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Summary. Auxiliary variables that are associated with both key survey variables and response
propensity are important for post-survey non-response adjustments, but rare. Interviewer obser-
vations on sample units and linked auxiliary variables from commercially available household
databases are promising candidates, but these variables are prone to error. The assumption of
missingness at random that underlies standard weighting or imputation adjustments is thus vio-
lated when missingness depends on the true values of these variables, leading to biased survey
estimates. The paper applies pattern–mixture model estimators to this problem, analysing data
from a survey in Germany that links commercial data to a national sample.
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1. Introduction

We consider non-response adjustment of survey estimates based on auxiliary variables that are
fully observed for a sample of n units from some population. Effective auxiliary variables for
non-response adjustment should be highly predictive of both key survey variables and response
propensity (Beaumont, 2005; Bethlehem, 2002; Groves, 2006; Lessler and Kalsbeek, 1992; Little
and Vartivarian, 2005). In an effort to collect data on auxiliary variables with these properties,
some survey programmes have requested that interviewers record observations about selected
features of all sample units (Kreuter et al., 2010; West, 2013), but these observations can be prone
to error (Campanelli et al., 1997; Groves et al., 2007; McCulloch et al., 2010; Pickering et al.,
2003; Tipping and Sinibaldi, 2010; West, 2013). Some survey programmes have also considered
linking proxies of key survey variables that are available in commercial databases to sampling
frames, but these variables may also be prone to error (DiSogra et al., 2010). Using these error
prone auxiliary variables in non-response adjustments can be problematic. Weighting class or
regression non-response adjustments based on error prone auxiliary variables results in bias
when missingness depends on the true underlying value (Lessler and Kalsbeek (1992), page 190,
and West (2013)). This paper proposes methods for correcting for this bias and applies them to
survey data collected from a national sample in Germany.

We focus on the German labour market and social security (the Panel Arbeitsmarkt und sozi-
ale Sicherung (PASS)) survey, which is a panel study that collects annual labour market, house-
hold income and unemployment benefit receipt data from a nationally representative sample of
12000 households from the German population. One of the chief scientific goals of researchers
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analysing PASS data is to make descriptive inferences about important socio-economic fea-
tures of German households. In the application that is presented in this paper, we focus on the
estimation of average monthly household income (in euros) and average housing unit area (in
metres squared).Unit or item non-response on variables such as these pose a critical challenge
to the PASS survey and its scientific products. PASS survey managers attempt to address these
challenges by linking auxiliary socio-economic variables from a commercial data source to the
PASS sampling frame to assist with stratified sampling and estimation tasks. Given the estima-
tion objectives of this paper, we take advantage of a unique proxy of household income from
this set of linked auxiliary variables (block level purchasing power) to apply alternative non-
response adjustments to respondent data from the first wave of the PASS survey (2006). Given
that this auxiliary proxy of household income is prone to error, we contrast the performance
of standard adjustments assuming ignorable missingness at random (MAR) mechanisms with
a proposed adjustment method for the case when missingness depends on household income,
which is only measured for PASS respondents.

We consider initially data as in Fig. 1, where X1 is an auxiliary variable measured with error
for all n sampled individuals (e.g. block level purchasing power), X2 is the underlying true value
of X1, recorded for each of r survey respondents (e.g. monthly household income) and X3 is a
survey variable of substantive interest, also measured for the r respondents only (e.g. housing
unit area). The objective is to make inferences about means of the variables X2 and X3, using the
auxiliary variable X1 to adjust for non-response. The auxiliary variable X1 may also represent
a proxy variable that is related to key survey variables and response propensity and combines
information on multiple auxiliary covariates, possibly through principal components analysis
or linear predictors (e.g. Andridge and Little (2009, 2011)).

Our proposed adjustment method, which is presented in Section 2, is based on a pattern–
mixture model (PMM) (Little (1994) and Little and Rubin (2002), section 15.5). PMMs stratify
the sample cases on the basis of patterns of missing data and formulate distinct models for
the variables within each stratum. Unidentified parameters are identified by exploiting param-
eter restrictions based on assumptions about the missing data mechanism. Little (1994) derived
maximum likelihood (ML) and Bayesian estimators of means and covariances for incomplete
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Fig. 1. Missing data pattern under study, including PASS variables to be analysed in the application (BPP,
block level purchasing power; MHI, monthly household income; HUA, housing unit area)



Non-response Adjustment of Survey Estimates 215

data assuming a bivariate normal PMM, under ignorable and non-ignorable mechanisms. Little
and Wang (1996) extended this work to multivariate incomplete data with fully observed cova-
riates. More recently, Shardell et al. (2010) applied PMMs to the analysis of normal outcome
data provided by proxy respondents in surveys, which may be subject to measurement error, and
Baskin et al. (2011) used proxy pattern–mixture analysis (Andridge and Little, 2011), to estimate
non-response bias in means of health expenditure variables in the Medical Expenditure Panel
Survey. In the present application, we develop a trivariate normal PMM that is suitable for the
survey context described by Fig. 1.

Previous methods of non-response adjustment with error prone auxiliary variables have as-
sumed that the missing data are missing at random, meaning that missingness depends only on
the fully observed auxiliary variables (Rubin, 1976). We develop PMM estimators for the case
where missingness (or a failure to respond to the survey) is assumed to depend on the true auxil-
iary variable X2, but not the auxiliary proxy variable X1 after conditioning on X2. Simulations
comparing the PMM estimators with more common estimators are described in Section 3. In
Section 4, we generalize our proposed method to the case of additional auxiliary variables mea-
sured without error. Section 5 presents an application of our methods to the PASS survey data
and compares our PMM estimates with weighting class and sequential regression imputation
(Raghunathan et al., 2001) estimates that assume MAR mechanisms. Section 6 summarizes our
work and discusses further extensions. The R code implementing the estimators proposed can
be obtained from

http://www.blackwellpublishing.com/rss

2. Pattern–mixture model: estimation and inference

2.1. Pattern–mixture model estimates
For sample unit i, let mi be a missing data indicator, equal to 0 if a unit responds to the survey
and 1 otherwise. Unit non-respondents have missing values for X2 and X3 (e.g. monthly house-
hold income and housing unit area in the PASS survey). For the missing data pattern mi =m,
we assume
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which is a trivariate normal distribution with nine parameters. The marginal distribution of mi

is mi ∼Bernoulli.π1/. There are 2 × 9 + 1 = 19 model parameters in total across both patterns.
The following 12 parameters are clearly identified from the observed data in Fig. 1: θid =
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Xj on Xk for pattern m, and let σ
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jl:k denote the residual covariance of Xj and Xl given Xk

for pattern m. The assumption that missingness of X2 and X3 depends on X2 (the ‘true’ val-
ues of the auxiliary variable X1, measured in the survey) implies that the distribution of X1
and X3 given X2 is the same for complete and incomplete cases, yielding seven parameter
restrictions:
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With seven restrictions and seven unidentified parameters, the model is just identified, and
ML estimates are straightforward extensions of those given in Little (1994). Specifically, we
transform θid to the alternative parameterization
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11 , μ.1/
1 , σ.1/
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where the parameter restrictions imply that the last seven parameters are the same for com-
plete and incomplete cases. Given that r is the number of survey respondents, define the cor-
responding sample quantities π̂1 = .n − r/=n, or the sample proportion of non-respondents,
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the regression of X1 and X3 on X2, for the complete cases (CCs) (m=0). These sample quanti-
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σ̂11:2. ML estimates of the components of θid are also the corresponding least squares estimates.
We obtain ML estimates of the remaining non-identified parameters θnid by expressing them

as functions of φid, and substituting the ML estimates φ̂id. For example, for μ
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monthly household income for PASS non-respondents), we have
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θnid are defined in a similar manner:
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The ML estimates of the parameters of the marginal distribution of X are obtained by combin-
ing the parameter estimates of θid and θnid. For example, the ML estimate of the mean μ2 of X2
(e.g. the overall mean monthly household income for the full PASS sample) is then (by simple
algebra)

μ̂2 = μ̂
.0/
2 + π̂1

μ̂
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.0/
1

β̂12:2
, .9/

as in Little (1994). These ML estimators are unstable if the estimated regression coefficient β̂12:2
is close to 0, as when X1 has substantial measurement error and is consequently weakly correl-
ated with the true variable X2. Thus, the method requires a proxy variable that has a reasonably
strong correlation with the true variable.

2.2. Bayesian inference
Large sample standard errors for the ML estimates derived above can be based on linearized
variance estimators (e.g. Little (1994)). Confidence intervals based on ML estimates and these
variance estimates have been shown in simulation studies to yield below-nominal coverage, par-
ticularly when the sample size is small and the auxiliary variable is weakly associated with the
outcome variable (Andridge and Little (2011), page 166). Better confidence interval coverage is
obtained by a Bayesian approach, assuming non-informative prior distributions and simulat-
ing draws from the posterior distribution of the parameters. We extend the Bayesian methods
in Little (1994) to our trivariate normal model. We assume non-informative priors for the 12
identified parameters:
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Here Inv-Wishart(S, d) denotes the inverse Wishart distribution with d degrees of freedom and
scale matrix S (see Gelman et al. (2004), appendix A).

To satisfy the constraint that σ
.1/
11 >σ11:2, the draws in steps 4 and 6 must be such that σ

.1/.d/
11 >

σ
.d/
11:2 (Little, 1994). Draws of σ

.1/
11 and σ11:2 that fail this condition are discarded and repeated.

The drawn values from the sequence above then replace the ML estimates in equations (2)–(9)
to generate draws from the posterior distributions of the other parameters. Inferences are based
on a large sample (say, 1000) of these draws. In particular, the mean of the draws simulates
the posterior mean, and the 2.5% and 97.5% percentiles of the simulated draws simulate a 95%
credible interval for the mean.

2.3. Multiple imputation
A useful alternative inferential method is multiple imputation (MI) (Little and Rubin, 2002;
Andridge and Little, 2011). Parameters of the model are drawn from their posterior predictive
distributions, as above. The missing values of X2 and X3 are then drawn from their conditional
distributions given these draws, namely

x
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where the superscript (d) denotes the dth set of draws, and the parameters are drawn as appro-
priate functions of the draws in Section 2.2. For example,
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This procedure is repeated B times to create B complete data sets, which can then be analysed
by using MI combining rules (Little and Rubin, 2002). A useful statistic that is generated by this
process is the fraction of missing information (FMI), which represents the proportion of the
total MI variance of an estimate due to the between-imputation variance. Higher values of the
FMI statistic indicate less information available in the data for the parameter being estimated
and suggest that higher values of B are needed for efficient estimation. The within-imputation
components of variance can also readily incorporate complex sample design features like sample
weights, which otherwise need to be addressed by modifying the basic PMM. We also note that
this method does not require draws {π

.d/
1 }, since the imputations are exclusively within pattern

m=1, and the MI analysis of the filled-in data sets does not need to condition on pattern. This
feature simplifies the computation when other auxiliary variables are included in the imputation
model (Section 4).

3. Simulation studies

3.1. Methods compared
We describe two sets of simulations to compare empirically the performance of the PMM
methods with other common methods of compensating for unit non-response in surveys. Five
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approaches to estimation and inference for the means of the variables X2 and X3 were compared:

(a) PMM estimates based on the Bayesian approach described in Section 2.2 (denoted by
PMM), with 95% credible intervals for the means computed by using the 2.5% and 97.5%
percentiles of the simulated draws for each sample;

(b) PMM estimates based on the MI approach described in Section 2.3 (denoted by PMM–
MI), where missing values of X2 and X3 are imputed multiple (B=100) times;

(c) standard MI, assuming normal data and an ignorable missing data mechanism (missing
values of X2 and X3 are imputed multiple (B = 100) times by conditioning on X1; MI
combining rules (Little and Rubin, 2002) are used for computing estimates and standard
errors of the two means, and degrees of freedom for the t-distribution are computed by
large sample methods (Rubin, 1987));

(d) a ‘global’ weighting (GW) approach (the CCs are weighted by the inverses of response
propensities estimated from a logistic regression of the response indicator (1−mi/ on X1,
and weighted estimates of the means are computed; Taylor series linearization is used to
estimate standard errors of these estimated means, and corresponding 95% confidence
intervals for the means);

(e) CC analysis, where analysis is based only on cases with no missing values, with no adjust-
ment of any form for non-response, and standard methods for simple random samples
are used to compute estimates of means, standard errors and 95% confidence intervals.

3.2. Simulated data
We first simulate data from the PMM of Section 2, meaning that the PMM approaches are
expected to outperform the other approaches. Samples are generated from the following PMM:
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.0/
3 . Under this model, non-respondents

have higher means than respondents for the two variables of interest (X2 and X3/, and missing-
ness is a function of values on X2. The parameter values are chosen to satisfy the seven parameter
restrictions that were described in Section 2.1. The parameter π1 determining the proportion of
missing cases is set to 0.50 or 0.25 (corresponding to high or moderate unit non-response). We
generate 1000 samples of size n=1000 from this PMM for each value of π1 and ρ.

The second set of simulations created non-response with a non-ignorable selection model.
Samples were generated from the trivariate normal model(

xi1
xi2
xi3

)
∼N3

{( 1
1
10

)
,

( 1 ρ 0:25
ρ 1 0:5

0:25 0:5 1

)}
,

where the parameter ρ was set to 0.9 for low measurement error and 0.6 for high measurement
error. The X1-variable has a weaker association with X3 than the true auxiliary variable X2, to
reflect attenuation of the relationships due to measurement error in X1 (Fuller, 1987). Missing
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values of X2 and X3 were created by using the model

P.mi =0|xi2, α, λ/= exp.α+λxi2/

1+ exp.α+λxi2/
,

where α (set to values 0 and −1) determines the expected response rate, and λ (with possible val-
ues 2, 1 and 0) determines the dependence of response on the true auxiliary variable X2, allowing
for analyses of sensitivity to assumptions about the non-ignorable missing data mechanism. For
each sample case, a random uniform(0,1) deviate was drawn, and the values of X2 and X3 were
retained if this draw was less than or equal to P.mi =0|xi2, α, λ/, and deleted otherwise.

For each simulation, we computed the empirical relative bias (per cent), empirical root-mean-
squared-error (RMSE), 95% confidence or credible interval coverage, mean 95% confidence
interval width and mean FMI (for the MI methods) for the estimators of the two means defined
by the five approaches above, based on 1000 samples simulated under the alternative missing
data mechanisms.

3.3. Results of simulation studies
Tables 1 and 2 present simulation results for each of the five estimation methods (PMM,
PMM–MI, MI, GW and CC) under the normal PMM and selection models that were specified

Table 1. Selected simulation results under the PMM†

ρ π1 Method μ̂2 μ̂2 μ̂2 95% μ̂2 95% μ̂3 μ̂3 μ̂3 95% μ̂3 95%
relative RMSE CI CI mean relative RMSE CI CI mean

bias coverage width/FMI bias coverage width/FMI

0.9 0.50 PMM −1 40 945 157 1 52 930 187
PMM–MI 7 41 979 181/41 1 52 923 183/50
MI −637 103 281 149/19 −141 146 197 191/57
GW −632 108 694 261 −141 146 248 206
CC −3339 503 0 176 −257 255 0 176

0.9 0.25 PMM −1 36 954 140 −1 38 936 146
PMM–MI −2 35 967 145/14 −1 38 931 147/25
MI −384 59 722 136/6 −72 79 527 147/27
GW −376 60 855 177 −72 79 551 151
CC −2007 254 0 143 −130 131 72 143

0.6 0.50 PMM 18 62 962 249 1 53 949 211
PMM–MI 30 62 966 267/72 2 56 941 206/60
MI −2127 322 0 167/42 −162 180 53 182/53
GW −2129 322 0 195 −162 180 47 186
CC −3327 501 0 176 −231 252 0 176

0.6 0.25 PMM −14 43 959 173 −1 40 950 154
PMM–MI 18 44 962 178/41 1 40 941 154/32
MI −1292 165 5 139/19 −83 96 334 144/26
GW −1290 165 9 150 −83 96 344 146
CC −2007 253 0 144 −118 131 73 143

†ρ = corr(X1,X2/ and defines the amount of measurement error in X1; π1 defines the proportion of population
units with values arising from the model for pattern mi = 1 (non-respondents); PMM, PMM estimates based on
the Bayesian inference approach (Section 2.2); PMM–MI, PMM estimates based on the MI approach (Section
2.3); MI, MI estimates after regression prediction (assuming an MAR mechanism) and application of Rubin’s
combining rules; GW, GW estimates; CC, CC estimates; CI, confidence or credible (for the PMM) interval;
relative bias, relative bias (%) × 100; RMSE, empirical RMSE × 1000; 95% CI coverage, number of intervals
covering the true mean out of 1000; 95% CI mean width, mean CI width × 1000; FMI, mean FMI × 100.
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Table 2. Selected simulation results under the normal selection model, with α = 0 in the response propensity
model†

ρ λ RR Method μ̂2 μ̂2 μ̂2 95% μ̂2 95% μ̂3 μ̂3 μ̂3 95% μ̂3 95%
relative RMSE CI CI mean relative RMSE CI CI mean

bias coverage width/FMI bias coverage width/FMI

0.9 2 78 PMM 1 34 942 130 1 38 931 143
PMM–MI −4 33 953 133/13 1 38 939 145/27
MI 698 76 402 122/8 101 107 204 142/28
GW 736 85 580 182 110 116 185 150
CC 2904 292 0 122 145 150 10 136

0.9 1 70 PMM −11 32 954 131 −1 38 947 148
PMM–MI −6 33 958 139/20 1 38 954 149/31
MI 539 62 630 127/9 79 87 454 150/33
GW 537 64 782 166 80 88 458 153
CC 2546 257 0 138 127 132 70 146

0.9 0 50 PMM 9 35 948 138 2 45 937 167
PMM–MI 1 35 986 164/43 −1 44 933 161/40
MI 9 34 953 136/16 2 44 945 174/49
GW 9 34 988 176 2 44 947 175
CC 9 44 949 176 2 45 942 176

0.6 2 78 PMM −12 44 949 167 −1 40 944 152
PMM–MI −34 43 951 170/45 1 39 956 153/34
MI 2045 207 0 120/19 111 116 120 139/25
GW 2062 209 0 127 112 118 121 139
CC 2898 292 0 122 144 148 21 136

0.6 1 70 PMM −14 43 947 175 1 41 945 159
PMM–MI −18 45 960 181/52 −1 41 941 158/38
MI 1714 175 2 133/24 95 102 281 147/31
GW 1716 175 2 142 95 102 289 148
CC 2542 257 0 138 128 133 56 146

0.6 0 50 PMM 35 53 945 208 2 48 945 185
PMM–MI 16 54 967 229/70 −1 47 942 177/50
MI 20 40 958 160/39 1 44 949 174/48
GW 18 40 974 175 1 44 946 175
CC 8 45 957 176 1 45 946 176

†ρ = corr(X1,X2/ and defines the amount of measurement error in X1; α = 0; λ determines the dependence
of missingness on X2; RR, average proportion of sample responding across 1000 simulations, multiplied by 100;
PMM, PMM estimates based on the Bayesian inference approach (Section 2.2); PMM–MI, PMM estimates based
on the MI approach (Section 2.3); MI, MI estimates after regression prediction (assuming an MAR mechanism)
and application of Rubin’s combining rules; GW, GW estimates; CC, CC estimates; CI, confidence or credible
(for the PMM) interval; relative bias, relative bias (%) × 100; RMSE, empirical RMSE × 1000; 95% CI coverage,
number of intervals covering the true mean out of 1000; 95% CI mean width, mean CI width × 1000; FMI, FMI
× 100.

in Section 3.2. Simulations were performed by using R (R Development Core Team, 2011)
and code for performing additional simulations is available from http://www.blackwell
publishing.com/rss.

3.3.1. Empirical bias and root-mean-squared error
When the data are simulated according to a PMM, the PMM and PMM–MI estimators have
the smallest empirical bias and RMSE when missingness depends on the true value X2, as
expected (Table 1). Notably, the PMM–MI estimator greatly outperforms the MI estima-
tor, which assumes an ignorable (MAR) mechanism, when the missing data mechanism is
non-ignorable. The results in Table 1 and Table 2 also show that the empirical bias and RMSE
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of the MI and GW estimators both increase significantly with more measurement error in the
auxiliary proxy X1, regardless of the missing data mechanism. This is also expected, given the
bias in regression coefficients engendered by measurement error in the covariates (Fuller, 1987).
In contrast, the empirical bias of the PMM and PMM–MI estimators is negligible.

The PMM and PMM–MI estimators also perform well (in terms of empirical bias and RMSE)
when the data are simulated from a selection model (Table 2). Under both missing data mech-
anisms (Tables 1 and 2), the GW and MI estimators have less empirical bias than the CC
estimators when the missing data mechanism is non-ignorable, but are still biased, with a bias
that increases as the dependence of missingness on X2 and measurement error in X1 increases.
None of the estimators for the mean of the X3-variable are badly biased in this setting, reflect-
ing the fact that missingness depends on X2. The PMM and PMM–MI estimators both appear
robust to the model generating the missing data and the amount of measurement error in the
auxiliary variable. The pattern of results evident in Table 2 also holds under lower response
rates, with α=−1 in the normal selection model (Table 3).

3.3.2. Confidence or credible interval coverage and width
Under both missing data models, the coverage of 95% confidence intervals based on the MI,

Table 3. Replication of the simulation study (with incomplete data generated from the normal selection
model) with α D �1 in the response propensity model, which serves to introduce lower expected response
rates in the simulated samples†

ρ λ RR Method μ̂2 μ̂2 μ̂2 95% μ̂2 95% μ̂3 μ̂3 μ̂3 95% μ̂3 95%
relative RMSE CI CI mean relative RMSE CI CI mean

bias coverage width/FMI bias coverage width/FMI

0.9 2 65 PMM 18 36 944 137 −1 45 923 161
PMM–MI −13 35 955 145/27 −1 47 916 165/43
MI 1131 117 54 125/15 160 166 36 163/17
GW 1217 133 362 227 171 178 65 179
CC 4352 436 0 127 217 220 0 148

0.9 1 50 PMM 5 38 937 143 2 50 932 180
PMM–MI −15 36 981 165/43 −1 51 909 176/50
MI 920 99 238 135/21 134 142 182 185/56
GW 937 104 576 214 135 143 211 192
CC 4129 415 0 160 208 212 3 172

0.6 2 65 PMM −29 54 939 208 −2 47 948 180
PMM–MI −30 53 965 215/65 −2 46 951 181/52
MI 3119 314 0 127/32 171 175 6 153/39
GW 3147 316 0 139 173 177 7 156
CC 4324 434 0 128 217 220 0 148

0.6 1 50 PMM −53 62 950 238 −2 52 947 205
PMM–MI −1 59 969 252/75 −2 53 936 198/60
MI 2824 285 0 152/43 156 162 62 177/52
GW 2828 286 0 172 156 162 64 179
CC 4146 417 0 160 209 213 1 172

†ρ = corr(X1,X2) and defines the amount of measurement error in X1; α = 0; λ determines the dependence of
missingness on X2; RR, average proportion of sample responding across 1000 simulations, multiplied by 100;
PMM, PMM estimates based on the Bayesian inference approach (Section 2.2); PMM–MI, PMM estimates
based on the MI approach (Section 2.3); MI, MI estimates after regression prediction (assuming an MAR mech-
anism) and application of Rubin’s combining rules; GW, GW estimates; CC, CC estimates; CI, confidence or
credible (for the PMM) interval; relative bias, relative bias (%) × 100; RMSE, empirical RMSE × 1000; 95% CI
coverage, number of intervals covering the true mean out of 1000. 95% CI mean width, mean CI width × 1000;
FMI, mean FMI × 100.
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GW and CC estimators is far below nominal when missingness depends on X2 and decreases
with increased dependence of missingness on X2 and more measurement error in the auxiliary
variable. In contrast, 95% credible intervals based on the PMM and PMM–MI estimators have
close to nominal frequentist coverage in nearly all cases. We also note that, when there are
higher fractions of missing information for the mean of X2 due to higher levels of measurement
error in the auxiliary proxy (under both missing data models), the mean widths of the 95%
confidence intervals based on the PMM–MI estimators tend to be slightly higher than those for
the other estimators. The increased error in the auxiliary variable increases the uncertainty in
the predictive distribution of the missing values, and this problem can be handled by increasing
the number of draws (B).

Similar patterns of results were found for the case where α=−1 in the normal selection model
(introducing lower response rates). In the cases of non-ignorable missing data mechanisms, the
lower response rates simply served to increase the bias and RMSE of the MI, GW and CC
estimators while reducing their coverage. The PMM and PMM–MI estimators still performed
quite well in the presence of lower response rates but were once again found to have higher
mean confidence interval width in the case of higher measurement error. Readers can view these
results in Table 3.

4. Including other fully observed auxiliary variables

We may wish to include other auxiliary variables as predictors in models for imputing missing
values. Suppose that in addition to the data in Fig. 1 there is a set of k such fully recorded
auxiliary variables C, including a vector of 1s for the intercept, and that missingness of X2
and X3 is assumed to depend on both X2 and C. Since the auxiliary variables C are fixed in
the model, interactions and non-linear terms involving the auxiliary variables can be included.
In the PASS application, we consider the base sampling weight as an additional error-free
auxiliary variable, and we show that unit non-response is a function of the base sampling
weight (see Section 5).

For the missing data pattern mi = m, we assume the following generalization of the model
that was described in Section 2. Conditional on values ci of the auxiliary variables C,
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which is a trivariate normal distribution with 3k+6 parameters. In distribution (12),β.m/
ic:c denotes

the regression coefficients for the set of auxiliary variables C in the linear regression of Xi on C
for pattern m, and σ

.m/
ij:c denotes the residual covariance (variance if i= j) of Xi and Xj, given

C, for pattern m. The marginal distribution of mi given ci is

mi|ci, γ ∼Bernoulli{π1.ci, γ/},

where π1 is the probability of missingness, and γ is a vector of k regression parameters in a
logistic regression of the missingness indicator mi on the auxiliary variables C. The following
parameters are identified from the observed data:
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The assumption that missingness ofX2 andX3 depends on X2 and C implies that the distri-
bution of X1 and X3 given X2 and C is the same for complete and incomplete cases, yielding
2k +5 parameter restrictions. Hence the model is just identified (as described earlier).

ML estimates of the identified parameters θid are computed as before, with the regression
coefficients on C computed by applying ordinary least squares regression to the two patterns.
The non-identified parameters θnid are similar functions of the identified parameters that were
given earlier, except that the expressions condition on the auxiliary variables C. Define the
following sample estimates:

(a) γ̂ is the ML estimate of γ from logistic regression of M on C;
(b) β̂

.m/

1c:c are the ordinary least squares regression coefficients of X1 on C, missing data pattern
m;

(c) σ̂
.m/
11:c is the residual variance of X1 given C, missing data pattern m;

(d) β̂
.0/

jc:c is the ordinary least squares regression coefficient of Xj on C, CCs, j =2, 3;
(e) β̂j2:2c is the coefficient of X2 from ordinary least squares regression of Xj on C and X2,

CCs, j =1, 3;
(f) σ̂

.0/
jk:c is the covariance of Xj and Xk given C, CCs.

The ML estimates are then computed as follows, given the notation above (where C includes
the column of 1s used for the intercept terms in the models):
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For Bayesian inference, assuming non-informative priors for the identified parameters, a se-
quence of draws from the posterior distribution of the identified parameters in this case can be
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computed by adding covariates C to the expressions that were described earlier, and these draws
then replace the ML estimates in the above expressions to simulate draws from the posterior
distribution of the other parameters. The sequence of draws below is repeated many times to
simulate the posterior distributions and to make inferences as before.
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If the objective of the analysis is inference about marginal means of X2 or X3 (as opposed to
the regression parameters or variance–covariance parameters), we can apply the MI approach
that was described in Section 2.3 to make inferences that essentially ‘integrate out’ values of
the auxiliary variables C. We first draw parameters for pattern m = 1 of the PMM defined in
expression (12) from their posterior distributions (without needing the draws γ.d/, given that
our focus is on the pattern m=1) and then impute missing values for X2 and then X3 by taking
random draws from their conditional distributions defined by the drawn parameters (as shown
in Section 2.3):

x
.d/
2i ∼N.β

.1/.d/
2c:1c xci +β

.1/.d/
21:1c x1i, s

.1/.d/
22:1c /, .13/

x
.d/
3i ∼N.β

.1/.d/
3c:12cxci +β

.1/.d/
31:12cx1i +β

.1/.d/
32:12cx

.d/
2i , s

.1/.d/
33:12c/: .14/

The ‘SWEEP’ operator (see Little and Rubin (2002), section 7.4.3) facilitates computation of
the parameters in these conditional distributions given the draws for pattern m=1 of the PMM;
for example, we have β
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B complete data sets. The means of X2 and X3 and their standard errors are then computed
for each data set by using standard CC methods (potentially incorporating complex sampling
features), and MI combining rules are applied for making inferences.

5. Application: the Panel Arbeitsmarkt und soziale Sicherung (labour market
and social security) survey

In this section, we apply our methods to data from wave 1 of the PASS survey, aiming to make
inferences about the mean monthly household income and mean housing unit area of the Ger-
man population in 2006. German households that were known to have received unemployment
benefits are sampled at a higher rate than other households, so sampling weights are needed
to make representative inferences about the German population. The PASS survey purchases
auxiliary socio-economic variables describing area level features for sampled households from
the German consumer marketing organization Microm. These variables are then linked to the
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sampled households at the address level, with linking rates consistently higher than 95% (Trapp-
mann et al., 2010).

We identified 48250 sampled households in wave 1 that had information available on a con-
tinuous auxiliary variable measuring the average purchasing power (in euros) of households in
the same city block. This variable followed an approximately normal distribution and was con-
sidered to be an error prone auxiliary proxy (X1/ of reported monthly household income. The
two survey variables of primary interest in this application, monthly household income and area
(in square metres) of the housing unit, were both measured for 11969 respondents to the PASS
survey in wave 1 (an unweighted response rate of 24.8%). We also extracted the base sampling
weights, stratum identifiers and sampling error cluster codes for the wave 1 respondents, given
the stratified multistage sample design that was employed for the PASS survey.

Monthly household income (log-transformed) was considered as the X2-variable, and unit
non-response (on X2 and X3/ was assumed to be a linear function of this variable. This assump-
tion was supported by strongly significant (p < 0:001) associations of both average household
purchasing power and the base sampling weight with a response indicator in a logistic regres-
sion model fitted to the full sample. For every €10000 increase in the average purchasing power
of households in a given city block, the expected odds of an individual household responding
were reduced by about 15% (estimated odds ratio, 0.853; 95% confidence interval 0.822, 0.885),
and larger values on the base sampling weight (generally indicating households not receiving
unemployment benefits) were also associated with reduced odds of responding. The area of
the housing unit (also log-transformed) was considered as the X3-variable. The correlation be-
tween the auxiliary measure of average purchasing power and the reported household income
(log-transformed) was 0.223, suggesting substantial error in the auxiliary proxy (the lowest
correlation considered in the simulation studies above was 0.6). The correlation of average pur-
chasing power with log-transformed housing unit area was 0.137, whereas the correlation of
housing unit area and household income was 0.642.

5.1. Analysis with one error prone auxiliary variable
In the first analysis, we applied the CC, GW, MI and PMM–MI methods to estimate popula-
tion means for monthly household income and housing unit area. The GW and MI estimators
assumed an ignorable missing data mechanism, where missingness was a function of the auxiliary
variable measuring the average purchasing power of the households. The PMM–MI estimator
assumed a non-ignorable missing data mechanism, where missingness was a function of the
household income variable measured in the survey. Each of these four methods also accounted
for the complex design features of the wave 1 PASS sample (weighting for unequal probability
of inclusion, stratification and cluster sampling); see Heeringa et al. (2010) for more details on
these types of design-based procedures.

When applying the CC approach for the respondents only, weighted estimates of the means
for log-transformed monthly household income and log-transformed housing unit area were
computed by using the wave 1 base sampling weight, and Taylor series linearization was applied
(incorporating the stratum and cluster codes and the weighted cluster totals) for variance esti-
mation. When applying the GW approach, the base weights were adjusted by the inverse of the
predicted response propensity from a logistic regression model predicting the response indicator
with the proxy income variable, and the base weights were ignored when estimating the logistic
model (per Little and Vartivarian (2003)). The MI approach was implemented using the mi
commands in Stata (version 12.1) (StataCorp, 2011) to perform B = 100 sequential regression
imputations and to account for complex sample design features in the analysis of each imputed
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data set. Finally, we applied the PMM–MI approach that was described in Section 2.3 (also
using B = 100 imputations) for the possible non-ignorable missing data mechanism, using the
survey package in R (Lumley, 2010) to analyse each imputed data set. Estimates of population
means for household income and housing unit area computed by using the four methods were
exponentiated to return them to their original scales. Table 4 presents results from applying
these four different approaches.

Table 4 shows that inferences based on the CC, GW and PMM–MI approaches would be
similar. We would make different inferences depending on whether the MI approach (assuming
an ignorable model) or the PMM–MI approach (assuming a non-ignorable model) is used in
this analysis. In the PASS survey, non-respondents tended to have higher income and signifi-
cantly higher base sampling weights as a result (given the informative sampling). Given the
weak relationship of the error prone proxy variable with household income observed for the
respondents, the imputed values for non-respondents under the ignorable model all tended to
be closer to the mean for the responding cases, which had lower income in general. When the
base weights were applied to each imputed data set, these negatively biased predictions were
inflated, and this resulted in the substantially different inferences for the means that are evident
in Table 4. The PMM–MI approach incorporates the apparent dependence of missingness on
income and is not as heavily affected as a result. However, given the weak relationship of the
auxiliary proxy with income and the correspondingly high FMI values for each mean under
the non-ignorability assumption, we see the same inefficiency in the PMM–MI estimates as was
noted in the simulations. Given the high FMI values, increasing the number of imputations will
help with this problem. For example, if B =50, the 95% confidence interval widths for the two
means when using the PMM–MI approach become 266.58 and 5.60.

This analysis demonstrates the sensitivity of MI inferences based on error prone auxiliary
proxies to assumptions about the missing data mechanism. Given knowledge of the oversam-
pling of low income households in the PASS survey and the substantial differences in distribu-
tions of the base sampling weights between respondents and non-respondents, use of an error
prone auxiliary proxy under assumptions of an ignorable missing data mechanism may result in
bias. In practice, inferences based on the PMM–MI and MI approaches should be compared to

Table 4. Estimates of mean reported household income and mean housing unit area, based on four different
non-response adjustment methods†

Variable Method Estimated FMI 95% Confidence
mean confidence interval

interval width

Reported monthly household CC 1814.88 —‡ (1772.99, 1857.77) 84.78
income (€) (X2) GW 1838.57 —‡ (1795.62, 1882.54) 86.92

MI 1448.70 0.42 (1421.09, 1476.86) 55.77
PMM–MI 1799.03 0.90 (1706.55, 1896.52) 189.97

Housing unit area (m2) (X3) CC 89.21 —‡ (87.47, 90.99) 3.53
GW 89.65 —‡ (87.91, 91.42) 3.51
MI 78.40 0.55 (77.44, 79.38) 1.94
PMM–MI 85.96 0.87 (83.92, 88.06) 4.14

†Full sample size, n = 48250; respondents, 11969 (unweighted response rate, 0.248). PMM–MI estimates are
based on B = 100 imputations of the missing data on reported monthly household income and housing unit area
according to the approach described in Section 2.3; FMI, FMI (Little and Rubin, 2002) for the mean.
‡Not applicable.
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assess the sensitivity of inferences to the assumed missing data model. Better adjustments would
include additional auxiliary variables measured with less error and (ideally) having stronger rela-
tionships with the key survey variables and response propensity. We consider such adjustments
next.

5.2. Analysis with multiple auxiliary variables
We now compare inferences based on the four approaches that account for the complex sample
design features and include multiple auxiliary variables in the adjustments. We consider the
informative (and error-free) base sampling weight as an additional auxiliary variable, alongside
the auxiliary proxy of household income. The variable containing the base sampling weights was
included in the logistic regression model that was used to compute predicted response propensi-
ties for the GW approach and also included in the imputation models for the MI and PMM–MI
approaches (with B = 100 imputations of the missing data under each approach). This means
that there are k = 2 additional auxiliary variables in the vector C from Section 4: a column of
1s for the intercept and the base sampling weight. The CC analysis results do not change in
this case, given that the CC method is not affected by the choice of auxiliary variables for the
non-response adjustment. Table 5 presents results from including the base sampling weights in
the various non-response adjustments.

The results in Table 5 suggest that the CC, GW and MI estimates are all biased low when
these improved adjustments are considered. Inferences based on the PMM–MI method would
be significantly different from inferences based on the other three approaches and suggest that
the mean income in the German population is much higher than would be suggested by the
approaches assuming ignorable missing data mechanisms. Notably, the GW and MI estimates
are very similar to the CC estimates, which suggests that adjustments based on the error-prone
auxiliary variable and the base sampling weights are not removing the bias that is arising from
what may be a non-ignorable missing data mechanism.

We once again see the same inefficiency in the PMM–MI estimates as was noted in the simula-
tions when the auxiliary proxy is measured with fairly substantial error. Under the assumption
of a non-ignorable model with respect to income, the FMI values are extremely large in this

Table 5. Estimates of mean reported household income and mean housing unit area, based on four different
non-response adjustment methods that included the base sampling weight as an additional auxiliary variable†

Variable Method Estimated FMI 95% Confidence
mean confidence interval

interval width

Reported monthly household CC 1814.88 —‡ (1772.99, 1857.77) 84.78
income (€) (X2/ GW 1860.02 —‡ (1815.87, 1905.24) 89.37

MI 1839.79 0.54 (1798.74, 1881.77) 83.03
PMM–MI 2232.60 0.97 (2000.59, 2491.41) 490.92

Housing unit area (m2) (X3/ CC 89.21 —‡ (87.47, 90.99) 3.53
GW 90.48 —‡ (88.68, 92.31) 3.63
MI 89.77 0.63 (88.47, 91.08) 2.61
PMM–MI 96.90 0.96 (92.70, 101.29) 8.60

†Full sample size, n = 48250; respondents, 11969 (unweighted response rate, 0.248); PMM–MI estimates are
based on B = 100 imputations of the missing data on reported monthly household income and housing unit area
according to the approach described in Section 4; FMI, FMI (Little and Rubin, 2002) for the mean.
‡Not applicable.
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application, suggesting that the total variance of the estimated means is being dominated by
between-imputation variance in the estimates. Notably, when adding the base sampling weight
as an additional auxiliary variable, the partial correlation of monthly household income (log-
transformed) and the auxiliary proxy of household income becomes 0.139, meaning that this
error-prone proxy is contributing even less information about household income. The larger
uncertainty in this relationship is resulting in larger between-imputation variance when apply-
ing the PMM–MI method, which leads to the increased width of the 95% confidence inter-
val. However, as was noted in the simulations, the relative reductions in bias from using the
PMM–MI approach may result in estimates with lower RMSE overall despite this increased
confidence interval width.

6. Discussion

We have proposed PMM estimators for survey non-response, where a fully observed continuous
auxiliary variable is measured with error on each of n sample units, true values of the auxil-
iary variable (along with other continuous survey variables of interest) are measured on survey
respondents and missingness depends on the true values of the auxiliary variable. Simulation
studies suggest that, under these conditions, the PMM estimators have reduced empirical bias,
reduced empirical RMSE and 95% credible sets with confidence coverage closer to nominal
levels, compared with standard imputation and weighting approaches that assume ignorable
(or missing at random) missing data models. We also found the PMM estimators to be robust to
the model generating the missing data, as these estimators performed equally well when missing
data were generated under a normal selection model.

We applied the proposed PMM estimators to descriptive analyses of real data from a large area
probability sample survey in Germany (the PASS survey). This application demonstrated the
ability of the proposed PMM–MI estimator to accommodate complex sample design features
when a non-ignorable missing data mechanism is suspected and auxiliary variables available for
the imputation models may be prone to error. The application also showed the importance of
comparing MI inferences based on ignorable and non-ignorable models when auxiliary vari-
ables are error prone, and examining the sensitivity of the inferences to assumptions about the
missing data mechanism. When incorporating an additional auxiliary variable that was free
from error and related to both the survey variables of interest and response propensity (the
base sampling weight) in the non-response adjustments, the PMM–MI estimator yielded infer-
ences that were substantially different from the methods assuming an ignorable missing data
mechanism.

In general, the forms of the PMM estimators proposed indicate situations where we can
expect the most bias reduction:

(a) missingness is substantially related to the underlying true value;
(b) the auxiliary proxy has substantial measurement error, making the MAR adjustment

inadequate;
(c) the missing data rate is high.

As shown in the simulation studies, if the measurement error in the auxiliary proxy is sufficiently
large that the correlation between the proxy and the true variable is low, then bias reduction
will come at the expense of increased variance.

There are many possible extensions of this work. This work considered only a single nor-
mally distributed auxiliary variable measured with error, and extensions to two or more such
error prone variables or non-normal variables would be useful. For instance, some face-to-face
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surveys request that interviewers record binary (yes–no) judgements about features of sampled
households, such as whether young children are present, and these types of judgements can
be prone to error (West, 2013). Extensions of the proposed methods to accommodate errors
in these types of error prone binary auxiliary variables are needed. Further extensions might
also include development of PMM estimators for additional binary variables measured in the
survey, given the importance of binary outcomes in survey research, and work is currently on
going in this area (Andridge and Little, 2009). We also assumed that there was no measurement
error in the survey variables measured for respondents, and the effect of error in these variables
on the methods discussed in this study also deserves future research attention.

Finally, applying the proposed PMM methods to real survey data requires that the meth-
ods be implemented in statistical software packages. R functions enabling application of the
PMM estimators proposed in this paper to real survey data are available from http://www.
blackwellpublishing.com/rss. Data producers could use the proposed methods (and
R functions) to impute missing values on key survey variables if non-ignorable missing data
mechanisms are suspected, and then release multiple-imputed data sets to the public. Second-
ary analysts could then apply standard CC methods when analysing each data set and make
inferences based on MI combining rules.
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