitive bias of rostral DNQX cannot 

overcome this. Conditioning the rats in their home environment is an attempt to combat the top-

down processing that could be making rats fearful. By testing the rats in their home environment, 

they do not have to experience any stressors (i.e. traveling from their home to the test site or 

being placed in an unfamiliar room) other than the microinjection and conditioning experience, 

which are both unavoidable. The home environment can make the microinjection process a less 

aversive experience because of its familiarity in sounds and smells utilizing the same top-down 

processing from structures such as a prefrontal cortex, basolateral amygdala and the 

hippocampus. However, the top-down signals that are sent to the accumbens in the home 

environment could be telling the nucleus accumbens that the experience is not an aversive one. 

 Similar to the effects of environment on fear and feeding, corticolimbic circuits involving 

the nucleus accumbens may be utilizing the malleable nature of affective-generating functions 

(Reynolds & Berridge, 2008). In prior experiments, the environment in which a rat was placed in 

was able to influence the valence of motivated behavior along the rostrocaudal gradient of the 

accumbens shell (Reynolds & Berridge, 2008). Medial sites in the nucleus accumbens which, in 

the standard lab environment, generally produced a combination of both appetitive and fearful 

behavior could ‘switch’ based on the environment in which the rats were tested in: the home 

environment caused an increase in appetitive zones in the nucleus accumbens and the stressful 

environment, in which loud music was played and bright lights were utilized, caused an increase 

in fearful (defensive treading) zones. We try to take advantage of that ‘switch’ from fearful to 

desirable in the far rostral zones of the nucleus accumbens shell. 
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 There are many potential signals that may interact with glutamate in the accumbens shell 

in order to change the valence of behavior. Local dopamine is essential for the motivational 

functions that are observed in the rostrocaudal gradient of the accumbens shell, in that blocking 

local endogenous dopamine prevents DNQX from generating appetitive eating or defensive 

behaviors (Faure, Reynolds, Richard & Berridge, 2008; Richard & Berridge, 2011). Specifically, 

D1 dopamine receptors are involved in the rostral generation of eating, but D1 and D2 dopamine 

receptors must be utilized simultaneously for the generation of fearful behavior from caudal shell 

(Richard & Berridge, 2011). Environmental manipulation that yields increased eating in the 

home environment and increased defensive behavior in the stressful environment caused the 

roles of the dopamine receptors to switch to match the motivational valence generated (Reynolds 

& Berridge, 2008; Richard & Berridge, 2011). This dynamic nature of dopamine signaling to the 

nucleus accumbens can perhaps influence the valence of the behavioral response and be involved 

in how the calm, home environment can produce a conditioned place preference in far rostral 

accumbens shell. It could be the case that there is a decrease of D2 dopamine signaling in the 

home environment. If this was true, the fearful signals from D2 dopamine receptors may not be 

influencing caudal shell, which generates defensive and fearful behavior. 

 Opioids have a role in the hedonics involved during the consummatory phase of eating, 

as indicated by paw licks and orofacial reactions (Baldo & Kelley, 2007). Since opioid signals 

can affect how rats respond to appetitive food stimuli, they could also have an effect on how rats 

respond to the drug-paired or vehicle-paired chambers both during and after conditioning. 

Opioids differently mediate how rats ‘like’ and ‘want’ reward. The nucleus accumbens features 

small hedonic hotspots and coldspots for reward, which affect how much rats ‘like’ a reward 

(Peciña, 2008). However, the entire medial shell receives stimulation of ‘wanting’ from opioid 
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signals (Peciña, 2008). The hedonic hotspots and coldspots for opioid signals could be factoring 

into whether rats are perceiving environmentally stimuli as positive or negative, and this could 

potentially explain any shifts from conditioned preference to aversion or vice versa, as well as 

changes in unconditioned behaviors such as eating and treading. 

 Norepinephrine that projects to the caudal accumbens shell from the hindbrain is 

differently facilitated by D1 and D2 dopamine receptors and could potentially play in role in 

motivational valence (Vanderschuren, Wardeh, De Vries, Mulder & Schoffelmeer, 1999; 

Richard & Berridge, 2011). This has great relevance to the stress induced by the microinjection 

experience and the subsequent aversion that results, because fear is generated in the caudal 

nucleus accumbens shell. When stressed, the hindbrain produces norepinephrine, which could 

potentially be activating a fearful motivational state once it projects to neurons in the caudal shell 

of nucleus accumbens, a region that can produce fearful and aversive behavior (Reynolds & 

Berridge, 2001, 2002, 2003; Faure et al, 2010). Finally, metabotropic glutamate receptor 

blockade, specifically of Group II metabotropic glutamate receptors (mglu2/3), has been shown 

to suppress positively motivated behaviors such as feeding and ‘liking’, shifting the valence of 

these behaviors toward fear and disgust (Richard & Berridge. 2011). There is a component of 

displeasure or disgust in rats avoiding one or both of the chambers following conditioning. It 

could be that decreased activity at mglu2/3 receptors is a potential source of aversion to the 

DNQX-paired chamber in a standard or more stressful lab environment. Perhaps some 

component of the environmental condition can limit this effect, possibly increasing activity at 

metabotropic glutamate receptors, which may enable rats to not avoid the DNQX-paired 

chamber following microinjection of DNQX at far rostral nucleus accumbens sites and allow 

DNQX to produce a positive place preference. 
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 The nucleus accumbens shell’s output structures include the ventral tegmental area, 

ventral pallidum and lateral hypothalamus (Heimer & Van Hoesen, 2006; Zahm, 2006) The 

ventral pallidum receives GABAergic inputs from the nucleus accumbens and projects to the 

thalamus, which projects to the prefrontal cortex in a limbic loop of the basal ganglia – a 

pathway involved in the regulation of motivated behaviors and emotion (Zahm, 2006). When the 

nucleus accumbens is hyperpolarized, it does not send GABA to the ventral pallidum, leaving it 

receptive to depolarization and allowing ventral pallidum to potentially increase appetitive 

motivation and ‘liking’. Also part of the limbic loop, the ventral tegmental area receives 

inhibitory inputs from the nucleus accumbens and may have a role in avoidance and fear from 

the inputs it receives from the amygdala (Heimer & Van Hoesen 2006, Zahm, 2006). The fearful 

signals are processed in a similar limbic loop and eventually are projected back to the nucleus 

accumbens. Finally, the lateral hypothalamus receives inputs from the nucleus accumbens and 

releases endocrine hormones, many of which lead to changed appetitive function (Maldonado-

Irizarry et al, 1995). A nucleus accumbens hyperpolarization prevents the hypothalamus from 

receiving inhibitory GABA signaling from the accumbens, potentially releasing lateral 

hypothalamic activity to produce robust eating. However, the expression of the feeding response 

to increase hypothalamic activity depends on an NMDA-receptor-mediated activation of lateral 

hypothalamic neurons and is not just the result of inhibiting the GABA transmission (Stratford & 

Kelley, 1999). So, glutamate inputs to the hypothalamus have an important role to increase 

appetitive motivation resulting from lateral hypothalamus stimulation just as the blocking of 

GABA inputs does. 

 There are a few potential shortcomings in our experiment. As previously mentioned, the 

testing paradigm is very stressful for rats. We have previously discussed how sensitive the nature 
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of the cortical glutamate circuit and how sensitive it is to top-down processing. One potential 

solution would be for the experimenter to handle the rats for a greater amount of time prior to 

conditioning. This could possibly eliminate or at least reduce the aversive nature of the 

experimental procedure. Another solution would be to uncover a method to make the 

microinjection process an easier one to endure. In addition to the microinjection experience 

being not being pleasurable, the chambers in which the rats are confined to are small and 

enclosed. The three-compartment chamber features the two microinjection-paired chambers 

(DNQX and vehicle, respectively) surrounding a smaller, third chamber. Many rats seem to 

generally avoid both microinjection-paired chambers. One way in which to force the rats to 

demonstrate which chamber is more pleasurable or aversive would be to either eliminate or 

minimalize the area in the middle in which rats tend to hover around. This would also help to 

rectify a problem that sometimes occurred during videoscoring. Rats would often rear (lift up 

their front paws) right at the edge of the middle chamber and a drug-paired chamber, making it 

difficult to decipher which chamber a rat should be classified in. This could also explain why the 

time spent in the middle increased following conditioning. Prior to conditioning, rats did not 

have any preference or aversion to either chamber, and that might be why they spent less time 

hovering around the middle. A common trend observed throughout testing was that rats generally 

preferred the chamber cleaned with Versa-clean featuring black-colored walls and a wire grid 

floor over the chamber cleaned with 70% Ethanol featuring white-colored walls and a wire mesh 

floor. When rats have a predisposition for one chamber or the other it could impact the 

effectiveness of the conditioning process. Finally, during the food intake experiment, rats did not 

eat under vehicle conditions. In general, rats eat small, but consistent amounts of approximately 

1 gram of food following vehicle microinjection (Reynolds and Berridge, 2002, 2003, 2008; 
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Faure et al, 2008; Richard and Berridge, 2011). This is likely just a product of a small sample 

size of rats, but it could have impacted the change from vehicle experienced from DNQX. 

Moreover, DNQX did not cause as robust eating increases as in prior experiments (Reynolds & 

Berridge, 2003). It is possibly that there was some issue with the drug or microinjections 

themselves. More rats would increase the power of all statistical tests, but that would not 

necessarily change our results. Rats conditioned in the standard environment using a similar 

protocol were conditioned to have an aversion to the DNQX-paired chamber (Reynolds & 

Berridge, 2003). The rostrocaudal gradient of positive to negative motivational function seen in 

eating was somewhat observed as the far rostral sites of the accumbens had a smaller aversion 

than mid rostral sites or caudal sites (Reynolds & Berridge, 2003). The ability of a familiar 

environment to enable DNQX to produce a conditioned place preference is consistent with 

previous reports that a comfortable and familiar environment can retune the valence of 

unconditioned motivated behaviors; for example, in a home environment DNQX produces 

mostly eating behaviors rather than fearful behaviors, even in some zones that produce fearful 

behavior in the standard environment (Reynolds & Berridge, 2008). 

 We have shown that DNQX manipulation of the nucleus accumbens can produce a place 

preference under certain conditions even though it produces a place aversion under most 

conditions. DNQX may be producing a motivational salience that can be transformed into 

different states. Then, under the right conditions it could be turned into a conditioned place 

preference (incentive salience) such as in the home environment or a conditioned place aversion 

(fearful salience) such as in the standard – and likely, the stressful – environment. It would be 

expected that a place preference test in a stressful environment using DNQX manipulation of the 

nucleus accumbens would yield fearful salience. The conditioning experiment is already stressful 
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to rats, so conditioning in an environment with loud, bright and unfamiliar stimuli would be 

expected to produce an even greater aversion than conditioning in the standard environment 

produce. This would be consistent with the increase defensive treading behavior observed in rats 

that underwent unconditioned motivational behavior testing in a stressful environment (Reynolds 

& Berridge, 2008). 

 Motivational salience as a potential component of incentive and fearful salience has 

clinical implications as well. A person who has problems with motivational salience could have 

trouble balancing incentive and fearful salience. Past research stressing the involvement of the 

dopaminergic systems in both schizophrenia and the abuse of psychoactive drugs has shown that 

a high degree of comorbidity exists between addiction, potentially involving intense, incentive 

salience, and schizophrenia, potentially involving intense, fearful salience (Batel, 2000; Kapur, 

2003). Additionally it is hypothesized that the shared vulnerability to different forms of intense 

motivational salience could be responsible for why many people with schizophrenia are more 

susceptible to develop addiction to medication (Batel, 2000). This effect was also seen in 

experiments that tested environmental manipulation on the valence of appetite and fear as some 

rats were observed to have bouts of stress-induced eating (Reynolds & Berridge, 2008; Richard 

& Berridge, 2011). Binge eating followed immediately by defensive treading is a demonstrating 

of motivational salience that is out of balance, and the brain would have difficulty managing the 

different signals of incentive and fearful salience. 

 A further example of conflicting motivational salience can be seen in ‘sign-tracking’ rats 

that attribute high incentive salience to appetitive cues have a propensity to attribute fearful 

salience to Pavlovian conditioning of fearful stimuli (Morrow, Maren & Robinson, 2011). While 

it makes sense that those who attribute high incentive salience to appetitive cues would be 
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susceptible to addiction, this implies that they also may be susceptible to disorders of fearful 

salience such as schizophrenia, Post-traumatic stress disorder (PTSD) or anxiety disorders. More 

research on the subject of comorbidity of disease has demonstrated that people who suffer from 

schizophrenia also have higher rates of obesity (Elman, Borsook & Lukas, 2006). This is an 

example of motivational salience that can flip in the opposite direction in which people who have 

fearful disorders of negative motivation can develop incentive disorders of too much positive 

motivation. The idea of a fragile state of motivational salience in individuals with disorders of 

too much positive or negative salience can begin to explain why those who suffer from 

schizophrenia can develop addiction and why those who suffer from addiction could develop 

paranoid tendencies. A further understanding of the comorbidity of these diseases would enable 

future research to uncover what neurobiological mechanisms may underlie the switch from 

positive to negative salience. We are starting to understand one variable that could contribute to 

the switching of motivational salience: the environment. Coupled with a future understanding of 

the mechanisms underlying the switch of affective valence, we could begin to develop new ideas 

for treatment, cure and prevention of motivational disorders both in individuals who have 

demonstrated to be susceptible to these diseases. 

  



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   30	
  

References 

Baldo, B.A. and Kelley, A.E. (2007) Discrete neurochemical coding of distinguishable 

 motivational processes: insights from nucleus accumbens control of feeding. 

 Psychopharmacology, 191, 439-459 

Barrett, L.F., & Wager, T.D. (2006). The Structure of Emotion: Evidence From Neuroimaging 

 Studies. Current Directions in Psychological Science 15(2), 79-83 

Batel, P. (2000) Addiction and schizophrenia. European Psychiatry, 15(2), 115-122 

Belujon, P. and Grace, A.A. (2008) Critical role of the prefrontal cortex in the regulation of 

 hippocampus–accumbens information flow. Journal of Neuroscience, 28(39) 9797-9805 

Berridge, K.C. (2004) Motivation concepts in behavioral neuroscience. Physiology & Behavior, 

 81(2), 179-209 

Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. (2002) Emotion and motivation: the role 

 of the amygdala, ventral striatum and prefrontal cortex. Neuroscience & Biobehavioral 

 Reviews, 26, 321-352 

Ekman, P. (1972). Universals and cultural differences in facial ex- pressions of emotion. In J. 

 Cole (Ed.), Nebraska Symposium on Motivation. Lincoln: University of Nebraska Press. 

 207-283 

Elman, I., Borsook, D., & Lukas, S.E. (2006) Is there such a thing as a schizophrenic 

 stomach?. Neuropsychopharmacology, 31(10), 2328 

Faure, A., Reynolds, S.M., Richard, J.M., & Berridge, K.C. (2008) Mesolimbic dopamine in

 desire and dread: Enabling motivation to be generated by localized glutamate disruptions

 in nucleus accumbens. Journal of Neuroscience, 28(28), 7184-7192 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   31	
  

Faure, A., Richard, J.M., & Berridge, K.C. (2010) Desire and dread from the nucleus 

 accumbens: Cortical glutamate and subcortical GABA differentially generate 

 motivation and hedonic impact in the rat. PloS one, 5, e11223 

French, S.J. & Totterdell, S. (2002) Hippocampal and prefrontal cortical inputs 

 monosynaptically converge with individual projection neurons of the nucleus 

 accumbens. Journal of Comparative Neurology, 446, 151-165 

Groenewegen H.J., Mulder, A.B., Beijer, A.V.J., Wright, C.I., da Silva, F.H.L., & Pennartz, 

 C.M.A. (1999) Hippocampal and amygdaloid interactions in the nucleus accumbens. 

 Psychobiology, 27, 149–164 

Heimer, L. and Van Hoesen, G.W. (2006) The limbic lobe and its output channels: 

 implications for emotional functions and adaptive behavior. Neuroscience & 

 Biobehavioral  Reviews, 30, 126-147 

Kapur, S. (2003) Psychosis as a state of aberrant salience: a framework linking biology, 

 phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 

 160(1), 13-23 

Kelley, A.E., Baldo, B.A., Pratt, W.E., & Will, M.J. (2005) Corticostriatal-hypothalamic 

 circuitry and food motivation: integration of energy, action and reward. Physiology & 

 Behavior, 86, 773-795 

Kelley, A.E., Domesick, V.B. & Nauta, W.J. (1982) The amygdalostriatal projection in the rat-an 

 anatomical study by anterograde and retrograde tracing methods. Neuroscience, 7(3): 615 

 – 630 

Knutson, B., Bjork, J.M., Fong, G.W., Hommer, D.W., Mattay, V.S., and Weinberger, D.R. 

 (2004). Amphetamine modulates human incentive processing. Neuron 43, 261–269 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   32	
  

LeDoux, J. (2002) The emotional brain, fear, and the amygdala. Cellular and Molecular 

 Neurobiology 23(4/5), 727-738 

Maldonado-Irizarry, C.S., Swanson, C.J. & Kelley, A.E. (1995) Glutamate receptors in the 

 nucleus accumbens shell control feeding behavior via the lateral hypothalamus. Journal 

 of Neuroscience, 15, 6779–6788 

Meredith, G.E., Baldo, B.A., Andrezjewski. M.E., & Kelley, A.E. (2008) The structural basis for 

 mapping behavior onto the ventral striatum and its subdivisions. Brain Structure and  

 Function, 213, 17-27 

Miller, E.K., Freedman, D.J.  & Wallis, J.D. (2002) The prefrontal cortex: categories, concepts 

 and cognition. Philosophical Transactions of the Royal Society B. Biological Sciences 

 357(1424) 1123-1136 

Morris, J.S, Dolan, R.J. (2004) Dissociable amygdala and orbitofrontal responses during 

 reversal fear conditioning. NeuroImage, 22, 372–380 

Morrow, J.D., Maren, S., & Robinson, T.E. (2011) Individual variation in the propensity to 

 attribute incentive salience to an appetitive cue predicts the propensity to attribute 

 motivational salience to an aversive cue. Behavioural Brain Research, 220, 238-243 

Murphy, F.C., Nimmo-Smith, I., & Lawrence, A.D. (2003) Functional neuroanatomy of 

 emotion: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 207–

 233 

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., Dolan, R.J., 2004. Dissociable 

 roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–

 454 

Paxinos, G. & Watson, C. (2007) The rat brain in stereotaxic coordinates. New York: Academic 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   33	
  

Peciña, S. (2008) Opioid reward ‘liking’ and ‘wanting’ in the nucleus accumbens. Physiology & 

 Behavior, 94, 675-680 

Phan, K.L., Wager, T.D., Taylor, S.F., & Liberzon, I. (2002). Functional neuroanatomy of 

 emotion: A meta-analysis of emotion activation studies in PET and fMRI.  Neuroimage, 

 16, 331–348 

Reynolds, S.M. & Berridge, K.C. (2001) Fear and feeding in the nucleus accumbens shell: 

 Rostrocaudal segregation of GABA-elicited defensive behavior versus eating 

 behavior. Journal of Neuroscience, 21(9), 3261-3270 

Reynolds, S.M. & Berridge, K.C. (2002) Positive and negative motivation in nucleus 

 accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste, 

 “liking”/“disliking” reactions, place preference/avoidance, and fear. Journal of 

 Neuroscience,  22(16), 7308-7320 

Reynolds, S.M. & Berridge, K.C. (2003) Glutamate motivational ensembles in nucleus 

 accumbens: rostrocaudal shell gradients of fear and feeding. European Journal of 

 Neuroscience, 17(10), 2187-2200 

Reynolds, S.M. & Berridge, K.C. (2008) Emotional environments retune the valence of 

 appetitive versus fearful functions in nucleus accumbens. Nature Neuroscience, 11(4), 

 423-424. 

Richard, J.M & Berridge, K.C. (2011) Environmental ambience retunes the valence of 

 appetitive versus fearful motivation produced by muscimol microinjection in medial 

 accumbens shell [Abstract]. Poster presented at the meeting of the Society for 

 Neuroscience, Washington, D.C. 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   34	
  

Richard, J.M. & Berridge, K.C. (2011) Metabotropic glutamate receptor blockade in 

 nucleus accumbens shell shifts affective valence towards fear and disgust. European 

 Journal of Neuroscience, 33, 736-747 

Richard, J.M. & Berridge, K.C. (2011) Nucleus accumbens dopamine/glutamate interaction 

 switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and 

 D2 together for fear. Journal of Neuroscience, 31(36), 12866 –12879 

Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R.J., & Frith, C.D. (2004) Empathy 

 for pain involves the affective but not sensory components of pain. Science 303, 1157-

 1162 

Stratford, T.R. & Kelley, A.E. (1999) Evidence of a functional relationship between the 

 nucleus accumbens shell and lateral hypothalamus subserving the control of feeding 

 behavior. Journal of Neuroscience, 17, 4434–4440 

Treit, D., Pinel, J.P.J., and Fibiger, H.C. (1981) Conditioned defensive burying: a new 

 paradigm for the study of anxiolytic agents. Pharmacology, Biochemistry and Behavior, 

 15(4), 619-626 

Valenstein, E.S., Cox, V.C. & Kakolewski, J.W. (1969) Hypothalamic motivational systems: 

 fixed or plastic neural circuits?. Science, 163, 1084. 

Vanderschuren, L.J., Wardeh, G., De Vries, T.J., Mulder, A.H., & Schoffelmeer, A.N. (1999) 

 Opposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens 

 noradrenaline release. Psychopharmacology, 143(3), 244-253 

Wang, J.Q., Liu, X.Y., Zhang, G.C., Parelkar, N.K., Arora, A., Haines, M., Fibuch, E.E., & 

 Mao, L.M. (2006) Phosphorylation of glutamate receptors: A potential mechanism for 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   35	
  

 the regulation of receptor function and psychostimulant action. Journal of Neuroscience 

 Research, 84(8), 1621-1629 

Zahm, D.S. (2006) The evolving theory of basal forebrain functional–anatomical 

 ‘macrosystems’. Neuroscience and Biobehavioral Reviews, 30, 148-172 



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   36	
  

Author Note 

Adam H. Wilensky, Department of Psychology, University of Michigan, Ann Arbor 

 I am incredibly fortunate to have had this unique opportunity to work in the Berridge 

Laboratory for the past year and a half, and I would like to thank Dr. Berridge for providing me 

with access to his laboratory and the resources necessary to complete this thesis. Moreover, I am 

especially grateful that throughout my time working in this lab, I have developed a true interest 

and passion for both affective neuroscience and the scientific research field as a whole. I cannot 

possibly convey my gratitude to Jocelyn Richard who mentored and assisted me in my work in 

this lab from day one. She taught me all of the techniques that I have utilized in my research, 

advised me in the design and conduction of my experiment, read countless drafts of my writing, 

and instilled in me a newfound level of confidence in both my research and writing abilities. I 

know that I was extremely lucky to have her as my teacher, and I hope that if I ever have 

students working under me in the future that I can have as positive an impact on their work and 

their confidence as she has had on mine. Additionally, I would like to extend my sincerest thanks 

to the other members of the lab, Aaron Garcia, Alex DiFeliceantonio, Mike Robinson, and 

Daniel Castro, as they were always willing to extend their help and offer their knowledge to me. 

Finally, I would like to thank my friends and family for offering their unwavering support and 

encouragement throughout this project. 

 Correspondence concerning this article should be sent to Dr. Kent Berridge, Department 

of Psychology, 4038 East Hall (530 Church St.), Ann Arbor, MI, 48109. 

  



CPP	
  IN	
  COMFORTABLE	
  ENVIRONMENT	
   37	
  

 

Figure 1. (A) The amphetamine validation in the familiar, home environment. (B) Place 

preference score in far rostral and mid rostral accumbens shell. (C) Conditioned place preference 

in far rostral shell comparing time spent in the DNQX-paired chamber and vehicle-paired 

chamber in the pre and post-test. (D) Conditioned place preference in mid rostral shell 

comparing time spent in the DNQX-paired chamber and vehicle-paired chamber in the pre and 

post-test. (E) Conditioned place preference in caudal shell comparing time spent in the DNQX-

paired chamber and vehicle-paired chamber in the pre and post-test. ‡, p < .05 pre versus post 

test; ‡‡, p < .01 pre versus post test; *, p < .05 drug versus vehicle; **, p < .01 drug versus 

vehicle; #, p < .05 between group difference; ##, p < .01 between group difference. 
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Figure 2. (A) Fos plume map indicating the amount of eating induced by DNQX by placement in 

nucleus accumbens shell. The colors represent the amount of percent change from vehicle of 

eating under DNQX and correspond to the placement of a microinjection site. (B) Fos plume 

map indicating the place preference following conditioning in the familiar environment. The 

colors represent the place preference score, calculated as DNQX – Vehicle % Change. 
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Figure 3. (A) The grams of food eaten calculated as the mean change from vehicle. (B) The time 

spent eating in seconds calculated as the mean change from vehicle. 


