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The optimal shape of flying wings for subsonic and transonic speeds is examined using high-fidelity
numerical optimization tools. The first result in the study is a lift-constrained drag minimization,
performed on an un-swept, rectangular wing. By varying the spanwise twist distribution of the wing
we are able to reproduce the elliptic optimum predicted by low speed inviscid theory. Using this re-
sult as a reference, we explore four different optimization formulations, considering the addition of
bending moment constraints, static stability constraints and dynamic stability constraints. In each
case, we explore the design space of the problem using both planform and surface shape variables
to determine the optimal shape. Using these techniques, we show that the addition of stability con-
straints has a significant impact on the optimal surface shape of the wing. In particular, we show that
at lower speeds, airfoil shape is sufficient to satisfy static stability constraints, while dynamic stability
constraints require the addition of sweep. We also show that at higher speeds, shape is insufficient to
satisfy either stability constraint, static or dynamic, and that the addition of sweep is necessary.

I. Introduction

The design of flying wing aircraft is a complex, coupled problem. In addition to the strong aerostructural coupling
seen in typical aircraft design, there is a strong coupling between the aerodynamic efficiency of the outer mold line
(OML) and the trim and stability of the aircraft. This strong coupling requires a delicate balance between optimizing
the aircraft for aerodynamic performance and maintaining the necessary stability characteristics of the aircraft [1].
Thus, multidisciplinary design optimization (MDO) is an invaluable tool in flying wing design. While stability char-
acteristics have been considered in aircraft MDO using lower fidelity tools [2, 3], as efficiency standards are increased,
more accurate, higher fidelity analyses will be required in the design process to make the most of new configurations.
Further, while high-fidelity aerodynamic optimization has matured significantly over the last 20 years [4, 5, 6, 7], the
ability to consider stability characteristics using the same high-fidelity aerodynamic information has not been incor-
porated in these studies. In this work, we examine a series of increasingly complex optimization problems to study
the effects that various structural and stability constraints have on the optimal design. In particular, we examine the
trade-offs between optimal aerodynamic performance and the limits imposed by structural and stability constraints.
The consideration of stability is enabled by the recently developed time-spectral stability derivative method [8], which
efficiently computes stability derivatives, and their sensitivities, using computational fluid dynamics (CFD).

The main body of this study is arranged in five sections. Section |1 provides a brief overview of the tools and meth-
ods used in the study, while providing references to other work with more details on each method or tool. Section 11
then provides a review of MDO methods with particular emphasis on the techniques used in this work. Section IV
introduces the design problem and discusses the various optimization formulations that are used in the study. Finally,
Sections V and V1 present the results of the study, first examining the qualitative trends of the solutions, then following
up with a discussion of the precise numerical results obtained in each case.

Il. Methodology

The methodologies used to conduct this study are driven by two main factors: the desire to consider transonic
aircraft, and the desire to consider stability constraints. The first consideration necessitates, at a minimum, the solution
of the Euler equations using CFD. The second requires the computation of the stability characteristics of the aircraft
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along with their sensitivities with respect to the design variables of interest. In this section, we give a brief overview
of the techniques and methods used to conduct this study, while referring the reader to references for more details.

A. Euler CFD

The core module of the following study is a high-fidelity CFD solver. The tool used in this particular case is SUmb [9],
which can solve the Euler equations as well as the fully turbulent Reynolds-averaged Navier-Stokes (RANS) equa-
tions. For this study we have limited ourselves to the steady and time-spectral Euler equations. In this context, with a
moving-grid formulation included for use with the time-spectral equations, the governing equations can be written as:
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where y; are the coordinates in the i direction. The states and fluxes can then be written as:
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where w represents the velocity of the grid. Mader and Martins [10] provide a detailed derivation of this formulation
as applied to SUmb.
For the steady cases we write Equation (1) as:

e .
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and solve for R( ) = 0.
For the time-spectral case, we start with Equation (3) and modify the time derivative to be the spectral operator
derived by Gopinath [11], yielding:
Rrs()=D¢ "+R( ") =0; 4

D¢ is a spectral operator that spans all N time instances in the solution and n represents each of those N time instances.
By solving the N coupled time instances, we obtain a coupled set of solutions that represent the periodic, steady-state
solution to the given time-spectral problem.

The solution of either Equation (3) or (4), produces a field solution of the aerodynamic states from which the
necessary values of lift, drag and moment can be calculated. Further, as described in Section F, the time-spectral
solution of Equation (4) also provides the information necessary to evaluate certain stability derivatives that are needed
for the constraints described in Section G.

B. MDO Framework

In addition to the flow solver, which is the main tool used in this work, there are a number of other tools that are
necessary to complete the presented optimizations. These include tools for optimization, geometry handling, mesh
handling and a variety of simple auxiliary analysis necessary for the computation of the various constraints. In the
following section, we briefly describe each of these tools.

1. Optimization Algorithm

The optimization tool used in this work is pyOpt [12], a Python based optimization framework that allows the user
to access, through a common interface, a variety of numerical optimization packages. Because the cost of a single
CFD solution is relatively high, we have chosen to use gradient-based optimization techniques for this study. pyOpt
provides interfaces to a variety of gradient-based optimizers, both open source and licensed. In this work, we have
chosen to use the pyOpt interface to SNOPT [13], which is an SQP based optimizer, because SNOPT is proficient at
handling large nonlinear optimization problems.
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2. Geometry Modelling

The geometry modelling for this work is conducted by a series of layers. The top layer is a conceptual design de-
scription based on simple planform variables. This level of the geometry is handled by pyACDT [14], a Python based,
object-oriented aircraft design tool. This tool models the planform of the aircraft and provides information for the
conceptual level mass and inertia computations used in the computation of the stability constraints.

The high-fidelity geometry representation is modeled by pyPSG [15]. This tool is used to create a water-tight
surface representation of the aircraft, a set of spline volumes enveloping the aircraft, and a set of reference axes inside
the aircraft. The set of volumes enveloping the aircraft are used in conjunction with a free form deformation (FFD)
technique [15] to handle the detailed geometry manipulations during the optimization. The surface points on the CFD
mesh are embedded parametrically in these spline volumes, such that when the volumes are moved or deformed, the
CFD surface mesh is modified as well. The reference axes are used to tie together the control points of the FFD
volumes enveloping the aircraft. By tying the control points to a reference axis, we are able to create the effect of
physical design variables such as sweep, twist, taper, area, span and chord, which are more meaningful to a designer
than the location of arbitrary control points. The geometry is structured such that the planform changes specified in
the pyACDT geometry layer are transfered to the CFD surface mesh through these reference axes.

3. Mesh Deformation

Once the CFD surface mesh is deformed, that deformation needs to be propagated to the CFD volume mesh. This is
handled using an efficient mesh deformation technique developed by Kenway et al. [15]. Using this technique, the
CFD mesh is represented by a coarse finite-element mesh. This mesh is deformed using the perturbations of the coarse
mesh surface nodes as input values. When the finite-element equations are solved, the large surface deformations are
propagated to the remainder of the volume mesh. Then, an algebraic mesh deformation scheme, based on trans-finite
interpolation, is used to propagate the surface deformations on the blocks immediately adjacent to the surface. This
provides a fully updated volume mesh to the CFD solver.

4. Geometric Constraints

To aid in producing realistic results, two geometry constraints are included in the optimizations. The first is a set of
thickness constraints, included to prevent the optimizer from making the wing unrealistically thin. These constraints
are implemented by computing thicknesses at a variety of locations in the wing and constraining those values to be
no smaller than the initial values. The locations where these thicknesses are evaluated are defined by the user. In this
case, the thickness was constrained to maintain the thickness of the NACA 0012 profile at 1, 50 and 99 percent chord
at 10 evenly spaced stations along the wing.

The second geometry constraint is a constraint on the leading and trailing edge control points of the FFD volume. If
these points are allowed to move freely, they can reproduce the same degrees of freedom as twist variables, producing
an ill-posed optimization problem. To prevent this, the control points at each of the leading and trailing edges are
constrained to move in equal and opposite directions so that the mid point of the FFD does not move with the shape
variable perturbations.

C. Center of Gravity Calculation

The center of gravity (CG) location is fundamental for most of the calculations in this study. Firstly, it is the point
about which all aerodynamic moments are calculated. Therefore, the moment coefficient, Cy,, and all of its derivatives
— in this case Cry , Cm and Cr,, — are strongly dependent on the CG location. Secondly, the mass moment of
inertia calculation uses the CG location as a reference point. All of these quantities are necessary for the computation
of the stability parameters that are to be constrained. Therefore, having an appropriate CG location is necessary to
produce meaningful design optimization results.

In this work, a relatively simple wing CG calculation is implemented. The method is derived from the work of
Chai et al. [16], where the authors state that the wing CG for a normal transport wing is located between the fore and
aft spars along the wing mean aerodynamic chord (MAC). Since flying wings are being examined in this study, we
assume that this estimate of the wing CG is a reasonable estimate of the CG for the entire aircraft.

The starting point for the calculation is the computation of the wing MAC and the location of its quarter chord.
These calculations are based on the methods presented in ESDU item 76003 [17]. One then determines the location of
the intersections of the spars with the MAC. In this work, the fore and aft spars are assumed to be at 25% and 75% of
the MAC, respectively. The longitudinal location of the CG can then be determined as a percentage — C Gy, — of the
distance between the spars at the MAC,  Xspar. Thus, a value of zero for C Gy, would place the CG at the intersection
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of the forward spar and the MAC, a value of one for C Gy, would place the CG at the intersection of the rear spar and
the MAC, and a value of negative one for CG,, would place the CG a distance of  Xspar in front of the intersection of
the forward spar and the MAC. Figure 1 illustrates the key parameters in the approach.

Mean aerodynamic chord

Rear spar

- Wing tip

Wing root

7 Forward spar

Figure 1. Diagram of CG calculation

CG range: % of distance between spars

D. Moment of Inertia Calculations

The moment of inertia plays a key role in the dynamic stability constraints. Just as mass relates force to acceleration,

moment of inertia relates moment to rotational acceleration. As a result, the pitching moment of inertia — 1,, —

shows up in the normalization of all of the moment terms in the short-period approximation described in Section 2.
The calculations for the moments of inertia are based on first principles. The definition of moment of inertia is:

= r’m 5)

where to compute this value, the domain of integration, , is set to be the surface of the aircraft. In this case, the
surface is defined by a B-spline surface using our geometry modeler. Having defined the surface in this fashion, a
discrete surface mesh can be created by evaluating the spline over a uniform distribution of values in u,v parameter
space. A sample wing mesh is shown in Figure 2. These discrete surface cells are then given a thickness (t) and a
density ( ), and the area of each cell is computed using a standard vector product. The area and thickness of the cell
are then multiplied to get the volume of the cell, which when multiplied by the density gives the total mass for each
of the discrete cells on the surface mesh. These lumped masses are illustrated as spheres in Figure 2. Considering this
mass to be located at the centroid of the cell, the moment of inertia can the be computed as:

X
=  mr? (6)

In this case, r is the distance from the lumped mass to the CG, perpendicular to the rotational axis of interest. Therefore,
for 1,,:

r’= (Ymass YCG)Z + (Xmass XCG)Z: @)
and the moment of inertia of interest for the pitching calculations is:
< ) ,
= M (Ymass  Yce)® + (Xmass  Xca)® - (8)

Because this value approximates the moment of inertia of only the wing skin, an additional multiplier is added to the
computation to account for the remaining mass distribution in the aircraft. This parameter is given to the optimizer as
a variable to allow it to satisfy the constraints in the dynamic stability constrained optimization.
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Figure 2. Discrete surface mesh with lumped masses at the cell centroids

E. Root Bending Moment Constraint

The root bending moment constraint is included to give some consideration to the structural implications of the varying
wing shapes. There are well known trade-offs between aerodynamic and structural performance for wings, the most
prominent of which has to do with the effects of span. Increasing the span reduces induced drag. However, for the
same total lift, a span extension also increases the bending moment at the root of the wing, requiring a heavier structure
to support the aerodynamic load. A similar effect is caused by wing sweep. For shearing sweep — where individual
sections of the wing are translated in the flow-wise direction to sweep the wing — the effective structural length of
the wing increases as the wing is swept. This can be counteracted by reducing the span of the wing, which introduces
a trade-off between induced drag and wave drag at transonic Mach numbers. Therefore, if span and sweep are used
as design variables, it is necessary to account for these trade-offs between aerodynamic performance and structural
weight. In this work, the root bending moment is used as a proxy for the structural performance of the wing. The
assumption implicit in this approach is that two wings with the same root bending moment require the same amount
of material to support the load on the wing and thus have the same weight. This is a relatively simplistic assumption,
but serves as a useful metric for including structural considerations in the optimization.

To compute the bending moment coefficient, the pressure is integrated over the aircraft to get the force and moment
coefficients about a reference point, Xr¢. This computation yields the values of C¢,, C¢,, C¢,, Cm,, Cm, and Cn,,
which are the force and moment coefficients in the three principal Cartesian axes. A bending reference point, Xyeng, iS
then specified at the root of the wing. This is the point about which the net bending moment is calculated. The bending
moment is then calculated as:

_ Xbend Xref Xbend Xref
Cbe”dx - me + ny ZCref ) sz yCref )
Xpend Xref Xpend Xref,
Cbend, = Cm, nyM.FCfX# (9)
Cref Cref
— 2 2
C = CbendX + CbendZ

where ct is the reference chord length, Cy, is the total root bending moment coefficient and Cpend,, and Cpend, are the
Cartesian components of the root bending moment about the bending reference point a the wing root.

A diagram illustrating the various components of this calculation is shown in Figure 3. Note that since the torsional
component of the wing moment is non-zero, the effective bending moment is not necessarily aligned with the wing.
Also note that as the wing is swept, this torsional component increases, causing the combined effective bending
moment to sweep with the wing. Therefore, we assume that the wing can be supported normal to the effective total
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bending moment, regardless of the wing sweep and pressure distribution. Thus, only the total magnitude of the bending
coefficient, Cp, is considered. Note that the reference value of Cy, used to constrain the wing has a significant effect

Wing root Wing tip

Xbend

Assumed support orientation

Figure 3. Bending moment calculation

on the optimal design. In this study, the value from the elliptical optimum — computed at M = 0.5 — is used as the
reference value. This value is then scaled with the root cross section to ensure that as the optimizer increases the aspect
ratio of the wing, the allowable bending moment is reduced to account for the reduced second moment of area at the
wing root. The reasoning behind this scaling is based on the definition of bending stress,

M
= 0
Rearranging to get an expression for the moment and performing a dimensional analysis yields,
4
M/ % = L% (11)

Note that because we are assuming a constant t=c ratio, both the thickness and chord dimensions scale with L. Ex-
pressing the moment in terms of coefficients, we get

GACCpeng # L3 12)

Also, A is constrained to be constant in the optimizations, therefore

L3
Crend 7 9AL (13)

or, g
Coend 7 A (14)

Thus, for constant gA, the allowable bending moment must be scaled with L? to enforce a constant allowable bending
stress at the wing root. Note that in this specific case, L is the ratio between the optimized root chord and the initial
root chord of 1 m.

F. Stability Derivatives

The stability constraints used in this work are based on linear flight dynamic theory. This theory uses aircraft stability
derivatives to represent aerodynamic characteristics of the aircraft in the model. The aircraft stability derivatives are
calculated using the time-spectral stability derivative formulation developed by Mader and Martins [8]. This approach
is similar to the methods presented by Murman [18] and DaRonche et al. [19] and is motivated by the complex number
_ derivative methodology outlined by Etkin [20]. The approach used is essentially a forced oscillation technique. A
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time-spectral CFD solver is used to generate the solution for a prescribed oscillatory motion. This periodic solution
is then used, with a linear regression technique, to generate estimates for the functionals of interest — the force or
moment coefficient, the derivative of that coefficient with respect to the oscillating parameter, and the derivative of that
coefficient with respect to the time derivative of the oscillating parameter. We are interested in the derivatives of lift,
drag and pitch moment coefficients, (C., Cp, Cm) with respect to , q and their time derivatives, _, q. The simple
algebraic nature of this method allows it to be used in conjunction with an adjoint method to efficiently compute the
gradients necessary for optimization.

G. Stability Constraints

One of the main contributions of this work is the development of a methodology that allows for the inclusion of
CFD-based stability information, in aerodynamic shape optimization. The following section outlines how the stability
derivatives from Section F, and the resulting linear flight dynamics model are used to formulate stability constraints
for the optimization problem. Two stability constraints are considered: one based on static stability and one based
on dynamic stability. A discussion of other stability criteria applied to a flying-wing configuration can be found in
Agenbag [21].

1. Static Longitudinal Stability

To develop a static stability constraint, we turn to the definition of static margin. First, consider the definition of the
moment coefficient,
Cmee = Cmye + (Nee hne)CL (15)

Where hcg and hyp are the streamwise locations of the CG and neutral point respectively, normalized by the MAC.
Differentiating with respect to  yields,

C C
0Cmes (hee hNP)@iL (16)
@ @
or, using stability derivative notation,
Cm =(hce hne)CL (17)

Defining the static margin, Kn, as the distance between the CG and the neutral point normalized by the MAC,
Kn=hne  hcee (18)

and substituting this relationship back into Equation (17) results in,

Cm = KiCL (19)
which can be rearranged as,
Cm
Kn = : 2
"= o (20)

Thus, by specifying a static margin, we can determine a meaningful value for C, .

Up to this point, the discussion has been completely general and applicable to any aircraft. By examining Equa-
tions (15) and (17), we can gain insight as to how the various stablility conditions may be satisfied for a the particular
case of a flying wing. Equation (15) shows that the moment coefficient is dependent on the moment about the neutral
point — which does not change with angle of attack — and the location of the neutral point with respect to the CG.
Thus, the optimizer can trim the aircraft by altering three parameters: the moment, the neutral point position or the
CG position. The moment coefficient about the neutral point is altered either with airfoil shape — adding reflex to
the airfoil — or by twisting down the wing tips on a swept wing. The neutral point of the aircraft is altered primarily
by changing the sweep of the wing. Finally, the CG location of the aircraft can be altered by changing the sweep
of the wing, as well as by shifting the payload location. However, Equation (17) shows that the neutral point and
CG locations both impact C,,, and hence the static margin. Thus, the optimizer must simultaniously adjust the wing
sweep and shape, as well as the payload location to trim the aircraft and create an acceptable static margin. These
various elements are discussed along with the results in Section V.
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2. Short Period Approximation

As a precursor to the discussion on the dynamic stability constraint, we introduce the short period approximation to
the standard, linear flight dynamic model. This approximation assumes that the variation in forward velocity (u) is
negligible and that the short period characteristics of the aircraft can be modeled by changes in pitch rate (q) and angle
of attack ( ) alone. In this case, vertical velocity (w) is used in place of the angle of attack where:

t = —: 21
an u (21)
To begin, we define a simplified version of the flight dynamic model based on the degrees of freedom described
above. This gives:
" z #

w Uo w Zcontrol
q

— m .
- Mw Zw Mw My Ug Mq + control - (22)

Iym Ty Iy Iy q Moeontrol

Ultimately, as we show later in this section, the handling qualities analyses we are interested in require the fre-
quency and damping ratio of the aircraft. These values can be determined from the characteristic equation of the 2 2
system in Equation (22). As shown in McRuer et al. [22] the relevant characteristic equation is,

s+ Myuo+My+Z, +Zu,M; Myuo: (23)

Comparing this to the typical second order characteristic equation:

s?+2 Is+q? (24)
yields: g
1 = Z\WMq AWUQ (25)
and
2 1= Nyuo+My+7Z, (26)
or
_ Mulo . M+ 2, (27)

We can now use the frequency and damping ratio of the short-period mode to evaluate the Control Anticipation
Parameter, which is used as the dynamic stability constraint in this study.

3. Control Anticipation Parameter

The control anticipation parameter (CAP) is a method used to quantify the handling qualities of an aircraft based on
its short-period characteristics. The fundamental idea behind this approach is that a pilot’s ability to fly an aircraft
precisely along a given flight path is related to the pilot’s ability to anticipate response of the aircraft. In this approach,
Bihrle [23] relates the pilots ability to anticipate the aircraft’s response to a ratio between the instantaneous pitch
acceleration of the aircraft and the steady state normal acceleration of the aircraft, which can be expressed as:

-9
CAP = - (28)

However, these quantities are not necessarily simple to evaluate for an aircraft. Therefore, with a little rearranging,
Bihrle [23] provides the following expression:

1 2
CAP =1 (29)
n
where n is simply: L
n = 2 \Y SrefCL (30)

g
We can now use the stability derivative methods and short-period approximation described earlier to compute the
necessary values.
The United States Military has specified acceptable limits for CAP and damping ratio for various combinations of
aircraft and flight conditions [24]. For an aircraft at cruise (Category B), those limits are shown in Table 1.
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Table 1. MIL-F-8785c handling qualities limits

Damping Ratio Limits CAP Limits
Lower Bound  Upper Bound | Lower Bound  Upper Bound
Level 1 0.30 2.0 0.085 3.6
Level 2 0.20 2.0 0.038 10.0
Level 3 0.15 - 0.038 -

I11.  Multidisciplinary Optimization Overview

In order to better understand the optimization problems presented in this work and the choice of variables used
herein, it is necessary to provide a brief overview of multidisciplinary design optimization (MDQ) architectures.
Generally speaking, an MDO architecture is the method used to handle the coupling between disciplines in a multi-
disciplinary optimization problem. Numerous architectures have been developed to handle this coupling and the var-
ious methods can be divided into two broad categories: monolithic architectures and decompositional architectures.
Monolithic architectures — such as the multidisciplinary feasible (MDF) architecture [25], the individual discipline
feasible (IDF) architecture [25] and the simultaneous analysis and design (SAND) [26] architecture — set up the
problem as a single level optimization and handle the objective function optimization and interdisciplinary coupling
in one optimization problem. Decompositional architectures — such as collaborative optimization (CO) [27], con-
current subspace optimization (CSSO) [28], bi-level integrated system synthesis (BLISS) [29] and analytical target
cascading [30] — decompose the optimization into multiple optimization problems where each secondary optimiza-
tion problem handles a portion of the overall optimization and a global coordination problem ensures that the various
secondary optimization problems produce the correct multidisciplinary optimum.

Note that all of the optimization diagrams that follow, including the MDF and IDF diagrams in this section, are
presented in the extended design structure matrix (XDSM) format of Lambe and Martins [31]. These diagrams are
designed to show the data connectivity between the disciplines as well as the process flow of the solution algorithm.
The large blocks on the diagonal represent the major analyses in the optimization process. These include the discipline
analyses and the evaluation of any constraints from the converged disciplines, as well as the optimization iterations
themselves. The off-diagonal nodes represent data connectivity between the disciplines, with the boxes above the
diagonal representing feed-forward connections and the boxes below the diagonal representing feed-back connections.
The thick gray lines represent data flow paths between the various disciplines, and the thin black line represents the
process flow through the solution algorithm, which follow in numerical order. The case specific diagrams included with
each problem formulation have been updated to include the actual variables used in each optimization formulation.

Returning to the discussion of architectures, two MDO architectures are relevant to this work: the MDF architec-
ture and the IDF architecture. In the MDF architecture, shown in Figure 4, all of the disciplines are tightly coupled.
Each discipline passes the relevant portion of its solution — the coupling variables, y — to the other disciplines
directly. This coupled system is then iterated to convergence at each optimization iteration before taking a step in
the design space. As a result of this tight coupling, the MDF approach also requires a complete, coupled-sensitivity
analysis of all the disciplines.

In the IDF architecture, shown in Figure 5, the disciplines are completely decoupled. Each discipline is solved
once per optimization iteration and is responsible for its own sensitivities. In this case, the optimizer passes target
coupling variables, yt, to each discipline to facilitate the solution of the individual disciplines. To ensure that the
system is multidisciplinary feasible at the optimum solution, an additional set of compatibility constraints,y yt =0,
is added to the problem to ensure that the optimizer specified coupling variables match the actual computed value of
the various coupling variables.

The optimization problems solved in this work are actually a hybrid of both MDF and IDF approaches. The
analyses used herein can be decomposed into four disciplines: geometry, aerodynamics, structures and flight dynamics.
The geometry discipline handles the wing surface manipulations and the computation of the CG, MAC and moment
of inertia. The aerodynamics discipline handles the computation of the force and moment coefficients, as well as the
stability derivatives for the aircraft. The structures discipline computes the bending coefficient and the flight dynamics
discipline computes the static margin, CAP and damping ratio for the aircraft. The task of coupling the disciplines
is simplified greatly by the fact that, for the analyses used in this work, there is no feedback between disciplines.
Thus, the tightly coupled MDF architecture amounts to a sequenced evaluation of the disciplines. However, when
using adjoint methods, coupling the derivatives of the various disciplines is not straightforward. This motivates the
use of the IDF architecture, which requires only the individual discipline sensitivity analyses and greatly simplifies
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computation of accurate gradients.

Despite this apparent advantage, there are some disciplines for which tight coupling is a better choice. The coupling
between the geometry and the aerodynamics, for example, requires a large number of coupling variables: the number of
mesh points on the surface is typically in the order thousands or more. In an IDF architecture, this would add thousands
of variables and constraints to the optimization problem, which would increase the complexity of the optimization
problem unnecessarily. By tightly coupling the geometry surface to the aerodynamics, those coupling variables vanish
from the optimization problem.

The other section where tight coupling makes sense is between the aerodynamics and structures. The bending
coefficient calculation is based on six force and moment coefficients, of which only one , Cyy,,, is already present in
the optimization. Separating these two disciplines would require the solution of five additional adjoint problems per
optimization iteration. By tightly coupling the aerodynamics and structures, this can be reduced to a single additional
adjoint problem for the bending coefficient.

IV. Optimization Study Definition

The baseline wing used for the current study is a straight, rectangular wing with a NACA0012 airfoil profile. The
wing has a half span of three meters and a chord of one meter, giving the wing an aspect ratio of six. The wing has a
taper ratio of one and a leading edge sweep angle of zero degrees. Details of the geometry are summarized in Table 2
This test case is based on the induced drag validation case proposed by Hicken and Zingg [7], who demonstrate that
using this wing, with sections twisted about the trailing edge, one can reproduce the elliptical distribution outlined by
lifting line theory. In particular, they highlight the use of a straight trailing edge, with spanwise sections twisted about
the trailing edge, to minimize the impact of nonplanar effects in the wake. This configuration is used as the initial
geometry in this set of optimizations so that the twist-only optimization outlined in Section B reproduces the elliptical
result and can be used as a point of comparison for the remaining optimizations. This provides a means of quantifying
the effect of the various stability constraints on the optimal solution. All of the optimization results presented are
computed on an 1,105,920 cell mesh. The mesh has a C-O topology and is split into 32 blocks. The farfield boundary
is approximately 15 chords from the wing and the off wall spacing of the meshis 1 10 3m at the leading edge and
5 10 “m at the trailing edge.

Parameter Value
Half wing area (m) 3.0
Half wing span (m) 3.0
Chord (m) 1.0
Leading edge sweep (deg.) 0.0
Taper ratio 1.0
Wing tip washout (deg.) 0.0
Wing dihedral 0.0

Table 2. Baseline wing: geometry specifications

A. Design Variables

Two sets of design variables are used: one involving only planform variables and one involving planform variables
as well as 280 surface shape design variables. These surface shape design variables — the control points of the FFD
volume — modify the surface shape of the wing and affect both the stream-wise and span-wise profile of the wing.
Table 3 shows the primary design variables that alter shape and planform of the wing as well as the variables that affect
the flow condition of the test case, while Table 4 shows the compatibility design variables introduced as a result of the
hybrid IDF-MDF architecture used to solve the problems.

The primary design variables are:

Angle of attack, : A variable to modify the free-stream flow direction and/or the mean grid velocity direction of
the test case. This is the primary variable used to satisfy the C_ constraint.

Section twist, : Variables to modify the twist values for individual sections along the wing. The sections rotate
about the reference axis, which for this study is located at the wing trailing edge. These variables primarily
affect the spanwise lift distribution, which in turn affects the induced drag created by the wing.
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Design variable Symbol  Lower bound  Upper bound

Angle of attack (deg.) 15 15
Section twist (deg.) (9 sections) i 10 10
Area (m) A1 2:9 3:2
Span (m) b 2:0 3:2
Sweep (deg.) 0 42:5
Center of gravity variable CGoy 1 1
12> Modifier Pi,, 0:5 10,20,30
FFD control points: y-offset (m) FFD 0:05 0:05

Table 3. Primary design variables and their bounds

Design variable Symbol  Lower bound  Upper bound
Moment reference location (m) x%G 20 20
Rotation point (m) Xtg 20 20
Chord (m) chot 0:5 1:4
Target MAC (m) MAC? 5 5
Target drag coefficient Ch 2 2
Target lift curve slope ct 0 20
Target moment curve slope ct, 20 0
Target _ derivative ct, 20 20
Target pitch derivative Chng 20 0

Table 4. Compatibility design variables and their bounds

Area, A1: The planform area of half the wing. This value is divided equally among the sections specified in pyACDT.
Note that this value remains essentially constant. It varies to allow the calculated value of area, A,, meet the
constraint. This is necessary because A, varies slightly with wing twist and sweep.

Span, b: The span of the half wing. This value is divided equally among the sections specified in pyACDT. Since
the area is essentially fixed this variable also determines the chord of the wing. The span has a strong impact on
both the induced drag and the root bending moment coefficient of the wing.

Sweep, : The leading edge sweep of the wing. This variable affects both the wave drag and the root bending
moment coefficient of the wing.

Center of gravity variable, CGy, : A variable that controls the x location of the aircraft center of gravity. This value
represents the value of the location of the center of gravity in terms of a percentage of the distance between the
front and rear spars at the MAC. Modifying this variable is equivalent to modifying Xcg and is used to provide
a nicely scaled range of values for the optimizer to work with.

I, modifier, Py, : A factor that multiplies the pitch moment of inertia. The base value of moment of inertia is
calculated using the method described in Section D. This variable is a direct multiplier of that calculated value.

FFD control points: y-offset, grp: Variables controlling the vertical motion of the FFD control points. These
variables modify the shape of the wing surface and have a significant impact on the pitching moment of the
wing as well as the wave drag caused by the wing.

In addition to the primary variables, we use the following compatibility variables:

Moment reference location, xtg: An IDF target value that provides the x location of the reference point used to
calculate the moment coefficient, Cr,, and all related quantities. This value is constrained to be equal to X¢g at
the optimal solution.

Rotation point, Xt : An IDF target value that provides the x location of the rotation point for the flow solutions that
involve a pitching motion. This value is constrained to be equal to the Xc at the optimal solution.

Chord, cf,,;: An IDF target variable for the root chord length. This variable is used to scale the allowable root
bending moment coefficient, Cp, ., and is constrained to be equal to the value of root chord calculated in
pyACDT.
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Target MAC, MAC": An IDF target variable for the reference chord length used in the CFD solver. Constrained to
be equal to the MAC computed from the conceptual geometry definition at the optimal solution.

Target drag coefficient, CY: A variable resulting from the IDF architecture. The variable is used as an input to the
various stability disciplines. The value is constrained to be equal to the drag coefficient predicted by the CFD
solver at the optimal solution.

Target lift curve slope, C{ : A variable resulting from the IDF architecture. The variable is used as an input to the
various stability disciplines. The value is constrained to be equal to the C,  value predicted by the CFD solver
at the optimal solution.

Target moment curve slope, CY, : A variable resulting from the IDF architecture. The variable is used as an input
to the various stability disciplines. The value is constrained to be equal to the C,, value predicted by the CFD
solver at the optimal solution.

Target _ derivative, C%, : A variable resulting from the IDF architecture. The variable is used as an input to the
various stability disciplines. The value is constrained to be equal to the Cy,  value predicted by the CFD solver
at the optimal solution.

Target pitch derivative, C;‘nq: A variable resulting from the IDF architecture. The variable is used as an input to the
various stability disciplines. The value is constrained to be equal to the C,, value predicted by the CFD solver
at the optimal solution.

Note that not all design variables are used for all cases. A number of the variables listed are present as a function of
the IDF architecture mentioned previously and are, therefore, only present when the associated disciplines are included
in the problem statement.

B. Reference Problems
1. Baseline Problem

As a first step in the study, a problem is formulated to find the angle of attack, , and CG location, Xcg, that yield a
trimmed aircraft at the target value of C_ for each Mach number. These problems are formulated as:

minimize Cp

W.rL. S XCG (31)
subject to CL, CL O
Ch=0

This is illustrated in Figure 6. Note that the lift coefficient constraint is formulated as an inequality constraint rather
than an equality constraint. Because induced drag is proportional to CZ, reducing C,_ also reduced drag. Therefore,
the optimizer will drive C as close to zero as possible, making an upper limit on C, i.e. an equality constraint,
unnecessary.

2. Twist Optimization

As a second benchmark, a twist-only optimization is performed for the subsonic — Mach = 0.5 — case. This problem
is designed to reproduce the elliptical result from lifting line theory and is formulated as:

minimize Cp

W.L.t. ;i3 CGop; XCo (32)
subjectto  C., CL O
Cm =0

t —

The data dependencies and solution process are shown in Figure 7. In this optimization, twist variables ; are added to
control the lift distribution, and the full CG calculation is added to control the location of the CG. Note that the aircraft
is trimmed during the optimization by forcing the pitch moment coefficient about the CG, Cy,, to be zero. However,
since the location of the CG is allowed to move — through the variable CGo, — the aircraft can be trimmed without
changing the aerodynamic shape.
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3. Bending Moment Constrained Optimizations

As a third and final benchmark, an aerodynamic optimization problem with a structural constraint is considered. In
this problem, span (b), sweep ( ) and area (A;) are added as additional design variables and a root bending moment
constraint, Cy, is added to keep these variables within sensible bounds. The value of the bending coefficient at the
root is that of the elliptical optimal solution at Mach = 0:5. Additional compatibility constraints for the root chord,
Croot, and the calculated area, A,, have also been added to account for the new flexibility added to the problem. This
problem is formulated as:

minimize Cp

W.Ir.t.

subject to C., CL O

Cm=0
Cb Cbref = O
Ay Ae=0

Xce XEG =0
MAC MAC'=0

t —
Croot  Croot = 0

Figure 8 depicts the data and process flow for this formulation in graphical form.
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Figure 8. XDSM for the root bending moment constrained problem
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C. Static Stability Constrained Problems

The first stability constrianed formulation is based on static margin. By introducing this constraint we can ensure that
the optimal design has the desired static margin. The static margin formulation is as follows:

minimize Co
W.IL. v irAb; 1 CGo;  FrD
ot Xbs: MACY CE ; CL (34)
subjectto  C.,, C_ O

Xce XtCG =0
MAC MAC'=0
Croot Cfoot =0
CL Cf =0
Cmn CL =0
Note that in the above formulation, Kp, is the static margin and that additional constraints have been added for C{

and Ct, corresponding to the additional IDF target variables that have been added for the computation of the static
margin constraint. A graphical depiction of solution process for this formulation is shown in Figure 9.
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Figure 9. XDSM for the Kn, constrained problem
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D. Dynamic Stability Constrained Problems

The dynamic stability formulation used in this work is based on the CAP parameter described in Section II. This
formulation builds on the previously described static margin formulation and can be written as:

minimize Cp
Wrt. X = ;A1 ;CGu;  FrD; Croors Xeoi MACT;
CH;Cl iCh iCh iChy, (35)
subject to C., CL O
Cmn=0
Kny, Kn 0
0:085 CAP 36
0:3 sp 20
Az Aer=0

Xce XEG =0
MAC MAC'=0

t —
Croot Croot = 0

Co Ch=0

cL Ccf =0
Cm Cf =0
Cm Cf =0
Cm, CL, =0

Relative to the static margin optimization, two primary constraints have been added, a CAP constraint and a
constraint. These constraints define the appropriate limits for the dynamic stability parameters. The range of allowable
CAP values constrains the allowable short-period frequency, and the damping ratio, sp, is constrained directly. Also,
IDF constraints have been added for Cf, CY, , and C}nq to reflect the addition of these variables for the computation
of the dynamic stability parameters. A graphical depiction of the solution process for this formulation is shown in
Figure 10.

V. Results

The following section summarized the results and findings of the optimization study. We present the results of
the various optimiziation formulations in order, identifying the effect of each constraint on the optimal solution. The
various optimizations are conducted at M = 0.5, 0.7 and 0.85 respectively to compare the effects the subsonic and
transonic flow regimes on the solution.

A. Reference Problems
1. Baseline cases

The solutions for Mach = 0.5, 0.7 and 0.85 are shown in Figures 11 through 13. These solutions show that the solutions
at the three different Mach numbers each have different characteristics. The solution at M = 0:5 is fully subsonic, with
a correspondingly peaky C,, distribution on the airfoil. Both the neutral point of the wing and the required center of
gravity to trim are just slightly forward of the wing quarter chord. The M = 0:7 case is just starting into the transonic
regime and the inner half of the wing is exhibiting a weak shockwave near the leading edge. The location of the center
of gravity to trim the aircraft is slightly further forward than in the M=0.5 case, but is still near the quarter chord.
The neutral point is also shifted slightly forward. The M = 0.85 case is fully in the transonic regime and exhibits a
strong shockwave on the aft half of the airfoil. As a result, the neutral point and the center of gravity location to trim
are significantly farther back, near the half chord. Note that in each case the the free stream parameters (pressure and
density) have been scaled such that the dynamic pressure q is the same for all cases.
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Figure 10. XDSM for the CAP constrained problem
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2. Twist-Only Case

The twist-only formulation yields the solution shown in Figure 14. The lift distribution achieved with this solution
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Figure 14. Twist optimization: M=0.5, e = 0:977

clearly shows an optimal solution that closely approximates the elliptical solution. The exception to this is the area
near the tip. This location consists of complex three-dimensional flows that violate the assumptions used to derive the
elliptical result; therefore, it is expected that the lift distribution in this region does not match the elliptical distribution.

3. Bending Moment Constrained Cases

The root bending moment constrained optimizations have the same design variable flexibility as the stability con-
strained cases described in Sections B and C. Therefore, they are able to produce shapes with lower drag than those
cases with stability constraints. These optimizations provide the best indication of how much performance is sacri-
ficed to ensure that the stability constraints are satisfied. The results for the planform-only optimizations are shown in
Figures 15 and 16, while the results including shape variables are shown in Figures 17 and 18. Note that there is no
shape optimization result for the M = 0:5 case, as the airfoil shape has little impact on the drag of a subsonic wing in
inviscid flow.

Comparing the elliptical optimum solution shown in Figure 14 to the bending constrained case at M = 0:5, shown
in Figure 15, we observe some subtle, yet important differences. In the bending constrained case, the optimizer takes
advantage of the span variable to reduce the induced drag. There is a visible extension in the span of the wing as
compared to the original wing, which is shown as a black outline. This increase in span is limited by the allowable
root bending moment and comes with a corresponding movement away from an elliptical lift distribution.

Looking at the M = 0:7 case, shown in Figure 16, the optimizer adds a significant amount of sweep to the wing.
This causes a trade-off between induced drag and wave drag. The added sweep reduces the effective Mach number
normal to the wing leading edge, thereby reducing the strength of the leading edge shock. With sufficient sweep, the
Mach number normal to the leading edge of the wing is reduced below the critical Mach number, eliminating the shock
wave and the corresponding wave drag. However, adding sweep increases the effective root bending moment. Thus,
as sweep is added, the span must be reduced to meet the bending constraint. This is evident in the difference in span
between the Mach = 0:5 case shown in Figure 15 and the Mach = 0:7 case shown in Figure 16.

When shape variables are added, the need for sweep to reduce wave drag is eliminated and, as shown in Figure 17,
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the optimizer does not sweep the wing, allowing for a larger span. Further, there is now a significant change in the C,
distribution on the wing. The individual sections now show a rooftop pressure profile at the leading edge, allowing the
maximum section C;, to stay below the critical C, for the wing, thereby eliminating the wave drag on the wing. Note
that the planform is now similar to the optimum M = 0:5 planform in Figure 15.

At M = 0:85, the optimizer produces the features typical of supercritical transonic airfoils for the individual airfoil
sections. The sections show a rooftop C,, profile and are highly aft loaded. However, even with these transonic airfoils,
the wave drag is not entirely eliminated, so the optimizer introduces some sweep in the design to mitigate this effect.
This added sweep causes a corresponding reduction in span to maintain the required bending moment. Note that
because of the aft loaded nature of these airfoils, the neutral point of the wing is significantly forward of the required
CG location for trimmed flight, leading to a statically unstable configuration.

B. Static Stability Constrained Problems

The planform-only, static margin constrained optimization at Mach = 0:5, shown in Figure 19, shows an increase in
sweep relative to the baseline case. The optimizer is adding sweep and wash-out to trim the aircraft for a more forward
CG position. In this case, the magnitude of the changes is sufficient to generate the necessary separation between the
neutral point and CG for a 5% static margin. Once shape variables are added, this additional sweep is not necessary
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Figure 19. K, constrained optimization: planform variables only: M=0.5, e = 0:944

to stabilize the aircraft. As shown in Figure 20, the optimizer is able to use the shape variables to modify the C, to
achieve the same effect. In this case, the C, distribution, especially near mid-span, has developed negative lift near
the trailing edge, which alters the Cp,,,, Of the wing. This allows the optimizer to shift the CG forward — stabilizing
the wing — using CG, while still maintaining a trimmed state. Because the wing is in a stable trimmed state without
sweep, there is no increase in the bending moment associated with sweep. Therefore the optimizer is again able to
increase the span from the baseline value of three meters, reducing the resulting induced drag.

Looking at the planform-only optimization at Mach = 0:7, the optimizer again adds sweep and twist to create
separation between the neutral point of the wing and the CG location of the aircraft while maintaining a trimmed state.
As can be seen in Figure 21 there is now visible separation between the neutral point and the CG location. Again, the
addition of shape variables allows the optimizer to un-sweep the wing without sacrificing performance. As shown in
Figure 22, the optimizer uses the shape variables to alter the C,, distribution of the wing to trim the wing in a stable
state. In this case, in addition to adding the negative lift near the trailing edge, the optimizer has flattened the C,
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Figure 20. K, constrained optimization: planform and shape variables: M=0.5, e = 0:968
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distribution at the leading edge of the wing, eliminating the pressure peak and thereby reducing the wave drag. In this
case the optimal solution has a very small amount of sweep.
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Figure 22. Kp, constrained optimization: planform and shape variables: M=0.7

The Mach = 0:85 case, shown in Figure 23, is physically a more challenging problem for the optimizer to solve.
As in the previous bending constrained case, the optimizer attempts to reduce the wave drag with the airfoil shape.
However, in this case, the optimizer is unable to produce the heavily aft loaded airfoils that are optimal for this case
because they lead to an unstable design. As a result, the optimizer is forced to compromise between reducing the drag
and satisfying the static margin constraint. These compromises show up in different ways at the different sections of
the wing. At the wing root, the C,, profile is spread over the entire chord of the section with significant lift generated
at both the leading and trailing edges with relatively little lift generated mid chord. The mid-wing section exhibits
a rooftop C, distribution over the front half of the foil, helping to reduce the wave drag of the wing. However, the
addition of the static margin constraint prevents the optimizer from extending this trend over the entire foil. As a result,
there is a fairly constant amount of lift generated over the forward two thirds of the foil with negative lift generated at
the trailing edge. The optimizer has also added more sweep to the wing than in the comparable bending constrained
case. As discussed earlier, this reduces the effective Mach number the wing sees and allows tip washout to contribute
to wing trim.

In addition to this general discussion, there are two specific secondary characteristics that are worth highlighting.
First, the optimizer is adding a significant loading to the bottom surface of the leading edge of the wing at the root.
This forward loading helps reduce the moment of the root section. Also, the optimizer has developed an interesting
inflection in the camber of the mid-wing airfoil. At the trailing edge, the airfoil starts to develop the high camber shape
typical of transonic airfoils, but partway to the trailing edge the foil develops reflex to help reduce the moment of the
wing.

C. Dynamic Stability Constrained Problems

The CAP constrained optimizations add the dynamic stability constraints to the problem. This requires the consider-
ation of extra stability derivatives, as well as the mass moment of inertia of the aircraft during the optimization. The
optimal solution for the CAP constrained planform-only optimization at Mach = 0:5 — shown in Figure 24 — is es-
sentially the same as the static margin result from Figure 19. This results from the fact that the static margin constraint
is still active and that moment of inertia multiplier is able to raise the moment of inertia sufficiently to satisfy the CAP
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Figure 23. Kn constrained optimization: planform and shape variables: M=0.85

and damping constraints. If the moment of inertia multiplier were limited to a smaller value, the optimal solution
would likely be more highly swept with a larger static margin.

An interesting result from the addition of the dynamic constraints is that the addition of the shape variables no
longer produces an unswept wing. As shown in Figure 25, the optimal solution now has almost 20 degrees of sweep.
This results largely from the need to maintain a high enough moment of inertia to satisfy the damping requirements.
Another interesting side effect of this result is that the section profiles no longer exhibit any reflex at the trailing edge.
This comes from the fact that the optimizer is now able to use sweep and tip washout to trim the aircraft without any
additional penalty, so the C,, distribution is not required to add reflex to do so.

The planform-only, Mach = 0:7, CAP constrained case produces a result similar to static margin constrained case.
As with the Mach = 0:5 case, the moment of inertia multiplier is able to increase the moment of inertia to the point
where the CAP constraint and damping constraints are satisfied.

As with the previous CAP constraint cases, at Mach = 0:7 the shape variables are not sufficient to allow the
optimizer to reduce the sweep of the wing to zero. Again the optimal results from the bending constrained case
and the static-stability constrained cases have insufficient damping to satisfy the dynamic constraints. In this case,
however, the added sweep causes the static margin constraint to be inactive, though the mid-span section still develops
a significant amount of reflex.

At Mach = 0:85 the CAP constrained result is essentially the same as the static margin constrained result. Because
the shape variables were not able to completely eliminate the sweep at this higher Mach number, the static margin case
has enough sweep to ensure dynamic stability given a sufficient moment of inertia. Thus, the optimal result exhibits
the same combinations of C,, distributions and planform variables as the static margin constrained case.

V1. Results Tables

To compare the results in a more quantitative fashion, the results of the optimizations are presented in tabular
form below. For the simpler cases where the various stability parameters were not included in the optimizations,
the remaining parameters have been calculated for comparison purposes. A short summary of the most significant
parameters is shown in Tables 5 through 9 to support the following discussion. Note that the drag values presented are
from steady-state simulations of the optimal shapes for each case. The remainder of the values are computed using the
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Figure 26. CAP constrained optimization: planform variables only: M=0.7
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Figure 28. CAP constrained optimization: planform and shape variables: M=0.85

time-spectral methods used in the optimizations.

A. Mach =0.5 Cases

The key results for the Mach = 0.5 cases are shown in Tables 5 and 6. The first parameter to consider is the drag for
each of these cases. The drag for the planform-only cases — shown in Table 5 — show precisely what one would
expect. The optimal elliptical solution from the twist-only optimization has a lower drag than the baseline case. The
predicted value of drag for this case is 0.00489, within 2.5% of the theoretical value of 0.00477, leading to a span
efficiency of 0.977. The remaining error in this case can be attributed to numerical errors — artificial dissipation for
example — as well as the three-dimensional flow at the wing tip.

The added flexibility of the span variable, introduced in the bending moment constrained case, allows the optimizer
to further reduce the drag in the baseline aerostructural case. Considering the problem from this perspective allows an
additional 1.4% reduction in drag. Once the stability constraints are included in the optimization, the drag increases.
This increase in drag comes from the changes necessary to make the aircraft stable. For the static margin and CAP
constrained cases, the necessary increase in sweep is significant, causing a significant increase in the drag.

Also of note are the span efficiency values for the various optimal solutions. In each case, the span efficiency is
lower than for the elliptic solution. This is unsurprising, as the lift distributions in these case deviate from elliptical.
While the span efficiency is lower for the bending moment constrained case, the increased aspect ratio of this design
makes up for the loss of span efficiency, allowing for a slightly lower overall drag coefficient. In the case of the static
margin and CAP constrained cases, both the aspect ratio and the span efficiency are lower than in the elliptical case,
leading to a higher drag coefficient.

Looking at the values of the various stability constraints, the results show that the static-stability constraint is active
in each of the stability constrained cases. Thus, the desired static margin is achieved in both cases. Also note that the
three cases without the stability constraints are statically unstable. Finally, the CAP constrained case is essentially
identical to the static margin constrained case. This is primarily because the inertia modifier is able to increase the
moment of inertia sufficiently to satisfy the damping constraint without modifying the geometry.

The results for the shape optimization cases in Table 6 show a very different picture. In these cases, the static-
stability constrained case has essentially the same drag as the planform-only bending constrained case. This comes
from the fact that both the aspect ratio and span efficiency are similar to the planform-only bending constrained case.
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Parameter Baseline Elliptic Bending Kn CAP

Cp 0.004954 0.004888 0.004817 0.005123 0.005133
Cm 0.002242 0.013867 0.029788 -0.246456 -0.246417
Kn (%) -0.044805 -0.277744 -0.595908 4.999788 5.000118
e (%) 0.963761 0.976806 0.963537 0.943660 0.941934
CAP 0.000258 -0.015125 -0.037377 0.167942 0.168177
sp 8.047202 -0.000000 -0.000000 0.301925 0.301636
1 (rad/s) 0.065557 -0.000000 -0.000000 1.651115 1.652217
I, (kgm?) 244664280 242153023 228.835160 494.760972  493.932604
(deg.) 3.434484 4.042761 7.545133 9.065110 8.899279
(deg.) 0.000000 0.000000 0.000000 19.280100 19.250614

b (m) 3.000000 3.000000 3.042917 2.981338 2.981104
Pi,, 10.000000 10.000000 10.000000 10.000000 10.000000

Table 5. NACA 0012 wing: planform only optimization results: 1107k cells, M = 0.5

Further, the results show that the static stability constraint is not active for this case. However, the C,, distributions from
Figures 19 and 21 clearly show that the solution is different for the planform-only cases and the shape optimization
cases. This leads to the conclusion that, for subsonic cases, airfoil shape can be used to trim the aircraft for a wide
variety of CG locations with little penalty in terms of drag. This supports the idea that a model with more stringent
limits on CG could be used in the context of this case and still allow the optimizer to find feasible solutions, a fact that
is not guaranteed for the planform-only cases.

The same is not true for the dynamic stability constrained case. The results for this case show that both the
damping constraint and the static margin constraint are active. The addition of the dynamic constraint pushes the
optimizer to increase the moment of inertia of the aircraft, which causes an increase in sweep of the wing. Because
of the root bending moment constraint, a reduction of the span ensues, causing a 7% increase in drag even though the
span efficiency is similar to the two static-stability constrained cases. Note that the moment of inertia multiplier is also
at its upper bound. Therefore, an increase in this limit may reduce the required sweep and thus the amount of drag
increase.

Parameter Kn CAP
Co 0.004801 0.005149
Cm -0.752988 -0.246065
Kn (%) 15.092049 5.000230
e (%) 0.968178 0.970392
CAP 0.586254 0.164005
sp 0.161038 0.299986
1, (rad/s) 3.142237 1.621730
I,z (kgm?)  403.325544 517.368619
(deg.) 3.057671 3.051991
(deg.) 0.000000  19.888040

b (m) 3.040392 2.932521
Pi,, 10.000000  10.000000

Table 6. NACA 0012 wing: shape optimization results: 1107k cells, M = 0.5

B. Mach = 0:7 Cases

The planform-only cases at Mach = 0:7 — shown in Table 7 — are not as interesting as the Mach = 0:5 cases. The
optimal bending constrained result has a static margin of roughly 0.7% and thus is stable. The use of the static margin
constraint requires an increase in sweep to provide the necessary static margin. However, this additional sweep, along
with a relatively large moment of inertia are sufficient to satisfy the CAP and damping constraints. Thus, the CAP
constrained case has essentially the same optimal solution as the static margin constrained case.

Examining the shape optimization cases at Mach = 0:7 — shown in Table 8 —, the results once again show
what one would expect. The bending constrained case produces a drag result that is within one count of the optimal
solutions at Mach = 0:5. This highlights the ability of the shape optimizations to modify the airfoil shapes to eliminate
the wave drag caused by transonic flow. While the bending constrained case is statically unstable, the addition of the
static-stability constraint does not cause any significant change in the drag. Thus, the optimizer is able to find airfoil
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Parameter Baseline Bending Kn CAP

Cp 0.005570 0.005207 0.005325 0.005325
Cm 0.087088 -0.043966 -0.284135 -0.284114
Kn (%) -1.491942 0.745596 4.999817 4.999817
CAP -0.055895 0.020482 0.087320 0.087312
sp -0.000000 0.672371 0.310233 0.310233
1 (rad/s) -0.000000 0.631212 1.272602 1.272483
I, (kgm?) 417.494607 623.660078 963.347405  963.470201
(deg.) 2.933511 7.613268 8.590863 8.557310
(deg.) 0.000000 14.106302 22.861602 22.864088

b (m) 3.000000 2.980515 2.953919 2.953687
Pi,, 16.184566 16.184566 16.184566 16.184566

Table 7. NACA 0012 wing: planform only optimization results: 1107k cells, M = 0.7

profiles that are able to both eliminate the transonic wave drag and satisfy the moment criteria necessary for static-
stability at the same time. As with the Mach = 0:5 case, there is enough flexibility in the airfoil shape to allow a wide
variety of CG locations.

As with the Mach = 0:5 optimization cases, the CAP constraint forces the optimizer to add sweep to the wing to
increase the damping ratio of the aircraft. As a result, there is a corresponding increase in the amount of drag produced
by the wing. Note also that the inertia modifier is double what it was for the Mach = 0:5 case.

Parameter Bending Kn CAP
Cpb 0.004973 0.004939 0.005090
Cm 0.539667 -0.298319 -0.302163
Kn (%) -9.112122 4.999844 5.121750
CAP -0.378485 0.129099 0.099087
sp -0.000000 0.277583 0.299995
1 (rad/s) -0.000000 1.609959 1.389344
12 (kgm?) 380.807451 611.432529  847.763119
(deg.) 2.987315 3.008049 3.282016
(deg.) 0.000000 0.529970 13.921081

b (m) 3.010364 3.029077 2.972135
Pi,, 20.000000 20.000000 20.000000

Table 8. NACA 0012 wing: shape optimization results: 1107k cells, M = 0.7

C. Mach =0.85 Cases

The Mach = 0:85 results, shown in Table 9, exhibit some interesting characteristics. The bending constrained optimal
solution is massively unstable, with a static margin of -23.5%. The addition of the static stability constraint remedies
this deficiency, producing an optimal solution at the limiting value of the constraint. However, in this case the drag
does not increase as the additional stability constraints are added. In fact, the most constrained case produces the
solution with the lowest drag. This might be explained by the larger spans obtained in the K,, and CAP optimal
solutions. Finally, as with some of the previous cases, the moment of inertia multiplier is sufficient to satisfy the
CAP and damping constraints based on the static margin constrained optimal solution, therefore the static margin
constrained optimum and the CAP constrained optimum are essentially the same.

VII. Conclusions

In this work, we explored the effects of static and dynamic stability constraints on the optimal shape of flying
wings. The results showed that stability constraints have a significant impact on the optimal shape of the wing,
usually causing a corresponding increase in drag. For cases in the subsonic regime and the lower end of the transonic
regime, the study showed that airfoil shape can be used to satisfy the static-stability constraints without significant
degradation in performance. For these flow regimes, our results showed that using airfoil shape is preferrable to using
wing sweep and twist to satisfy the static-stability requirements. At higher transonic Mach numbers, the degradation
in performance is unavoidable and the addition of sweep is necessary, regardless of the airfoil shape, to achieve
satisfactory results. The same can not be said for the dynamic stability constrained cases. In these cases, the study
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Parameter Baseline Bending Kn CAP

Cb 0.039898 0.005792 0.005640 0.005619
Cm 0.055392 2.566048 -0.484800 -0.489347
Kn (%) -0.729501  -23.522592 4.999816 5.051372
CAP -0.036492 -0.975527 0.086524 0.086135
sp -0.000000 -0.000000 0.308502 0.309052
1 (rad/s) -0.000000 -0.000000 1.644602 1.639253
I, (kgm?) 316.346371  416.989558 993.139864  1010.020857
(deg.) 2.169667 3.437140 3.643078 3.665365
(deg.) 0.000000 7.609797 20.849705 21.144092
b (m) 3.000000 2.881879 2.901532 2.898588
Pi,, 21.988981 21.988981 21.988981 21.988981

Table 9. NACA 0012 wing: shape optimization results: 1107k cells, M = 0.85

showed that for the subsonic and low transonic cases, sweep was required, regardless of the airfoil shape, in order
to raise the damping ratio of the aircraft to acceptable levels. At the higher speed in the transonic regime, the static
stability constrained results required sufficient sweep to be feasible for both the static and dynamic stability constraints.
Thus, the results of this study underline the importance of considering both static and dynamic stability considerations
in the design of flying-wing aircraft.
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