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Summary. The proportional odds logistic regression model is widely used for relating an ordinal
outcome to a set of covariates. When the number of outcome categories is relatively large, the
sample size is relatively small and/or certain outcome categories are rare, maximum likelihood
can yield biased estimates of the regression parameters. Firth and Kosmidis proposed a pro-
cedure to remove the leading term in the asymptotic bias of the maximum likelihood estimator.
Their approach is most easily implemented for univariate outcomes. We derive a bias correction
that exploits the proportionality between Poisson and multinomial likelihoods for multinomial
regression models. Specifically, we describe a bias correction for the proportional odds logistic
regression model, based on the likelihood from a collection of independent Poisson random
variables whose means are constrained to sum to 1, that is straightforward to implement. The
method proposed is motivated by a study of predictors of post-operative complications in patients
undergoing colon or rectal surgery.
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Penalized likelihood; Poisson likelihood

1. Introduction

Categorical responses which are ordinal in nature commonly arise in studies in the health,
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behavioural and social sciences. For example, in an epidemiological study of behavioural risk
factors for stroke, the severity of a patient’s stroke may be defined on an ordinal scale catego-
rized as minor, moderate or severe. The proportional odds logistic regression model is probably
the most widely used model for relating an ordinal outcome to a set of covariates. Typically,
maximum likelihood (ML) is the method of choice for estimating the regression parameters.
However, when the number of outcome categories is relatively large, the sample size is relatively
small and/or some of the outcome categories are rare, ML can yield biased estimates of the
regression parameters. Firth (1993) and Kosmidis and Firth (2009) proposed a procedure to
remove the leading term in the asymptotic bias of the ML estimator. This approach is most
easily implemented for univariate outcomes, e.g. Bernoulli and Poisson outcomes. The focus of
this paper is on bias-corrected estimates of the regression parameters of the proportional odds
logistic regression model.

For the multinomial logistic regression model for nominal (unordered) responses, Bull et al.
(2002) proposed a penalized likelihood approach to remove the first-order bias of the ML
estimate; their bias reducing score functions involve Kronecker product matrix operators and
matrices of third-order derivatives. Recently, Kosmidis and Firth (2011) exploited the con-
nection between multinomial logistic regression models and Poisson log-linear models for cell
counts (Birch, 1963) to produce an approach to bias correction based on univariate Poisson
likelihoods. This elegant approach requires the addition of nuisance parameters to the Poisson
log-linear model that correspond to the multinomial totals for each subject. We note that, even
though the implementation is different, the approaches of Bull ez al. (2002) and Kosmidis and
Firth (2011) are both based on a penalized multinomial likelihood and thus lead to the same
bias-corrected estimates.

The approach of Kosmidis and Firth (2011), however, is restricted to multinomial models
that can be expressed as log-linear models, i.e. multinomial logistic regression (McCullagh and
Nelder, 1989). Importantly, this excludes applications of the method to the proportional odds
logistic regression model, the non-proportional odds model or indeed any multinomial model
with a non-canonical link function (e.g. a probit or complementary log-log-link). Because the
multinomial proportional odds model is considered a multivariate generalized linear model, it
falls within the general class of multivariate models that were considered in Kosmidis and Firth
(2009). Kosmidis and Firth (2009) derived general expressions for the adjusted score equations
for these multivariate models, and these adjusted score equations can be used to formulate a
bias-corrected estimate for the proportional odds model. Instead of using these general adjusted
score equations for multinomial regression models, here, we propose to obtain the bias-corrected
estimates for the proportional odds model via iterative updates of pseudoresponses for univar-
iate Poisson likelihoods.

In particular, for any multinomial regression model in which the probabilities are
formulated to sum to 1 (such as the proportional odds model), we show that the multinomial
likelihood is proportional to the likelihood from a collection of independent Poisson random
variables. Thus, although the proportional odds logistic regression model cannot be expressed
as a log-linear model so the method of Kosmidis and Firth (2011) does not apply, we can use
a Poisson likelihood to solve the bias-corrected score equations in terms of simple iterative
updates of pseudoresponses for univariate Poisson likelihoods, as opposed to using the general
formulation in Kosmidis and Firth (2009) for multinomial likelihoods. For example, using our
approach with the proposed pseudoresponses, it is relatively straightforward to implement the
bias correction within existing statistical software (e.g. SAS procedure NLMIXED). Thus, the
potential advantage of our proposed method is in terms of ease of implementation.

We emphasize that, even though both our approach for the proportional odds model and
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Kosmidis and Firth’s (2011) approach for multinomial logistic regression models use a like-
lihood that is a product of univariate Poisson distributions, our approach is for multinomial
regression models in which the probabilities (Poisson means), by construction, are formulated
to sum to 1, whereas Kosmidis and Firth’s (2011) approach relies on Poisson log-linear models
in which the Poisson means are more generally formulated to be expected counts. We discuss
these differences in Appendix B of this paper.

The method proposed is motivated by a study of predictors of post-operative complications
(Gawande et al., 2007). In this study, 102 patients undergoing colon or rectal surgery at Brigham
and Women’s Hospital in Boston, Massachusetts, USA, were evaluated for predictors of the
ordinal outcome ‘major post-operative complications’ (1, none; 2, major complication; 3, death)
within 30 days post surgery, as part of the hospital’s ‘National surgical quality improvement
program’ cohort. In this programme, a systematic sample of patients undergoing general or vas-
cular surgery in participating institutions were evaluated by trained, audited surgical research
nurses for preoperative comorbidities and post-operative events within 30 days of surgery. The
main predictor of interest in this study is the so-called ‘surgical Apgar score’, which is a 10-point
measure that gauges intraoperative safety, according to blood loss, lowest heart rate and lowest
mean arterial pressure obtained during the operation. A score of 0 denotes a poor prognosis,
whereas a score of 10 is the best prognosis for recovery without complications. In previous
analyses, Gawande et al. (2007) categorized the surgical Apgar score into five categories: scores
ranging from 0-2, 3-4, 5-6, 7-8 and 9-10; further, in their analyses they treated these categories
as nominal, not ordinal. A second predictor of interest is the American Society of Anesthesi-
ologists score, which is a global assessment of the physical status of the patient before surgery
(Owens et al., 1978). This score yielded a binary indicator of preoperative disease status (1,
systemic or worse disease; 0, mild or no disease). The question of scientific interest in this study
was whether the preoperative disease status and intra-operative surgical Apgar score can predict
patients who will have post-operative complications; the ability to discriminate patients in this
way would allow surgeons to alter the amount and intensity of post-operative monitoring and
care appropriately. Table 1 presents descriptive statistics and the results of separate bivariate
analyses of the associations between the ordinal post-operative complications outcome and
these two predictors. Note, in this sample, that there are no patients with surgical Apgar scores
in the 0-2-range. The test for association between post-operative complications and the surgi-
cal Apgar score is based on a Kruskal-Wallis exact test (treating the categorical surgical Apgar

Table 1. Bivariate analyses for the post-operative surgical complications data (counts
and row percentages presented)

Variable Level Post-operative complications P-value
None Complication Death
Overall 83 (81%) 15 (15%) 4 (4%)

Surgical Apgar score —4 3 (37.5%) 3 (37.5%) 2 (25.0%)  0.003f
19 (76.0%) 5 (20.0%) 1 (4.0%)
51 (87.9%) 6 (10.3%) 1 (1.7%)
0 10 (90.9%) 1 (9.1%) 0 (0.0%)
Preoperative disease ~ No 52 (83.9%) 8 (12.9%) 2 (3.2%) 0.425%
Yes 31 (77.5%) 7 (17.5%) 2 (5.0%)

3
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TExact P-value for a Kruskal-Wallis test (treating surgical Apgar score as nominal).
iExact P-value for a Wilcoxon rank sum test.
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predictor as nominal). The test for association between post-operative complications and the
binary American Society of Anesthesiologists score is based on an exact Wilcoxon test. The
preliminary results in Table 1 indicate that the surgical Apgar score is significantly associated
with post-operative complications, but preoperative disease status is not.

In the medical literature, models for complications often differ by gender; for example, gender
differences have been found in cardiac surgery (Guru et al., 2006), thoracic surgery (Falcoz et al.,
2007) and vascular surgery (Nguyen et al., 2009). Thus, it is of secondary interest to examine
the associations separately for males and females. Because it is of interest to examine the joint
effects of disease status and surgical Apgar score on post-operative complications, we initially fit
a cumulative logistic model (setting ‘no complications’ as the reference category for the ordinal
outcome) with surgical Apgar and American Society of Anesthesiologists scores as nominal
and dichotomous covariates respectively. For the overall sample (102 patients), ML estimates
of the regression parameters produced by three widely used software packages (SAS Proc
LOGISTIC, the R function polr and the Stata command ologit) were identical. However,
in analyses that were restricted to the males sample, none of these three packages converged
to a unique solution to the ML equations. Further, with a total of only 19 complications or
deaths overall (10 in males and nine in females), the standard ML estimates could potentially be
badly biased. These observations led us to explore alternative approaches that yield less biased
estimates of the proportional odds logistic regression parameters in small samples.

In Section 2, we briefly describe the underlying multinomial distribution for the categorical
response, and we show that the corresponding likelihood can be expressed as the likelihood from
a collection of independent Poisson random variables whose means are constrained to sum to 1.
We describe a general bias correction for this Poisson formulation of the likelihood. In Section
3, we apply the bias correction to the proportional odds logistic regression model. In Section
4, we apply this approach in regression analyses of the data from the study of post-operative
complications (Gawande et al., 2007). In Section 5, we present results of a small-scale simulation
study of bias correction for the proportional odds model. In the example and simulations, we
also compare our approach with the ad hoc bias reduction approach that was proposed by Clogg
et al. (1991); the latter approach adds a small constant to each subject’s multinomial outcome
in the sample.

2. Multinomial and Poisson likelihoods for categorical data

Suppose that we have n independent subjects, where the ith individual’s (i=1, 2, ..., n) response
Y; is multinomial and, without loss of generality, can equal any value in (j=1,...,J). We let
the indicator random variable Y;; equal 1 if the ith individual has response value j and equal
0 otherwise, with Ejj-:lYi ;=1. Each individual is assumed to have a Q x 1 vector of covari-
ates x; = (x;,...,xip) . Note that we do not define x; here to include intercepts for separate
multinomial levels; it contains only the subject covariates such as age and gender. Then, we
denote the probability of response j given x; as

pij=pij(B)=pr¥;= jIx;, 3) =pr(Y;; = l|x;, 5)

where (5 is a R x 1 vector of parameters, and Ejj.zl pij=1. In general, the vector 3 can contain
different intercepts, and possibly different regression coefficients, for each multinomial level j
(hence R, the dimension of 3, is greater than Q, the dimension of the covariate vector x;). The
model for p;; for the proportional odds model (the focus of this paper) is given in the following
section.
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The probability mass function for subject 7 is multinomial
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Next, we show that the multinomial likelihood can be transformed into a Poisson likelithood as
longas Elj.zl pij=1.1fthe Y;; were independent Poisson random variables with mean E(Y;;) = p;;
then the corresponding Poisson likelihood would be proportional to

J .
exp(—pi+) H]p?;’, o))
j:

where p;y = ij.zl pij. In this Poisson likelihood formulation, p;; is required to be positive.
If, however, the p;;s are formulated so that they sum to 1 over the js for every subject, then
the Poisson and multinomial likelihoods are proportional. In Appendix A we show that the
score equations for 4 and the expected information are identical under the multinomial and
Poisson likelihood formulations (subject to the constraint that Z/J.ZI pij=1). Consequently,
likelihood inferences will be identical on the basis of either likelihood. In particular, provided
that the term exp(—p;4) is not a function of any unknown regression parameters (a condition
that is satisfied if p;; =1 for all i) then the Poisson and multinomial likelihoods are propor-
tional. In general, linear and log-linear models for p;; are not formulated so that p;y =1,
and thus the Poisson and multinomial likelihoods will not be proportional for these types of
models.

Because EJJ.ZI pij=1 is satisfied for the proportional odds regression model (which is dis-
cussed in more detail in Section 3), removal of the first-order bias of the ML estimator for
this model can be based on either the multinomial or Poisson likelihoods. The bias corrections
yield identical results because the likelihoods are proportional, and the correction is based on
the asymptotic variance of the parameter estimates which is shown in Appendix A to be the
same under the two models. However, by substituting a Poisson likelihood (with constrained
means) for the multinomial likelihood, it is more straightforward to base the bias correction on
a likelihood that is formulated in terms of the product of univariate Poisson random variables
than on a likelihood for a multinomial random variable. Next, we describe the score equations
for the Poisson likelihood and discuss how the bias correction can be made in terms of iterative
updates of ‘pseudoresponses’, which is an approach that was first described by Firth (1993). In
Appendix A, we show that, from first principles without directly using the proportionality prop-
erty, the score equations for the multinomial likelihood are identical to those for the Poisson
likelihood.

The Poisson likelihood score equations for 3 are given by

R n J
w(® =33 Dijpj; vij— pij) =0, 2)
i=1 j=1

where D;; =0dp;;(5)/9(. Using the first-order bias correction for a univariate outcome given in
Firth (1993) and Box (1971), the score equations (2) can be modified by replacing y;; with the
‘pseudoresponse’

Vi =yij+aij, (3)
where

aij= O.Str{var(ﬁ)ij}. 4)
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In equation (4), var(f3) is the asymptotic variance—covariance matrix of 3 (estimated via the
inverse of the observed or expected information matrix) and D2 =8%p; /06903 is an R x R
matrix of second derivatives of p;; with respect to the R x 1 vector of parameters 5. To obtain
the first-order bias-corrected estimate of 3, one can iterate between updating yl given a current
estimate of 3, and then re-estimating 3 given the updated y* i by solving equatlons (2), until
the estimates of 3 converge. Typically, the quantities ¢;; in equation (3) are small and positive,
and their inclusion tends to reduce the effect of sampling Os (so-called ‘empty cells’ or ‘O-cells’)
and to increase the likelihood of convergence; however, in general, there is no guarantee of
convergence. Finally, it is worth re-emphasizing that this bias correction based on a Poisson
likelihood formulation does require a model for p;; that constrains 211':1 pij=1. Next, we con-
sider a specific application of this bias correction to the proportional odds logistic regression
model. The focus of this paper is on the proportional odds logistic regression model for ordinal
responses; however, in Appendix B, we briefly discuss the implementation of our Poisson like-
lihood approach applied to a multinomial logistic regression model for nominal (unordered)
responses, and we contrast our approach with the Poisson log-linear approach of Kosmidis and
Firth (2011).

3. Proportional odds logistic regression model

The proportional odds logistic regression model can be written as

exp(foj + B1Xi)

9 5
[+ exp(Boy £ 5, x0) ©)

mij=pr(¥; <jlx;, 8) =

for j=1,...,J —1 where 7;; is a ‘cumulative probability’, x; is a Q x 1 vector of covariates
as discussed above, §y; is an intercept for cut point j and 3 is a Q x 1 vector of parame-
ters. The regression parameters can be grouped together to form the (Q +J —1) x 1 vector
B=(Bo1,---,00,7-1,3]) . The probability of response level J, p;;, is

1
1+exp(Bos—1 + B1xi)

piy=1—mj_1=

Then,
pij=pr(¥Y;=jlx;, )
=pr(¥; < jIx;, B) —pr(Y;i < j—1|x;, ) (6)
=Tij— T, j—1,
for j=1,...,J where we define m;; =1 and m;0 =0 since p;;=1—m; y_1 and p;; =m;; —0. The

contribution to the likelihood for subject i can be rewritten as

J

H pii =11 (mij—mij—1)".

Jj=1

The Poisson formulation of the multinomial likelihood is now used to obtain a simple bias
correction term. As was discussed in Section 2, if we specify the ¥;;s as Poisson, the Poisson and
multinomial likelihoods are proportional provided that p;; =1 for all subjects. Thus, we must
show that p;; =1. Using the model for p;; in equation (6),
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J J
> pij= > (mij =i j-1)
j=1 j=1

J J—1
=)0 mij— > i
Jj=1 Jj=0
=TiJ] —T0
=1,

for all i. This establishes that the Poisson and multinomial likelihoods are proportional for the
proportional odds logistic regression model.

To formulate the pseudoresponses in equation (3) that are required for the bias correction,
we need to calculate Dl-zj. For simplicity, we rewrite equation (5) as

exp(3'zij)
1 +exp(8'zij)
where z;; isa (Q +J —1) x 1 design vector that includes the Q x 1 vector of covariates x; and

also indicators for the intercepts at each response level, and 5= (Go1, . . ., fo,s—1, 5}) is described
above. Then, for the cumulative logistic model,

0% (ij — i j-1)
96930
and, for the pseudoresponse,
a;j=0.5 tr{Var(B)Dizj}
=0.5tr{var(3){zijz};mi;(1 — mi))(1 = 2m;)) — zi j12) ;i jm1 (1= j1) (1= 2m; 1) }]
=0.5[var{logit(7; ;) }m; j(1 —m;;)(1 = 2m; ) —var{logit(7; j—1) }m; j—1(1 —7; j—1) (1 —=2m; j_1)].

2
Dj;= =2;j2;;mij (1= i) (1= 2mij) — 2 12 oy mijm1 (V= mi o) (1= 2 1),

Thus, for the Poisson formulation of the cumulative logistic regression model, the pseudo-
response equals

y;kj =y;j+0.5[var{logit(7;;) }m;j(1 —m; ;) (1 = 2m;})
—var{logit(7; j—1)}m; j—1(1 = m; j—1)(1 = 2m; j_1)],
for j=2,...,J—1. Note, when j=1, p; =1, so
yii =vi1 +0.5var{logit(#;1) }mi1 (1 — m1) (1 — 27;1)
and, when j=J, pjj=1—m; j_1,s0
yiy=yis —0.5var{logit(#; j_1) }mi j—1 (1 — 7 y—1) (1 = 2m; y_1).

In principle, this bias-corrected approach based on a Poisson likelihood can be fitted within
the generalized linear models framework. In practice, though, the mean for ¥;; under a pro-
portional odds logistic model, p;; = E[Y;lzi}, zi, j—1]=m;j — 7 j—1, is not a standard option for
Poisson regression in widely used software for generalized linear models. Thus, we implemented
the bias correction by using an optimization procedure for non-linear regression models, SAS
Proc NLMIXED (SAS Institute, 2010). We note that the pseudoresponse is straightforward to
calculate since the predicted cumulative probabilities 77; ; and the variance of the predicted cumu-
lative log-odds, var{logit(#; j_1)}, are typically standard output of any non-linear regression
program, including SAS Proc NLMIXED. Thus, although the algorithm is not very compli-
cated, it did require us to write a special purpose program to maximize the cumulative logistic
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model via a Poisson likelihood. Specifically, an SAS macro, which embeds SAS Proc NLMIXED
(SAS Institute, 2010), was written to implement the bias-corrected proportional odds regres-
sion estimator; SAS Proc NLMIXED calculates variances based on the inverse of the observed
information. The SAS macro can be obtained from

http://www.blackwellpublishing.com/rss

4. Application to study of surgical complications

In this section, we apply the proposed methodology to the analysis of the surgical complications
data that were described in Section 1. The study includes 102 patients undergoing colorectal
surgery at Brigham and Women’s Hospital. The outcome is the ordinal variable ‘major post-
operative complications’ (1, none; 2, major complication; 3, death) within 30 days post surgery.
There are two main predictors of interest: the four-level categorical surgical Apgar score and the
dichotomous preoperative disease status (1, systemic or worse disease; 0, mild or no disease)
of the patient. 4 priori, our surgical colleagues conjectured that patients with worse (lower)
surgical Apgar scores and systemic or worse preoperative disease would be more likely to have
post-operative complications.

To examine the joint relationship between post-operative complications and these two co-
variates, we fit the proportional odds logistic regression model

logit(m; ;) =logit{pr(Y; > jIx;, ) } = Bo; + /1 Apgar(3:4); 4 (> Apgar(5:6);
+ 3 Apgar(7:8); + 34 Disease;, (7

for j=2,3, where Apgar(k:l); =1 denotes that the surgical Apgar score equals k or [ (surgical
Apgar score 9-10is the reference category), and Disease; = 1 if the patient has systemic or worse
preoperative disease, and 0 otherwise. Note, in a slight departure from notation used in earlier
sections where we defined 7;; in terms of cumulating over lower values of the ordinal outcome,
for ease of interpretation, here we accumulate over &igher values of the ordinal post-operative
complications outcome. In particular, we model two ‘cumulative’ probabilities: the probability
of complications or death pr(Y; >2) and the probability of death pr(Y; =3).

Table 2 gives the estimates of 3 obtained by using the bias-corrected method for the data
based on the total sample (n =102), as well as the standard ML estimates of 3 (the latter were
obtained by using SAS Proc LOGISTIC). For comparison, we also give the results by using the
ad hoc bias correction approach proposed by Clogg et al. (1991). The approach of Clogg et al.
(1991) requires creation of J — 1 additional responses for each subject associated with the same
covariates; these J — 1 additional observations take the J — 1 values that the original ¥; did not;
k=1,...,J, k+Y;. The original Y; is assigned weight 1 4+ 1/(nJ) and the J — 1 new observations
are assigned weight 1/(nJ) in subsequent analysis that treats all observations as independent.
This procedure effectively adds nJ x 1/(nJ) =1 observations to the original data set.

Of note, in Table 2, there were no convergence problems with ML for the analysis of data
using the entire sample. However, there were some differences in the odds ratio estimates for the
effects of surgical Apgar score obtained from the two approaches. For example, the estimated
odds ratio for surgical Apgar score 3—4 versus surgical Apgar score 9-10 is exp(2.869) =17.6
by using standard ML and exp(2.440) = 11.5 by using the bias-corrected estimator: a rela-
tive difference of 54%. The estimate from the approach of Clogg et al. (1991) fell in between,
exp(2.785) =16.2, although closer to standard ML. When these estimates are compared with
their standard errors, all three methods lead to the same conclusion that the largest effect on
post-operative complications is for surgical Apgar score 3-4 versus surgical Apgar score 9—10
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Table 2. Comparison of proportional odds logistic regression parameter estimates for the
post-operative surgical complications data, full sample (n=102)

Effect Approach Estimate  Standared — Z-statistic P-value
error
Intercept (j >2) Standard MLY 2.436 1.072 2.27 0.023
ML: bias corrected 2.055 0.922 2.23 0.027
Clogg et al. (1991) 2.363 1.038 2.28 0.023
Intercept (j=3) Standard MLT 4.385 1.186 3.70 <0.001
ML.: bias corrected 3.819 1.026 3.72 <0.001
Clogg et al. (1991) 4.254 1.145 3.71 <0.001
Apgar 3-4 Standard MLt 2.869 1.262 2.27 0.023
ML.: bias corrected 2.440 1.147 2.13 0.034
Clogg et al. (1991) 2.785 1.230 2.26 0.024
Apgar 5-6 Standard ML+ 1.156 1.155 1.00 0.317
ML.: bias corrected 0.845 1.015 0.83 0.406
Clogg et al. (1991) 1.110 1.122 0.99 0.323
Apgar 7-8 Standard MLt 0.261 1.134 0.23 0.818
ML: bias corrected  —0.029 0.992 —0.03 0.977
Clogg et al. (1991) 0.246 1.099 0.22 0.823
Preoperative disease ~ Standard ML+ 0.390 0.550 0.71 0.478
ML: bias corrected 0.376 0.534 0.70 0.482
Clogg et al. (1991) 0.376 0.541 0.69 0.487

1The standard ML approach is not bias corrected, with the convergence criterion: the relative change
in the log-likelihood between successive iterations is less than 0.000001.

(P<0.05); however, the relative magnitudes of the effect estimates are discernibly different for
the three methods. From the results of the three methods, the preoperative disease status does
not appear to affect complications significantly in this sample.

As discussed in Section 1, predictive models for complications are often different for males
(n=153) and females (n = 58) (Guru et al., 2006; Falcoz et al., 2007; Nguyen et al., 2009). There-
fore, in secondary analyses, we examined the estimated effects for equation (7) separately for
males and females. Table 3 presents descriptive statistics stratified by gender; the estimates of
the regression parameters are given in Table 4. Although it is not immediately transparent from
Table 3, when restricted to the sample of males, there is quasi-complete separation of data
points. The definition of separation for ordinal data relies on the same definition as for binary
data. For binary data, separation occurs when there is no overlap in the covariate values with
Y =0 and with ¥ =1. Agresti (2010) defined separation for cumulative logit models (such as
the proportional odds model) in terms of whether separation occurs for each of the possible
collapsings of contiguous categories of the ordinal response to a binary response.

We note that the convergence criterion that is used for ML is that the relative change in the
log-likelihood between successive iterations is less than 0.000001. The ML estimates for males
that are reported in Table 4 are based on 10 iterations using the above convergence criterion
(we note that three widely used software packages, SAS Proc LOGISTIC, Stata command
ologit and the R function polr, all produced the same estimates with this convergence crite-
rion). Although the likelihood converged to a finite value, many of the ML estimates in Table 4
for the sample of males appear to be diverging to co. When there is quasi-complete (or complete)
separation, the ML parameter estimates for the variable (or variables) with separation do not
exist. In contrast, the bias-corrected estimator yields finite estimates that have been shown, in
simulations (including in the following section), to have good sampling properties; however,
we caution that somewhat greater care is required in interpreting the bias-corrected estimates
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Table 3. Bivariate analyses for the post-operative surgical complications data, stratified
by gender (counts and row percentages presented)

Variable Level Post-operative complications P-value

None Complication Death

Gender: male

Overall 43 (81.1%) 7 (13.2%) 3(5.7%)
Surgical Apgar score 34 1(25.0%) 1(25.0%) 2(50.0%)  0.015%
5-6 10 (83.3%) 1(8.3%) 1(8.3%)
7-8 29 (85.3%) 5(14.7%) 0(0.0%)
9-10 3 (100.0%) 0(0.0%) 0(0.0%)
Preoperative disease No 30 (85.7%) 3(8.6%) 2 (5.7%) 0.354%
Yes 13 (72.2%) 4(22.2%) 1(5.6%)
Gender: female
Overall 49 (81.6%) 8 (16.3%) 1 (2.0%)
Surgical Apgar score 34 2 (50.0%) 2 (50.0%) 0(0.0%) 0.1467
5-6 9 (69.2%) 4(30.8%) 0(0.0%)
7-8 22 (91.7%) 1(4.2%) 1(4.2%)
9-10 7 (87.5%) 1(12.5%) 0(0.0%)
Preoperative disease No 22 (81.5%) 5(18.5%) 0(0.0%) 0.999%
Yes 18 (81.8%) 3(13.6%) 1 (4.6%)

tExact P-value for a Kruskal-Wallis test (treating the surgical Apgar score as nominal).
iExact P-value for a Wilcoxon rank sum test.

when there is quasi-complete separation. Also, the results of the approach of Clogg et al. (1991)
for males give estimates that are much larger than the estimates from our bias-corrected pro-
cedure. On the basis of the bias-corrected analyses of the data (as opposed to standard ML or
the method of Clogg et al. (1991)), the study investigators had greater confidence reporting the
results for the total sample since the associations did not appear to differ by gender.

In summary, the results of analyses of the surgical complications data highlight how standard
proportional odds logistic regression and the bias-corrected method can produce discernibly
different estimates of effects. However, to examine the finite sample bias of these approaches,
we conducted a simulation study; the results of the simulation study are reported in the next
section.

5. Simulations for proportional odds model

In this section, we study the finite sample bias in estimating [ for the proportional odds logistic
regression model using ML, the bias-corrected method proposed in this paper, as well as the
alternative approach for bias correction for multinomial regression models that was proposed
by Clogg et al. (1991). We note that we present the results of our bias-corrected approach based
on the observed information. We also ran simulations using the expected information and there
was very little difference between using either the observed or expected information with respect
to the bias correction.
We consider a proportional odds logistic regression model with three covariates:

logit(mi;) = Bo; + Bixi1 + Baxia + B3xi3

j=1,...,J—1, where J=5. We performed three sets of simulations. In all simulations, the
intercepts were set to 8y; =logit(j/J) (for j<5).



Bias Correction for the Proportional Odds Logistic Regression Model 243

Table 4. Comparison of proportional odds logistic regression parameter estimates for the post-operative
surgical complications data, stratified by gender

Effect Approach Estimate Standard error Z-statistic P-value

Gender: male (n=53)

Intercept (j >2) Standard MLT 11.778 208.500 0.06 0.955
ML: bias corrected 1.920 1.741 1.10 0.272
Clogg et al. (1991) 5.474 8.922 0.61 0.540
Intercept (j=3) Standard MLT 13.562 208.500 0.07 0.948
ML: bias corrected 3.376 1.817 1.86 0.065
Clogg et al. (1991) 7.223 8.946 0.81 0.419
Apgar 3-4 Standard MLT 12.988 208.500 0.06 0.950
ML: bias corrected 2.858 2.087 1.37 0.173
Clogg et al. (1991) 6.663 8.990 0.74 0.459
Apgar 5-6 Standard MLT 10.170 208.500 0.05 0.961
ML.: bias corrected 0.509 1.890 0.27 0.788
Clogg et al. (1991) 3.889 8.954 0.43 0.664
Apgar 7-8 Standard MLT 9.690 208.500 0.05 0.963
ML.: bias corrected —0.018 1.852 —0.01 0.992
Clogg et al. (1991) 3.420 8.946 0.38 0.702
Preoperative disease Standard ML+ 0.596 0.822 0.72 0.469
ML.: bias corrected 0.545 0.796 0.68 0.495
Clogg et al. (1991) 0.582 0.813 0.72 0.474
Gender: female (n=58)
Intercept (j >2) Standard ML} 1.938 1.112 1.74 0.081
ML: bias corrected 1.576 0.972 1.62 0.107
Clogg et al. (1991) 1.905 1.094 1.74 0.082
Intercept (j=3) Standard ML 4.448 1.486 2.99 0.003
ML: bias corrected 3.584 1.195 3.00 0.003
Clogg et al. (1991) 4.331 1.437 3.01 0.003
Apgar 34 Standard MLT 1.833 1.460 1.26 0.209
ML: bias corrected 1.491 1.330 1.12 0.264
Clogg et al. (1991) 1.797 1.444 1.24 0.213
Apgar 5-6 Standard ML} 1.105 1.234 0.90 0.371
ML.: bias corrected 0.808 1.103 0.73 0.465
Clogg et al. (1991) 1.080 1.217 0.89 0.375
Apgar 7-8 Standard ML} —0.397 1.298 —0.31 0.760
ML.: bias corrected —-0.514 1.149 —0.45 0.655
Clogg et al. (1991) -0.379 1.274 —0.30 0.766
Preoperative disease Standard ML} —0.057 0.788 —0.07 0.943
ML: bias corrected —0.023 0.737 —0.03 0.975
Clogg et al. (1991) —0.054 0.778 —0.07 0.945

+The standard ML approach is not bias corrected, with the convergence criterion: the relative change in the
log-likelihood between successive iterations is less than 0.000001.

For the first set of simulations, we let (8, 82, 83) = (—1, —1, —0.06) and specified covari-
ate distributions which gave approximately equal probabilities across all response categories.
In particular, in the first set of simulations, the covariates were simulated independently with
x;1 ~ Bern(0.05), x;» ~ N(0,1) and x;3 ~ N(0, 8). For this first set of simulations, the average
marginal probabilities are

n~'' 3" (pit. pi. pis. pias pis) = (0.25,0.17,0.16,0.17,0.25).
i=1

In the second set of simulations, we again let (8, 52, 03) = (—1, —1, —0.06) but specified
covariate distributions which produced small probabilities in all response categories except
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J =35. In particular, the covariates were again simulated independently with x;; ~ Bern(0.05),
x;p ~ N(0, 1), but with x;3 distributed as log-normal with a median of 54 and scale parameter
0.35 (the latter distribution is similar to that for age of adults). For this second set of simulations,
the average marginal response probabilities are

n
™' Y- (i, pios pis, pias pis) = (0.01,0.02,0.03,0.07,0.87).
i=1

In the third set of simulations, to explore possible problems caused by a large regression param-
eter, we let (81, 82, 83) = (4,1,0.06). The covariate distributions were the same as in the first set
of simulations: x;; ~ Bern(0.05) and x;» ~ N(0, 1) and x;3 ~ N(0, 8). However, with (31, 82, 53) =
(4, 1,0.06), this configuration produced small probabilities in all response categories except J = 1.
In particular, for this third set of simulations, the average marginal probabilities are
n
n~ "S> (pit, pi2s pis. Pias pis) = (0.91,0.05,0.02,0.01,0.01).
i=1

Owing to the small probabilities that are associated with the majority of response categories,
we expect the second and third sets of simulations to produce larger biases for standard ML.

We conducted simulations for two different sample sizes: n =40 and n = 80. For each simu-
lation configuration, 2500 simulation replications were performed. The convergence criterion
for ML is that the relative change in the log-likelihood between successive iterations is less than
0.000001; we report the percentage of simulation replications in which this convergence crite-
rion was not met. When ML fails to converge, we use the estimates from the 25th iteration (the
default maximum number of iterations in SAS Proc LOGISTIC).

Tables 5-7 present the relative biases defined as 100(3 — )/, the root-mean-square error
(RMSE) and the coverage probabilities of 95% Wald confidence intervals for the three sets of
simulations. We present results for all simulation replications, and also for the subset of simu-

Table 5. Simulation results with intercepts 3y; = logit(j/J), J =5, (81, 8o, B3) = (-1, -1,
—0.06) and average (pj1, P2, Pj3, Pia, Pjs) =(0.25, 0.17, 0.16, 0.17, 0.25)

Parameter Sample Method Y% relative  RMSE Coverage
size bias probability (% )
B =-1 40 ML 10.6 0.727 94.0
ML: bias corrected 1.5 0.636 96.0
Clogg et al. (1991) 6.6 0.667 94.9
80 ML 7.0 0.446 95.1
ML: bias corrected —1.4 0.434 95.4
Clogg et al. (1991) 4.1 0.449 94.1
Br=-1 40 ML 11.2 0.393 94.6
ML: bias corrected 0.4 0.392 96.3
Clogg et al. (1991) 7.0 0.392 96.0
80 ML 5.6 0.256 94.7
ML.: bias corrected 0.2 0.246 95.4
Clogg et al. (1991) 4.9 0.298 94.5
B3 =-0.06 40 ML 13.2 0.045 94.2
ML.: bias corrected 1.6 0.043 96.1
Clogg et al. (1991) 7.5 0.049 94.3
80 ML 6.9 0.027 94.0
ML.: bias corrected -0.8 0.024 95.8
Clogg et al. (1991) 34 0.028 95.1

TAIl simulation replications converged for the ML method.
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lation replications when ML converges. The latter results can be considered ‘conditional on the
likelihood convergence criterion’.

For the first set of simulations (Table 5), with approximately equal probabilities in all five
categories, the standard ML estimate has relative bias greater than 10% for all parameters when
n =40, and between 5% and 10% for n =80. In contrast, the bias-corrected approach has negli-
gible bias for both samples sizes. The approach of Clogg et al. (1991) has between 5% and 10%
relative bias for n =40, and less than 5% for n = 80; in general, the approach of Clogg et al.
(1991) has greater relative bias than the bias-corrected approach, but less than standard ML.
Overall, the RMSE is slightly smaller for the bias-corrected approach versus both the approach

Table 6. Simulation results with intercepts 3y; = logit(j/J), J =5, (81, 82, 83) = (=1, =1, —0.06)
and average (pj1, Pjo, Pi3, Pja, Pjs)=(0.01, 0.02, 0.03, 0.07, 0.87)

Parameter Samples Method % relatives RMSFE Coverage
size bias probability (%)

All simulation replicationst

Bi=-1 40 ML 254.4 3.330 97.7
ML: bias corrected —-4.9 1.001 97.1
Clogg et al. (1991) 12.7 0.933 97.9
80 ML 29.4 0.767 94.8
ML: bias corrected —1.8 0.728 96.1
Clogg et al. (1991) 4.8 0.704 96.9
Br=—1 40 ML 62.1 2.882 95.1
ML: bias corrected —44 0.623 97.1
Clogg et al. (1991) 5.8 0.639 96.3
80 ML 18.7 0.453 93.5
ML.: bias corrected 2.3 0.406 95.7
Clogg et al. (1991) 4.2 0.395 95.3
B3 =-0.06 40 ML 123.8 0.192 95.3
ML: bias corrected -2.6 0.070 97.0
Clogg et al. (1991) 14.4 0.068 97.5
80 ML 29.1 0.071 94.7
ML: bias corrected 1.6 0.047 96.3
Clogg et al. (1991) 2.7 0.056 95.7
Results when ML convergedt
B=-1 40 ML 24.4 1.399 96.4
ML: bias corrected —15.0 0.878 97.3
Clogg et al. (1991) 8.1 0.846 97.2
80 ML 16.6 0.749 96.5
ML: bias corrected -24 0.636 96.7
Clogg et al. (1991) 3.8 0.694 95.6
Br=-1 40 ML 25.1 0.678 95.3
ML.: bias corrected -0.2 0.647 95.7
Clogg et al. (1991) 2.7 0.483 96.2
80 ML 11.8 0.447 95.6
ML.: bias corrected 1.5 0.388 95.6
Clogg et al. (1991) 4.0 0.346 95.9
B3 =-0.06 40 ML 45.1 0.123 96.0
ML.: bias corrected -2.5 0.093 97.5
Clogg et al. (1991) —-1.3 0.077 97.0
80 ML 16.9 0.061 94.6
ML.: bias corrected -0.6 0.052 96.0
Clogg et al. (1991) 2.6 0.054 96.2

TWhen the ML method did not converge, the ML estimates are from the last (25th) iteration.
1The ML method converged for 90% of the simulation replications when n =40 and 99% when n = 8§0.
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of Clogg et al. (1991) and standard ML. With simulation standard errors for coverage proba-
bilities of approximately 0.44%, the coverage probabilities for both sample sizes and across all

approaches attain the nominal 95% level.

For the second set of simulations (Table 6), with small probabilities in the first four response
categories, ML converged for 90% of the simulation replications when n =40, and 99% when
n =80. From the results including all simulation replications, it is apparent that the relative bias
of the ML estimate can be very large in small samples (n =40), with relative bias as large as
250%. Applying the bias correction to ML proposed in this paper reduces the bias to minimal
levels (less than 5%). With n =80, the ML approach can still yield appreciable bias, whereas

Table 7. Simulation results with intercepts Sy, = logit(j/J), J =5, (B4, Bo, B3) = (4, 1, 0.06) and
average (p;1, Pj2, Pi3, Pjs, Pjs) =(0.91, 0.05, 0.02, 0.01, 0.01)

Parameter Sample Method % relatives RMSE Coverage
size bias probability (%)
All simulation replicationst
B =4 40 ML 115.1 7.338 97.8
ML: bias corrected —4.7 1.011 96.1
Clogg et al. (1991) 1.9 1.117 94.0
80 ML 97.5 6.632 94.6
ML: bias corrected -3.1 0.889 94.4
Clogg et al. (1991) 5.1 1.048 96.0
Br=1 40 ML 339 1.005 95.6
ML: bias corrected 0.7 0.424 96.3
Clogg et al. (1991) 9.7 0.533 94.4
80 ML 12.1 0.400 94.6
ML: bias corrected -0.2 0.326 95.9
Clogg et al. (1991) 1.3 0.340 96.0
(3=0.06 40 ML 37.6 0.098 94.5
ML: bias corrected 2.4 0.067 96.5
Clogg et al. (1991) -1.5 0.058 95.2
80 ML 8.3 0.080 94.6
ML: bias corrected 1.1 0.043 95.9
Clogg et al. (1991) 2.2 0.046 94.8
Results when ML converged]
B =4 40 ML 24 1.204 96.2
ML.: bias corrected -20.3 1.123 97.3
Clogg et al. (1991) -21.9 1.202 86.2
80 ML -5.5 0.705 95.6
ML: bias corrected —14.6 0.822 92.0
Clogg et al. (1991) -8.8 0.695 94.3
Br=1 40 ML 26.1 0.763 95.4
ML: bias corrected 2.9 0.403 97.2
Clogg et al. (1991) 12.4 0.556 96.3
80 ML 11.5 0.391 93.9
ML: bias corrected -0.3 0.318 95.4
Clogg et al. (1991) 4.7 0.333 96.1
(3=0.06 40 ML 34.6 0.089 94.8
ML: bias corrected 0.4 0.077 97.3
Clogg et al. (1991) —19.6 0.051 96.3
80 ML 8.9 0.078 94.1
ML: bias corrected 2.9 0.042 96.2
Clogg et al. (1991) -1.0 0.045 93.2

TWhen the ML method did not converge, the ML estimates are from the last (25th) iteration.
1The ML method converged for 57% of the simulation replications when n =40 and 63% when n = 80.
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applying the first-order correction to ML results in negligible bias. The approach of Clogg et al.
(1991) gives much smaller bias than standard ML (between 10% and 15% for n =40, and less
than 5% when n =80). The RMSE is similar for the bias-corrected approach and the approach
of Clogg et al. (1991) but can be much larger for standard ML. Although some of the coverage
probabilities are as high as 97%, in general, the coverage probabilities appear to agree with
the nominal 95% level. When restricted to the simulation replications where ML converged, as
might be expected, there is far less bias for standard ML when compared with the results from
all simulation replications.

The third set of simulations (Table 7), with small probabilities in the last four response cate-
gories (and a large 3 =4), give similar results to those of the second set. ML converged much
less often than for the second set, with 57% of the simulation replications converging when
n =40, and 63% when n = 80. From the results including all simulation replications, the relative
bias of the ML estimate can be very large in small samples (n =40), with relative bias as large
as 115%. Applying the bias correction to ML that is proposed in this paper reduces the bias to
minimal levels (again less than 5%). With n =80, the ML approach can still yield appreciable
bias, whereas applying the first-order correction to ML results in negligible bias. The approach
of Clogg et al. (1991) gives much smaller bias than standard ML (between 5% and 10% for
n =40, and less than 5% when n = 80). In general, the RMSE is slightly smaller for the bias-
corrected approach versus the approach of Clogg et al. (1991) and again can be much larger for
standard ML. When restricted to the simulation replications where ML converged, again there
is far less bias for standard ML when compared with the results from all simulation replications;
similarly to before, the bias-corrected approach and the approch of Clogg et al. (1991) tend to
have greater bias when compared with the results from all simulation replications.

Although Wald confidence intervals are known to be conservative (Hauck and Donner, 1977;
Heinze and Schemper, 2002; Bull et al., 2007) with large 5s, we found in the last set of simu-
lations with 3; =4 that the coverage probabilities agree with the nominal 95% level. However,
we cannot generalize on the basis of this one simulation set-up, so one would still want alter-
natives to obtain confidence intervals. On the basis of the results of theorem 1 of Kosmidis and
Firth (2009), we cannot use a penalized likelihood approach with the proportional odds model
to obtain confidence intervals; thus we suggest using the bootstrap as an alternative to obtain
confidence intervals with large estimated regression coefficients.

6. Conclusion

In this paper we have described a simple implementation of Firth’s (1993) bias correction in the
proportional odds logistic regression model. By exploiting the connection between the multi-
nomial and Poisson likelihoods (subject to a model that constrains the means to sum to 1 within
subjects), we derived a bias correction based on univariate Poisson distributions. This bias
correction adds a function of both the ‘predicted probabilities’ and the ‘variance of the linear
predictor’ to the indicator for each outcome category; this in turn is used to form a pseudores-
ponse that replaces the original indicator. This pseudoresponse is relatively simple to calculate
and leads to an iterative algorithm that is straightforward to implement. Because the propor-
tional odds model is probably the most widely used regression model for ordinal categorical data,
the approach to bias correction that is described here should be useful to applied statisticians.

Although not specifically discussed in this paper, the method proposed can also be used
for any multinomial model that constrains the multinomial probabilities to sum to 1, includ-
ing the non-proportional odds model (Williams and Grizzle, 1972) and multinomial models
with non-canonical link functions (e.g. probit or complementary log—log-link). We note that
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Kosmidis and Firth’s (2011) bias correction approach was specifically developed for the multi-
nomial logistic regression model for nominal (unordered) data. In particular, Kosmidis and Firth
(2011) applied Birch’s (1963) connection between Poisson log-linear models for cell counts and
multinomial logistic regression models; this requires the addition of a nuisance parameter to the
Poisson log-linear model for each subject. This nuisance parameter corresponds to the multi-
nomial total for each subject; because it is an ‘unknown’ parameter, it must also be estimated
from the data at hand. Although the focus of this paper has been on the proportional odds
logistic regression model, we note that, if our approach is applied to the multinomial logistic
regression model for nominal (unordered) responses as outlined in Appendix B, no additional
nuisance parameters need to be included in the model in the Poisson likelihood; the p;;s in
equation (1) are simply the multinomial model probabilities. However, the resulting expression
for the pseudoresponse for the multinomial logistic model is not as simple as in the case of the
proportional odds model.

Finally, the results of the simulations demonstrate that the method proposed can greatly
reduce the finite sample bias of ML for estimating the regression parameters of the proportional
odds logistic regression model. Interestingly, even in simulations where none of the response
categories were rare, the standard ML approach was found to have substantial bias in small
samples. However, because of the broad range of possible data configurations, it is difficult
to draw definitive conclusions from the results of the simulation studies. Nonetheless, in the
simulations that are reported here, the bias-corrected method performs discernibly better than
the standard likelihood approach, suggesting that the bias-corrected method could be adopted
as a first-line choice in regression analyses of ordinal outcomes.
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Appendix A: Multinomial likelihood equations

Here we show that the score equations for § from the multinomial likelihood are identical to the score
equations given by equations (2) in Section 2. We also show that the expected information is identical
under the multinomial and Poisson likelihood formulations (the observed information will be the same
since the score equations are the same).

We denote the J x 1 vector of multinomial indicator random variables for subjectias Y; = (Y;y, ..., Yiy)'.
Although the ¥;;s sum to 1 for each i, we adopt the convention of McCullagh and Nelder (1989) and include
all J indicators in the outcome vector. Further, E(Y;|x;) =p;=(pi1, ..., pis)’, and the variance—covariance
matrix of Y; equals

Vi =var(Y;) =diag(p;) — pip;>

where diag(p;) is a diagonal matrix with the elements of p; on the diagonal. Because E‘f:l V=1, var(Y;)
has rank J — 1. McCullagh and Nelder (1989), page 167, defined the generalized inverse of V; as

Vi = diag(p) ',

i.e. a diagonal matrix with 1/p;; on the diagonal. This generalized inverse has rank J and satisfies the
property that

V.V Vi=Vi.

Then, under any model with the constraint Ejj.zl pij=1, the multinomial ML equations for 3 are
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M(ﬁ) ED V (Y P)—ZEDUP,, (yu pij):()s (8)
i=1 j=1

where D;; =9p;;(5)/93, and the jth column of D; equals D;; (see, for example, McCullagh and Nelder
(1989), pages 171-172). Note that these are identical to the Poisson score equations given by equations (2)
in Section 2.

The observed information matrix can be written as

>_(DiV; D;— A
i=1
where the kth column of A; has typical element
D)
Ai = — Y,’ —Pi)- 9
k ( 35, ) (Yi—p) ®

Under both the multinomial and Poisson formulation outlined in Section 2, the first moment of Y; equals
pi,i.e. E(Y; —p;) =0. Therefore,

a(D;Vi)
0Bk
and E(A;) =0. Thus, the expected (Fisher) information matrix equals
3DV, D}~ E(A)} =3 (DV; D)

E(Ai) = ( ) E(Y; —pi) =0,

under both the multinomial and the Poisson formulation outlined in Section 2. This establishes that bias
correction, which is a function of tr{var(ﬁ)Dz} where var(8) can be based on either the observed or
the expected information, is the same whether based on the multinomial likelihood or by substituting a
Poisson likelihood subject to the model constraining ZFI pij=1.

Appendix B: Multinomial logistic regression

Here we briefly discuss implementation of our first-order bias correction approach for a multinomial
logistic regression model for nominal (unordered) responses. We also show that our approach is not
appropriate when the multinomial logistic regression model is expressed in terms of a Poisson log-linear
model with subject-specific effects.

In a slight departure from the notation in previous sections, the multinomial logistic regression model
can be written as

eXp(X”ﬁj
Z} exp(x;; ;)
=

pij=pr(Y;=jIx;, §) = i=1... 0 10)

where x;; is the covariate vector corresponding to multinomial level j (ordinarily, X;; contains the covari-
ates x; plus an indicator for the intercept for level j) and /3; are the regression parameters corresponding
to level j (often (3, is set to O for identifiability). Since this multinomial logistic model has the constraint

J J J
S pi= 3 exp(x;4) | 3 exp(xi, ) =1
j=1 j=1 =1

satisfied by definition, we can use the Poisson likelihood approach that is discussed in this paper with
pij specified as in equation (10). The pseudoresponses have the same form as in equation (3), with a;; =
0.5 tr{var(ﬂ) D% .} Although it has a closed form and can be calculated in a matrix software package (e.g.
R or SAS Proc IML), the resulting expression for the pseudoresponse for the multinomial logistic model
is not as simple as in the case of the proportional odds model that is the focus of this paper.

Next, suppose that the multinomial logistic regression model is written as a Poisson log-linear model.
In particular, the Poisson log-linear model for p;; is

log(pi;) = Boi + X;,ﬂp
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where (3, is an effect for the ith subject. Using properties of sufficient statistics for a log-linear model with a
Poisson-distributed outcome, these subject-specific By;s constrain X =1 Pij= E 1 Y:;. In this paper (before
applying the bias correct10n approach), we assume the general situation where all subjects have unique
covariates so that X/_, ¥;; = 1. Then, for the Poisson log-linear model, since X/_, ¥;; =1, it follows that
E _,pij=1.Inthis case, 1t is easily shown that the estimate of 3; will be the same from dlrectly maximizing
the multinomial likelihood or by fitting the Poisson log-linear model.

However, our implementation of the bias correction cannot be applied to the Poisson log-linear model.
The reason is as follows. If we directly attempted to apply our bias correction approach to a Poisson
log-linear model, in the iterative bias correction algorithm, we have the pseudoresponse

*
Y =Yi+a;

where a;; >0, so

J

Z pij= Z Yi>1

= =
Thus, our implementation of the bias correction, which requires % =1 Pij =1, cannot be applied to a
Poisson log-linear model version of the multinomial logistic regression model. For the Poisson log-linear
formulation of the multinomial logistic regression model, Kosmidis and Firth (2011) have given an elegant
approach to implementing the first-order bias correction.

References

Agresti, A. A. (2010) Analysis of Ordinal Categorical Data, 2nd edn. Hoboken: Wiley.

Birch, M. W. (1963) Maximum likelihood in three-way contingency tables. J. R. Statist. Soc. B, 25, 220-233.

Box, M. J. (1971) Bias in nonlinear estimation (with discussion). J. R. Statist. Soc. B, 33, 171-201.

Bull, S. B., Lewinger, J. B. and Lee, S. S. F. (2007) Confidence intervals for multinomial logistic regression in
sparse data. Statist. Med., 26, 903-918.

Bull, S. B., Mak, C. and Greenwood, C. (2002) A modified score function estimator for multinomial logistic
regression in small samples. Computnl Statist. Data Anal., 39, 57-74.

Clogg, C. C., Rubin, D. B., Schenker, N., Schultz, B. and Weidman, L. (1991) Multiple imputation of industry
and occupation codes in census public-use samples using Bayesian logistic regression. J. Am. Statist. Ass., 86,
68-78.

Falcoz, P. E., Conti, M., Brouchet, L., Chocron, S., Puyraveau, M., Mercier, M., Etievent, J. P. and Dahan, M.
(2007) The Thoracic Surgery Scoring System (Thoracoscore): risk model for in-hospital death in 15,183 patients
requiring thoracic surgery. J. Thorac. Cardvasc. Surg., 133, 325-332.

Firth, D. (1993) Bias reduction of maximum likelihood estimates. Biometrika, 80, 27-38.

Gawande, A. A., Kwaan, M. R., Regenbogen, S. E., Lipsitz, S. R. and Zinner, M. J. (2007) An Apgar score for
surgery. J. Am. Coll. Surg., 204, 201-208.

Guru, V., Fremes, S. E., Austin, P. C., Blackstone, E. H. and Tu, J. V. (2006) Gender differences in outcomes after
hospital discharge from coronary artery bypass grafting. Circulation, 113, 507-516.

Hauck, W. W. and Donner, A. (1977) Wald’s test as applied to hypotheses in logit analysis. J. Am. Statist. Ass.,
72, 851-853.

Heinze, G. and Schemper, M. (2002) A solution to the problem of separation in logistic regression. Statist. Med.,
21, 2409-2419.

Kosmidis, I. and Firth, D. (2009) Bias reduction in exponential family nonlinear models. Biometrika, 96, 793-804.

Kosmidis, 1. and Firth, D. (2011) Multinomial logit bias reduction via the Poisson log-linear model. Biometrika,
98, 755-759.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.

Nguyen, L. L., Hevelone, N., Rogers, S. O., Bandyk, D. F., Clowes, A. W., Moneta, G. L., Lipsitz, S. and Conte, M.
S. (2009) Disparity in outcomes of surgical revascularization for limb salvage: race and gender are synergistic
determinants of vein graft failure and limb loss. Circulation, 119, 123-130.

Owens, W. D., Felts, J. A. and Spitznagel, Jr, E. L. (1978) ASA physical status classifications: a study of consistency
of ratings. Anesthesiology, 49, 239-243.

SAS Institute (2010) SAS Online Doc, version 9.2. SAS Institute, Cary. (Available fromhttp: / /www. sas . com.)

Williams, O. D. and Grizzle, J. E. (1972) Analysis of contingency tables having ordered response categories.
J. Am. Statist. Ass., 67, 55-63.



