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A compressible ow solver for multi-GPU clusters has been developed for performing
large-scale supersonic jet noise and other high-speed compressible ow simulations. Super-
sonic jet noise simulations require the accurate representation of complex nozzle geometry
and thus the use of unstructured grids. While such a grid representation is crucial for
the accurate representation of the nozzle geometry, it has the disadvantage of introducing
a highly irregular memory access pattern, which violates GPU coalescing requirements
resulting in an ine cient use of the otherwise high memory bandwidth of GPUs and there-
fore a bottleneck in computational performance. In order to mitigate this performance
bottleneck, a hybrid grid representation is implemented which allows for augmenting the
unstructured grid representation in the vicinity of complex nozzle geometry with an e -
cient structured grid representation in other regions of the ow domain, which is able to
ful Il GPU coalescing requirements, and thus achieve a signi cant improvement in compu-
tational performance, leading to a reduction in simulation turnaround time.

I. Introduction

As more and more realistic geometrical features and operating conditions are simulated, the numerical
resolution and corresponding grid size and time requirements for supersonic jet noise simulations are rapidly
increasing. In order to reduce simulation turnaround time, and thus provide valuable results within an
acceptable timeframe, it is necessary to ensure that current developments in computational architectures are
exploited by production CFD codes. The purpose of this paper, therefore, is to investigate the application
of GPUs for achieving faster turnaround times when performing large-scale supersonic jet noise and other
high-speed compressible ow simulations, while developing new techniques to ensure that full performance
is achieved. The code under consideration is the recently developed JENRE (Jet Engine Noise Reduction)
code, which has been developed to run on multi-GPU clusters and other platforms, within a uni ed codebase.

Memory bandwidth is often observed to be a signi cant performance issue for unstructured grid solvers
with low arithmetic intensity for which relatively few arithmetic operations are performed per memory
transaction. Graphics processing units (GPUs) may help alleviate this issue and improve overall performance
due to their high peak memory bandwidth in comparison to CPUs. For example, the NVIDIA Tesla C2070
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achieves a peak memory bandwidth of 144 GB/¢? while the Intel Xeon 5670 achieves a peak memory
bandwidth of 32 GB/s E} Such peak performance numbers do not automatically translate into achieved
performance, and care is required in developing algorithms which can fully exploit available computational
resources; otherwise signi cant losses in performance are to be expected.

There has been a substantial amount of work reported in the literature, which indicate that GPUs can
achieve high performance for computational uid dynamics applications, and that they are increasingly
employed in mature, production codes. In previous work, an unstructured, cell-centered nite volume Euler
solver was implemented, resulting in a substantial speed-up on previous-generation hardwarel! Similar
results, for a two-dimensional edge-based solver, were also presented by Dahm and Fidkowski? Asouti,
Kampolis, et al®4 have also implemented a vertex-centered nite volume code for unstructured grids on
GPUs. Finally, the general-purpose CFD code FEFLO was semi-automatically ported to run on GPUs® and
GPU clusters® resulting in a modest performance gain of up to 2x when running on GPUs in comparison to
equivalent multi-core CPUs, for which the lack of an appropriate numbering scheme for unstructured grids
was observed to be the primary impediment to achieving even higher gains in performance.

A great deal of research has been dedicated to the subject of unstructured grid numbering schemes
for non-GPU architectures, such as cache-based, shared-memory parallel, and vector architectures, c.f.,
references ™4 These grid numbering schemes have already played a decisive role in reducing memory
bandwidth consumption, and ultimately improving solver performance. However, while analogies can be
made between previous architectures, especially vector processors, and modern GPUs, there are signi cant
di erences in the memory access requirements. Previously considered numbering schemes are often designed
to maximize temporal reuse of data stored in cache. Although the current NVIDIA Fermi GPU architecture
has L1 and L2 cache memory spaces, these GPU caches are not intended for temporal reuse in the way that
CPU caches are, as re ected by their smaller size. In fact, performance guidelines advise against employing
techniques like cache blocking and even suggest ignoring the presence of the cache when optimizing GPU
code [15, Slide 11]. Therefore, techniques employed for minimizing cache misses, such as adjacency matrix
bandwidth minimization, are not directly relevant to the memory access requirements of GPUs. In fact, such
schemes may actually be harmful to achieving a memory access pattern suitable for GPUs, as it essentially
leads to what has been called, \one of the worst access patterns for GPUs" |16} Slide 28]. Instead, achieving
coalesced memory access should be used as the criterion when constructing unstructured grid numbering
schemes, as it has been designated the \single most important performance consideration in programming
for CUDA™ [17, Section 3.2.1].

In order to reduce overall memory bandwidth consumption this work investigates transitioning from
fully unstructured grids to hybrid grids, with the use of unstructured grids restricted to regions of the
computational domain exhibiting complex geometry while structured grids are used in the remainder of the
domain. This technique is e ective for the meshes used for jet noise simulation: while unstructured grids are
required in the vicinity of the jet nozzle, structured grids can easily represent the wake region of the domain.
This results in a reduction of storage, and most importantly, memory bandwidth consumption, since the
grid numbering is speci ed directly to ful Il GPU coalescing requirements.

I1. Flow Solver

The Jet Engine Noise Reduction (JENRE) code implements a compressible ow solver based on the
MILES approach (Monotonically Integrated Large-Eddy Simulation), which is under development for the
simulation of supersonic jet ow and its acoustic properties. An example of such a ow eld is shown
in Figure [I, which shows a cross-section through the XY-plane of the three-dimensional temperature eld
computed by the JENRE code for a nozzle geometry consisting of 193 million cells. Practical supersonic jet
noise simulations require increasingly detailed physics, complex geometry, large mesh sizes, and fast turn-
around times, and therefore a major emphasis of this code’s development is on ensuring that the code is
capable of fully exploiting emerging massively parallel, high-performance computing (HPC) architectures.

The JENRE code implements a nite volume discretization of the Euler equations together with the
Flux-Corrected Transport (FCT) convection scheme /28 over cell-centered unstructured grids using arbitrary
cell shapes. The multi-dimensional FCT ux limiter of Zalesak!® provides an implicit sub-grid scale model,
which ensures monotonicity at shocks and sharp features, with minimal arti cial dissipation. As illustrated

ahttp://www.nvidia.com/object/personal-supercomputing.html
Bhttp://ark.intel.com/Product.aspx?id=52576&processor=x5670
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Figure 1. A cross-section through the XY-plane of the three-dimensional temperature eld computed by the JENRE
code for a nozzle geometry over an unstructured grid consisting of 193 million tetrahedral cells.

in Figure 2] face-based loops are used exclusively to exchange information across cells while performing ow
calculations. Such face-based loops are used extensively in CFD, as they lead to a natural implementation of
many ow calculations, such as limiting and ux integration while re ecting the symmetry inherent in such
operations, and as a result both avoids redundant computation and enforces conservation laws at the discrete
level. In the context of nodal nite element or nite volume schemes, such loops may be termed edge-based,
but they exhibit a similar memory access pattern, with the exception of edge-based connectivity leading
to greater variation in the degree of connectivity between nodes in comparison to that of the face-based
connectivity between cells. These loops follow a gather-scatter memory access pattern and require a face-
coloring scheme when executed in parallel. Such a coloring scheme organizes faces sharing an adjacent cell
into separate color groups, so that all faces of the same color may be safely executed in parallel. Consistently
using face-based loops in the ow solver, increases the code’s amenability to optimization, since there is only
a single non-trivial memory access pattern to target when constructing the face and cell numbering. One of
the overarching goals of the JENRE code, in addition to numerical and physical accuracy and usability, has
been to achieve the highest computational performance possible. To this end, JENRE is designed to exploit
the parallelism inherent in modern computer architectures at multiple levels.

The rst form of parallelism achieved by JENRE is coarse-grained, distributed-memory parallelism. Such
parallelism is implemented using the common approach of peforming domain decomposition and using MPI
to communicate between sub-domains?Y The particular approach used to implement this in JENRE is
by using processor boundary conditions, which are implemented in the same way as physical boundary
conditions, but instead make MPI calls to exchange eld data across inter-processor cell faces. In addition,
JENRE provides parallel 10 support using MPI1-10 and on-the- y parallel partitioning using the open-source
ParMETIS library 2L

The second form of parallelism achieved by JENRE is ne-grained, shared-memory parallelism. Because
of the gather-scatter memory access pattern present in the face-base loops of JENRE, a face-coloring scheme
is employed which serializes execution over the color groups, while exploiting shared-memory parallelism
over the faces contained within each color group. Such parallelism is implemented via the open-source
Thrust library 2223 which provides generic algorithms (e.g., copy, transform, reduce, compress, pre x-sum,
sort), function objects, and iterators, which are used as a foundation upon which the mesh and ow solver
operations in JENRE are implemented. Since the Thrust library is optimized for either a serial, OpenMP,
or CUDA backend, JENRE can be compiled to produce either an optimized serial CPU code, multi-core
CPU code, or many-core GPU code, and could easily be extended to future computational architectures
that might emerge, while also remaining exible enough to accommodate any custom, architecture-speci ¢
implementations required for high performance. Finally, these two forms of parallelism are completely
orthogonal, and as a result JENRE can be compiled to run on both clusters of multi-core CPUs and multi-
core GPUs.

I11. Memory Bandwidth

I11.A. Coalescing requirements

Achieving coalesced memory access is considered to be the \single most important performance consideration
in programming for the CUDA architecture” ! Coalescing shares the purpose of maximizing cache hits on
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Figure 2. An illustration of the gather-scatter pattern of the face-based loops, with a face coloring scheme applied,
which is implemented in the JENRE code and used for operations such as exchanging uxes and performing limiting.

CPUs, i.e., reading memory in low-latency cache in order to reduce slower o -chip memory access. Since
GPUs service memory transactions in 32, 64, or 128 byte segments, coalesced memory access minimizes the
number and size of segments required to fully service a particular global memory transaction for a given
warp (32 consecutive threads). Given a particular array access in a CUDA kernel, coalesced memory access
means that the threads of a warp access a contiguous, aligned segment of memory (the CUDA Programming
Guide?® provides full technical details). If the threads of a warp were to access memory in completely
disparate locations, then each thread would require a separate segment to be read from or written to in
global memory leading to an enormous degradation in performance Figure 3.9]. Furthermore, this
additional memory bandwidth consumption will mostly go to waste. Hardware up until the latest Fermi
architecture discarded unused portions of these segments. While the latest generation of GPUs introduces a
cache which can retain previously read segments on-chip, coalescing remains of the utmost importance for
achieving high performance.

In the eld of computational uid dynamics, GPU coalescing requirements are primarily a concern in the
context of face or edge based loops, which often dominate the overall run-time of ow solvers as they are
used to implement fundamental operations such as ux integration and limiting. As illustrated in Figure 2]
the memory access pattern is that of gathering ow quantities from the two cells adjacent to each face,
performing computation such as interpolation or ux integration and then scattering the result back to each
adjacent cell. The JENRE code, like many other CFD codes, parallelizes such loops over the faces. We
denote the rst cell accessed by each face as the \left™ cell, while the second cell is denoted the \right™ cell.
While an unstructured grid will always involve some amount of irregularity in the memory access pattern,
using a structured grid, the cells can be numbered such that they increase with a unit stride between the left
cell of each face, as well as between the right cell along consecutive faces. Often CPU numbering schemes
attempt to achieve good cache behavior by minimizing the jump between adjacent cells in order to maintain
temporal locality within face loops as ow quantities stored at the cell centers are accessed. Instead the
GPU numbering scheme ignores the jump in index across faces, and focuses on minimizing the jump in index
between the left cells accessed by each consecutive warp of faces, and then the right cells accessed by each
consecutive group of faces, in order to ensure that coalesced memory access is achieved.

111.B. Structured Grids

The technique considered in this work to reduce overall memory bandwidth consumption is to transition
from fully unstructured grids to hybrid grids, with the use of unstructured grids restricted to regions of
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the computational domain exhibiting complex geometry, with structured grids used in the remainder of
the domain. This results in a reduction of storage, and most importantly, memory bandwidth consumption,
since structured grid connectivity is computed on-the- y, rather than being read from memory. An additional
bene tis that the optimal grid numbering dictated by GPU coalescing requirements can be speci ed directly,
which further reduces memory bandwidth consumption. In the case of the jet nozzle run illustrated in
Figure[1] a tetrahedral unstructured grid encloses the nozzle geometry, while the wake region of the mesh is
represented using a hexahedral structured grid. The JENRE code shares a uni ed ow solver for each case,
with the specialization to each mesh representation performed at compile-time. By using structured grids
in the wake region, not only is memory bandwidth consumption reduced and better coalescing achieved, the
amount of ow data storage is reduced, which is important for GPUs since currently available hardware only
provides up to 3-6 GB of memory per GPU, and therefore increases the problem sizes accessible to currently
available GPU-based systems.

V. Results

Benchmark runs have been performed on the Mayhem cluster at the Laboratory for Computational
Physics and Fluid Dynamics at the Naval Research Laboratory. Each node on the Mayhem cluster consists of
dual six-core Intel X5650 Xeon CPUs, together with dual NVIDIA Fermi GPUs, with some nodes containing
Tesla C2050 GPUs and others containing Geforce GTX 480 GPUs2® JENRE was used to calculate the
Tanna nozzle ow on a mesh consisting of 13.5 million cells, which serves as an appropriate example for
benchmarking performance. Running this benchmark calculation, JENRE achieves on average a speed of
15.76 million tetrahedral cells per second per time-step per GPU. In comparison, the Intel Xeon CPU achieves
on average a speed of 7.37 million tetrahedral cells per second per time-step per six-core-CPU. Therefore,
the current performance advantage of using NVIDIA GPUs instead of a comparable six-core Intel CPU is
a factor of 2.14x in the case of unstructured grids. This indicates that GPUs already provide a modest
performance advantage over CPUs, despite the fact that the CPU-tailored reverse Cuthill-McKee numbering
scheme was employed for both architectures.

To benchmark the performance of structured/hybrid grids using a coalesced grid numbering scheme, an
additional benchmark was run for a thirty-eight million hexahedral cell mesh corresponding to the wake
region of the ow eld beginning from a distance of three nozzle diameters, and extending to a distance
of fty nozzle diameters downstream. In this case, JENRE achieves on average a speed of 24 million
hexahedral cells per second per time-step per GPU. In comparison, JENRE achieves on average a speed
of 4 million hexahedral cells per second per time-step per six-core-CPU. Therefore, a six-fold increase in
computational performance is achieved when using NVIDIA GPUs instead of comparable six-core Intel
CPUs. It is interesting to note that the performance advantage of running on GPUs is roughly proportional
to the di erence in memory bandwidth, which is to be expected for memory bandwidth bound applications.
On a per-cell basis, hexahedral cells are slightly more expensive to compute than tetrahedral cells since they
contain more faces per cell, but have the advantage of being able to resolve a given spatial resolution using
a lower number of cells.

V. Conclusions and Outlook

The Jet Engine Noise Reduction code is able to achieve high performance across a variety of computational
platforms, while being developed under a uni ed codebase. When using unstructured grids, JENRE achieves
a modest two-fold increase in computational performance running on GPUs in comparison to running on
comparable six-core CPUs, and more than a six-fold speed-up when using a structured grids. Such a
substantial performance gain was made possible by using a specialized grid numbering scheme which meets
GPU coalescing requirements, and therefore makes optimal use of the high memory bandwidth o ered by
GPUs in comparison to CPUs. JENRE's ability to combine both unstructured and structured grids enables
it to achive an appropriate balance of geometric exibility using unstructured grids, while achieving the
highest possible performance using structured grids. This performance advantage will serve to signi cantly
reduce simulation turnaround time for solving large-scale supersonic jet noise simulations moving forward.
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