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SUMMARY

The problem of two-dimensional tracer advection on the sphere is extremely important in modeling of
geophysical fluids and has been tackled using a variety of approaches. A class of popular approaches
for tracer advection include ‘incremental remap’ or cell-integrated semi-Lagrangian-type schemes. These
schemes achieve high-order accuracy without the need for multistage integration in time, are capable of
large time steps, and tend to be more efficient than other high-order transport schemes when applied to a
large number of tracers over a single velocity field.

In this paper, the simplified flux-form implementation of the Conservative Semi-LAgrangian Multi-tracer
scheme (CSLAM) is reformulated using quadratic curves to approximate the upstream flux volumes and
Gaussian quadrature for integrating the edge flux. The high-order treatment of edge fluxes is motivated
because of poor accuracy of the CSLAM scheme in the presence of strong nonlinear shear, such as one
might observe in the midlatitudes near an atmospheric jet. Without the quadratic treatment of upstream
edges, we observe at most second-order accuracy under convergence of grid resolution, which is returned to
third-order accuracy under the improved treatment. A shallow-water barotropic instability also reveals clear
evidence of grid imprinting without the quadratic correction. Consequently, these tests reveal a problem
that might arise in tracer transport near nonlinearly sheared regions of the real atmosphere, particularly near
cubed-sphere panel edges. Although CSLAM is used as the foundation for this analysis, the conclusions of
this paper are applicable to the general class of incremental remap schemes. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The problem of a two-dimensional tracer advection is extremely important in all branches of
atmospheric science, yet it can be formulated very simply via the mass continuity equation

@ 

@t
Cr � . u/D 0, (1)

where  is a passive density variable and u is the velocity vector. Solving this equation
accurately while maintaining desirable properties such as positivity or tracer correlation is extremely
challenging [1]. Nonetheless, the incremental remap/semi-Lagrangian scheme of [2] is one approach
that has been shown to be largely successful at tackling the advection problem. More recently, the
Conservative Semi-LAgrangian Multi-tracer (CSLAM) scheme has been proposed by [3], followed
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Table I. Approaches taken for incremental remapping under the Conservative Semi-LAgrangian
Multi-tracer framework. The quadrature-based formulations use Gaussian quadrature over an upstream flux
volume to compute the total flux through an edge, whereas all other schemes use boundary integrals for

computing the mass in the upstream region or flux volume.

Version Flux form Simplified fluxes Edges Reference

Standard Linear [3]
Traditional flux form X Linear [2, 4]
Simplified flux form X X Linear [5, 8]
Quadrature-based X X Linear Section 2.4
Quadrature-based with X X Quadratic Section 2.5

quadratic edges
Simplified with X X Quadratic Section 2.6

quadratic edges

by the flux-form formulation of [4], and the simplified flux-form formulation of [5]. CSLAM
has been demonstrated to be very effective at accurately solving the advection equation on the
cubed-sphere [6] and is in the process of being implemented in the spectral element dynamical core
of the National Center for Atmospheric Research Community Atmosphere Model [7]. For reference,
we provide details of the various implementations of the CSLAM scheme in Table I.

Under the traditional finite-volume semi-Lagrangian approach, the tracer mass contained in
element Zk is determined by tracing nodal trajectories backwards in time to an upstream source
element ak (see Figure 1(a and b)). The total mass within the upstream source element is then
determined by integration over ak using a mass distribution obtained from the subgrid-scale
reconstruction at the previous time step. Under this formulation, (1) is effectively discretized as

 
nC1

k D
1

jZkj

Z
ak

 n.x/dV , (2)

where  
nC1

k denotes the element average of  in element Zk at time step nC 1, jZkj is the volume
of element Zk , dV is the volume element over the coordinate x, and n.x/ denotes some continuous
representation of the scalar density field  at time step n.

Under the flux-form approach of [2], we instead trace nodal trajectories backwards in time for
each edge so as to form a ‘flux volume’. Integrating the total tracer mass within a flux volume then
yields the total flux through that edge. In this case, the integration must be performed for each edge
of Zk (see Figure 1(c–f)). The continuity Equation (1) then takes the form

 
nC1

k D  
n

k C
1

jZkj
ŒFECFNCFWCFS�, (3)

where FE is the mass flux into the element through the east edge and similarly for the north, west,
and south edges. The fluxes are computed by integrating over the flux volumes; that is, for the east
edge, we have

FE D �

Z
a.E/
k

 n.x/dV , (4)

where � 2 ¹�1, 1º is a sign indicator that depends on whether the flux is outward or inward. The
flux is defined analogously for all other edges. Traditionally, the integration procedure involves
identifying overlap areas between quadrilateral flux areas and the static Eulerian grid, which is
generally a nontrivial problem. If the choice of  n.x/ is the same as in (2), then the traditional
semi-Lagrangian approach is equivalent to the flux-form semi-Lagrangian approach. However,
under the swept-area approach of [8], one simply uses the subgrid-scale reconstruction in the two
elements that directly neighbor the edge. Perhaps surprisingly, the resulting simplified scheme
was shown in [5] to improve accuracy for sufficiently small Courant numbers. However, this
modification also imposes conditions on the stability of the advection scheme (in our case, we
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Figure 1. An illustration of the semi-Lagrangian approach. The nodes of element Zk (a) are tracked
upstream to element ak . (b). Under the traditional semi-Lagrangian formulation, the tracer mass within
element ak is obtained by directly integrating ak . Under the flux-form formulation, we instead integrate
over flux areas for the (c) east a.E/

k
, (d) north a.N/

k
, (e) west a.W/

k
, and (f) south a.S/

k
face. The original

element (a) minus the sum of all flux area masses (c–f) is equal to the mass in the upstream element ak ,
regardless of the trajectory.

require the Courant number 6 1). This restriction is generally adequate for tracer transport
in atmospheric models where the advective CFL condition is much weaker than the CFL condi-
tion imposed on the dynamics. In this paper, we continue the work of [5] and pursue the simplified
approach to integrating flux areas. Consequently, the integration procedure is relatively straight-
forward because we do not need to isolate overlaps between the flux volume and neighboring
elements.

The purpose of this paper is twofold. First, we formulate the flux-form semi-Lagrangian transport
scheme of [4] using quadrature for computing edge fluxes. An improved treatment of the upstream
flux region is achieved by using quadratic functions for representing the edges of this region. The
modification is presented for both quadrature and line integral-based formulations of the CSLAM
scheme. We argue that the added cost of this adjustment is small when multiple tracers are being
transported. Second, we present two test cases to demonstrate the rationale for our improved treat-
ment. The first test is a steady nonlinearly sheared flow that is designed to mimic a midlatitudinal
atmospheric jet. In this case, the quadratic correction is shown to be necessary for the numerical
method to achieve the expected third-order accurate convergence with grid refinement. The second
test is a shallow-water barotropic instability that shows clear evidence of grid imprinting without
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the quadratic correction. Consequently, we suspect that these tests reveal a problem that might arise
in tracer transport near regions of strong nonlinear shear in the real atmosphere. Although CSLAM
is used as the foundation for this analysis, the conclusions of this paper are applicable to the general
class of incremental remap schemes, particularly on the cubed-sphere grid.

The paper is structured as follows. In Section 2, we present our formulation of the semi-
Lagrangian transport scheme, including a description of the quadratic correction to the flux volumes.
The results from testing our improved formulation are given in Section 3, and conclusions are
discussed in Section 4. For completeness, the reconstruction strategy we have used is presented
in Appendix A and includes a description of our methodology for filtering the reconstruction.

2. CONSERVATIVE SEMI-LAGRANGIAN ADVECTION ON THE CUBED-SPHERE

In this section, we present our improvements to the simplified flux-form CSLAM scheme, includ-
ing the quadrature-based formulation of the scheme and the quadratic treatment of the upstream
flux region. Some notation that is important for models on the cubed-sphere grid is introduced
in Section 2.1 and will be used throughout this paper. Our approach for high-order tracking of
nodal trajectories is described in Section 2.2. The simplified flux-form approach is introduced in
Section 2.3, and the quadrature formulation of CSLAM follows in Section 2.4. In Sections 2.5 and
2.6, we present an improved treatment of upstream flux edges for the quadrature and line-integral
formulations of CSLAM. Some additional discussion comparing the conditioning of the quadrature
and line-integral formulations is given in Section 2.7.

2.1. Coordinates on the cubed sphere

The cubed-sphere grid, as described by [9] and [10], consists of six Cartesian patches arranged
along the faces of a cube, which is then ‘inflated’ to fill a spherical shell. On the equiangular cubed-
sphere grid, coordinates are given as .˛,ˇ,np/, with central angles ˛,ˇ 2

�
��
4

, �
4

�
and panel index

np 2 ¹1, 2, 3, 4, 5, 6º. By convention, we choose panels 1–4 to be along the equator and panels 5 and
6 to be centered on the northern and southern poles, respectively. Gnomonic coordinates are related
to equiangular coordinates via the transform

X D tan˛, Y D tanˇ. (5)

Gnomonic coordinates are particularly useful because any straight line in gnomonic coordinates is
also a great circle arc. Further, integration over regions in gnomonic coordinates is typically much
simpler than in equiangular coordinates.

The discrete resolution of the cubed sphere is typically written in the form chNci, where each
coordinate direction consists of Nc grid elements. Hence, the total number of grid elements on the
cubed sphere is Nc �Nc � 6. Grid elements on a particular panel are denoted by Zi ,j with indices
.i , j / 2 Œ0, : : : ,Nc � 1�2, which denote the region bounded by

˛ 2
h
i�˛ �

�

4
, .i C 1/�˛ �

�

4

i
, ˇ 2

h
j�˛ �

�

4
, .j C 1/�˛ �

�

4

i
, (6)

where on an equiangular grid, the grid spacing is

�˛ D �=.2Nc/. (7)

Equiangular element center points are defined for each element as the point ˛i ,j D .˛i ,ˇj / with

˛i D

�
i C

1

2

�
�˛ �

�

4
, ˇj D

�
j C

1

2

�
�˛ �

�

4
. (8)

The gnomonic element center points are then defined as Xi ,j D .Xi ,Yj / with Xi D tan˛i and
Yj D tanˇj . Some properties of the cubed-sphere grid for a variety of resolutions are given
in Table II.
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Table II. Properties of the cubed-sphere grid for different resolutions. Here, �x is the grid spacing at the
equator, RLLequatorial denotes the grid spacing (in degrees) on a regular latitude–longitude (RLL) grid with
the same equatorial spacing as the cubed-sphere grid, and RLLequiv denotes the equivalent grid spacing
(in degrees) on the RLL grid with the same number of elements. The accuracy of the model is most closely

linked to RLLequatorial, whereas RLLequiv represents the resolution required for a similar run time.

Resolution �x (km) RLLequatorial.
ı/ RLLequiv.

ı/

c60 166.8 1.50 1.73
c120 83.4 0.75 0.87
c160 62.5 0.56 0.65
c240 41.7 0.38 0.43
c480 20.8 0.19 0.22

2.2. Computing backward trajectories

To compute backward trajectories for each of the nodal points, one must solve the Lagrangian
transport equation for a point

dx
dt
D u. (9)

When the analytic velocity field is known, this equation can often be integrated analytically to obtain
the origin of each point on the mesh. If the velocity field is only known discretely, this equation
must instead be solved numerically. Accurate representation of upstream areas requires a high-order
solution of this equation, or else, the quality of the final solution will be degraded. For example,
Table 3 of [6] demonstrates that a low-order trajectory algorithm can dramatically increase error
norms for certain nonlinear flows. One high-order approach that we propose here relies on solving
(9) via a fourth-order Runge–Kutta time integrator. In this case, we have

x.1/ D x0 �
�t

2
u.x0, tnC1/, (10)

x.2/ D x0 �
�t

2
u
�

x.1/, tnC1 �
�t

2

�
, (11)

x.3/ D x0 ��tu
�

x.2/, tnC1 �
�t

2

�
, (12)

x.4/ D�
1

3
x0C

1

3
x.1/C

2

3
x.2/C

1

3
x.3/ �

�t

6
u.x.3/, tn/. (13)

Consequently, the point x.4/ is a fourth-order approximation to the point at time tn, which under
Lagrangian advection, would have ended up at x0 at time tnC1 D tn C �t . Other methods for
solving (9) are also available, such as the approach of [11] or the low-order approaches described in
[12]. Although the accuracy requirements for computing the trajectories do impose some additional
expenses, the corresponding trajectories must only be computed once per time step for all tracers.

2.3. The simplified flux-form transport scheme

Once the backward trajectories have been determined for each edge, the flux across the edge can
be computed by integrating over the flux region. There are several possible valid arrangements of
nodal points (depending on the flow field) that determine the flux region, as depicted in Figure 2.
This figure depicts an edge of constant ˛ connecting edge nodes (1, 3) and the respective upstream
translation of these edge nodes (0, 2) (for an edge of constant ˇ, the process is analogous and so is
not repeated here). The flux region is then given by the quadrilateral (0, 1, 3, 2). Note that we neglect
the possibility of point 0 being above point 2, because this corresponds to very strong divergence in
the velocity field that may have arisen because of an instability in the calculation. In this case, the
simulation is halted; if such a situation is physical for the specified problem, we suggest reducing
the time step accordingly.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1131–1151
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Figure 2. Depiction of each of the cases that must be treated by the flux integration algorithm. The edge
(1, 3) denotes the edge for which the advective flux is desired. The points 0 and 2 are freely determined
by the trajectory computation algorithm. Regions that lead to an outward flux are lightly shaded, whereas
regions that lead to an inward flux are heavily shaded. The dotted lines denote the north/south edges of the

left element.

Flux across the edge (4) is computed via the integral

F D �

Z
a�
k

 .X/JXY .X/dXdY , (14)

where a�
k

denotes an arbitrary flux region. The value of � is chosen in accordance with the
arrangement of nodes: In Figure 2, lightly shaded regions lead to � D �1 and heavily shaded
regions lead to � D 1. Summation is implied over each flux volume if needed, such as in cases 3b
and 4b. The Jacobian in gnomonic coordinates is given by JXY , which takes the form

JXY .X/D
1

.1CX2C Y 2/3=2
. (15)
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In general, the subgrid-scale reconstruction of  in element Zi ,j can be written as

 i ,j .X/D
X
p,q

c.p,q/X
pY q , (16)

where the summation is taken over all reconstruction coefficients c.p,q/. The reconstruction
coefficients are used to represent the continuous behavior of within each element and are generally
constructed using neighboring element averages. Our particular choice of reconstruction coefficients
is described in the appendix. On substituting (16) into (14), we obtain

F D �
X
p,q

c.p,q/

Z
a�
k

XpY qJXY .X/dXdY , (17)

and so effectively reduce the problem of computing the fluxes to a linear combination of
the reconstruction coefficients and the integrated Jacobian-weighted polynomial basis functions.
Multi-tracer efficiency is attained by utilizing the fact that only the reconstruction coefficients
change between tracers, and so, the integrals must only be computed once for each pair .p, q/.

When the flux edge is also a cubed-sphere panel edge, the integration must be performed on the
appropriate panel to ensure consistency. For instance, in case 3b, the light-shaded region is integrated
on the left panel, and the heavy-shaded region is integrated on the right panel. Under this procedure,
only one flux is ever computed for each edge, and so, there are no conservation issues that may arise
if the integral is evaluated over the panel’s halo region.

2.4. Computing fluxes via quadrature over the flux volume

Several options exist for computing the integrals over the flux volume. Under the quadrature-based
formulation, these integrals are computed via an appropriately chosen quadrature rule. For fourth-
order accuracy, a four-point quadrature rule, such as the one described in the following, can be
used. In cases 3 and 4 of Figure 2, the convex property of the quadrilaterals has been lost, and so, a
single quadrature rule for a quadrilateral is insufficient. Instead, for cases 3b and 4b, we break the
region up into two triangles and, treating the triangles as degenerate quadrilaterals, simply apply
the quadrilateral quadrature rule to each triangle. It is worth noting that a fourth-order accurate
integration over a triangular region still requires at least four quadrature points, and so, there is no
significant benefit to choosing a simpler quadrature rule over a triangle. For cases 3a, 3c, 4a, and
4c, the integral is instead over a wedge-shaped region. To integrate over the wedge, we extend the
integration region outward to form a triangle-shaped region (short dashed lines) so that the wedge
can be viewed as the difference between the triangular region and a convex quadrilateral region.
A quadrature rule is then applied to both the triangular region and convex quadrilateral and the
difference taken to obtain the integral over the wedge. In using this approach for dividing the flux
region, two corner points of our integration domain will always lie along a line of constant X . We
will exploit this feature in the definition of our quadrature rule in the following.

In general, defining high-order and optimal quadrature rules for arbitrarily shaped quadrilaterals
is a nontrivial problem. However, by choosing an appropriate, alternative set of coordinates, it is
possible to transform our problem into the trivial problem of integration over the unit square. To
do so, we introduce coordinates s D .s, t / 2 Œ0, 1�2 (see Figure 3). On an arbitrary quadrilateral a,
bounded by points pi D .Xi ,Yi / with X1 DX3, these coordinates can be implicitly written as

X.s/DX.s, t /DX1C s.bt C c/, Y.s/D Y.s, t /D Y1C f sC .s.g � f /C�X/t , (18)

where b DX2�X0, c DX0�X1, f D Y0�Y1, g D Y2�Y3, and�X D Y3�Y1. Hence, applying
integration by substitution, we obtainZ

a
 .X/JXY .X/dXdY D

Z 1

sD0

Z 1

tD0

 .X.s, t //JXY .X.s, t //

ˇ̌̌
ˇdet

�
@.X ,Y /

@.s, t /

�ˇ̌̌
ˇ dtds, (19)
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Figure 3. A depiction of the location of quadrature points for (a) quadrilateral and (b) degenerate
quadrilateral integration. Nodal points are denoted by pi D .Xi ,Yi /.

where

ˆ1.s/�

ˇ̌̌
ˇdet

�
@.X ,Y /

@.s, t /

�ˇ̌̌
ˇD

ˇ̌̌
ˇ̌det

 
@X
@s

@X
@t

@Y
@s

@Y
@t

!ˇ̌̌
ˇ̌D ˇ̌̌ˇ.c.g � f /� bf /sC .X.s/�X1/�X

s

ˇ̌̌
ˇ .

(20)
This term describes the area adjustment due to deformation of the quadrilateral.

Given an arbitrary quadrature rule with quadrature points sk D .sk , tk/ and associated weights
wk , the numerical integral is then computed via

Z
a
XpY qJXY dXdY D

X
k

X.sk/
p Y.sk/

q JXY .X.sk//ˆ1.sk/ wk . (21)

For quadrilateral integration, we use a four-point fourth-order quadrature rule (see Figure 3)
given by

s1 D
�
�
1
p
3

,�
1
p
3

�
, s2 D

�
1
p
3

,�
1
p
3

�
, s3 D

�
�
1
p
3

,
1
p
3

�
, s4 D

�
1
p
3

,
1
p
3

�
,

(22)

and wi D 1=4 for each i 2 ¹1, 2, 3, 4º.

2.5. A quadratic treatment of edges

So far, all of our discussion has assumed that the flux region can be represented as a combination
of convex quadrilaterals and triangles. In [3], it was speculated that additional points along each
edge of the flux region could be used to improve the overall accuracy of the method. The authors
suggested that a more accurate flux region could be constructed by connecting the new flux
points via additional line segments (see Figure 4(a–c)), but their choice of idealized test cases
showed only a negligible or very minor improvement in error norms under this approach. Note that
additional line segments do not actually increase the formal order-of-accuracy of the representation
of the flux region, because any number of line segments will only ever be a second-order
accurate to the true upstream edge. Further, the addition of extra points along each trajectory
generally does not improve model accuracy, because these points will not affect the Lagrangian
upstream area (see [1]).

In this paper, we propose an alternative form for the bounding region of the flux domain. Under
the modified approach, the upstream projection of the flux edge is approximated via a quadratic
curve (see Figure 4(d)). The construction of this quadratic curve requires an additional nodal value,
which we obtain by computing the backwards trajectory of point p5 to obtain p4, as in Figure 5.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1131–1151
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Figure 4. A depiction of various methods for constructing upstream edges. (a) The flux region is
approximated as a quadrilateral with the upstream edge approximated by a single line segment. (b) A slightly
more accurate approximation to the upstream edge, obtained by inserting one additional point midway along
the edge (1, 3) and tracing the trajectory backwards. In this case, straight line segments are still used to
approximate the upstream edge. (c) Further refinement of the upstream edge by inserting additional points
along (1,3) and calculating backwards trajectories. (d) An upstream edge approximated by fitting a quadratic

through three trajectory points.
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Figure 5. The location of quadrature points (empty circles) for an element with the quadratic correction
applied to the upstream flux edge. The points p0, p2, and p4 and track upstream to p1, p3, and

p5, respectively.

Applying the same approach as in Section 2.4, we define coordinates .s, t / 2 Œ0, 1�2 via

X.s/DX.s, t /DX1Cs.a2tCbtCc/, Y.s/D Y.s, t /D Y1Cf sC.s.g�f /C�X/t . (23)

Observe that (23) is identical to (18) except with the addition of the quadratic term a2st to the X
coordinate. This modification leads to a deformational term that takes the form

ˆ2.s/�

ˇ̌̌
ˇdet

�
@.X ,Y /

@.s, t /

�ˇ̌̌
ˇD

ˇ̌̌
ˇ.�a.g � f /t2 � 2af t � bf C c.g � f //sC .X.s/�X1/�X

s

ˇ̌̌
ˇ .

(24)
The quadratic coefficients .a, b, c/ are defined by fitting a quadratic through points

.t ,X/D ¹.0,X0 �X1/, .t�,X4 �X1/, .1,X2 �X1/º, with t� D
Y4 � Y0

Y2 � Y0
. (25)

This choice leads to

aD
X2t� �X4CX0.1� t�/

t�.1� t�/
, (26)

b D
X4 �X0C t

2
� .X0 �X2/

t�.1� t�/
, (27)

c DX0 �X1. (28)

This construction requires that Y0 ¤ Y2, Y2 ¤ Y4, and Y0 ¤ Y4 that should not occur for sufficiently
laminar flows and small enough Courant number.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1131–1151
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As will be demonstrated in Section 3, the quadratic treatment is useful for problems where the
divergence errors (i.e., the errors made by approximating the upstream flux region) overwhelm the
errors because of the subgrid-scale reconstruction. These situations generally arise in the presence
of a strong horizontal shear in the flow, such as a midlatitudinal jet. In this case, the convergence
rate of the numerical method is expected to drop to second-order accuracy, which is consistent with
a linear approximation.

The added cost of the quadratic treatment is potentially significant, because an additional
trajectory must be computed along the midpoint of every edge. This choice nearly triples the number
of trajectories that must be computed at each time step. However, we emphasize that these additional
computations must only be performed once per time step, regardless of the number of tracer species.
For a large number of tracers, this added cost is generally small compared with the cost of computing
the reconstruction coefficients.

2.6. The line-integral formulation of the quadratic correction

In this section, we present the quadratic treatment of flux edges for schemes that calculate the
integrals of (17) via boundary integration, such as the methods described by [4] and [5]. By
appropriately choosing a set of geometric potentials F.p,q/ such that

r � F.p,q/ DX
p Y q JXY .X/, (29)

we can use Gauss’ divergence theorem to rewrite the geometric integrals in (17) as line integrals
around the boundary @ak of ak viaZ

ak

XpY qJXY .X/dXdY D

Z
ak

r � FdXdY D

I
@ak

F � dS, (30)

where dS denotes the length-weighted normal vector to the boundary. Traditionally, F is chosen
such that F D .Fx , 0/; that is, F has no component in the Y direction. This simplifies the result-
ing integration and leads to a unique potential F.p,q/ for each pair .p, q/. The boundary integral is
usually evaluated by splitting the integral up into four line integrals along each segment of the flux
volume, such asI

@ak

F � dSD
Z

X0X2

F � dS„ ƒ‚ …
Upstream flux edge

C

Z
X2X3

F � dS„ ƒ‚ …
Upper trajectory

C

Z
X3X1

F � dS„ ƒ‚ …
Flux edge

C

Z
X1X0

F � dS„ ƒ‚ …
Lower trajectory

. (31)

Each of these line integrals fall into three possible cases: (i) a straight line segment of any
orientation, (ii) a quadratic upstream flux edge generated by a line of constant ˛, or (iii) a quadratic
upstream flux edge generated by a line of constant ˇ. The algorithm for integrating along each of
these line segments is described in the following.

Case 1
Any arbitrary line segment connecting points Xi D .Xi ,Yi / and Xj D .Xj ,Yj / can be
parameterized as

X.t/D Xi C .Xj �Xi /t , (32)

for which we observe

dSD ..Yj � Yi /,�.Xj �Xi //dt . (33)

Then, the line integral takes the formZ
XiXj

F � dSD .Yj � Yi /
Z 1

tD0

Fx.X.t//dt . (34)
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Case 2
A quadratic upstream flux edge connecting points X0 D .X0,Y0/, X4 D .X4,Y4/, and X2 D
.X2,Y2/ and generated by a line of constant ˛ will take the form

X D a.Y � Y0/
2C b.Y � Y0/C c, (35)

where the quadratic coefficients .a, b, c/ are

aD
X0.Y4 � Y2/CX4.Y2 � Y0/CX2.Y0 � Y4/

.Y4 � Y0/.Y2 � Y0/.Y4 � Y2/
,

b D
X0..Y2 � Y0/

2 � .Y4 � Y0/
2/�X4.Y2 � Y0/

2CX2.Y4 � Y0/
2

.Y4 � Y0/.Y2 � Y0/.Y4 � Y2/
,

c DX0.

The curve is then parameterized as

Y.t/D Y0C .Y2 � Y0/t , X.t/D a.Y.t/� Y0/
2C b.Y.t/� Y0/C c. (36)

Differentiating with respect to t yields the length-weighted tangent vector

tD ..2at.Y2 � Y0/C b/.Y2 � Y0/, .Y2 � Y0//, (37)

and hence the length-weighted normal vector

dSD .Y2 � Y0/.1,�.2aY.t/C b//dt . (38)

The line integral in this case can then be written asZ
XaX4X2

F � dSD .Y4 � Y0/
Z 1

tD0

Fx.X.t//dt . (39)

Hence, for this case, the integrand matches (34). However, these two formulations still differ in the
position at which the geometric potential Fx is evaluated.

Case 3
A quadratic upstream flux edge connecting points X0 D .X0,Y0/, X4 D .X4,Y4/, and X2 D
.X2,Y2/ and generated by a line of constant ˇ will take the form

Y D a.X �X0/
2C b.X �X0/C c, (40)

where the quadratic coefficients .a, b, c/ are

aD
Y0.X4 �X2/C Y4.X2 �X0/C Y2.X0 �X4/

.X4 �X0/.X2 �X0/.X4 �X2/
,

b D
Y0..X2 �X0/

2 � .X4 �X0/
2/� Y4.X2 �X0/

2C Y2.X4 �X0/
2

.X4 �X0/.X2 �X0/.X4 �X2/
,

c D Y0.

The curve is then parameterized as

X.t/DX0C .X2 �X0/t , Y.t/D aX.t/2C bX.t/C c. (41)

Differentiating with respect to t yields the length-weighted tangent vector

tD ..X2 �X0/, .2aX.t/C b/.X2 �X0//, (42)

which leads to a length-weighted normal of the form

dSD .X2 �X0/.2at.X3 �X1/C b,�1/. (43)
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Hence, the line integral will take the formZ
X1X2X3

F � dSD .X3 �X1/
Z 1

tD0

Fx.X.t//.2at.X3 �X1/C b/dt . (44)

Numerically, Gaussian quadrature is used for evaluating each line integral. For fourth-order
accuracy, two Gaussian quadrature points are used along each edge, requiring eight Gaussian
quadrature points in total for each flux volume. In practice, slight asymmetries are known to arise
when we choose the geometric potential to be of the form F D .Fx , 0/ because the X and Y
coordinate directions are treated differently. This problem can be alleviated by a more symmetric
choice of the flux potential.

2.7. Conditioning of quadratic and line-integral formulations

In general, the error norms for both the quadrature-based and line-integral formulations of CSLAM
match very closely at low resolutions. However, at sufficiently high resolutions (the resolution at
which this occurs seems to be problem specific), an error arises in the line-integral formulation
that appears to be due to nearly exact cancelation of the components of the boundary integral (30).
At high resolutions, the poor conditioning of the line-integral formulation seems to increase the
minimum achievable error to above machine truncation and so leads to poor convergence behavior.
Improvements in the conditioning of the line-integral approach may be achieved by an intelligent
choice of geometric potentials, but this problem is not tackled in this paper. When comparing the
simplified flux-form implementation using line integrals and quadrature in terms of efficiency, the
quadrature-based formulation also tends to outperform the line-integral formulation.

Notably, the line-integral formulation is the only approach known to the authors that admits large
time steps while maintaining conservation properties of the method [3]. That is, under the line-
integral formulation, integration is performed around the boundary of upstream volumes, and so,
any deformation of these volumes leads directly to exchange of mass with neighboring elements.
Further, because the upstream volumes are non-overlapping and span the entire domain, all mass is
accounted for during integration.

3. NUMERICAL RESULTS

We now present results from two test cases that arise from a strong nonlinearly sheared flow. In
Section 3.1, we present a steady nonlinearly sheared zonal flow and demonstrate that without the
quadratic correction, the standard CSLAM scheme will attain at most second-order accuracy. A
more realistic barotropic instability test is discussed in Section 3.2 using the flow field of [13]. This
test reveals clear grid imprinting caused by the second-order treatment of upstream flux volumes
even at high spatial resolution. No explicit filtering of the reconstruction is applied for these tests,
as it does not impact the observed results.

3.1. Steady nonlinearly sheared zonal flow

3.1.1. Test case formulation. Test case 3 of [14] makes use of a compact nonlinearly sheared jet
that is isolated to the northern hemisphere. In terms of latitude � and longitude �, their velocity field
takes the form

u�.�, �/D u0b.x.�//b.xe � x.�// exp.4=xe/, and u� .�, �/D 0, (45)

where

b.x/D

²
0 if x 6 0,
exp.�1=x/ if 0 < x,

(46)

and

x.�/D xe
.� � �b/

.�e � �b/
. (47)
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For the purposes of our analysis, we choose

u0 D

�
2�a

12 days

�
, �b D�

�

6
, �e D

�

2
, and xe D 0.3, (48)

where aD 6.37122�106 m denotes the radius of the Earth. These choices lead to a flow field which
at maximal velocity completes one revolution of the sphere over a period of 12 days and is confined
to be nonzero only in the range � 2 Œ�b , �b C �e�.

This wind field is particularly useful for testing tracer advection schemes for several reasons.
First, the wind field is infinitely smooth, implying that for a sufficiently smooth tracer field, high-
order numerical methods should achieve an optimal convergence rate. Second, the wind field is
purely zonal, so the zonally integrated mass of any tracer field is not a function of time. Third, the
wind field is strongly nonlinear and so emphasizes errors that are not captured in the linear regime.
Finally, this test is a representative of motions we would expect to see in the Earth’s atmosphere,
such as upper atmospheric jets in the midlatitudes. Notably, for numerical methods which use the
latitude–longitude grid, this test case is much easier when the grid is aligned with the flow. On the
cubed-sphere (or on any other quasi-unstructured grid), we do not have the luxury of grid alignment,
so we expect that grid imprinting will generate additional model errors. Further, we expect that
zonally integrated tracer mass will vary over time.

We consider two possible tracer fields for our study. The first is the constant field D 1. Although
somewhat primitive, this tracer field will allow us to very clearly isolate errors in capturing the wind
field and avoids the inclusion of errors because of the reconstruction. The second field we consider is
 D u�=u0, which is purposely chosen to have smooth purely meridional variation consistent with
the velocity field. This choice will allow us to verify that the reconstruction errors for a more physical
choice of tracer field are still overwhelmed by geometric errors in approximating the upstream areas.
Both fields are steady with time under the velocity field (45).

3.1.2. Discussion. The normalized root mean square L2 error measures are calculated in the tracer
field via the usual global error norms,

L2. /D

s
I Œ. � T /2�

I
�
 2T
� , (49)

where  T is the tracer field at the initial time (the steady-state solution) and I denotes an
approximation to the global integral given by

I Œx�D
X

all cells k

xkjZjk , (50)

with jZjk denoting the area of element k.
The error norms obtained from running the nonlinearly sheared flow test case with  D 1 are

plotted in Figure 6 for the flux-form CSLAM scheme of [4] with 0, 1, and 4 additional nodes
added along each flux edge. Under this scheme, edges are treated as straight line segments without
modification. In these tests, the time step is chosen to be 3600 s at c60 resolution, 1800 s at c120
resolution, 900 s at c240 resolution, and 450 s at c480 resolution. The corresponding grid spacings
are listed in Table II. The data point at c480 resolution shows clear evidence of a lower bound in
the error norms likely caused by poor conditioning of the line-integral formulation. The error norms
show consistent second-order convergence under grid refinement regardless of the number of added
flux nodes. Nonetheless, we do observe a consistent decrease in the error norms as a function of the
number of nodes along each edge. Given the benign nature of the tracer field, these errors strongly
suggest that the flux volumes are not resolved with sufficient accuracy. In Figure 7, we see that
the error norms associated with the quadrature implementation of the CSLAM scheme again show
suboptimal second-order convergence. However, under the quadratic treatment of edges, the error
norms drop dramatically with the c60 resolution scheme with the improved edge treatment even
outperforming the c480 resolution results with straight line segments. Further, with the quadratic
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Figure 6. Normalized L2 errors in the tracer field  for the nonlinearly sheared jet (at t D 12 days) for the
traditional flux-form Conservative Semi-LAgrangian Multi-tracer schemes [4] with 0, 1, and 4 added flux

points per edge and tracer field  D 1.

Figure 7. Normalized L2 errors in the tracer field  for the nonlinearly sheared jet (after 12 days) test with
initial tracer distribution  D 1. Errors from both quadrature-based and line integral-based schemes with

quadratic upstream flux edges are shown. CSLAM, Conservative Semi-LAgrangian Multi-tracer.

treatment of edges, the error norms are superconvergent at near fourth-order accuracy. However,
the quadratic formulation still appears to suffer from the poor conditioning of the line-integral
formulation at high resolutions, as we observe near-perfect convergence with the quadrature-based
fluxes but flawed results with the line-integral formulation.

The deficiencies revealed by this test can also be observed in the standard CSLAM scheme of [3],
which similarly exhibits second-order convergence regardless of the number of flux points or choice
of Courant number. For the issues that arise from this test, we surmise that high-order accuracy can
only be recovered from a high-order treatment of the upstream source region in semi-Lagrangian
schemes.

To verify that the loss of accuracy also occurs for a nonconstant tracer field, we test the smooth
tracer field  D u�=u0. The results from this test can be seen in Figure 8 for the formulations
of CSLAM described in this paper. The suboptimal convergence rate is again apparent without
quadratic edges but is immediately recovered when quadratic edges are used. At lower resolutions,
the reconstruction error is more apparent, leading to error norms that do not significantly vary
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Figure 8. Normalized L2 errors in the tracer field  for the nonlinearly sheared jet (after 12 days) test with
initial tracer distribution  D u�=u0. Errors from both quadrature-based and line integral-based schemes
with quadratic upstream flux edges are shown. Both schemes with quadratic edges have roughly identical
errors and hence appear atop one another in this plot. CSLAM, Conservative Semi-LAgrangian Multi-tracer.

between the two edge treatments. In this case, the issues we observed with the constant tracer field
at high resolutions do not seem to affect the line-integral scheme, although they will likely appear
at even higher resolutions.

On the basis of these results, one may wonder if a quadratic representation of flux edges will
also improve results in other known advection tests. In fact, the solid-body rotation test of [14] is
completely unaffected by the improved resolution of the flux region. In this case, the upstream
source region can be bounded exactly using great circle arcs, suggesting that piecewise linear
boundaries are effectively optimal. Another popular test is the deformation flow test of [6] with
either Gaussian hills or cosine bells. For this test, the error norms do not decrease under the
improved treatment of flux boundaries, suggesting that the nonlinear shear in the wind field is
sufficiently benign so as not to lead to divergent errors that overcome the reconstruction errors
at the tested resolutions. This result can be confirmed by running the deformational flow test with
q D 1 (effectively removing the reconstruction errors from the test), in which case there is again
a degradation in the formal order of accuracy of the method to second order (results not shown)
without the quadratic treatment of edges. However, at sufficiently high resolution, divergent errors
should overwhelm reconstruction errors, and consequently, we expect that the scheme will again
drop to second-order accuracy.

3.2. Barotropic instability

The shallow-water barotropic instability test case of [13] consists of a zonal jet with compact support
at a latitude of 45ı, with a latitudinal profile roughly analogous to a much stronger version of test
case 3 of [14]. A small height perturbation is added atop the jet, which leads to the controlled
formation of an instability in the flow. Consequently, as the flow field evolves, we observe many
realistic atmospheric dynamical features including sharp fronts and regions of enhanced vorticity.
The wind field after 5 days from a shallow-water simulation at c160 resolution is depicted in
Figure 9. As observed by [15], this test case is particularly difficult for models using the cubed-
sphere to handle. Because the jet is significantly stronger than test case 3 of [14], is aligned in such
a way that it passes over cubed-sphere panel edges eight times, and is driven by a relatively mild
perturbation, the wave number four grid forcing of the cubed-sphere grid is usually apparent in
shallow-water simulations of this flow when the grid is coarser than c100 (which corresponds to a
grid spacing of approximately 100 km).

To test the quadrature-based flux-form CSLAM transport scheme, we treat the height field from
[13] as a tracer field and passively advect it with prescribed winds from a shallow-water simulation
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Figure 9. Wind field from the barotropic instability test at day 5. The maximum wind speed in the zonal jet
is approximately 85m s�1.

Figure 10. Height field from the barotropic instability test at day 5, as obtained from (a) the high-order
finite-volume reference solution of [16], (b) the quadrature-based flux-form Conservative Semi-LAgrangian
Multi-tracer scheme (CSLAM) transport scheme described in Section 2.4, and (c) the quadrature-based flux-
form CSLAM transport scheme with the quadratic correction, described in Section 2.5. The height field is
shown from 9000 m (northernmost enclosed contours) to 10,200 m (southernmost enclosed contours) in

increments of 200 m.
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that are updated at every time step. We use the quadrature-based flux-form CSLAM scheme both
without the quadratic correction (Section 2.4) and with the quadratic correction (Section 2.5).
Further, we run at a resolution of c160 (� 62.5 km as listed in Table II) with a time step of�t D 50 s
for 5 days. The height field after 5 days is then plotted in Figure 10, along with a high-order finite-
volume reference solution obtained from the MCore shallow-water model described in [16,17]. The
implementation with the quadratic correction (Figure 10c) matches very closely with the reference
solution and shows no visually apparent indications of grid imprinting. On the other hand, although
there is a rough correspondence between the solution without the quadratic correction (Figure 10(b))
and the reference solution, we observe clear discrepancies between these results, many of which
appear to be driven by the underlying grid. In particular, grid imprinting is most readily apparent
where the zonal jet passes over the cubed-sphere corners at both �225ı and �135ı longitude. As a
consequence, this test clearly identifies a benefit of the quadratic correction.

4. CONCLUSIONS

In this paper, we have reformulated the flux-form semi-Lagrangian advection scheme of [4] using
quadrature to compute the integral over flux volumes. An improved approach using quadratics to
represent the edges of the upstream source region has also been implemented for both the quadrature
and line-integral formulations of CSLAM. The new approach requires one additional trajectory
calculation per flux edge, which roughly triples the number of trajectories that must be computed
to obtain the upstream source areas. However, because these trajectories only need to be computed
once at each time step, the added cost is small when transporting multiple tracers.

We have studied an analytic test case for tracer advection on the sphere that exhibits nonlinear
wind shear analogous to the Earth’s jet stream. This test has shown a deficiency in versions of
CSLAM that approximate upstream source regions using straight line segments, which leads to
a substantial worsening of observed errors and a decrease in the scheme’s convergence rate from
third to second order. The quadratic treatment of the upstream edges was observed to substantially
improve the error norms on this test and returned the convergence rate to third order. This error
is only revealed when a strong nonlinear shear is present in the flow and so is often missed
by other standardized tests. We have also studied a test case that mimics tracer transport in a
barotropic instability, which reveals clear grid imprinting when using line segments to approximate
the upstream flux volume. These errors are apparent even with a relatively fine grid spacing but are
removed when the quadratic correction is applied to the transport scheme.

APPENDIX A: THE RECONSTRUCTION PROCEDURE

In the finite-volume formulation, only averaged values of the state variables are stored within each

element. That is, for each element Zi ,j , we know the element average of the tracer field  i ,j ,
defined by

 i ,j D
1

jZji ,j

Z
Zi ,j

 dV , (A.1)

where jZji ,j is the element area. Here,  denotes an arbitrary conserved variable, which can either
be the fluid density � or the mass of a specific tracer h	, for a mixing ratio 	. The volume element
is dVD J˛ˇd˛dˇ where the equiangular metric Jacobian J˛ˇ is given by

J˛ˇ D
.1C tan2 ˛/.1C tan2 ˇ/

.1C tan2 ˛C tan2 ˇ/3=2
. (A.2)

Because only element-averaged information is known, an accurate reconstruction of the subgrid-
scale distribution of each state variable can only be obtained by using information from neighboring
elements. By utilizing second-order approximations to the first and second derivatives of a
reconstruction, standard finite-difference formula can be used to attain up to third-order accuracy.
Such an approach has been used by [3] in the upstream element-integrated semi-Lagrangian
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Figure A.1. A depiction of the stencil used for computing the third-order subgrid-scale reconstruction on
the cubed-sphere.

formulation of the Conservative Semi-LAgrangian Multi-tracer scheme (CSLAM) scheme. The
approach discussed here simplifies the reconstruction strategy of [18] by not enforcing that the
integrated mass within an element equals the integrated mass of the subgrid-scale reconstruction
(the cell-averaged property). This property is not needed for incremental remap schemes in flux-
form, because conservation is automatically enforced in the formulation. In fact, enforcement of
this criteria does not even improve error norms because the maximum difference between these
reconstructions is always within the O.�˛3/ truncation error of the scheme. Other reconstruction
options have been implemented including the approach of [19] that enforces continuity and the cell-
averaged property; however, this method is significantly more expensive than the approach described
here and does not lead to more accurate results.

The reconstruction strategy proceeds as follows. The stencil we use in the reconstruction step is
depicted in Figure A.1. First and second derivatives are calculated using standard finite-difference
formulae, which leads to approximations that are O.�˛2/ accurate.

D˛ i ,j D
� iC2,j C 8 iC1,j � 8 i�1,j C i�2,j

12�˛
, (A.3)

Dˇ i ,j D
� i ,jC2C 8 i ,jC1 � 8 i ,j�1C i ,j�2

12�˛
, (A.4)

D˛˛ i ,j D
� iC2,j C 16 iC1,j � 30 i ,j C 16 i�1,j � i�2,j

24�˛2
, (A.5)

D˛ˇ i ,j D
 iC1,jC1 � i�1,jC1 � iC1,j�1C i�1,j�1

4�˛2
, (A.6)

Dˇˇ i ,j D
� i ,jC2C 16 i ,jC1 � 30 i ,j C 16 i ,j�1 � i ,j�2

24�˛2
. (A.7)

The final step in building a third-order reconstruction relies on obtaining a O.�˛3/ approxima-
tion to the centerpoint value of  . Here, we follow the deconvolution procedure of [20]. Using this
strategy over a sufficiently smooth field, element averages can be used to obtain an approximation
to the centerpoint value according to

 .0/ D  �
�˛4

12jZj

�
@ 

@˛

@J˛ˇ

@˛
C
@ 

@ˇ

@J˛ˇ

@ˇ

�
�
�˛2

24

�
@2 

@˛2
C
@2 

@ˇ2

�
. (A.8)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1131–1151
DOI: 10.1002/fld



SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT 1149

If  i ,j is known to at least fourth-order accuracy and the remaining derivative terms are known
to at least O.�˛2/, this formula leads to a fourth-order accurate approximation of  .0/i ,j , the
element-centered value of  in element .i , j /. In this formulation, the derivatives of the Jacobian
are computed analytically and stored for later use. Hence, on substituting approximations to these
derivatives, we obtain the fourth-order accurate approximation

 .0/i ,j D  i ,j �
�˛4

12jZji ,j

�
D˛ 

@J˛ˇ

@˛
CDˇ 

@J˛ˇ

@ˇ

�
�
�˛2

24
.D˛˛ CDˇˇ /. (A.9)

Filtering the reconstruction

When q D h	, the reconstruction must be filtered so that 	 satisfies the constraint 	 2 Œ0, 1�.
Consequently, we can extract the reconstruction for 	 using the following differential relationships:

	.0/ D
.h	/.0/

h.0/
,

D˛	 D
1

h.0/
ŒD˛.h	/� 	.0/D˛h�,

Dˇ	 D
1

h.0/
ŒDˇ .h	/� 	.0/Dˇh�,

D˛˛	 D
1

h.0/
ŒD˛˛.h	/� 2D˛	D˛h� 	.0/D˛˛h�,

D˛ˇ	 D
1

h.0/
ŒD˛ˇ .h	/�D˛	Dˇh�Dˇ	D˛h� 	.0/D˛ˇh�,

Dˇˇ	 D
1

h.0/

�
Dˇˇ .h	/� 2Dˇ	Dˇh� 	.0/Dˇˇh

�
.

Observe that this reconstruction satisfies mass/tracer consistency; that is, when 	 D 1, the
reconstructions of h and .h	/ will be identical, and hence, the reconstruction of 	 is exactly the
constant function 	.˛,ˇ/D 1. Further, because the formulae mentioned are exact, this equivalence
preserves the order of accuracy of the underlying reconstruction.

The advection algorithm currently supports two filters to maintain desirable properties of the
reconstruction. A positivity-preserving limiter is available to avoid spurious negative values due
to undershoots in the reconstruction, and a stricter monotonic limiter is available for removing all
unphysical oscillations. The limiters follow the approach of [21], wherein extreme values of the
subgrid-scale reconstruction are detected, and the reconstruction is scaled so that these extreme
values fit within some predefined range. For the positivity-preserving limiter, the range is simply
chosen to be Œ0,C1�, implying that maximum values of the reconstruction that are left untouched
while minimum values are cropped to zero if they are anywhere negative. For many tracer quantities,
the positivity-preserving limiter is sufficient because overshoots are on the order of the reconstruc-

tion, and hence, if the element-averaged tracer concentration 	� 1, it follows that the reconstructed
concentration 	.˛,ˇ/ will never exceed 1. For the monotonicity-preserving limiter, the range is
chosen to be Œ	min,	max�, where

	min Dmin
Nk

.h	/k=hk ,

	max Dmax
Nk

.h	/k=hk ,

and Nk is the set of all neighboring elements to element k, including element k itself. On a regular
Cartesian grid, even diagonal neighbors are considered when determining the minimum and max-
imum values of the scalar field, so in total, nine elements are used. It can be shown that under a
sufficiently strict CFL condition (usually Courant number < 1

2
), the limiting procedure described
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earlier can be used to avoid spurious overshoots and undershoots in the numerical method while
retaining high-order accuracy in smooth regions.

Conversion of the reconstruction to gnomonic coordinates

When integrating over flux areas, integration is performed in gnomonic coordinates. Hence, the
derivatives in equiangular .˛,ˇ/ coordinates must be converted to gnomonic derivatives in .X ,Y /.
We initially convert first derivatives to gnomonic coordinates via

DX i ,j D
1

1CX2
D˛ i ,j , (A.10)

DY i ,j D
1

1C Y 2
Dˇ i ,j , (A.11)

and then second derivatives using

DXX i ,j D
1

1CX2

�
�XDX i ,j C

1

1CX2
D˛˛ i ,j

�
, (A.12)

DXY i ,j D
1

.1CX2/.1C Y 2/
D˛ˇ i ,j , (A.13)

DY Y i ,j D
1

1C Y 2

�
�YDY i ,j C

1

1C Y 2
Dˇˇ i ,j

�
. (A.14)

Upon computing all gnomonic derivatives, the third-order reconstruction within element Zi ,j takes
the form

 i ,j .X/D .0/i ,j C .X �Xi /DX i ,j C .Y � Yj /DY i ,j (A.15)

C .X �Xi /
2DXX i ,j

2
C .X �Xi /.Y � Yj /DXY i ,j C .Y � Yj /

2DY Y i ,j

2
,

where XD .X ,Y / is the vector form of the gnomonic coordinate.
The approach described earlier cannot be applied directly for elements in the vicinity of panel

edges, because accurate reconstruction relies on all neighboring element averages being defined in
the same coordinate system. To avoid this problem, neighboring panel information is remapped into
‘halo’ regions surrounding each panel that are defined in the same coordinate system. This approach
relies on an accurate remapping scheme, such as the one described in [16].

Conversion to a global coordinate system

The reconstruction coefficients c.p,q/ that are then required in the expansion (16) are computed
by expanding (A.16) and collecting like terms. This procedure leads to the following set of
reconstruction coefficients:

c.0,0/ D  .0/i ,j �XiDX i ,j � YjDY i ,j

CX2i
DXX i ,j

2
CXiYjDXY i ,j C Y

2
j

DY Y i ,j

2
, (A.16)

c.1,0/ DDX i ,j �XiDXX i ,j � YjDXY i ,j , (A.17)

c.0,1/ DDY i ,j � YjDY Y i ,j �XiDXY i ,j , (A.18)
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c.2,0/ D
DXX i ,j

2
, (A.19)

c.1,1/ DDXY i ,j , (A.20)

c.0,2/ D
DY Y i ,j

2
. (A.21)
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