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W e consider the allocation of limited production capacity among several competing agents through auctions. Our
focus is on the contribution of flexibility in market good design to effective capacity allocation. The application

studied is a capacity allocation problem involving several agents, each with a job, and a facility owner. Each agent gener-
ates revenue by purchasing capacity and scheduling its job at the facility. Ascending auctions with various market good
designs are compared. We introduce a new market good that provides greater flexibility than those previously considered
in the literature. We allow ask prices to depend both on agents’ utility functions and on the number of bids at the previ-
ous round of the auction, in order to model and resolve resource conflicts. We develop both optimal and heuristic solu-
tion procedures for the winner determination problem. Our computational study shows that flexibility in market good
design typically increases system value within auctions. A further increase is achieved if each agent is allowed to bid for
multiple market goods at each round. On average, the multiple flexible market goods auction provides over 95% of the
system value found by centralized planning.
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1. Introduction

We consider a capacity allocation problem involving
several competing agents, each with a job, and a facil-
ity owner. Each agent generates revenue by purchas-
ing production capacity and scheduling its job at the
facility. However, the facility can process only one job
at a time. Each agent maximizes its profit, that is, its
revenue less its cost of purchasing the capacity and
scheduling the job. The facility owner maximizes its
revenue from selling its capacity and holding any
unsold capacity at its reserve value. The facility owner
allocates its limited capacity among the agents
through the use of auctions. Our focus is on the
design of an auction that allocates capacity effectively
in this problem.
An important component in auction design is the

choice of the market good. We discuss the importance
of flexibility in market good design within auctions for
resource allocation. By introducing a new market
good that provides more flexibility than traditional
market goods, we evaluate the extent to which
increased market good flexibility enables auctions to
gather information from bidders more completely
and more efficiently. We show that the bidding pro-
cess typically converges to a solution that is closer in
value to that of an optimal centralized planning solu-
tion, and also does so faster, compared to a similar

process with traditional market goods. Moreover,
market good flexibility is a very general concept that
can be applied to a wide variety of auctions for
resource allocation.
The use of flexibility is familiar in revenue man-

agement (Talluri and van Ryzin 2004), where a busi-
ness class airline seat can substitute for a coach class
seat. However, our work is apparently among the
first to apply it to auctions for resource allocation.
Market good flexibility can improve the perfor-
mance of auctions in various scheduling applica-
tions, such as the allocation of network television
commercial time among advertisers (Reddy et al.
1998), and the allocation of airport gates for depar-
ture and arrival among airlines (Ball et al. 2006,
Rassenti 1982). Here, flexibility is defined with
respect to time. However, in an auction for telecom-
munications rights (Arbib et al. 2004), flexibility can
be defined with respect to bandwidth. Also, in an
auction for siting noxious facilities (Kunreuther and
Kleindorfer 1986) or for distribution rights (Finan-
cialexpress 2007), flexibility can be defined with
respect to physical location. Further, in an auction for
investment opportunities, flexibility can be defined
with respect to the number and price of shares (Derrien
and Womack 2003).
A second contribution of our study is an evaluation

of the effectiveness of adaptive ask pricingwithin auctions
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for resource allocation. Here, the ask price depends
on the number of bids received at the previous round.
Consequently, if the ask price of a market good is
defined too high, fewer bids are received and its ask
price declines. Adaptive ask pricing is designed to
resolve resource conflicts among the agents. Kutano-
glu and Wu (1999) define the ask price of each time
slot in proportion to the excess number of bids above
one at an auction round. However, such ask prices
are not ascending and are difficult to implement for
auctions with competing agents. Our work is appar-
ently the first to apply adaptive ask pricing to ascend-
ing auctions for resource allocation. Potential
applications of adaptive ask pricing include auctions
for distributed Web services (Huang et al. 2005) and
for downlink resources in a deep space network
(NASA 2008).
Brucker (1998) and Pinedo (2012) discuss many cen-

tralized scheduling problems and procedures for
solving them. Curiel et al. (1989, 1994, 2002) study
cooperative decentralized sequencing games, where
the cost saving of an agent relative to a given schedule
is used to compensate other agents through side pay-
ments. Agnetis et al. (2004, 2007), Cheng et al. (2006),
and Kubzin and Strusevich (2006) study cooperative
multiple agent scheduling problems. They develop
algorithms to find Pareto optimal schedules. How-
ever, where agents have competing interests, they
may not communicate their information fully (Clear-
water 1996), which makes centralized planning
unreliable. An alternative approach to auctions is a
direct revelation mechanism (DRM), which solicits all
relevant information from the agents (Varian and Mac-
Kie-Mason 1994, Wellman et al. 2001). However, auc-
tions provide several advantages over DRMs
(Krishna 2002). First, they are universal, that is, they
can be used to allocate any resource without knowing
any details about how the resource is used by the
agents. Second, they are anonymous, whereas pay-
ments defined by DRMs may depend on the identities
of the bidders. Also, for scheduling problems, DRMs
may not be budget balanced (Wellman et al. 2001).
Finally, many DRMs require the solution of an intrac-
table combinatorial problem. These reasons motivate
our use of auctions.
In general, auction-based methods provide several

advantages over simple capacity allocation rules such
as first-come-first-serve (Wellman et al. 2001). Auc-
tions are naturally decentralized and require commu-
nication only about bids and prices. Also, auctions
can be designed to achieve Pareto or global optimality
in various situations. When used as a decentralized
optimization mechanism, an auction can sometimes
find better solutions than centralized heuristics (Pinedo
2012). Bidders behave in an automated way and the
auction is essentially a heuristic to solve a centralized

problem (Dewan and Joshi 2002, Geng et al. 2006,
Kutanoglu and Wu 1999).
Reviews of the multi-agent scheduling literature

are provided by Shen et al. (2006) and Agnetis et al.
(2008). Market-based mechanisms for decentralized
scheduling are applied to time-shared computer sys-
tems (Sutherland 1968), airport gate allocation (Ball
et al. 2006, Rassenti 1982), railroad track allocation
(Brewer and Plott 1996), and multimedia services
integration (Arbib et al. 2004). Shaw (1987, 1988) pro-
poses a distributed scheduling method for intelligent
manufacturing. Kutanoglu and Wu (1999), Dewan
and Joshi (2002), and Geng et al. (2006) study job
scheduling problems, using combinatorial auctions of
time slots. Wellman et al. (2001) and Reeves et al.
(2005) consider market-based scheduling mechanisms
that allocate capacity over time, based on the bids of
agents. Davidsson et al. (2005) provide an analysis of
agent-based approaches to transport logistics. Karabati
(2010) designs an auction mechanism for the pric-
ing and capacity allocation decisions of a supplier
that supplies multiple buyers with bundles of
products.
Because of their characteristics of multiple market

goods and complementarities between them, the
applications that are most similar to the one we
consider are the auctions of telecommunications
spectrum held in the United States and Canada
(Federal Communications Commission 1998, Indus-
try Canada 2007). These are ascending auctions with
multiple rounds. A major advantage of multiple
round auctions is the information that they provide
to bidding agents about the value other agents place
on licenses. For example, the FCC’s 700-MHz auc-
tion, Auction 73, reached closure in March 2008
after 261 rounds (Computech 2011). An alternative
type of auction that can be used for scheduling
applications is a sealed bid auction. A sealed bid
auction can be useful for some applications, for
example if a quick allocation is required, as in some
auctions for content-based Internet advertising space
(Google Display Network 2011). However, there are
several reasons why a sealed bid auction would not
be effective in the competitive resource allocation
environment we are considering. First, they suffer
from a lack of transparency. That is, unsuccessful
bidding agents cannot observe the process under
which they lost. Second, sealed bid auctions typi-
cally generate less revenue than ascending auctions
(Cramton 1998), hence the facility owner who has a
free choice of auction type will not prefer a sealed
bid auction. Third, sealed bid auctions require
bidding agents to forecast other agents’ likely bids,
which would be difficult in scheduling applications
(McAfee and Lewis 2009). The difficulty arises from
the fact that an agent typically does not know the
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processing time, value or scheduling cost informa-
tion of another agent’s job. Fourth, efficiency is
important. A solution that is not efficient may fail
to clear the market, even where a sufficient number
of agents is bidding. However, sealed bid auctions
are typically less efficient than ascending auctions
(Cramton 1998). The issues of lower revenue and
efficiency are especially problematic for scheduling
applications, where a large number of market goods
with complementary value need to be allocated. For
all these reasons, both the general literature of auc-
tions and the specific characteristics of the schedul-
ing application we consider favor the use of an
ascending auction over a sealed bid auction. Simi-
larly, sealed bid auctions are not widely used for
spectrum auctions. Henceforth, we consider ascend-
ing auctions.
We design an ascending auction mechanism that

allocates capacity to the competing agents based on
their bids and the facility owner’s reserve values. We
introduce a new market good, a flexible time block.
We demonstrate that this market good provides both
theoretical and computational advantages over the
previously studied market good, a fixed time block.
We compare the effectiveness and computational
efficiency of auctions using the two market goods.
Effectiveness is measured by the total value of the
solution to the agents and the facility owner. Com-
putational efficiency is measured by the number of
rounds that the auction requires to reach closure. We
develop both optimal and heuristic solution proce-
dures for the facility owner’s winner determination
problem. Also, we extend the flexible time block auc-
tion to allow bidding for multiple time blocks at each
round.
The remainder of the article is organized as follows.

Section 2 provides definitions and preliminary
results. In section 3, we design and analyze auction
mechanisms with our two alternative market goods,
and also allow each agent to bid for multiple flexible
time blocks. In section 4, a computational study
compares the performance of auctions with the two
market goods. Section 5 discusses the properties of
equilibrium solutions within our auction mechanism.
Finally, section 6 provides concluding remarks
and managerial insights. All proofs appear in Appen-
dix S1.

2. Preliminaries

In section 2.1, we define the problem studied. In
section 2.2, we provide a formal statement of our
ascending auction. In section 2.3, we provide a
computationally efficient algorithm for an important
special case of the problem, and discuss its per-
formance.

2.1. Definitions
We consider n competing agents, A ¼ f1; . . .; ng.
Each agent i has a single job i with processing time pi.
This job can be processed nonpreemptively on a com-
mon facility. The facility can process at most one job

at a time. Let P ¼
Pn

i¼ 1 pi. We assume that all the jobs

are available at the start of the planning horizon.
Assuming that each agent has a single job is not
restrictive, since the facility owner treats each bid as if
it is from a different agent. If an agent has multiple
jobs, then it needs to select a bid from an exponential
number of possible combinations of them, which is a
computationally challenging problem. However, our
model still applies under two simplifications. First,
each agent can combine its jobs into a single job and
bid for resources for it. Second, each agent can bid for
resources for each job individually. Although these
two simplified bidding policies are not in general
optimal for the agents, they are reasonable heuristics
in the absence of information about the other agents
(Kutanoglu and Wu 1999).
Let r indicate a feasible schedule of all the n jobs or

a subset of them. The completion time of scheduled
job i in r is denoted by CiðrÞ, or Ci if the schedule is
clear from context. If a job i is not scheduled, then Ci

is not defined.
Each job i generates a revenue vi for agent i if

processed, and incurs a scheduling cost fiðCiÞ if
completed at time Ci. Thus agent i receives an
attained value vi � fiðCiÞ. Wellman et al. (2001) con-
sider a cost structure fiðCiÞ ¼ 0 for Ci � di and
fiðCiÞ ¼ 1 for Ci [ di, where di is a predefined due
date for job i. We consider a more general cost func-
tion fiðCiÞ which is a nondecreasing function of Ci,
for i = 1,…,n. Except for Algorithm GS below and our
computational study in section 4, all of our results
hold for this function. The price for purchasing capac-
ity to process job i is denoted bi. Job i generates a
profit vi � fiðCiÞ � bi for agent i if it completes pro-
cessing at time Ci, and generates a cost bi if it is not
processed. Each agent maximizes its own profit. Let e
represent the facility owner, which sells capacity. The
facility owner has a set of consecutive time slots,
T ¼ f1; . . .;Tg to allocate to agents. Each time slot
t that defines a time interval [t�1,t] is a resource that
corresponds to a unit of processing time in a schedule.
The facility owner sets a reserve value qt for time slot
t, and maximizes its revenue from selling capacity,
that is, the total price of sold capacity plus the total
reserve value of unsold capacity.
A solution is a mapping F : T ! A [ e, indicating

which agent, if any, receives each time slot. Let

Fi ¼ ftjFðtÞ ¼ ig denote the set of time slots allocated
to agent i, and Fe ¼ ftjFðtÞ ¼ eg the set of
unallocated time slots in F, where Fe [ ð[i2AFiÞ ¼ T .
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Since without loss of generality each agent schedules
its job as early as possible within its allocated capac-
ity, a solution uniquely defines a schedule. The system
value V(F) of a solution F is the total profit of the n
agents plus the revenue of the facility owner. A glob-
ally optimal solution maximizes the system value,
assuming that all the agents’ information is known. In
a preemptive setting, the processing of a job can be
stopped and resumed later.
We consider two alternative market goods for pro-

duction capacity.

1. A fixed time block, ðp; �uÞ, p � �u, is a set of p
consecutive time slots from �u � p þ 1 to �u.

2. A flexible time block, (p,u), p � u, is a set of
any p consecutive time slots, where the last
one is no later than u.

Fixed time blocks are used as market goods by
Shaw (1987, 1988). A fixed time block ðp; �uÞ is feasibly
scheduled if it is allocated the p consecutive time slots
�u � p þ 1; . . .; �u. A flexible time block (p,u) is feasibly
scheduled if it is allocated p consecutive time slots,
where the last one is u or earlier. Let G1 and G2 denote
the sets of fixed and flexible time blocks, respectively.
For preemptive scheduling, Wellman et al. (2001)
define a market good ðp; ûÞ to be any set of p time slots
with the last one being slot û. Comparing this defini-
tion with that of our flexible time block, neither defini-
tion contains the other.

2.2. Auction Mechanism
An auction mechanism (McAfee and McMillan 1987) is
a set of rules for finding a solution, based on received
bids. We consider an ascending auction, where the
facility owner receives successively higher revenue.
At each round, all agents are allowed to submit bids
B ¼ fB1; . . .;Bng simultaneously. A bid is a tuple
Bi ¼ hgi; bii, where gi is a market good, and bi is a bid
price. The facility owner determines which bids to
admit. If at any round no agent submits a bid, then
the auction reaches closure and stops. Let ε(·) denote a
bid increment function, which defines a bid’s mini-
mum increment over the current price for the bid to
be admissible.
Our ascending auction mechanism is defined as fol-

lows. At each round, the bid price for market good j,
denoted by bj, is the price of the admitted bid for that
market good, and is undefined if no bid has been
admitted. Also, every market good j has an ask price
aj, which is the minimum bid price required for a new
bid to be admissible. There are various ways to deter-
mine ask prices for market goods for scheduling prob-
lems (Kutanoglu and Wu 1999). For example, price
discrimination can be used. We consider ask prices
without price discrimination. Our pricing mechanism
uses the reserve values and positions of unallocated

time slots, the bid prices of admitted bids, and the
number of bids received by market goods containing
each individual time slot in the earlier rounds. This
mechanism guarantees that the bidding process ter-
minates, under the condition that the job values are
bounded.
Given a vector of ask prices for market goods at

each round, every agent solves its bid determination
problem. An agent can submit multiple bids, and for
any market good, an agent can replace its bid with a
new bid at later rounds, but it may not withdraw
admitted bids. We consider the bid determination
problem under a straightforward, or myopic bidding
policy, where each agent bids the ask prices for a set
of market goods that maximize the agent’s profit if it
wins all of its bids at those prices. This bidding policy is
simple, and a natural choice for agents who have no
information about other agents in iterative combinato-
rial auctions. This straightforward bidding policy is
applied to scheduling problems by Kutanoglu and
Wu (1999), Wellman et al. (2001), Dewan and Joshi
(2002), Geng et al. (2006), and Karabati (2010). More-
over, Reeves et al. (2005) find that optimal bidding
strategies are rarely identifiable even for simple
scheduling problems. Rothkopf (2007) compares the
usefulness of decision theory and game theory in
defining effective bidding strategies.
Given a set of admissible bids, including those that

are already admitted, the facility owner solves its
winner determination problem. This problem requires
labeling each admissible bid as winning or losing so
as to maximize the facility owner’s revenue, including
its reserve value for any unsold capacity. The winner
determination problem is solved at every round. We
now formally describe our ascending auction mecha-
nism.
Procedure Ascending Auction

0. Given a reserve value qt, for time slot t, t = 1,
…,T. Given a processing time pi, revenue vi
and scheduling cost function fiðCiÞ, for job i,
i = 1,…,n.

1. For each market good j, construct an ask price
aj, from the reserve values of unallocated time
slots and the previously received bids if any.

2. For each market good j, each agent may sub-
mit a bid price bj � aj. For each market good
j, the facility owner either determines a win-
ner and sets bj to be the bid price of the
winner, or concludes that the market good
has not been won.

3. If at least one agent submitted a bid at the
most recent application of Step 2, then go to
Step 1. Otherwise, allocate each market good
to its winner, construct and evaluate the
resulting schedule, and terminate.
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In Procedure Ascending Auction, each application
of Step 2 is a different round of the auction. At the
first round ask prices depend only on reserve values,
whereas at subsequent rounds they also depend on
information about received bids.

2.3. Special Case
When discussing globally optimal schedules and in
our computational study, we let fiðCiÞ ¼ wiCi denote
the weighted completion time, where wi � 0 is the
weight of job i. This objective is a widely used mea-
sure of work in process inventory cost (Pinedo 2012).
We propose the following dynamic programming
algorithm to find a solution to this problem.

Algorithm Global Schedule (GS)

Input
pi, vi, wi, for i = 1,…,n; T; qt, for t = 1,…,T.
Initialization
Reindex the n jobs such that w1=p1 � . . .
� wn=pn.
Value Function
H(i,t) = the maximum system value of agents
1,…,i and the facility owner using time slots 1,…,t.
Boundary Condition
Hð0; tÞ ¼

Pt
j¼ 1 qj, where t � 0.

Optimal Solution Value
H(n,T).
Recurrence Relation

Hði; tÞ ¼ max
Hði� 1; t� piÞ þ vi � wit
Hði� 1; tÞ
Hði; t� 1Þ þ qt:

8<
:

The value function assumes that jobs are processed
in index sequence. In the recurrence relation, the first
equation processes job i in time slots t � pi þ 1; . . .; t,
a revenue vi is earned and a scheduling cost wit is
incurred, and the state variables i � 1 and t � pi are
updated to i and t, respectively. The second equation
does not process job i, and the state variable i � 1 is
updated to i. Finally, in the last equation, time slot t is
reserved, a reserve value qt is earned and the state
variable t � 1 is updated to t.

REMARK 1. Where the scheduling cost is the
weighted completion time and the reserve values
are the same for all the time slots, Algorithm GS
finds a schedule that maximizes the system value in
O(nT) time.

Since the input size is O(n) job revenues, weights,
and processing times, Algorithm GS runs in pseudo-
polynomial time. The following result shows that we
cannot expect to develop a polynomial time algorithm
that finds an optimal system schedule.

REMARK 2. For a special case of the problem with-
out scheduling cost and with vi ¼ pi for i ∈ A, and
qt ¼ 0 for t = 1,…,T, the problem of finding a sche-
dule that maximizes the system value is binary
NP-hard.

Moreover, when each time slot has an arbitrary
reserve value, the problem of finding a globally
optimal schedule is unary NP-hard (Agnetis et al.
2008). For this more general problem, Algorithm
GS runs as a heuristic with the following character-
istics.

REMARK 3. Where the scheduling cost is the
weighted completion time:

a. Algorithm GS finds a feasible schedule with total
system value at least 1/2 that of an optimal sche-
dule;

b. If there exists an optimal schedule without
unused time slots, then Algorithm GS finds an
optimal schedule.

Part b of Remark 3 shows that Algorithm GS opti-
mally solves many naturally occurring problem
instances where capacity is tight and the reserve val-
ues are not too high.

3. Ascending Auctions

In sections 3.1 and 3.2, respectively, we consider
ascending auctions with fixed and flexible time blocks
as market goods. In section 3.3, a new bidding format
is introduced, where each agent can bid for multiple
flexible time blocks in each round.

3.1. Fixed Time Blocks
The definition of a fixed time block creates a combina-
torial auction where each agent bids for a bundle of
time slots, and wins either all of them or nothing. In
either case, the resulting schedule is nonpreemptive
by construction.
We consider an ascending auction mechanism with

fixed time blocks as market goods. A bid by agent i is
a tuple Bi ¼ hðpi; �uiÞ; bii, where ðpi; �uiÞ is a fixed time
block containing time slots �ui � pi þ 1; . . .; �ui, and bi
is a bid price. The winner determination problem at
each round requires that each time slot is allocated to
at most one bid and the block of each winning bid is
feasibly scheduled. We propose the following algo-
rithm to solve this problem.

AlgorithmWinner Determination (WD)

Input
B ¼ fB1; . . .;Bng, where Bi ¼ hðpi; �uiÞ; b0ii, for i =
1,…,n, where b0i ¼ bi if bid i is newly submitted,
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b0i ¼ bi þ d if bid i is already admitted, with d>0
suitably small; T; qt, for t = 1,…,T.
Initialization
Index all the bids by nondecreasing order of �ui
values.
Value Function
The largest integer no larger than H(i,t), where
H(i,t) = the maximum revenue for the facility
owner obtained from the bids B1; . . .;Bi, where
the blocks of admitted bids among B1; . . .;Bi com-
plete processing no later than t.
Boundary Condition

Hði; tÞ ¼

Pt
j¼1 qj; if i ¼ 0 and t[ 0

0; if t ¼ 0
�1; if t\0

8<
: :

Optimal Solution Value

bHðn;minf�un;TgÞc þ
XT

j¼�unþ1

qj:

Recurrence Relation

Hði; tÞ ¼ max
Hði� 1; t� piÞ þ b0i; if �ui ¼ t
Hði; t� 1Þ þ qt
Hði� 1; tÞ:

8<
:

Output

Schedule the fixed time blocks of the winning bids.
In the recurrence relation, when �ui ¼ t, the first

equation admits bid Bi, a revenue b0i is earned, and the
state variables i – 1 and t � pi are updated to i and t,
respectively. The second equation reserves time slot t,
a value qt is earned, and the state variable t�1 is
updated to t. Finally, the last equation rejects bid Bi,
and the state variable i – 1 is updated to i. The defini-
tion of b0i gives priority to previously admitted bids
when ties occur. Also, if a tie occurs among the three
equations in the recurrence relation, then Algorithm
WD prioritizes the possible decisions in the order
shown.

THEOREM 1. For the winner determination problem with
fixed time blocks as market goods, Algorithm WD finds a
schedule with maximum total revenue for the facility
owner in Oðmaxfn log n;T; n�ungÞ time.

Since the input size is O(max{n,T}) and �un � T,
Algorithm WD runs in polynomial time. However, if
the reserve value of all time slots is a constant, then
the input size becomes O(n), and a more efficient algo-
rithm exists. Then, the winner determination problem
can be modeled as a scheduling problem with fixed

start and end times, with the objective of maximizing
the total profit of the scheduled jobs. Arkin and Silver-
berg (1987) describe an Oðn2Þ time optimal algorithm
for this problem.
For each block ðp; �uÞ, its current price, denoted by

cðp;�uÞ, is defined as follows.

1. If no time slots within block ðp; �uÞ are allo-
cated, then cðp;�uÞ ¼

P�u
t¼ �u� pþ 1 qt;

2. If block ðp; �uÞ is allocated with bid price bðp;�uÞ,
then cðp;�uÞ ¼ bðp;�uÞ;

3. Otherwise, cðp;�uÞ is equal to the total bid price
of all the allocated fixed time blocks that con-
tain at least one time slot within block ðp; �uÞ,
plus the total reserve value of the unallocated
time slots within block ðp; �uÞ.

Note that the current price of a time block may
decrease when the time slots it contains are reallo-
cated as the auction progresses. The ask price aðp;�uÞ is
equal to the current price cðp;�uÞ if no time slots within
block ðp; �uÞ are allocated; otherwise, it is equal to cðp;�uÞ,
plus a positive bid increment ε(·). We propose a bid
increment function that (a) is based on the facility
owner’s total revenue in the current solution and the
number of bids received by time blocks that contain
each individual time slot and (b) simulates the shape
of the agents’ utility function where the scheduling
cost of each job is a linearly increasing function of its
completion time. Let Z denote the facility owner’s
total revenue in the current solution. Let g(t) denote
the number of bids received by all the fixed time
blocks containing time slot t in all the earlier rounds, and
let M ¼

PT
t¼ 1 gðtÞ. Then the bid increment for block

ðp; �uÞ is defined as:

eðp; �uÞ ¼ max e; s

P�u
t¼�u�pþ1 gðtÞ

M
Zþ

P�u
t¼�u�pþ1 t

T

 !( )

ð1Þ
where τ is a predetermined constant, and e is a min-
imum bid increment.
Using the number of bids received by time slots

within each market good to define its ask price
reduces conflicts over resources among the agents.
This ask price definition is adaptive, in that if the ask
price of a time block is defined too high, then that
block receives fewer bids relative to other blocks and
consequently its ask price decreases. However, with a
bid increment, the ask price is always higher than the
current price of a time block, and thus the facility
owner’s revenue increases whenever at least one time
block with an ask price containing a bid increment is
sold during a round of the auction. Therefore, if job
values are bounded, termination of the bidding process
is guaranteed. Another useful property of this ask
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price definition is subadditivity. That is, for any two
consecutive time blocks ðp1; �u1Þ and ðp2; �u2Þ satisfying
�u2 ¼ �u1 þ p2, their total ask price is no less than the
ask price of block ðp1 þ p2; �u2Þ, that is, aðp1;�u1Þ þ
aðp2;�u2Þ � aðp1 þ p2;�u2Þ. Hence, without loss of profitability,
each agent bids for a single fixed time block instead
of two consecutive fixed time blocks.

REMARK 4. For an agent’s bid determination prob-
lem, due to subadditivity of the ask prices, there
exists an optimal set of bids containing at most one
bid. For agent i, the candidate fixed time blocks are
ðpi; piÞ; ðpi; pi þ 1Þ; . . .; ðpi;TÞ. Therefore, a straight-
forward enumeration procedure finds a fixed time
block for which to bid in O(T) time.

Next, we define an equilibrium solution for the allo-
cation of fixed time blocks. Let v�i ðp; �uÞ be the value of
agent i for holding fixed time block ðp; �uÞ, that is,
vi � fið�u � p þ piÞ if p� pi, and 0 if p\pi. Let
q ¼ fqðp;�uÞjðp; �uÞ 2 G1g denote the prices of the fixed
time blocks. Recall that Fi ¼ ftjFðtÞ ¼ ig. Let Fxi
denote a minimal set of mutually disjoint time blocks
that cover Fi. Let HiðqÞ denote the maximum profit of
agent i, given ρ, that is:

HiðqÞ � max
ðp;�uÞ2G1

fv�i ðp; �uÞ � qðp;�uÞg:

A solution F is in equilibrium at prices ρ if and only
if:

1. For each agent i, v�i ðFiÞ �
P

ðp;�uÞ 2Fx
i
qðp;�uÞ ¼ HiðqÞ;

2. For a block ðp; �uÞ containing no allocated
time slots, qðp;�uÞ ¼

P�u
t¼ �u� pþ 1 qt;

3. For an allocated block ðp; �uÞ,
qðp;�uÞ �

P�u
t¼ �u� pþ 1 qt;

4. For a block ðp; �uÞ not satisfying either of the
two previous conditions, qðp;�uÞ equals the total
price of the allocated blocks containing at least
one time slot within block ðp; �uÞ, plus the total
reserve value of the unallocated time slots
within block ðp; �uÞ.

THEOREM 2. In an auction with fixed time blocks as
market goods, the scheduling cost (respectively, system
value) of an equilibrium solution can be arbitrarily large
(resp., small) compared with that of an optimal solution,
even when the following three conditions hold:

1. All the reserve values are 0;
2. The facility owner has sufficient time slots that all

jobs can be processed;
3. The scheduling cost of each job is the weighted com-

pletion time.

Theorem 2 shows that an equilibrium solution
with fixed time blocks as market goods may not be
close to optimal. This is because the prices of fixed
time blocks are not additive. This is due to comple-
mentarity and substitutability of the market goods
for the agents, as a result of which a time block
can be more or less valuable to an agent depend-
ing upon whether it also possesses another time
block.

3.2. Flexible Time Blocks
The fixed time block auction does not provide a
way for agents to express their value of scheduling
flexibility. This motivates us to design a new mar-
ket good, a flexible time block, where the facility
owner can process a job at or earlier than its
required completion time.
With flexible time blocks as market goods, a bid is a

tuple Bi ¼ hðpi;uiÞ; bii, where ðpi; uiÞ is a flexible time
block, and bi is a bid price. We consider the winner
determination problem for flexible time blocks. An
agent bidding for time block ðpi;uiÞ can be allocated
any pi time slots Ci � pi þ 1; . . .;Ci, where Ci � pi þ
1 � 1 and Ci � ui. Consider a variant of Algorithm
WD, which we term Algorithm WD0. In Algorithm
WD0, ui replaces �ui throughout. Also, the condition in
the first equation of the recurrence relation is changed
from �ui ¼ t to ui � t. However, Algorithm WD0 does
not in general find optimal solutions for the facility
owner.

EXAMPLE 1. Consider a facility owner with T = 7
time slots, where slot 3 has reserve value q3 ¼ a
and all other slots have reserve value 0. There are
two submitted bids: B1 ¼ hð2; 7Þ; ai, and B2 ¼
hð3; 6Þ; a þ bi, where a > b. In an optimal solution,
B1 is allocated time slots 1 and 2, and B2 is allocated
time slots 4, 5, and 6, and thus the facility owner
receives a total revenue of 3a + b. However, Algo-
rithm WD0 allocates time slots 1, 2, and 3 to bid B2,
and then time slots 4 and 5 to bid B1, and thus the
facility owner receives 2a + b.

The following theorem summarizes our results
about the winner determination problem.

THEOREM 3. For the winner determination problem with
flexible time blocks as market goods:

a. If the time slots have nonincreasing reserve values,
then Algorithm WD0 finds an optimal schedule in
Oðmaxfn log n;T;nungÞ time;

b. If there exists an optimal schedule without unallocat-
ed time slots, then Algorithm WD0 finds an optimal
schedule;
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c. Algorithm WD0 finds a schedule with total revenue at
least as large as the revenue found by Algorithm WD,
and at least 1/2 that of an optimal schedule;

d. If the time slots have the same (respectively, arbi-
trary) reserve value, then it is binary (resp., unary)
NP-hard to find an optimal schedule.

Since scheduling costs are nondecreasing with job
completion times, agents have no incentive to pay
higher prices for flexible time blocks with larger ui
values. Therefore, it is natural for the facility owner to
define the nonincreasing reserve values for time slots
considered in part a of Theorem 3. Part c of Theorem
3 shows that the facility owner can expect at least as
much revenue from flexible time blocks as from fixed
time blocks.
Next, in order to evaluate the performance of Algo-

rithm WD0, we establish an upper bound on the maxi-
mum revenue for the facility owner.

Algorithm Upper Bound (UB)
Input
B ¼ fB1; . . .;Bng, where Bi ¼ hðpi; uiÞ; bii, for
i = 1,…,n; T; qt, for t = 1,…,T.
Initialization
Index all the time slots in nondecreasing order of
qt values; index all the bids in nondecreasing
order of ui values.
Output
Hðn;minfun;TgÞ þ

PT
j¼ un þ 1 qj, as found by Algo-

rithm WD0.

REMARK 5. Algorithm UB finds an upper bound on
the maximum revenue for the winner determination
problem with flexible time blocks as market goods.

For fixed time blocks, each time slot either belongs
to a block or not, and the winner determination prob-
lem can be formulated as a multidimensional knap-
sack problem (see e.g., Sandholm et al. 2005). For
flexible time blocks, this formulation does not work,
since a time block does not contain a fixed set of time
slots. Our approach is to regard each flexible time
block (p,u) as u � p + 1 fixed time blocks (p,p), (p,
p+ 1)…, (p,u), and require that at most one of those
fixed time blocks can be admitted by the facility
owner. Our computational study shows that this inte-
ger program can be solved efficiently.
We compare the heuristic solution value and the

upper bound from Algorithm UB with an optimal
solution. Our data set consists of 360 problem
instances, which are randomly generated as follows.
The number of bids is n ∈ {5,10,20,30,40,50}, the
length of blocks is pi �UI½1; . . .; 10�, and the bid price
is bi �UI½1; 10�pi. Given P ¼

Pn
i¼ 1 pi, the capacity T is

generated as T ∈ {[.5P],[.6P],…,P}, where [x] denotes

the value of x rounded to the closest integer. The
reserve value of each time slot is generated as
qt �UI½1; . . .; 10�. The maximum completion time of
each block is generated as ui �UI½pi;T�. For each of
the 6 9 6 = 36 possible combinations of parameters,
we randomly generate 10 problem instances. The
model is coded using Visual C++ Express 2010 with
64-bit CPLEX Concert Technology, on a computer
with a 2.67 GHz processor and 4.00 GB of RAM.
Our computational results are summarized in Table 1,

where R and R0 denote the percentage of revenue
obtained by Algorithm WD0 and the upper bound
found by Algorithm UB, relative to the optimal value
found by the integer program, respectively. Also,
TOPT denotes the CPU time in seconds required by
the optimal algorithm. The overall mean values of R
and R0 are 99.29% and 106.95%, respectively. Algo-
rithm WD0 performs consistently well across different
values of n and T/P. The slightly better performance
for smaller T/P values occurs because in many such
data sets there exists an optimal schedule without
unallocated time slots, in which case Algorithm WD0

is optimal, from Theorem 3. The results suggest that
Algorithm WD0 is a very effective heuristic for the
winner determination problem with flexible time
blocks, up to n = 50. The upper bound found by Algo-
rithm WD is also typically close to an optimal value.
The optimal algorithm using the integer program is
solved efficiently by CPLEX.
We now define the ask price aðp;uÞ of a flexible time

block (p,u). Letting cðp;uÞ denote the current price of
block (p,u), we have

1. If none of time slots u � p + 1,u � p + 2,…,u is
allocated, then cðp;uÞ ¼

Pu
t¼u� pþ 1 qt;

2. If time slots u � p + 1,u � p + 2,…,u are allo-
cated to a bid with a bid price b, then
cðp;uÞ ¼ b;

3. Otherwise, c is equal to the total bid price of
the bids which are allocated at least one time
slot within u � p + 1,u � p + 2,…,u, plus the

Table 1 Average Performance of Algorithm WD0 and the Upper Bound

Parameter R% R 0% TOPT

n = 5 99.51 106.18 0.01
n = 10 99.47 106.89 0.01
n = 20 99.21 106.64 0.04
n = 30 99.21 107.64 0.07
n = 40 99.19 107.26 0.14
n = 50 99.14 107.09 0.26
T = [.5P] 99.91 108.69 0.06
T = [.6P] 99.58 108.33 0.07
T = [.7P] 99.26 106.88 0.08
T = [.8P] 99.16 106.51 0.09
T = [.9P] 98.97 105.88 0.11
T = P 98.85 105.41 0.11
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total reserve value of the unallocated time slots
within u � p + 1,u � p + 2,…,u.

4. Then, aðp;uÞ ¼ cðp;uÞ þ eðp; uÞ, where ε(p,u) is
defined as in Equation (1).

REMARK 6. The bid determination problem in the
auction with flexible time blocks can be solved via
direct enumeration in O(T) time.

An equilibrium solution of the scheduling problem
with flexible time blocks as market goods is defined
similarly to that with fixed time blocks. An additional
requirement is that the facility owner’s revenue is
maximized for the admitted flexible time blocks.

COROLLARY 1. In an auction with flexible time blocks as
market goods, the scheduling cost (respectively, system
value) of an equilibrium solution can be arbitrarily large
(resp., small) compared with that of an optimal solution,
even when the following three conditions hold:
1. All the reserve values are 0;
2. The facility owner has sufficient time slots that all
jobs can be processed;
3. The scheduling cost of each job is the weighted
completion time.

More generally, however, a solution that is in equi-
librium with fixed time blocks as market goods may
not be in equilibrium with flexible time blocks, since
the facility owner may be able to increase its revenue
by rescheduling the admitted time blocks.

3.3. Multiple Flexible Time Blocks
To give the agents an opportunity to express their
preferences in more detail, we develop an alternative
bidding format. At each round, each agent i proposes
a bidding function that requests pi consecutive time
slots, and offers a bid price bðpi;tÞ if the last time slot it
wins is no greater than t, for every t ¼ pi; . . .;T. This
is equivalent to allowing each agent to bid for multi-
ple flexible time blocks, but win at most one. The ask
price, aðp;uÞ, is as defined in section 3.2. We name this
auction a multiple flexible time block auction.
Suppose that at a round of the multiple flexible time

block auction, the maximum achievable profit for an
agent i is r�i , assuming that no other agents bid. If an
agent employs the straightforward bidding policy
defined in section 2.2, then it only bids for flexible
time blocks that result in profit r�i . As a result, each
agent bids for very few flexible time blocks; hence, the
multiple flexible time block auction performs simi-
larly to the individual flexible time block auction. In
practice, however, an agent may give up some profit
in order to win market goods at earlier rounds of an
auction. For example, in a weakly straightforward bid-
ding policy, an agent i targets a profit no less than

kir�i , 0\ ki � 1, and thus bids for any flexible time
block of length pi that results in a profit no less than
kir

�
i , given a bid price equal to the block’s ask price.

Here, ki can be understood as an optimism parameter
of agent i. The choice of ki value and the performance
of this bidding policy are investigated in our compu-
tational study in section 4. The bid determination
problem under this bidding policy can be solved in
O(T) time.
For the winner determination problem, the integer

program with each flexible time block treated as mul-
tiple fixed time blocks with the same bid price is still
computationally solvable. Next, we propose an easy-
to-implement local search procedure to find a heuristic
solution. This procedure is tested in section 4.

Algorithm Local Search (LS)
Input
Bi ¼ fBi1; . . .;Bimi

g, for i = 1,…,n; T; qt, for t = 1,
…,T; a preselected integer l� 1.
Selection
Randomly select a single bid from each Bi with
mi � 1.
Solution
For the bids chosen at the Selection step, run
Algorithm WD0 to find a solution.
Termination
Run the Selection and Solution steps l times and
find the best solution.

4. Computational Study

In this section, we investigate the effectiveness and
computational efficiency of ascending auctions that
allow bidding for individual fixed time blocks, indi-
vidual flexible time blocks, and multiple flexible time
blocks. Using the guidelines of Hall and Posner
(2001), (a) we generate a wide range of parameter
specifications, (b) all the parameters can be rescaled
together without significantly affecting performance,
and (c) the experimental design varies only the
parameters that may affect the analysis. We first select
n ∈ {5,10,20,30,40,50} and generate pi �UI½1; . . .; 10�.
The scheduling cost is the total weighted completion
time, where the weight of each job i is generated in
three ways: as a constant using wi ¼ 6, randomized
using wi �UI½1; . . .; 10�, and proportional with pro-
cessing time using wi ¼ pi. For each instance with
total processing time P, the facility owner’s capacity T
is generated using T ∈ {[.5P],[.7P],[.9P]}. Since job
revenue is naturally positively correlated with pro-
cessing time and weight, we let each job j generate a
revenue vi ¼ ðpi þ wiÞT, if it is processed. The
reserve value of each time slot is generated in three
ways: as a constant using qt ¼ ½ð1 þ TÞ=2�, random-
ized using qt �UI½1; . . .;T�, and linearly decreasing
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using qt ¼ T � t þ 1. Finally, we define the bid
increment function using Equation (1), where e = 1
and τ ∈ {5,10,15}. Here, changes in the bid incre-
ment function also reflect changes in bidding strategy.
For example, a large bid increment simulates a jump
in a bid price. For each of the 6 9 3 9 3 9 3 9 3 = 486
possible combinations of parameters, we randomly
generate 10 problem instances, for a total of 4,860.
For auctions with an individual fixed or flexible

time block as the market good, the agents use the
straightforward bidding policy. For the multiple flexi-
ble time block auction, the agents use the weakly
straightforward bidding policy. If the optimism
parameter ki is small, then the bids reveal little infor-
mation about the agents’ true preferences. Our preli-
minary computational study shows that the system
value provided by the auction is insensitive to the
choice of ki values, if ki � 0:6. Therefore, for each
agent i, at each round, we randomly generate a ki
value from 0.6 to 1, as a multiple of 0.01. The winner
determination problem for the auction with fixed time
blocks is optimally solved by Algorithm WD. For the
auction with individual flexible time blocks, Algo-
rithm WD0 provides only heuristic solutions unless
the reserve values of the time slots are nondecreasing.
We solve the winner determination using both the
optimal integer program and Algorithm WD0. For the
multiple flexible time blocks auction, the winner
determination problem is solved using both the opti-
mal integer program and Algorithm LS with l = 100.
Regarding the computation time needed to reach

closure, we test instances with reserve values that are
uniformly distributed. Using heuristic winner deter-
mination, the CPU times for instances with
n ∈ {5,20,50} have means < 0.01, 0.02, and 0.33 sec-
onds, and maximum values < 0.01, 0.09, and 1.32
seconds, respectively. Using optimal winner determi-
nation, the CPU times for instances with n ∈ {5,20,50}
have means 0.03, 0.98, and 23.06 seconds, and maxi-
mum values 0.10, 5.12, and 1520.68 seconds, respec-
tively. Thus, optimal winner determination requires
extra computation time that increases rapidly with
instance size. Therefore, for instances above n = 50,
we recommend heuristic winner determination.
To evaluate the effectiveness of the three auctions,

we use the system value of a schedule from
Algorithm GS as a benchmark, and compare their
system values. Each job i generates a value
vi � wiCi ¼ ðpi þ wiÞT � wiCi � piT for completion
time Ci � T, which is at least the total reserve value of
any pi consecutive time slots. Therefore, if T < P, there
typically exists an optimal schedule without unused
time slots; hence, from Remark 3, Algorithm GS finds
an optimal schedule. Let R�

fx, R
�
fl, and R�

mf denote the
percentages of system value provided by the auctions
using individual fixed and flexible time blocks, and

multiple flexible time blocks with optimal winner
determination, respectively, relative to that from
Algorithm GS. Further, let Rfl and Rmf denote the per-
centages of system value provided by the auctions
using individual and multiple flexible time blocks
with Algorithms WD0 and LS, respectively, relative to
that from Algorithm GS. These percentages are first
calculated for each individual instance, and then aver-
aged across all the instances tested.
The effects of different parameters on the values of

R�
fx, R

�
fl, R

�
mf , Rfl, and Rmf are summarized in Table 2.

For the auctions with flexible time blocks as market
goods, the difference that results from optimal vs.
heuristic winner determination is negligible. This
is consistent with the near optimal average perfor-
mance of the heuristic winner determination
algorithm shown in Table 2. Mean values over all
4,860 instances are R�

fx ¼ 92:68%, R�
fl ¼ 95:01%, and

R�
mf ¼ 95:55%. Thus, flexible time block auctions

generate more system value on average than fixed
time block auctions, and multiple flexible time blocks
provide a small further improvement. These two
statements are verified by t-tests, for which the two
p-values are both < 0.01.
The results in Table 2 provide several observations.

First, as the number of agents increases, all three
auctions perform better. Second, all three auctions
perform best when the weight of a job is proportional
to its processing time. This is because the processing
sequence of the jobs does not affect the scheduling
cost. Third, as the available scheduling resources
increase, all three auctions generate system value that
is closer to optimal. Fourth, the reserve values of time
slots do not have a significant impact on the system
values generated by the auctions with flexible time

Table 2 System Value for Various Parameter Settings

Parameter R�
fx% R�

fl% R�
mf% Rfl% Rmf%

n = 5 90.89 91.04 93.17 91.20 92.27
n = 10 91.97 93.08 92.90 93.01 93.04
n = 20 92.69 95.12 95.24 95.09 94.81
n = 30 93.28 96.62 96.76 96.58 96.58
n = 40 93.33 96.89 97.37 96.85 97.32
n = 50 93.91 97.33 97.83 97.20 97.74
wi ¼ 6 87.38 92.21 93.21 92.07 92.79
wi �UI½1; . . .; 10� 92.16 94.30 94.81 94.32 94.55
wi ¼ pi 98.49 98.52 98.61 98.58 98.54
T = [.5P] 90.17 93.03 93.70 93.09 93.59
T = [.7P] 92.72 95.00 95.67 94.88 95.24
T = [.9P] 95.14 97.01 97.27 97.00 97.06
qt ¼ ½ðT þ 1Þ=2� 91.86 94.94 95.63 94.94 95.48
qt �UI½1; . . .; T � 92.15 94.91 95.29 94.84 95.17
qt ¼ T � t þ 1 94.02 95.19 95.71 95.19 95.24
τ = 5 92.41 95.09 95.57 95.11 95.56
τ = 10 92.80 95.07 95.65 95.03 95.32
τ = 15 92.82 94.88 95.42 94.83 95.00
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blocks, but the auction with fixed blocks performs bet-
ter with decreasing reserve values. Finally, as the bid
increment parameter τ increases from 5 to 15, the
fixed time block auction performs slightly better,
whereas the auctions using flexible time blocks per-
form slightly worse. This indicates that flexible time
block auctions provide higher system value if ask
prices are more sensitive to the agents’ preferences as
revealed through their bids. Also, auctions with flexi-
ble time blocks as market goods perform well across
different bidding strategies by the agents.
Next, we study the benefits of flexible time block

auctions to the agents and the facility owner. In
Table 3, columns RA�

fx and RA�
fl (respectively, RF�mf

and RF�fl) show the percentages of the agents’ value
(resp., facility owner’s value) given by the individ-
ual and multiple flexible time block auctions with
optimal winner determination, relative to those
given by the fixed time block auction, respectively.
Flexible time block auctions favor the agents more
when the number of agents is large, the jobs have
equal weights, the available scheduling resource is
scarce, the reserve values of time slots are the
same, or the bid increment is small. Note that when
jobs have weight proportional to processing time,
flexible time blocks generate less value to the
agents than the fixed time block auction. The bene-
fit of flexible time block auctions to the facility
owner is higher when the jobs have equal weights
or weight proportional to processing time, the
amount of scheduling resource is large, or the
reserve values of time slots are random. Overall,
the individual and multiple flexible time block auc-
tions generate 18.99% and 21.89% more profit on
average for the agents than the fixed time block

auction, respectively. Also, the individual and mul-
tiple flexible time block auctions generate 3.48%
and 3.57% more revenue on average for the facility
owner than the fixed time block auction, respec-
tively. This motivates the facility owner to choose
flexible time blocks as the market good, and to
allow bidding for multiple time blocks.
We also consider the computational efficiency of

the three auctions. The mean number of rounds to
reach closure in the individual fixed and flexible time
block and multiple flexible time block auctions with
optimal winner determination is 57.7, 55.5, and 25.1,
respectively. Whereas, the mean number of rounds to
reach closure in the individual flexible time block and
multiple flexible time block auctions with heuristic
winner determination is 55.4 and 31.0, respectively.
Thus, the multiple flexible time block auction requires
fewer rounds to reach closure using optimal winner
determination. Detailed results appear in Table 4. All
three auctions require more rounds to reach closure
when the number of agents is larger, more scheduling
resources are available, or the bid increment function
is smaller. Also, all three auctions require more
rounds when the weights of all jobs are the same,
since more jobs are competitive with each other.
Finally, linearly decreasing reserve values lead to
more rounds in all three auctions. This is because
larger reserve values early in the time horizon result
in competitive bidding for both early and late capacity.
We summarize our computational results for the

relative performance of the three auctions. Using
fixed time blocks as market goods is not recom-
mended, since this provides low system value, low
profit for the agents, and low revenue for the facility
owner, and is also inefficient at reaching closure. The
use of flexible time blocks as market goods is

Table 3 Agents and Facility Owner’s Values for Various Parameter
Settings

Parameter RA�fl% RA�ml% RF �
fl% RF �

ml%

n = 5 108.19 126.13 104.01 102.13
n = 10 113.05 109.22 103.09 103.56
n = 20 115.46 111.64 103.62 104.54
n = 30 119.95 120.62 103.48 103.68
n = 40 126.63 134.82 103.27 103.53
n = 50 124.68 128.91 103.41 103.96
wi ¼ 6 144.47 152.94 104.68 104.65
wi �UI½1; . . .; 10� 114.85 118.43 101.88 102.18
wi ¼ pi 94.66 94.30 103.88 103.87
T = [.5P] 128.14 133.99 103.10 103.11
T = [.7P] 120.82 124.92 102.70 102.93
T = [.9P] 105.02 106.76 104.64 104.66
qt ¼ ½ðT þ 1Þ=2� 125.41 130.93 103.69 103.55
qt �UI½1; . . .; T � 116.33 117.48 104.48 105.28
qt ¼ T � t þ 1 112.24 117.26 102.27 101.87
τ = 5 125.49 128.95 103.43 104.48
τ = 10 117.95 122.23 103.38 103.36
τ = 15 110.54 114.50 103.63 102.86

Table 4 Numbers of Rounds to Reach Closure

Parameter Fix� Flex� MFlex� Flex MFlex

n = 5 4.4 4.8 3.2 4.7 3.4
n = 10 12.8 14.0 8.2 13.9 9.2
n = 20 35.0 36.1 19.4 36.2 23.4
n = 30 62.5 60.3 29.5 60.2 36.1
n = 40 93.7 88.9 39.3 88.1 49.4
n = 50 138.1 128.5 51.3 129.2 64.7
wi ¼ 6 65.9 59.8 31.4 59.7 37.3
wi �UI½1; . . .; 10� 47.6 45.7 22.4 45.5 27.3
wi ¼ pi 59.8 60.9 21.6 60.9 28.5
T = [.5P] 29.6 27.8 13.5 27.5 16.1
T = [.7P] 48.8 45.7 21.1 45.7 25.9
T = [.9P] 94.9 92.8 40.8 92.9 51.1
qt ¼ ½ðT þ 1Þ=2� 56.1 55.8 24.2 55.8 29.6
qt �UI½1; . . .; T � 50.2 44.7 20.8 44.5 29.7
qt ¼ T � t þ 1 67.0 65.9 30.3 65.9 33.9
τ = 5 83.9 81.6 36.6 81.1 43.8
τ = 10 50.6 47.8 22.0 48.2 27.7
τ = 15 38.7 36.9 16.8 36.8 21.6
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recommended, but a careful design of the associated
bidding format is important. The multiple flexible time
block auction consistently outperforms the auction with
the individual flexible time block as the bidding format,
both in effectiveness and computational efficiency.

5. Equilibrium Solutions

We discuss the properties of equilibrium solutions
with time blocks as market goods. It is well known
that, using time slots as market goods for the schedul-
ing problem with or without preemption, an equilib-
rium solution may not exist (Wellman et al. 2001).
However, with time blocks as market goods, an equi-
librium solution always exists.

THEOREM 4. There exists an equilibrium solution for
any instance of the resource allocation problem with fixed
or flexible time blocks as market goods. However, the
equilibrium solution is not unique.

Even though an equilibrium solution is guaranteed
to exist with fixed or flexible time blocks as market
goods, due to the positive bid increment function that
guarantees the auction to reach closure in a finite
number of rounds, the ascending auction may not
find an equilibrium solution.

REMARK 7. The ascending auction may not find an
equilibrium solution for an auction with fixed or
flexible time blocks as market goods.

In Theorem 2 and Corollary 1, we show that the
system value and scheduling cost of an equilibrium
solution can be arbitrarily far from globally optimal
for the fixed and flexible time block auctions, respec-
tively. In addition, even for an instance with non-
increasing reserve values for time slots, there may not
exist an equilibrium solution that is globally optimal
(Hall and Liu 2010). We now present a positive result
under stronger conditions.

THEOREM 5. For auctions with fixed or flexible time blocks
as market goods, if p1 ¼ . . . ¼ pn ¼ p, and fiðpiÞ ¼
fiðpi þ 1Þ ¼ . . . ¼ fiðTÞ ¼ fi for i = 1,…,n, then every
globally optimal schedule is supported by an equilibrium
solution where every allocated time block has the same price.

The conditions of Theorem 5 specify that all jobs
have the same processing time and each job has a
scheduling cost that is independent of its completion
time. However, the revenues of the jobs and the
reserve values of the time slots are arbitrary. The con-
structed equilibrium solution is fair, in that all agents
pay the same price for their winning time blocks. For
the capacity allocation problem defined in Theorem 5,

we describe an efficient algorithm to find a globally
optimal schedule.

Algorithm Global Optimal Schedule (GOS)
Input fiðpÞ ¼ . . . ¼ fiðTÞ ¼ fi and vi, for i = 1,…,
n; p1 ¼ . . . ¼ pn ¼ p; T; qt, for t = 1,…,T.
Recurrence Relation

Hði; tÞ ¼ max
Hði� 1; t� pÞ þ vi � fi
Hði� 1; tÞ
Hði; t� 1Þ þ qt:

8<
:

The value function, boundary condition and opti-
mal solution value of Algorithm GOS are the same as
in Algorithm GS. We have the following result.

REMARK 8. When all jobs have the same processing
time and each job has a scheduling cost that is inde-
pendent of its completion time, Algorithm GOS
finds a schedule that maximizes the system value in
O(nT) time.

6. Conclusions

We evaluate the usefulness of market good design for
the allocation of production capacity on a single
resource among competing agents, through an
ascending auction mechanism. We consider a previ-
ously studied market good, a fixed time block. We
also introduce a new market good, a flexible time
block, which is implemented using bidding for each
individual time block and bidding for multiple time
blocks. Flexible time block auctions allow the agents
to explain their preferences better, since they can
adjust their bid prices for their value of scheduling
flexibility. We study the effectiveness and computa-
tional efficiency of the associated auctions, and
develop optimal or near optimal algorithms for the
bid determination and winner determination prob-
lems. Our computational study validates the
practical effectiveness and computational efficiency
of the flexible time block auction. On average, the
multiple flexible time block auction delivers over
95% of the system value achieved by optimal central-
ized planning, and this performance improves as the
number of agents increases. Moreover, both the
agents as a whole and the facility owner benefit.
We discuss possible extensions of our work on the

capacity allocation problem. First, the fixed and flexi-
ble time block goods can be used to allocate
resources for natural variations of the problem.
Examples occur where a partially processed job
earns value for its agent, and/or preemption is
allowed. Second, if each agent has multiple jobs, the
facility owner faces the same problem as considered
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here, and our solution approach for the bid determi-
nation problem can be used. Third, ascending auc-
tions can be used to allocate scheduling resources in
more complex planning environments such as flow
shops and job shops. Fourth, allowing reserve values
to have density defined as a continuous function of
time is a valuable generalization. Another useful
generalization occurs where some capacity allocation
is performed by centralized planning, but the
remaining capacity is allocated by auction. For exam-
ple, capacity may be partially allocated in advance
based on complete information from agents, but then
further allocated in a real time auction using
updated information. The problem of designing an
ascending auction with bounded performance ratios
for scheduling cost and system value remains open.
The possibility of collusion among the agents, and
how it can be prevented, should also be studied.
More generally, our work suggests the increased use
of flexibility in market good design within auctions
for resource allocation.
Our work provides several managerial insights

about the allocation of production capacity among
multiple competitive agents. First, efficient capacity
allocation is particularly important for time-sensitive
products. Second, auctions can efficiently allocate
capacity among the agents, to achieve a high system
value and reach closure quickly. Third, the choice of
market good and bidding format makes a significant
difference to the value received by the facility owner
and the bidding agents. All parties typically benefit
from an efficient choice. Fourth, it is valuable for the
facility owner to maintain some control over the pro-
duction schedule during the bidding process, as
implemented through the use of flexible time blocks
in our work. Fifth, when an efficient auction mecha-
nism is used, the values received by the facility
owner and the system are insensitive to the capacity
reserve values specified by the facility owner, which
is a helpful feature when reserve values are hard to
estimate. Finally, it is important to use an auction
design where the bidding agents can express their
evaluation of production capacity in detail, such
as by allowing bidding for multiple flexible time
blocks.
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