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The great majority of modern space vehicles designed for planetary exploration use
ablative materials to protect the payload against the high heating environment experienced
during re-entry. In order to properly model and predict the aerothermal environment of
the vehicle, it is imperative to account for the gases produced by ablation processes. In the
case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature,
the composition of the gas expelled into the boundary layer is complex and may lead to
thermal chemical reactions that cannot be captured with simple ow chemistry models.
In order to obtain better predictions, an appropriate gas ow chemistry model needs to
be included in the CFD calculations. The e�ects of allowing such gaseous species to form
in the ow �eld have notable repercussions on the amount of heat uxes to the surfaces.
The present study aims to examine the e�ects of blowing of pyrolysis gas in the outer ow
�eld. Using six points on the Stardust entry trajectory at the beginning of the continuum
regime, from 81 km to 69 km, the various components of the heat ux are compared to
air-only solutions. Although an additional component of the heat ux is introduced by
mass di�usion, this additional term is mainly balanced by the fact that the translational-
rotational component of the heat ux, the main contributor, is greatly reduced. Although
a displacement of the shock is observed, it is believed that the most prominent e�ects are
caused by a modi�cation of the chemical composition of the boundary layer, which reduces
the gas phase thermal conductivity.

Nomenclature

Symbols

B0 Non dimensional ablation rate
D Mass di�usion coe�cient
Kn Knudsen number
_m Mass ow rate
p Pressure

T Temperature
U; v Velocity
Y Mass fraction
� Distance normal to the wall
� Mass density

Subscripts

c Char
ve Vibrational-Electron-Electronic
tr Translational-Rotational
g Gas blown
nc Next to the wall

s Species
t Time
w Wall
1 Freestream
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I. Introduction

One of the most important components of a re-entry vehicle is its Thermal Protection System (TPS).
Depending on the re-entry trajectory and atmospheric condition, two types of materials may be used for TPS
design: ablative materials, such as the ones used on the Apollo missions, and non-ablative materials, such
as the ceramic tiles used on the Space Shuttle. For most planetary exploration missions, a multi component
ablative material is most frequently used. In this type of material, an inner resin is �rst chemically and
thermally decomposed before the surface begins to react. This type of ablator, called charring or pyrolysing
ablator, o�ers multiple advantages, like expelling a relatively cold gas in the boundary layer, or preserving
the original geometry of the aerodynamic surface during re-entry.

In order to properly model the heating rates at the surface of the vehicle, the ablating boundary con-
dition must take into account many phenomena: surface recession, wall temperature, blowing rates, gas
composition, surface chemistry, etc. However, to account for the e�ects of the pyrolysis gas on the vehicle,
the chemistry model of the ow �eld must include the reactions associated with the presence of this gas.
Because ablation coupling is becoming an increasingly important research topic,1{7 the development of an
accurate, yet usable, chemistry model is of great importance. Models have been proposed in the past8{10

but important reactions were not included, and some of the reaction rates were inappropriate or simply
outdated.

Recently, a more complete model was proposed,11 which includes an extensive set of kinetic rates, taken
from the combustion community. The model was reduced using 0-D sensitivity analysis over a parameter
space relevant to the re-entry conditions that such a material would be exposed to. It was established that
such a model was necessary to study carbon-phenolic TPS through a review of past models, which gave a wide
range of results, especially when radiative heat transfer calculations were performed.12 The reduced model
was later integrated into the hypersonic Computational Fluid Dynamics (CFD) code LeMANS. As a test
case, results were obtained at various trajectory points of the Stardust re-entry vehicle, and the importance
of accounting for ablation in ow �eld chemistry was highlighted.13 A later paper14 focused on the 71
km trajectory point, for which spectrally resolved radiative emission measurements were obtained. The
experimental data was compared to the computed results, which were processed using the NEQAIR (version
99d) radiation code.15 The agreement was surprisingly good, considering the high level of assumptions and
uncertainties of both the experimental data and the computations.

The current paper further analyzes the Stardust trajectory between 81 km and 69 km. Six trajectory
points are analyzed, and an attempt is made to identify the key aspects of the heat ux reduction caused
by pyrolysis gas injection.

Finally, for validation purposes, a comparison is made with the experimental data obtained with the
Echelle instrument, at an altitude of 71 and 81 km. A good agreement is noted at 71 km, as previously
published,14 and an even better one is obtained at 81 km. These results show the validity of the chemistry
model used in the CFD code, and demonstrate that the assumptions made for calculating blowing rates and
pyrolysis gas composition are reasonable.

II. Chemistry model

The chemistry model used in this analysis has been developed and optimized for vehicles equipped
with ablative heat shields composed of PICA, re-entering in a N2-O2 atmosphere.11,13 The species and
reaction mechanisms used in the model were carefully selected using a material response analysis. The
corresponding kinetic chemistry rates were taken from the GRI-MECH model, and then reduced using a
sensitivity analysis.11{13 The reduced model contains 38 species and 158 reaction rates. The selected species
can be grouped into three categories; the air species:

N2, O2, NO, N, O, N+
2 , O+

2 , NO+, N+, O+, e

the surface species:
H2, CO, CH4, H2O, CO2, OH, C2H2, HCN, C2H, C3, CN

and the reacting species:

H, NH, HO2, H2O2, HCO, C, C2, CH, CH2, CH3, NCO, HNO

CO+, CN+, C+, H+

2
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The reaction mechanisms and kinetics rates are listed in Ref. 12. The model has been validated with
multiple zero-dimensional simulations performed using the CHEMKIN16 package, and compared to available
experimental data that are representative of an ablative boundary layer during hypersonic re-entry.11

III. LeMANS: an unstructured three-dimensional Navier-Stokes solver for
hypersonic nonequilibrium aerothermodynamics

The hypersonic aerothermodynamic CFD code used to analyze the chemistry model is LeMANS, a �nite
volume Navier-Stokes solver currently being developed at The University of Michigan.17{20 The code as-
sumes that the rotational and translational energy modes of all species can be described by their respective
temperatures Tr and T , and that the vibrational energy mode and electronic energy mode of all species, as
well as the free electron kinetic energy, can be described by a single temperature, Tve.

21 The viscous stresses
are modeled assuming a Newtonian uid, using Stokes’ hypothesis, and the species mass di�usion uxes are
modeled using a modi�ed version of Fick’s law. Mixture transport properties are calculated using one of two
models; the �rst uses Wilke’s semi-empirical mixing rule with species viscosities calculated using Blottner’s
model and species thermal conductivities determined using Eucken’s relation, and the other uses Gupta’s
mixing rule with species viscosities and thermal conductivities calculated using non-coulombic/coulombic
collision cross section data. Heat uxes are modeled according to Fourier’s law for all temperatures. Finally,
the source terms of the species conservation equations are modeled using a standard �nite-rate chemistry
model for reacting air in conjunction with Park’s two-temperature model to account for thermal nonequilib-
rium e�ects on the reaction rates.

The code has the capability to handle meshes containing any mix of hexahedra, tetrahedra, prisms and
pyramids in 3D, or triangles and quadrilaterals in 2D. Numerical uxes between the cells are discretized
using a modi�ed Steger-Warming Flux Vector Splitting scheme, which has low dissipation and is appropriate
to calculate boundary layers. A point or line implicit method is used to perform the time integration. The
code has been extensively validated against experimental data, and has also been compared to other similar
codes such as NASA Ames’ DPLR22 and NASA Langley’s LAURA.23

To account for the coupling between the ow �eld and the material response, the e�ects of ablation
are added to the CFD code; therefore, a modi�cation to the surface boundary condition is necessary. The
physical values at the wall are obtained by solving the conservation of momentum equation:

pnc + �ncv
2
nc = pw(�w; Tw) + �wv

2
w

as well as the species surface mass balance equation:

�wDws

@Yws

@�
= _m

�
Ygs � Yws

�
The surface energy balance equation does not need to be solved in the present analysis as the wall temper-
ature, blowing rates and blowing species are imposed and not calculated.

Once values are computed for the primitive variables, the conservative quantities in the ghost cells of
the boundary are set such that the ux across the wall is the required blowing ux. This blowing boundary
condition has been tested over a wide range of blowing rates, assuring the robustness of the implementation.
Following the same methodology for the veri�cation and validation of NASA Ames’ DPLR code24 and NASA
Langley’s LAURA code,25 the blowing boundary of LeMANS has also been veri�ed and validated.7,26

IV. Test-case: Stardust return capsule re-entry trajectory

IV.A. Problem description

In order to evaluate and validate the model in LeMANS, the forebody of the Stardust return capsule is
modeled during the �rst 10 seconds of its re-entry in the continuum regime.27 These re-entry points are
chosen because they also correspond to the period where spectral emission data was measured by the Echelle
instrument.28 The geometry and mesh are presented in Fig. 1 and the ow and surface parameters in Tables
1 and 2, respectively. The ow �eld is computed with the previously de�ned 38 species chemistry model,
with reaction rates listed in Ref. 12. Gibb’s Free Energy is used to calculate the equilibrium constants needed

3
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for the backward reaction rates, and the transport properties are calculated from Lennard-Jones potentials,
using CHEMKIN,16 to produce individual species temperature dependent viscosity curve �ts.

The values used for the surface temperature, blowing rates and gas composition are obtained with an
uncoupled approach, using a combination of three NASA software tools. First, the aeroheating environment
is calculated using DPLR.29 The heat transfer coe�cient, the surface pressure and the freestream enthalpy
are then used in the material response code, FIAT.30 The pressure and the non-dimensionalized ablation
rate, B0

g and B0
c, values predicted by FIAT are then extracted and input to the Multicomponent Ablation

Thermochemistry (MAT) code.31 When given this information, MAT calculates back from the B0 tables the
species mole fractions according to JANNAF information corresponding to the wall temperature predicted
by FIAT. This procedure therefore provides input values for blowing rates, wall temperature and equilibrium
species composition. It is to be noted that the equilibrium condition is computed while accounting for the
boundary layer edge gas (air) and the surface material (carbon), and therefore accounts for surface ablation.
The downside of this procedure is that mass is introduced at the surface as the boundary layer edge gas is
considered to be injected at the surface. However, at this altitude the added mass is negligible, since the
blowing rate is less than 1% of the freestream mass ux.

The values obtained through this procedure are only calculated at the stagnation point and are expected
to be signi�cantly lower elsewhere on the forebody of the vehicle. To reect this, a temperature pro�le is
obtained using a fully radiative equilibrium boundary condition at the wall, without ablation. The surface
temperature pro�le is then normalized and re-applied for the ablating wall simulation, multiplied by the
surface temperature at the stagnation point that is listed in Table 2. This method has been proven to give
a good estimate of the surface conditions.27 For the blowing rate, a linear relation between the temperature
and the mass ux is derived using the second and third columns of Table 2, and applied proportionally using
the normalized surface temperature pro�le. The values for those two parameters are presented in Fig. 2.

IV.B. Results

The stagnation line temperatures and gas composition, as well as the heat ux components are presented in
Figs. 3 to 8. Overall, for this particular trajectory, condition and material, the various species behave in the
same manners, are present along the same distance, proportionally to the location of the shock. Most of the
blowing species are destroyed almost immediately once they enter the ow, although CO and OH remain
in relatively high concentration. These two species are important since they are strong radiators. Atomic
species, H and C, are created in high concentration near the boundary, as are CN and CN+, which are quite
important, also because of their radiative properties. As noted previously,13,14 the concentration of HNO, a
species neglected in other models, is relatively high.

Heat ux reduction

In order to evaluate the degree of heat ux reduction caused by the blowing of pyrolysis species from the
surface, two additional series of test cases are run for all trajectory points: the �rst uses a non-catalytic
boundary condition, and the second a super catalytic one. In both cases, an 11 species chemistry model for
air is used. As a non catalytic wall is known to underestimate the heat ux, and the super catalytic known
to overestimate, the correct solution must lie in between, and those two models provide a good starting point
for comparisons.

First, the e�ects of blowing reduction on translational-rotational energy are examined. Figures 9 , 10
and 11 present the translational-rotational temperature on the stagnation line, as well as the translational-
rotational heat ux at the wall for altitudes of 81 km, 76 km and 68.9 km, respectively. As can be seen,
the �rst notable e�ect of blowing is the displacement of the shock. Even at low blowing rates (81 km), the
shock is signi�cantly moved away from the surface of the vehicle. This has of course a direct repercussion
on the shape of the curves, and therefore a�ects the gradient of temperature at the wall, as can be seen in
Figs. 9b) , 10b) and 11b). However, even if the heat ux is directly linked to the gradient of temperature at
the wall, the gas phase conductivity also plays an impotent role. And it is for that reason that there is no
direct correlation with the steepness of the gradient and the heat ux. And for that reason, it is clear that,
regardless of the altitude, blowing rate and chemical species, the most important e�ect that contributes to
heat ux reduction is the composition of the gas in the boundary layer.

It is also interesting to compare the super catalytic and non catalytic curves. Although the super-catalytic
boundary conditions provide a larger total heat ux, the changes in composition of the boundary layer result

4
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in a signi�cant reduction of the translational-rotational component, even though the gradient would tend to
suggest otherwise.

The same analysis can be performed on the vibrational-electron-electronic component of the heat uxes.
The results are presented in Fig. 12. As with the translational-rotational temperature, the change in the
chemical composition of the boundary layer results in a signi�cant reduction in the heat ux. However,
the e�ects are not as straightforward as for the other conductive heat ux, as the amount of species with
vibrational (and electronic) degrees of freedom has a direct impact on the energy distribution. The heat uxes
due to mass di�usion are shown in Fig. 13. As expected, the super-catalytic wall results in an arti�cially
high heat ux, and those values are signi�cantly reduced when a blowing boundary condition is applied.
That �gure also shows that, as expected, the reduction in the translational-rotation heat uxes are directly
proportional to the mass di�usion heat ux. By also comparing with Fig. 2b), it can be seen that the mass
di�usion heat ux is directly proportional to the pyrolysis gas mass ow. Again, this represents a conclusion
that is far from being surprising.

Finally, in Fig. 14, the relative contributions of each component of the heat ux are plotted for all
trajectory points. It can be seen that for the trajectory points chosen for this analysis, the translational-
rotational component contributes the most. We can also observe that the amount of blowing has a direct
and linear inuence on the translational-rotational heat ux. This result clearly shows that an increase in
blowing rates has a major impact on the overall heat ux, and that although it translates into an increase
in mass di�usion heat ux, it does not become the dominant component.

Radiative emission

As additional results, and in an attempt to validate the current methodology, the spectral line emissions
for CN are compared to the experimental data obtained by the Echelle instrument28 at high altitude (81
km) and lower altitude (71 km). The radiative emission calculation is performed along the stagnation line
of a converged ow �eld solution using the non-equilibrium radiation code NEQAIR2009 (version 6).32 The
temperatures and species concentrations used as inputs NEQAIR are presented in Figs. 3 and 7 and the
spectral emissions are presented in Fig. 15. As was previously reported, the lower altitude trajectory point
reasonably matches the experimental data, as the discrepancy remains within one order of magnitude. As
seen in Ref. 14, the di�erence would be even less if a spatially resolved input was used in NEQAIR, instead
of simply the stagnation line. The high altitude trajectory point (81 km) gives an even better comparison.
For those two results, the CN calculation was run independently of the air calculations, and in the latter
case, the N2+ system was omitted because of known issues with the software.

V. Conclusion

In order to evaluate the mechanism of heat ux reduction caused by pyrolysis gas blowing, a compre-
hensive chemistry model for computing the ow around a re-entry vehicle using an ablative heat shield has
been used in a CFD code. The species used in the model have been selected with careful consideration of the
ow physics, and the reactions have been evaluated and chosed from various sources in the literature. The
model has been reduced to a more manageable number of species and reactions, using a zero-dimensional
sensitivity analysis, and was validated using various experimental results

The CFD software used to model the ow �eld is the hypersonic non-equilibrium code LeMANS, which
was adequately modi�ed to allow ow through the surface of the vehicle. As a test case, the Stardust re-entry
vehicle was used. This vehicle has been extensively studied in the past and is relatively simple to model.
The �rst six trajectory points corresponding to the continuum regime were chosen, as experimental data is
available in the form of spectral radiative emission gathered by the Echelle instrument.28

As expected, the convective heat ux predicted using the carbon-phenolic-in-air chemistry model was
signi�cantly reduced relative to the prediction obtained using the air chemistry model. The species con-
centrations along the stagnation line were also presented and it was shown that at chemical equilibrium
conditions, most species blown from the surface immediately react in the ow�eld and are transformed.
These results clearly indicate the need to use an appropriate chemistry model in the ow �eld, and that the
chemistry model should be signi�cantly di�erent than that used to model pyrolysis gas behavior inside the
TPS. Also, it was observed that the blowing rates were directly proportional to the mass di�usion heat ux,
which in turn was directly proportional to the reduction of the translational-rotational conduction heat ux
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component. It was also noted that the main source of heat ux reduction is by the translational-rotational
conduction component, for all trajectory points. This clearly indicates that the chemical composition of
the boundary layer is of great importance, and that the di�usion coe�cients of each species, as well as the
mixing rules, must be calculated with great care.

Finally, the ow �eld solution was used to perform analysis of the CN radiative spectral emission using
NEQAIR. The result was compared to the experimental data obtained by the Echelle instrument28 at the
81 km and 71 km trajectory points. The computed results were very close to the observed values, which
provides increased con�dence in the carbon-phenolic-in-air chemistry model, and the overall approach.
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Table 1. Free stream conditions for the Echelle period of the trajectory of the Stardust re-entry vehicle

Altitude Time U1 T1 �1 YN2 YO2 Kn

[s] [km] [km/s] [K] [kg/m3]

81.0 34 12.4 218. 1.27 �10�4 0.763 0.237 0.00645

78.5 36 12.3 218. 1.87 �10�4 0.763 0.237 0.00432

76.0 38 12.3 219. 2.72 �10�4 0.763 0.237 0.00292

73.5 40 12.2 220. 3.92 �10�4 0.763 0.237 0.00203

71.2 42 12.1 222. 5.55 �10�4 0.763 0.237 0.00145

68.9 44 11.9 224. 7.72 �10�4 0.763 0.237 0.00105

Table 2. Wall conditions at the stagnation point for the Echelle period of the trajectory of the Stardust re-entry vehicle

Altitude Tw _mw YN2 YCO YH2 YH2O

[km] [K] [kg/m2/s]

81.0 2890. 0.0214 6.16 �10�1 2.32 �10�1 1.52 �10�2 6.85 �10�2

78.5 2970. 0.0264 6.14 �10�1 2.34 �10�1 1.52 �10�2 7.32 �10�2

76.0 3070. 0.0299 6.49 �10�1 1.75 �10�1 1.08 �10�2 4.88 �10�2

73.5 3150. 0.0378 6.54 �10�1 1.65 �10�1 9.38 �10�3 5.41 �10�2

71.2 3240. 0.0453 6.75 �10�1 1.23 �10�1 5.76 �10�3 5.23 �10�2

68.9 3310. 0.0549 6.78 �10�1 1.25 �10�1 7.21 �10�3 3.08 �10�2

Altitude YOH YO YCO2 YNO YO2 YN

[km]

81.0 1.94 �10�2 1.24 �10�2 2.72 �10�2 4.93�10�3 5.05�10�3 0.00

78.5 1.72 �10�2 9.18 �10�3 2.94 �10�2 4.38 �10�3 4.02 �10�3 0.00

76.0 3.21 �10�2 3.75 �10�2 1.92 �10�2 1.22 �10�3 1.52 �10�2 0.00

73.5 3.19 �10�2 3.33 �10�2 2.30 �10�2 1.30 �10�2 1.72 �10�2 0.00

71.2 3.30 �10�2 3.68 �10�2 2.70 �10�2 1.74 �10�2 2.99 �10�2 0.00

68.9 3.71 �10�2 6.46 �10�2 1.22 �10�2 2.08 �10�2 2.44 �10�2 7.84 �10�5
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(a) Geometry and overall mesh (b) Stagnation region mesh

Figure 1. Geometry and mesh of the Stardust re-entry capsule, used for the chemistry model comparison

(a) Surface temperature (b) Surface blowing rate

Figure 2. Surface temperature and blowing rates at 42 s (71 km) for Stardust
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(a) Stagnation line temperatures (b) Surface heat uxes

(c) Air species (d) Surface blowing species

(e) High concentration species (f) Low concentration species

Figure 3. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 81 km (34
s into re-entry)

10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
81

4 



(a) Stagnation line temperatures (b) Surface heat uxes

(c) Air species (d) Surface blowing species

(e) High concentration species (f) Low concentration species

Figure 4. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 78.5 km
(36 s into re-entry)
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(a) Stagnation line temperatures (b) Surface heat uxes

(c) Air species (d) Surface blowing species

(e) High concentration species (f) Low concentration species

Figure 5. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 76 km (38
s into re-entry)
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(a) Stagnation line temperatures (b) Surface heat uxes

(c) Air species (d) Surface blowing species

(e) High concentration species (f) Low concentration species

Figure 6. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 73.5 km
(40 s into re-entry)
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(a) Stagnation line temperatures (b) Surface heat uxes

(c) Air species (d) Surface blowing species

(e) High concentration species (f) Low concentration species

Figure 7. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 71 km (42
s into re-entry)
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(a) Stagnation line temperatures (b) Surface heat uxes

(c) Stagnation line air species concentration (d) Stagnation line surface blowing species concentration

(e) Stagnation line high concentration species (f) Stagnation line low concentration species

Figure 8. Species concentrations along the stagnation line for the Stardust re-entry vehicle at an altitude of 68.9 km
(44 s into re-entry)
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(a) Stagnation line trans.-rot. tempera-
ture

(b) Stagnation line trans.-rot. tempera-
ture near the wall

(c) Trans.-rot. energy heat ux

Figure 9. Blowing reduction e�ects on the translational-rotational energy at 81 km

(a) Stagnation line trans.-rot. tempera-
ture

(b) Stagnation line trans.-rot. tempera-
ture near the wall

(c) Trans.-rot. energy heat ux

Figure 10. Blowing reduction e�ects on the translational-rotational energy at 76 km

(a) Stagnation line trans.-rot. tempera-
ture

(b) Stagnation line trans.-rot. tempera-
ture near the wall

(c) Trans.-rot. energy heat ux

Figure 11. Blowing reduction e�ects on the translational-rotational energy at 68.9 km
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(a) Re-entry altitude of 81 km (b) Re-entry altitude of 76 km (c) Re-entry altitude of 68.9 km

Figure 12. Blowing reduction e�ects on the vibrational-electronic-electron heat ux

(a) Re-entry altitude of 81 km (b) Re-entry altitude of 76 km (c) Re-entry altitude of 68.9 km

Figure 13. Blowing reduction e�ects on the mass di�usion heat ux

(a) Re-entry altitude of 81 km (b) Re-entry altitude of 78.5 km (c) Re-entry altitude of 76 km

(d) Re-entry altitude of 73.5 km (e) Re-entry altitude of 71.2 km (f) Re-entry altitude of 68.9 km

Figure 14. Relative contribution of individual components of the heat ux using the blowing boundary condition
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(a) 81 km: 34s into re-entry
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(b) 71 km: 44s into re-entry

Figure 15. Spectral emission for the Startdust re-entry vehicle at 81 km and 71 km
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