
UMURF							 40						 Issue 6

Study of Cell Orientation Alignment in Response to Cyclic
Mechanical Stresses
Arsalan Ahmed
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract
A number of studies have been performed on the subject of

‘Cell Orientation Alignment’ caused by mechanical stresses
applied to sample substrates. Cells in most solid tissues
(muscles, tendons, skin) have a characteristic alignment. How
does this develop? Current research indicates that when cells
on a two-dimensional substrate are subject to stress, either by
stretching the substrate, by subjecting them to a well-aligned
flow, or by other means, they reorient and align themselves in
preferred directions.

Figure 1: Cells before stretching

Figure 2: Cells after stretching

(Images 1-3 courtesy of Simon Jungbauer and Ralf Kemkemer, Max Planck
Institut fuer Metallforschung, Stuttgart)

An understanding of these responses of cells to mechani-
cal stimuli will have implications for mechanical inhibition
of cancer cells and promotion of stem cell activity. If the
behavior of cells can be formulated mathematically it would
make it would aid in detecting cancerous cells, making it
easier for medical specialists in eliminating the disease in
its initial stages before it spreads around the entire body. It
is well established that biological cells (i.e.: Fibroblasts and
Rat Embryonic Fibroblasts (REF)) tend to align away from
the stretching direction.1 Most observations suggest that these
cells tend to align in the direction of least substrate stress or
in other words, they tend to align perpendicular to the direc-
tion of applied stress. The exact mechanism by which this
process takes place has not been investigated thoroughly. The
objective of this research is to perform experimental measure-
ments on sample cells and to use mathematical modeling to
help quantitatively describe a cell’s morphological response
to stretching. Specifically, the goal of this research project
is to determine the relationship of cell orientation relative to
the horizontal with respect to time. This was done by generat-
ing an exponential relation of cell orientation as a function of
time and validating it by fitting this mathematical model to
actual experimental data. 	

Overview

Figure 3: A schematic model of a biological cell indicating the major &
minor axes and the orientation of cell.1

A simple schematic model of a cell is shown in Figure 3.
A typical 2D cell model is made up of a chain of polymers
called stress fibers arranged parallel to each other lying along
the major axis of the cell. Orthogonal to the major axis is the
minor axis. These axes are useful in defining the orientation
of a cell. In Figure 1, corresponds to the cell orientation
with respect to the horizontal.

To study the cell orientation of such a model we derived

Figure 4: illustrates a schematic model of a microgrooved silicone
dish (cell sample inserted) undergoing cyclic stretching in vertical and
horizontal direction.2

UMURF							 41						 Issue 6

Research Article

a mathematical expression that represents the orientation of
a cell under cyclic stretching. It is based on the idea of net
polymerization of stress fibers.

The strain energy at an arbitrary orientation cos() in a
cell sample is given by equation 1:

		 (Eq#1)
							

					 (Eq#2)

Where E is Young’s modulus, A is the area; l is length, 0U is
the initial strain energy and is the strain amplitude.

The net polymerization rate = (Eq#3)

In the above expression Fk and Rk are the Forward and
Reverse reaction rates.

Equations 1-3 are the primary equations which aided us to
construct a concise mathematical formula describing the cell
orientation. After performing numerous intermediate opera-
tions the final expression reduces down to:		

				
				 (Eq#4)
				
							

				 (Eq#5)

Equation #4 is the exponential fitting function which
describes the orientation of substrate cells as a function of
time. is the initial fit value and is the final fit value of the
exponential curve, t is time and is the time constant. r is
simply a ratio of the difference of the fit values to the sum of
fit values. Time constant is used to indicate how rapidly an ex-
ponential function decays. Equation #4 is the most important
equation in our research study. Most of the raw data collected
from the experiment was finally utilized to create a fitting
function for cell orientation over a period of time.

Experimental Setup

Under a separate study of cellular activities in response to
cyclic mechanical stresses, tendon fibroblasts were attached
to silicone dishes with grooved surfaces and were bi-axially
stretched in parallel and normal directions. The fibroblasts
would then align with the microgrooves before any cyclic
stresses were applied to the silicone substrate.2 Such experi-
ments were performed under different temperatures and cyclic
frequencies.

Cells were cultured in custom designed microgrooved
silicone dishes under controlled temperatures. Three tem-
peratures chosen for such experiments were 17°C, 29°C, and
37°C. Custom built apparatus were used to cyclically stretch
the substrate sample under different frequencies ranging from
1-20Hz at the three desired temperatures. Temperatures lower
and higher than room temperature (~ 25°C) were chosen to
determine if the cell sample behaved uniformly and normally.
The silicone dish was placed at the center of the apparatus to
maintain uniform stretching of cells both in the horizontal and
vertical direction in 2D space (refer to Figure 4). The loaded
specimen would then be cyclically stretched for about 500
minutes under constant temperature and frequency. Numerical
data corresponding to the cells’ 2-D coordinates and orienta-
tion were collected in intervals of 50 seconds. (All image
processing was done by our collaborators at Max Planck
Institut fuer Metallforschung in Stuttgart Germany producing
raw data for post processing).

The recorded data consisted of the following quantities:

Table 1: lists all the physical quantities recorded from lab experiments.

Since the cells are not labeled, the initial task was to sort
the data and group in to each single cell. The above listed
quantities along with computer codes were used to sort data
for specific cells. From there on we investigated the cell ori-
entation in further detail.

Data Analysis

Most of the data processing was done using MATLAB.
Most experimental data corresponded to temperatures of
17°C, 29°C & 37°C for different frequencies ranging between
1-20 Hz. The four main type of file used for analysis were:
Data input files, sorting file, and two files used for data fitting.
Further details are provided below.

Input Data File: input_FL/REF_##C_##Hz.m
After the recorded data was collected in a spreadsheet, it

was imported into a Matlab file which included quantities like
perimeter, major & minor axes, x & y coordinates, pic num-
ber, cos(2) values, nmax and ntimcut. nmax is the number of
data entries and ntimcut is the number of time sets recorded
during the experiment. Data was collected into groups of dif-
ferent temperatures and frequency; for instance, ‘FL17C_1Hz’
indicates Fibroblast Cells at 17 degree Celsius operating under
a driving frequency of 1Hz. The same classification was used
for Rat Endothelial Fibroblast Cells (REF).

Original Sort File: sort_angle_092508_arsalan.m
The original sorting file was written by Professor Krishna

Garikipati and used to produce a complete preliminary analy-
sis of the data files. From the MATLAB data files, the vari-

UMURF							 42						 Issue 6

Research Article

ables are first separated and stored in individual arrays. The
number of cell data for each time step is also noted and stored
in the array ncell. Using the time step ntmin with the least
number of cells, the data is then sorted according to individual
cells. This is done by identifying the x and y coordinates of a
particular cell at time step t, and matching them to the closest
cell at time step t – 1 and t + 1. This matching process propa-
gates until a cell is fully matched up from the start to the end
of the experiment. This is done for all the cells available at
time ntmin. The final data array is stored in xs (x-coordinate),
ys (y-coordinate), and 's (orientation angle) with individual
cell data down the rows, and time steps increasing across the
columns.3

A check is performed to ensure that the coordinates of
individual cells do not exceed a certain limit value. Cells that
fail this condition are flagged.

The final data of cells is arranged in three orientation
groups:

The cell orientation is then averaged by dividing the orien-
tation by the number of cells (ncell) in that group. If a specific
orientation group does not contain any cells, then the analysis
associated with that group is ignored. Once all the sorting has
been done, the mathematical fitting function described above
is implemented in the code. The user is prompted to enter
three unknown quantities: ‘tau, xib, xi0’ for each group set
followed by a least square calculation. Further details on how
the three quantities were obtained are explained in following
subsections. (All image processing was done by our collabo-
rators at Max Planck Institut fuer Metallforschung in Stuttgart
Germany producing raw data for post processing).
Fitting function #1: recfun1.m

This is a short piece of code that reads in time and experi-

mental data. Using this data it computes the exponential func-
tion for the specific orientation group. This function is called
in the second fitting function called recfit1.m explained below.

Fitting function #2: recfit1.m

This MATLAB file is used for computing the exponential
fitting curve and determining the least square value associ-
ated between the fit curve and experimental data. Least square
value indicates the accuracy of the fit. The closer the value is
to 0, the stronger the fit. Boundary conditions are applied to
determine tau, xib and xi0. Tau is the time constant of the fit
curve, xi0 is the starting value and xib is the final value of the
exponential curve. This piece of code uses the MATLAB com-
mand “lsqnonlin”. ‘lsqnonlin’ solves nonlinear least-squares
problems, including nonlinear data-fitting problems.

Computation Method

To obtain optimal values of xib, xi0 and tau, a number
of specific operations are performed. Starting with the input
data file, we run this file, which creates an array of all the
physical quantities listed in this report followed by compil-
ing sort_angle_092508_arsalan.m. We then collect the time
and cosphi1, 2, 3 arrays and import them into recfit1.m.
cosphi1,2 & 3 correspond to cell orientation groups of

 respectively. Per-
forming this iteration helps us in determining optimal values
for xib, xi0, tau and least square values for each orientation
group.

Computational Results

After performing multiple experiments and data analysis,
optimal values were obtained. These results are presented in

Figure 5: Data and Curve fit plot for FL 17C 1Hz

UMURF							 43	 					 Issue 6

Research Article

Figure 6: Data and Curve fit plot for FL 29C grad120806

Figure 7: Data and Curve fit plot for FL 37C 1Hz

UMURF							 44						 Issue 6

Research Article

Figure 8: Data and Curve fit plot for FL 37C 2Hz

Figure 9: Data and Curve fit plot for FL 37C 5Hz

UMURF							 45	 					 Issue 6

Research Article

Figure 10: Data and Curve fit plot for FL 37C 10Hz

Figure 11: Data and Curve fit plot for FL 37C 20Hz

UMURF							 46						 Issue 6

Research Article

Figure 12: Data and Curve fit plot for REF 17C 10Hz

Figure 13: Data and Curve fit plot for REF 29C 02Hz

UMURF							 47	 					 Issue 6

Research Article

Figure 14: Data and Curve fit plot for REF 37C 01Hz

Figure 15: Data and Curve fit plot for REF 37C 02Hz

UMURF							 48						 Issue 6

Research Article

Figure 16: Data and Curve fit plot for REF 37C 05Hz

Figure 17: Data and Curve fit plot for REF 37C 10Hz

UMURF							 49	 					 Issue 6

Research Article

the figures below:
Figures 5-17 illustrate best-fit curves and the least square

values for different conditions. These results show that the
mathematically generated exponential curves are a good fit
to the experimental data. In all cases the least square value is
close to zero, indicating a strong correlation between the ex-
ponential curve and the actual test data. For different tempera-
ture and strain rate the cell orientation obeys the exponential
relation with time. This suggests that our mathematical model
for cell orientation is reasonably accurate. Thus we have
successfully quantified the cellular orientation with respect to
time. We observe that in most cases all three orientations in
each experiment converge to a common value, indicating that
over a long period of time all cells tend to align in the same
orientation.

Conclusion

The data analysis of rates of cell-reorientation is able to
provide us with useful information about the mechanism that
the cell adopts to achieve the observed results. Why is this
important? Restate that cells tend to align in same orientation
and what this means for any applications. Revisit the idea of
inhibition of cancer and promotion of stem cells. The reader
need to know why this research is relevant. By character-
izing their stress response what has the scientific community
gained? These experimental data can be further refined in
order to provide results that are close to the actual behavior
of the cells and to eliminate many errors associated with our
results. The experiments produced very useful results. Dif-
ferent temperatures and frequencies were applied to validate
our hypothesis. A strong correlation is present between the
experimental data and the mathematical model. In order to
further excel in cell research, repeated experiments should be
performed under the same conditions in order to make further
comparisons. In this way discrepancies between data sets of
similar conditions can be easily determined. If such discrepan-
cies exist, this research could be further expanded to re-derive
a more accurate model. More physical quantities should be
included to make our model more accurate and minimize er-
rors. A better algorithm should be constructed to collect and
process raw data, speeding up the computational process.

This research was primarily performed to quantify biologi-
cal studies in order to prepare accurate mathematical models
for future research studies in the field of cell mechanism. A list
of MATLAB codes have been provided in Appendix A which
have been useful for calculating experimental data.

References

H. C. Wang, P. Goldschmidt-Clermont, J. Wille, F. C. Yin, 1.
“Specificity of endothelial cell reorientation in response to
cyclic mechanical stretching”, Journal of Biomechanics 34,
2001
H. C. Wang, G. Yang, Z. Li, W. Shen, “Fibroblast responses 2.
to cyclic mechanical stretching depends on cell orientation to
the stretching direction”, Journal of Biomechanics 37, 2004
Chun Yang Ong, “3. Study of Cell Orientation Alignment in Re-
sponse to Cyclic Mechanical Stresses”, ME 490: Independent
Study, 2007

Appendix A: MATLAB Codes
sort_angle_092508_arsalan.m
%Sort data on cell positions and orientations over a range of time steps.
%First sort by time.

%time step
ntmstp = 0;
% nmax is the number of data entries in the input file
for i = 1:nmax
 if (pic(i,1) == 100000)
%time step increment
 ntmstp = ntmstp + 1;
%allots different times for different pic values. for instance
%for pic=6:(6-1)*50=250 sec
t(ntmstp) = pic(i+1,1)*1.0; %(pic(i+1,1))*1.0;
 if (ntmstp > 1)
%measures how many cells are between successive “00’s” (a counter:ncell)
 ncell(ntmstp-1) = j ;
 end
 j = 0;
 else
%when pic is not == 0 then input data values are assigned to new set of
%arrays xst,yst,phist,etc.
 j = j+1;
 xst(j,ntmstp) = x(i,1);
 yst(j,ntmstp) = y(i,1);
 phist(j,ntmstp) = phi(i,1);
 minorst(j, ntmstp) = minor(i,1);
 majorst(j, ntmstp) = major(i,1);
 perist(j,ntmstp) = peri(i,1);
 end
end
%repetition of ncell above
ncell(ntmstp) = j;
%Find time with minimum number of cells. ntmin is the time number with
minimum number of cells
ntmin = 1;
for i = 2:ntmstp
%simple for loop that checks for the time set that has the minimum number
of cells
%using ’ncell’ and ’t’
 if (ncell(i) < ncell(ntmin))
%in this for loop ’ntmin’ is the array number with the minimum number of
cells.
%’tmin’ being the time of the minimum cell group
 ntmin = i;
 tmin = t(ntmin);
 end
end
%Read data from this time into final sorted array
for j = 1:ncell(ntmin)
 xs(j,ntmin) = xst(j,ntmin);
 ys(j,ntmin) = yst(j,ntmin);
 phis(j,ntmin) = phist(j,ntmin);
 minors(j,ntmin) = minorst(j,ntmin);
 majors(j,ntmin) = majorst(j,ntmin);
 peris(j,ntmin) = perist(j,ntmin);
end
%Propagate the sort to times i < ntmin. Always compare data from successive
%times. The algorithm below ensures that ncell in a sorted
%array = ncell(ntmin).
for i = 1:ntmin-1
 k = ntmin-i;
 for j = 1:ncell(ntmin)
 dmin = sqrt((xs(j,k+1)-xst(1,k))^2 + (ys(j,k+1)-yst(1,k))^2);
	 xs(j,k) = xst(1,k);
	 ys(j,k) = yst(1,k);
	 phis(j,k) = phist(1,k);
 for l = 2:ncell(k)
 dchk = sqrt((xs(j,k+1)-xst(l,k))^2 + (ys(j,k+1)-yst(l,k))^2);
	 if (dchk < dmin)
 dmin = dchk;

UMURF							 50						 Issue 6

Research Article
		 xs(j,k) = xst(l,k);
		 ys(j,k) = yst(l,k);
	 phis(j,k) = phist(l,k);
	 end
 end
	 dminn(j,i) = dmin;
 end
end	
%Propagate the sort to times i > ntmin. Always compare data from successive
%times. The algorithm below ensures that ncell in a sorted
%array = ncell(ntmin).
for i = ntmin+1:ntmstp
 for j = 1:ncell(ntmin)
 dmin = sqrt((xs(j,i-1)-xst(1,i))^2 + (ys(j,i-1)-yst(1,i))^2);
	 xs(j,i) = xst(1,i);
	 ys(j,i) = yst(1,i);
	 phis(j,i) = phist(1,i);
 for l = 2:ncell(i)
 dchk = sqrt((xs(j,i-1)-xst(l,i))^2 + (ys(j,i-1)-yst(l,i))^2);
	 if (dchk < dmin)
 dmin = dchk;
		 xs(j,i) = xst(l,i);
		 ys(j,i) = yst(l,i);
	 phis(j,i) = phist(l,i);
	 end
 end
	 dminn(j,i) = dmin;
 end
end	
%Run check on maximum changes in centers of mass
for j = 1:ncell(ntmin)
 if (max(dminn(j,1:ntimcut)) > 100.0)
 nflag(j) = 1;
 else
 nflag(j) = 0;
 end
end
%Obtain cosines
for i = 1:ntmstp
 cosphi1(i) = 0.0;
 cosphi2(i) = 0.0;
 cosphi3(i) = 0.0;
end
%Group cells by initial orientation
ncell1 = 0;
ncell2 = 0;
ncell3 = 0;
for j = 1:ncell(ntmin)
 if (phis(j,1) >= 2*pi/3) %%%% al angles changed from degrees to radians
 ncell1 = ncell1 + 1;
 elseif ((phis(j,1) < 2*pi/3) & (phis(j,1) >= 2*pi/6))
 ncell2 = ncell2 + 1;
 else
 ncell3 = ncell3 + 1;
 end
end
for j = 1:ncell(ntmin)
 for i = 1:ntmstp
 cosphi(j,i) = cos(phis(j,i)*1.0); %%%%%%%%%%%%%changed from
*pi/180 to *pi/90
 if (phis(j,1) >= 2*pi/3)
 cosphi1(i) = cosphi1(i) + cosphi(j,i);
 elseif ((phis(j,1) < 2*pi/3) & (phis(j,1) >= 2*pi/6))
	 cosphi2(i) = cosphi2(i) + cosphi(j,i);
	 else
	 cosphi3(i) = cosphi3(i) + cosphi(j,i);
 end
 end
end
cosphi1 = (1.0/ncell1)*cosphi1;
cosphi2 = (1.0/ncell2)*cosphi2;
cosphi3 = (1.0/ncell3)*cosphi3;

%Fitting for cosphi1..
tau = input(‘Tau for cells above 60 deg: ‘);
xib= input (‘xib for cells above 60 deg: ‘);
xi0 = input(‘xi0 for cells above 60 deg: ‘);

ratio_1=(xi0 - xib)/(xi0 + xib);
for i = 1:18
 fit_1(i) = xib*(1 + ratio_1*exp(-2*xib*t(i)/tau))/(1 - ratio_1*exp(-
2*xib*t(i)/tau));
 %fit_1(i)=2*((fit_1(i)).^2) - 1; %%%%%%%%%EXTRA LINE ADDED
FOR TEST
 fit_1(i) = 2*(fit_1(i)) -1; %%%%%%%%%%%%%%% NEW LINE
ADDED
end
%least square cosphi1
lsquare_1 = 0;
for i = 1:18
 lsquare_1 = lsquare_1 + (cosphi1(i) - fit_1(i))^2;
end
ls_1 = [‘Least Square 1 = ‘ num2str(lsquare_1)];
tau1 = [‘tau 1 =’ num2str(tau)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Fitting for cosphi2..
tau = input(‘Tau for cells between 30 and 60 deg: ‘);
xib= input (‘xib for cells between 30 and 60 deg: ‘);
xi0 = input(‘xi0 for cells between 30 and 60 deg: ‘);
ratio_2=(xi0 - xib)/(xi0 + xib);
for i = 1:18
 fit_2(i) = xib*(1 + ratio_2*exp(-2*xib*t(i)/tau))/(1 - ratio_2*exp(-
2*xib*t(i)/tau));
 %fit_2(i)=2*((fit_2(i)).^2) - 1; %%%%%%%%%EXTRA LINE ADDED
FOR TEST
 fit_2(i) = 2*(fit_2(i)) -1; %%%%%%%%%%%%%%% NEW LINE
ADDED
end
%least square cosphi2
lsquare_2 = 0;
for i = 1:18
 lsquare_2 = lsquare_2 + (cosphi2(i) - fit_2(i))^2;
end
ls_2 = [‘Least Square 2 = ‘ num2str(lsquare_2)];
tau2 = [‘tau 2 =’ num2str(tau)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Fitting for cosphi3..
tau = input(‘Tau for cells between 0 and 30 deg: ‘);
xib= input (‘xib for cells between 0 and 30 deg: ‘);
xi0 = input(‘xi0 for cells between 0 and 30 deg: ‘);
ratio_3=(xi0 - xib)/(xi0 + xib);
for i = 1:18
 fit_3(i) = xib*(1 + ratio_3*exp(-2*xib*t(i)/tau))/(1 - ratio_3*exp(-
2*xib*t(i)/tau));
 %fit_3(i)=2*((fit_3(i)).^2) - 1; %%%%%%%%%EXTRA LINE ADDED
FOR TEST
 fit_3(i) = 2*(fit_3(i)) -1; %%%%%%%%%%%%%%% NEW LINE
ADDED
end
%least square cosphi3
lsquare_3 = 0;
for i = 1:18
 lsquare_3 = lsquare_3 + (cosphi3(i) - fit_3(i))^2;
end
ls_3 = [‘Least Square 3 = ‘ num2str(lsquare_3)];
tau3 = [‘tau 3 =’ num2str(tau)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(2);
xlabel(‘t’);
ylabel(‘cos(2\phi)’);

UMURF							 51	 					 Issue 6

Research Article
xlim([0,t(18)]);
ylim([-1.0 1.0]); %CHANGE LIMIT FROM -1<Y<1 TO -2<Y<2
hold on;
plot(t(1:18),cosphi1(1:18),’bo’,t(1:18),cosphi2(1:18),’g*’,t(1:18),cosphi3(1:1
8),’rs’,t(1:18),fit_1(1:18),’-b’,t(1:18),fit_2(1:18),’-g’,t(1:18),fit_3(1:18),’-r’);
legend(‘\pi/3 <= \phi_0 <= \pi/2’,’\pi/6 <= \phi_0 <= \pi/3’,’0 <= \phi_0 < \
pi/6’,’fit 1: \pi/3 <= \phi_0 <= \pi/2’,’fit 2: \pi/6 <= \phi_0 <= \pi/3’,’fit 3: 0
<= \phi_0 < \pi/6’);
text(0.4e4, 0.9, ls_1);
text(0.4e4, 0.8, tau1);
text(1.2e4, 0.9, ls_2);
text(1.2e4, 0.8, tau2);
text(2.0e4, 0.9, ls_3);
text(2.0e4, 0.8, tau3);

recfun1.m
function y=recfun1(b)
global data;

t=data(:,1);
Rexp=data(:,2);
%b(1)=xi0 b(2)=xib b(3)=tau
Rcal=b(2)*(1 + ((b(1)-b(2))./(b(1)+b(2)))*exp(-2*b(2)*t/b(3)))./(1
- ((b(1)-b(2))./(b(1)+b(2)))*exp(-2*b(2)*t/b(3))); % the calculated
value from the model
Rcal_2theta=2*(Rcal) - 1;
%y=sum((Rcal-Rexp).^2);
y=Rcal_2theta-Rexp;
% the sum of the square of the difference between calculated value
and experimental value

recfit1.m
global data;
data=[
0	 0.8613
250	 0.8616
500	 0.8661
1250	 0.8565
2500	 0.5498
3750	 0.4057
5000	 0.2778
6250	 0.2189
7500	 0.235
8750	 0.2149
10000	 0.4424
11250	 0.1236
12500	 0.0889
15000	 0.0549
17500	 -0.033
20000	 0.0246
25000	 -0.1591
30000	 -0.1475]; % experimental data FOR “COS
2PHI”
t=data(:,1);
Rexp=data(:,2);
plot(t,Rexp,’ro’); % plot the experimental data
hold on
b0=[0.875 0.17 5500]; %b0=[0.6 0.001 5000]; %
start values for the parameters
options=optimset(‘MaxFunEvals’,100000000); %Max number of
function evaluations
options=optimset(‘MaxIter’,10000000); %Max number of
function evaluations
lb = [0.75 0.1 3500]; %Lower bound on b
ub = [1.00 0.4 10500]; %Upper bound on b
b=lsqnonlin(‘recfun1’,b0,lb,ub,options) % run the lsqnonlin with
start value b0, returned parameter values stored in b

Rcal=(b(2)/1)*(1 + ((b(1)-b(2))./(b(1)+b(2)))*exp(-2*b(2)*t/b(3)))./(1 -
((b(1)-b(2))./(b(1)+b(2)))*exp(-2*b(2)*t/b(3))); % calculate the fitted value
with parameter b
bfinal=b’;
%%%%%%% EXTRA LINE TO SHIFT THE CURVE
Rcal_2theta=2*(Rcal) - 1;
plot(t,Rcal_2theta,’b’); % plot the fitted value on the same
graph
xlabel(‘t’)
ylabel(‘cos(2\phi)’)

