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Adverse Drug Reactions and Avalanches:
Life at the Edge of Chaos

Daniel A. C. Frattarelli, MD

Although many reports have described the incidence of ad-
verse drug reactions, none have explained their variable se-
verity or why they happen. Because human physiology shares
many of the features of other complex adaptive systems, reac-
tions to drug therapy were examined mathematically for spe-
cific patterns to show (1) that the severity of adverse drug re-
actions follows a distribution seen in other complex adaptive
systems, called a power law distribution, and (2) that prevent-
able reactions occurred for reasons fundamentally different
from those that underlie the nonpreventable reactions. Two
reports detailing adverse drug reaction incidence and sever-
ity were evaluated: a meta-analysis of prospective adverse
drug reaction studies and a prospective cohort study. Inci-
dence of drug reaction was plotted as a function of severity
and fit to an equation. The incidences of overall and
nonpreventable drug reaction, plotted as a function of sever-
ity, followed a similar power law distribution regardless of

sample size or the nature of the population or drugs studied.
An exception to this was the preventable reactions, which
were described by a different type of equation. Response to
pharmacotherapy exhibits many properties of systems with
self-organized criticality. An exception to this is the prevent-
able reactions, which seem to be fundamentally different
from the nonpreventable ones. These observations suggest
that the presence and the distribution of severity of reaction
to pharmacotherapy is a consequence of our adaptation as
biological systems, and although adverse reactions can be
made less frequent, a certain percentage will not be
preventable.
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dverse drug reactions (ADRs) are a significant con-
ern, with considerable attendant morbidity and
mortality."” Although several reports have described
the incidence of these reactions, there has not been any
satisfactory explanation offered as to the distribution of
the variable severity of these reactions (eg, why are
milder reactions more frequent than fatal ones?) or
even to explain why they happen at all.

Many complex systems have been studied in terms
of their response to perturbation. These systems have
many features that are similar to those that describe hu-
man physiology: they are adaptable, maintain a state of
dynamic nonequilibrium, consist of many diverse
agents acting together in a network, and exhibit a pat-
tern of behavior that emerges from and is greater than
the sum of its parts. Well-studied examples of this phe-
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nomenon exist in physics and in the political and
economic sciences.’

Because human physiology shares many of the same
features of other systems that have benefited from such
analysis, the patterns of reaction to drug therapy were
examined. Response to pharmacotherapy was chosen
because it is the closest approximation of the sort of
systematic perturbation of a complex system that we
have in regular medical practice. As the methods of
identifying patterns associated with these systems
work best with larger numbers of data points, 2 large re-
ports detailing the incidence and severity of ADR were
examined.

Two hypotheses were tested. The first was that the
severity of ADR follows a mathematical distribution
seen in other complex adaptive systems, called a
power law distribution (so named because the equa-
tion that describes these processes shows the depend-
ant variable to change as a function of the independent
variable raised to a fixed power, such as y = x*).” The
second hypothesis tested was that those reactions that
are preventable (such as ordering the wrong medica-
tion or giving the wrong dose) occurred in a pattern that
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was fundamentally different from those that accounted
for the nonpreventable reactions, as those preventable
reactions were not the result of an emergent process of
a complex adaptive system.

METHODS

To test the first hypothesis that ADRs were described
by a power law equation, the meta-analysis by Lazarou
et al® was analyzed, in which prospective studies of
ADR from 1966 to 1996 were examined. Only those
studies of ADRs that occurred among patients already
in the hospital were used, to afford a clear idea of how
many patients had a normal reaction to the drug. To al-
low greater discrimination between the different cate-
gories of reaction, only data from those studies that
classified reaction severity as no ADR, nonserious, se-
rious, and fatal reaction were used for the analyses per-
formed in this article. Eight reports met these criteria
and were included for analysis.

The data presented in the Lazarou et al® paper were
given in terms of percentages. To obtain the incidence
of each type of reaction, these percentages were multi-
plied by the study size to generate the incidence of each
type of reaction in each of the reports studied. Once in-
cidences were obtained, they were summed for each
category to give the overall incidences of each type of
reaction in these 8 studies.

Summed data from the 8 papers presented in
Lazarou et al® were plotted on a log-log graph. Log inci-
dence was plotted on the y-axis as a function of log se-
verity, which increases along the x-axis. A log-log
graph was used to allow easier identification of power
law distribution of data (which appear as straight lines
on such a graph). A best-fit trend line was generated for
the data set by selecting the type of equation that best
described the data and solving for its parameters by
minimizing the sum of squares between the observed
data and those predicted by the equation, and an R
value was calculated. This equation was then used to
compare the observed data with those predicted by the
derived equation, and a Pearson’s correlation
coefficient was calculated.

Data from each of the studies cited by Lazarou et al®
were then plotted individually in a similar manner and
fit to power law equations as described above.*"® These
were plotted together on the same graph to allow com-
parison between the characteristics of each study and
the summed data.

To compare the characteristics of this process in in-
patients and outpatients, the data presented by
Gurwitz et al,"” which prospectively analyzed a cohort
of elderly outpatients for ADR, were examined. Here,
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the categories of severity used were no reaction, signifi-
cant, serious, life threatening, and fatal. Otherwise,
these data were plotted and fit to equations as above.

To test the second hypothesis that those ADRs that
are preventable are fundamentally different from those
that are not, the Gurwitz et al'” paper was again ana-
lyzed. Data in this report were subclassified as to
whether or not they were preventable. Incidences of
preventable and nonpreventable reactions were plot-
ted on a log-log axis as above and were also fit to equa-
tions in the same manner.

RESULTS

Reaction Severity Follows a
Power Law Distribution

Summed data (n = 19 682) from the 8 papers presented
in Lazarou et al® meeting criteria for this study report
were plotted (Figure 1a). A power law equation was fit
to these data, and the slope derived was equal to —4.02.
The equation fit the observed data with an R* value of
0.95 and a Pearson’s correlation coefficient of 0.995
(P<.01).

This Power Law Distribution Persists
Regardless of the Sample Size or Nature
of the Population Studied

Data from each of the studies cited by Lazarou et al®
were plotted individually, fit to power law equations as
described above, and plotted together on the same
graph to allow comparison between the characteristics
of each of the studies and the summed data (Figure 1b
and Table I). The sample sizes used ranged from 379 to
11 526 and included both pediatric and adult patients
from a variety of inpatient clinical settings. All data
sets fit well with a power law equation. The R* values
ranged from 0.85 to 0.9999, with a mean of 0.95 and a
standard deviation of 0.050. Pearson’s correlation coef-
ficients of observed data to those predicted by the equa-
tions ranged from 0.982 to 1, with a mean value of
0.997, a standard deviation of 0.006, and P values of
<.001 to .034. As can be seen graphically, the slopes ob-
tained from these equations were all very similar, with
a mean of —4.03 and a standard deviation of 0.36.

This Power Law Distribution Persists for
Outpatients and Inpatients

The outpatient data from the Gurwitz et al'” paper were
plotted as above (Figure 2a). Axes are the same as those
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Figure 1. Data from Lazarou et al.® (a) The sum of all reactions to
medication categorized as follows. The incidence of a given reaction
to medication is plotted as a function of its severily on a log-log axis
(1 = noreaction, 2 = nonserious reaction, 3 = serious reaction, and 4 =
fatal reaction). A trend line fit to these data is shown, along with its
equation and fit. (b) The incidence of drug reaction was scale invari-
ant and followed a similar power law distribution, regardless of sam-
ple size or the nature of the population studied. Summed data from
the meta-analysis (bold) are plotted with the data from the individual
studies (dashed).

used for the Lazarou et al® data and those of the reports
that contributed to it, with the exception that there
were 5 categories of reaction in this analysis as com-
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TableI The Slopes of Each Curve from the Individ-
ual Data Plotted in Figure 1

Report n Slope  Pearson P

Bates et al® 379  —4.35 1 <.001
Bates et al® 4031 —4.70 1 <.001
Bates et al'! 420  -3.82 0.999 <.034
Miller*? 11526 —3.90 0.982 <.018
McKenzie et al*? 658  —3.91 1999  <.001
Gardner and Watson™ 939 -3.36 1 <.001
Seidl et al®® 714 —4.03 0.997 <.003
Schimmel*® 1014  —-4.07 0.999 <.001
Summed 19682 —4.02 0.995 <.005

The slopes of each curve from the individual data plotted in Figure 1 were
essentially identical. The fit of the power law model to the data presented
in Lazarou et al’s paper® was excellent across studies, with a mean
Pearson’s correlation of 0.995 (P < .005).

pared with 4 in the former. The equation for the total re-
action rate also fit well to a power law equation (R* =
0.95, Pearson’s correlation coefficient of 1, P < .001)
and gave a slope of —4.04, essentially identical to the
slope of the summed reactions in Lazarou et al (which
was —4.02).

Preventable Adverse Drug Reactions
Do Not Follow a Power Law Distribution

A difference was noted when comparing the prevent-
able with the nonpreventable reactions. The data on
those reactions thought to be nonpreventable fit a
power law equation well (R* = 0.90, Pearson’s correla-
tion coefficient of 0.977, P = .023) but with a greater
negative slope of —5.04. The fit of the preventable data
to a power law equation was poor (R* = 0.68, Pearson’s
correlation = 0.64, P = .36), showing that preventable
reactions do not follow a power law distribution. These
data were then plotted on a nonlogarithmic graph and
were found to fit well to a linear model, with an R* =
0.93, Pearson’s correlation of 0.963, and P = .034
(Figure 2b).

DISCUSSION

In physics, criticality is defined as a point at which the
behavior of the system changes radically. This position
has also been called “the edge of chaos.”*® A good ex-
ample of this is a phase transition between solid and
liquid, where a small change in the system (in this ex-
ample, the addition of heat) radically alters the state
and behavior of the system: add a little heat to ice at
32°F and it changes to water; add the same amount of
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Figure 2. Data from Gurwitz et al.”” (a) Log severily of reaction is
plotted against its log incidence as in Figure 1. The triangles and
solid line represent the overall reaction rate, and the squares and
dashed line represent nonpreventable reactions. The fit of the overall
and nonpreventable reactions to the power law equation is good
(Pearson’s correlation of 1, P < .001 and .997, P = .023, respectively).
(b) Preventable reactions. Axes are no longer on a log scale. The pre-
ventable reactions fit a linear model very well on Cartesian axes
(Pearson’s of 0.963, P = .034).

heat to water at 33°F and all you get is water that is a lit-
tle bit warmer. This location at the edge of chaos affords
the system many advantages. Those systems that are
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too ordered will function well within a fairly limited
range of environmental states or stimuli, but perturba-
tions outside of this narrow confine will push the sys-
tem beyond its adaptive ability to maintain homeosta-
sis, and the system will fail. At the other extreme are
those systems that are too chaotic to maintain the sort
of dynamic nonequilibrium that is characteristic of liv-
ing systems. Order provides memory, fluidity provides
the ability to adapt to new situations, and adaptation to
the edge of chaos allows the system as much flexibility
as possible for handling new situations while still
being able to pay the bills and maintain homeostasis.

The suspicion in conducting the research for this
study was that we might have a similar sort of self-
organized criticality that would be evidenced by ex-
amining the way in which people respond to the per-
turbation of taking a medication. Systems at the edge
of criticality are identified by a power law distribution
of their behavior when the incidence of the reaction to
the perturbation in question is plotted as a function of
its severity.” This was the rationale for the investiga-
tions presented here. By showing that response to med-
ication follows a power law distribution similar to
other systems, it was hoped that this would provide
some evidence to support the idea of self-organized
criticality in pharmacotherapy and, in doing so, pro-
vide some explanation (albeit theoretical) for some of
the variability we see in response to drugs.

The results presented here show that human re-
sponses to medication, ranging from salubrious to fatal,
follow such a power law distribution, and therefore
suggest that we have adapted to the edge of chaos in
terms of our response to medications. There also ap-
pears to be some similarity in the distribution of these
reactions, as all the data that included preventable and
nonpreventable ADRs had very similar slopes, despite
tremendous heterogeneity in the patient populations
and the drugs used in them. This suggests that there is
some common process at work in all the studied
subjects.

This extrapolation of a linear relationship between
categorical data (the rank of reaction severity) and con-
tinuous data (the incidence of reactions of that sever-
ity) may give the critical reader pause, but this ap-
proach has been successfully employed by many
diverse disciplines. One of the best known of these is
Zipf’s law. George Zipf was a linguist who made the ob-
servation that for a given work of literature (in his ini-
tial report, he used James Joyce’s Ulysses), the inci-
dence of a given word was inversely proportional to its
ranked frequency.”® When the words’ incidences are
plotted as a function of their ranked frequency on log-
log axes, the familiar straight line of the power law ap-
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pears. Similar examples can be seen in the population
of US cities,” the number of visits to Web pages,** and
many others.”

So what does all this have to do with avalanches?
The distribution of avalanches produced by a sand pile
is a prime model of self-organized criticality." In an ex-
periment not too dissimilar to those we all performed
as children, a pile of sand is allowed to form by drop-
ping sand from a location centered above a table at a
fixed rate. Over time, the pile will begin to increase in
size until it arrives at a critical slope. The sand pile ar-
rives at this critical slope independently, and the resul-
tant criticality is therefore referred to as self-organized.
Atthis point, addition of further sand to the system will
cause avalanches to form. These avalanches vary in
size and frequency, with a lot of smaller ones and a few
very large ones. When the incidence of each avalanche
is plotted as a function of its size on a log-log graph, a
straight line emerges, and it becomes apparent that
they are described by a power law equation as well, just
as we have seen for total and nonpreventable ADRs.
Both systems, human and sand pile, show evidence of
adaptation to the edge of chaos.

Another interesting feature of these observations
on the response to medication, and one that further
supports the idea that they are evidence of some de-
gree of self-organized criticality, is that they exhibit
scale invariance. Scale invariance (also known as self-
similarity) refers to the idea that the systems will ap-
pear similar at different scales: use a bigger table for the
sand pile, and there will be some bigger avalanches,
but there will still be a lot more small ones, and the
slope of the pile and the distribution of the avalanches
will be the same as for a smaller table.” The sample
sizes analyzed here ranged from 379 to 27 617, almost 2
orders of magnitude, but the distribution of response
within each population and in the summed popula-
tions remained nearly identical, as evidenced by the
very similar slopes of the equation’s fit to each study’s
data. This scale invariance, in addition to the power
law distribution of the reaction types, also supports the
role of self-organized criticality in human response to
medication.

A significant and interesting exception to this self-
organized criticality is seen in the data provided by
Gurwitz et al"” on medication reactions that were pre-
ventable. As seen in Figure 2b, those ADRs classified as
preventable followed a linear model, not a power law
one. This difference in distribution supports the idea
that preventable medication errors are fundamentally
different from those that are not.

This observation also suggests that preventable
ADREs are just that: they can be prevented. The slope of
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a linear equation will eventually intercept the x-axis,
meaning that the incidence of a given reaction will be
zero. In contrast, those processes that are described by a
power law never reach zero. They will approach it, but
they always retain a nonzero value. Because ADRs—
specifically, nonpreventable ADRs—seem to be de-
scribed by such a law, this observation suggests that
they ultimately cannot be prevented. They can proba-
bly be made less frequent, but their inevitability in
some portion of our population taking medications
will always remain. This susceptibility is a direct
consequence of our adaptation to the edge of chaos.

But these observations are not all so pessimistic.
Look at the data presented in Figure 2a and compare
the slopes for the total reactions and those that were
nonpreventable. By removing the preventable errors,
the line describing the reactions becomes steeper and,
in doing so, increases the percentage of milder reac-
tions relative to the more severe ones. In the overall
data presented by Gurwitz et al,'” there was 1 fatal reac-
tion for every 86 significant ones (the mildest category
defined). In the nonpreventable group, there was 1 fatal
reaction for every 128 significant ones, whereas in the
preventable group, the ratio was 1 to 35. This supports
the benefits to be gained by the ongoing efforts of physi-
cians and institutions to decrease ADRs, as these pre-
ventable reactions seem to be disproportionately more
severe than those that are not preventable.

This article has several potential limitations. One of
the greatest of these is the nature of the data from which
it draws. Although Lazarou et al® have done a rigorous
job of conducting their meta-analysis, there are still in-
herent problems in such a report. Some problems are
introduced by having many investigators defining and
classifying ADRs in very heterogeneous populations.
The small number and subjective nature of the classifi-
cations of ADR used, employing such vague terms as
mild or serious, introduces an element of imprecision
and variability into both the definition of the ADRs and
the assessment of their severity. Efforts to more pre-
cisely and quantitatively categorize ADR would be
beneficial both to patient care and to future studies in
this area.

Another factor that certainly figures into the ob-
served pattern of ADR, and one that was not addressed
in this study, is the regulatory process through which
new drugs are introduced into and approved for hu-
man use. The progress of a drug through this process is
largely informed by the characteristics of the biologic
systems that it encounters during its evaluation. Thus,
the regulatory process imposes certain restrictions on
the frequencies and degrees of reaction seen in the
drugs that reach the market and therefore may, to some
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degree, be a factor in the observed patterns of ADR.
However, the magnitude of this factor relative to the ef-
fect of the characteristics of our adaptation is unclear
and remains to be answered by future studies.

Many of the ideas suggested in this article are also
largely speculative. Although the data presented here
demonstrate the power law distribution of drug reac-
tions and their scale invariance, they can only suggest
that they are the result of self-organized criticality and
cannot robustly prove it. Still, these sorts of observa-
tions gained from the perturbation of systems are the
best and only methods we have at this time to identify
those with self-organized criticality.

CONCLUSION

This article provides some explanation for the distribu-
tion of response to pharmacotherapy. This model, if
correct, suggests a mechanism that explains the exis-
tence of ADRs. In doing so, it also explains the observa-
tion of many investigators and clinicians that milder
drugreactions are more frequent than fatal ones. Last, it
predicts that ADRs are an inevitable outcome in some
percentage of the population who takes medications,
while supporting ongoing efforts to reduce their fre-
quency. More broadly, this model gives a glimpse into
the nature of the organization that keeps us alive and
gives us the ability to adapt to a wide array of new
situations.
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