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This paper presents a local interaction simulation approach (LISA) numerical method to 
examine the guided wave propagation in plate and sandwich structures. The method is based 
on recursive iterative equations, derived from the elastodynamic equilibrium equations. 
Derivation of the iterative equations with varying spatial discretizations is presented for a 
generalized orthotropic medium in non-principle axis frame. The new iterative equations 
have the capability to model generic laminated composite plates and sandwich composite 
structures. The results address some of the propagation aspects in isotropic plates, laminated 
composite plates, and simple composite foam core sandwich. 

I. Introduction 
OMPOSITE structures have become an integral part of the aviation industry because of their significant 
advantages such as high specific strength and stiffness as well as long fatigue life over metallic ones. Layered 

composites are generally used as laminates or sandwich structures. Due to their current and increasing demand, 
development of an appropriate structural health monitoring (SHM) system is essential to ensure the proper 
functionality of the structure. Acoustic waves such as Rayleigh and Lamb waves have been used for damage 
detection in metallic and composite structures.1,2 Rayleigh waves propagate on the surface of semi-infinite media, 
which is a suitable feature in detecting surface and subsurface defects. On the other hand, Lamb waves can travel 
long distances over the surface as well as through the thickness of a structure. Therefore, guided waves (GW) based 
on Lamb waves present promising possibilities in developing SHM systems. By controlling the testing parameters, 
GW can be sensitive to specific defects in terms of both location and size of the damage. In addition to damage 
detection, GW are capable of providing the overall degradation state of the material in terms of stiffness change. 
Studies3 have shown GW as an efficient method for damage detection in metallic structures, which motivates similar 
research in the field of composite materials. Wave propagation has been studied extensively for isotropic materials, 
but studies for composite structures are still in its dawn. A good understanding of the GW propagation is required to 
build robust and reliable SHM systems. 

The literature describes many methods used by researchers to study wave propagation due to surface point loads, 
such as 3D elasticity-based theories and approximate plate theories,4 and finite-element normal mode expansion 
formulations.5 Theories were also used to model GW generated by finite-dimension piezoelectric transducers6 in 
composite plates. Semi-analytical matrix methods such as the global matrix approach7 and transfer matrix8 
approaches have been used to model ultrasonic waves which are efficient in modeling waves in infinite media. 
Although analytical/semi-analytical models are able to predict the GW propagation, they are restricted to simple 
composite structures. Modeling boundary reflections, damage interaction, and geometric complexities become 
extremely complicated using analytical models.  

Several numerical computational methods have been proposed to address the complications arising from 
modeling of complex structures. Traditional numerical tools such as finite difference (FD) equations9 and the finite 
element (FE) method10 have been used extensively for modeling GW propagation. Derivatives of traditional 
methods such as the boundary element method (BEM)11 have been developed to increase the computational 
efficiency at the cost of limiting it to infinite media and simple structures. FD equations are derived by using 
second-order or higher-order approximations for resolving spatial derivatives. FD methods can become 
computationally taxing when complex boundary conditions are involved.  
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Recently, it has been shown that the local interaction simulation approach (LISA), 12,13 a numerical method based 
on finite difference (FD) transformations, is capable of efficiently and accurately modeling GW propagation. This 
method is based on iterative equations (IE) for “unit cells” that are used to represent/discretize the model. The actual 
IEs are derived from the elastodynamic equilibrium equations. LISA was developed to study wave propagation in 
3D isotropic heterogeneous media.12 LISA’s efficiency lies in replacing the second-order spatial and temporal 
derivatives in the elastodynamic equilibrium equations by recursive relations based on FD transformations. LISA 
employs the sharp interface model (SIM) to address the issue of discontinuities and boundaries, which distinguishes 
it from the formal FD techniques, which use smoothing parameters. LISA has been used in the past to study the 
wave propagation characteristics15,17 and accuracy of simulations20 in isotropic plates. Moreover, damage interaction 
and identification16 was addressed in isotropic plates. It was further used to study isotropic structures with more 
complex geometries18 and wave propagation through the thickness of a constant orthotropic layer plate structure.19 
The orthotropic plates were comprised of single layer14 or plies having the same properties and were discretized with 
uniform cell sizes.18 The implementation was modified for layered composite laminates20 along with variable spatial 
discretizations. 

The overall goal of the present work is to model wave propagation in complex composite structures such as 
sandwich panels and reinforced composite panels. In this paper, LISA iterative equations are derived for varying 
spatial discretizations, which will enable the modeling of sandwich composite structures where the facesheet and 
core need to be discretized differently. Frequency variation studies are carried out on isotropic and orthotropic 
structures to validate the LISA capability to model various testing parameters. Preliminary experimental and 
numerical studies are also performed on composite foam core sandwich structures. 
 

II. Theoretical Formulation 
The theoretical formulation starts with the elastodynamic equations, which are notationally simplified with the 

help of Voigt’s notation. FD approximations are then applied to the modified equations to obtain iterative equations 
for a homogeneous medium. SIM is employed at the interface of different materials to derive the necessary recursive 
relations. Finally, the displacement components at a particular node can be written as a function of displacements at 
previous two time steps of the neighboring nodes. Readers are referred to Refs. 14 and 21 for details pertaining to 
the basic LISA derivation. The outline for the derivation is shown in Fig. 1, where the dark colored boxes represent 
the modification to the existing theory.12 
 

1. Elastodynamic equilibrium equations and 
constitutive law for orthotropic materials

2. Voigt’s notation to simplify the equations

Representation of 18 nearest neighbors of a node

3. Customary FD transformations for second-
order space derivatives at given time

Similar FD transformation of second order time 
derivatives

5. Sharp Interface Model (SIM) : Continuity 
of displacement and stress at interface of the 

two laminae 
Elimination of unknown terms

7. Linear combination of equations to obtain 
explicit expressions for displacement

Discretization into unit 
cells and nodes

3D model: Composite 
Laminate

Prescribed displacements at t=0 and t=1

8. Displacement at time t+1 can be calculated 
based on displacement at time t-1 and t

4. Homogeneous media equations for each 
lamina in the laminate 

X1

X2

X3

X1

X2
X3

Generic lamina having 
variable properties 

compared to different plies

Orthotropic material in non 
-principle axis frame
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0 0 0 044 45
0 0 0 05545

0 016 26 36 66
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Variable discretizations 
along different directions

 
Figure 1.  Overview of LISA’s theoretical formulation. 
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A. Equations of motion 
Consider the equilibrium equations for an orthotropic material, expressed in displacement form as: 

 
,( )                       ( , , , 1, 2,3)l klmn m n kw w k l m nρ∂ = =S  (1) 

 
where S is the stiffness tensor, ρ the material density, and w the displacement field. The subscripts followed by a 
comma denote spatial differentiation and dot represents differentiation with respect to time. Voigt’s notation is used, 
which converts two indices into a single index, and simplifies the notation for the analysis, i.e., 
 

( , ) (1 )(9 )                 ( 1,..,6)
( , ) (1 )(9 )             ( 1,..,6)

nl nl

km km

n l n n l
k m k k m

ζ δ δ ζ
η δ δ η

→ = + − − − =
→ = + − − − =

 (2) 

 
resulting in 
 

3 6

,
1 1

m k
m

w wηζ ζ
η

ρ
= =

=∑∑ S  (3) 

 
where the indices k, m, n and l assume values 1, 2 and 3, and δ is the Dirac-delta function. Previously the method 
was derived for orthotropic plates oriented along the principle axis, in which most of the off-diagonal terms are zero. 
For most of the practical applications, the orthotropic materials are used with different lay-up angles to construct the 
required composite structure. To address this issue, in-plane rotation of the orthotropic medium is considered in the 
formulation. The new transformed stiffness matrix23 S with in-plane rotation becomes: 
 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

S S S S
S S S S
S S S S

S
S S
S S

S S S S

 
 
 
 

=  
 
 
  
 

 (4) 

 

B. Discretization and FD transformations 
All 18 neighboring points around a given point C (as shown in Fig. 2(a)) are required to account for the double 

spatial derivatives. The finite difference expressions used in the derivation are shown for only W (w3-component), as 
the other components of displacement U (w1-component) and V (w2-component) have similar expressions. For 
convenience, the subscripts as well as the commas in the subscripts are dropped. The basic finite difference 
expressions for the derivation can be found in Sinor,21 as the expressions shown in this document emphasize the 
modifications to the original ones. A grid with non-uniform spatial steps is considered for the derivation. Finite 
difference relations are sufficient to transform the double spatial derivatives in space into recursive relations for 
homogenous materials. For heterogeneous structures, the SIM12 is used to calculate the response at the “crosspoints” 
(the lattice points at the intersection of cells). The SIM assumes that the stress and displacement variables are 
uniform within a cell, and to maintain equilibrium and continuity, they are matched at the interface between cells. 
The extra conditions provided by the SIM incorporate the changes in stiffness, density, or attenuation properties into 
the iterative equations. 
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δ
δ

δ

ε

ε

ε

ε

ε

ε

 
(c) 

Figure2. (a) A generic point C (i,j,k) with 18 nearest neighbors and the Cartesian system used in the analysis.  
(b) Blue dots show the 8 points chosen to enforce displacement continuity. (c) Additional points shown as squares 

are used to enforce stress continuity conditions. 
 

C. Displacement and stress continuity 
Eight additional points are considered as shown in Fig. 2(b) at a distance of δ << ∆xi (i=1,2,3), given by 

(i+αδ,j+βδ,k+γδ) for α,β,γ = ±1. Elastodynamic equilibrium equations shown in Eq. (3) are represented at these 
additional points as:  
 

3 6
, , , , , ,

,
1 1

              , , 1,  1, 2,3i j k i j k i j k
m k

m
S w w kα β γ α β γ α β γ

ηζ ζ
η

ρ α β γ+ δ + δ + δ + δ + δ + δ + δ + δ + δ

= =

= = ± =∑∑   (5) 

 
The resulting equations for a single component of displacement, say W (w3), can be combined at these new points 

while Ẅ is enforced to be the same at the eight points to obtain the continuity of displacements for W. Similarly, 
continuity for U (w1) and V (w2) can be imposed. The second order derivatives in Eq. (5) are resolved as: 
 

/2, , , ,
, , 1 1

1 1
1

, , , , , , , ,
, ,

1 2
1 2

, , , , , , , ,
, ,

3 1
1 3

.

. . .

. . .

i j k i j k
x xi j k

x x

i j k i j k i j k i j k
i j k

x x

i j k i j k i j k i j k
i j k

x x

W W
W

x
W W W WW

x x
W W W WW

x x

α α β γ
α β γ

α

α β α β
α β γ

α β

α γ α γ
α β γ

α γ

α

α β

α γ

+ + + +

+ δ + δ + δ

+ + + +
+ δ + δ + δ

+ + + +
+ δ + δ + δ

−
=

∆

− − +
=

∆ ∆

− − +
=

∆ ∆

 (6) 

 
where the remaining spatial derivatives have similar form. The first order derivatives in Eq. (6) are resolved as: 

 
, , , ,

/ 2, ,

1
1

, , , ,
, / 2,

2
2

, , , ,
, , / 2

3
3

.

.

.

i j k i j k
i j k

x

i j k i j k
i j k

x

i j k i j k
i j k

x

W WW
x

W WW
x

W WW
x

α
α

α

β
β

β

γ
γ

γ

α

β

γ

+
+

+
+

+
+

−
=

∆

−
=

∆

−
=

∆

 (7) 

 
where the superscript for W denotes a particular node in Fig. 2(a). It should be noted that first derivative of 
Wi+αδ,j+βδ,k+γδ for α,β,γ = ±1 remains unevaluated and is eliminated while the stress continuity is enforced. To obtain 
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continuity of stress, additional points are introduced (i+αε,j+βδ,k+γδ), (i+αδ,j+βε,k+γδ) and (i+αδ,j+βδ,k+γε) with 
ε<<δ << ∆xi (i=1,2,3) represented as black squares in Fig. 2(c). The derivatives involving ε are resolved as:  
 

, , , ,

1 1
, , , ,

, ,

1
1

, , , ,
,

2
2

.

.

i j k i j k
x x

i j k i j k
i j k

x

i j k i j k
i j k

x

W W

W WW
x

W WW
x

α β γ α β γ

α
α β γ

α

β
α β γ

β

α

β

+ ε + δ + δ + δ + δ + δ

+
+ δ + ε + δ

+
+ δ + δ, + ε

=

−
=

∆

−
=

∆

 (8) 

 
Similar expressions follow for the other terms. It should be noted that the first derivative terms at the eight points 

shown in Fig. 2(b) remain unevaluated and are eliminated based on the stress continuity relations. The stress 
components (τkl) can be written as: 

 

, kl klmn m xn
wτ = S  (9) 

Next, the stress continuity is enforced with the help of the following relations: 
 

ε, δ, δ ε, δ, δ
1 1

δ, ε, δ δ, ε, δ
2 2

δ, δ, ε δ, δ, ε
3 3

 ( 1, 2,3)

                

               

              

i j k i j k
k k
i j k i j k
k k
i j k i j k
k k

k

β γ β γ

α γ α γ

α β α β

τ τ

τ τ

τ τ

+ + + − + +

+ + + + − +

+ + + + + −

=

=

=

=
 (10) 

 
Using Eq. (5) at the eight points (i+αδ,j+βδ,k+γδ) and the select group of stress continuity relations given in Eq. 

(10), the final iterative relations for the three-displacement components are derived for the 3D case as: 
 

( )

( )( ) ( )

2, , , 1 , , , 1 , , , , 2 2 22 11 12 13, , 18

, , , , , ,2 2 22 2 211 12 13, , 18

, , , , , ,
12 66 12 668

i j k t i j k t i j k i j kU U U U S S Sx y z

i j k i j k i j kS U S U S Ux y z

i j k i j k i j k iS S V V S S V Vx y

χ
η η η

α β γ

χ α β γη η η
α β γ

χ α β β ααβη η

+ −= − + + + +∑
=±

+ + ++ + +∑
=±

+ + + ++ + − + − −

 
 

 
 

  

  

    ( ){ }
( )( ) ( )( ){ }

( )

, ,
, , 1

, , , , , , , ,
55 5513 13, , 18

2 2, , , , , , 2 2
16 16 26, , 1 , , 18 8

2 , ,2
168

j k

i j k i j k i j k i j kS S W W S S W Wx z

i j k i j k i j kS U U V S Sx y x y

i j kS Vx y

α β γ

χ α γ γ ααγη η
α β γ

χ χα βαβη η η η
α β γ α β γ

χ αη η

∑
=±

+ + + ++ + − + − −∑
=±

+ +− − − +∑ ∑
=± =±

+− +

 
  

 
  

   
  

   

  

 ( )

( )
( ) ( )

, , , ,2
26 36 45, , 1 , , 18

, , , , , ,
36, , 18

2, , , , , , , , , ,2
45 45, , 1 ,8 8

i j k i j kS V S S Wy z

i j k i j k i j kS W W Wy z

i j k i j k i j k i j k i j kS W W W S V Vy z z

χβ βγη η
α β γ α β γ

χ β γ γ ββγη η
α β γ

χ χβ γ γ β γβγη η η
α β γ α β

−

+ − +∑ ∑
=± =±

+ + + ++ + −∑
=±

+ + + + ++ − + +∑
=±

   
   

 
 

 
 

  



 

, 1γ
∑

=±

 

 
 

(11) 
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( )( ) ( )

2, , , 1 , , , 1 , , , , 2 2 22 12 22 23, , 18

, , , , , ,2 2 22 2 212 22 23, , 18

, , , , , , ,
12 66 12 668

i j k t i j k t i j k i j kV V V V S S Sx y z

i j k i j k i j kS V S V S Vx y z

i j k i j k i j k i jS S U U S S U Ux y

χ
η η η

α β γ

χ α β γη η η
α β γ

χ α β ααβη η

+ −= − + − + +∑
=±

+ + ++ + +∑
=±

+ + ++ + − + − −

 
 

 
 

  

  

    ( ){ }
( )( ) ( )( ){ }

( )
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, , 1
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23 44 23 44, , 18
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26 16 26, , 1 , , 18 8

2 , ,2
168

k

i j k i j k i j k i j kS S W W S S W Wy z

i j k i j k i j kS V V U S Sx y x y

i j kS Ux y

β
α β γ

χ β γ γ ββγη η
α β γ

χ χα βαβη η η η
α β γ α β γ

χ αη η

+∑
=±

+ + + ++ + − + − −∑
=±

+ +− − − +∑ ∑
=± =±

+− +

 
  

 
  

   
  

   

  

 ( )

( )
( ) ( )

, , , ,2
26 36 45, , 1 , , 18

, , , , , ,
36, , 18

2, , , , , , , , , ,2
45 45, , 18 8

i j k i j kS U S S Wx z

i j k i j k i j kS W W Wx z

i j k i j k i j k i j k i j ka S W W W S U Ux z z

χβ αγη η
α β γ α β γ

χ β γ γ ααγη η
α β γ

χ χβ γ γ α γγη η η
α β γ

+ − +∑ ∑
=± =±

+ + + ++ + −∑
=±

+ + + + ++ − + +∑
=±

   
   

 
 

   −  

  



 

, , 1α β γ
∑

=± 

 

 
 

(12) 

( )( ) ( )

2, , , 1 , , , 1 , , , , 2 2 22 13 23 33, , 18

, , , , , ,2 2 22 2 213 23 33, , 18

, , , , , , ,
23 44 23 448

i j k t i j k t i j k i j kW W W W S S Sx y z

i j k i j k i j kS W S W S Wx y z

i j k i j k i j k i jS S V V S S V Vy z

χ
η η η

α β γ

χ α β γη η η
α β γ

χ β γ ββγη η

+ −= − + − + +∑
=±

+ + ++ + +∑
=±

+ + ++ + − + − −

 
 

 
 

  

  

    ( ){ }
( )( ) ( )( ){ }

( )( ) ( )( )

,
, , 1

, , , , , , , ,
55 5513 13, , 18

, , , , , , , ,
36 45 36 45, , 1 , , 18 8

8

k

i j k i j k i j k i j kS S U U S S U Ux z

i j k i j k i j k i j kS S U U S S V Vy z x z

y

γ
α β γ

χ α γ α γαγη η
α β γ

χ χβ γ α γβγη η αγη η
α β γ α β γ

χ
βγη η

+∑
=±

+ + + ++ + − + − −∑
=±

+ + + +− + − − + −∑ ∑
=± =±

−

 
  

 
  

   
   

   

   

( )( ) ( )( )
( )

, , , , , , , ,
36 45 36 45, , 1 , , 18

2 , , , ,
45, , 18

i j k i j k i j k i j kS S U U S S V Vz x z

i j k i j kS W Wx y

χγ β γ ααγη η
α β γ α β γ

χ α βαβη η
α β γ

+ + + +− − − − −∑ ∑
=± =±

+ ++ −∑
=±

   
   

 
 

   


 

(13) 

 
where U, V and W are the components of displacement along the X1, X2 and X3 axes, respectively. Moreover, ηx 
=1/∆x1

α
, ηy=1/∆x2

β, ηz =1/∆x3
γ, and ∆x1

α,  ∆x2
β, and ∆x3

γ are the spatial steps along X1, X2 and X3 axes, respectively, 
with (α, β, γ) equal to ±1. The current time t is assumed where it is not mentioned. “Tilde” over S11 = 
S11(i+α,j+β,k+γ) represents one of the eight cells surrounding the point C depending on the choice of (α, β, γ) from 
(+1,-1), and similar expressions hold for the other stiffness terms. χ = (∆t2/ρ) , where ∆t is the time-step used in the 
simulation and ρ is the average density of all the 8 cells surrounding point C as shown in Fig. 2(a). 

The parameters (cuboid grid and time step) used in the discretization of the Eqs. (11)-(13) are selected based on 
the Courant-Friedric-Lewy (CFL) criterion. The CFL criterion is a constraint that bounds the time step and cell size 
by the relation: 

 

max 2 2 2
1 2 3

1 1 1CFL= 1c t
x x x

∆ + + ≤
∆ ∆ ∆

 (14) 

 
where cmax is the maximum wave speed. This criterion ensures proper capture of the wave propagation in time and 
space for a given time step and grid spacing. The spatial grid sizing should have at least 8 nodes per minimum 
wavelength, and according to Ref. 22, it is also recommended to have an upper limit of 20 nodes per wavelength to 
avoid excessively long run times and truncation errors. 
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III. Numerical Studies 

A. Summary of structure test cases  
In this section, the numerical formulation described above is exercised for different structures to validate the 

capability of the model to capture the GW propagation. In previous studies,20,23 the frequency of input excitation was 
fixed at 75 kHz, and cell discretization was uniform through the thickness for the numerical validation. In our 
current effort, the simulation model is used to model GW propagation at different frequencies and varying cell size 
through the thickness. The simulations are implemented in Intel ® FORTRAN95. The input excitation for the 
numerical simulations is a 3.5-cycle Hann-modulated toneburst at varying frequencies, which is modeled on the 
structure as prescribed in-plane displacements across the span of the actuator. The different material systems used in 
the simulations are shown in Table 1, and these materials will be subsequently referred to by their material-ID.  
 

Table 1. Material properties used in the simulation 

Material Name Aluminum IM7 –  
Cycom 977-3 

T300B-3K Fabric –  
Epon 862 

Last-A-Foam  
FR – 6710 

Material-ID 1 2 3 4 
E1 (GPa) 70 147  50.1 0.089 
E2 (GPa) 70 9.8  50.1 0.089 
E3 (GPa) 70 9.8  9.8 0.089 

ν12 0.33 0.405 0.21 0.3 
ν23 0.33 0.48 0.4 0.3 
ν31 0.33 0.027 0.078 0.3 

G12 (GPa) 26.32 3.7  19.6 0.0195 
G23 (GPa) 26.32 3.31 3.5 0.0195 
G31 (GPa) 26.32 3.7 3.5 0.0195 
ρ (kg/m3) 2700 1558 1760 160 

 
The 3D structures implemented in the simulation are: a homogeneous plate (material-1), a multilayered uni-

directional laminate (material-2), and a sandwich composite panel composed of multi-layer facesheets (material-3) 
and foam core (material-4). A universal time step of 1x10-8 s is used for all the simulations, and the spatial 
discretizations are chosen accordingly to ensure numerical stability according to the CFL criterion. To simulate free 
boundary conditions, additional grid points with the material properties of air (density of 1.3 kg/m3 and stiffness 
10,000 times less than material-1) are added. The out-of-plane displacement component is monitored in the 
simulation for the top surface of the composite laminate. 

B. Results and discussion  
1. Dispersion curve for A0 mode 

Dispersion curves are generated for a 3-mm thick plate of material-1 and 1.5-mm thick uni-directional laminate 
made from material-2. The theoretical dispersion curve is obtained by using the DISPERSE26 software. The 
actuation in the numerical model is prescribed with two circular actuators of diameter 13.4 mm placed on the top 
and bottom surfaces of the plate as shown in Fig. 3(a). The actuator nodes are excited with an out-of-phase 3.5-cycle 
Hann-modulated toneburst to simulate the anti-symmetric wave in the plates. 
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(a) 

 
(b) 

Figure 3. (a) Experimental setup showing the model plate and actuator placement. (b) Sample excitation based on 3.5 cycle 
Hann-modulated toneburst. 

 
The out-of-plane displacement (W3) is monitored on the top surface of the plate/laminate to measure the GW 

propagation speed. Hilbert transformation is used on the time-history signal to mark the arrival times of the peaks in 
the signal. The speed of the GW is calculated by measuring the time taken by the signal peak to arrive at nodes 
which are at distance of 60, 70 and 80 mm from the center of the actuator. The nodes are selected on a radial line 
from the center of the actuator parallel to the X1 axis. The center frequency of the input signal in the LISA 
simulation for the model plate made of material-1 is varied from 50 kHz to 250kHz at an interval of 10 kHz, and the 
group velocity measured is compared with DIPSERSE in Fig. 4(a). For the laminate made from material-2, the 
center frequency is varied between 50 kHz and 200 kHz at an interval of 10 kHz and the comparison between 
DISPERSE and LISA can be seen in Fig. 4(b). We can see that there is a good correlation between the speeds 
predicted by the DISPERSE and LISA simulations. The variation between the speeds calculated from LISA 
simulations and DISPERSE is under 5%. 
 

 
(a) 

 
(b) 

Figure 4. Comparison between the group velocities for A0 mode calculated from LISA and DISPERSE for  
(a) homogeneous plate (material-1) and (b) IM7 uni-directional laminate (material-2) 
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2. Non-uniform cell discretizations 
Preliminary validation for GW propagation for uni-ply laminates is presented in previous work by the 

authors.20,23 In this study, the new formulation with non-uniform spatial discretizations along the X3 axis as shown in 
Fig. 3 is implemented. A uni-directional laminate made of material-2 is considered for this study. The laminate 
model is excited with in-plane displacements by a circular actuator of radius 6.4 mm on the top-surface, shown as an 
orange dot in Fig. 5, and it is excited with a 3.5-cycle Hann-modulated toneburst with center frequency of 75 kHz. 
In all the results shown in Fig. 5, the fiber direction is coincident with the horizontal direction. The through-the-
thickness discretization (∆x3) is varied for different simulations as shown in the first column in Fig. 5, and the out-
of-plane displacements on the top-surface are recorded to verify the capability of the modified iterative equations to 
incorporate the variation in ∆x3. 

 

 
(a) 

 
(b) 20 μs 

 
(c) 40 μs 

 
(d) 60 μs 

 
(e) 

 
(f) 20 μs 

 
(g) 40 μs 

 
(h) 60 μs 

 
(i) 

 
(j) 20 μs 

 
(k) 40 μs 

 
(l) 60 μs 

 
(q) 

 
(r) 20 μs 

 
(s) 40 μs 

 
(t) 60 μs 

Figure 5. Out-of-plane displacement pattern for uni-ply laminate when ∆x3 is varied. Through-the-thickness 
discretization is shown in col. 1 and the snapshots of the propagating waveform are shown in successive columns. 
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In Fig. 5, the X1 and X2 dimensions of the plate are normalized by the radius of the actuator. The plots shown in 
Figs. 5(a)-(d) are the baseline results calculated using the uniform thickness discretizations. Figures. 5(e), 5(i), and 
5(q) show the different discretizations used in this study where the cell size and number of cells through the 
thickness are varied, but the total thickness is kept constant at 1.5 mm. From the plots that follow a particular 
discretization in the first column of Fig. 5, one can see that the new iterative equations are able to capture the GW 
propagation accurately with the non-uniform through-the-thickness discretization. 
 
3. Preliminary GW studies in sandwich foam core panels 

Preliminary experimental and numerical studies using LISA are performed to assess the feasibility of GW 
approaches for delamination monitoring of the interface between the sandwich core and the composite facesheets. 
The particular architecture of interest, shown in Fig. 6(a), consists of surface-bonded transducers bonded on the 
inner part of an aerospace structure to emit GW used for interrogation of the interface between the sandwich core 
and the outer composite facesheet.  
 

 
(a) 

 
(b) 

Figure 6. (a) Schematic of GW-based damage detection architecture for sandwich panels. (b) Components of the 
sandwich foam core. 

 
The composite sandwich specimen composed of a closed-cell polyurethane foam LAST-A-FOAM® FR-6710 

(material-4) sandwiched between facesheets comprising of four plies of T300B-3K (material-3) plain weave carbon 
fiber fabric with the Epon 862 epoxy is shown in Fig. 6(b). The facesheets and core have thickness of 1 mm and 24 
mm, respectively. The mechanical properties are obtained from Refs. 24 and 25. The specimen had a 0.5 m x 0.3 m 
rectangular geometry. 
 

 
(a) 

 
(b) 

Figure 7. (a) Experimental setup showing different components used in the laser vibrometry experiments. (b) Composite 
sandwich specimen with MFC actuator and retro-reflective tape. 
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Guided waves are generated in the composite sandwich specimen with the help of a macro fiber composite 
(MFC) actuator, as shown in Fig. 7(b), bonded onto the top surface of the panel. The actuator is oriented along the 
length of the panel and is placed at an optimum location to avoid boundary reflections. The transducer used in the 
experiments is 28-mm long and 15-mm wide, and it is excited with a 3.5-cycle Hann-modulated toneburst, shown in 
Fig. 3(b). GW were generated with center frequencies varying between 10 kHz and 200 kHz with an interval of 10 
kHz. The GW field was measured using a Polytec PSV-400 scanning laser vibrometer by recording the out-of-plane 
velocities in a configuration as shown in Fig. 7(a). A patch of retro-reflective tape, shown in Fig. 7(b), is attached to 
the top and bottom surface to ensure consistent laser signal strength. The out-of-plane velocity is measured along a 
segment aligned with the actuator on the top surface and bottom surface of the composite sandwich panel. The 
amplitude of out-of-plane displacement calculated by integrating the velocity measured from the laser experiments 
is compared between the top surface and bottom surface. 
 

 
(a) 

 
 
 

 
 
 

(b) 
Figure 8. (a) Cross section of the composite foam core sandwich. (b) Cross-sectional schematic of the sandwich 

panel in LISA simulations. 
 

Numerical simulations are performed on the composite sandwich panel with in-plane (X1X2-plane) discretizations 
of 1 mm x 1 mm. The cross section of the sandwich panel (Fig. 8(a)) is discretized with facesheets having ∆x3 equal 
to 0.5 mm and foam core with ∆x3 equal to 2 mm ( Fig. 8(b)). The discretization was chosen to satisfy the CFL 
criterion and avoid excessive simulation times. As described in the experiments, the excitation is prescribed on the 
top surface of the model in the shape of a rectangular MFC. In-plane displacements along the length of the actuator 
parallel to X1 were considered for actuation. The ouf-of-plane displacement was recorded on the top surface of the 
sandwich panel and Hilbert transform of the signal determined the peak of the arriving signal. The scaled ratio of 
amplitude of the signal on the bottom surface and top surface is plotted at different distances from the center of the 
actuator as shown in Fig. 9.  

From Fig. 9 it is visible that lower frequencies are suitable for GW testing as more energy propagates to the 
bottom facesheet as compared to the higher frequencies, and the 3D numerical simulations based on LISA are able 
to capture the trend in the GW propagation characteristics accurately. More experiments and numerical simulations 
are underway at lower frequencies to investigate if the response at 10 kHz is a global peak. 
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(d) 

Figure 9. Ratio of the amplitudes of signals on the bottom surface and top surface for different frequencies at a distance 
of (a) 40 mm, (b) 50 mm, (c) 60 mm and (d) 70 mm from the center of the MFC actuator.   

 
 

IV. Summary and Future Work 
Local interaction simulation approach (LISA) has been extended and implemented for a generalized orthotropic 

medium with non-uniform through-the-thickness discretization. Three-dimensional elastodynamic equilibrium 
equations were used in deriving the iterative equations with finite difference (FD) transformations, and the sharp 
interface method (SIM) was used to incorporate the heterogeneity from the sandwich construction. Studies with 
frequency variation were performed on an isotropic aluminum plate and uni-directional IM7 laminate and validated 
with DISPERSE. Numerical studies were also carried out on uni-directional IM7 laminate to verify the formulation 
for varying through-the-thickness discretizations. Finally, preliminary experimental and numerical studies were 
conducted on a composite foam core sandwich panel, and it was found that lower frequencies have a better potential 
for SHM-related applications. In the future, the modeling capability will be further validated in honeycomb core 
composite panels and more studies will be conducted on the existing foam core sandwich structures. 
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