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ABSTRACT: We consider the set of all graphs on n labeled vertices with prescribed degrees D =
(d1, . . . , dn). For a wide class of tame degree sequences D we obtain a computationally efficient
asymptotic formula approximating the number of graphs within a relative error which approaches
0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame
degree sequence D is well described by a certain maximum entropy matrix computed from D. We
also establish an asymptotic formula for the number of bipartite graphs with prescribed degrees of
vertices, or, equivalently, for the number of 0-1 matrices with prescribed row and column sums.
© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 42, 301–348, 2013
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1. INTRODUCTION AND MAIN RESULTS

1.1. Graphs and Their Degree Sequences

Let D = (d1, . . . , dn) be a vector of positive integers and let G(D) be the set of all graphs
(undirected, with no loops or multiple edges) on the set {1, . . . , n} of vertices such that
the degree of the k-th vertex is dk for k = 1, . . . , n. Equivalently, G(D) is the set of all
n × n symmetric matrices with 0-1 entries, zero trace and row (column) sums d1, . . . , dn.
We assume that

d1 + · · · + dn ≡ 0 mod 2, (1.1.1)

since otherwise the set G(D) is empty.
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302 BARVINOK AND HARTIGAN

The theorem of Erdős and Gallai, see, for example, Theorem 6.3.6 of [6], states the
necessary and sufficient conditions for the existence of a graph with the given degree
sequence. Without loss of generality, we assume that

d1 ≥ d2 ≥ · · · ≥ dn.

Then, the necessary and sufficient condition for G(D) to be non-empty is that (1.1.1) holds
and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} for k = 1, . . . , n. (1.1.2)

Our main goal is to estimate the cardinality |G(D)| of G(D). Using the obtained estimate,
we deduce a concentration result for a random graph G ∈ G(D) sampled from the uniform
probability measure on G(D).

1.2. The Maximum Entropy Matrix and Tame Degree Sequences

The following matrix plays the crucial role in our construction.
Let us consider the space R(n

2) of vectors x = (ξ{j,k}), where {j, k} is an unordered pair
of indices 1 ≤ j �= k ≤ n. We consider the polytope P ⊂ R(n

2), P = P(D), defined by the
equations ∑

j:j �=k

ξ{j,k} = dk for k = 1, . . . , n

and inequalities

0 ≤ ξ{j,k} ≤ 1.

The integer points in P(D) correspond to the labeled graphs with degree sequence D, which
we write as

G(D) = P(D) ∩ Z(n
2).

We assume that P(D) is non-empty. We consider the following entropy function on
P(D):

H(x) =
∑
{j,k}

(
ξ{j,k} ln

1

ξ{j,k}
+ (1 − ξ{j,k}) ln

1

1 − ξ{j,k}

)
for x = (ξ{j,k}).

Since H is a strictly concave function, it attains its maximum on P at a unique point,
z = (ζ{j,k}), z = z(D), which we call the maximum entropy matrix associated with the
degree sequence D. Matrix z can be easily calculated by interior point methods, see [19].

For 0 < δ ≤ 1/2 we say that the degree sequence D is δ-tame if the polytope P(D) is
non-empty and if

δ ≤ ζ{j,k} ≤ 1 − δ for all 1 ≤ j �= k ≤ n,

where z = (ζ{j,k}) is the maximum entropy matrix associated with degree sequence D. In
Theorem 2.1 we state some sufficient conditions for a degree sequence D to be tame.
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1.3. Quadratic Form q and Related Quantities

Let z = (ζ{j,k}) be the maximum entropy matrix associated with a tame degree sequence D.
We consider the following quadratic form q : R

n −→ R,

q(t) = 1

2

∑
{j,k}

(
ζ{j,k} − ζ 2

{j,k}
)
(τj + τk)

2 for t = (τ1, . . . , τn). (1.3.1)

It is easy to see that q is positive definite for n > 2. Let us consider the Gaussian probability
measure on R

n with density proportional to e−q. We define the following random variables
f , h : R

n −→ R,

f (t) = 1

6

∑
{j,k}

ζ{j,k}(1 − ζ{j,k})(2ζ{j,k} − 1)(τj + τk)
3 and

h(t) = 1

24

∑
{j,k}

ζ{j,k}(1 − ζ{j,k})
(
6ζ 2

{j,k} − 6ζ{j,k} + 1
)
(τj + τk)

4 for t = (τ1, . . . , τn).

(1.3.2)

Let

μ = Ef 2 and ν = Eh.

Our main result is as follows.

Theorem 1.4. Let us fix 0 < δ < 1/2. Let D = (d1, . . . , dn) be a δ-tame degree sequence
such that d1 + · · · + dn ≡ 0 mod 2, let z = (ζ{j,k}) be the maximum entropy matrix as
defined in Section 1.2 and let the quadratic form q and values of μ and ν be as defined in
Section 1.3. Let us define an n × n symmetric matrix Q = (ωjk) by

ωjk = ζ{j,k}(1 − ζ{j,k}) for j �= k and

ωjj = dj −
∑

k: k �=j

ζ 2
{j,k} for j = 1, . . . , n.

Then Q is positive definite and the value of

2eH(z)

(2π)n/2
√

det Q
exp

{
−μ

2
+ ν

}
(1.4.1)

approximates the number of graphs |G(D)| with degree sequence D within a relative error
which approaches 0 as n −→ +∞.

More precisely, for any 0 < ε ≤ 1/2 the value of (1.4.1) approximates |G(D)| within
relative error ε provided

n ≥
(

1

ε

)γ (δ)

,

where γ = γ (δ) is a positive constant.

Random Structures and Algorithms DOI 10.1002/rsa
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The main term

2eH(z)

(2π)n/2
√

det Q
(1.4.2)

of formula (1.4.1) is the “Gaussian approximation” formula of [3], whose appearance, as is
discussed in [3], is explained by the Local Central Limit Theorem, see also the discussion
below. The factor

exp
{
−μ

2
+ ν

}
is the “Edgeworth correction” factor, see [5]. In the course of the proof of Theorem 1.4, we
establish a two-sided bound

γ1(δ) ≤ exp
{
−μ

2
+ ν

}
≤ γ2(δ)

for some constants γ1(δ), γ2(δ) > 0, as long as the degree sequence D remains δ-tame.
We note that computing the expectation of a polynomial with respect to the Gaussian

probability measure is a linear algebra problem, cf. also Section 5.2. Hence apart from
computing the maximum entropy matrix z, which can be done by interior point methods,
computing the value of (1.4.1) is a linear algebra problem which can be solved in O(n4)

time in the unit cost model.

1.5. Random Graphs with Prescribed Degree Sequences

Let us consider the set G(D) of all labeled graphs with degree sequence D as a finite
probability space with the uniform measure. It is convenient to think of G ∈ G(D) as of a
subgraph of the complete graph Kn with the set

V = {1, . . . , n}
of vertices and the set

E = {{j, k} : 1 ≤ j �= k ≤ n}
of edges.

Let us sample a graph G ∈ G(D) at random. What G is likely to look like?
As a corollary of Theorem 1.4, we prove that with overwhelming probability, for a

random graph G ∈ G(D) the number of edges of G in a given set S ⊂ E with |S| = �(n2) is
very close to the sum of the entries of the maximum entropy matrix indexed by the elements
of S.

Theorem 1.6. Let us fix numbers κ > 0 and 0 < δ ≤ 1/2. Then there exists a number
γ (κ , δ) > 0 such that the following holds.

Suppose that n ≥ γ (κ , δ) and that D = (d1, . . . , dn) is a δ-tame degree sequence such
that d1 + · · · + dn ≡ 0 mod 2. For a set S ⊂ E, let σS(G) be the number of edges of graph
G ∈ G(D) that belong to set S and let

σS(z) =
∑

{j,k}∈S

ζ{j,k},

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE 305

where z = (ζ{j,k}) is the maximum entropy matrix. Suppose that |S| ≥ δn2 and let

ε = δ
ln n√

n
.

If ε ≤ 1 then for a uniformly chosen random graph G ∈ G(D), we have

P{G ∈ G(D) : (1 − ε)σS(z) ≤ σS(G) ≤ (1 + ε)σS(z)} ≥ 1 − 2n−κn.

The idea of the proof is as follows. For 1 ≤ j �= k ≤ n, let x{j,k} be independent Bernoulli
random variables such that

P{x{j,k} = 1} = ζ{j,k} and P{x{j,k} = 0} = 1 − ζ{j,k}.

As is shown in [3], the probability mass function of the random vector X = (x{j,k}) is
constant on the integer points of P(D) and is equal to e−H(z) at each G ∈ G(D), so that the
vector X conditioned on G(D) is uniform. Theorem 1.4 then implies that the probability that
X ∈ G(D) is not too small. On the other hand, standard large deviation inequalities imply
that the sum

∑
{j,k}∈S x{j,k} concentrates about the value of σS(z) = ∑

{j,k} ζ{j,k}. We supply
the details of the proof in Section 10.

In many respects random graphs G ∈ G(D) behave like random graphs on the set
{1, . . . , n} of vertices, with pairs {j, k} chosen as the edges of G independently with proba-
bilities ζ{j,k}, where z = (ζ{j,k}) is the maximum entropy matrix. As is discussed in [3], the
distribution of the multivariate Bernoulli random vector X = (x{j,k}) is the distribution of
the largest entropy among all multivariate Bernoulli random vectors constrained by

Eyk = dk for k = 1, . . . , n

where

yk =
∑
j: j �=k

x{j,k}.

We remark that we obtain the “Gaussian approximation” term (1.4.2) if we assume that
the vector of random variables Y = (y1, . . . , yn) is asymptotically Gaussian around its
expectation (d1, . . . , dn). As it turns out, Y is not exactly Gaussian but is not very far from
it.

It looks plausible that both Theorem 1.4 and Theorem 1.6 can be extended to degree
sequences D allowing a moderate number of entries ζ{j,k} of the maximum entropy matrix to
be arbitrarily close to 1 or 0. Our proofs, however, do not seem to allow such an extension
with Theorem 4.1 being the main obstacle. Some of our proofs (mostly in Sections 5 and
6) are similar to those of [4], where we applied the maximum entropy approach of [3] to
count non-negative integer matrices with prescribed row and column sums.

The paper is organized as follows.
In Section 2, we give several examples and extensions concerning our main result,

Theorem 1.4 and also discuss related work in the literature.
In Section 3, we present an integral representation for the number |G(D)| of graphs and

also describe the plan of the proof of Theorem 1.4.
The rest of the paper deals with the proofs.

Random Structures and Algorithms DOI 10.1002/rsa
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2. EXAMPLES AND EXTENSIONS

Sometimes one can tell that a degree sequence is tame without computing the maximum
entropy matrix.

Theorem 2.1. Let us fix real numbers 0 < α < β < 1 such that

β < 2
√

α − α, or, equivalently, (α + β)2 < 4α.

Then there exists a real number δ = δ(α, β) > 0 and a positive integer n0 = n0(α, β) such
that any degree sequence D = (d1, . . . , dn) satisfying

α <
di

n − 1
< β for i = 1, . . . , n

is δ-tame provided n > n0.
One can choose

n0 = max

{
β

α(1 − β)
,

4(β − α)

4α − (α + β)2

}
+ 1 and

δ = ε6

1 + ε6
where ε = min

{
α, α − (α + β)2

4

}
.

For example, degree sequences D = (d1, . . . , dn) satisfying

0.25 <
di

n − 1
< 0.74 for i = 1, . . . , n

or

0.01 <
di

n − 1
< 0.18 for i = 1, . . . , n

or

0.81 <
di

n − 1
< 0.89 for i = 1, . . . , n

are δ-tame for some δ > 0 and all sufficiently large n.
We prove Theorem 2.1 in Section 12.

2.2. On the Boundary of δ-Tameness

Let us choose rational 0 < α < β < 1 such that

β = 2
√

α − α. (2.2.1)

Clearly, β > α. Let us choose a positive integer n such that αn and βn are even integers
and let us consider the degree sequence

d1 = . . . = dk = βn and dk+1 = . . . = dn = αn for k = n
√

α

Random Structures and Algorithms DOI 10.1002/rsa
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(note that k is necessarily integral). The Erdős-Gallai condition (1.1.2) for k = n
√

α, reduces
to

β ≤ 2
√

α − α − 1

n
. (2.2.2)

In particular, (2.2.1) does not even guarantee that the polytope P(D) is non-empty.
In [12] Jerrum, Sinclair and McKay discuss under what conditions an approximation for-

mula for |G(D)| which depends “smoothly” on D may exist. They describe the phenomenon
of the number of graphs |G(D)| changing sharply when the degree sequence D is varying
only slightly around some special values of D. This phenomenon is apparently explained by
the fact that the dimension of the polytope P(D) may change abruptly or the polytope may
disappear altogether when D lies on the boundary of the Erdős-Gallai conditions (1.1.2).
Theorem 8.1 of [12] states that for

d+ = max{di, i = 1, . . . , n} and d− = min{di, i = 1, . . . , n},
as long as

(d+ − d− + 1)2 ≤ 4d−(n − d+ − 1), (2.2.3)

the degree sequence D is P-stable, meaning that increasing one of the degrees di and
decreasing another by 1 does not change |G(D)| by more than a factor of n10 (this, in turn,
implies that there are polynomial time randomized approximation algorithms for computing
|G(D)| and sampling a random graph G ∈ G(D)). The condition of our Theorem 2.1 is only
marginally stronger than (2.2.3).

As Sourav Chatterjee pointed out to us, Lemma 4.1 of recent [9] shows that a sequence D
is δ-tame provided it lies sufficiently deep inside the polyhedron defined by the Erdős-Gallai
conditions (1.1.2).

Our example shows that the bounds of Theorem 2.1 are essentially the best possible if
we take into account only the largest and the smallest degree of a vertex of the graph.

2.3. Regular Graphs

In [18] McKay and Wormald compute the asymptotic of |G(D)| for regular graphs, where

d1 = . . . = dn = d,

and almost regular graphs, where

|di − d| < n
1
2 +ε for i = 1, . . . , n

for a sufficiently small ε > 0; see also [17] for recent developments and [16] for a survey.
One can show that the formula of Theorem 1.4 is equivalent to the asymptotic formula of
[18] for regular or almost regular graphs.

In the case of regular graphs, symmetry requires that

ζ{j,k} = d

n − 1
for all 1 ≤ j �= k ≤ n

for the maximum entropy matrix z = (ζ{j,k}).

Random Structures and Algorithms DOI 10.1002/rsa
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2.4. Approximations in the Cut Norm

The cut norm (sometimes called the normalized cut norm) of a real m × n matrix A = (ajk)

is defined by

‖A‖cut = 1

mn
max

J ,K

∣∣∣∣∣∣
∑

j∈J ,k∈K

ajk

∣∣∣∣∣∣ ,

where the maximum is taken over all non-empty subsets J ⊂ {1, . . . , m} and K ⊂ {1, . . . , n}.
Let us choose set S in Theorem 1.6 of the form

S = {{j, k} : j ∈ J , k ∈ K , j �= k} for some J , K ⊂ {1, . . . , n}.
We note that there are not more than 22n distinct sets S of this form. Theorem 1.6 implies
that as n grows, the maximum entropy matrix z(D) approximates the adjacency matrix of
the overwhelming majority of graphs G ∈ G(D) within an error of O(n−1/2 ln n) in the cut
norm.

Shortly after the first version of this paper appeared, using a different approach, Chatter-
jee, Diaconis and Sly [9] described graph limits of graphs from G(D) as n grows. A graph
limit is a certain function on [0, 1] × [0, 1], viewed as an “infinite matrix”, which naturally
arises as a limit object for a Cauchy sequence in the cut norm of adjacency matrices of
graphs [14]. Graph limits constructed in [9] can indeed be viewed as “infinite maximum
entropy matrices”.

2.5. Enumeration of Bipartite Graphs

A natural version of the problem concerns enumeration of labeled bipartite graphs with a
given degree sequence or, equivalently, m × n matrices with 0-1 entries and prescribed row
sums R = (r1, . . . , rm) and column sums C = (c1, . . . , cn). We assume that

r1 + · · · + rm = c1 + · · · + cn.

A simple necessary and sufficient condition for a 0-1 matrix with prescribed row and column
sums to exist is given by the Gale-Ryser Theorem, see, for example, Corollary 6.2.5 of [6].

Let us consider the polytope P(R, C) of m×n matrices x = (ξjk) defined by the equations

n∑
k=1

ξjk = rj for j = 1, . . . , m and
m∑

j=1

ξjk = ck for k = 1, . . . , n

and inequalities

0 ≤ ξjk ≤ 1 for all j, k.

Let us compute the maximum entropy matrix z = (ζjk) as the necessarily unique matrix
z ∈ P(R, C) that maximizes

H(x) =
∑

jk

(
ξjk ln

1

ξjk
+ (1 − ξjk) ln

1

1 − ξjk

)
for x = (ξjk)
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on P(R, C). For 0 < δ ≤ 1/2, we say that the margins (R, C) are δ-tame if

δm ≤ n and δn ≤ m

and

δ ≤ ξjk ≤ 1 − δ for all j, k.

Suppose that the margins (R, C) are indeed δ-tame for some δ > 0. Let us define a quadratic
form q : R

m+n −→ R by

q(s, t) = 1

2

∑
j,k

(
ζjk − ζ 2

jk

)
(σj + τk)

2 for (s, t) = (σ1, . . . , σm; τ1, . . . , τn). (2.5.1)

Let

u =
⎛
⎝1, . . . , 1︸ ︷︷ ︸

m times

; −1, . . . , −1︸ ︷︷ ︸
n times

⎞
⎠ (2.5.2)

and let L = u⊥ be the orthogonal complement to u in R
m+n. Then the restriction q|L of q

onto L is strictly positive definite and we define det q|L as the product of the non-zero
eigenvalues of q. We consider the Gaussian probability measure on L with density
proportional to e−q and define random variables f , g : L −→ R by

f (s, t) = 1

6

∑
j,k

ζjk(1 − ζjk)(2ζjk − 1)(σj + τk)
3 and

h(s, t) = 1

24

∑
j,k

ζjk(1 − ζjk)
(
6ζ 2

jk − 6ζjk + 1
)
(σj + τk)

4

for (s, t) = (σ1, . . . , σm; τ1, . . . , τn). (2.5.3)

We define

μ = Ef 2 and ν = Eh.

Then the number |R, C| of 0-1 matrices with row sums R and column sums C is

|R, C| = eH(z)
√

m + n

(4π)(m+n−1)/2
√

det q|L exp
{
−μ

2
+ ν

}
(1 + o(1)) (2.5.4)

provided m, n −→ +∞ in such a way that the margins (R, C) remain δ-tame for some
δ > 0. We sketch the proof of (2.5.4) in Section 11.

Canfield and McKay [8] obtained an asymptotic formula of |R, C| when all row sums
are equal, r1 = · · · = rm and all column sums are equal, c1 = · · · = cn, which was later
extended to the case of “almost equal” row sums and “almost equal” column sums [7], see
also [11]. The maximum entropy matrix z was introduced in [2] where a cruder asymptotic
formula

ln |R, C| ≈ H(z)

Random Structures and Algorithms DOI 10.1002/rsa
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was established without the δ-tameness assumption and for a wider class of enumeration
problems, including enumeration of 0-1 matrices with prescribed row and column sums
and zeros in prescribed position. It was also shown in [2] that a random matrix 0-1 with
prescribed row and column sums concentrates about the maximum entropy matrix z.

3. AN INTEGRAL REPRESENTATION FOR THE NUMBER OF GRAPHS

In [3] we proved the following general result; see Theorem 5, Lemma 11 and formula (16)
there.

Theorem 3.1. Let P ⊂ R
p be a polyhedron defined by the system of linear equations

Ax = b, where A is a n × p matrix with columns a1, . . . , ap ∈ Z
n and b ∈ Z

n is an integer
vector, and inequalities 0 ≤ x ≤ 1 (the inequalities are understood coordinate-wise).
Suppose that P has a non-empty interior, that is, contains a point x = (ξ1, . . . , ξp) such that
0 < ξj < 1 for j = 1, . . . , p.

Then the function

H(x) =
p∑

j=1

(
ξj ln

1

ξj
+ (1 − ξj) ln

1

1 − ξj

)
for x = (ξ1, . . . , ξp)

attains its maximum on P at a unique point z = (ζ1, . . . , ζp) such that 0 < ζj < 1 for
j = 1, . . . , p.

Let us consider the parallelepiped � = [−π , π ]n, � ⊂ R
n. Then the number |P∩{0, 1}p|

of 0-1 points in P can be written as

|P ∩ {0, 1}p| = eH(z)

(2π)n

∫
�

e−i〈t,b〉
p∏

j=1

(
1 − ζj + ζje

i〈aj ,t〉)dt,

where 〈·, ·〉 is the standard scalar product in R
n, dt is the standard Lebesgue measure in R

n

and i = √−1.

The idea of the proof is as follows. Let X = (x1, . . . , xp) be a random vector of inde-
pendent Bernoulli random variables such that P{xj = 1} = ζj and P{xj = 0} = 1 − ζj

for j = 1, . . . , p. It turns out that the probability mass function of X is constant on the set
P ∩ {0, 1}p and equals e−H(z) for every 0-1 point in P. Letting Y = AX, we obtain

|P ∩ {0, 1}p| = eH(z)P{X ∈ P} = eH(z)P{Y = b}

and the probability in question is written as the integral of the characteristic function of Y .
Since

p∑
j=1

ζjaj = b,

Random Structures and Algorithms DOI 10.1002/rsa
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in a neighborhood of the origin t = 0 the integrand can be written as

e−i〈t,b〉
p∏

j=1

(
1 − ζj + ζje

i〈aj ,t〉) = exp

{
−1

2

p∑
j=1

ζj(1 − ζj)〈aj, t〉2

+ i

6

p∑
j=1

ζj(1 − ζj)(2ζj − 1)〈aj, t〉3

+ 1

24

p∑
j=1

ζj(1 − ζj)(6ζ 2
j − 6ζj + 1)〈aj, t〉4

+ O

(
p∑

j=1

(ζj + 1)5〈aj, t〉5

)}
. (3.2)

Note that the linear term is absent in the expansion.
We obtain the following corollary.

Corollary 3.3. Let D = (d1, . . . , dn) be a degree sequence such that the polytope P(D)

defined in Section 1.2 has a non-empty interior and let z = (ζ{j,k}) be the maximum entropy
matrix. Let

F(t) = exp

{
−i

n∑
m=1

dmτm

}∏
{j,k}

(1 − ζ{j,k} + ζ{j,k}ei(τj+τk )) for t = (τ1, . . . , τn).

Then for the parallelepiped � = [−π , π ]n, we have

|G(D)| = eH(z)

(2π)n

∫
�

F(t)dt.

Proof. Follows by Theorem 3.1.

We note that in the case of regular and almost regular graphs (see Section 2.3) the integral
of Corollary 3.3 is the same as the one evaluated by McKay and Wormald [18].

3.4. Plan of the Proof of Theorem 1.4

We use the integral representation of Corollary 3.3. Let us define subsets U , W ⊂ � by

U =
{
(τ1, . . . , τn) : |τj| ≤ ln n√

n
for j = 1, . . . , n

}
and

W =
{
(τ1, . . . , τn) :

∣∣τj − σjπ
∣∣ ≤ ln n√

n
for some σj = ±1 and j = 1, . . . , n

}
.

We show that the integral of F(t) over � \ (U ∪ W) is asymptotically negligible. Namely,
in Section 8 we prove that the integral∫

�\(U∪W)

|F(t)|dt

Random Structures and Algorithms DOI 10.1002/rsa
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is asymptotically negligible compared to the integral∫
U

|F(t)|dt. (3.4.1)

It is easy to show that ∫
U

F(t)dt =
∫

W
F(t)dt,

provided d1 + · · · + dn is even.
In Section 7, we evaluate ∫

U
F(t)dt. (3.4.2)

In particular, we show that the integrals (3.4.1) and (3.4.2) have the same order of magnitude
and so the integral of F(t) outside of U ∪ W is indeed asymptotically irrelevant.

From (3.2) one can deduce that asymptotically as n −→ +∞,

F(t) ≈ exp{−q(t) + if (t) + h(t)} for t ∈ U ,

where q is defined by (1.3.1) and f and h are defined by (1.3.2).
Let us consider the Gaussian probability measure in R

n with density proportional to e−q.
In Section 6, we prove that with respect to that measure

h(t) ≈ Eh = ν almost everywhere in U . (3.4.3)

This allows us to conclude that∫
U

exp{−q(t) + if (t) + h(t)}dt ≈ eν

∫
U

exp{−q(t) + if (t)}dt.

In Section 5, we prove that asymptotically, as n −→ +∞, function f is a Gaussian random
variable, so ∫

U
exp{−q(t) + if (t)}dt ≈

∫
Rn

exp{−q(t) + if (t)}dt

≈ exp

{
−1

2
Ef 2

}∫
Rn

e−q(t)dt, (3.4.4)

which concludes the evaluation of (3.4.2).
The crucial consideration used in proving (3.4.3) and (3.4.4) is that with respect to

the Gaussian probability measure in R
n with density proportional to e−q, the coordinate

functions τ1, . . . , τn are weakly correlated, that is,

|Eτjτk| = O

(
1

n2

)
for j �= k and

Eτ 2
j = O

(
1

n

)
for j = 1, . . . , n.

(3.4.5)

We prove (3.4.5) in Section 4, where we essentially use the δ-tameness assumption.
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3.5. Notation

By γ , sometimes with an index or a list of parameters, we denote a positive constant
depending only on the listed parameters. The most common appearance will be γ (δ), a
positive constant depending only on the δ-tameness constant δ.

As usual, for two functions g1 and g2, where g2 is non-negative, we write g1 = O(g2) if
|g1| ≤ γ g2 and g1 = �(g2) if g1 ≥ γ g2 for some γ > 0.

4. CORRELATIONS

Let z = (ζ{j,k}) be the maximum entropy matrix as defined in Section 1.2. We assume that

0 < ζ{j,k} < 1 for all j �= k.

We define the quadratic form q : R
n −→ R by

q(t) = 1

2

∑
{j,k}

(
ζ{j,k} − ζ 2

{j,k}
)
(τj + τk)

2 for t = (τ1, . . . , τn).

For n > 2 the quadratic form q is strictly positive definite. We consider the Gaussian proba-
bility measure on R

n with density proportional to e−q. We consider a point t = (τ1, . . . , τn)

as a random vector and τ1, . . . , τn as random variables.
The main result of this section is as follows.

Theorem 4.1. For any 0 < δ ≤ 1/2 there exists γ (δ) > 0 such that the following holds.
Suppose that

δ ≤ ζ{j,k} ≤ 1 − δ for all j �= k.

Then

∣∣Eτjτk

∣∣ ≤ γ (δ)

n2
provided j �= k and

Eτ 2
j ≤ γ (δ)

n
for j = 1, . . . , n.

We will often consider the following situation. Let ψ : R
n −→ R be a positive definite

quadratic form. We consider the Gaussian probability measure in R
n with density propor-

tional to e−ψ . For a polynomial (random variable) f : R
n −→ R we denote by E(f ; ψ) its

expectation with respect to the measure. For a subspace L ⊂ R
n, we consider the restriction

ψ |L of ψ onto L and the Gaussian probability measure on L with density proportional to
e−ψ |L. For a polynomial f : R

n −→ R, we denote by E(f ; ψ |L) the expectation of the
restriction f : L −→ R with respect to that Gaussian probability measure on L. We will use
the following standard fact: suppose that R

n = L1 ⊕ L2 is a decomposition of R
n into the

direct sum of orthogonal subspaces such that

ψ(t1 + t2) = ψ(t1) + ψ(t2) for all t1 ∈ L1 and t2 ∈ L2,
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so that the coordinates t1 ∈ L1 and t2 ∈ L2 of the point t = t1 + t2, t ∈ R
n are independent.

Let �1, �2 : R
n −→ R be linear functions. Then

E(�1�2; ψ) = E(�1�2; ψ |L1) + E(�1�2; ψ |L2).

Indeed, writing t = t1+t2 with t1 ∈ L1 and t2 ∈ L2 and noting that �1,2(t) = �1,2(t1)+�1,2(t2),
we obtain

E(�1(t)�2(t); ψ) = E(�1(t1)�2(t1); ψ) + E(�1(t1)�2(t2); ψ)

+ E(�1(t2)�2(t1); ψ) + E(�1(t2)�2(t2); ψ)

= E(�1�2; ψ |L1) + 2E(�1; ψ)E(�2; ψ) + E(�1�2; ψ |L2)

= E(�1�2; ψ |L1) + E(�1�2; ψ |L2).

We deduce Theorem 4.1 from the following result.

Proposition 4.2. Let n > 2 and let ξ{j,k}, 1 ≤ j �= k ≤ n be a set of numbers such that

α ≤ ξ{j,k} ≤ β for all j, k

and some β > α > 0.
Let

σk =
∑
j:j �=k

ξ{j,k} for k = 1, . . . , n.

Let us consider the quadratic form ψ : R
n −→ R defined by

ψ(t) = 1

2

∑
{j,k}

ξ{j,k}

(
τj√
σj

+ τk√
σk

)2

for t = (τ1, . . . , τn),

where the sum is taken over all unordered pairs of indices 1 ≤ j �= k ≤ n. Then ψ is a
positive definite quadratic form and we consider the Gaussian probability measure in R

n

with density proportional to e−ψ .
Let

ε = α

β
.

Then for n > 2/ε we have

|Eτjτk| ≤ n2

ε5/2(n − ε)(nε − 2)(n − 1)
+ 3

2εn
provided j �= k and

∣∣Eτ 2
j − 1

∣∣ ≤ n2

ε5/2(n − ε)(nε − 2)(n − 1)
+ 3

2εn
for j = 1, . . . , n.

Proof. Clearly, ψ is positive definite. Let

v = (
√

σ1, . . . ,
√

σn).
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Then v is an eigenvector of ψ with eigenvalue 1. Indeed, the gradient of ψ at t = v is 2v:

∂

∂τj
ψ(t)

∣∣∣∣
t=v

= 1√
σj

∑
k: k �=j

2ξ{j,k} = 2
√

σj for j = 1, . . . , n.

Let

L = v⊥ ⊂ R
n

be the orthogonal complement to v. Hence L is defined in R
n = {(τ1, . . . , τn)} by the equation

n∑
j=1

τj
√

σj = 0.

We write

ψ(t) = 1

2

n∑
j=1

τ 2
j +

∑
{j,k}

ξ{j,k}√
σjσk

τjτk .

We remark that

α(n − 1) ≤ σj ≤ β(n − 1) for j = 1, . . . , n. (4.2.1)

Let

ω =
n∑

j=1

σj ≥ αn(n − 1)

and let us define the quadratic form φ : R
n −→ R by

φ(t) = 1

ω

(
n∑

j=1

τj
√

σj

)2

for t = (τ1, . . . , τn).

Hence φ(t) is a form of rank 1 and v is an eigenvector of φ with eigenvalue 1.
We define a perturbation

ψ̃ = ψ − ε2

2
φ for ε = α

β
.

Hence ψ̃ is a positive definite quadratic form such that

ψ̃(t) = ψ(t) for all t ∈ L,

and v is an eigenvector of ψ̃ with eigenvalue 1 − ε2/2.
Let us consider the Gaussian probability measure on R

n with density proportional to
e−ψ̃ . Our immediate goal is to estimate the covariances Eτjτk with respect to that measure.

Denoting by 〈·, ·〉 the standard scalar product in R
n, we can write

ψ̃(t) = 1

2
〈(I + Q)t, t〉,
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where I is the n × n identity matrix and Q = (qjk) is an n × n symmetric matrix such that v
is an eigenvector of Q with eigenvalue 1 − ε2. We have

qjk = ξ{j,k}√
σjσk

− ε2

√
σjσk

ω
for j �= k and

qjj = −ε2σj

ω
for j = 1, . . . , n.

It follows by (4.2.1) that

1

ε(n − 1)
≥ qjk ≥ 0 for j �= k and

0 ≥ qjj ≥ −ε

n
for j = 1, . . . , n.

The covariance matrix R = (Eτjτk; ψ̃) of the Gaussian measure with density proportional
to e−ψ̃ is

(I + Q)−1 =
((

1 − ε

n

)
I +

(ε

n
I + Q

))−1 =
(

1 − ε

n

)−1
(I + P)−1,

where P =
(

1 − ε

n

)−1 (ε

n
I + Q

)
.

Hence P = (pjk) is a symmetric matrix such that

0 ≤ pjk ≤
(

1 − ε

n

)−1 1

ε(n − 1)
for all j, k. (4.2.2)

Furthermore, v is an eigenvector of P with eigenvalue (1 − ε2 + ε/n)/(1 − ε/n), so

Pv = λv for λ =
(

1 − ε

n

)−1 (
1 − ε2 + ε

n

)
. (4.2.3)

Let us bound the entries of a positive integer power Pd = (p(d)

jk ) of P. Let

κ =
(

1 − α

βn

)−1
β

α3/2(n − 1)3/2
and let y = κv, y = (η1, . . . , ηn).

By (4.2.1) and (4.2.2), we have

pjk ≤ ηj for all j, k. (4.2.4)

Also, by (4.2.1) we have

ηj ≤
(

1 − ε

n

)−1 1

ε3/2(n − 1)
for all j. (4.2.5)

Furthermore, y is an eigenvector of P with eigenvalue λ defined by (4.2.3), and hence y is an
eigenvector of the d-th power Pd = (p(d)

jk ) with eigenvalue λd . Combining this with (4.2.4)
and (4.2.5), for d ≥ 0 we obtain

p(d+1)

jk =
n∑

m=1

p(d)

jm pmk ≤
n∑

m=1

p(d)

jm ηm = λdηj ≤ λd
(

1 − ε

n

)−1 1

ε3/2(n − 1)
.
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We note that for n > 2/ε we have 0 < λ < 1. Consequently, the series

(I + P)−1 = I +
+∞∑
d=1

(−1)dPd

converges absolutely and we can bound the entries of the matrix

R = (I + Q)−1 =
(

1 − ε

n

)−1
(I + P)−1,

R = (rjk) by

|rjk| ≤
(

1 − ε

n

)−2 1

ε3/2(n − 1)

1

1 − λ
if j �= k and

|rjj − 1| ≤
(

1 − ε

n

)−2 1

ε3/2(n − 1)

1

1 − λ
for j = 1, . . . , n.

We have

1

1 − λ
=

(
1 − ε

n

)(
ε2 − 2ε

n

)−1

.

Since R is the covariance matrix of the Gaussian probability measure with density
proportional to e−ψ̃ , we obtain

|E(τjτk; ψ̃)| ≤ n2

ε5/2(n − ε)(nε − 2)(n − 1)
provided j �= k and

∣∣E(
τ 2

j ; ψ̃
) − 1

∣∣ ≤ n2

ε5/2(n − ε)(nε − 2)(n − 1)
for j = 1, . . . , n.

(4.2.6)

Now we go back to the form ψ and the Gaussian probability measure with density
proportional to e−ψ . Since v is an eigenvector of both ψ and ψ̃ , since L = u⊥ and since ψ

and ψ̃ coincide on L, for any linear functions �1, �2 : R
n −→ R, we have

E(�1�2; ψ) = E(�1�2; ψ |L) + E(�1�2; ψ |span(v))

= E(�1�2; ψ̃ |L) + E(�1�2; ψ |span(v))

= E(�1�2; ψ̃) − E(�1�2; ψ̃ |span(v)) + E(�1�2; ψ |span(v)). (4.2.7)

We note that the gradient of the coordinate function τj restricted to span(v) is
√

σj/ω. Since
v is an eigenvector of ψ with eigenvalue 1 and an eigenvector of ψ̃ with eigenvalue 1−ε2/2,
we have

E(τjτk; ψ |span(v)) =
√

σjσk

2ω
and

E(τjτk; ψ̃ |span(v)) =
√

σjσk

(2 − ε2)ω
for all j, k.
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By (4.2.1) we have

|E(τjτk; ψ |span(v))| ≤ 1

2εn
and |E(τjτk; ψ̃ |span(v))| ≤ 1

εn
.

The proof now follows by (4.2.6) and (4.2.7).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let us define

ξ{j,k} = ζ{j,k} − ζ 2
{j,k} for all j �= k

and let us choose α = δ − δ2 and β = 1/4 in Proposition 4.2. We define σj and ψ as in
Proposition 4.2 and consider a linear transformation

(τ1, . . . , τn) �−→ (τ1
√

σ1, . . . , τn
√

σn).

Then the push-forward of the Gaussian probability measure with density proportional to
e−q is the Gaussian probability measure with density proportional to e−ψ . Therefore,

E(τjτk; q) = 1√
σjσk

E(τjτk; ψ).

Since

σj ≥ δα(n − 1) for j = 1, . . . , n,

The proof follows by Proposition 4.2.

We will need the following lemma.

Lemma 4.3. Let q0 : R
n −→ R, n ≥ 2, be the quadratic form defined by the formula

q0(t) = 1

2

∑
{j,k}

(τj + τk)
2 for t = (τ1, . . . , τn).

Then the eigenspaces of q0 are as follows: the 1-dimensional eigenspace E1 with eigenvalue
n−1 spanned by the vector u = (1, . . . , 1) and the (n−1)-dimensional eigenspace E2 = u⊥

with eigenvalue (n − 2)/2.

Proof. We have

∂

∂τk
q(t)

∣∣∣∣
t=u

= 2n − 2.

Hence the gradient of q0(t) at t = u is (2n − 2)u, so u is an eigenvector with eigenvalue
(n − 1). For t ∈ u⊥ we have τ1 + · · · + τn = 0 and hence

∂

∂τk
q(t) =

∑
j: j �=k

(τj + τk) = (n − 2)τk .

Therefore, the gradient of q0(t) at t ∈ u⊥ is (n − 2)t, and so t is an eigenvector with
eigenvalue (n − 2)/2.

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE 319

5. THE THIRD DEGREE TERM

The main result of this section is the following theorem.

Theorem 5.1. For unordered pairs {j, k}, 1 ≤ j �= k ≤ n, let u{j,k} be Gaussian random
variables such that

Eu{j,k} = 0 for all j, k.

Suppose further that for some θ > 0 we have

Eu2
{j,k} ≤ θ

n
for all j, k

and that

|Eu{j1,k1}u{j2,k2}| ≤ θ

n2
provided {j1, k1} ∩ {j2, k2} = ∅.

Let

U =
∑
{j,k}

u3
{j,k}.

Then for some constant γ (θ) > 0 and any 0 < ε < 1/2 we have∣∣∣∣E exp{iU} − exp

{
−1

2
EU2

}∣∣∣∣ ≤ ε

provided

n ≥
(

1

ε

)γ (θ)

.

Furthermore,

EU2 ≤ γ (θ)

for some γ (θ) > 0. Here i = √−1.

We apply Theorem 5.1 in the following situation. Let q : R
n −→ R be the quadratic

form defined by (1.3.1).
Let us consider the Gaussian probability measure on R

n with density proportional to e−q.
We define random variables u{j,k} by

u{j,k}(t) = 3

√
1

6
ζ{j,k}(1 − ζ{j,k})(2ζ{j,k} − 1)(τj + τk) for t = (τ1, . . . , τn).

Then for the function f (t) defined by (1.3.2) we have

f =
∑
{j,k}

u3
{j,k}.

In this section, all implied constants in the “O” notation are absolute.
Our main tool is Wick’s formula for the expectation of the product of random Gaussian

variables.
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5.2. Wick’s Formula

Let w1, . . . , wl be Gaussian random variables such that

Ew1 = . . . = Ewl = 0.

Then

E(w1 · · · wl) = 0 if l is odd and

E(w1 . . . wl) =
∑

(Ewi1 wi2) · · · (Ewil−1wil ) if l = 2r is even,

where the sum is taken over all (2r)!/r!2r unordered partitions of the set of indices {1, . . . , l}
into r = l/2 pairwise disjoint unordered pairs {i1, i2}, . . . , {il−1, il}, see for example, [20].
Such a partition is called a matching of the random variables w1, . . . , wl and we say that wi

and wj are matched if they form a pair in the matching.
In particular,

Ew2r = (2r)!
r!2r

(Ew2)r (5.2.1)

for a centered Gaussian random variable w. We will also use that

Ew3
1w3

2 = 9
(
Ew2

1

)(
Ew2

2

)
(Ew1w2) + 6(Ew1w2)

3 (5.2.2)

and later in Section 6 that

cov
(
w4

1, w4
2

) = E
(
w4

1w4
2

) − (
Ew4

1

)(
Ew4

2

)
= 72(Ew1w2)

2
(
Ew2

1

)(
Ew2

2

) + 24(Ew1w2)
4. (5.2.3)

5.3. Representing Monomials by Graphs

Let x{j,k} : 1 ≤ j �= k ≤ n be formal commuting variables. We interpret a monomial in
x{j,k} as a weighted graph as follows. Let Kn be the complete graph with vertices 1, . . . , n
and edges {j, k} for 1 ≤ j �= k ≤ n. A weighted graph G is a set of edges {j, k} of Kn with
positive integer weights α{j,k} on them. The set of vertices of G consists of all vertices of the
edges of G. With G, we associate a monomial

mG(x) =
∏

{j,k}∈G

x
α{j,k}
{j,k} .

The weight of G is the degree of mG(x), that is,
∑

{j,k}∈G α{j,k}. We observe that for any p
there are not more than rO(r)np distinct weighted graphs G of weight 2r on p vertices.

In what follows, given a set of random variables, we construct auxiliary Gaussian random
variables with the same matrix of covariances. This is always possible since the matrix of
covariances is positive semi-definite.

Our proof of Theorem 5.1 is based on the following combinatorial lemma.

Lemma 5.4. For the Gaussian random variables u{j,k} of Theorem 5.1, let us introduce
auxiliary Gaussian random variables v{j,k} such that

Ev{j,k} = 0 for all 1 ≤ j �= k ≤ n and

Ev{j1,k1}v{j2,k2} = Eu3
{j1,k1}u

3
{j2,k2} for all 1 ≤ j1 �= k1, j2 �= k2 ≤ n.
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Given a weighted graph G of weight 2r, r > 1, let us represent it as a vertex-disjoint union

G = G0 ∪ G1,

where G0 consists of s isolated edges of weight 1 each and G1 is a graph with no isolated
edges of weight 1 (we may have s = 0 and G0 empty).

Then

1. We have

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)∣∣, |EmG(v{j,k} : 1 ≤ j �= k ≤ n)| ≤ rO(r)θ 3r

n3r+s/2

if s is even and

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)∣∣, |EmG(v{j,k} : 1 ≤ j �= k ≤ n)| ≤ rO(r)θ 3r

n3r+(s+1)/2

if s is odd.
2. If s is even and G1 is a vertex-disjoint union of r − s/2 connected components, each

consisting of a pair of edges of weight 1 sharing exactly one common vertex, then

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
) − EmG(v{j,k} : 1 ≤ j �= k ≤ n)

∣∣ ≤ rO(r)θ 3r

n3r+s/2+1
.

3. If s is even and G1 is a vertex-disjoint union of r − s/2 connected components, each
consisting of a pair of edges of weight 1 sharing exactly one common vertex, then G
has precisely 3r + s/2 vertices. In all other cases, G has strictly fewer than 3r + s/2
vertices.

Proof. If {j1, k1} ∩ {j2, k2} = ∅ we say that the pair of variables u{j1,k1}, u{j2,k2} and the pair
of variables v{j1,k1}, v{j2,k2} are weakly correlated. If {j1, k1} ∩ {j2, k2} �= ∅ we say that the
pairs of variables are strongly correlated. Pairs of variables indexed by edges in different
connected components of G are necessarily weakly correlated.

To prove Part (1) we use Wick’s formula of Section 5.2. By (5.2.2), we obtain

E(v{j1,k1}v{j2,k2}) = O

(
θ 3

n4

)
if the pair v{j1,k1}, v{j2,k2} is weakly correlated,

E(v{j1,k1}v{j2,k2}) = O

(
θ 3

n3

)
if the pair v{j1,k1}, v{j2,k2} is strongly correlated.

(5.4.1)

Since for each isolated edge {j1, k1} ∈ G0 variable v{j1,k1} has to be matched with variable
v{j2,k2} indexed by an edge {j2, k2} in a different connected component, we conclude that
every matching of the set

{v{j,k} : {j, k} ∈ G} (5.4.2)

contains at least s/2 weakly correlated pairs and hence

|EmG(v{j,k} : 1 ≤ j �= k ≤ n)| ≤ rO(r)

(
θ 3

n4

)s/2 (
θ 3

n3

)r−s/2

.
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Moreover, if s is odd, then the number of weakly correlated pairs is at least (s + 1)/2 and
hence

|EmG(v{j,k} : 1 ≤ j �= k ≤ n)| ≤ rO(r)

(
θ 3

n4

)(s+1)/2 (
θ 3

n3

)r−(s+1)/2

.

Similarly, since for each isolated edge {j1, k1} ∈ G0 at least one copy of the variable u{j1,k1}
has to be matched with a copy of variable u{j2,k2} indexed by an edge in a different connected
component, we conclude that every matching of the multiset

{u{j,k}, u{j,k}, u{j,k} : {j, k} ∈ G} (5.4.3)

contains at least s/2 weakly correlated pairs, and hence

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)∣∣ ≤ rO(r)

(
θ

n2

)s/2 (
θ

n

)3r−s/2

.

Moreover, if s is odd, then the number of weakly correlated pairs is at least (s + 1)/2 and
hence

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)∣∣ ≤ rO(r)

(
θ

n2

)(s+1)/2 (
θ

n

)3r−(s+1)/2

.

This concludes the proof of Part (1).
To prove Part (2), let us define �v(G) as the sum in the Wick’s formula for EmG(v{j,k} :

1 ≤ j �= k ≤ n) taken over all matchings of the set (5.4.2) of the following structure:
we split the edges of G into r pairs, pairing each isolated edge with another isolated edge
and pairing each edge in a connected component of G consisting of two edges with the
remaining edge in the same connected component. Then we match every variable v{j1,k1}
with the variable v{j2,k2} such that {j1, k1} is paired with {j2, k2}. Reasoning as in the proof of
Part (1), we conclude that

|EmG(v{j,k} : 1 ≤ j �= k ≤ n) − �v(G)| ≤ rO(r)θ 3r

n3r+s/2+1
,

since every matching of the set (5.4.2) which is not included in �v(G) contains at least
s/2 + 1 weakly correlated pairs.

Similarly, let us define �u(G) as the sum in the Wick’s formula for EmG(u3
{j,k} : 1 ≤ j �=

k ≤ n) taken over all matchings of the multiset (5.4.3) of the following structure: we split
the edges of G into r pairs as above and match every copy of variable u{j1,k1} with a copy of
variable u{j2,k2} indexed by an edge in the same pair (in particular, we may match copies of
the same variable). Reasoning as in the proof of Part (1), we conclude that

∣∣EmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
) − �u(G)

∣∣ ≤ rO(r)θ 3r

n3r+s/2+1
,

since every matching of the multiset (5.4.3) which is not included in �u(G) contains at least
s/2 + 1 weakly correlated pairs.

The proof of Part (2) follows since

�u(G) = �v(G)

by Wick’s formula.
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To prove Part (3), we note that a connected weighted graph G of weight e contains a
spanning tree with at most e edges and hence has at most e + 1 vertices. In particular, a
connected graph G of weight e contains fewer than 3e/2 vertices unless G is an isolated
edge of weight 1 or a pair of edges of weight 1 each, sharing one common vertex. Therefore,
G has at most

2s + 3

2
(2r − s) = 3r + s

2

vertices and strictly fewer vertices, unless s is even and the connected components of G1

are pairs of edges of weight 1 each sharing one common vertex.

5.5. Proof of Theorem 5.1

Let v{j,k} be Gaussian random variables defined in Lemma 5.4 and let

V =
∑
{j,k}

v{j,k}.

Since there are O(n3) strongly correlated pairs vj1,k1 , vj2,k2 and there are O(n4) weakly
correlated pairs, by (5.4.1) we have

EV 2 = EU2 = O(θ 3). (5.5.1)

Since V is a Gaussian random variable, we have

EeiV = exp

{
−1

2
EV 2

}
= exp

{
−1

2
EU2

}
. (5.5.2)

Our goal is to show that EeiV and EeiU are asymptotically equal as n −→ +∞.
By symmetry, the odd moments of U and V are 0:

EUk = EV k = 0 if k > 0 is odd. (5.5.3)

The even moments of U and V can be expressed as

EU2r =
∑

G

aGEmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)

EV 2r =
∑

G

aGEmG(v{j,k} : 1 ≤ j �= k ≤ n),

where the sum is taken over all weighted graphs G of weight 2r and

1 ≤ aG ≤ (2r)!.

Let G2r be the set of weighted graphs G of weight 2r whose connected components are an
even number s of isolated edges of weight 1 and r − s/2 pairs of edges of weight 1 sharing
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one common vertex. Since there are no more than rO(r)np distinct weighted graphs of weight
2r with p vertices, by Parts (1) and (3) of Lemma 5.4, we have∣∣∣∣∣∣EU2r −

∑
G∈G2r

aGEmG

(
u3

{j,k} : 1 ≤ j �= k ≤ n
)∣∣∣∣∣∣ ≤ rO(r)θ 3r

n
and

∣∣∣∣∣∣EV 2r −
∑

G∈G2r

aGEmG(v{j,k} : 1 ≤ j �= k ≤ n)

∣∣∣∣∣∣ ≤ rO(r)θ 3r

n
.

Therefore, by Part (2) of Lemma 5.4,

|EU2r − EV 2r| ≤ rO(r)θ 3r

n
. (5.5.4)

From Taylor’s Theorem ∣∣∣∣∣eix −
2r−1∑
s=0

is xs

s!

∣∣∣∣∣ ≤ x2r

(2r)! for x ∈ R,

it follows that

|EeiU − EeiV | ≤ EU2r

(2r)! + EV 2r

(2r)! +
2r−1∑
s=0

|EUs − EV s|
s! .

From (5.5.1) and (5.2.1) we deduce that for a positive integer r we have

EV 2r ≤ (2r)!2O(r)θ 3r

r! .

Therefore, by (5.5.4)

|EeiU − EeiV | ≤ 2O(r)θ 3r

r! + rO(r)θ 3r

n
. (5.5.5)

Given 0 ≤ ε ≤ 1/2, one can choose a positive integer r such that

r ln r = O

(
θ 2 ln

1

ε

)

so that the first term in the right hand side of (5.5.5) does not exceed ε/2. It follows then
that for all

n ≥
(

1

ε

)γ (θ)

we have

|EeiU − EeiV | ≤ ε,

and the proof follows by (5.5.2).
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6. THE FOURTH DEGREE TERM

The main result of this section is the following theorem.

Theorem 6.1. For unordered pairs {j, k}, 1 ≤ j �= k ≤ n, let w{j,k} be Gaussian random
variables such that

Ew{j,k} = 0 for all j, k,

and let σ{j,k} ∈ {−1, 1} be numbers.
Suppose further that for some θ > 0 we have

Ew2
{j,k} ≤ θ

n
for all j, k,

and that

|Ew{j1,k1}w{j2,k2}| ≤ θ

n2
provided {j1, k1} ∩ {j2, k2} = ∅.

Let

W =
∑
{j,k}

σ{j,k}w4
{j,k}.

Then for some constant γ (θ) > 0 we have

(1) E|W | ≤ γ (θ);

(2) varW ≤ γ (θ)

n
;

(3) P{|W | > γ (θ)} ≤ exp{−n1/5}

provided n ≥ γ1(θ) for some constant γ1(θ) > 0.

We apply Theorem 6.1 in the following situation. Let q : R
n −→ R be the quadratic

form defined by (1.3.1). Let us consider the Gaussian probability measure on R
n with

density proportional to e−q. We define random variables w{j,k} by

w{j,k}(t) = 4

√
1

24
ζ{j,k}(1 − ζ{j,k})

∣∣6ζ 2
{j,k} − 6ζ{j,k} + 1

∣∣(τj + τk) for t = (τ1, . . . , τn)

and let

σ{j,k} = sign
(
6ζ 2

{j,k} − 6ζ{j,k} + 1
)
.

Then for the function h defined by (1.3.2), we have

h =
∑
{j,k}

σ{j,k}w4
{j,k}.
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While the proof of Parts (1)–(2) is done by a straightforward computation, to prove
Part (3) we need reverse Hölder inequalities for polynomials with respect to the Gaussian
measure.

Lemma 6.2. Let p be a polynomial of degree d in random Gaussian variables w1, . . . , wl.
Then for r > 2 we have

(E|p|r)1/r ≤ rd/2(Ep2)1/2.

Proof. This is Corollary 5 of [10].

6.3. Proof of Theorem 6.1

All implied constants in the “O” notation below are absolute.
By formula (5.2.1),

Ew4
{j,k} = 3

(
Ew2

{j,k}
)2 = O

(
θ 2

n2

)
and hence

E|W | = O(θ 2)

and Part (1) follows. Furthermore,

varW =
∑
{j1,k1}
{j2,k2}

σ{j1,k1}σ{j2,k2}cov
(
w4

{j1,k1}, w4
{j2,k2}

)
.

By (5.2.3) we have

cov
(
w4

{j1,k1}, w4
{j2,k2}

) = O

(
θ 4

n4

)
and, additionally,

cov
(
w4

{j1,k1}, w4
{j2,k2}

) = O

(
θ 4

n6

)
provided {j1, k1} ∩ {j2, k2} = ∅.

Therefore,

varW = O

(
θ 4

n

)
, (6.3.1)

which proves Part (2).
Finally, applying Lemma 6.2 with d = 4 we deduce from (6.3.1) that for any r > 2

E|W − EW |r ≤ r2rn−r/22O(r)θ 2r .

Choosing r = n1/5, we conclude that for all sufficiently large n ≥ n0(θ) we have

E|W − EW |r ≤ exp{−n1/5}.
By Markov’s inequality, we obtain

P{|W − EW | > 1} ≤ exp{−n1/5}
for all sufficiently large n and the proof follows from Part (1).

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE 327

7. COMPUTING THE INTEGRAL OVER A NEIGHBORHOOD OF THE ORIGIN

We consider the integral ∫
�

F(t)dt

of Corollary 3.3. Hence

F(t) = exp

{
−i

n∑
m=1

dmτm

}∏
{j,k}

(1 − ζ{j,k} + ζ{j,k}ei(τj+τk )) for t = (τ1, . . . , τn),

where D = (d1, . . . , dn) is a given degree sequence, z = (ζ{j,k}) is the maximum entropy
matrix and � is the parallelepiped [−π , π ]n. We recall that the quadratic form q : R

n −→ R

is defined by

q(t) = 1

2

∑
{j,k}

(
ζ{j,k} − ζ 2

{j,k}
)
(τj + τk)

2 for t = (τ1, . . . , τn).

In this section, we prove the following main result.

Theorem 7.1. Let us fix a number 0 < δ ≤ 1/2 and suppose that

δ ≤ ζ{j,k} ≤ 1 − δ for all j �= k.

Let f , h : R
n −→ R be polynomials defined by (1.3.2). Let us define a neighborhood of the

origin U ⊂ � by

U =
{
(τ1, . . . , τn) : |τk| ≤ ln n√

n
for k = 1, . . . , n

}
.

Let

� =
∫

Rn
e−q(t)dt

and let us consider the Gaussian probability measure in R
n with density �−1e−q. Let

μ = Ef 2 and ν = Eh.

Then

(1) � ≥
(

4π

n

)n/2

;

(2) μ, |ν|, E|h| ≤ γ (δ)

for some constant γ (δ) > 0;
(3) For any 0 < ε ≤ 1/2 ∣∣∣∣

∫
U

|F(t)|dt − exp{ν}�
∣∣∣∣ ≤ ε�
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provided

n ≥
(

1

ε

)γ (δ)

for some constant γ (δ) > 0;
(4) For any 0 < ε ≤ 1/2 ∣∣∣∣

∫
U

F(t)dt − exp
{
−μ

2
+ ν

}
�

∣∣∣∣ ≤ ε�

provided

n ≥
(

1

ε

)γ (δ)

for some γ (δ) > 0.

Proof. In what follows, all constants implied in the “O” and “�” notation depend only on
the parameter δ.

Let

q0(t) = 1

2

∑
{j,k}

(τj + τk)
2 for t = (τ1, . . . , τn)

as in Lemma 4.3. Then q(t) ≤ 1
4 q0(t) and hence

∫
Rn

e−qdt ≥
∫

Rn
e− 1

4 q0(t)dt = π n/2

√
4

n − 1

(
8

n − 2

) n−1
2 ≥

(
4π

n

)n/2

,

which proves Part (1).
Let us think of the coordinate functions τj as random variables with respect to the

Gaussian probability measure with density proportional to e−q.
By Theorem 4.1, we have

|Eτjτk| = O

(
1

n2

)
provided j �= k and

Eτ 2
j = O

(
1

n

)
for j = 1, . . . , n.

(7.1.1)

For an unordered pair 1 ≤ j �= k ≤ n, let us define

u{j,k} = 3

√
1

6
ζ{j,k}(1 − ζ{j,k})(2ζ{j,k} − 1)(τj + τk).

Then

f =
∑
{j,k}

u3
{j,k}.
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Similarly, let us define

w{j,k} = 4

√
1

24
ζ{j,k}(1 − ζ{j,k})

∣∣6ζ 2
{j,k} − 6ζ{j,k} + 1

∣∣(τj + τk) and

σ{j,k} = sign
(
6ζ 2

{j,k} − 6ζ{j,k} + 1
)
.

Then

h =
∑
{j,k}

σ{j,k}w4
{j,k}.

By (7.1.1) the random variables u{j,k} satisfy the conditions of Theorem 5.1 and hence the
upper bound for μ = Ef 2 follows by Theorem 5.1. Similarly, by (7.1.1) the random variables
w{j,k} satisfy the conditions of Theorem 6.1 and hence the upper bound for |ν| = Eh and
E|h| follows by Part (1) of Theorem 6.1. This concludes the proof of Part (2) of the theorem.

By Lemma 4.3, eigenvalues of q are �(n) from which it follows that∣∣∣∣
∫

Rn\U
e−q(t)dt

∣∣∣∣ ≤ exp{−�(ln2 n)}�. (7.1.2)

From Theorem 5.1, we have∣∣∣∣
∫

Rn
e−q(t)+if (t)dt − exp

{
−μ

2

}
�

∣∣∣∣ ≤ ε� provided n ≥
(

1

ε

)O(1)

,

which, combined with (7.1.2), results in∣∣∣∣
∫

U
e−q(t)+if (t)dt − exp

{
−μ

2

}
�

∣∣∣∣ ≤ ε� provided n ≥
(

1

ε

)O(1)

. (7.1.3)

By Part (2) of Theorem 6.1 and Chebyshev’s inequality, we have

P{|h − ν| > ε} = O

(
1

ε2n

)
, (7.1.4)

while by Part (3) of Theorem 6.1, we have

P{h > γ (δ)} = O(exp{−n1/5}) (7.1.5)

for some constant γ (δ) > 0. In addition,

|h(t)| = O(ln4 n) for t ∈ U . (7.1.6)

Combining (7.1.4)–(7.1.6) and Part (2) of the theorem, we deduce from (7.1.2) and (7.1.3)
that ∣∣∣∣

∫
U

e−q(t)+h(t)dt − exp{ν}�
∣∣∣∣ ≤ ε�

and∣∣∣∣
∫

U
e−q(t)+if (t)+h(t)dt − exp

{
−μ

2
+ ν

}
�

∣∣∣∣ ≤ ε� provided n ≥
(

1

ε

)O(1)

.

(7.1.7)
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From the Taylor series expansion, cf. (3.2), we obtain

F(t) = exp{−q(t) + if (t) + h(t) + ρ(t)}, where

|ρ(t)| = O

(
ln5 n√

n

)
for t ∈ U .

Therefore, for any ε > 0 we have

||F(t)| − e−q(t)+h(t)| ≤ εe−q(t)+h(t) and

|F(t) − e−q(t)+if (t)+h(t)| ≤ εe−q(t)+h(t) for all t ∈ U provided n ≥
(

1

ε

)O(1)

.

The proof of Parts (3) and (4) now follows from (7.1.7) and Part (2).

8. BOUNDING THE INTEGRAL OUTSIDE OF THE SPECIAL POINTS

We consider the integral representation of Corollary 3.3. Our goal is to show that the integral
of F(t) for t outside of the neighborhood of the special points

(0, . . . , 0) and (±π , . . . , ±π)

is asymptotically negligible.
In this section, we prove the following main result.

Theorem 8.1. Let us fix a number 0 < δ ≤ 1/2 and let D = (d1, . . . , dn) be a δ-tame
degree sequence. Let us define subsets U , W ⊂ � by

U =
{
(τ1, . . . , τn) : |τj| ≤ ln n√

n
for j = 1, . . . , n

}
and

W =
{
(τ1, . . . , τn) : |τj − σjπ | ≤ ln n√

n
for some σj = ±1 and all j = 1, . . . , n

}
.

Then for any κ > 0 ∫
�\(U∪W)

|F(t)|dt ≤ n−κ

∫
U

|F(t)|dt

provided n > γ (δ, κ).

The plan of the proof of Theorem 8.1 is as follows: first, using some combinatorial
arguments we show that for any positive constant ε > 0 the integral is asymptotically
negligible outside of the areas where |τj| ≤ ε for all j or where |τj − σjπ | ≤ ε for some
σj = ±1 and all j. Then we note that |F(t)| is log-concave for t in a neighborhood of the
origin and use a concentration inequality for log-concave measures.

We introduce the following metric ρ.
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8.2. Metric ρ

Let us define a function ρ : R −→ [0, π ] as follows:

ρ(x) = min
k∈Z

|x − 2πk|.

In words: ρ(x) is the distance from x to the nearest integer multiple of 2π . Clearly,

ρ(−x) = ρ(x) and ρ(x + y) ≤ ρ(x) + ρ(y)

for all x, y ∈ R.
We will use that

1 − 1

2
ρ2(x) ≤ cos x ≤ 1 − 1

5
ρ2(x). (8.2.1)

8.3. The Absolute Value of F (t )

Let

α{j,k} = 2ζ{j,k}(1 − ζ{j,k}) for all j �= k.

If D is δ-tame, we have

2δ2 ≤ α{j,k} ≤ 1

2
for all j �= k. (8.3.1)

We have

|F(t)| =
⎛
⎝∏

{j,k}
(1 − α{j,k} + α{j,k} cos(τj + τk))

⎞
⎠1/2

.

For 1 ≤ j �= k ≤ n let us define a function of τ ∈ R,

f{j,k}(τ ) = √
1 − α{j,k} + α{j,k} cos τ ,

so

|F(t)| =
∏
{j,k}

f{j,k}(τj + τk). (8.3.2)

We note that

f{j,k}(0) = 1.

It follows by (8.2.1) and (8.3.1) that for ε > 0

f{j,k}(x) ≤ exp{−γ (δ, ε)}f{j,k}(y) provided ρ(x) ≥ 2ε and ρ(y) ≤ ε (8.3.3)

for some γ (ε, δ) > 0. Furthermore,

d2

dτ 2
ln f{j,k}(τ ) = −α{j,k}(α{j,k} + cos τ − α{j,k} cos τ)

2(1 − α{j,k} + α{j,k} cos τ)2
.
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In particular, by (8.3.1)

d2

dτ 2
ln f{j,k}(τ ) ≤ −δ2

2
for − π

3
≤ τ ≤ π

3

and hence ln f{j,k} is strictly concave on the interval [−π/3, π/3]:

ln f{j,k}(x) + ln f{j,k}(y) − 2 ln f{j,k}

(
x + y

2

)
≤ −δ2

8
|x − y|2 for all x, y ∈ [−π/3, π/3].

(8.3.4)

In what follows, we fix a particular parameter ε > 0. All implied constants in the “O” and
“�” notation below may depend only on the parameters δ and ε. We say that n is sufficiently
large if n ≥ γ (δ, ε) for some constant γ (δ, ε) > 0.

Our first goal is to show that only the points t ∈ � for which the inequality ρ(τj +τk) ≤ ε

holds for an overwhelming majority of pairs {j, k} contribute significantly to the integral of
|F(t)| on �.

Lemma 8.4. For t ∈ �, t = (τ1, . . . , τn), and ε > 0 let us define a set K(t, ε) ⊂ {1, . . . , n}
consisting of the indices k such that

ρ(τj + τk) ≤ ε

for more than n/2 distinct indices j. Let K(t, ε) = {1, . . . , n} \ K(t, ε). Then

1. |F(t)| ≤ exp{−γ (δ)ε2n|K(t, ε)|} for some γ (δ) > 0;

2. ρ(τk1 − τk2) ≤ 2ε for all k1, k2 ∈ K(t, ε);

3. Suppose that |K(t, ε)| > n/2. Then

ρ(τk1 + τk2) ≤ 3ε for all k1, k2 ∈ K(t, ε).

Proof. For every k ∈ K(t, ε) there are at least (n − 2)/2 distinct j �= k for which

ρ(τj + τk) > ε (8.4.1)

and so by (8.2.1) we have

cos(τj + τk) ≤ 1 − 1

5
ε2.

Since there are at least |K(t, ε)|(n − 2)/4 pairs {j, k} for which (8.4.1) holds, the proof of
Part (1) follows from (8.3.2) and (8.3.3).

For any k1, k2 ∈ K there is j ∈ {1, . . . , n} such that

ρ(τj + τk1), ρ(τj + τk2) ≤ ε.

Therefore,

ρ(τk1 − τk2) = ρ(τj + τk1 − τk2 − τj) ≤ ρ(τj + τk1) + ρ(−τj − τk2)

= ρ(τj + τk1) + ρ(τj + τk2) ≤ 2ε

and Part (2) follows.
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Let us choose a k1 ∈ K(t, ε). Since |K(t, ε)| > n/2, there is a j ∈ K(t, ε) such that

ρ(τj + τk1) ≤ ε.

By Part (2), for any k2 ∈ K(t, ε) we have

ρ(τk1 + τk2) = ρ(−τj + τk1 + τj + τk2) ≤ ρ(τj + τk1) + ρ(−τj + τk2)

≤ 3ε

and Part (3) follows.

Corollary 8.5. For an ε > 0 let us define a set V(ε) ⊂ � consisting of the points t ∈ �

such that

K(t, ε) ≤ ln2 n,

where K(t, ε) is defined in Lemma 8.4. Then∫
�\V(ε)

|F(t)|dt ≤ n−n

∫
�

|F(t)|dt

provided n ≥ γ (δ, ε) for some constant γ (δ, ε) > 0.

Proof. By Parts (1)–(3) of Theorem 7.1 we have∫
�

|F(t)|dt ≥ �(n−n/2).

The proof now follows by Part (1) of Lemma 8.4.

Next, we show that only the points t ∈ � such that ρ(τj + τk) ≤ ε for all 1 ≤ j, k ≤ n
contribute substantially to the integral of |F(t)| on �.

Lemma 8.6. For ε > 0 let us define a set X(ε) ⊂ �,

X(ε) = {t ∈ �, t = (τ1, . . . , τn) : ρ(τj + τk) ≤ ε for all j, k}.
Then ∫

�\X(ε)

|F(t)|dt ≤ exp{−γ1(δ, ε)n}
∫

�

|F(t)|dt

for all n ≥ γ2(δ, ε) for some constants γ1(δ, ε), γ2(δ, ε) > 0.

Proof. Let us consider the set V(ε/60) ⊂ � and n large enough so that the conclusion
of Corollary 8.5 holds, that is, the integral of |F(t)| over � \ V(ε/60) is asymptotically
negligible. For a set A ⊂ {1, . . . , n} such that

|A| ≤ ln2 n,

let us define a set PA ⊂ � (we call it a piece) such that

ρ(τj − τk) ≤ ε/30 and ρ(τj + τk) ≤ ε/20 for all j, k ∈ A.
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If n is large enough, by Lemma 8.4 for every t ∈ V(ε/60) we can choose A = K(t, ε), so
we have

V(ε/60) ⊂
⋃

A:|A|≤ln2 n

PA. (8.6.1)

Our next goal is to show that the integral of |F(t)| over PA \ X(ε) is negligible compared to
the integral of |F(t)| over PA.

Let us choose a point t ∈ PA \ X(ε). Thus we have

ρ(τi0 + τj0) > ε for some i0, j0.

Let us choose any k0 ∈ A. Then

ρ(τi0 + τj0) = ρ(τi0 + τj0 + τk0 − τk0) ≤ ρ(τi0 + τk0) + ρ(τj0 − τk0).

Hence we have either

ρ(τi0 + τk0) > ε/2 or ρ(τj0 − τk0) > ε/2.

In the first case, for every k ∈ A we have

ρ(τi0 + τk0) = ρ(τi0 + τk0 + τk − τk) ≤ ρ(τi0 + τk) + ρ(τk0 − τk)

≤ ρ(τi0 + τk) + ε/30,

from which

ρ(τi0 + τk) ≥ ε/2 − ε/30 = 7ε/15.

In the second case, for every k ∈ A, we have

ρ(τj0 − τk0) = ρ(τj0 − τk0 + τk − τk) ≤ ρ(τj0 + τk) + ρ(−τk0 − τk)

= ρ(τj0 + τk) + ρ(τk0 + τk) ≤ ρ(τj0 + τk) + ε/20,

from which

ρ(τj0 + τk) > ε/2 − ε/20 = 9ε/20.

In either case, for any t ∈ PA \ X(ε), t = (τ1, . . . , τn), there exists an index i /∈ A such that

ρ(τi + τk) > 0.45ε for all k ∈ A.

For i /∈ A, we define

QA,i = {t ∈ PA : ρ(τi + τk) > 0.45ε for all k ∈ A}. (8.6.2)

Hence

PA \ X(ε) ⊂
⋃
i∈A

QA,i.
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Given a point t ∈ PA, we obtain another point in PA if we arbitrarily change the coordinate
τi ∈ [−π , π ] for i ∈ A. We obtain a fiber E ⊂ PA if we fix all other coordinates and let
τi ∈ [−π , π ] vary. Geometrically, each fiber E is an interval of length 2π . Let us construct
a set I ⊂ E as follows. We choose an arbitrary k0 ∈ A and let τi vary in such a way
that ρ(τk0 + τi) ≤ 0.05ε. Geometrically, I is an interval of length 0.1ε or a union of two
non-overlapping intervals of total length 0.1ε. Moreover,

ρ(τk + τi) ≤ ρ(τk0 + τi) + ρ(τk − τk0) ≤ 0.05ε + 0.05ε = 0.1ε

for all k ∈ A and all τ ∈ I .
Using (8.3.2) and (8.3.3), we conclude from (8.6.2) that for any t ∈ QA,i ∩ E and for any

s ∈ PA ∩ I we have

|F(t)| ≤ exp{−�(n)}|F(s)|
provided n is large enough. Therefore,∫

E∩QA,i

|F(t)|dt ≤ exp{−�(n)}
∫

E
|F(t)|dt

for all sufficiently large n.
Integrating over all fibers E, we establish that∫

QA,i

|F(t)|dt ≤ exp{−�(n)}
∫

PA

|F(t)|dt

for all sufficiently large n. Since the number of different subsets A ⊂ {1, . . . , n} with
|A| ≤ ln2 n in (8.6.1) does not exceed exp

{
O(ln3 n)

}
, the proof follows.

Next, we prove that only the points in the neighborhood of the origin or the corners of
� contribute significantly to the integral of |F(t)| over �.

Lemma 8.7. For 0 < ε < 1, let X(ε) be the set defined in Lemma 8.6. Let us define
Y(ε), Z(ε) ⊂ � by

Y(ε) = {t ∈ � : t = (τ1, . . . , τn), |τi| ≤ ε/2 for i = 1, . . . , n} and

Z(ε) = {t ∈ � : t = (τ1, . . . , τn), |τi − σiπ | ≤ ε/2 for some σi = ±1

and all i = 1, . . . , n}.
Then

X(ε) = Y(ε) ∪ Z(ε) and Y(ε) ∩ Z(ε) = ∅.

Moreover, ∫
Y(ε)

|F(t)|dt =
∫

Z(ε)

|F(t)|dt.

Proof. Let us pick a point t ∈ X(ε). Then for each k we have ρ(2τk) ≤ ε and hence either

|τk| ≤ ε/2 or |τk − π | ≤ ε/2 or |τk + π | ≤ ε/2.
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Since ρ(τk + τj) ≤ ε for all k, j, we conclude that if |τk| ≤ ε/2 for some k then |τk| ≤ ε/2
for all k. Hence X(ε) ⊂ (Y(ε) ∪ Z(ε)). The inclusion (Z(ε) ∪ Y(ε)) ⊂ X(ε) is obvious.
Since ε < 1, we have Y(ε) ∩ Z(ε) = ∅.

The set Z(ε) is a union of 2n pairwise disjoint corners, where each corner is determined
by a choice of the interval [−π , −π + ε/2] or [π − ε/2, π ] for each coordinate τi. The
transformation

τk �−→
{
τk + π if τk ∈ [−π , −π + ε/2]
τk − π if τk ∈ [π − ε/2, π ]

is a volume-preserving transformation which maps Z(ε) onto X(ε) and does not change the
value of |F(t)|.

Finally, we will use that |F(t)| is strictly log-concave on the set Y(1). For Euclidean
space V with the norm ‖ · ‖, a point x ∈ V and a closed set A ⊂ V we define the distance

dist(x, A) = min
y∈A

‖x − y‖.

We will need the following concentration inequality for strictly log-concave measures.

Theorem 8.8. Let V be Euclidean space with the norm ‖ · ‖, let B ⊂ V be a convex
body and let us consider a probability measure supported on B with density e−u, where
u : B −→ R is a function satisfying

u(x) + u(y) − 2u

(
x + y

2

)
≥ c‖x − y‖2 for all x, y ∈ B

and some constant c > 0.
Let A ⊂ B be a closed subset such that P(A) ≥ 1/2. Then, for r ≥ 0, we have

P{x ∈ B : dist(x, A) ≥ r} ≤ 2e−cr2
.

Proof. See Section 2.2 of [13] and Theorem 8.1 and its proof in [1].

Lemma 8.9. Let Y(1) ⊂ � be the set defined by

Y(1) =
{

t ∈ �, t = (τ1, . . . , τn) : |τi| ≤ 1

2
for i = 1, . . . , n

}
.

Let U ⊂ � be the set

U =
{

t ∈ �, t = (τ1, . . . , τn) : |τi| ≤ ln n√
n

for i = 1, . . . , n

}
.

Then for any κ > 0 we have∫
Y(1)\U

|F(t)|dt ≤ n−κ

∫
Y(1)

|F(t)|dt,

provided n ≥ γ (δ, κ) is big enough.
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Proof. Let us consider the probability measure on Y(1) with density proportional to |F(t)|.
Let us consider a map M : R

n −→ R(n
2), where the coordinates of R(n

2) are indexed by
unordered pairs {j, k} and

M{j,k}(τ1, . . . , τn) = τj + τk .

By Lemma 4.3,

‖M(t)‖2 ≥ (n − 2)‖t‖2 for all t ∈ R
n.

Since from Section 8.3,

ln |F(t)| = 1

2

∑
{j,k}

ln f{j,k}(τj + τk),

it follows by (8.3.4) that for any constant a and

u(t) = − ln |F(t)| + a,

we have

u(t1) + u(t2) − 2u

(
t1 + t2

2

)
≥ γ (δ)n‖t1 − t2‖2 for all t1, t2 ∈ Y(1)

and some constant γ (δ) > 0. We choose a so that e−u is a probability density on Y(1).
We apply Theorem 8.8 with c = γ (δ)n. For k = 1, . . . , n, let A−

k ⊂ Y(1) be the set of
points with τk ≤ 0 and let A+

k ⊂ Y(1) be the set of points with τk ≥ 0. Since both Y(1) and
the probability measure are invariant under the symmetry t �−→ −t, we have

P(A−
k ) = P(A+

k ) = 1

2
for k = 1, . . . , n.

Therefore, by Theorem 8.8, all but a n−κ fraction of all points in Y(1) lie within a distance
of ln n/

√
n from each of the sets A−

k and A+
k , provided n is large enough.

8.10. Proof of Theorem 8.1

For 0 < ε < 1 let us define the set X(ε) as in Lemma 8.6 and the sets Y(ε) and Z(ε) as in
Lemma 8.7. In particular,

U = Y

(
2 ln n√

n

)
and W = Z

(
2 ln n√

n

)
.

By Lemma 8.6, for any κ > 0 we have∫
�\X(1)

|F(t)|dt ≤ n−κ

∫
�

|F(t)|dt

for all sufficiently large n, so that the integral outside of X(1) is asymptotically negligible.
By Lemma 8.7, X(1) = Y(1) ∪ Z(1) with Y(1) ∩ Z(1) = ∅ and∫

Y(1)

|F(t)|dt =
∫

Z(1)

|F(t)|dt and
∫

U
|F(t)|dt =

∫
W

|F(t)|dt. (8.10.1)
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By Lemma 8.9, ∫
Y(1)\U

|F(t)|dt ≤ n−κ

∫
Y(1)

|F(t)|dt

for all sufficiently large n, so that the integral over Y(1)\U is asymptotically negligible. By
(8.10.1), the integral over Z(1)\W is asymptotically negligible. The proof now follows.

9. PROOF OF THEOREM 1.4

By Corollary 3.3, we have the integral representation for the number |G(D)| of graphs:

|G(D)| = eH(z)

(2π)n

∫
�

F(t)dt.

Let us define subsets U , W ⊂ � as in Theorem 8.1. Let us consider the transformation
W −→ U ,

τk �−→

⎧⎪⎪⎨
⎪⎪⎩

τk + π if − π ≤ τk ≤ −π + ln n√
n

τk − π if π − ln n√
n

≤ τk ≤ π

for k = 1, . . . , n.

As in the proof of Lemma 8.7, this is a measure-preserving transformation which maps W
onto U . Since d1 + · · · + dn is even, the transformation does not change the value of F(t)
(if d1 + · · · + dn is odd, the transformation changes the sign of F(t)). Hence∫

U
F(t)dt =

∫
W

F(t)dt. (9.1)

By Theorem 7.1, the integrals of F(t) and |F(t)| over U have the same order of magnitude,
that is, ∫

U
|F(t)|dt ≤ γ (δ)

∣∣∣∣
∫

U
F(t)dt

∣∣∣∣
for some constant γ (δ) > 1. Therefore, from Theorem 8.1, the integral outside of U ∪ W
is asymptotically negligible, so that for any κ > 0 and all sufficiently large n ≥ γ (δ, κ), we
have ∫

�\(U∪W)

|F(t)|dt ≤ n−κ

∣∣∣∣
∫

U
F(t)dt

∣∣∣∣ .

The proof now follows by Parts (2) and (4) of Theorem 7.1, identity (9.1) and the formula

� =
∫

Rn
e−q(t)dt = (2π)n/2

√
det Q

.
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10. PROOF OF THEOREM 1.6

The proof is very similar to that of Theorem 3 of [2], which deals with a similar situation in
the case of bipartite graphs. All implicit constant in the “O” and “�”-notation below may
depend only on the parameter δ > 0.

For pairs 1 ≤ j �= k ≤ n, let x{j,k} be independent Bernoulli random variables such that

P{x{j,k} = 1} = ζ{j,k} and P{x{j,k} = 0} = 1 − ζ{j,k}.

As is implied by Theorem 5 of [3], the probability mass function of the random vector
X = (x{j,k}) is constant on the integer points of P(D) and is equal to e−H(z) at each G ∈ G(D).

Let us define

σS(X) =
∑

{j,k}∈S

x{j,k}.

Then

P{G ∈ G(D) : σS(G) ≤ (1 − ε)σS(z)}
= P{X : σS(X) ≤ (1 − ε)σS(z) and X ∈ G(D)}

P{X : X ∈ G(D)}
and, similarly,

P{G ∈ G(D) : σS(G) ≥ (1 + ε)σS(z)}

=
P
{

X : σS(X) ≥ (1 + ε)σS(z) and X ∈ G(D)}
P{X : X ∈ G(D)}

Applying Theorem 1.4 and Parts (1) and (2) of Theorem 7.1, we get

P{X : X ∈ G(D)} = e−H(z)|G(D)| ≥ n−O(n).

On the other hand, standard large deviation inequalities for sums of bounded independent
random variables (see, for example, Corollary 5.3 of [15]) imply that

P{X : σS(X) ≥ (1 + ε)σS(z)} ≤ exp{−�(n ln2 n)}
and, similarly,

P{X : σS(X) ≤ (1 − ε)σS(z)} ≤ exp{−�(n ln2 n)}
and the proof follows.

11. COUNTING BIPARTITE GRAPHS

Here we list some modifications needed to establish the asymptotic formula (2.5.4). We
adhere to the notation of Section 2.5.
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As in Corollary 3.3, we represent the number 0-1 matrices with row sums R = (r1, . . . , rm)

and column sums C = (c1, . . . , cn) as an integral. Let us define

F(s, t) = exp

{
−i

m∑
j=1

rjσj − i
n∑

k=1

ckτk

} ∏
1≤j≤m
1≤k≤n

(1 − ζjk + ζjkei(σj+τk ))

for (s, t) = (σ1, . . . , σm; τ1, . . . , τn)

and let � ⊂ R
m+n be the parallelepiped

� = {(σ1, . . . , σm; τ1, . . . τn) : −π ≤ σj, τk ≤ π for j = 1, . . . , m; k = 1, . . . , n}.
Let �0 ⊂ � be the facet of � defined by the equation τn = 0.

Since the constraints are not independent (the sum of all row sums is equal to the sum
of all column sums), we can drop one of the constraints and represent the desired number
|R, C| as an integral over �0,

|R, C| = eH(z)

(2π)m+n−1

∫
�0

F(s, t)ds dt,

cf. Section 2 of [4].
Let U ⊂ � be the neighborhood of the origin,

U =
{
(σ1, . . . , σm; τ1, . . . , τn) : |σj|, |τk| ≤ ln n√

n
for j = 1, . . . , m; k = 1, . . . , n

}

and let U0 be the intersection of U with the hyperplane τn = 0. We prove that the integral∫
�0\U0

|F(s, t)|ds dt

is asymptotically negligible relative to the integral∫
U0

|F(s, t)|ds dt. (11.1)

The proof is a modification of that of Theorem 8.1 (note that here we don’t have another
set W ⊂ � contributing large values of |F(s, t)|) and very similar to that of Theorem 7.1
of [4]. A different line of proof can be inferred from [5].

Our next goal is to evaluate asymptotically as m, n −→ +∞ the integral∫
U0

F(s, t)ds dt. (11.2)

In particular, we need to show that (11.2) and (11.1) have about the same order of magnitude.
From (3.2), we can write the expansion

F(s, t) = exp{−q(s, t) + if (s, t) + h(s, t)}(1 + o(1)) for (s, t) ∈ U ,

as m, n −→ +∞, where q, f and h are as defined by formulas (2.5.1) and (2.5.3) respectively.
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We note that q(s, t) is not strictly positive definite, since its kernel is spanned by the vector
u ∈ R

m+n defined by (2.5.2). However, the restriction of q onto any hyperplane L ⊂ R
m+n

which does not contain u is strictly positive definite and allows us to define the Gaussian
probability measure in L with density proportional to e−q. It is easy to prove (see Lemma
3.1 of [4]) that the expectation of any polynomial in the sums σj + τk does not depend on
the choice of L. To evaluate (11.2), we need to show that asymptotically

E exp{if + h} = exp

{
−1

2
Ef 2 + Eh

}
(1 + o(1)),

if we choose the hyperplane L defined by the equation τn = 0. However, since the expectation
on the left hand side does not depend on the choice of the hyperplane L, we can choose L
in such a way that

|Eτjτk|, |Eσjσk| = O

(
1

mn

)
provided j �= k

|Eσjτk| = O

(
1

mn

)
for all j, k and

Eσ 2
j , Eτ 2

k = O

(
1

m + n

)
for all j, k.

(11.3)

As is shown in [4] (see Theorem 3.2 there), to ensure (11.3), one has to choose L defined
by the equation

m∑
j=1

αjσj =
n∑

k=1

βkτk , where

αj =
n∑

k=1

(
ζjk − ζ 2

jk

)
and βk =

m∑
j=1

(
ζjk − ζ 2

jk

)
.

The proof then proceeds as in Theorem 1.4.

12. PROOF OF THEOREM 2.1

In what follows, it is convenient to define the polytope P(D) ⊂ R(n
2) for positive, not

necessarily integer, sequences D = (d1, . . . , dn). Recall that P(D) consists of the vectors
(ξ{j,k}) for 1 ≤ j �= k ≤ n such that∑

j: j �=k

ξ{j,k} = dk for k = 1, . . . , n

and

0 ≤ ξ{j,k} ≤ 1 for 1 ≤ j �= k ≤ n.

We say that P(D) has a non-empty interior if there is a point y ∈ P(D), y = (η{j,k}), such
that

0 < η{j,k} < 1 for all 1 ≤ j �= k ≤ n.
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The following two lemmas are probably known in greater generality, but since we are
unable to provide a precise reference, we prove only the parts we need to obtain Theorem 2.1.

Lemma 12.1. Let D = (d1, . . . , dn) be a sequence of positive rational numbers such that

d1 ≥ . . . ≥ dn

and the Erdős-Gallai conditions

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} for k = 1, . . . , n

are satisfied. Then the polytope P(D) is non-empty.

Proof. Let q be a positive integer such that qdi are even integer for i = 1, . . . , n. Clearly,
P(D) is non-empty if and only if the dilated polytope qP(D) is non-empty. By Theorem
6.3.5 of [6] there exists an n × n symmetric non-negative integer matrix with zero trace,
row/column sums qd1, . . . , qdn and the entries not exceeding q if and only if

k∑
i=1

qdi ≤ qk(k − 1) +
n∑

i=k+1

min{qk, qdi} k = 1, . . . , n.

Hence if the Erdős-Gallai conditions are satisfied, the polytope qP(D) is non-empty, and
hence the polytope P(D) is non-empty.

Next, we prove a sufficient condition for the polytope P(D) to have a non-empty interior.

Lemma 12.2. Let D = (d1, . . . , dn) be a sequence of positive integers such that

d1 ≥ . . . ≥ dn

and the strict Erdős-Gallai conditions

k∑
i=1

di < k(k − 1) +
n∑

i=k+1

min{k, di} for k = 1, . . . , n

are satisfied. Then P(D) has a non-empty interior.

Proof. For a sufficiently small rational ε ≥ 0, let us define

di(ε) = di − (n − 1)ε

1 − 2ε
for i = 1, . . . , n.

Clearly, di(0) = di and

d1(ε) ≥ . . . ≥ dn(ε).

For all sufficiently small ε > 0 we have di(ε) > 0 for i = 1, . . . , n and the Erdős-Gallai
conditions of Lemma 12.1 are satisfied for di(ε). Therefore, by Lemma 12.1, the polytope
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Pε = P(Dε) for D = (
d1(ε), . . . , dn(ε)

)
is non-empty. Let x = (ξ{j,k}), x ∈ Pε , be a point.

Then the point y = (η{j,k}) defined by

η{j,k} = (1 − 2ε)ξ{j,k} + ε for all 1 ≤ j �= k ≤ n

is the desired interior point in P(D).

Next, we prove that our conditions on the minimum and maximum degree ensure that
P(D) has a non-empty interior.

Lemma 12.3. Let us fix real numbers 0 < α < β < 1 such that

β < 2
√

α − α, or, equivalently, (α + β)2 < 4α.

and let D = (d1, . . . , dn) be an integer sequence such that

α <
di

n − 1
< β for i = 1, . . . , n.

Then for

n > max

{
β

α(1 − β)
,

4(β − α)

4α − (α + β)2

}
+ 1

the polytope P(D) has a non-empty interior.

Proof. Without loss of generality, we assume that

d1 ≥ . . . ≥ dn.

Let us show that the strict Erdős-Gallai conditions

k∑
i=1

di < k(k − 1) +
n∑

i=k+1

min{k, di} for k = 1, . . . , n

are satisfied.
We consider three different cases for k.
Suppose that k ≤ α(n − 1). Then

k∑
i=1

di < kβ(n − 1) and min{k, di} = k for all i.

Therefore,

k(k − 1) +
n∑

i=k+1

min{k, di} = k(k − 1) + k(n − k) = k(n − 1)

and the strict Erdős-Gallai conditions are satisfied.
Suppose that k ≥ β(n − 1). Then

k∑
i=1

di < kβ(n − 1) and min{k, di} = di > α(n − 1).
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If k ≥ β(n − 1) + 1 then k(k − 1) ≥ kβ(n − 1) and the strict Erdős-Gallai conditions are
satisfied. If β(n − 1) ≤ k ≤ β(n − 1) + 1 then

k(k − 1) +
n∑

i=k+1

min{k, di} ≥ β(n − 1)(k − 1) + α(n − 1)(n − k)

= βk(n − 1) + (n − 1)(α(n − k) − β)

≥ βk(n − 1) + (n − 1)(α(n − 1)(1 − β) − β)

and the strict Erdős-Gallai conditions are satisfied provided

n ≥ β

α(1 − β)
+ 1.

Finally, suppose that k = γ (n − 1) for some α < γ < β. Then

k∑
i=1

di < kβ(n − 1) = γβ(n − 1)2 and min{k, di} > α(n − 1).

Therefore,

k(k − 1) +
n∑

i=k+1

min{k, di} > γ 2(n − 1)2 − (γ − α)(n − 1) + (1 − γ )α(n − 1)2.

The minimum value of the function

γ �−→ γ 2 + (1 − γ )α − γβ

is attained at γ = (α + β)/2 and equal to

α − (α + β)2

4
> 0

Therefore, the strict Erdős-Gallai conditions are satisfied, provided

n >
4(β − α)

4α − (α + β)2
+ 1.

The proof now follows by Lemma 12.2.

12.4. Proof of Theorem 2.1

By Lemma 12.3, the polytope P(D) contains a point y = (η{j,k}) such that 0 < η{j,k} < 1
for all j, k. First, we show that the maximum entropy matrix z lies in the interior of P(D),
that is, 0 < ζ{j,k} < 1 for all j, k.

We have

∂

∂ξ{j,k}
H(x) = ln

1 − ξ{j,k}
ξ{j,k}

.

We note that the value of the derivative is +∞ at ξ{j,k} = 0 (we consider the right derivative
there), is−∞ at ξ{j,k} = 1 (we consider the left derivative there) and is finite for 0 < ξ{j,k} < 1.
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Therefore, if for the maximum point z and some j �= k we have ζ{j,k} ∈ {0, 1} then for
z̃ = (1 − ε)z + εy for a sufficiently small ε > 0, we have z̃ ∈ P(D) and H(z̃) > H(z),
which is a contradiction.

Since the maximum value of H is attained at an interior point of P(D), the gradient of
H at the maximum point is orthogonal to the affine span of P(D), that is,

ln
1 − ζ{j,k}

ζ{j,k}
= λj + λk ,

or, equivalently,

ζ{j,k} = 1

1 + eλj+λk
for all 1 ≤ j �= k ≤ n (12.4.1)

for some real λ1, . . . , λn. Without loss of generality, we assume that

λ1 ≤ λj ≤ λn for all j. (12.4.2)

From the choice of ε in Theorem 2.1, it follows that

ε ≤ α and β ≤ 2
√

α − ε − α. (12.4.3)

Our next goal is to show that

λn ≤ 2 ln
1

ε
. (12.4.4)

Aiming for a contradiction, suppose that

λn > 2 ln
1

ε
.

Then, necessarily,

λ1 < ln ε

since otherwise by (12.4.1) and (12.4.2) we have

ζ{j,n} = 1

1 + eλj+λn
≤ 1

1 + eλ1+λn
< ε

and

dn =
∑
j: j �=n

ζ{j,n} < ε(n − 1),

which by (12.4.3) contradicts the lower bound for di.
Since λ1 < ln ε and λn > −2 ln ε, we deduce from (12.4.1) that for 1 < j < n we have

ζ{j,n} = 1

1 + eλj+λn
<

1

1 + eλn
< ε provided λj ≥ 0

and (12.4.5)

ζ{1,j} = 1

1 + eλ1+λj
>

1

1 + eλ1
> 1 − ε provided λj ≤ 0.
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Denoting

τ = ζ{1,n} = 1

1 + eλ1+λn
< 1,

by (12.4.1) and (12.4.2) we obtain that for 1 < j < n we have

ζ{1,j} = 1

1 + eλ1+λj
≥ 1

1 + eλ1+λn
= τ

and (12.4.6)

ζ{j,n} = 1

1 + eλj+λn
≤ 1

1 + eλ1+λn
= τ .

Let

|{1 ≤ j < n : λj ≤ 0}| = γ (n − 1) for some 0 ≤ γ ≤ 1.

Combining (12.4.5) and (12.4.6), we obtain

β(n − 1) > d1 =
∑
j: j �=1

ζ{1,j} =
∑

j �=1: λj≤0

ζ{1,j} +
∑

j �=1: λj>0

ζ{1,j}

> (1 − ε)γ (n − 1) + (n − 1)(1 − γ )τ

and

α(n − 1) < dn =
∑
j: j �=n

ζ{j,n} =
∑

j �=n: λj>0

ζ{j,n} +
∑

j �=n: λj≤0

ζ{j,n}

≤ ε(1 − γ )(n − 1) + (n − 1)γ τ .

Consequently,

β > (1 − ε)γ + (1 − γ )τ and α < ε(1 − γ ) + γ τ .

Therefore,

β + ε > γ + (1 − γ )τ and α − ε < γ τ .

Since the function 2
√

x − x is increasing for 0 < x < 1, from (12.4.3) it follows that

γ + (1 − γ )τ < 2
√

γ τ − γ τ ,

or, equivalently,

γ + τ

2
<

√
γ τ ,

which is a contradiction.
The contradiction shows that (12.4.4) indeed holds. Then, by (12.4.2), we have

λj ≤ 2 ln
1

ε
for j = 1, . . . , n.
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We claim now that

λ1 ≥ 3 ln ε. (12.4.7)

Indeed, if λ1 < 3 ln ε then by (12.4.1)

ζ{1,j} = 1

1 + eλ1+λj
>

1

1 + ε
> 1 − ε for j = 1, . . . , n − 1

and

β(n − 1) > d1 =
∑
j: j �=n

ζ{1,j} > (n − 1)(1 − ε),

which contradicts (12.4.3).
Summarizing, from (12.4.4) and (12.4.7), we obtain

ε4

1 + ε4
≤ 1

1 + e2λn
≤ ζ{j,k} ≤ 1

1 + e2λ1
≤ 1

1 + ε6
for all j �= k,

which completes the proof.
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