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This study presents a framework for aeroelastic stability boundary for hypersonic vehi-
cles using CFD and radial basis functions for mesh deformation. The results are presented
for two cases: the aeroelastic stability of a two-dimensional typical cross section and a
three-dimensional low aspect ratio wing, representative of a control surface of a hypersonic
vehicle. Di�erent models of the air mixture are considered: calori�cally perfect gas, and
imperfect gas models. Chemistry is also considered to account for dissociation of molecules
at high temperature. The e�ect of turbulence and gas modeling on the 
utter boundary
are investigated. Turbulence can a�ect the stability boundary by up to 7%. For the 
ight
conditions considered, real gas e�ects do not modify signi�cantly the 
utter Mach number
of both systems considered.

Nomenclature

[A] Transition matrix in the time domain
A Reaction rate parameter
a Non{dimensional elastic axis position, positive aft from midchord
ai Average regression coe�cient
b = c=2 Semi{chord
c Chord
CP = P�P1

q1
Pressure Coe�cient

cp Speci�c heat at constant pressure
cv Speci�c heat at constant volume
Ea Activation energy
ea Air internal energy
ek Excitation
FZ ; FN Stability metric
f Quantity of interest
H Altitude
h Plunge degree of freedom
ha Air enthalpy
I Identity matrix
I� Static moment of inertia of the wing section about elastic axis
K�;Kh Spring constants in pitch and plunge respectively
K Structural sti�ness matrix
k Reaction rate coe�cient
L Lift
Mea Aerodynamic moment
M Structural mass matrix
MA, CA, KA Aerodynamic in
uence mass, damping and sti�ness matrices
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M Mach number
m Cross sectional mass of the cross section
n Temperature exponent in rate{coe�cient expression
Nm Number of modes
P Pressure
p Polynomial function
pi Root of the aeroelastic stability equation
(pn) Polynomial function basis
Qi Generalized aerodynamic load
qi Generalized degree of freedom
R Perfect gas constant
r� Non dimensional radius of gyration
r = kxk Euclidian distance from the origin
S� Static mass moment of the wing section about elastic axis
T Temperature
TE Kinetic energy
UE Elastic energy
U1 Freestream velocity
vn Velocity in the z direction
w Structural deformation in the z direction
X = fq; _qg State variable
x = (x; y; z) Vector position
x Chordwise coordinate
x� Non dimensional o�set between the elasic axis and

the cross-sectional center of gravity, positive for center of gravity behind the axis
y Spanwise coordinate
Zs (x; y) Structural shape
z Coordinate normal to the wing

Greek Symbols
�s Static angle of attack
� Pitch degree of freedom
[�] RBF coe�cients
[�] RBF coe�cients for the polynomial

 Speci�c heat ratio
�i Damping coe�cient
� Integral of the state transition matrix
�T Turbulent viscosity
�L Laminar viscosity
� Air density
� Thickness ratio
� State transition matrix
� Radial basis function
 i (x; y; z) mode shape deformation in the z�direction in the ith mode
!�; !h Natural frequency in pitch and plunge respectively
!i Natural frequency

!di = !i
p

1� �2
i Damped frequency

@
 Wetted surface

Subscript
1 Free stream conditions
0 Total conditions

Superscript
F Pertaining to the 
uid
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S Pertaining to the structure
_ = d

dt Di�erentiation with time

Symbols

kxk =
pP

i x
2
i Euclidian norm

Abreviations
CFD Computational 
uid dynamics
FEM Finite element model
IG Ideal gas
PG Perfect gas
RBF Radial basis function
RG Real gas
SI System identi�cation
SA Spalart Allmaras turbulence model

I. Introduction, Objectives and Problem Statement

Hypersonic 
ight is an active area of research motivated by interest in unmanned rapid response to
threats and reusable launch vehicles for a�ordable access to space. High speed 
ows are inherently com-

plex and involve phenomena not present in supersonic conditions; e.g. dissociations,1,2 chemically reacting

ow, viscous interactions and higher levels of aerodynamic heat 
ux. There are no suitable high speed, high
enthalpy tunnels that would permit testing of scaled models of hypersonic vehicles. Furthermore hypersonic
aerothermoelastic scaling laws are not available at high Mach numbers.3 Therefore, the development of
accurate computational aerothermoelastic simulation capabilities is critical for the design and analysis of
hypersonic vehicles.

High �delity numerical simulations of the complex hypersonic 
ow environment are computationally
expensive, and the state of the art is still under development.4 Thus, the role of various factors such as real
gas e�ects, chemically reacting 
ows and complex viscous interactions are not understood. A detailed survey
of aeroelastic and aerothermoelastic studies of hypersonic vehicle was presented in Ref 5. The in
uence of
real gas e�ects on aeroelastic and aerothermoelastic stability of hypersonic vehicle components (such as a
wing representing control surfaces and skin panels) has not been assessed in the literature.

Computational 
uid dynamics (CFD) is the only alternative that allows increased modeling complexity of
the unsteady aerodynamic loading and heating. Coupling of a CFD code with a computational structural dy-
namic (CSD) model is considered in this study. A CFD code provides the aerodynamic pressure distribution
at the structural interface, while the structural dynamics are represented using the �nite element method.
The dynamic stability of the aeroelastic system is dependent on the accuracy of the coupling scheme.6{9 Due
to the classical Eulerian representation of the CFD approach and the Lagrangian formulation of the CSD,
a key component of these simulations is the 
uid/structure coupling scheme. For the CFD approach, the
arbitrary Lagrangian{Eulerian formulation accommodates for the moving boundaries and grid deformation.
The case of monolithic schemes which solve the 
uid, structure and dynamic mesh equations simultaneously
are not appropriate for hypersonic aeroelasticity and aerothermoelasticity. Yet, the conservation of energy
and momentum at the 
uid/structure interface is important for accurate prediction of the dynamic stability
of the aeroelastic system. Several studies have addressed issues where pressure and displacement are cal-
culated within the assumptions of their respective solvers.6,10,11 In this case, energy balance may not be
satis�ed at non-matching boundaries.6 Conservation of energy at the interface can be enforced to transfer
pressure or displacement between the structural model and the 
uid solver. The coupling scheme depends
on the assumptions of both solvers and on the mesh deformation method. In addition, the time accurate
integration scheme of the equations of motion in
uences the accuracy of the prediction of aeroelastic stability
boundaries.12,13

The deformation of the 
uid domain is induced by the deformation of the structure at the wetted interface.
Radial basis function (RBF) interpolation can be used to deform the entire 
uid domain. The principal
di�culty is to preserve mesh quality during deformation. RBF have been successfully used to compute large
mesh deformations in several aeroelastic applications;,11,13{20 however it has not been applied to hypersonic
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problems. Other common methods include automatic remeshing, which is computationally expensive, or
spring analogy which was used in previous work in hypersonic aeroelasticity and aerothermoelasticity.5 The
latter is used as a reference to verify the current development of this framework. The overall objective of
this study is to develop an analysis for hypersonic aeroelastic studies using CFD simulations with mesh
deformation based on RBF combined with a CSD model. The paper has three speci�c objectives:

1. Verify the aeroelastic framework.

2. Examine coupling using a mesh deformation scheme employing RBF for hypersonic aeroelasticity.

3. Assess the in
uence of real gas e�ects and turbulence modeling on hypersonic aeroelastic stability
boundary.

I.A. Aeroelastic Studies

The aeroelastic framework is applied to two cases: (1) the aeroelastic stability of a two-dimensional typical
cross section and (2) the aeroelastic stability of a three-dimensional low aspect ratio wing, representative of
a control surface of a hypersonic vehicle. These cases have been studied in Ref. 21; therefore, veri�cation of
the use of RBF is possible.

I.A.1. Two Degree of Freedom Typical Section

The 
utter Mach number associated with a double wedge typical section is examined. The typical section,
shown in Fig. 1, is characterized by pitch (�) and plunge (h) degrees of freedom. The mode shapes correspond
to rigid body motions.

ba

h

bx

Kh

K

2th

2b

z

x
b

M

Figure 1. Two degree{of{freedom typical wing section geometry of a supersonic vehicle

The aerodynamic loading is obtained using 3rd order piston theory or CFD calculations. As the freestream
Mach number increases, 
utter ensues and the 
utter Mach number Mf corresponds to zero damping in one
of the two modes of the system. For this particular problem, the equations of motion (EOM) are given in
Eq. (1). "

m S�

S� I�

#(
�h

��

)
+

"
Kh 0

0 K�

#(
h

�

)
=

(
�L
Mea

)
(1)

I.A.2. Low Aspect Ratio Wing

The three-dimensional low-aspect-ratio wing is shown in Fig. 2. The wing is based on the Lockheed F{
104 Star�ghter wing. Its geometry is similar to the �ns and control section of prospective long-duration,
airbreathing hypersonic vehicles such as the X-43 or NASP. The structural model is extracted from a �nite
element model created in MSC.NASTRAN and previously studied in Refs. 21 and 22. For aeroelastic stability
prediction, the �nite element model is reduced to the �rst �ve natural modes21 which are depicted in Fig. 3.
The natural modes are normalized with respect to their modal mass.
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1.8 m

4 m

0.034c

2.31 m
34o

18o

y

x

Figure 2. 3D low aspect ratio wing

Mode 1,  f  = 13.4 Hz

x

z
y

Mode 2,  f = 37.5 Hz

 

Mode 3,   f = 49.2 Hz

Mode 4,   f = 77.1 Hz Mode 5,  f = 79.5 Hz

Figure 3. Structural model

II. Aeroelastic Analysis

II.A. Equations of Motion and their Solution

The aeroelastic analysis is illustrated by the 
ow chart in Fig. 4. The structure is represented by a limited
number of mode shapes computed using a �nite element model (FEM). The solution of the Navier-Stokes
equation is obtained using CFD++, a commercial CFD software capable of accounting for dynamic mesh
deformation. The aeroelastic solution is computed by marching the equations of motion in time. At each
time step, the deformation of the structure is passed to the mesh deformation capability. The 
uid solver
computes the pressure distribution for the deformed con�guration at the given time step based on the
new positions and velocities of the nodes of the 
uid mesh. Next, the generalized loads are calculated
and the structural deformation is updated. Eventually the aeroelastic transient response is obtained. The
aeroelastic system stability is determined from the transient response using two identi�cation methods: the
autoregressive moving average approach (ARMA) and the least square curve �t method (LSCFM) used in
our earlier studies.21 A third approach based on the generalized loads is also considered. Details on each
component of the analysis are provided in the following sections.
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q, q

Structural model
( FEM )

Geometry, Flight conditions

Structural Dynamic

Stability Analysis

Aerodynamic model
( CFD )

Mode shapes, 
Natural frequencies

Unsteady CFD

Q

RBF
Aeroelastic solver

Mesh

Aeroelastic Boundary

Figure 4. Schematic description of the analysis

II.A.1. Formulation of the Equations of Motion

Hypersonic vehicle structures are sti� and therefore deformations are small. In this study, the structure
is represented by a limited number of its natural modes. This approach is similar to the one employed in
the CFL3D code23 and Ref. 21. The displacements in the wing mid{plane, u and v, are negligible. The
out{of{plane displacement, w(t;x), at any point of the structure is described by a �nite series of modes
given by Eq. (2).

w(t;x) =

NmX
i=1

qi (t) i (x) (2)

The equations of motion of the aeroelastic system obtained from Lagrange equations are given in Eq. (3).

d

dt

�
@TE
@ _qi

�
� @TE

@qi
+
@UE
@qi

= Qi i = 1; : : : ; Nm (3)

From Eq. (3), the �nal equations of motion (EOM) are obtained as in Eq. (4).

M�q + Kq = Q (t;q; _q; �q) (4)

The coupling algorithm between the CFD solver and the structural solver used to march in time the
EOM is described in the next sections.

II.A.2. Time Integration and Fluid{Structure Coupling

The 
uid and the structure are coupled through the generalized loads. The EOM are given in the state{vector
form of Eq. (5). (

_q

�q

)
=

"
0 I

�M�1K 0

#(
q

_q

)
+

(
0

M�1Q

)
(5)

written as:

_fXg = [A] fXg+ [B] fQg (6)
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where

[A] =

"
0 I

�M�1K 0

#
[B] =

(
0

M�1

)
(7)

The transition matrix in the time domain, [A], is constant. The equation of motions can be integrated
exactly in time and their analytical solution is given by Eq. (8)

Xn+1 = e[A]�tXn +

Z tn+1

tn

e[A](tn+1��) [B]Q (�;X) d� (8)

The �rst term corresponds to the homogeneous response of the structure and the second term accounts
for the e�ect of the aerodynamic loads. The transient response of the aeroelastic system is integrated in time
using an explicit method which combines a second order Adams-Bashforth predictor24 and a trapezoidal
corrector as given in Eqs. (9) and (10), respectively.

~Xn+1 = �Xn +
�

2
(3Q (Xn; tn)�Q (Xn�1; tn�1)) (9)

Xn+1 = �Xn +
�

2

�
Q
�

~Xn+1; tn+1

�
+ Q (Xn; tn)

�
(10)

In Eqs. (9) and (10), the state{transition matrix, �, and the integral of the state{transition matrix, �,
are given in Eqs. (11) and (12), respectively.

� = e[A]�t (11)

� =

Z tn+1

tn

e[A](tn+1��) [B] d� = [A]
�1

(�� I) [B] (12)

The state transition matrix, �, is calculated using the Pad�e approximation with scaling and squaring25

implemented in MATLAB’s expm function. This method scales the matrix by a power of 2 to reduce the
norm to order 1, computes a Pad�e approximant to the matrix exponential, and then repeatedly squares
to undo the e�ect of the scaling. This process ensures robustness and accuracy of the calculation of the
exponential of the matrix.

The time marching method is illustrated in Fig. 5. At the beginning of each time step, the structural
deformation at time tn+1 is estimated using the generalized loads at the previous and current time step
as given by the predictor step, Eq. (9), and represented by the continuous arrows 1 in Fig. 5. Next, the

uid mesh is deformed based on the predicted structure deformation, shown by arrow 2. The pressure
distribution is updated by multiple sub iterations within a time step of the CFD solver to march the Navier
Stokes solution to the next time step represented by the arrow 3. The small lines on it symbolically represent
the subiterations of the CFD solver within the time step. Finally, the generalized loads are transferred to
the structural solver and the deformation of the structure at time tn+�t is updated using the corrector step
given by Eq. (10) based on the generalized loads calculated at time tn+1. The corrector step is represented
by the dashed arrows 4.

tn tn+1
q

Q

2

3

4

Fluid

Structure
tn-1

1

1
1

Figure 5. Time marching and coupling approach

The coupling between the 
uid and the structure depends on both the mesh deformation method and
the calculation of the generalized loads. Both steps are connected to ensure conservation of force and energy
through the coupling method.
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II.A.3. Computation of the Generalized Aerodynamic Loads

The generalized loads are de�ned by Eq. (13).

Qi (t;q; _q; �q) =

Z
@


� i (x)P (x;q; _q; �q)nzdS 1 � i � Nm (13)

The calculation of the generalized loads is performed using the CFD mesh. The integration over the
surface of the wing, @
, is replaced by the summation of the contribution of the faces, @
k, of the 
uid cells
that de�ne the wing. The modal shape function,  i is evaluated at the centroid of each face, xk, to express
the generalized loads as given by Eq. (14).

Qi ’
NcellsX
k=1

 i (xk)

Z
@
k

�P (x)nzdS (14)

The quantity
R
@
k
�P (x)nzdS is the contribution of one face to the force in the z�direction. It is

extracted from the CFD++ code by the mean of an output �le after each time step. The CFD++ code
is not capable of calculating the generalized forces therefore veri�cation of this calculation is infeasible.
However, resultant forces and moments can be calculated in a similar manner and compared to the ones
calculated by CFD++. The results showed perfect agreement with the present approach. This integration is
consistent with the pressure discretization that pertains to the CFD algorithm in CFD++. Consequently the
only approximation made in this approach comes from the calculation of the shape function at the centroid.
For consistency, this value is given by the RBF method chosen to deform the mesh, presented next.

II.B. Mesh Deformation Using RBF

A radial function (RF), �, is a scalar function whose value depends only on the distance from the origin,
r = kxk. Radial basis function networks (RBFN) are a well{established tool for multivariate interpolation
of both scattered and gridded data.20 In aeroelastic applications, the displacement, w, is the quantity being
interpolated from the 
uid{structure interface to the rest of the CFD mesh. Given a set ofNs sampling points,
also called driving points, xdj , at which the deformation is known: (xdj ; wj)j=1;Ns , the RBF interpolant of
w, ŵ, is constructed in the form given by Eq. (15). The interpolated value at a new point, x, depends only
on the Euclidian distance between x and the driving points (xdj)j=1;Ns

.

ŵ(x) =

NsX
j=1

�j� (kx� xjk) + p(x) (15)

In Eq. (15), the polynomial p(x) and the �tting coe�cients �j are determined such that the interpolant,
ŵ, is equal to the actual deformation of w at the sampling points as given in Eq 16.

wi = ŵ(xdi) =

NsX
j=1

�j� (kxdi � xdjk) + p(xdi) 1 � k � Ns (16)

Introducing (pn(x))n as a polynomial basis, p (x) is written as
PP
n=0 �npn(x). The coe�cients �n

uniquely determine p. To ensure uniqueness of the form given in Eq. (15), i.e. the uniqueness of the
coe�cients �j and �n, additional conditions given in Eq. (17) have to be satis�ed.

NsX
j=1

�jpn (xdj) = 0 n = 0; P (17)

Combining Eqs. (16) and (17), �j and the coe�cients �n are uniquely de�ned by solving the linear system
written in the form of Eq. (18), where Mbb (x)) = [� (kx� xjk)], Qb (x) = [pn(x)]j=1;Ns; n=0;P ."

Mbb (xd) Qb (xd)

Qb (xd)
T

0

#(
�

�

)
=

(
wS (xd)

0

)
(18)
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The displacement at any other point is given by Eq. (19).

wF (x) =
j
Mbb (x) Qb (x)

k(
�

�

)
(19)

The computational cost of the mesh deformation can be reduced when assuming small deformations and
using a modal representation of the structure. Combining the RBF interpolant in Eqs. (18) and (19) with
Eq. (2) yields Eq. (20).

wF (x) =
j
Mbb (x) Qb (x)

k"
Mbb (xd) Qb (xd)

Qb (xd)
T

0

#�1 "
f 1(xd)g : : : f Nm

(xd)g
0 : : : 0

#
| {z }

 F =[ F
1 (x)::: F

Nm
(x)]

fqg (20)

In Eq. (20), each column of the matrix  F corresponds to the deformation of the 
uid mesh for a given
structural mode shape. It is calculated before the start of the aeroelastic simulation. Then, at each time step,
the deformation of the 
uid mesh is calculated directly from the modal degree of freedom, q, by a simple
matrix multiplication as given by Eq. (21). It increases memory requirement but reduces the computational
cost of each time step since no matrix inversion is needed.

wF (x) =
�
 F1 (x) : : :  FNm

(x)
�
fqg (21)

In the RBF approach several components are chosen to obtain the best �t possible: the polynomial order,
the choice of RF and the set of driver points. In aeroelastic simulations, a polynomial of order 1 is considered
such that rigid body motions are exactly interpolated.

Classical radial basis functions, �, used in engineering applications20 are presented in Table 1 and can be
grouped in two categories: global and local. In the cases of volume spline, Duchon’s thin plate spline, and
Hardy’s multiquadratics, the amplitude of the radial function increases with the distance from the origin.
Consequently the value of the RBF interpolant at a given location is in
uenced by all the sampling points
even the ones that are located far from the interpolated point, the RF is global. For Hardy’s inverse multi-
quadratics and Gaussian, the radial function decreases monotonically to zero with increasing distance from
the origin. Therefore the contribution of a sampling point in the interpolant diminishes as the interpolated
point is located further away from this sampling point. In the cases of Euclid’s hat, and Wedland functions,
the radial function is non-zero only at the vicinity of the origin. A sampling point in
uences only a limited
region of the space. Similarly the value of the RBF at a given point depends only on the sampling points
located in its vicinity. In addition, the system which determines the RBF coe�cients in Eq. (18) is sparse

which limits computational cost. Note that the radial functions can be scaled by replacing � (r) by �
�
r
r0

�
where r0 is a reference distance, to obtain a better conditioning of Eq. (18).

The choice of the driving points is important as well. The deformation of the 
uid{structure interface
is known at the FEM nodes. Several strategies can be considered to deform the 
uid mesh based on this
information. The most straight forward approach interpolates the deformation from the FEM nodes to the

uid mesh. In this case the driving points are the FEM nodes on the interface between the structure and
the 
uid. Because of the global form of the RBF interpolant, the deformed interface de�ned by the 
uid
mesh does not coincide perfectly with the structural one for 
uid points located between adjacent FEM
nodes. The FEM mesh is usually more coarse when compared to the 
uid mesh, as illustrated schematically
in Fig. 6. A simpli�ed CFD mesh is deformed using the FEM nodes of the interface as driver points. The
deformed interface given by the FEM in the thick dotted line di�ers from the CFD one represented by the
thin line with crosses.

An alternative is to complement the set of FEM nodes with additional driving points at which the
deformation is calculated based on the FEM model. If necessary, every 
uid node of the interface can be
used as driving points and a RBF interpolation based on those points is created for the rest of the mesh, the
interior points. The latter is the method chosen in this study: the deformation of the interface at the 
uid
mesh is calculated using a piecewise bilinear interpolation between the FEM nodes.

To quantify the error at the 
uid{structure interface due to RBF interpolation, di�erent error metrics
are considered and given in Eqs. (22) to (24) where wref is either the analytical form of the deformation or
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Table 1. Classical radial basis functions

RBF Support �(r)

Volume spline r

Duchon’s thin plate spline r2log(r)

Hardy’s multiquadratics
�
1 + r2

�1=2
Hardy’s inverse multiquadratics

�
1 + r2

��1=2

Euclid’s Hat function compact

(
�
�
r3

12 � r + 4
3

�
if r < 2

0 otherwise

Wedland C0 compact

(
(1� r)2

if r < 1

0 otherwise

Wedland C2 compact

(
(1� r)4

(4r + 1) if r < 1

0 otherwise

Gaussian exp(�r2)

FEM nodes
CFD mesh
CFD nodes 
at the interface

Figure 6. Illustration of the usage of RBF for mesh deformation

a piecewise interpolation between the FEM points.

L2 =

s
1

N

X (ŵ � wref )
2

max(w2
ref )

(22)

L1 =
1

N

P kŵ � wrefk
max(kwrefk)

(23)

Lmax =
max (kŵ � wrefk)

max (kwrefk)
(24)

II.C. Perfect Gas and Real Gas Modeling

Solving the Navier{Stokes equations for hypersonic 
ow is computationally expensive; however, the represen-
tation of the air 
ow over the structure can account for viscous and high temperature e�ects. The commercial
code CFD++ solves the Navier{Stokes equations using a point{implicit �nite volume approach. The one
equation Spalart Allmaras turbulence model is considered in this study. Two simple models of the 
uid are
available perfect (PG) and thermally imperfect or ideal (IG) gas, and presented in Table 2. In addition,
chemical reactions can be incorporated to account for the dissociation of molecules at high temperatures,
referred to as real gas e�ects (RG).

In both PG and IG gas models, the 
uid is modeled by a single species; there is no chemical reaction.
Pressure, temperature, and density are related by the same equation of state. In the perfect gas model,
the speci�c heats are constant. Therefore internal energy, ea, and enthalpy, ha, are linear functions of
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Perfect Gas (PG) Ideal Gas (IG)

Equation of state P = �RT

Internal energy @ea = cv@T @ea = cv (T ) @T

Enthalpy @ha = cP@T @ha = cP (T ) @T


 
 = constant 
 (T )

Table 2. Perfect and Ideal gas models

temperature. The speci�c heat ratio, 
 =
cp
cv

is constant, assumed to be equal to 1:4. Under these assump-
tions, limitations of the model manifest themselves at high speed. The compression ratio �0

�1
is arti�cially

limited to be below 6 and stagnation temperature is unrealistically high. Therefore, this model is often
inadequate for hypersonic high altitude 
ight or reentry problems with high gas temperatures accompanied
by non{equilibrium 
ows.1

For ideal gas, speci�c heats are not constant with temperature, as illustrated in the expression of in-
ternal energy and enthalpy in Table 2. Similarly 
 is a function of temperature. Polynomial �tting using
experimental data can estimate the internal energy and enthalpy of air as functions of temperature. In
ideal gas, the compression ratio can increase up to 20 and produce a signi�cant reduction in the stagnation
temperature when compared to perfect gas prediction.

Details of the real gas model, taken from Ref. 26, are given in Table 3. It contains 5 species and 8
reactions to account for the dissociation of O2, N2, and NO. Chemical equilibrium is assumed and there is
no ionization. For each reaction, the reaction constant is given by k = AT � exp

�
� Ea

RT

�
.

Table 3. Reactions

Reactions � A (cm3=mol) Ea

R (K)

O2 +M ! 2O +M -1.50 2:0� 1021 59500 M = N2; O2; NO

O2 +M ! 2O +M -1.50 1:0� 1022 59500 M = N; O

N2 +M ! 2N +M -1.60 7:0� 1021 113200 M = N2; O2; NO

N2 +M ! 2N +M -1.60 3:0� 1022 113200 M = N; O

NO +M ! N +O +M 0.00 5:0� 1015 75500 M = N2; O2; NO

NO +M ! N +O +M 0.00 1:1� 1017 75500 M = N; O

N2 +O ! NO +N -1.00 6:4� 1017 38400

NO +O ! O2 +N 0.00 8:4� 1012 19450

Next a computationally e�cient model of the aerodynamic loads is presented.

II.D. Approximate Aerodynamic Loading Using Piston Theory

Piston theory has been used extensively in numerous studies on hypersonic aeroelasticity.5 Third order
piston theory (PT) was successfully used in 
utter prediction of a typical supersonic control surface in
hypersonic 
ow and it was shown to outperform other approximate approaches when compared against
CFD calculation.5 Therefore, this computationally e�cient model can be used to bracket the 
utter Mach
number before running expensive CFD simulations. Piston theory gives a point{wise relationship between
local deformation and pressure, as given in Eq. (25). It assumes perfect gas, inviscid and isentropic 
ow.

P � P1
P1

= 


"
vn
a1

+

 + 1

4

�
vn
a1

�2

+

 + 1

12

�
vn
a1

�3
#

(25)

The pressure depends on the free stream conditions and vn, the velocity of the air at the boundary normal
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to the mean surface of the wing, given in Eq. (26).

vn (x; y; z) =

(
@w
@t + U1

�
@
@x (Zs + w) + �s

�
z > 0

�@w@t + U1
�
@
@x (Zs � w)� �s

�
z < 0

(26)

The x�axis refers to the free stream velocity direction and Zs the normal coordinate of the undeformed
geometry at a speci�c point and �s is the angle of attack. Additional details are out of the scope of this
study; however, note that piston theory gives a quasi{steady representation of the aerodynamic loading and
that the resulting generalized loads are linear with respect to small deformations.

III. Stability Boundary Calculation

The three system identi�cation (SI) methods described in this section assume that the aeroelastic system
can be treated as linear dynamic system. It means that a modi�cation of the initial conditions linearly
a�ects the transient response of the system. This assumption permits the identi�cation of the frequencies
and damping coe�cients of the aeroelastic system and thus predict the onset of instability. In a numerical
approach, in order to make sure that all the modes are excited, the initial conditions are set such that all
components of the modal velocities, _q, are non-zero.

III.A. ARMA

The Autoregressive Moving-Average (ARMA) method is an e�cient system identi�cation method used to
compute the frequencies and corresponding damping coe�cients from the transient response of the aeroelastic
system. It has been used for 
utter prediction of hypersonic systems in Refs. 21 and 27.

The aeroelastic response, w of the structure at a given point is modeled by Eq. (27), where wk is the
displacement of a given point of the structure and ek is the excitation at time k�t. It assumes that at each
time step the response of the system is a linear combination of the response at the n previous time steps
and a linear combination of the input e at current and previous time steps k to k � m. For this reason,
ARMA approach is applicable to systems which behavior can be identi�ed as linear combination of damped
harmonic oscillations.21

wk + a1wk�1 + a2wk�2 + : : :+ anwk�n = b1ek�1 + b2ek�2 + : : :+ bmek�m (27)

In 
utter studies, n = 2Nm and m = 1 are typical values. The choice of m = 1 is only required to account
for a non{zero static o�set. In order to accurately identify the modal response of the aeroelastic system, all
modes need to be excited. Based on the aeroelastic transient response, the coe�cients (ai) are calculated.
From those coe�cients, the frequencies and damping of the system are calculated. The ARMA method only
requires the transient response at one point to estimate frequencies and damping.

III.B. Least Squares Curve Fit

The least squares curve �t method (LSCFM) is a common and robust way of identifying the damping
coe�cients and frequencies of a signal. The transient response of the structure is assumed to be a linear
combination of damped harmonic responses as given in Eq. (28).

~w(t) = a0 +

NmX
i=1

e��i!it [ai cos (!dit) + bi sin (!dit)] (28)

The unknown frequencies and damping are calculated by minimizing the squared error between the
aeroelastic transient response and the form in Eq. (28). The resulting minimization problem is given in
Eq. (29).

min
!i;�i;ai;bi

0@ X
k=1;Nt

[wk � ~w(tk)]
2

1A (29)

In the current implementation, it is solved using two to �ve iterations of the FMINCON function available
in MATLAB. The solution of this highly nonlinear optimization problem is expensive and sensitive to the
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initial guess of the di�erent variables. However error estimates of the approximation are available and
convergence of the �t can be assessed.

III.C. p{Method

The p{method is a well{known approach28,29 to determine the stability of an aeroelastic system of which the
equations of motion are linear. It requires that the generalized loads are a known function of the generalized
degrees of freedom and their time derivatives, as given for instance in Eq. (30).

Q (t;q; _q; �q) = MA�q + CA _q + KAq (30)

To determine the stability of the system, the EOM given in Eq. (4) are combined with Eq. (30), assuming
q = q0e

pt. The resulting equation is called the 
utter equation given in Eq. (31).n
(M � MA) p2 � ĈAp+ K � K̂A

o
q0 = 0 (31)

Non{zero solutions of the 
utter equation are obtained for values of p that satisfy the characteristic
equation of the aeroelastic system given in Eq. (32).

det
h
(M � MA) p2 � ĈAp+ K � K̂A

i
= 0 (32)

The frequencies and damping of the aeroelastic system are given by the roots, pi, of Eq. (32). In order to
be consistent with the ARMA and LSCFM methods, the frequencies and corresponding damping coe�cients
are uniquely identi�ed by the real and imaginary parts of pi as given by Eq. (33).

pi = ��i!i + i!di (33)

In the present study, the aerodynamic loads are computed using unsteady CFD and the analytical form
given in Eq.(30) is not available. However, a linear least squares �t can be used to estimate the aerodynamic
in
uence matrices. Based on the form of piston theory and its good agreement with CFD in previous studies,
it is assumed that MA is negligible. The estimates of the aerodynamic sti�ness and damping matrices are
given by solving the least squares problem stated in Eq. (34).

min
K̂Aij ;ĈAij

0@ X
k=1;Nt

kQk � CA _qk � KAqkk2
1A (34)

The solution is obtained using a linear least squares approach30 and given in Eq. (35).

h
K̂A; ĈA

iT
=
�
XTX

��1

XTQ where X =

"
q1 : : : qNt

_q1 : : : _qNt

#T
and Q =

2664
QT

1
...

QT
Nt

3775 (35)

This method uses the generalized loads. Both previous methods used only the deformation at one or
several points and do not take full advantage of all the information available in a computational framework.
For a perfectly linear dynamic system, the frequencies and damping coe�cients calculated by each approach
are equal.

IV. Results

In this section the aeroelastic simulations are performed for the typical section and low aspect ratio wing
and compared with results obtained in Ref. 21.
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Parameter Value Units

a 0.1 -

c 2.35 m

� 3.36 %

m 94.2 kg/m

r� 0.484 kg/m

x� 0.2 -

!h 13.4 Hz

!� 37.6 Hz

Table 4. Baseline con�guration for the typical section

IV.A. Two Dimensional Typical Section

The stability of the two{dimensional typical section is investigated using CFD. The Navier-Stokes equations
are solved with a Spalart-Allmaras turbulence model. Goldberg turbulence model, which is an acceptable
turbulence model for hypersonic 
ow,4 is also considered for comparison. The boundary condition at the
wall corresponds to an adiabatic wall (AD). The system is characterized by the parameters given in Table 4,
which were taken from Ref. 21.

In hypersonic 
ow the domain of dependency of the pressure on the airfoil is limited. Therefore it is
physically acceptable to consider only a limited region around the airfoil. In the 
uid mesh depicted in
Fig. 7(a), the leading edge shock is contained inside the mesh for all the 
ight conditions considered. The
boundary layer returns to supersonic speeds before it exits the 
uid mesh. In addition, the spacing close to
the airfoil ensures that the required condition for accurate capture of turbulent 
ows, y+ < 1, is satis�ed.
Finally to ensure that the grid is symmetric, the lower half is imported to CFD++ and replicated in a
symmetric manner to form the upper half of the grid.

X (m)

Z
(m

)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

(a) Grid deformation for � = 10o

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Driver Points

x (m)

z 
(m

)

 

 
Airfoil
Driver Points

(b) Driving points

Figure 7. Grid deformation using 96 points and �xed outer boundaries

This simple example involves only rigid body displacements and thus does not require a FE model. Two
di�erent strategies are considered to deformed the mesh: (1) a moving mesh with �xed outer boundaries
and (2) a fully moving mesh. The �rst mesh deformation strategy enforces �xed outer boundaries, which
may be a requirement due to the imposition of boundary conditions in the CFD solver. The driving points
are uniformly spaced on the airfoil surface and around the outer boundary of the 
uid domain, as shown
in Fig. 7(b) in the case of 96 points, 17 on each boundary. The deformed mesh is depicted in Fig. 7(a) for
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a large deformation corresponding to a pitch angle of � = 10o. This deformation is not representative of
the small one that occurs in the calculation of the transient response of the aeroelastic system. However
it shows the smoothness of the mesh deformation based on RBF. It can also be noted that wiggles appear
at the top and bottom boundaries and at the airfoil surface. Despite their relatively small amplitudes, it is
necessary to quantify the error introduced by the RBF mesh deformation. Since the airfoil undergoes rigid
body motions, the analytical form of the deformation is known and is compared to the one given by the RBF
for di�erent RF. For each mode, the airfoil is deformed and both deformations are compared. The results
are presented in Figs 8(a) and 8(b) for two di�erent sets of driving points. In both cases, the driving points
are located at the boundaries of the CFD mesh as depicted in Fig. 7(b). In Fig. 8(a), 96 points are used to
drive the mesh. The maximum error varies from 1% of the maximum de
ection up to 3.4% depending on
the RF chosen. Volume spline, Euclid’s hat and Wendland’s C2 RF give the best approximation. This result
shows that those RF are the one able to approximate a linear interpolation more accurately. In Fig. 8(b),
the case of 426 driving points are considered. The error is decreased by more than an order of magnitude to
less than 0.05% for most of the RF’s. It shows that in the case of constrained outer boundary, the number
of driving points need to be carefully chosen to preserve the shape of the moving airfoil.

L2  L1  Lmax
0

0.5

1

1.5

2

2.5

3

3.5

4
RBF interpolation Error, CFD mesh

Δ 
w

 / 
w

m
ax

 (
%

)

 

 
Duchon thin plate spline
Volume spline
Hardy multiquadratics
Hardy inverse multiquadratics
Euclids Hat

Wendland C0

Wendland C2

Exponential

(a) 102 driving points
L2  L1  Lmax

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
RBF interpolation Error, CFD mesh

Δ 
w

 / 
w

m
ax

 (
%

)

 

 
Duchon thin plate spline
Volume spline
Hardy multiquadratics
Hardy inverse multiquadratics
Euclids Hat

Wendland C0

Wendland C2

Exponential

(b) 426 driving points

Figure 8. E�ect of the choice of the radial basis function

The second mesh strategy considers a fully moving mesh approach. In the case of the typical section,
the number of driving points is not important as long as there are su�cient points to capture the rigid
body motion. In theory, 3 non-collinear points are su�cient, in practice a set of 10 points is considered to
ensure a better conditioning of the RBF system, given by Eq. (18): the leading and trailing edges, both
midchord points on the top and bottom surface of the airfoil and 6 additional points far from the airfoil.
The deformations associated with both rigid body motions of the airfoil, plunge and pitch, are computed
exactly. As mentioned in Section II.B, a �rst order polynomial in the form of the RBF interpolation ensures
that it is the case.

Based on this preliminary results on mesh deformation, Volume spline is the chosen RF and the mesh is
a fully moving mesh. Next two representative cases are considered to verify the new SI method.

The aeroelastic simulations are performed at constant altitude of 12kms and di�erent Mach numbers. The
parameters related to the time stepping and the computational cost for an aeroelastic transient simulation are
given in Table 5. The main contributor to the computational cost associated with the aeroelastic simulations
is the CFD calculation. Each aeroelastic simulation requires 2500 initial iterations to converge the steady
state solution of the N{S equations. For each time step, several subiterations of the CFD solver are required
to march the 
uid in time as explained previously. At each time step, the new node locations are written in
the mesh �le and the CFD code is restarted. It generates signi�cant amount of additional processing time
which is not needed in a fully integrated aeroelastic solver.

For each Mach number, the frequencies and damping are computed using each SI method presented in
Section III. The results corresponding to Euler aerodynamics are presented �rst in Figs. 9. Frequencies and
damping coe�cients as functions of the Mach number are shown in Figs. 9(a) and 9(b) respectively. The
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Number of time step 1000

Time step 0.125 ms

Number of subiterations
per time step

30

Number of cells 45k

Number of processors 2

Processor
Intel(R) Xeon(R)

CPU X5650, 2.67GHz

Computational time 9 hrs

Table 5. Parameters and computational cost of 2D calculations using Navier{Stokes aerodynamics

symbols correspond to the Mach numbers at which a transient simulation is performed. Each type of symbol
and color correspond to a di�erent mode. The di�erent types of line correspond to di�erent SI methods.
The thicker line corresponds to the results obtained using 3rd order PT combined with ARMA. Therefore
to each mode correspond 1 color, 1 symbol and 4 di�erent line types, 3 for CFD results and 1 for PT. The
symbols correspond to the Mach numbers at which the aeroelastic simulations are computed using Euler
aerodynamics. The three SI methods predict identical frequencies and damping coe�cients, therefore the
three corresponding lines cannot be distinguished. The predicted 
utter Mach number is 12.1 which is in
good agreement with the one obtained using piston theory. This results is expected as piston theory is a
good approximate model for thin bodies oscillating in hypersonic 
ows.

8 9 10 11 12 13 14
15

20

25

30

35
Frequencies, Flutter Analysis, H=12 kms

Mach Number

 f 
(H

z)

 

 

 f
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 f
2

ARMA

p−method

LSCFM

3rd order PT

(a) Frequencies

8 9 10 11 12 13 14
−0.05

0

0.05

0.1

0.15
Damping Coefficients, Flutter Analysis, H=12 kms

Mach Number

ζ

 

 

ζ
1

ζ
2

ARMA

p−method

LSCFM

3rd order PT

(b) Damping Coe�cients

Figure 9. Aeroelastic stability analysis using Euler aerodynamics for the typical section, H = 12 kms

Next, viscosity is introduced and the results are presented in Fig. 10. The crosses refer to the results
computed using CFL3D in Ref. 21. The symbols correspond to the Mach numbers considered. The di�erent
lines correspond to the di�erent SI methods which are almost identical before 
utter occurs at Mach M1 ’
11:3. The damping coe�cients are more sensitive to the SI method. The 
utter Mach number predicted by
each method and including the di�erent moving mesh strategies are given in detail in Table 6. Adding more
driving points ensure that the motion of the airfoil are captured more accurately and the 
utter prediction
converges toward the fully moving mesh approach. The ARMA approach is most sensitive whereas the other
two methods are always in agreement with each other. For LSCFM and p{method, the 
utter Mach number
is predicted within less than 1% depending on the mesh deformation strategy.

This preliminary study illustrates the use of radial basis functions in a typical aeroelastic calculation and
veri�es the usage of the SI method. Compared to the results obtained with CFL3D, the 
utter onset occurs
at a lower Mach number. The di�erence is approximately 6% and is explained next by considering additional

16 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
59

43
 



8 9 10 11 12 13 14
15

20

25

30

35
Frequencies, Flutter Analysis, H=12 kms
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Figure 10. Aeroelastic stability analysis using N{S aerodynamics for the typical section, H = 12 kms

Number of driving points ARMA LSQCF p{method

All moving 10 11.21 11.26 11.26

Fixed outer boundary
96 11.47 11.32 11.32

420 11.42 11.27 11.27

CFL3D 11.9 N/A

Table 6. Flutter Mach number for the typical section using Navier{Stokes aerodynamics, H = 12 kms

cases. Note that in all cases presented next, the three SI methods predict the same 
utter Mach number.
Considering di�erent turbulence models provides more details to explain the di�erence between the

calculations performed with CFL3D and the current framework. In both CFL3D and CFD++, the Spalart{
Allmaras turbulence model31 is available and is used for the 
utter calculations. In CFL3D, the additional
equation does not require any user input and the intensity of the freestream turbulence is set by the ratio�
�T

�L

�
1

= 0:009 as boundary and initial condition of the turbulence equation. However, in CFD++, this

parameter is a user input. The e�ect of turbulence on 
utter boundary prediction is investigated for various

ight conditions. Euler and laminar 
ow are compared to turbulent 
ow for low and high values of free
stream turbulence. The one equation Goldberg turbulence model is also considered. Details of the results
are given in Table. 7. Note that adding turbulence decreases the 
utter boundary by up to 7%. An abrupt
change is observed when comparing the results for laminar 
ow, which is close to Euler, to the ones for

turbulent 
ow. The 
utter Mach number predicted in the case of SA model with
�
�T

�L

�
1

= 1 is close to the

one with
�
�T

�L

�
1

= 10. However the case of Goldberg turbulence model and
�
�T

�L

�
1

= 1 compares well with

laminar 
ow. It illustrates the variability associated with turbulence modeling. Note that the decrease of

utter boundary with increasing turbulence can be explained by the following: The Mach number contours
reveal a thicker boundary layer for the more turbulent cases. It yields higher static pressures on the airfoil
due to the thicker e�ective shape and explain the decrease in 
utter onset. The e�ect of gas modeling is
negligible for the 
ight condition considered.

Additional results at di�erent altitudes are presented in Figs. 11. The trends presented are con�rmed at
higher and lower altitudes. In Fig. 11(a), the e�ect of turbulence is considered. Both lines corresponding to
piston theory and laminar 
ow coincide and predict the higher 
utter boundary at all altitudes. Turbulence

is added considering the SA model and the cases of
�
�T

�L

�
1

= 0:009 (low T.) and
�
�T

�L

�
1

= 10 (high T.).

The lowest 
utter onset is predicted for high turbulence 
ow. For low turbulence, the 
utter onset is close
to the case of high turbulence for all altitudes but the higher one. In Fig. 11(b), the e�ect of gas modeling
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Gas Model Fluid Model Turbulence Model
�
�T

�L

�
1

ARMA LSCFM p{method

PG

EU { { 12.09 12.09 12.09

NS

Laminar { 11.82 11.83 11.83

SA 0:009 11.63 11.63 11.63

SA 3 11.47 11.50 11.43

SA 10 11.21 11.26 11.26

Goldberg
1 11.80 11.81 11.81

10 11.15 11.15 11.15

IG NS SA 3 11.53 11.52 11.52

RG NS SA 3 11.50 11.46 11.50

Table 7. Flutter Mach number for the typical section using di�erent turbulence and gas models, H = 12 kms

is considered. Turbulence is added considering the SA model and the case of
�
�T

�L

�
1

= 3. The three lines

corresponding to PG, IG, and RG model coincide.
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Figure 11. Aeroelastic stability analysis for the typical section for di�erent turbulent 
ow, H = 12 kms

In conclusion, turbulence is the main contributor to the variability in 
utter Mach number. Real gas
e�ects do not a�ect the 
utter boundary signi�cantly. Next the three dimensional low aspect ratio wing is
considered.

IV.B. Three Dimensional Low Aspect Ratio Wing

The structure of the wing is represented by �ve natural modes depicted in Fig. 3. The 1327 FEM nodes are
uniformity distributed at the surface of the wing as illustrated in Fig. 12(a).

In the 3D case, the analytical form of the mode shape is not available since they are obtained by a FEM
calculation. Wiggles are likely to appear when using the RBF mesh deformation based on the FEM points,
therefore it is important to quantify their amplitude. To assess this issue, the deformed wing con�guration
using RBF is compared with the one obtained with a piecewise linear interpolation between the FEM nodes
for the second mode shape, �2. In Table. 8, two cases are considered: (1) the driving points are the FEM
nodes and (2) the driving points are the CFD nodes at the wing interface. First, the driving points at the
surface of the wing are the FEM nodes. The maximum di�erence between the deformation obtained with
RBF and the one based on piecewise linear interpolation is of 0.9% and 1.4% for a moving and �xed outer
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Figure 12. Meshes for the low aspect ratio wing

boundary, respectively. Adding driving points to prescribe a static outer boundary signi�cantly a�ects the
shape of the deformed wing. Similarly the mode shape calculated at the centroid of the faces which lie on
the wing is a�ected and the di�erence is of the same order of magnitude. For the second case, the driving
points at the surface of the wing are the 
uid mesh points. As expected, the di�erence between the RBF
and the reference shape is reduced to 0. Similarly for the centroid, there is good agreement between RBF
and piecewise linear interpolation. This example demonstrates some of the issues associated with RBF mesh
deformation. For the results presented in this report, the CFD nodes are the driving points. Volume spline
is the RF of choice and the mesh is fully moving.

Fixed outer boundaries Moving outer boundaries

L2 (%) L1 (%) L1 (%) L2 (%) L1 (%) L1 (%)

FEM based
Fluid Mesh 0.214 0.09 1.4 0.114 0.053 0.887

Face centroid 0.21 0.10 1.26 0.109 0.060 0.768

CFD based
Fluid Mesh 0.001 0.001 0.018 0.001 0.001 0.018

Face centroid 0.039 0.024 0.215 0.039 0.024 0.215

Table 8. Error due to the RBF interpolation

The computational cost and the parameters associated with the time stepping of the aeroelastic simula-
tions are presented in Table. 9. The time step is set to �t = 1:25�10�4 s which corresponds to approximately
100 and 500 time steps per period for the highest and lowest natural frequency respectively. The compu-
tational cost associated with the current framework is higher than the one associated with CFL3D for the
reasons similar to those detailed in Section IV.A. Depending on the complexity of the gas model ( turbulence,
chemistry ) the computational time varies from 110 hours for Euler and laminar 
ow to 190 when chemistry
is included.

The 
utter analysis results are presented in Table. 10 for an altitude of 12 kms. The LSCFM and p{
method show good agreement. The results for the low aspect ratio wing showed that ARMA has di�culties
identifying frequencies and damping of the aeroelastic deformation. In the case of Euler aerodynamics, there
is a good agreement with CFL3D and the present results. The predicted 
utter Mach number is 13:7. In
the case of Navier{Stokes aerodynamics, the 
utter di�erence between CFL3D and the current simulation
is up to 7%. The trends observed in the 2D case are con�rmed: adding turbulence decreases the 
utter
boundary, and real gas e�ect have a limited e�ect on the 
utter boundary. The results of the 
utter analysis
are detailed in Figs. 13 and 14.

In Fig. 13, di�erent turbulence modeling assumptions are considered. Figure 13(a) depicts the frequencies
of the aeroelastic system as function of 
utter Mach number. The di�erent types of lines correspond to
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Number of time step 1000

Time step 0.125 ms

Number of subiterations per time step 50

Number of cells 1M

Number of processors 6

Processor Opteron 240{254

Computational time 110{190 hrs

Table 9. Simulations parameters for 3D calculations

Gas Model Fluid Model Turbulence Model
�
�T

�L

�
1

ARMA LSCFM p{method

PG

EU { { 13.82 13.69 13.73

NS

Laminar { 13.5 13.32 13.30

SA 0:009 12.8 12.76 12.77

SA 1 12.46 13.00 12.78

IG NS SA 3 13.03 13.03 13.02

RG NS SA 3 12.77 13.01 12.91

CFL3D21 EU { { 13.7 N/A

NS SA 0.009 13.65 N/A

3rd order PT 13.4

Table 10. Flutter Mach number for the typical section using di�erent turbulence and gas models, H = 12 kms

di�erent turbulence assumptions. In Fig. 13(b), only the damping coe�cients corresponding to the �rst
two modes are shown for sake of clarity. The frequencies of the aeroelastic system are not sensitive to the
model considered compared to the damping coe�cients. Note that the 
utter Mach number predicted using
CFL3D and Navier{Stokes is smaller than the one obtained with Euler. It con�rms the trend that adding
turbulence increases the apparent shape due to the presence of the boundary layer and eventually results in
an increased local pressure on the wing and a decrease in 
utter Mach number.

The results of the 
utter analysis are detailed in Fig. 14 for di�erent gas models. Figure 14(a) depicts
the frequencies of the aeroelastic system as function of 
utter Mach number. The di�erent types of lines
correspond to di�erent turbulence assumptions. In Fig. 14(b), the damping coe�cients are a�ected by the
gas model. Going from perfect gas to ideal gas a�ects the 
utter boundary by about 3%. The di�erence
between IG and RG is negligible.

When considering these results, it is important to note that the altitude (H = 12kms) at which the
aeroelastic studies are conducted is not representative of hypersonic 
ight. More realistic altitudes of 20{30
kms produce very high Mach numbers, and therefore the altitude is arti�cially reduced in order to reduce
these to practical values. However, as pointed out in Ref. 22, incorporation of aerodynamic heating leads
to a reduction of the 
utter Mach number, and thus aerothermoelastic studies can be conducted at more
reasonable altitudes.

V. Conclusions

A framework for hypersonic aeroelastic calculation using CFD is presented. A detailed description of
each component is given. The RBF approach is a robust and e�cient mesh deformation method. However,
it does not preserve the geometrical shape exactly throughout the deformation if the number of points is not
su�cient. This issue needs to be assessed before running aeroelastic simulations. A system identi�cation
method for determining the 
utter speed has been developed. It is both robust and performs well. Several
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Figure 13. Aeroelastic stability analysis for the low aspect ratio wing for di�erent turbulent 
ow , H = 12
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Figure 14. Aeroelastic stability analysis for the low aspect ratio wing for di�erent gas model , H = 12 kms

observations and conclusions can be pointed out:

1. Introducing viscosity reduces the 
utter margin: a thicker boundary layer results in an increase in
aerodynamic loading.

2. Turbulence modeling introduces variability in the 
utter Mach number predictions and prevents its
exact calculation.

3. Real gas e�ects have only a limited e�ect on 
utter Mach number at the 
ight conditions considered.
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