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I. Introduction

Currently, the interest in monitoring the vibration of dynamical systems has been increasing. For example,
large and complex air and space structures include vibration monitoring systems to forecast sudden failures.
Such vibration monitoring is used to diagnose structural health by analyzing vibration characteristics (such
as frequency and amplitude). Among the vibration characteristics used, the vibration amplitude is especially
important because it can directly affect the life of the system.

Finite element (FE) models are often used to analyze vibration characteristics. For low dimensional
systems, full FE models can be used. For high dimensional systems, the computational cost of analyzing full
FE models can often be prohibitive. To circumvent this difficulty, many methods for creating reduced-order
models (ROMs) have been developed for various systems [1–14], with the majority being focused on linear
systems.

ROMs for linear systems can be efficiently constructed by using approaches based on linear transfor-
mations [15, 16] such as component mode synthesis (CMS) [17]. However, constructing ROMs for systems
with piecewise-linear nonlinearity (caused for example by intermittent contact) require careful treatment.
Accurate ROMs can be constructed for such systems using linear transformations [18–20], or using nonlinear
normal modes [21–23]. Recently, Saito et al. [24] developed a reduced-order modeling method based on
bilinear modes (BLMs) for dynamical systems with piecewise-linear nonlinearity. They observed that the
space spanned by the most dominant proper orthogonal modes (POMs) of a system is also spanned by a set
of linear normal modes for the system with special boundary conditions at the surface where the intermittent
contact takes place. The special modes were referred to as BLMs. Hence, the most dominant POMs are well
approximated by linear combinations of BLMs. Thus, ROMs based on BLMs are accurate and have a low
dimension. Nonetheless, predicting the vibration amplitude requires the calculation of the nonlinear forced
response of the ROMs. Namely, the nonlinear forced responses have to be obtained by direct numerical
calculation (e.g., by using a variable step Runge-Kutta method), which incurs a large computational cost
despite the fact that the ROMs are low dimensional. For example, mistuned bladed disks with cracks have
piecewise-linear nonlinearity due to the intermittent contact at the crack surfaces. Therefore, to obtain the
amplitude of vibration at the resonant frequencies, nonlinear forced responses need to be calculated using
more efficient numerical methods (e.g., hybrid frequency/time domain methods) [25–28].

In this paper, a novel technique to approximate the vibration amplitude at the resonant frequencies
of dynamical systems with piecewise-linear nonlinearity is proposed. Here, it is assumed that the forcing
applied to the system is harmonic and the response of the system is periodic. Thus, quasi-periodic or chaotic
dynamics are not considered. The proposed technique is referred to as bilinear amplitude approximation
(BAA). BAA constructs approximations for the periodic steady-state response of the system at resonant
frequencies. For example, consider that a structure has a crack which opens and closes during each vibration
cycle. BAA uses linear modes (similar to BLMs) from two different systems: one with an open crack and
the other where there is sliding at the crack surfaces. By doing so, BAA does not require the numerical
integration of nonlinear ROMs to calculate the vibration amplitude at resonant frequencies. Consequently,
large savings in computational costs are obtained.
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In the following, BAA is introduced. Then, results comparing exact numerical solutions and results
obtained using BAA for a full blisk with a crack are presented. Finally, conclusions are presented.

II. Methodology

In this section, BAA is introduced. Consider an elastic structure which undergoes intermittent contact
(leading to piecewise-linear nonlinearity). During each vibration cycle, the structure has three different states:
(1) fully open (i.e., no contact), (2) fully sliding (i.e., complete contact), and (3) partially open (i.e., partial
contact between the contacting surfaces). The goal of BAA is to find the steady-state amplitude of vibration
of the system when excited by harmonic forcing under the following assumptions: (a) state (3) (partially
open) lasts a much shorter time interval than states (1) and (2), (b) the motion of the structure is periodic,
(c) during each vibration cycle there is only one time interval when the system is in state (1) and only one
time interval when the system is in state (2); thus, one entire vibration cycle is approximated by states (1)
and (2), and (d) the motion in state (1) is dominated by one mode of the structure with fully open contact,
and the motion in state (2) is dominated by one mode of the structure with fully sliding at the contact
surfaces. Assumption (a) is in fact exactly satisfied when the gap at the contacting surfaces is zero for the
structure with zero internal stresses [24, 27].

The motion of one steady-state vibration cycle for one of the degrees-of-freedom of the system is schemat-
ically shown in Fig. 1. The total period T of the periodic response is broken into the time To that the system
spends in state (1), and the time Ts that the system spends in state (2). The fraction of the entire period
T that the system is in state (2) is f = Ts/T .

Figure 1: One steady-state vibration cycle

Consider a multi-degree-of-freedom system. The exact equations which govern the motion in state (1)
and in state (2) can be expressed as

Moẍo(t) +Coẋo(t) +Koxo(t) = F(t),
(1)

Msẍs(t) +Csẋs(t) +Ksxs(t) = F(t),

where the subscript o refers to state (1), the subscript s refers to state (2), Mo and Ms are the mass matrices,
Co and Cs are the damping matrices, Ko and Ks are the stiffness matrices, and F is the external force.
The mode shapes for the structure in states (1) and (2) are Φo and Φs. A physical to modal transformation
leads to xo = Φoqo and xs = Φsqs, where qo and qs are modal coordinates. Assumption (d) implies that
the motion in state (1) can be approximated well by a single dominant mode Φ∗

o, and the motion of the
structure in state (2) can be approximated by a single dominant mode Φ∗

s . Thus, xo
∼= Φ∗

oqo and xs
∼= Φ∗

sqs.
Also, Eq. (1) can be projected along the vectors Φ∗

o and Φ∗

s to obtain

Φ∗

o
T
MoΦ

∗

oq̈o +Φ∗

o
T
CoΦ

∗

oq̇o +Φ∗

o
T
KoΦ

∗

oqo = Φ∗

o
T
F(t),

(2)
Φ∗

s
T
MsΦ

∗

s q̈s +Φ∗

s
T
CsΦ

∗

s q̇s +Φ∗

s
T
KsΦ

∗

sqs = Φ∗

s
T
F(t),

which leads to

q̈o + 2ζoωoq̇o + ω2

oqo = fo,
(3)

q̈s + 2ζsωsq̇s + ω2

sqs = fs,
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Figure 2: Bladed disk model

where ζo and ζs are the viscous damping ratios, ωo and ωs are the undamped natural frequencies associated
with Φ∗

o and Φ∗

s, and fo and fs represent modal forcing. Using Eq. (3), the modal coordinates corresponding
to the linear modes Φ∗

o and Φ∗

s can be expressed as

qo(t) = exp−ζoωot(o1 cos(ωodt) + o2 sin(ωodt)) +
(fo/ω

2
o) cos(ωt− θo + α)

√

(1− (ω/ωo)2)2 + (2ζoω/ωo)2
,

(4)

qs(t) = exp−ζsωst(s1 cos(ωsdt) + s2 sin(ωsdt)) +
(fs/ω

2
s) cos(ωt− θs + α)

√

(1 − (ω/ωs)2)2 + (2ζsω/ωs)2
,

where o1, o2, s1, and s2 are scalar coefficients, ωod and ωsd are the damped frequencies corresponding to the
natural frequencies ωo and ωs, θo = arctan(2ζoωoω

ω2
o
−ω2 ), θs = arctan(2ζsωsω

ω2
s
−ω2 ), and α is an angle that reflects the

phase difference between the steady-state response and the forcing.
There are six unknowns in Eq. (4): the phase angle α, the time fraction variable f , and the four coefficients

o1, o2, s1, and s2. Similar to the arguments used in bilinear frequency approximations (BFA) [29], To and
Ts can be approximated by To

∼= 2π
ωo

and Ts
∼= 2π

ωs

. Thus, the fraction f can be approximated by

fa =
Ts

To + Ts

∼=
ωo

ωo + ωs

. (5)

To calculate the remaining 5 unknowns, one can enforce transition conditions related to conservation of
energy and linear momentum at the instances when the system switches from state (1) to state (2) or vice
versa. This yields transition conditions which are used to solve for the unknown coefficients in Eq. (4). One
obtains

Es(Ts) = Eo(Ts),

Eo(To + Ts) = Es(0),
(6)

Ls(Ts) = Lo(Ts),

Lo(To + Ts) = Ls(0),

where Eo and Es represent the energy of the system in state (1) and (2), and Lo and Ls represent the linear
momentum in state (1) and (2).

The first two relations in Eq. (6) enforce that the total energy is conserved as the system transitions
between state (1) and state (2). The first relation corresponds to the case where the system moves from the
sliding state to the open state. The energy of the system in state (2) as it is about to transition to state (1)
is comprised of the strain energy SEs and kinetic energy KEs given by

SEs(Ts) =
1

2
xT

s (Ts)Ksxs(Ts),
(7)

KEs(Ts) =
1

2
ẋT

s (Ts)Msẋs(Ts).
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Figure 3: Nonlinear forced response of the 1st mode family
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(b)

Figure 4: The (a) amplitude and (b) residual calculated using BAA for the 1st mode family

Using the fact that the motion in state (2) is dominated by Φ∗

s, one obtains xs(t) ∼= Φ∗

sqs(t) and
ẋs(t) ∼= Φ∗

s q̇s(t). Adding these relations to Eq. (7) one obtains

SEs(Ts) =
1

2
ω2

sq
2

s (Ts),
(8)

KEs(Ts) =
1

2
q̇2s(Ts).

The energy in state (1) just after it transitions from state (2) is given by the strain energy SEo, the kinetic
energy KEo

SEo(Ts) =
1

2
ω2

oq
2

o(Ts),
(9)

KEo(Ts) =
1

2
q̇2o(Ts).

Also, the work done by the external forcing Wext during the transition is given by

Wext(Ts) = foqo(Ts)− fsqs(Ts). (10)

Similar expressions for the strain energy, kinetic energy and external work can be written for the second
relation in Eq. (6). Namely, the conservation of energy for when the system moves from state (1) to state
(2). In this case an additional coefficient ce corresponding to the loss of energy caused by the impact of the
crack surfaces when the system moves from open to sliding must be defined. This coefficient is very close to
zero and depends on the shapes of Φ∗

o and Φ∗

s in the vicinity of the crack.
The third and fourth relations in Eq. (6) enforce conservation of linear momentum for the system when

the system transitions between state (1) and state (2) (which is assumed to occur over a negligible amount
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Figure 5: Nonlinear forced response of the 2nd mode family
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(b)

Figure 6: The (a) amplitude and (b) residual calculated using BAA for the 2nd mode family

of time). The linear momentum can be projected along 3 orthogonal directions in the physical space
(given by three vectors e1, e2, e3) to obtain eTj Ls(0) = eTj Lo(To + Ts) for j = 1, 2, 3. Note that vec-
tors ej depend on the choice of reference coordinate system used in the FE model. If, for example, the
choice is to use a global Cartesian reference coordinate system (with unit vectors i, j, k), then the vector
e1 = [1 0 0 1 0 0 ... 1 0 0]T corresponds to i, the vector e2 = [0 1 0 0 1 0 ... 0 1 0]T corresponds to j,
and the vector e3 = [0 0 1 0 0 1 ... 0 0 1]T corresponds to k. Expressing the linear momentum in terms
of ẋo and ẋs, and using ẋo

∼= Φ∗

oq̇o and ẋs
∼= Φ∗

s q̇s, one obtains eTj MsΦ
∗

s q̇s(0) = eTj MoΦ
∗

oq̇o(To + Ts) for

j = 1, 2, 3. Next, one can denote co,j = eTj MoΦ
∗

o and cs,j = eTj MsΦ
∗

s.
Substituting the energy and momentum expressions into Eq. (6) one obtains

1

2
ω2

sq
2

s(Ts) +
1

2
q̇2s(Ts) + foqo(Ts)− fsqs(Ts) =

1

2
ω2

oq
2

o(Ts) +
1

2
q̇2o(Ts),

(1 − ce)[
1

2
ω2

oq
2

o(To + Ts) +
1

2
q̇2o(To + Ts)] + fsqs(0)− foqo(To + Ts) =

1

2
ω2

sq
2

s(0) +
1

2
q̇2s (0),

(11)
cs,j q̇s(Ts) = co,j q̇o(Ts),

co,j q̇o(To + Ts) = cs,j q̇s(0),

where j = 1, 2, 3. There are 8 transition conditions in Eq. (11) for the 5 unknowns, namely o1, o2, s1, s2,
and α. The transition conditions have a nonlinear dependence on the unknowns, therefore various nonlinear
solvers can be employed to find the solution. In this work, the function “lsqnonlin” from Matlab was used
to solve for the unknowns by minimizing the residual in the 8 relations in Eq. (11).

Using Eq. (4), one can construct qo and qs with the obtained o1, o2, s1, s2, and α. Then, physical
displacement xo and xs are calculated using the modal to physical transformation such as xo

∼= Φ∗

oqo and
xs

∼= Φ∗

sqs. One steady-state vibration cycle can be constructed using the obtained xo and xs with time
fraction f as shown in Fig. 1. Finally one can calculate the amplitude of the constructed steady-state
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Figure 7: Nonlinear forced response of the 7th mode family
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Figure 8: The (a) amplitude and (b) residual calculated using BAA for the 7th mode family

vibration cycle, which is the approximate amplitude of steady-state vibration of a system with piecewise-
linear nonlinearity.

III. Results

In this section, the vibration amplitude of a full bladed disk system with piecewise-linear nonlinearity is
first calculated using in-house code based on a hybrid frequency/time (HFT) domain solver [25–28]. Engine
order excitation 0 with force amplitude of 1 kN was applied at specified frequencies to obtain forced responses.
Then, BAA is employed to calculate an approximate amplitude, and the results are compared.

The model used in this work is the tuned bladed disk shown in Fig. 2. The blisk has 20 blades one of
which has a crack. The crack length is 37.5% of the chord on the leading edge at 50% span from the root
of the blade. The material of the bladed disk is a Titanium alloy with Young’s modulus E = 114 GPa,
density ρ = 4, 420 kg/m3, and Poisson’s ratio ν = 0.31. The full order model has 31, 878 degrees of
freedom. The damping is modeled as Rayleigh damping (without mass matrix contribution), C = βK,
where β is a scalar (with a constant value in each frequency range of interest: β = 8.37658× 10−7 for the 1st

mode family, β = 2.09277× 10−7 for the 2nd mode family, β = 4.85406× 10−8 for the 7th mode family, and
β = 2.89031× 10−8 for the 10th mode family). These values correspond to a viscous damping ratio value of
ζ = 0.001. The commercial software ANSYS was used to obtain the mass and stiffness matrices.

The nonlinear forced response for the 1st mode family was calculated using a HFT method [25] and the
results are shown in Fig. 3. Plotted is the tip displacement amplitude of the excited node for the cracked
blade and the maximum tip displacement amplitude of all excited nodes (one excited node per blade). The
resonant frequency of the cracked blade is 384.3 Hz and the amplitude at that frequency is 8.105 mm.
The bilinear frequency for this mode family was calculated as ωBFA = 384.94 Hz using bilinear frequency
approximation. This frequency was used for BAA in Eq. (11). The energy loss coefficient ce for this mode
family is 0.015. The amplitude and the residual were calculated and are shown in Fig. 4. At the bilinear
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Figure 9: Nonlinear forced response of the 10th mode family

1.06 1.08 1.1 1.12 1.14 1.16 1.18
x 10

4

0

0.5

1

1.5

2

2.5

3

3.5

4x 10
−3

Excitation frequency [Hz]

C
ra

ck
ed

 b
la

de
 d

is
pl

ac
em

en
t n

or
m

 [m
m

]

 

 

(a)

1.06 1.08 1.1 1.12 1.14 1.16 1.18
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2x 10
−8

Excitation frequency [Hz]

R
es

id
ua

l n
or

m

 

 

(b)

Figure 10: The (a) amplitude and (b) residual calculated using BAA for the 10th mode family

frequency, the approximated amplitude is 8.337 mm. The relative error of this result compared to that of the
nonlinear forced response is 2.86%. Note that the residual is of order 10−9, which means that all relations
in Eq. (11) are satisfied.

For the 2nd mode family, the nonlinear forced response is shown in Fig. 5. The resonant frequency of
the cracked blade is 1525.1 Hz and the amplitude at that frequency is 1.261 mm. The bilinear frequency for
this mode family was calculated as ωBFA = 1527.69 Hz. The coefficient ce for this mode family is 0.0015.
The amplitude and the residual were calculated and are shown in Fig. 6. At the bilinear frequency, the
approximated amplitude is 1.264 mm. The relative error of this result compared to that of the nonlinear
forced response is 0.24%. Note that the residual is of order 10−8.

For the 7th mode family, the nonlinear forced response is shown in Fig. 7. The resonant frequency of the
cracked blade is 6594.14 Hz and the amplitude at that frequency is 0.1527 mm. The bilinear frequency for
this mode family was calculated as ωBFA = 6590.85 Hz. The coefficient ce for this mode family is 0.004.
The amplitude and the residual were calculated and are shown in Fig. 8. At the bilinear frequency, the
approximated amplitude is 0.1487 mm. The relative error of this result compared to that of the nonlinear
forced response is 2.62%. Note that the residual is of order 10−5.

For the 10th mode family, the nonlinear forced response is shown in Fig. 9. The resonant frequency of the
cracked blade is 11, 144.34 Hz and the amplitude at that frequency is 0.004294 mm. The bilinear frequency
for this mode family was calculated as ωBFA = 11, 138.37 Hz. The coefficient ce for this mode family is zero.
The amplitude and the residual were calculated and are shown in Fig. 10. At the bilinear frequency, the
approximated amplitude is 0.003722 mm. The relative error of this result compared to that of the nonlinear
forced response is 13.3%. Note that the residual is of order 10−8.
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IV. Conclusions

An efficient and novel methodology to approximate the steady-state amplitude of vibration of a system
with piecewise-linear nonlinearity was developed. The method breaks each cycle of the steady-state nonlinear
response into two parts. The first portion of the response corresponds to the open case (if there is a crack
that would mean that the crack is open). The second portion of the response corresponds to the sliding case
(if there is a crack that would mean the crack is closed). The transition between each state is assumed to
take place quickly. The method then enforces transitional compatibility at the contacting surfaces, namely
that energy and momentum are conserved when the system transitions from the open to sliding and sliding
to open cases. The method was demonstrated on full blisk model with a crack and found to obtain very
accurate results compared to a nonlinear analysis.
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