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We describe the on-going development of physical models for use with the direct simu-
lation Monte Carlo (DSMC) method that allow the injection of pyrolysis gases generated
by the ablation of charring thermal protection system material for 
ows in translational
nonequilibrium. The test case used in the study is the Stardust reentry capsule, which em-
ployed a Phenolic Impregnated Carbon Ablator (PICA) heat shield and experienced very
high heat loads during its descent through the atmosphere of the Earth. We systematically
examine the e�ect of improving the level of sophistication of the physical models used for
chemical reactions, surface temperature, and ablative mass 
ux on the predicted 
ow�eld
and surface properties.

I. Introduction

Many of the future thermal protection materials of interest to NASA for atmospheric reentry are ablators.
When a charring ablator is used, thermal pyrolysis of the heat shield material produces a gas which 
ows
through the surface and into the 
ow�eld, and the exposed surface of the material reacts and eventually loses
mass and recesses. At high altitude, the majority of the ablative products come from the inner structure of
the material.1 The pyrolysis process starts early in the reentry trajectory, often when the vehicle has not
yet reached the continuum regime. The direct simulation Monte Carlo (DSMC) method can be used in this
non-continuum regime to simulate the interaction of the 
ow�eld with the ablation products.

Modeling hypersonic 
ow�elds including ablation is an active area of research and the body of literature in
this area is increasing accordingly. In this study, we focus speci�cally on work involving the charring ablative
material, Phenolic Impregnated Carbon Ablator (PICA), used on the Stardust sample return capsule and
on the Mars Science Laboratory mission. Olynick et al.2 and Martin and Boyd3 produced axisymmetric
solutions of the Stardust reentry 
ow�eld at various points along the reentry trajectory using Computational
Fluid Dynamics (CFD) codes coupled to material response codes. Zhong et al.4 obtained axisymmetric
DSMC solutions of the Stardust 
ow�eld at the 81 km 
ight condition, utilizing a set of chemical reaction
rates that were developed for simulation of Mars entries. They estimated the composition of the pyrolysis
gas using the predicted mass fractions of species at the stagnation point obtained from a previous CFD
calculation,2 and included surface reactions in their simulations. In these cases, an assumption of chemical
equilibrium between the boundary layer gases, the pyrolysis gas being emitted from the vehicle surface, and
the surface itself was used to determine the composition of the gas at the surface of the vehicle.

We are currently focused on implementing physical models required to simulate an ablative boundary
condition for nonequilibrium hypersonic 
ows using the DSMC method. We are starting the process by
�rst simulating the ejection of the pyrolysis gas produced during the ablation process into the 
ow�eld.
This also involves implementing the capability to simulate carbon and hydrogen species and the associated
chemical reactions, as well as polyatomic species, with the DSMC method. The Stardust 81 km 
ight
condition is chosen as the initial test case because that vehicle utilized a charring ablator, and because
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radiation spectra were obtained during reentry that can be used for partial validation of the results. This
paper details the implementation of the blowing boundary condition, variable surface temperature and mass

ux boundaries, and the chemical reaction mechanism including hydrogen and carbon species in a state-of-
the-art DSMC code developed at the University of Michigan. Full-body, axisymmetric 
ow�eld results are
compared for the following cases: with and without ablation e�ects included, with constant and variable
wall temperature pro�les and blowing rates, with and without recombination reactions modeled, and with
and without ionization e�ects included. The paper ends with some conclusions and suggestions for future
work.

II. Details of the baseline DSMC model

The numerical simulations are performed using the DSMC code MONACO,5 currently being developed at
the University of Michigan. The Variable Hard Sphere (VHS) model is used to simulate particle interactions.6

Models for rotational7 and vibrational8 relaxation during inelastic collisions are included. The reaction rate
coe�cients used to model chemical reactions between air species using the Total Collision Energy (TCE)
chemistry model are compiled using References 9, 10, 11 and 12 and listed in Tables 1 and 2. Additionally, the
Vibrationally Favored Dissociation (VFD) chemistry model13 is used to model the preferential dissociation
of N2 and O2 molecules from higher vibrational states using preferential parameter values of 2.0 and 0.5,
respectively.

Table 1: Reaction rate coe�cients (m3/molecule/s) used in the TCE chemistry model for reactions involving
neutral species.

Number Reaction Rate Coe�cient

1Mfa N2+M!N+N+M 1.162�10�8T�1:6exp(-113 200/T)

1Mb N + N + M ! N2 + M 1.072�10�39T�1:6

1Afb N2+A!N+N+A 4.980�10�8T�1:6exp(-113 200/T)

1Ab N + N + A ! N2 + A 4.597�10�39T�1:6

1Ec N2+e�!N+N+e� 4.980�10�6T�1:6exp(-113 200/T)

2Mf O2+M!O+O+M 3.321�10�9T�1:5exp(-59 400/T)

2Mb O + O + M ! O2 + M 4.597�10�42T�1:0

2Af O2+A !O+O+A 1.660�10�8T�1:5exp(-59 400/T)

2Ab O + O + A ! O2 + A 2.298�10�41T�1:0

3Mf NO+M!N+O+M 8.302�10�15exp(-75 500/T)

3Mb N + O + M ! NO + M 3.447�10�45

3Af NO+A!N+O+A 1.826�10�13exp(-75 500/T)

3Ab N + O + A ! NO + A 7.583�10�44

4fd O+NO!N+O2 1.389�10�17exp(-19 700/T)

4be N+O2 !O+NO 4.601�10�15T�0:546

5f O+N2 !N+NO 1.069�10�12T�1:000exp(-37 500/T)

5b N+NO!O+N2 4.059�10�12T�1:359

aReaction involving a molecular collision partner.
bReaction involving an atomic collision partner.
cReaction involving an electron as the collision partner.
dForward rate for reaction mechanism.
eReverse rate for reaction mechanism.

The energy of the Stardust entry is large enough to produce charged particles. The e�ect of the electric
�eld is simulated simply by invoking the assumption of ambipolar di�usion and requiring the electrons to
move at the average ion velocity in a given cell.14 The vehicle surface is assumed to be fully catalytic to
ions and electrons but not catalytic to atoms. The grid spacing in the direction of 
ow gradients is less
than the local mean free path, and the computational time step is less than the local heavy particle collision
time everywhere in the domain. The collision routine is subcycled within each overall simulation time step
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Table 2: Reaction rate coe�cients (m3/molecule/s) used in the TCE chemistry model for reactions involving
charged species.

Number Reaction Rate Coe�cient

6f N+N!N+
2 +E� 3.387�10�17exp(-67 700/T)

6b N+
2 +E�!N+N 7.274�10�12T�0:650

7f O+O!O+
2 +E� 1.859�10�17exp(-81 200/T)

7b O+
2 +E�!O+O 1.453�10�4T�2:412

8f N+O!NO++E� 8.766�10�18exp(-32 000/T)

8b NO++E�!N+O 1.321�10�9T�1:187

9f N2+O+!O+N+
2 1.511�10�18T0:360exp(-22 800/T)

9b O+N+
2!N2+O+ 1.978�10�18T0:109

10f NO+O+!O2+N+ 2.324�10�25T1:900exp(-15 300/T)

10b O2+N+!NO+O+ 2.443�10�26T2:102

11f O2+NO+!NO+O+
2 3.985�10�17T0:410exp(-32 600/T)

11b NO+O+
2!O2+NO+ 6.195�10�16T�0:050

12f N+NO+!O+N+
2 1.195�10�16exp(-35 500/T)

12b O+N+
2!N+NO+ 1.744�10�18T0:302

13f O+NO+!O2+N+ 1.660�10�18T0:500exp(-77 2000/T)

13b O2+N+!O+NO+ 2.192�10�17T0:114

14f N+O+
2!O2+N+ 1.444�10�16T0:140exp(-28 600/T)

14b O2+N+!N+O+
2 4.993�10�18T�0:004

15f N2+O+
2!O2+N+

2 1.644�10�17exp(-40 700/T)

15b O2+N+
2!N2+O+

2 4.589�10�18T�0:037

16f N+NO+!N2+O+ 5.645�10�17T�1:080exp(-12 800/T)

16b N2+O+!N+NO+ 3.970�10�18T�0:710

17f O+NO+!N+O+
2 1.195�10�17T0:290exp(-48 600/T)

17b N+O+
2!O+NO+ 8.918�10�13T�0:969

18f O+O+
2!O2+O+ 6.641�10�18T�0:09exp(-18 600/T)

18b O2+O+!O+O+
2 4.993�10�18T�0:004

19f N2+N+!N+N+
2 1.660�10�18T0:500exp(-12 100/T)

19b N+N+
2!N2+N+ 2.343�10�14T�0:610

20 N+E�!N++2E� 8.434�10�14exp(-121 000/T)

21 O+E�!O++2E� 1.054�10�14exp(-106 200/T)
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to accurately simulate collisions of electrons and heavy particles, and the particles are moved with a time
step corresponding to the collision time of heavy particles. Electron-electron collisions are not simulated as
these are very frequent and serve solely to thermalize the electron distribution function; it is assumed that
collisions of electrons with heavy species are su�cient to do so.

III. Details of the ablation model

The following species are considered in the analysis, in addition to eleven-species air: CO, CN, C, C2, H2,
H, C+ and H+. The VHS parameters used for all species are given in Table 3. Currently, the VHS parameters
for the carbon and hydrogen species are simply approximations. The rates for reactions involving hydrogen
and carbon containing species are obtained from the Park et al. mechanism,15 and the reverse reaction rates
are obtained using a �t to the equilibrium constants also given in that work. That chemistry model includes
triatomic species, however the capability to model triatomic species is not yet implemented in the DSMC
code MONACO, so those reactions are not included in these simulations. The forward and reverse reaction
rates involving ablative species are given in Table 4. The temperature exponent parameter given in Ref. 15
for the electron impact ionization reactions of carbon and hydrogen, numbers 32 and 33 in Table 4, is too
negative to use with the TCE chemistry model. New parameters for these reactions are found by �tting
the rate given by Park, and these are given in the Table. These parameters provide good agreement with
the original rates for temperatures up to about 30 000 K. Since the activation energies for these reactions
are very high, it is expected that they will become important near and above the temperature limitation of
the rates included here. Thus, more attention needs to be paid to either determining appropriate rates for
these reactions in future work, or evaluating whether these reactions play an important role in the prediction
of 
ow�eld properties for these types of reentry 
ow�elds. This chemistry set can eventually be updated
based on a recent assessment of appropriate chemistry models for carbon-phenolic ablation16 in these types
of reentry 
ow�elds.

Table 3: Parameters used in the VHS model.

! 0.20

Tref 288 K

dN2
4.07�10�10 m dCO 4.00�10�10 m

dO2 3.96�10�10 m dCN 4.00�10�10 m

dNO 4.00�10�10 m dC 2.00�10�10 m

dN 3.00�10�10 m dC2
4.00�10�10 m

dO 3.00�10�10 m dH2 2.00�10�10 m

dN+
2

4.07�10�10 m dH 1.00�10�10 m

dO+
2

3.96�10�10 m dC+ 2.00�10�10 m

d+
NO 4.00�10�10 m dH+ 1.00�10�10 m

d+
N 3.00�10�10 m

d+
O 3.00�10�10 m

de 1.00�10�10 m

A particle 
ux of each ablating species is speci�ed at the surface of the vehicle, and the velocity and
internal energy components of each particle are calculated assuming full thermal accommodation at the
surface temperature. In some simulations, both the surface temperature and blowing mass 
ux are varied
spatially along the surface. Values of the stagnation point surface temperature and blowing rate are taken
from a previous analysis of the Stardust 
ow�eld that utilized a coupled CFD-material response technique.3,17

The composition of the pyrolysis gas is calculated using the NASA CEA code,18,19 assuming that it is in
chemical equilibrium at the surface temperature and pressure given by the coupled CFD-material response
solution. Triatomic species and species having a mass fraction of less than 0.003 are neglected in the pyrolysis
gas composition. After these species are neglected, the mass fractions obtained from CEA are rescaled to
sum to unity. The formation of graphite in the ablation products is not modeled, but the relative mass
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Table 4: Reaction rate coe�cients (m3/molecule/s) used in the TCE chemistry model for reactions involving
ablative species.

Number Reaction Rate Coe�cient

22f C2 + M ! C + C + M 6.14 �10�16exp(-69 900/T)

22b C + C + M ! C2 + M 2.04 �10�46

23f CN + M ! C + N + M 4.15 �10�16exp(-87 740/T)

23b C + N + M ! CN + M 1.38 �10�46

24f H2 + M ! H + H + M 3.65 �10�16exp(-48 300/T)

24b H + H + M ! H2 + M 6.07 �10�46

25f H2 + H2 ! H + H + H2 9.13 �10�16exp(-48 300/T)

25b H + H + H2 ! H2 + H2 1.52 �10�45

26f CO + C ! C2 + O 3.32 �10�13T�1:00exp(-58 000/T)

26b C2 + O ! CO + C 3.32 �10�14T�1:00

27f O + CO ! C + O2 6.48�10�17T�0:18exp(-69 200/T)

27b C + O2 ! O + CO 1.30�10�17T�0:18

28f CO + N ! CN + O 1.66 �10�16exp(-38 600/T)

28b CN + O ! CO + N 2.37 �10�17

29f N2 +C ! CN + N 1.83 �10�16T�0:11exp(-23 200/T)

29b CN + N ! N2 + C 3.65 �10�15T�0:61

30f CN + O ! NO + C 2.66 �10�17T0:10exp(-14 600/T)

30b NO + C ! CN + O 3.54 �10�17

31f CN + C ! C2 + N 8.30 �10�17exp(-13 000/T)

31b C2 + N! CN + C 1.66 �10�12T�1:00

32 C + E� ! C+ + E� + E� 1.00 �10�11exp(-130 720/T)

33 H + E� ! H+ + E� + E� 3.00 �10�12exp(-157 800/T)

fractions of the ablation products still account for its presence. The composition of the pyrolysis gas that
is used in these simulations is given in Table 5. The composition of the pyrolysis products depends on the
temperature and pressure at the surface of the vehicle, which varies with location along the surface. In this
work, however, the composition is speci�ed using the values given in Table 5 everywhere on the forebody
surface.

Table 5: Composition of ablation products and particle 
ux at stagnation point.

Species Mass fraction Particle 
ux (particles/m2/s)

CO 0.616 2.8352�1023

C(s) 0.286 0

H2 0.098 6.3147�1023

In simulations where the wall temperature is variable, it is determined as follows. The stagnation point
temperature is 2890 K at the 81 km trajectory point considered in this work. The mass blowing rate at this
point is found to be 0.0214 kg/m2/s. The values of surface temperature at surface locations away from the
stagnation point are obtained by multiplying the stagnation temperature by the ratio of the temperature at
each surface location to the stagnation temperature from a calculation that employed a radiative equilibrium
wall boundary condition. The mass 
ux at each surface location is then determined using a relation obtained
by forming a linear �t of the stagnation point ablative mass 
uxes to temperatures at various trajectory
points included in the analysis of Martin and Boyd.3 The resulting pro�les of surface temperature and
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ablative mass 
ux that are used in these simulations are shown in Figure 1.

Figure 1: Wall temperature and ablative mass 
ux pro�les imposed on the vehicle forebody surface.

As previous research has shown,20,21 there are expected to be large di�erences between the CFD and
DSMC 
ow�eld predictions at this 
ight condition, especially in the boundary layer where gradients of the

ow�eld properties are large. Additionally, the boundary conditions imposed at the surface of the vehicle are
fundamentally di�erent in the present DSMC analysis as compared to the CFD-material response analysis
of Martin and Boyd. Thus, this technique of determining the wall temperature and blowing rate from
a coupled CFD-material response solution should eventually be replaced with more physically accurate
boundary conditions by coupling the DSMC code directly to a material response code. The current work
focuses on implementing the required physical models in the DSMC code to eventually permit such a coupling.

IV. Test Case: Stardust

The Stardust 
ight experiment is used as the baseline test case for this research. The geometry of the
Stardust sample return capsule is shown in Figure 2. Axisymmetric simulation results for the 
ow over
the entire capsule are presented in this study. The ambient conditions at the 81 km trajectory point are
summarized in Table 6. The Knudsen number is computed based on the freestream mean free path and
the capsule diameter. For simulations employing constant forebody surface properties, the temperature of
the forebody is set to 2890 K, and the ablative mass 
ux is set to 0.0214 kg/m2/s. In all simulations, the
temperature of the afterbody is assumed to be 900 K, and it is assumed that the afterbody does not ablate.

Table 6: Free stream conditions for the Stardust simulation.

Altitude, km Velocity, m/s Mach No. Density, kg/m3 Temperature, K Knudsen No.

81 12 385 42 1.27�10�5 218 0.005

V. Results

In the following sections, results are presented and compared for the following cases: no ablation, ablation
with constant surface temperature and mass 
ux of pyrolysis gas, ablation with variable surface temperature
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Figure 2: Geometry of the Stardust sample return capsule.

and mass 
ux of pyrolysis gas, ablation with variable surface properties and recombination reactions included,
and ablation with ionization e�ects included.

The computational grid is constructed such that in the forebody region of the mesh, the cell size in the
normal direction is less than a mean free path, and in the afterbody region the overall characteristic cell
length is less than a mean free path. The simulation time step is less than the mean collision time everywhere
in the 
ow�eld. For the simulations that include ionization e�ects, the collision routine is subcycled 25 times
per iteration to resolve the large electron collision rate. An example of the computational requirements
are given for the case with ablation, variable surface properties, and the chemistry model that includes
recombination. The axisymmetric structured grid has approximately 200 000 cells, and 1.8 million iterations
are completed before sampling for 3 million iterations. The computation uses 21.2 million particles and the
time step is 1.25�10�9 seconds. The computation took almost 8000 CPU hours on 32 nodes of an AMD
Opteron cluster to complete.

A general impression of the 
ow�eld is given in Figure 3, which shows translational temperature contours
and streamlines from the simulation that included ablation, variable surface properties, recombination, and
no ionization e�ects.

Figure 3: Translational temperature contours and streamlines in the 
ow�eld (including ablation, variable
surface properties, recombination, no ionization e�ects).

Figure 4 shows contours of each of the ablative species from the same simulation. The concentration of
CO persists well into the wake region, while the H2 appears to dissociate fairly close to the vehicle surface.
Since the chemistry model used in this work does not include CO dissociation, the only means of breaking
down the CO molecule is through exchange reactions. In future works, the e�ect of the omission of this
reaction will be examined.
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(a) Contours of CO number density.

(b) Contours of H2 number density.

Figure 4: Contours of pyrolysis gas species in the 
ow�eld (including ablation, variable surface properties,
recombination, no ionization e�ects).
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V.A. Pyrolysis gas

The translational (Ttra), rotational (Trot) and vibrational (Tvib) temperatures along the stagnation stream-
line and along the wake symmetry line are shown in Figure 5 for simulations run with and without ablation
e�ects included. There is more statistical scatter in the results obtained in the wake because the density
and therefore the number of simulator particles is lower there than in the post-shock region in front of the
vehicle. In general, including ablation reduces the translational and rotational temperatures in the shock
layer, likely because more energy is being consumed by chemical reactions with the ablation species. In-
cluding ablation slightly increases the vibrational temperature in the shock layer, possibly due to smaller
vibrational relaxation times of some of the ablation species. In the wake region, we can reliably conclude
that the translational temperature when ablation is included is slightly lower than when it is not. Despite
the high level of statistical scatter, it appears that the rotational and vibrational temperatures are basically
unchanged from the no-ablation case.

(a) Stagnation streamline. (b) Wake symmetry line.

Figure 5: Comparison of temperatures computed with and without ablation included (variable surface prop-
erties, recombination, no ionization e�ects).

Figure 6 shows predicted air species concentrations along the stagnation streamline and the wake sym-
metry line, with and without ablation included in the simulation. In the shock layer, there is slightly less
O2 present, and slightly more N and O present when ablation is included. Along the centerline of the wake
region, the concentrations of NO and N2 increase slightly when ablation is included in the simulation. The
density of O2 is too low to appear on this Figure. Both of these e�ects are likely a result of the ablation
species interacting with the air species in the 
ow�eld through chemical reactions.

Lastly, Figure 7 shows the predicted heat 
ux along the capsule surface with and without ablation e�ects
included in the simulation. As expected, the blowing of pyrolysis gas results in a reduction in the predicted
heat 
ux at locations on the surface where the blowing rate is non-zero (see Figure 1). This is because the
boundary layer is thickened by the incoming momentum resulting in a reduction in the temperature gradient
at the surface. The presence of species containing carbon and hydrogen also changes the gas conductivities,
and this also a�ects the predicted heat 
ux. Since no chemical reactions or catalytic reactions on the surface
are modeled in these cases, the heat 
ux component due to species di�usion at the surface is not a�ected.
The predicted heat 
ux along the afterbody is much smaller than that along the forebody and is relatively
unchanged by the consideration of ablation in the simulation.
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(a) Stagnation streamline. (b) Wake symmetry line.

Figure 6: Comparison of air species densities computed with and without ablation included (variable surface
properties, recombination, no ionization e�ects).

V.B. Variable surface properties

To test the e�ect of modeling the variation of surface temperature and ablative mass 
ux along the surface, a
simulation is run in which the forebody surface properties are held constant at a wall temperature of 2890 K
and a pyrolysis mass 
ux of 0.0214 kg/m2/s. As expected, neglecting any variation of these properties
along the surface results in very di�erent 
ow�eld predictions. Figure 8 shows the predicted temperatures
along the stagnation streamline for the cases with constant and variable surface properties. When the surface
properties are held constant, the shock stand-o� distance (as indicated by the temperature pro�les) increases
relative to the case that employs variable surface properties. This changes the shape and magnitude of the
air species density pro�les, which are shown in Figure 9(a). In general, there is more dissociated nitrogen
and oxygen in the 
ow�eld when the surface properties are held constant at the stagnation temperature.

Figure 9(b) shows the density of ablation species in the 
ow�eld; the densities of all species except
H2 are larger throughout the 
ow�eld in the constant surface property case. This is simply because the
imposed ablative mass 
ux is linearly proportional to temperature in our simulations, so a higher surface
temperature results in a larger mass 
ux. Temperature and species density pro�les are not shown along the
wake symmetry line, since the general trends are the same as those along the stagnation streamline.

V.C. Recombination reactions

The recombination reactions are originally omitted from the analysis to reduce the complexity. A simulation
with pyrolysis gas and variable surface properties is run including those reactions, which are labelled 1b, 2b,
3b, 22b, 23b, 24b and 25b in Tables 1 and 4. The species concentrations along the stagnation streamline
and surface heat 
ux predictions are essentially unchanged between the two simulations. Figure 10 shows
a comparison of the predicted air species and ablation species along the wake symmetry line. Some species
with very low concentrations are omitted. From these results we can see that if one is concerned with species
concentrations in the wake region, then the recombination reactions should be included in the simulation.
For example, the predicted density of the CO molecule in the wake is approximately ten times higher in the
simulation that includes recombination reactions.
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Figure 7: Heat 
ux along capsule surface with and without ablation included (variable surface properties,
recombination, no ionization e�ects).

V.D. Ionization e�ects

As stated earlier, due to the high velocity of the Stardust capsule during its reentry into the atmosphere, col-
lisions between particles are energetic enough to cause ionization reactions. Thus, the chemistry mechanism
is extended to include the following charged species: N+

2 , O+
2 , NO+, N+, O+, C+ and H+ and the associated

reactions. As expected, the results indicate that the vibrational and electron translational temperatures are
in equilibrium throughout the 
ow�eld. Other than that, the trends discussed in Section V.A regarding the
behaviour of 
ow�eld temperatures and surface heat 
ux when ablation is considered are repeated here, so
those results are not shown.

Figure 11 shows the concentrations of ions and electrons both along the stagnation streamline and along
the wake symmetry line. In the boundary layer along the stagnation streamline, the concentrations of ions
and electrons are larger in the simulation that does not include ablation. This is likely because energy that
may be used to ionize particles is instead used in reactions with ablative species when ablation is included.
The concentrations of H+ and C+ are also shown; the concentration of C+ is very low relative to the other
species; however, since the ionization rate for this reaction is estimated using an expression that becomes
inaccurate at high temperatures, the validity of this result should be explored further. Along the wake
symmetry line, the predicted ion and electron densities with and without ablation are generally very similar.
The densities of O+

2 and C+ are too low to be shown in this �gure. The large amount of statistical scatter
in the results obtained near the vehicle surface is a result of a lack of su�cient particles in that region to
accurately model the trace species (ie: NO, CO, CN, N+

2 , e, NO+, H+). A solution for this issue needs to
be addressed in future work.
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Figure 8: Temperatures along the stagnation streamline computed with and without variable surface prop-
erties (including ablation, recombination, no ionization e�ects).

(a) Air species. (b) Ablation species.

Figure 9: Comparison of species densities along the stagnation streamline computed with and without
variable surface properties (including ablation, recombination, no ionization e�ects).
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(a) Air species. (b) Ablation species.

Figure 10: Comparison of species densities along the wake symmetry line computed with and without
recombination reactions included (including ablation, variable surface properties, no ionization e�ects).

(a) Stagnation streamline. (b) Wake symmetry line.

Figure 11: Comparison of ion and electron densities along the stagnation streamline and wake symmetry line
computed with ionization e�ects included (including ablation, variable surface properties, no recombination).
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VI. Conclusions

This paper details an on-going e�ort to include the e�ects of a charring, ablating capsule surface on
predictions of macroscopic 
ow�eld properties in hypersonic entry under rare�ed conditions. The expected
reduction of surface heat 
ux with the addition of the ejection of pyrolysis gas into the 
ow has been
demonstrated. We have demonstrated the importance of including recombination reactions in these types
of simulations, and as expected, con�rmed that modeling the variable nature of the surface properties has a
non-negligible e�ect on the 
ow�eld predictions.

It is clear that more work needs to go into developing good physical models for species interactions and
chemical reactions required to model ablating carbon phenolic materials using the DSMC method. Perhaps
one of the most important conclusions of this paper is that variable species weighting of some sort is required
to reduce the statistical scatter in the results and accurately compute these types of 
ow�elds, which by their
nature, produce species in very disparate concentrations. Additionally, the experience gained during these
DSMC simulations of the 
ow�eld around the entire re-entry capsule, including a large number of species
and chemical reactions, has emphasized the need for a more e�cient way of treating the electron species
during the computation.

VII. Future Work

There are many areas in which the current simulation capability can be improved. They include:

� improved VHS model parameters for species containing carbon and hydrogen,

� improved reaction rates for carbon and hydrogen electron impact ionization reactions for use with the
DSMC method,

� inclusion of triatomic species in the chemistry model,

� investigation of alternate chemistry mechanisms for modeling ablation products,

� addition of a species weighting scheme to reduce the computational cost of the simulation and increase
the accuracy of the results,

� an improved method of electron simulation to reduce computational time.

In terms of physical models for ablation processes, the next long-term steps are to develop and couple a
�nite-rate surface chemistry model to the DSMC code, and to couple the DSMC code to a material response
module.
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