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     SECTION I 



1. BACKGROUND AND SIGNIFICANCE 
 

The most common injuries to the permanent dentition are due to falls, traffic accidents, acts 

of violence and sports (Andreasen et al., 2000). Avulsion frequently occurs with injuries to 

the oral facial region and is the most serious of all dental injuries (Flores et al., 2007b). 

Treatment of these injuries is of the utmost importance and guidelines for the management 

of traumatic dental injuries have recently been published (Flores et al., 2007a, 2007b). Even 

with these guidelines and appropriate treatment of avulsed permanent teeth, the outcomes of 

replantation are not predictable (Strobl et al., 2003). It is often only considered a temporary 

solution (Ebeleseder et al., 1998). We have known for over 40 years that the avulsed 

immature tooth has potential to revascularize (Ohman, 1965). A treatment that encourages 

revascularization would be beneficial because in an immature tooth root development and 

reinforcement of root dentin walls by deposition of hard tissue will continue (Andreasen et 

al., 1995b). This decreases the chance of tooth fracture and avoids endodontic treatment 

which will ultimately weaken the tooth.   

Pulpal revascularization of the replanted tooth involves anastomosis of severed pulpal and 

boney socket blood vessels. Angiogenesis, the process of formation of new blood vessels 

from pre-existing capillaries governs the revascularization of these teeth. It has been known 

for more than a century that tumor growth is accompanied by increased vascularity (Ferrara, 

2004). Over sixty years ago it was proposed that a diffusible angiogenic growth “factor X” 

was responsible for neovascularization in the retina that occurs in diabetic retinopathy 

(Michaelson, 1948). Thirty years ago Folkman first proposed that angiogenesis was 

important for tumor growth and development (Folkman, 1971; Folkman and Shing, 1992; 
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Sivakumar et al., 2004). They discovered that the “switch” from avascular to the vascular 

phenotype was the key event in the progression of metastatic tumors (Hanahan and 

Folkman, 1996).  

It is now known that VEGF is a key player in angiogenesis and approximately three years 

ago, clinical trials were conducted which involved direct intramyocardial plasmid VEGF165 

gene therapy in patients with stable severe angina pectoris (Kastrup et al., 2005). VEGF165 

gene transfer did not significantly improve myocardial perfusion but it improved regional 

ventricular wall motion (Kastrup et al., 2005). The results were promising and VEGF165 

gene therapy is thought to have an important future role to play in the treatment of 

myocardial disease.   

Recently a tooth-slice based in vivo model system for the study of revascularization of 

severed human dental pulp was developed. It was shown that rhVEGF165 induced 

angiogenesis in dental pulps of human tooth slices in vitro (Gonçalves et al., 2007). With 

this model it is now possible to study revascularization events in severed human dental pulp. 

We also have the opportunity to study the effects of rhVEGF165 on severed human dental 

pulps in vivo. Our present study may have implications on the treatment of avulsed immature 

teeth prior to replantation.  

 2



2. PURPOSE AND HYPOTHESIS 

Purpose 

To evaluate the effect of rhVEGF165 and rhFGF-2 on the microvessel density of severed 

human dental pulps in vitro and to evaluate the angiogenic effect of the application of 

rhVEGF165 on severed human dental pulps in vivo. 

 

Hypothesis 

A pro-angiogenic factor (rhVEGF165) induces revascularization and angiogenesis of severed 

human dental pulps implanted in the subcutaneous tissue of immunodeficient mice.  

 

Specific aims 

Specific Aim 1: To assess the effect of the pro-angiogenic factors rhVEGF165 and rhFGF-2 

on the microvessel density of severed human dental pulp tissues in vitro. 

Specific Aim 2: To evaluate the effect of the protocol that provided the most potent 

angiogenic response (from Specific Aim 1) on severed human dental pulp tissue in vivo. 

 

Null Hypothesis 

A pro-angiogenic factor (rhVEGF165) does not induce revascularization and angiogenesis of 

severed human dental pulps implanted in the subcutaneous tissue of immunodeficient mice.  
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3. LITERATURE REVIEW 

A. Replantation and Revascularization of Avulsed Immature Permanent Teeth 

Dental injuries to permanent maxillary incisors are frequently found after orofacial trauma 

and treatment outcome is determined by the severity of damage to the periodontal ligament 

and neurovascular supply (Andreasen et al., 1995a, 1995b, 1995c, 1995d). Tooth avulsion is 

a complex type of trauma and involves damage to several vital structures (Andreasen et al., 

2006). Replantation is the treatment of choice, but complications occur; ankylosis, pulpal 

necrosis, pulpal obliteration, external root resorption and loss of boney support (Andreasen 

et al., 1995a, 1995b). Outcomes of replantation may vary and may not be predictable from 

the appearance or extent of injury sustained clinically (Strobl et al., 2003). Due to 

unpredictable treatment outcomes, replantation is often considered a temporary solution 

(Ebeleseder et al., 1998). For the clinician it is difficult to determine whether replantation 

will have a satisfactory long-term result, because many factors remain unknown at the time 

of replantation. Therefore replantation is recommended in nearly all cases. 

Factors that determine pulpal healing of avulsed teeth are the stage of root development at 

the time of injury and the time period between trauma and replantation (Andreasen et al., 

1995b). The most successful outcome of replantation is pulpal healing, but if this is to occur, 

revascularization of the severed pulpal vasculature must occur (Strobl et al., 2003). This is 

difficult especially in cases of delayed replantation (Ebeleseder et al., 1998).  

In 1966, Andreasen showed that of 13 teeth, seven showed pulpal revascularization when 

their extra oral period was less than two hours. Revascularization was also observed in 13 of 

72 replanted teeth with incomplete root formation (Kling et al., 1986). There was also a 30-
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40% chance of revascularization seen in replanted immature teeth (Ebeleseder et al., 1998). 

If all teeth were replanted immediately, a periodontal ligament healing rate of 85-97% 

(according to root development) could be expected. In cases of incomplete root formation, 

pulpal revascularization could be expected in 41-93% (Cvek et al., 1990) of cases and is rare 

in mature replanted teeth of children and adolescents with closed apices. More frequent 

pulpal healing was seen with increased apical diameter which is associated with the 

importance of a large interface between the pulp and periodontium in order to facilitate the 

revascularization process. This, in conjunction with immediate transplantation, showed 

significantly more frequent pulpal healing than delayed replantation cases (Andreasen et al., 

1995b). Pulpal revascularization was more frequent in teeth with shorter distances from 

apical foramen to the pulp horns. The relationship between pulp survival and pulp length 

was found to be highly significant. Thus all teeth with shorter pulp (less than 17mm) showed 

more frequent pulpal revascularization (Andreasen et al., 1995b). Also wet storage media 

(saliva or saline) for more than 5 minutes decreased the chance of revascularization, but dry 

extra-alveolar storage decreased the chance of revascularization with increasing length of 

extra-alveolar dry storage. Dehydration of pulpal cells could be expected to occur to a more 

limited extent due to protection against drying by the root canal walls except at the apical 

foramen. The damaging effect of dry storage upon healing found by Andreasen might 

therefore be limited to the most peripheral part of the pulp in the apical foramen. This effect 

in theory could be related to problems in the initial phases of the revascularization process. 

Attempts have been made to increase the chances of revascularization in order to gain more 

favorable treatment outcomes. Soaking avulsed dog teeth extra orally for 5 minutes in 0.05 

mg/ml of doxycycline before replantation increased the frequency of revascularization from 
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33.4% to 60%. (Yanpiset and Trope, 2000). Topical treatment of avulsed immature dog teeth 

(extracted and replanted within 10 minutes) with minocycline microspheres (ArestinTM, 

OraPharma Inc.) for 5 minutes was seen to improve the chances of revascularization after 

replantation when compared to doxycycline and saline. 91% of the teeth treated with 

minocycline showed vital tissue in the canal space. Normal pulp tissue with normal 

odontoblast layers were noted post histological sectioning. Internal reactive dentin with 

connective tissue, osteoid with loose connective tissue was also observed (Ritter et al., 

2004). It appears from these studies that tetracycline activity had a positive effect on 

revascularization. Tetracycline’s activity is related to its broad spectrum of activity against 

gram positive and gram negative bacteria. They also affect MMPs, which are a family of 

collagenases. The activity of MMPs appears crucial in the destruction of the major structural 

tissue protein, collagen. Tetracyclines inhibit collagenase activity and osteoclast function 

(Golub et al., 1991). They bind to tooth tissue and can be slowly released in active forms 

(Baker et al., 1983). Tetracyclines also promote the binding of fibroblasts to connective 

tissue thus enhancing PDL regeneration. But perhaps a more plausible explanation for 

tetracyclines effects on avulsed dog teeth is that, the necrotic pulp stayed free of bacteria and 

it could thus act as a scaffold for the tissue revascularization of the pulp space (Ritter et al., 

2005). These studies confirmed the clinical benefit of doxycycline and minocycline to 

enhance the revascularization of replanted teeth, but one has to remember that these studies 

were not conducted on human teeth.  

Prior to tetracyclines being used to treat avulsed teeth, attempts were made to increase the 

surface area of pulp tissue exposed to the bone-PDL interface. It was thought that this may 

increase the chances of revascularization. Apicoectomies were performed prior to 
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replantation. Teeth were extracted and replanted within 10 minutes and 2 mm of the apices 

of monkey teeth were resected for the purpose of examining pulpal vascularization 

(Andreasen et al., 1985). These teeth were examined histologically eight weeks after 

replantation and analysis showed that there was less vital pulp tissue found in teeth with 

immature root formation. Apical resection resulted in infection of pulp tissue, the apical 

tissues were damaged to such an extent that revascularization was slowed or made 

impossible and also resulted in a gap between the bone blood supply and the pulp. Similar 

results were seen for mature teeth. It was concluded that resection of the apices prior to 

replantation should be contraindicated (Andreasen et al., 1985). Unpredictable results were 

also observed using human teeth (Bolton, 1974; Janson et al., 1978). 

Similar studies were conducted using dog teeth. Pulpal revascularization occurred in eight of 

nine apicoectomized teeth (extracted and replanted within 10 minutes) during a four month 

observation period (Skoglund, 1981a). Revascularization did not occur in the teeth which 

were replanted and autotransplanted with intact roots or mature roots. The revascularization 

capacity of the pulp in transplanted and autotransplanted teeth could be increased if an 

apicoectomy is carried out at the time of replantation (Skoglund, 1981a). Histological 

assessment was carried out on these eight revascularized teeth. It was observed that the pulp 

of mature non apicoectomized replanted teeth had necrosed. In the mature teeth that were 

apicoectomized the pulp had first necrosed and then underwent repair via cells from the 

apical bed. This resulted in the formation of connective tissue (scaring) in the pulp space and 

was later replaced by bone or cementum like hard tissue. This tissue would make endodontic 

treatment difficult at a later date. Survival of the original pulp tissue was not achieved 

(Skoglund, 1981b).  
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Further attempts to increase the chances of revascularization were made by adding 

nutritional canals to resected root tips of mature dog teeth. It was hoped that these canals, 

three in total with a diameter of 1 mm, would aid in revascularization. The preparation of 

these canals did not lead to more extensive revascularization of the pulp. Some of the vessels 

that were growing in from the apical area anastomized to vessels growing in from the 

nutritional canals, but no advantage was gained from the preparation of the canals 

(Skoglund, 1983).  

The results from studies involving dog teeth must be interpreted with caution. Dogs have a 

peculiar root anatomy, with an apical delta which differs from humans which have an apical 

constriction. Thus resecting the apex removes the delta and makes a more favourable 

environment for pulpal healing (Andreasen et al., 1985). 

Revascularization of avulsed immature teeth is possible, but it only occurs in a small 

percentage of cases. The achievement of revascularization is beneficial as the extent of root 

development is related to pulpal revascularization (Andreasen et al., 1995c) and 

neurovascular survival. The necrotic pulp is avoided, root development is continued 

resulting in increased tooth strength against root fracture due to continued odontogenesis 

(Banchs and Trope, 2004). An infection free pulp-space is maintained, inflammatory 

resorption is avoided (Strobl et al., 2003) and the expense and danger of a procedural 

iatrogenic error associated with endodontic treatment is circumvented (Mesaros and Trope, 

1997).   
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B. Pro-angiogenic Factors 

Angiogenesis is the process that results in the formation of new blood vessels that deliver 

oxygen and nutrients to cells and tissue (Sivakumar et al., 2004). Blood vessels may 

originate from two processes: vasculogenesis and angiogenesis. In vasculogenesis, 

endothelial cell differentiation occurs from mesodermal precursor cells (angioblasts), 

whereas, in angiogenesis, new vessels are formed from pre-existing ECs. Angiogenesis is an 

important part of many natural processes, embryonic development, ovulation wound repair 

and pathological processes, arthritis, diabetic retinopathy, and tumors growth. In many 

diseases, the body looses control of angiogenesis, resulting in an excessive blood vessel 

development, as observed in cancer (Folkman and Shing, 1992). Vasculogenesis occurs 

during embryonic development and leads to the formation of the primary vascular plexus. 

This is further developed, forming a more complex system and ramifies into larger and 

smaller vessels. New capillary vessels are then formed through angiogenesis by the division 

of the original vessels (Auerbach and Auerbach, 2001).  

Angiogenesis is the result of a net balance between the activities of positive and negative 

regulators, survival and death signals (Nör and Polverini, 1999); proangiogenic and 

antiangiogenic factors. It is also a complex process and is controlled by a variety of growth 

factors, cytokines, proteases and protease inhibitors released from activated monocytes as 

well as ECs, smooth muscle cells, and platelets. It involves EC migration and proliferation, 

ECM breakdown, which is needed to provide space for enlarging vessels, pericytes, 

chemotaxis of macrophages, smooth muscle cell proliferation, development of new vascular 

structures and new extra cellular matrix deposition (Folkman, 1995).  
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Angiogenesis occurs when there is an increase in tissue size or an increased need for oxygen 

in hypoxia (Sivakumar et al., 2004). Apoptosis or programmed cell death is crucial to the 

angiogenic process. It is now established that key regulators of angiogenesis function, at 

least in part, by modulating the survival of ECs during the process of vessel repair and 

angiogenesis. Apoptosis is a mechanism that regulates the reshaping of tissues and organs 

(Fig. 1). It insures the survival of cells with the best adaptation to the environment, and 

eliminates infected, damaged cells that may have the potential to become neoplastic and thus 

when newly formed vessels are no longer needed they undergo regression. Targeted 

apoptosis of ECs seems to have an important physiological role allowing for the 

communication between the newly formed vessels and their parent capillaries (Nör and 

Polverini, 1999) (Fig. 1).  
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        Figure 1.  Apoptosis and Angiogenesis. (Nör and Polverini, 1999). 
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Growth Factors 
 
Growth factors are peptide molecules that transmit signals between cells functioning as 

stimulators and or inhibitors of growth as well as modulators of cell differentiation. They 

play a central role in controlling cell behavior and activity. They show a degree of 

specificity in terms of the cells they act upon, but some growth factors exert their effects on 

a number of cell types (Smith, 2003). 

Growth factors may act in endocrine, autocrine, paracrine modes and they act through their 

interaction with specific receptors on the cell surface (Smith, 2003). Binding to these 

receptors leads to a chain of intracellular signals, the result of which is transduction of the 

signal to the cell nucleus. It is through their effects on gene expression in the cell nucleus, 

mediated by transcription and other factors, that the growth factors influence cell behavior 

and activity. This transcriptional control of gene expression can have far-reaching effects 

both in terms of intra- and extra-cellular events and so growth factors can regulate genes 

controlling cell proliferation, cell differentiation, or the secretory products of the cell (Smith, 

2003). 

There are vast numbers of growth factors and the following are pro-angiogenic factors. The 

VEGF family includes VEGF-A (commonly called VEGF), VEGF–B, VEGF–C, VEGF–D, 

VEGF–E and PDGF (platelet derived growth factor). Other growth factors are EGF 

(epidermal growth factor), Angiopoietin-1 and Angiopoietin-2 (Ferrara, 2004), Hepatocyte 

Growth Factor, TGF (Transforming growth factor α and β) (Abo-Auda and Benza, 2003) 

(Table 1), FGF-2 and IL-8; these do not belong to the VEGF family. 
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 Table 1. Superfamilies and families of commonly recognized growth factors 
 

Superfamily Family Abbreviated name 
Transforming Growth factor β Transforming Growth factor β 

Bone Morphogenic Proteins 
Inhibins 

TGF-β 
BMP 
Inhibin/Activin 

Platelet-derived growth factor Platelet-derived growth factors 
Vascular endothelial growth factors 
Connective Tissue Growth factors 

PDGF 
VEGF 
CTGF 

Epidermal growth factor Epidermal growth factors 
Transforming growth factor α 

EGF 
TGF-α 

Other large peptide growth factor 
families 

Fibroblast growth factors 
Insulin-like growth factors 
Nerve growth factor 
Tumor necrosis factors* 

FGF 
IGF 
NGF 
TNF 

*TNF-α and TNF-β are usually classified as pro-inflammatory cytokines, but sometimes 
considered within growth factor Classifications. 

    (Adapted from Smith, 2003)  

 

 
 Table 2. Specificity of the VEGF Receptors to the Ligand and the biological effects. 

 
VEGF Family Members Receptor Function 
VEGF-A 
VEGF-B 
VEGF-C 
VEGF-D 
VEGF-E 
PlGF 

VEGFR-1, VEGFR-2 
VEGFR-1  
VEGFR-2, VEGFR-3 
VEGFR-2, VEGFR-3 
VEGFR-2 
VEGFR-1 

Angiogenesis, vascular maintenance 
Not established 
Lymphangiogenesis 
Lymphangiogenesis 
Angiogenesis 
Angiogenesis and inflammation 

 (Adapted from Grando-Mattuella et al., 2007b) 
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Vascular Endothelial Growth Factor 
VEGF, a 45-kd heparin-binding glycoprotein, induces the differentiation, proliferation, and 

migration of endothelial cells, as well as vascular permeability and cell survival. It is 

considered essential for the differentiation of the vascular system (Ferrara, 1996).  

VEGF-A and VEGF-B are primarily related to angiogenesis (Table 2). VEGF is transcribed 

from a single gene locus by alternate splicing and it is made of polypeptide subunits 

containing 121, 145, 165, 189 and 206 amino acids. VEGF165 is the most common isoform 

(Tischer et al., 1991). VEGF expression is mediated by hypoxia and VEGF driven 

angiogenesis is a central response to low oxygen tension and it involves transcription factors 

HIF-1 and HIF- 2 (hypoxia induced proteins).  

VEGF receptors are primarily expressed on the vascular endothelial cell surface (Fig. 2). 

They include the tyrosine-kinase (RTK) type and are present in three forms: the fms-like 

tyrosine-kinase–1 (Flt-1) or VEGFR-1; the fetal liver kinase–1 (Flk-1), kinase domain 

region (KDR) or VEGFR-2; and the fms-like tyrosine-kinase– 4 (Flt-4) or VEGFR-3 

(Pimenta et al., 2003). VEGFR-1 is found on smooth muscle cells (Ishida et al., 2001), 

Monocytes (Barleon et al., 1996), stem cells (Hattori et al., 2002) and bone marrow derived 

blood cells (Lyden et al., 2001). VEGFR-2 is found on EPCs. There is strong evidence that 

the three receptors for VEGF possess different signal transduction properties and mediate 

different functions because of their distinct affinity to VEGF (Keyt et al., 1996).  Neuropilin 

is a type 1 membrane receptor, acts as a coreceptor that binds both VEGF-A165 and VEGF-

BB167.  Neuropilin 1 may also potentiate the effects of VEGF-B in cells where VEGFR-1 is 

expressed (Makinen et al., 1999). 
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VEGF is a survival factor for endothelial cells and prevents apoptosis (Alon et al., 1995) by 

inducing antiapoptotic proteins Bcl-2 (Gerber et al., 1998; Nör and Polverini, 1999), by 

activation of the PI3k/Alt pathway. This mediates a potent pro-survival effect on ECs 

(Gerber et al., 1998). VEGF is required for maintaining ECs survival and to sustain tumor 

angiogenesis. When a positive survival signal is eliminated, ECs become responsive to 

inhibitors of angiogenesis leading to EC apoptosis and tumor regression. The events that 

govern the survival and death of ECs influence the stability and duration of an angiogenic 

response (Nör and Polverini, 1999).  
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Figure 2. Binding of the VEGF Family Members to three High-Affinity Receptors on 

Endothelium and Downstream Signaling Cascades. 

(Yla-Herttuala et al., 2007). 
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Asahara et al. (1999) suggested that adult bone marrow is a reservoir of tissue specific stem 

and progenitor cells which contain EPCs that may be mobilized into the bloodstream and 

take part in neoangiogenesis. Depending on different diseases or events, molecules such as 

VEGF and PlGF have important roles in mobilization and differentiation of EPCs at 

neovascularization sites. The exact mechanisms by which EPCs are recruited remain 

unknown. 

VEGF has the ability to promote growth of ECs derived from veins, arteries and lymphatics. 

VEGF also acts to increase vascular permeability and other hemodynamic effects. VEGF 

induces EC fenestration in vascular beds and induces vasodilation in a dose dependent 

fashion (Ferrara, 2004). VEGF released by monocytes and ECs act on the capillaries and in 

doing so VEGFR-1 and VEGFR-2 are upregulated on these cells. Their activation results in 

the generation of proteases such as plasmin and collagenase, which then dissolve the 

basement membrane (Dvorak et al., 1995). There is also upregulation of integrins at the tips 

of sprouting capillaries which enhances endothelial cell migration and receptor activation. 

This results in EC migration via VEGFR-1 (Dvorak et al., 1995) and EC proliferation via 

VEGFR-2 signaling (Plouet et al., 1997).  

VEGF has a role in pathological conditions. VEGFR-1 is expressed by cancer cells which 

include glioma, leukemia, prostate, pancreatic and breast cancer cells. VEGFR-2 is primarily 

expressed on ECs. The inhibitory effects of anti-VEGF receptor blocking agents are used to 

inhibit angiogenesis, but this research is at an early stage and more clinical research is 

needed to ascertain the potential for these agents. Chemotactic signals from tumor cells 

recruit stromal cells and other angiogenic factors. Willet et al 2004 showed that VEGF 
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blockade using anti-VEGF monoclonal antibody bevacizumab (Genentech) decreases tumor 

perfusion, vascular volume, microvascular density, interstitial fluid volume, and the number 

of viable circulating ECs and EPCs in colorectal cancer patients. Bevacizumab (Avastin) 

was FDA approved in 2004 and it is now used to treat several cancer types including 

metastatic colorectal cancer and lung cancer.  

Clinical trials have been conducted with direct percutaneous intramyocardial plasmid 

phVEGF-A165 injection in patients with severe coronary artery disease (Kastrup et al., 2005). 

It was hoped that this form of gene therapy would have effects on the myocardial 

vasculature but the results were inconclusive. The VEGF gene transfer did not significantly 

improve stress-induced myocardial perfusion abnormalities compared with placebo plasmid. 

However, improved regional ventricular wall motion, as assessed by ventriculography, may 

indicate a favorable anti-ischemic effect (Kastrup et al., 2005).  Direct injection of rhVEGF 

into intramycardial tissues would be ineffective as rhVEGF has a very short half life, of 

between three and six minutes in vivo (Li et al., 1995; George et al., 2000; Pantely and 

Porter, 2000). This timeframe plus cardiac perfusion would impact on the angiogenic effects 

of direct rhVEGF injection. A recent review discussing VEGFs applications in clinical 

medicine showed that promising pre-clinic results obtained in animal experiments with 

VEGF therapy have not yet been translated into clinical success. VEGFs have tremendous 

potential as vascular therapeutics and ongoing developments in gene delivery techniques are 

expected to lead to the generation of novel treatment for ischemic cardiovascular disease 

(Yla-Herttuala et al., 2007).  

Of all the factors studied VEGF appears to be one of the most potent inducers of 
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angiogenesis. Much research has been carried out on VEGF over the last two decades to the 

point that we now can see a future where VEGF in many of its forms may be used to treat 

human injuries.   

 

Placental Growth Factor 

PlGF, a member of the VEGF superfamily is highly expressed in placenta at all stages of 

human gestation and loss of PlGF impairs angiogenesis (Maglione et al., 1991). PlGF binds 

with VEGFR-1 but not VEGFR-2. Alternative splicing of human PlGF gene generates 4 

isoforms, PlGF-1, PlGF-2, PlGF -3, PlGF-4 (Takahashi and Shibuya, 2005).  

 

Basic Fibroblast Growth Factor 

Fibroblast growth factor-2 (previously known as bFGF), is a prototypic and extensively 

studied member of a large family (FGF-1 to 23) of heparin binding, mitogenic growth 

factors. FGFs show developmental, tissue, cell-specific regulation and they are potent 

mitogens for cells of mesodermal and neuroectodermal origin and are powerful angiogenic 

agents (Ornitz, 2000). FGF-2 also has roles in tissue regeneration, wound healing, and tumor 

progression (Gospodarowicz, 1990). FGF-2 is predominantly found in the normal 

myocardium and its expression is increased by hypoxia or hemodynamic stress and chronic 

ischemia (Schaffer and Nanny, 1996).  

FGF-2 actions are mediated by its two isoforms, with differing molecular weights. To date, 

the vast majority of cardiac medicine clinical trials have involved the lo-FGF-2 (low 

molecular weight) isoform. FGFs bind to plasma membrane tyrosine kinase receptors, called 
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FGFRs (Kardami, 2007). It is believed that lo-FGF-2 is localized in the extracellular space, 

the cytosol of cells and it translocates to the nucleus during the G1-S transition of the cell 

cycle (Bossard et al., 2003). During cell injury and repair FGF-2 is involved in repair, tissue 

regeneration (Detillieux et al., 2004). As this process requires angiogenesis, FGF-2 has a 

vital regenerative function in these events. FGF-2 functions by receptor binding (Ornitz, 

2000). Vessels generated by VEGF tend to be “capillary like and leaky” but those produced 

by FGF-2 appear to be more mature (Abo-Auda and Benza, 2003). FGF-2 affects smooth 

muscle cells, fibroblasts, and ECs (Slavin, 1995). The ECs are stimulated to produce 

plasminogen activators and matrix metalloproteinases causing extracellular breakdown and 

vascular remodeling. In animal studies, increased EC proliferation, increased collateral 

vessel density, higher perfusion pressure and improved regional blood flow have been noted, 

showing the ability of FGF-2 to induce angiogenesis (Baffour et al., 1992).  
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C. Angiogenic Growth factors and the Dental Pulp 

Growth factors which affect the pulp have two sources. Pulp cells express VEGF in healthy 

and pathological situations such as irreversible pulpitis (Artese et al., 2002). These cells 

include odontoblasts, fibroblasts, undifferentiated mesenchymal cells, macrophages (found 

in the inflamed pulp), lymphocytes (B and T), dendritic cells, Schwann cells, pericytes and 

endothelial cells. But the odontoblasts and undifferentiated pulp cells are the most important 

cellular sources of VEGF in the dental pulp (Telles et al., 2003). High levels of VEGF 

secreted by unstimulated pulp cells provide a pro-angiogenic input that appears to be 

necessary to maintain pulp vascularization (Botero et al., 2003).  

The other source of growth factors is the dentin matrix. The origin of these growth factors in 

dentin matrix is probably largely the odontoblast cell (Smith et al., 1990; Smith, 2003). 

Dentin Matrix contains a cocktail of biologically active molecules with a wide range of 

effects once released. Whilst dentin matrix is not generally considered to show appreciable 

turnover or remodeling, trauma to the tissue might lead to release of these molecules 

(Roberts-Clark and Smith, 2000) (Table 1). During the carious process, acids released from 

bacteria diffuse through the dental tissue. They dissolve enamel and dentin matrix causing 

the release of growth factors. These growth factors are contained in both the soluble and 

insoluble tissue compartments of the matrix. Their release may vary under different tissue 

conditions. The sequestration of growth factors within dentin matrix provides a pool of 

growth factors that can be mobilized in injury. Fibroblasts and other pulp cells may be other 

sources. Thus, the overall response in the pulp is likely to be the summation of the effects 

caused by the release of growth factors from the dentin matrix and local secretion from
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pulp cells (Smith et al., 1990). 

Growth factors released from dentin include VEGF (Roberts-Clark and Smith, 2000). FGF-2 

PlGF, PDGF-AB and EGF have been also been isolated in dentin (Roberts-Clark and Smith, 

2000). Once unconstrained by the dentinal matrix these growth factors may play a role in 

pulpal angiogenesis. These factors are involved in pulpal healing (Roberts-Clark and Smith, 

2000) and are free to bind to their receptive receptors. VEGFR-2 has been identified in 

young permanent teeth. This receptor, localized by immunohistochemistry, has a uniform 

distribution in dental pulp tissue (Grando Mattuella et al., 2007a).  Therefore the release of 

growth factors could account for the increased local angiogenesis seen at sites of dental 

tissue repair after carious or traumatic injury (Smith et al., 1990).  

FGF-2 is also a potent mitogen for human pulp cells and it inhibits the expression of the 

odontoblast phenotype by the cells at least partly at pre-transcriptional levels (Shiba, 1995). 

FGF-2 suppresses terminal differentiation and calcification in pulp cell cultures (Shiba, 

1995). FGF-2 receptors as well as VEGF receptors have been immunohistochemically 

localized in the dental pulp. Receptors were also localized in the developing dental pulp, in 

preameloblasts and the distal ends of differentiating ameloblasts (Cam et al., 1992; 

Tanikawa, 1999). Once a pulp has been traumatized complete healing requires not only 

reparative dentine production but also angiogenesis and nerve fiber growth. VEGF and FGF-

2 have been demonstrated in pulp fibroblasts by immunohistochemistry and their release 

increased shortly after injury, showing a very rapid response suggesting a role directly 

linked to injury. These growth factors exert their angiogenic effects as soluble factors. The 

release of these factors occurs quickly following injury. Odontoblast progenitor cell 
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migration to the injury site may require newly formed blood vessels. These can be initiated 

by the secretion of angiogenic growth factors by dental pulp fibroblasts (Tran-Hung et al., 

2006). 

Bacteria products that reach the dental pulp during the carious process or a result of trauma 

also have a role to play in stimulating pulpal angiogenesis. LPS (Endotoxin) from gram 

negative bacteria can induce VEGF in pulp cells (Matsushita et al., 1999). VEGF protein 

expression is upregulated in (mouse) odontoblast like cells and macrophages exposed to 

LPS, but not in undifferentiated pulp cells or fibroblasts. Odontoblasts and macrophages are 

thus the key players in pulpal neovascularization in teeth with deep carious lesions (Botero 

et al., 2003). 

LTA another bacterial product, from gram positive streptococci can induce up regulation in 

VEGF protein expression in macrophages, odontoblast cells and in undifferentiated pulp 

cells. LTA does not induce VEGF expression in fibroblasts. VEGF mRNA expression 

remains constant upon exposure to LTA, suggesting that VEGF upregulation in these cells is 

post-transcriptional. Therefore LTA from gram positive bacteria might have a direct role in 

the enhanced neovascularization observed in infected sites of pulp tissue (Telles et al., 

2003). 

The pulp, when irritated by caries or traumatic injury reacts by releasing pro-angiogenic 

factors. These are supplemented by factors released from carious demineralized dentin. The 

net result is angiogenesis with resultant regeneration, but only if the injury is minor. As the 

intensity of the injury increases with resultant infection of the pulp, the regenerative 

potential of these pro-angiogenic factors will ultimately be overwhelmed.  
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D. Tooth Slice Based Models for the Study of Human Dental Pulp Angiogenesis 

Originally, research using Tooth Slice Models was undertaken not to study pulpal 

angiogenesis and revascularization but rather to investigate in vitro tissue injury processes in 

the dentin-pulp complex (Magloire et al., 1996). Culture models of this nature were useful 

for testing factors regulating pulpal repair. In one of the first models, cavities were prepared 

occlusally in extracted caries free, non-restored third molars of 12-22 year old patients to 

simulate injury of the dentin-pulp complex. Longitudinal tooth slices (crown to apex) of 

dentin-pulp complex, 0.75 mm thick were cultured in vitro in Basal Medium Eagle 

supplemented with 50 μg/ml  ascorbic acid, 50 μg/ml streptomycin, 100 IU/ml penicillin and 

10% fetal calf serum. Under the injured zone at day 0, the cytoplasm of cells appeared to 

have coagulated and there were vacuoles beneath the dentin. The rest of the pulp remained 

unchanged. At 12 days under the injured dentin, elongated cells were seen aligned along the 

edge of the pre-dentin and at 16 days, this was more evident. Tissue recovery was observed 

at the periphery of the pulp. Neovascularization was evident as packed thin vessels parallel 

to the dentin walls or subjacent to the cell layer underlying the prepared cavities. Sound 

polarized odontoblasts were observed in cultures maintained for 21 days under healthy non-

injured dentin. Long-term maintenance of the odontoblast phenotype was correlated with the 

presence of dentin matrix components released during demineralization caused by the 

ascorbic acid in the culture medium. This study demonstrated that severed dentin-pulp 

complex from human teeth could be cultured in vitro (Magliore et al., 1996).  

Tooth slice models involving rat teeth have also been used to study tissue injury and repair 

processes in the dentine-pulp complex over long periods of time (Sloan et al., 1998). 2 mm 
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thick slices were cultured for 14 days in DMEM supplemented with 0.15 mg/ml ascorbic 

acid, 10% heat inactivated fetal calf serum, 200 mM L-glutamine, 1% 

penicillin/streptomycin and 1% low melting agar. After 2 days of culture, it was noted that 

cell and tissue morphology was preserved throughout the dentine-pulp complex. 

Odontoblasts were visible as tall, columnar cells with polarized basal nuclei. They were in 

contact with the pre-dentin and the dentine extracellular matrix. Fibroblasts of the central 

core of the pulp were spindle-shaped and of similar density to those of the uncultured 

tissues. The morphological appearance resembled that of uncultured tissues. After 5 days, 

odontoblasts had maintained their phenotypic morphology and were in contact with the 

dentin extracellular matrix. Normal tissue morphology was still evident in cultures of 7 days. 

At 14 days the polarity and the morphology of the odontoblasts and the integrity of the 

dentine pulp complex was well maintained. However, after 14 days the odontoblasts began 

to show some ultrastructural changes. There was a reduction in the length of the cell bodies. 

Their columnar appearance became less distinct. This model maintained the vitality of the 

dentin pulp complex up to 14 days. It was demonstrated that this model could be used to 

study cell-matrix interactions in mature dental tissues and regulatory processes controlling 

cell activity in the dentine-pulp complex. This was the first indication that angiogenesis 

could possibly be studied in severed dental pulps, but only up to 14 days in vitro (Sloan et 

al., 1998). 

Further studies cultured 2 mm thick; rat incisor tooth slices for 10 days (Murray et al., 2000) 

or 21 days (Saw et al., 2005). These pulp-dentin complexes were cultured in vitro with a 

view to analyzing the effect of dental materials on the pulp. These involved either direct or 

indirect contact of the materials with the dentin-pulp complex (Saw et al., 2005). 
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Throughout the culture period, no morphological alterations were seen in dentin-pulp 

complex. The pulp tissue, contained in the tooth slices remained viable over a 10 day 

experimental period (Murray et al., 2000). There were no changes in the cell densities of 

odontoblasts and fibroblasts in the central pulp core after 7 days in culture, but after 14 days, 

pulpal cells within the tooth slice could not maintain their cell densities and normal 

morphological changes. Odontoblasts appeared shrunken with loss of cellular details and 

fewer pulp fibroblasts were identified.  There was a dramatic decrease of viable cells after 

21 days in culture (Saw et al., 2005).  From these models, it appears that between 7 and 14 

day in vitro culture is viable but 7 days is optimal.  

Recently it was shown that VEGF is capable of inducing an angiogenic response in dental 

pulps in vitro (Gonçalves et al., 2007). A tooth-slice based in vivo model system was 

developed to study the effect of VEGF on angiogenesis and revascularization events in 

severed human dental pulp. It was shown that this might become a useful model for studies 

of novel therapeutic strategies for the treatment of avulsed teeth (Gonçalves et al., 2007). 

The Tooth Slice Based Model utilized was based on Anthony Smith’s original in vitro 

approach for the study of dentinogenesis by organ culture of the dentin-pulp complex from 

rat incisor teeth (Sloan et al., 1998). Non-carious human third molars were sliced with a 

sterile diamond saw cross-sectionally at the CEJ to produce 1.5 mm thick slices. For the in 

vitro part of the study tooth slices were cultured in tooth slice culture media (High glucose 

DMEM supplemented with 20% heat inactivated fetal bovine serum (FBS), 5 ml L-

glutamine 200 mM, 5 ml of 10,000 units of penicillin and 10 mg/ml streptomycin, 1 ml 

Amphotericin B 1.25 mg/ml and 0.15 mg/ml vitamin C) supplemented with 50 ng/mL 

rhVEGF165. Tooth slices were cultured for seven days. The pulp tissues retained the overall 
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histological features of normal dental pulps, having intact odontoblast layers. Adding VEGF 

to the culture media resulted in an increase in microvessel density compared with untreated 

controls (Gonçalves et al., 2007).  

The in vivo protocol used in the study involved implanting tooth slices in the subcutaneous 

tissues of SCID mice for 7 days. The dental pulp tissue of all tooth slices implanted in the 

mice remained vital and an intact odontoblast layer was maintained in the tooth slices for the 

duration of the experiment (Gonçalves et al., 2007). The dental pulps were highly 

vascularized at the time of implant retrieval. The presence of functional (blood carrying) 

blood vessels in the dental pulps of the tooth slices implanted suggest that the existing blood 

vessels from the severed dental pulp were capable of anastomizing with host blood vessels. 

This might have been accomplished by hypoxia generated locally prior to implantation 

which stimulated the expression of VEGF, presumably through the activation of hypoxia 

inducible factor and initiated angiogenic cascades in the pulp tissue. Another possible 

mechanism is during the tooth slicing process growth factors including VEGF were released 

from the dentin matrix and directly stimulated angiogenesis and revascularization of the 

severed pulp tissue.   

Presently it is possible to study revascularization events in the dental pulp in vivo. The 

current model was achieved by advances in the characterization of in vitro tooth slice 

models. These were initially used to study the regenerative events of dental pulps in 

response to injury, the response of pulps to dental restorative materials and pulpal 

angiogenesis in severed human dental pulps, treated with VEGF in vitro. 
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     SECTION II 



1.  ABSTRACT 

Tooth avulsion is a common type of trauma in children and young adults. Replantation is the 

treatment of choice. Complications such as ankylosis, pulpal necrosis, pulpal obliteration, 

external root resorption make the long-term prognosis of avulsed teeth unpredictable. 

Recently, it was shown that vascular endothelial growth factor (VEGF) is capable of inducing 

an angiogenic response in dental pulps in vitro. However, we do not know if this angiogenic 

factor induces revascularization of severed dental pulps in vivo. The purpose of this study was 

to evaluate the effect of VEGF on the revascularization of human pulp tissue of tooth slices 

implanted subcutaneously in severe combined immunodeficient (SCID) mice. Non-carious 

human third molars were sliced with a sterile diamond saw (Model 650, Southbay 

Technology) cross-sectionally at the CEJ to produce 1 mm thick slices. Slices were treated ex 

vivo in culture media (DMEM) supplemented with 50 ng/ml rhVEGF165 or in control culture 

medium. After 1 hour, tooth slices were implanted subcutaneously in SCID mice. After 14 

days, mice were euthanized, tooth slices retrieved, and dental pulp microvessel density was 

quantified by counting the number of Factor VIII positive blood vessels in four high powered 

fields per pulp slice (12 tooth slices per condition). Independent experiments were carried out 

to verify data reproducibility, and statistical analyses (Kruskal-Wallis One Way Analysis of 

Variance on Ranks and Tukey’s Test) were performed using Sigmastat 2.0 software. We 

observed that the human dental pulps of the tooth slices remained viable for 14 days 

subcutaneously in the SCID mice under this experimental protocol. Notably, pre-treatment 

with VEGF prior to implantation increased the dental pulp microvessel density (p<0.05) 

compared to untreated controls. We conclude that VEGF enhances neovascularization of 

severed human dental pulps in vivo. These results may have implications on the treatment of 

avulsed immature teeth ex vivo, prior to replantation. 

 28



2. INTRODUCTION 

Trauma to the oral region is frequent in children and adolescents. It comprises 5% of all 

injuries for which treatment is sought, and in preschool children these traumatic injuries can 

be as high as 18% of all injuries. Of all facial injuries, dental are the most common. 

Avulsions occur in 1–16% of all dental injuries (Andreasen et al., 2007). The avulsion of 

permanent teeth is the most serious of all dental injuries. The prognosis depends on measures 

taken at the place of accident or immediately after the avulsion. Replantation is the treatment 

of choice, but cannot always be carried out immediately (Flores et al., 2007b). If this can be 

achieved pulpal revascularization could be expected in 41-93% of cases (Andreasen et al., 

1995b). Revascularization is rare in mature replanted teeth of children and adolescents with 

closed apices (Cvek et al., 1990). If immediate replantation cannot be carrier out 

complications can occur. These include ankylosis, pulpal necrosis, pulpal obliteration, 

external root resorption (Andreasen et al., 1995a, 1995b). The most successful outcome of 

replantation is pulpal healing, but if this is to occur, revascularization of the severed pulpal 

vasculature must take place (Strobl et al., 2003). This is difficult especially in cases of 

delayed replantation (Ebeleseder et al., 1998).  

Angiogenesis is defined as the process of developing new blood vessels from pre-existing 

capillaries (Folkman and Shing, 1992). It is an important part of many natural processes, such 

as embryonic development and ovulation wound repair. It is also involved in pathological 

processes such as arthritis, diabetic retinopathy, and tumor growth. In many diseases the body 

looses control of angiogenesis resulting in excessive blood vessel development as observed in 

cancer (Folkman and Shing, 1992). Vascular Endothelial growth factor (VEGF) plays a 

central role in angiogenesis, promoting the formation of new capillaries. VEGF increases 
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vascular permeability (Dvorak et al., 1985; Dvorak et al., 1995). Basic Fibroblast Growth 

Factor (FGF-2) is another potent angiogenic factor that shows increased expression in 

hypoxic conditions (Kardami, 2007). FGF-2 causes increased endothelial cell proliferation 

and collateral vessel density (Baffour et al., 1992).  

VEGF has received much attention regarding its potential therapeutic use in therapeutic 

angiogenesis for the treatment of vascular conditions such as myocardial ischemia (Kastrup et 

al., 2005; Yla-Herttuala et al., 2007). Promising preclinical results obtained in animal 

experiments with VEGF therapy have not yet been translated into clinical success (Yla-

Herttuala et al., 2007). VEGF has tremendous potential in vascular therapeutics and with 

further developments in gene delivery techniques it may be possible to develop a novel 

treatment for ischemic cardiovascular disease (Yla-Herttuala et al., 2007). 

Recently, a tooth-slice based in vivo model system was developed and characterized for the 

study of revascularization in the dental pulp. It was shown that VEGF induced angiogenesis 

in the dental pulps of human tooth slices in vitro (Gonçalves et al., 2007). However, we do 

not know if VEGF induces revascularization of severed dental pulps in vivo. Using the Tooth 

Slice Based Model, we explored the application of angiogenic growth factor/s to severed 

human dental pulps both in vitro and in vivo, with the implantation of 1 mm thick tooth slices 

into the dorsal subcutaneous tissue of SCID mice for a two week period.  Here we present the 

results of these experiments. We believe that these results may have implications for the 

direction of future studies involving the treatment of avulsed immature teeth ex vivo, prior to 

replantation.  
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3. MATERIALS AND METHODS  

In vitro Culture of Severed Human Dental Pulps (Fig. 3) 

Vital, non-carious and non-restored human third molars from patients no older than 30 years 

of age were collected from the Oral Surgery Department of the University of Michigan 

School of Dentistry, Ann Arbor, Michigan. After extraction, the teeth were immediately 

placed into sterile Transport Medium i.e. high glucose DMEM (Sigma Chemical Co.) 

supplemented with L-glutamine (Gibco), penicillin, streptomycin (Gibco) and Amphotericin 

B (Sigma).  The teeth were surface disinfected using a sterile gauze swab soaked in 70% 

ethanol solution. Excess soft tissue covering the root surface was removed with a sterile 

curette.  Tissue surrounding the apices of the third molars was left intact.  

 

Preparation of Specimens 

Teeth were fixed to a wooden block (3 cm x 3 cm x 1.5 cm) by self curing acrylic (Coldpac, 

tooth acrylic, Moltoid, Chicago, IL) and these blocks were attached to an Isomet Low Speed 

(Model 650, South Bay Technology, Inc., San Clemente, CA) (Fig. 4) saw mount. The teeth 

were cut into sections of 1 mm thickness with a lapidary blade 303 Series (MK-303 

Professional, MK Diamond Products Inc., Calais, ME) and cooled with sterile PBS-1x-

phosphate buffered saline (Gibco). The saw was washed with 70% ethanol and sterile PBS.  

Two tooth slices were taken from each third molar. The first tooth slice was cut from the CEJ 

and the second was taken apically to the first tooth slice. Both slices contained pulp tissue 

from the pulp chamber. The slices were placed into individual wells of a 12 well plate (BD, 

Franklin Lakes, NJ). Each well contained enough Culture Media (1ml) (High glucose DMEM 
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supplemented with 20% heat inactivated fetal bovine serum (FBS) (Gibco), 5ml L-glutamine 

200mM, 5ml of 10,000 units of penicillin and 10 mg/ml streptomycin, 1ml Amphotericin B 

1.25 mg/ml and 0.15 mg/ml vitamin C (Sigma)) to cover the tooth slice. Sections were then 

cultured at 37 oC, in 5 % CO2 and air, in a humidified (100% H20) incubator for seven days. 

The tooth slice culture media was changed the day after sectioning the teeth and every second 

day thereafter.  
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Figure 3. Tooth Slice Model to Study Pulpal Revascularization (Adapted from  

Gonçalves et al., 2007) 
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Figure 4. Diamond Wheel Saw Model 650 (Southbay Technologies, San Clemente, 

California) with a third molar fixed to a wooden mounting block by acrylic resin, in the 

cutting jig.  The sectioning of the third molars was performed in a cell culture hood under 

aseptic conditions.  
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Experimental Design 

Group 1: four tooth slices cultured in tooth slice culture media (without growth factors; 

negative control). 

Group 2: four tooth slices cultured in tooth slice culture media supplemented with 10 ng/ml 

rhVEGF165  (R&D Systems Inc., Minneapolis, MN). 

Group 3: four tooth slices cultured in tooth slice culture media supplemented with 50 ng/ml 

rhVEGF165. 

Three independent experiments were performed, using this experimental design. Data was 

analyzed from 12 slices per experimental condition.  A further four independent experiments 

were also conducted, but the histological sections from all three groups contained areas of 

pulpal voiding and were unsuitable for microvessel quantification (Fig. 14; page 82 

APPENDIX). 

The same experimental design was employed for FGF-2, as an alternative pro-angiogenic 

factor to VEGF. Three independent experiments were performed. Data was analyzed from 12 

favorable slices per experimental condition. One independent experiment was also conducted, 

but the histological sections from all three groups contained areas of pulpal voiding and were 

unsuitable for microvessel quantification (Fig. 14; page 82 APPENDIX).  

 

Removal of Slices From Culture  

After seven days, tooth slices were removed from the media and fixed in 10% buffered 

formalin (Fisher Scientific, Pittsburg, PA) at 4oC for 24 hours, followed by demineralization 

in Decalcifier (Decalcifier II, Surgipath Medical Industries Inc., Richmond, IL) for 22 hours 
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at RT (APPENDIX). Tissues were processed at the Histology Core University of Michigan, 

School of Dentistry and embedded in paraffin for histological examination. Three sections of 

each tooth slice were cut at 5 µm thickness with a microtome and one section was stained 

with Hematoxylin and Eosin (Sigma Aldrich, St. Louis, MO), two were processed for Factor 

VIII immunostaining as described (APPENDIX).  

 

In vivo Culture of Severed Human Dental Pulps 

Vital, non-carious and non-restored human third molars from patients not older than 30 years 

of age were collected from the Oral Surgery Department of the University of Michigan 

School of Dentistry, Ann Arbor, Michigan. After extraction the teeth were placed 

immediately into sterile Transport Medium. The teeth were handled and sliced as in the in 

vitro experiment (as described previously).  

After cutting, the slices were placed into individual wells of a 12 well plate (BD, Franklin 

Lakes, NJ). Each well contained enough culture medium to cover the tooth slice. The slices 

were placed into wells which correspond to the correct control and experimental groups.  

Group 2 tooth slices had the pulpal tissue removed (APPENDIX) prior to placement in the 

culture media. Group 4 the tooth slices were placed into culture media containing 50 ng/ml 

rhVEGF165.  The tooth slices were cultured ex-vivo at 37 oC, in 5% CO2 and air, in a 

humidified incubator for 1 hour prior to implantation.  

SCID mice (CB.17 SCID; Charles River, Wilmington, MA) were anesthetized with a solution 

of ketamine/xylazine. The use and handling of animals in this study was performed in 

accordance with an approved IRB and UCUCA protocols (APPENDIX). Each SCID mouse 
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received a 2 cm long incision in the dorsum with a #15 blade scalpel. Bilateral subcutaneous 

pockets were made upon separation of the dermis from the underlying muscle layer and one 

tooth slice was placed in each pocket, within 3 hours of extraction. Two tooth slices were 

implanted into each mouse; a control slice on one side and an experimental slice on the other. 

The tooth slices were placed in contact with the exposed muscle fibers. The dorsal incision 

was re-approximated to obtain wound closure using Vetbond Tissue Adhesive (3M Animal 

Care Products, St Paul, MN). The mice were examined two hours after the surgery for signs 

of recovery and then every day thereafter for signs of infection at the wound site or other 

morbidities. The slices remained in the mice for 14 days. 

 
Experimental Design 
 

Group 1: Six slices cultured ex-vivo for one hour and immediately fixed in 10% Buffered 

Formalin (Fischer Scientific, Pittsburg, PA) after tooth cross-sectional slicing.  

Group 2: Six slices implanted for 14 days with no pulpal tissue.   

Group 3: Six slices implanted for 14 days. Tooth slices cultured for one hour ex vivo with no 

pro-angiogenic factor added to the tooth slice culture media.  

Group 4: Six slices implanted for 14 days. Tooth slices cultured ex-vivo for one hour in 

culture media supplemented with 50 ng/ml rhVEGF165.  

This experiment was repeated twice to verify reproducibility of results. 
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Retrieval of the Tooth Slices from the SCID Mice  

14 days after implantation mice were euthanized and the slices were removed (Fig. 5; Fig.6). 

The tooth slices were fixed in 10% buffered formalin (Fisher Scientific) at 4 oC for 36 hours, 

followed by demineralization in Decalcifier (Decalcifier II, Surgipath Medical Industries Inc., 

Richmond, IL) for 22 hours at RT, which were then processed  and embedded in paraffin for 

histological examination (Histology Core University of Michigan, School of Dentistry). 

Three sections of the tooth slice were cut at 5 µm with a microtome and one section was 

stained with Hematoxylin and Eosin (Sigma Aldrich), two were processed for Factor VIII 

immunohistochemistry (APPENDIX). 
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Figure 5. Retrieval of tooth slices from the SCID mouse, 

after 14 days implantation 

 

 

 

Figure 6. Implants after two weeks. (A) Tooth slice implanted with no pulp tissue. Notice the 

white bands of mouse connective tissue which invaded the pulp space. (B) Tooth slice with 

severed human dental pulp cultured for one hour ex vivo in tooth slice culture media. (C) 

Tooth slice with severed human dental pulp cultured for one hour ex vivo in tooth slice 

culture media supplemented with 50 ng/ml of rhVEGF165.  
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Immunohistochemistry  

Factor VIII Immunohistochemistry was performed on each tooth slice to quantify blood 

vessel number per high powered field. Factor VIII Immunohistochemical analysis was 

performed using Dako CytomationEnVision + System-HRP (AEC) with rabbit primary 

antibodies. Histological sections were incubated with 1:250 polyclonal rabbit anti-human 

Factor VIII (Neomarkers, Fremont, CA) over night at 4 oC. Sections were washed with Wash 

Buffer (Dako), and incubated with second antibody (Labelled Polymer-HRP, anti-rabbit 

Dako) for 45 minutes at room temperature. Sections were washed with Dako Wash Buffer 

and AEC substrate chromogen (Dako) was applied for 2 minutes, the reaction was observed 

under a light microscope at 200x magnification. Sections were counterstained with 

hematoxylin. The slides were washed again with distilled water, dried and then a cover slip 

was placed over the histological section and fixed to the slide with aqueous mounting media 

(Vecta Mount AQ). Control histological sections were incubated over night at 4oC with 1:250 

polyclonal rabbit anti-human IgG (Fig. 8).  

 

Microvessel Quantification 

Quantitative analysis of blood vessel densities was performed by ascertaining the number of 

Factor VIII stained blood vessels in four 200X high powered fields, per tooth slice. A total of 

12 tooth slices were examined for each condition. 200x Images were acquired using Image 

Pro Plus (version 5.1.2.59 for Windows XP, Media Cybernetics Inc., Silver Spring, MD) 

software and a microscope (Eclipse E800, Nikon, Melville, NY). Four, 200x fields were 

chosen at random from each tooth slice, using a grid superimposed on a digital image, 

captured by a Digital Camera (RT Slider, Diagnostic Instruments Inc., Sterling Heights, MI) 
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(Fig. 7).  Each grid box was the same size as a 200x field captured by the camera. Fields were 

chosen that contained pulp only. If dentin was visible on the periphery of the pulp, then this 

field was not selected. If more than four fields were available for selection in a row of grid 

boxes in the center of the pulp, then four boxes were chosen at random (Fig. 7).   

 

Statistical Analysis 

Statistical analysis was performed using One Way ANOVA followed by Tukey’s Test for 

multiple group comparison and  Kruskal-Wallis One Way Analysis of Variance (for non 

normally distributed data) on Ranks with SIGMASTAT 2.0 statistical software (SPSS, 

Chicago, IL). The level of significance was determined at P ≤ 0.05. 
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Figure 7. Grid superimposed on a 20x histological image using Image Pros Plus (version 

5.1.2.59 for Windows XP, Media Cybernetics Inc, Silver Spring, MD). Each grid rectangle is 

the same dimension as the 200X field image as visualized with the microscope (Nikon 

Eclipse E800, Melville, NY). 

 42



4. RESULTS 

In vitro Effect of VEGF and FGF-2 on Severed Human Dental Pulps   

We observed that after culturing the tooth slices in vitro for 7 days, the pulp tissues retained 

the histological features of normal pulps and remained viable under this experimental 

protocol (Fig. 8 A, B, C, E, F, G).  

In order to evaluate the effect of VEGF and FGF-2 on dental pulp angiogenesis, we cultured 

the tooth slices in the presence or absence of VEGF or FGF-2 and performed 

immunohistochemical staining to identify blood vessels (Fig. 8 F, G). Adding VEGF resulted 

in an increase in dental pulp microvessel density (p<0.05) compared to untreated controls 

(Fig. 8 I). FGF-2 treatment of tooth slices in vitro also increased the dental pulp microvessel 

density (p<0.05) compared to untreated controls (Fig. 8 I).  

 

In vivo Effect of VEGF on Severed Human Dental Pulps Implanted in the Subcutaneous 

Tissues of SCID Mice 

It has been shown that human blood vessels can be engineered by seeding primary human 

endothelial cells in scaffolds using the SCID Mouse Model of Human Angiogenesis (Nör et 

al., 2001). These experiments provided the basis for the implantation of tooth slices in the 

dorsal subcutaneous tissue of SCID mice. To evaluate the effect of VEGF on dental pulp 

angiogenesis in vivo, tooth slices were cultured in the presence or absence of VEGF for 1 

hour ex vivo prior to 14 day implantation. Immunohistochemical staining was performed to 

identify blood vessels (Fig. 9 D, E, F). Adding VEGF resulted in an increase in dental pulp 

microvessel density (p<0.05) compared to untreated controls (tooth slices not implanted but 
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cultured ex vivo for 1 hour, implanted with no pulp and untreated implanted pulp slices) (Fig. 

9 G). The pulp tissues retained the histological features of normal pulps (Fig. 9 A, B, C) 

under this experimental protocol and the severed human pulp tissue of all tooth slices 

implanted remained vital under the experimental protocol (Fig. 9 A-F). The dental pulps were 

highly vascularized at the time of implant retrieval. Red blood cells were visualized in the 

lumen of blood vessels stained with the Factor VIII Antibody (Fig. 9 F). This demonstrates 

that the severed human vasculature had anastomized with the SCID mouse vasculature and 

allowed the severed human pulp tissue to remain viable during the experimental period.  
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Figure 8. Effect of VEGF on in vitro angiogenesis in severed human dental pulp. (A, D, E, H) Tooth 

slices were untreated or (B, F) cultured in presence of 50ng/ml of rhVEGF165 or (C, G) rhFGF-2. (A, B, 
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C) Hematoxylin/eosin staining of dental pulps after 7 days in culture (200x). (E, F, G) Microscopic 

fields of Factor VIII Immunohistochemistry for identification of blood vessels (red staining). (D, H) 

Negative control; primary rabbit anti-human Factor VIII antibody, substituted with rabbit anti-human 

IgG antibody. Notice no red stained microvessels (D, H). (I) Graph depicting the mean (±SD) number of 

Factor VIII positive blood vessels from 48 fields per condition. Asterisk indicates statistical significance 

(p<0.05) (Kruskal-Wallis One Way Analysis of Variance on Ranks and Tukey’s Test). 

 46



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Effect of VEGF on in vivo angiogenesis in human dental pulp. (A, D) Tooth slices 

implanted with no pulp tissue, (B, E) with untreated pulp tissue, (C, F) with pulp tissue treated with 

50ng/ml of rhVEGF165 for 1 hour ex-vivo prior to implantation. (A, B, C) Hematoxylin/eosin 

staining of dental pulps after 14 days implantation (200x). (D, E, F) Microscopic fields of Factor 

VIII Immunohistochemistry for identification of blood vessels (red staining). (G) Graph depicting 

the mean (±SD) number of Factor VIII positive blood vessels from 48 fields per condition. Asterisk 

indicates statistical significance (p<0.05). (Kruskal-Wallis One Way Analysis of Variance on Ranks 

and Tukey’s Test). (H) Tooth slice implanted into a dorsum pocket of a SCID mouse.  
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5. DISCUSSION 
 

This study builds on the principles that were developed and initially characterized in a SCID 

Mouse Model for the study of human angiogenesis (Nör et al., 2001; Gonçalves et al., 2007). 

This model was based on tooth slicing culture experiments, first described by Sloan and 

colleagues (Sloan et al., 1998). We demonstrated using a Tooth Slice Model (Fig. 10) that 

human dental pulps cultured for seven days in vitro retained their viability. We also 

demonstrated that human dental pulps of tooth slices remained viable for 14 days, 

subcutaneously in SCID mice under this experimental protocol. 

Pulp cells release growth factors in response to injury (Botero et al., 2006). VEGF is 

expressed by pulp cells (Telles et al., 2003) and is found in dentin matrix (Smith et al., 1990; 

Smith, 2003). It was shown that VEGF is upregulated in odontoblast-like cells that were 

exposed to bacterial endotoxins (Botero et al., 2006). FGF-2 released from human dental pulp 

following forced tooth movement plays a role in the angiogenic response of the pulp 

(Derringer et al., 2004). The quantity of VEGF and FGF-2 released from pulp cells exposed 

to bacterial endotoxins is unknown. This is currently under investigation in our laboratory.  

rhVEGF165 and rhFGF-2 are angiogenic in vitro (Nör et al., 2002). 50 ng/ml of rhVEGF165 

has prolongs the survival of human dermal microvascular endothelial cells in vitro (Nör and 

Polverini, 1999; Nör et al., 2002). Zero to 50 ng/ml of rhVEGF165 were used to examine pro-

angiogenic signaling pathways in human dermal microvascular endothelial cells in vitro (Karl 

et al., 2005). We used concentrations of 10 ng/ml and 50 ng/ml of rhVEGF165 and rhFGF-2 to 

treat severed human dental pulps in vitro. We observed that treatment of tooth slices with 50 

ng/ml of rhVEGF165 increased the dental pulp microvessel density (p<0.05) compared to 

untreated controls. We also observed that the in vitro treatment of tooth slices with 50 ng/ml 
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of rhFGF-2 increased the dental pulp microvessel density (p<0.05) compared to untreated 

controls. The exogenous rhVEGF165 or FGF-2 in the tooth slice culture media, plus the 

hypoxia induced VEGF in the severed pulp and also the VEGF and FGF-2 released from the 

dentin matrix during tooth slicing may have provided sufficient pro-angiogenic stimuli to 

enhance tissue microvessel density.  

Angiogenesis occurs at pre-existing capillaries (Folkman and Shing, 1992) and the 

subodontoblast layer contains a rich vascular network (Takahashi, 1985). Angiogenesis may 

have occurred in this region to a greater extent compared to the remainder of the pulp. We did 

not quantify microvessels in the subodontoblast layer. This is a limitation of our study. 

We cultured severed human dental pulp tissue ex vivo in tooth slice culture media 

supplemented with rhVEGF165 prior to SCID mouse implantation because recent clinical 

trials involving direct intramyocardial plasmid VEGF165 gene therapy in patients with angina 

pectoris were conducted (Kastrup et al., 2005). Results showed that gene therapy did not 

improve myocardial perfusion but anti-ischemic effects were noted. These trials highlighted 

the potential that VEGF has to induce tissue revascularization. We treated severed human 

dental pulp tissues ex vivo with 50 ng/ml of rhVEGF165 due to our observation that 

rhVEGF165 treatment of tooth slices in vitro increased the dental pulp microvessel density 

(p<0.05) compared to untreated controls. We chose one hour ex vivo treatment based on the 

half-life of VEGF. VEGF has a half-life between three and six minutes in vivo (George et al., 

2000; Pantely and Porter, 2000) and approximately one hour in vitro (Shi et al., 2001; Liu et 

al., 2002).  

We used Factor VIII immunohistochemistry to indentify microvessels in severed human 

dental pulps. Factor VIII immunohistochemistry is widely used in cancer research to identify 
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vascular “hot spots” in tumors (Uzzan et al., 2004; Des Guetz et al., 2006). We showed that 

the polyclonal rabbit anti-human Factor VIII antibody cross reacted with mouse vasculature 

(Fig. 9D). We obtained tooth slice histological sections which were cut through the severed 

human pulp tissue and not the mouse connective tissue attached to the exterior surface of the 

tooth slice. This avoided quantification of mouse vasculature, which would cause erroneous 

microvessel density analysis of the severed human dental pulps.  

Microvessel density analysis is frequently conducted in cancer research and performed by 

acquiring digital images from 200x high-powered fields of histologically processed tumor 

tissue (Kim et al., 2005; Saravanamuthu et al., 2003; Urquidi et al., 2002). We acquired 200x 

high-powered images from each severed human pulp (Gonçalves et al., 2007). Image Pro 

Plus, image analysis software has also been used in microvessel density analysis (Luo et al., 

2001; Fukasawa and Korc, 2004). We conducted microvessel density analysis using Image 

Pro Plus and we superimposed a grid (Hochberg et al., 2002; Inan et al., 2003; Kehrl et al., 

2004; Trojan et al., 2004) onto digital images of each pulp. Microvessels with and without 

lumens (Weidner, 1995) were counted from chosen fields, using the manual tagging function 

in the Image Pro Plus software. We chose four random fields from each pulp based on the 

results of a pilot study, which involved the application of a grid to a random sample of 60, 

20x digital images of tooth slices. We determined that four was the minimum number of 

fields which could be captured per tooth slice, upon grid application.  

We observed that the odontoblast layer was maintained in the tooth slices throughout the 

duration of the experiment and this correlated with the presence of dentin and dentin matrix 

components (Heywood and Apppleton, 1984; Begue-Kirn, 1992; Sloan et al., 1998). 

Histologically there was evidence of revascularization of the severed human dental pulps 
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implanted in the subcutaneous tissue of SCID mice. An intact, highly vascularized 

odontoblast layer was observed (Fig. 9 B, C).  The presence of functional blood vessels both 

in the VEGF treated and untreated tooth slices suggests that mouse blood vessels anastomized 

with the severed human dental pulp vessels (Fig. 6). This finding agrees with a recent study 

from our laboratory (Gonçalves et al., 2007). The dental pulp in response to hypoxia may 

have produced local VEGF, which encouraged revascularization of the dental pulp. 

Alternatively, growth factors may have been released from the dentin matrix during tooth 

slicing, triggering local pulpal angiogenesis which influenced the anastomosis of the mouse 

and human microvessels.  

The exogenous rhVEGF165 in the tooth slice culture media may have provided sufficient pro-

angiogenic stimuli to enhance tissue microvessel density, together with the hypoxia induced 

VEGF and the VEGF released from the dentin matrix. These events would ultimately result 

in pro-angiogenic effects, in the severed human dental pulps. We observed that rhVEGF165 

treatment of tooth slices ex vivo prior to implantation in SCID mice increased the dental pulp 

microvessel density (p<0.05) compared to untreated controls. 

Our results suggest that rhVEGF165 could be used to treat dental pulp conditions that require 

revascularization. This would include the avulsed immature tooth. At present pulpal 

revascularization can be expected in 41-93% of cases if replantation is immediate (Andreasen 

et al., 1995b). Immediate replantation is not always possible. We may in the future be able to 

increase the chances of revascularization and allow the replanted tooth to have the prospect of 

becoming more than a space maintainer and a short term solution. Slow release delivery of 

rhVEGF165 in a bioabsorbable polymer would allow application of the angiogenic factor 

directly to the pulp tissue at the apex of an avulsed immature tooth. A slow release method of 
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minocycline delivery in the form of ArestinTM microspheres (Ritter et al., 2004) could also be 

applied ex vivo in combination with rhVEGF165. This would provide both an antimicrobial 

and pro-angiogenic effect on the severed human pulp tissue. This method of delivering a 

combination of rhVEGF165 and minocycline is currently not available and warrants further 

investigation.  This is truly an interesting prospect but one must remember that this research 

is in its infancy and is years from human clinical trials.  
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Figure 10. Tooth Slice Model to Study Revascularization of Severed Human Dental Pulp. 
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6. CONCLUSIONS 

The following are the conclusions from our work: 

 

1. rhVEGF165 induced angiogenesis in severed human dental pulps of tooth slices treated 

ex vivo prior to implantation in SCID mice. rhVEGF165 treatment increased the dental 

pulp microvessel density (p<0.05) compared to untreated controls. Human dental 

pulps remained viable for 14 days, subcutaneously in the SCID mice under this 

experimental protocol.  

 

2. We also observed that tooth slices cultured for 7 days remained viable. rhVEGF165 

and rhFGF-2 treatment induced an angiogenic response in dental pulps of tooth slices 

in vitro and increased the dental pulp microvessel density (p<0.05) compared to 

untreated controls.  

 

3. Results from this study may have implications for the direction of future studies on 

the treatment of avulsed immature teeth ex vivo, prior to replantation. They may also 

be useful in appreciating the biology involved in human dental pulp revascularization.  
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APPENDIX 



1. In vitro Pilot Study. Three and Seven Day Culture of Severed Human Dental 

Pulps.  

A. Materials and Methods 

Part I: Tooth Slice Culture Media not supplemented with rhVEGF165  

Vital, non-carious and non-restored human third molars from patients not older than 30 years 

of age were collected from the Oral Surgery Department of the University of Michigan 

School of Dentistry, Ann Arbor, Michigan. After extraction the teeth were immediately 

placed into sterile Transport Medium (High glucose DMEM (Sigma Chemical Co.) 

supplemented with 5 ml L-glutamine (Gibco) 200 mM, 5 ml of 10,000 units of penicillin and 

10 mg/ml streptomycin (Gibco) and 1ml Amphotericin B (Sigma) 1.25 mg/l). 

The teeth were surface disinfected using a sterile gauze swab soaked in 70% ethanol solution. 

Excess soft tissue covering the root surface was removed by trimming with a sterile curette.  

Tissue surrounding the apices of the third molars was left intact.  

 

Preparation of specimens 

Teeth were fixed to a wooden block (3 cm x 3 cm x 1.5 cm) by self curing acrylic (Coldpac, 

tooth acrylic, Moltoid, Chicago, IL ref 44100) and these blocks were attached to an Isomet 

Low Speed (Model 650, South Bay Technology, Inc.) saw mount. The teeth were cut into 

sections of 1 mm thickness with a lapidary blade 303 Series (Mk-303 Professional, Mk 

Diamond Products Inc.) cooled with sterile PBS-1x-phosphate buffered saline (Gibco ref. 

10010). The saw was washed with 70% ethanol and sterile PBS. After cutting the slices were 

placed into individual wells of a multi-well plate (12 well). Each contained enough Tooth 
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Slice Culture Media (1 ml) (High glucose DMEM supplemented with 20% heat inactivated 

fetal bovine serum (FBS) (Gibco), 5 ml L-glutamine 200 mM, 5 ml of 10,000 units of 

penicillin and 10 mg/ml streptomycin, 1 ml Amphotericin B 1.25 mg/ml and 0.15 mg/ml 

vitamin C (Sigma)) to cover the tooth slice.  

 

Organ culture of the dentin-pulp complex 

Tooth slices in group one were slices taken from the CEJ (Large Pulps) and those in group 

two were sliced from or close to the furcal area of the human third molars (Small Pulps). 

Small Pulps were cultured for three days, while the Large Pulps were cultured for three and 

seven days.  

Tooth slices were then cultured at 37oC, in an atmosphere of 5% CO2 and air, in a humidified 

(100% H20) incubator for three and seven days. The tooth slice culture media was changed 

the day after sectioning and every second day thereafter.  

Experimental Design 
Group 1: Five Large Pulps (tooth slices) placed in tooth slice culture media for seven days.  

Group 2: Five Small Pulps (tooth slices) placed in tooth slice culture media for seven days.  

Group 3: Five Large Pulps placed in tooth slice culture media for three days.  

Two independent experiments were conducted.  
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Part II: Tooth Slice Culture Media supplemented with 50 ng/ml rhVEGF165  

Vital, non-carious and non-restored human third molars from patients not older than 30 years 

of age were collected from the Oral Surgery Department of the University of Michigan 

School of Dentistry, Ann Arbor, Michigan and were placed in Transport Media immediately 

after extraction. The remainder of the protocol is similar to Part I, apart from differences in 

the experimental design.  

 

Experimental Design 

Group 1: Five tooth slices placed in tooth slice culture media for three days. 

Group 2: Five tooth slices placed in tooth slice culture media, supplemented with 50 ng/ml 

of rhVEGF165 and cultured for three days. 

Group 3: Five tooth slices placed in tooth slice culture media for seven days.  

Group 4: Five tooth slices placed in tooth slice culture media, supplemented with 50 ng/ml of 

rhVEGF165 and cultured for seven days.   

One independent experiment was conducted.  

 

Removal of slices from Culture  

After three or seven days the tooth slices were removed from the culture media and fixed in 

10% neutral-buffered formalin (Fisher Scientific ref. SF100-4) at 4oC for 24 hours, followed 

by demineralization in Decalcifier (Decalcifier II, Surgipath, ref 00460) for 22 hours at room 

temperature, which were then processed (Histology Core University of Michigan, School of 

 73



Dentistry) and embedded in paraffin wax for histological examination. Three sections of each 

tooth slice were cut at 5µm thickness with a microtome. One section was stained with 

Hematoxylin and Eosin (Sigma Aldrich, ref. GHS216); two were processed for Factor VIII 

immunohistochemistry (APPENDIX). 

 

Immunohistochemistry  

After retrieval of tooth slices from the culture media after three or seven days and subsequent 

histological processing, FVIII Immunohistochemistry was performed on each tooth slice to 

quantify blood vessel number per high powered field. Factor VIII Immunohistochemical 

analysis was performed using Dako CytomationEnVision + System-HRP (AEC) with Rabbit 

Primary Antibodies. Histological sections were incubated with (Factor VIII related antigen 

Ab-1 Rabbit PAb ref. RB-281-A; antibody diluent- ref. S0809, 1:250 polyclonal rabbit anti-

human Factor VIII, over night at 4oC. Sections were washed with Wash Buffer (Dako ref. 

S3006), and incubated with second antibody (Labelled Polymer-HRP, anti-rabbit Dako, ref. 

4008) for 45 min at room temperature. Sections were washed with Dako Wash Buffer and 

AEC substrate chromogen (Dako ref. K4008) was applied for 2 minutes, the reaction was 

observed under a light microscope at 200x magnification. Sections were counterstained with 

hematoxylin, after retarding the chromogenic reaction by placing the histological slides in 

distilled water. The slides were washed again with distilled water, dried and then a cover slide 

was placed over the histological section and fixed to the slide with aqueous mounting media 

(Vecta Mount AQ ref H-5501). Slides were processed which contained histological sections 

from tooth slices that were fixed immediately post tooth slicing. The histological sections 

were incubated over night at 4oC with 1:250 polyclonal rabbit anti-human IgG (polyclonal 
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rabbit anti-human) substituted for Factor VIII related antigen Ab-1 Rabbit PAb as a negative 

control (Fig. 8). 

 

Microvessel Quantification 

Quantitative analysis of the blood vessel densities was performed on pulp tissue that was 

stained with Rabbit Primary Antibodies, by ascertaining the number of Factor VIII stained 

blood vessels per 200x high powered field, per tooth slice. Three 200x fields were chosen at 

random, using a microscope (Axioskop, Zeiss, Germany). One field was chosen in the center 

of the pulp and the other two close to the odontoblast layer, being careful to exclude dentin 

from the field. 

 

Statistical Analysis 

Statistical analysis was performed using One Way ANOVA followed by Tukey’s Test for 

multiple group comparison and Kruskall-Wallis One Way Analysis of Variance on Ranks (for 

non normally distributed data spread) with Sigmastat 2.0 statistical software (SPSS, Chicago, 

IL). The level of significance was determined at P ≤ 0.05. 

 

Part III: Quantification of VEGF and FGF-2 contained in DMEM and 20% FBS 

(constituents of Tooth Slice Culture Media) by ELISA 

VEGF ELISA and FGF-2 ELISA were conducted to ascertain if there were significant 

amounts of VEGF and or FGF-2 in formulated Tooth Slice Culture Media prior to 

supplementation with rhVEGF165. (APPENDIX: 2B and 2C. Protocols for VEGF ELISA and 

FGF-2 ELISA).  
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B. Results 

In vitro Pilot Part I  

Small and Large tooth slices were prepared under sterile conditions and were cultured for 

either three or seven days. Following fixation, demineralization, histological processing and 

Factor VIII Immunohistochemistry, microvessel quantification was performed under this 

experimental protocol. Immunohistochemical staining successfully identified microvessels 

(Fig. 11 A-F). 

We observed that after culturing tooth slices in vitro for three and seven days the human 

dental pulps remained viable and the tissues retained the overall histological features of 

normal human dental pulps, with normal odontoblast layers (Fig. 11 A-F). We also noted that 

there was a dramatic reduction in pulpal voiding (Fig. 14) in the histologically processed 5 

μm thick sections. This was a problem we encountered in the first two non pilot rhVEGF165 

experiments, which were conducted prior to the first pilot study.  

This problem was solved by placing the tooth slices retrieved from the culture media, 

immediately into 10% Neutral Buffered Formalin, chilled at 4oC. This dramatically reduced 

pulpal shrinkage.  

Microvessel quantification revealed no significant difference between the groups (Fig. 11 G).  

 

In vitro Pilot Part II 

Small and Large tooth slices were prepared under sterile conditions and were cultured for 

either three or seven days. Groups two and four were cultured in tooth slice culture media 

supplemented with 50 ng/ml VEGF. Following fixation, demineralization, histological 
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processing and Factor VIII Immunohistochemistry, microvessel quantification was 

performed. Immunohistochemical staining successfully identified microvessels (Fig. 12 A-

H). 

We observed that after culturing tooth slices in vitro for three and seven days the human 

dental pulps remained viable and the tissues retained the overall histological features of 

normal human dental pulps (Fig. 12 A-H). We also noted that there was a dramatic reduction 

in pulpal voiding (Fig. 14) in the histologically processed 5 μm thick sections. This was a 

problem we encountered in the first two non pilot rhVEGF165 experiments, which were 

conducted prior to the first pilot study.  

This problem was solved by placing the tooth slices retrieved from the culture media, 

immediately into 10% Neutral Buffered Formalin, chilled at 4oC. This dramatically reduced 

pulpal shrinkage.  

Adding VEGF to tooth slices cultured for seven days resulted in an increase in 

microvessels/high powered field as compared to the untreated controls (p<0.05) (Fig. 12 I). 

We observed that VEGF promoted an angiogenic response in severed human dental pulps, 

which were cultured for seven days in vitro.  

 

In vitro Pilot Part III 

Trace amounts of VEGF and FGF-2 were found in DMEM and 20% FBS (constituent parts 

of Tooth Slice Culture Media), but these amounts were not significant and would not interfere 

with the rhVEGF165 or rhFGF-2, which supplemented the Tooth Slice Culture Media in the in 

vitro and in vivo experimental protocol (Fig. 13 A, B).  
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igure 11. In vitro Pilot Study Part I. (A-F) Tooth slices (small and large) were untreated and 

cultured either for three or seven days. (A-D) Tooth slices cultured for seven days. (E, F) 

Tooth slices cultured for three days. (A, C, E) Representative microscopic fields of Factor 

VIII immunohistochemistry for the identification of blood vessels (red staining) (100x) and 

(B, D, F) (200x). (G) Graph depicts the mean (± SD) number of blood vessels from 15 fields 

per condition. Graph shows that there is no statistically significant difference between the 

groups. 

F
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Figure 12. In vitro Pilot Study Part II. Effect of VEGF on in vitro angiogenesis in human 

dental pulps. (A-H) Tooth slices (small and large) were either untreated or treated and 

cultured either for three or seven days. (C, D, G, H) Tooth slices cultured for seven days. (A, 
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B, E, F) Tooth slices cultured for three days. (A, E, C, G) Tooth slices were untreated or (B, 

F, D, H) cultured in the presence of 50 ng/ml VEGF. A-D Representative microscopic fields 

of Factor VIII immunohistochemistry for the identification of blood vessels (100x) and E-H 

(200x). Note the statistically significant difference between the group treated with 50 ng/ml 

rhVEGF165 for seven days and the two control groups (p<0.05).  
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Figure 13. In vitro Pilot Part III. Quantification of VEGF and FGF-2 in DMEM and 20% FBS 

(constituents of Tooth Slice Culture Media) by ELISA. (A) Graph depicting the mean (±SD; 

not visible as it is a relatively small value) of the pg/ml (Thousands) of VEGF contained in 

Plain DMEM, DMEM+20% FBS, DMEM+20% FBS+10 ng/ml rhVEGF165 and 

DMEM+20% FBS+50 ng/ml rhVEGF165. (B) Graph depicting the mean (±SD; not visible as 

it is a relatively small value) of the pg/ml (Thousands) of FGF-2 contained in Plain DMEM, 

DMEM+20% FBS, DMEM+20% FBS+10 ng/ml rhFGF-2 and DMEM+20% FBS+50 ng/ml 

rhFGF-2. 
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Figure 14. Pulpal voiding. FVIII Immunohistochemical staining of a representative pulp after 

seven days in vitro culture (20x). Pulpal voiding was encountered in the initial tooth slice 

culturing experiments. It occurred due to pulpal shrinkage upon fixation. Shrinkage created a 

concavity in the pulp tissue. Histological sectioning through a concave pulp created a void 

with pulp tissue remaining mostly beneath the pre-dentin layer, with several large voids 

located centrally.   
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2. Laboratory Protocols 
 
A. Immunohistochemical staining protocol for Factor VIII with EnVision™ Systems 
(DakoCytomation, Carpinteria, CA) 
 

1. Bake slides at 37oC for 30 minutes; then bake at 60oC for 30 minutes.  

2. Cool slides at RT for 20 minutes. 

3. Deparaffinize and rehydration 

a. Xylene 1 3mins 

b. Xylene 2 3mins 

c. Xylene 3 3mins 

d. 100% ETOH 2mins 

e. 100% ETOH 2mins 

f. 95% ETOH 2mins 

g. 95% ETOH 2mins 

h. 75% ETOH 5 dips 

i. DDW  1min 

4. Antigen Retrieval 

Immerse slides in 1x Target Retrieval Solution (ref. S1699 DakoCytomation, 

Carpinteria, CA): 9x DDW. Incubate slides at 90oC in a water bath for 30 mins. 

Allow slides to cool for 20 mins. 

Circle tissue on the slides with a PAP Pen. 

Wash slides with 1x wash buffer (ref. S3006 DakoCytomation, Carpinteria, CA).   

5. Endogenous peroxidase blocking 

Place Peroxidase Blocking reagent (ref. K4008 DakoCytomation, Carpinteria, CA) on 

bench to equilibrate at RT. 
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Cover tissue sections with Peroxidase Blocking reagent and incubate at RT for 5 mins. 

Rinse gently with wash buffer. 

6. Primary Antibody 

1:250 dilute Factor VIII (Factor VIII related antigen Ab-1 Rabbit PAb (polyclonal 

rabbit anti-human Factor VIII) ref. RB-281-A Lab Vision Corporation, Neomarkers, 

Fremont CA; Antibody Diluent  (ref. S0809 DakoCytomation, Carpinteria, CA).  

Add primary antibody to slides and incubate at 4oC overnight. 

Rinse gently with wash buffer and remove excess buffer. 

7. Peroxidase Labeled Polymer (ref. K4008 DakoCytomation, Carpinteria, CA) 

Add HRP labeled Polymer, rabbit (AEC+), to each slide. Incubate for 1 hour. 

Rinse gently with wash buffer and remove the excess buffer. 

8. Chromogen development 

Add AEC+ solution (ref. K4008 DakoCytomation, Carpinteria, CA) to each slide. 

Incubate at RT for 3 mins (time dependent on background stain development). 

Stop reaction by placing the slides in DDW for 5 mins. 

9. Counter stain with Hematoxylin 

Place slides in Mayers Hematoxylin (Sigma Aldrich, St Louis, Missouri, MO). 

Rinse under running water to remove excess Hematoxylin. 

Transfer into DDW for 5 mins. 

10. Mount slides with aqueous mounting media and cover slides. 

11. Seal cover slides with Nail Varnish 
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B. FGF-2 ELISA Protocol For Cell Culture Supernate Samples (R & D Systems Inc, 

Minneapolis, MN). 

 

1. Aliquot samples as follows: 

a. 1 ml of DMEM 

b. DMEM + 20% FBS 

c. DMEM + 20% FBS + 10 ng/ml FGF-2 

d. DMEM + 20% FBS + 50 ng/ml FGF-2 

Each total volume of 1ml; giving four samples; allowing for triplication of 

samples 

2. Dilute the two FGF-2 groups by a factor of 100x with plain DMEM (no FBS, 

antibiotics or any growth factor added) to prevent an overflow reading.  

3. Next Steps are preformed using the Human FGF-2 Quantikine Kit (ref. DFB50 R&D 

Systems) 

4. FGF-2 Standard Preparation 

Reconstitute the FGF-2 Standard with 2 ml of the Calibrator Diluent RD5-14. This 

produces a stock solution of 640 pg/ml. Allow the standard to sit for 15 mins with 

gentle agitation prior to making diluents 

5. Standard Dilution Series 

Using eppendorfs pipette 500 µl of Calibrator Diluent RD5-14 into each tube. Use the 

stock solution to produce a dilution series (Fig. 15). 
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6. Assay Procedure (Fig. 16)  

a. Remove excess microplate strips from the plate frame, return them to the foil 

pouch containing the desiccant pack, reseal. Make sure to allow for triplication 

of each sample in the wells. 

b. Add 100 µl of Assay Diluent (RD1-43) to each well.  

c. Add 100 µl of Standard or sample to each well. Cover with the adhesive strip 

provided and incubate for 2 hours at RT. Place the plate into the foil pouch and 

seal it. Record the sample triplication on plate layout sheet provided.   

d. Aspirate each well and wash, repeating the process twice for a total of three 

washes. Wash by filling each well with Wash Buffer (approx 400 µl per 

wash), using a Finnpipette (Fisherbrand). Tap the well plate, gently on the 

bench to obtain complete removal of wash buffer, after the last wash. Wash 

buffer remnants will cause dilution of the assay reagents to be used next, 

interfering with the reaction giving erroneous results.   

e. Add 200 µl of FGF-2 Conjugate to each well. Cover with an adhesive strip. 

Incubate for 2 hours at RT and place the plate into the foil pouch.   

f. Repeat the washing as in step d, being careful to wash correctly so as to 

remove the unbound antibody and wash buffer completely.   

g. In a dark room add 200 µl of Substrate Solution to each well. Incubate for 

approximately 30 mins at RT.  

h. Add 50 µl of Stop Solution to each well, observing a color change in each 

well. If the color change does not appear uniform gently tap the plate to ensure 

through mixing.  
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i. Determine the optical density of each well within 30 mins of step h, using a 

microplate reader set to 450 nm 

7. Re-calculate the concentration of growth factors in the medium by multiplying each 

sample reading from the microplate reader by a factor of 100, to allow for dilution 

(step 2). The standard preparation must be in pg/ml not ng/ml to prevent overflow, as 

pg/ml concentration is the standard which the microplate reader will use to compare to 

the triplicated samples.  

8. Plot a graph using the data.  
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Figure 15. FGF-2 Standard preparation using eppendorfs (R & D Systems). 
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Mix solution A and B. (e.g. 
2000 µL of sol. A + 2000 µL 

of sol. B – 20 wells).  
(Always prepare 200 or 400 

µL more.)   

Cover the plate with 
the adhesive strip 
and keep on the 

bench or seal it in the 
silver pouch 

 

 

 

 

 

Use Multi-channel 
pipette 200µL 
(3X 400 µL). 
Dry by gently 

tapping on the bench 

 

 

 

 

 

 

 

 

 

 

Figure  16. FGF-2 Elisa Assay Summary (R & D Systems). 
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C. VEGF ELISA Protocol for Cell Culture Supernate Samples (R & D Systems Inc, 

Minneapolis, MN) 

 

1. Aliquot samples as follows: 

a. 1 ml of DMEM 

b. DMEM + 20% FBS 

c. DMEM + 20% FBS + 10 ng/ml VEGF 

d. DMEM + 20% FBS + 50 ng/ml VEGF 

Each total volume of 1 ml; giving four samples; allowing for triplication of 

samples 

2. Dilute the two VEGF groups by a factor of 100x with plain DMEM (no FBS, 

antibiotics or any growth factor added) to prevent an overflow reading. 

3. Next Steps are preformed using the Human VEGF Quantikine ELISA Kit (ref. 

DVE00, R&D Systems, Minneapolis, MN) 

4. VEGF Standard Preparation 

Reconstitute the VEGF Standard with 1ml of the Calibrator Diluent RD5K. This 

produces a stock solution of 2000 pg/ml. Allow the standard to sit for 15 mins with 

gentle agitation prior to making dilutions 

5. Standard Dilution Series 

Using eppendorfs pipette 500 µl of Calibrator Diluent RD5K into each tube. Use the 

stock solution to produce a dilution series (Fig. 17). Mix each tube thoroughly before 

next transfer. Calibrator Diluent RD5K serves as the zero standard (0 pg/mL). 

6. Assay Procedure (Fig. 18)  
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e. Remove excess microplate strips from the plate frame, return them to the foil 

pouch containing the desiccant pack, reseal. Make sure to allow for triplication 

of each sample in the wells.  

f. Add 50 µl of Assay Diluent (RD1W) to each well 

g. Add 200 µl of Standard or sample to each well. Cover with the adhesive strip 

provided and incubate for 2 hours at RT. Place the plate into the foil pouch and 

seal it. Record the sample triplication on plate layout sheet provided.   

h. Aspirate each well and wash, repeating the process twice for a total of three 

washes. Wash by filling each well with Wash Buffer (approx 400 µl per 

wash), using a Finnpipette (Fisherbrand). Tap the well plate, gently on the 

bench to obtain complete removal of wash buffer, after the last wash. Wash 

buffer remnants will cause dilution of the assay reagents to be used next, 

interfering with the reaction giving erroneous results.   

i. Add 200 µl of VEGF Conjugate to each well. Cover with an adhesive strip. 

Incubate for 2 hours at RT and place the plate into the foil pouch.   

j. Repeat the washing as in step d, being careful to wash correctly so as to 

remove the unbound antibody and wash buffer completely.   

k. In a dark room add 200 µl of Substrate Solution to each well. Incubate for 

approximately 20 mins at RT.  

l. Add 50 µl of Stop Solution to each well, observing a color change in each 

well. If the color change does not appear uniform gently tap the plate to ensure 

thorough mixing.  
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m. Determine the optical density of each well within 30 mins of step h, using a 

microplate reader set to 450 nm 

7. Re-calculate the concentration of growth factors in the medium by multiplying each 

sample reading from the microplate reader by a factor of 100, to allow for dilution 

(step 2). The standard preparation must be in pg/ml not ng/ml to prevent overflow, as 

pg/ml concentration is the standard which the microplate reader will use to compare to 

the triplicated samples.  

8. Plot a graph using the data from the microplate reader.  
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Figure 17. VEGF Standard preparation using eppendorfs (R& D Systems). 
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Use Multi-channel 
pipette 200µL 
(3X 400 µL). 

Dry by gently hitting 
on the bench 

Cover the plate with 
the adhesive strip 
and keep on the 

bench or seal it in the 
silver pouch 

Mix solution A and B. (e.g. 
2000 µL of sol. A + 2000 µL 

of sol. B – 20 wells).  
Always prepare 200 or 400 

µL more.   

Figure 18. VEGF Elisa Assay Summary (R & D Systems). 
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D. Demineralization Protocol 
 

1. Following Fixation of the severed human dental pulps in 10% Neutral Buffered 

formalin (ref. SF100-4, Fisher Scientific) wash the tooth slices three times with PBS 

1x (ref. 10010 Gibco). 

 

2. Place four tooth slices (maximum) in a 50 ml BD FalconTM Tube (ref. 3521956 BD, 

Biosciences, Franklin Lakes, NJ.). 

 

3. Fill the tube with 40 ml of Decalcifier II (ref 00460 EDTA/HCl; Surgipath). The 

decalcifier is highly corrosive and is a strong acid. Take precautions to protect against 

splashes and spillages. Filling the tube with 40 ml leaves space for an air bubble 

which will assist with fluid flow over the tooth slices, during rotation. 

 

4. Seal the Falcon Tube/s and place them on a rotator (Reciprocating Shaker Model 

Number: 30153. Barnstead International, Dubuque, Iowa, IA) at RT to create fluid 

circulation over the tooth slices.  

 

5. 1 mm thick tooth slices should be exposed to the Decalcifier II for no more than 22-24 

hours. After this time damage to the pulp tissue may occur, this may impair 

immunohistochemcial staining.  

 

6. Remove the tooth slices from the Falcon Tube/s and wash with PBS 1x.  
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7. Trim the demineralized dentin from the periphery of the tooth slices with a razor blade 

(ref. 94-0451 Safety Razor Blade, Verona, VA), leaving approximately 1mm adjacent 

to the fixed pulp tissue. During trimming the level of demineralization can be 

assessed. In general 24 hours of demineralization is sufficient.  

 

8. Place the trimmed tooth slices in a Falcon tube containing 15-30 ml of 70% ETOH.  

 

9. The tooth slices are now ready for histological processing. 
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E. Acquiring TIFF images, Grid Application and Microvessel Quantification of Severed 

Human Pulps using Image Pro Plus 

 

Part I: Acquiring TIFF Images  

 

1. Place a single histology slide in the slide mount of the microscope (Eclipse E800, 

Nikon, Melville, NY).  

 
 

2. Open Image Pro Plus (version 5.1.2.59 for Windows XP. Media Cybernetics Inc, 

Silver Spring, MD). Click on Acquire in the drop down menu and scroll to Scan. 

 

3. This will open the Camera (Spot RT, Diagnostic Instruments Inc, Sterling Heights, 

MI) window. Click on the Live button (top left of the open window). This displays a 

live image of the histology slide at whatever power the objective lense of the 

microscope is set to. Images should be acquired on the Brightfield-Transmitted light 

setting, as seen in the Camera window (bottom). 

 

4. On Live image open window, click on the controls icon (bottom of the Live image 

window). Click on the drop down menu for Filter Color and scroll to the Clear setting 

from the current RGB setting. This changes the color setting of the live image, to 

clear. It is best to use this mode when selecting the correct fields after grid 

application. This prevents image blurring and allows Image Pro Plus to process the 

image in a faster fashion. The full chip selection box on the open window must be 

 97



selected. Before you acquire an image set the Filter Color to RGB.  

 

5. Click Snap in the open window. This acquires the image and it appears in another 

window. All pictures taken must be saved in TIFF and not as a JPEG file. TIFF offer 

better resolution, which is important when counting microvessels from images, 

obtained using the 200x objective. TIFFs should be converted to JPEG if they will be 

used in a manuscript or a publication.  

 

 

Part II: Grid Application 

 

1. Obtain an image as described above but with the 20x objective and save it as a TIFF. 

A Grid is then applied to the 20x TIFF image (of for example, the complete tooth 

slice). 

 

2. From the drop down menu, click Process and scroll to Create Mask.  On the open 

window, verify that the grid spacing parameters are set to 160.4 and 100.4. Select 

Lines in the Objects column and Orthogonal in the Layout column. These specific 

settings create lined grid boxes, which are the same size as the image obtained with 

the 200x microscope objective.  Specific fields are then selected after the grid is 

superimposed on the TIFF image.   

 

3. Click Apply, followed by Create Mask and then click OK.  From the drop down 
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menu, click Process and scroll to Image Overlay. Select the image, which the grid will 

be superimposed on from the Transparency drop down menu. Click Overlay in the 

open window.  

 

4. Move the grid which was over laid, on the source image. Once it is in the appropriate 

position click Merge. This merges the grid with the 20x TIFF image in the form of a 

grayscale picture. Save this image. This can be printed and fields are chosen at 

random using this printed image. 200x TIFFs are then obtained of these chosen fields, 

by moving the microscope stage and thus the histological slide to the correct grid 

location. Use the printed image as a guide (Fig. 7).  

 

Part III:  Microvessel Counting using Image Pros Plus Manual Tag 

 

1. Open a saved 200x TIFF that was obtained from a specific grid reference. 

 

2. From the drop down menu, click Measure and scroll to Manual Tag. Manual tagging 

allows individual microvessel counting and in doing so, a number is applied to each 

microvessel (red stained by Factor VIII Immunohistochemistry; APPENDIX). This 

prevents double counting of microvessels as could occur by manual counting.  

 

 

3. Click on Tag points in the open window. The Add New Points window opens. Click 

on a microvessel in the 200x TIFF image. This places a number next to the specific 
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microvessel and now a Total Count is recorded.   

 

4. Total counts from the 200x fields/tooth slice are input into an excel spreadsheet. Data 

is then input into SigmaStat for statistical analyses (MATERIALS and METHODS).  
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F. Preparation of Tooth Slices with No Severed Human Dental Pulp Tissue for Implantation 

into Severely Combined Immunodeficient Mice 

Vital, non-carious and non-restored human third molars from patients not older than 30 years 

of age were collected from the Oral Surgery Department of the University of Michigan 

School of Dentistry, Ann Arbor, Michigan. After extraction the teeth were immediately 

placed into sterile Transport Medium (High glucose DMEM (Sigma Chemical Co.) 

supplemented with 5 ml L-glutamine (Gibco) 200 mM, 5 ml of 10,000 units of penicillin and 

10 mg/ml streptomycin (Gibco) and 1 ml Amphotericin B (Sigma) 1.25 mg/l). 

The teeth were surface disinfected using a sterile gauze swab soaked in 70% ethanol solution. 

Excess soft tissue covering the root surface was removed by trimming with a sterile curette.   

 

Preparation of Specimens 

Teeth were fixed to a wooden block (3 cm x 3 cm x 1.5 cm) by self curing acrylic (Coldpac, 

tooth acrylic, Moltoid, Chicago, IL ref 44100) and these blocks were attached to an Isomet 

Low Speed (Model 650, South Bay Technology, Inc.) saw mount. The teeth were cut into 

sections of 1 mm thickness with a lapidary blade 303 Series (MK-303 Professional – Mk 

Diamond Products Inc.) and cooled with sterile PBS-1x-phosphate buffered saline (ref. 10010 

Gibco). The sterility of the saw was maintained by washing with 70% ethanol and sterile 

PBS. 

The pulp tissue was removed from each tooth slice with a sterile curette. Once the pulp was 

removed the pulpal-dentin junction was scrapped with the curette (kindly donated by the 
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Department of Periodontics and Oral Surgery, University of Michigan School of dentistry, 

Ann Arbor)  so as to completely remove any remaining pulp tissue.  

The above procedure was repeated until 12 tooth slices (six tooth slices with no pulp tissue 

per experiment) with no pulp tissue were deemed suitable for SCID mouse implantation.  

 

Storage of Tooth Slices Prior to Implantation 

The 12 slices were then placed into a 50 ml BD FalconTM Tube (ref  3521956 BD, 

Biosciences, Franklin Lakes, NJ.) containing 15ml of 70% ETOH. The ETOH storage 

disinfects the tooth slices prior to implantation.  

The day before implantation six tooth slices were removed from the 70% ETOH, in the 

laboratory fume hood and are washed three times in sterile PBS 1x (Gibco). Each slice is 

placed into a well of a 6 well plate, containing 5ml of PBS 1x. The well plate is sealed with 

parafilm (ref. 52858-000 Parafilm MTM.) and placed in a refrigerator.  

The day of the implantation surgery the tooth slices are removed from the refrigerator and 

removed from the PBS 1x and are implanted into the dorsal subcutaneous tissues of the SCID 

mice.  
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G. IRB and UCCA Protocols 
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