The Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment

Jun Liu, Yong-Lai Lu, Ming Tian, Fen Li, Jianxiang Shen, Yangyang Gao, and Liqun Zhang *
Supporting Information

The Interesting Adjusting of "Nanospring" on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment

Jun Liu2, Yong-Lai Lu1,2, Ming Tian1,2, Fen Li2, Jianxiang Shen2, Yangyang Gao2, Liqun Zhang1,2

2Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials and 1State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.

\textbf{Figure S1:} Before cross-linking (a) the decay of the end-to-end vector $<u(t)\cdot u(0)>$ of system I as a function of MD steps; after 1.5×10^7 MD steps of equilibration (b) the change of the potential energy of system I and II and (c) the variation of the mean square end-to-end distance R_{eed}^2 and radius of gyration R_g^2 of system I.
Figure S2: After cross-linking (a) the change of the potential energy and (b) the variation of the number density of beads for both systems I and II.
Figure S3: The TEM observation of carbon nanosprings, it is noted that in order for clear observation we have used carbon nanosprings with large diameter and aspect ratio.

Figure S4: The microscopic deformation of the carbon nanosprings in the elastomer matrix during the tension and recovery process.
Figure S5: For nanosprings filled cross-linked polymer system (system I) without interfacial coupling, comparison between tension-recovery curves in the x and y directions. For clarity the stress-strain in the z direction is not shown, but almost the same as those in the x and y directions. For better comparison, the pure system is as well added. The volume fraction of the nanosprings is $\phi = 14\%$ and the spring constant is $K^* = K / \varepsilon = 500$.
Figure S6: For nanosprings filled cross-linked polymer system (system II) and for the spring constant $K^* = 500$, (a) comparison of tension-recovery curves in the x, y and z directions; (b) the change of the elastic energy during the tension and recovery process. The volume fraction of the nanosprings $\phi = 14\%$, and the dimensionless spring constant $K^* = K / \varepsilon$.
Figure S7: For nanosprings filled cross-linked polymer system (system II) and for the spring constant $K^* = 0.05$, (a) comparison of the tension-recovery curves in the x, y and z directions. (b) the change of the elastic energy during the tension and recovery process. The volume fraction of the nanosprings $\phi = 14\%$, and the dimensionless spring constant $K^* = K / \varepsilon$.