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ABSTRACT 

The carbon storage and dynamics of terrestrial forest vegetation will play a major role in 

determining the degree of effects of climate change. As the response to climate change 

increases, the mapping and modeling of forest carbon stocks and dynamics will become 

of increasing importance at scales ranging from the individual forest stand, to the 

landscape level and ultimately global forest inventories. Individual-Based Modeling 

offers a way to investigate the above ground biomass distribution within a forest stand 

based upon differential ecological and historical phenomena which had led to a specific 

distribution of individual trees. This analysis will help to inform us of both how different 

model parameters affect biomass distribution and the influence of changing model 

parameters on model outcomes.  We have parameterized and evaluated the SORTIE 

model of forest succession to reflect the effects of spatially explicit historical events upon 

the current biomass distribution across ten Prospect Hill plots at the Harvard Forest, MA, 

USA. From data recorded during the NASA DESDynI field campaign (Cook, 2010), 

biomass in each of these plots were estimated using the Jenkins set of allometric 

equations (Jenkins, 2003).  Each initialization simulates a history of one particular plot.  

The most important parameters to calibrate were the species specific Asymptotic 

Diameter Growth and Slope of Diameter Response Curve. To further this investigation, 

we have used the output from these model runs to produce three dimensional 

representations of the forest structure within these plots. This methodology can be used to 

improve biomass remote sensing techniques. Sensitivity analysis using Monte Carlo 

methods to test the effects of randomly perturbing the yearly growth rate and intrinsic 

mortality probability parameters shows the model to be functioning properly.  Future 
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areas of research include investigating the nature of the path dependency inferred by 

natural and anthropogenic disturbance and more realistic methods of creating three 

dimensional forest structures. 
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1.  INTRODUCTION 

1.1 Scientific Rationale 

The carbon storage and dynamics of terrestrial forest vegetation will play a major role in 

the mitigating the effects of increasing atmospheric carbon dioxide on global temperature 

rise. However, the extent and present and future dynamics of forest carbon are often 

poorly understood due to the lack of accurate carbon inventories (Fearnside 2000), and 

the uncertainty of tree responses to elevated levels of carbon dioxide (Zak et al 2007). As 

the response to climate change increases, the mapping and modeling of forest carbon 

stocks and dynamics will become of increasing importance at scales from landscapes to 

regions to globally.  Reliable estimates are necessary (Fearnside 1997), however field 

measurement techniques are intensive in both cost and time and rely on statistical 

samples.  Most field procedures to inventory carbon over areal extents currently involve 

intensive, stratified ground plot sampling to estimate aboveground dry biomass (Brown 

1999).  

In order to more explicitly map the spatial distribution of forest biomass carbon 

and change in carbon due to disturbance or succession, remote sensing methods are 

increasingly employed. Lidar, (LIght Detection And Ranging) remote sensing is of 

particular interest due to its ability to directly measure forest height and density, 

parameters that are understood to have quantifiable relationships with forest biomass 

(Nilsson 1986).  While maps of biomass and its spatial variation derived from lidar have 

been suggested as very useful, remote sensing data alone cannot typically be used for 
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purposes such as quantifying the effects of climate change over a region or predicting the 

effects of different disturbances regimes on future forest composition and biomass 

carbon.   

The above highlights the need for the development of accurate models of the 

carbon balance and dynamics within forest ecosystems.  Parameterization of a complex 

model of forest succession with both field data and historical records should allow for 

more realistic predictions about both the current and future distribution of carbon within 

such forest sites. Proper calibration of models should allow for scenario-based 

extrapolation of the fate of biomass and carbon into the future. Inclusion of historical 

disturbance events will allow for even better projections of the effects of management 

and disturbance into the future under the effects of climate change and invasive pests.  

Models that allow testing the effects of past disturbances and management strategies on 

the current distribution of biomass within a given site can lead to future management 

decisions to maximize carbon sequestration.   

Models that have spatial capabilities built into them will be most useful in 

coupling with remote sensing data, such as that from lidar (Sun and Ranson, 2000). 

Although a number of potential models exist, an additional issue with models is that they 

are typically developed and parameterized for a particular area and the effects of 

modifying that parameterization for use in a novel location may be unknown, even if for 

the same general ecoregion. Here we have two research questions:  Can we use an 

existing model with spatial capabilities to create output that would be useful for 

anticipated remote sensing data such as that from lidar, and how well does that model 

perform in terms of biomass estimates and canopy structure? If we use an existing forest 



   

10 

 

model that was developed elsewhere and for which we may need to modify parameters, 

can we develop a method to estimate whether our parameter choices were scientifically 

sound? 

 

1.2 Objectives 

The Harvard Forest Long Term Ecological Research site (LTER) has one of the most 

comprehensively recorded ecological histories of any Northeastern USA Forest.  The 

goal of this study is to combine this rich ecological record with an individual based 

model (IBM) of forest dynamics to create a realistic model of the biomass distribution of 

ten research plots within the Prospect Hill Tract of the Harvard Forest and then to assess 

the success of those models.  

There are four specific objectives. The first objective is to create an ecological 

history for each plot by combining maps of time of agricultural abandonment, 1938 

hurricane damage, silviculture treatments and current composition and field-measured 

biomass. The second objective is to parameterize an individual-based model of forest 

succession to simulate the forest dynamics and biomass within each plot from 

abandonment to its current state. The third objective is to evaluate the parameterization of 

the model in two ways: first to compare our results against current field data for each of 

the ten calibration plots as well as three reserved plots not used for model development 

area; second to assess proper model functioning through a Monte Carlo simulation-based 

sensitivity analysis of model parameters. The final fourth objective is to use these data to 

create a three dimensional model of the forest using realistic canopy structures and the 

spatial capabilities of the SORTIE model.  
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1.3 Individual-Based Models 

The spatial complexity of individual-based forest models has evolved with advancements 

in computing power. Theoretically, individual-based forest models attempt to capture 

system dynamics though tracking the collective interactions of individual tree stems, each 

possessing certain traits. In early models such as JABOWA (Botkin et al 1972) and 

FORET (Shugart, 1984; Shugart & West, 1977), the forest is simulated as collections of 

individuals cohabiting gap-sized patches of land. The tree crowns are represented as a 

horizontal plane at the top of each tree, but tree locations within gaps are not specified.  .   

Early gap models did not include interactions between patches. In 1974 the FOREST 

model added spatial complexity by providing some information on vertical structure; 

however interactions among trees still focuses on horizontal interactions.  (Ek & 

Monserud 1974).    

 Derived from FORET, ZELIG tracks the locations and interactions between the 

gaps within a given forest stand (Smith Urban 1988). Yet the spatial location of 

individual trees is still not specified, and height is the only tree crown dimension 

parameter.  The consideration of interaction between plots allowed the modeling of large-

gap disturbances and the resulting increase in shade-intolerant trees, an emergent 

behavior which FORET is unable to produce (Urban et al 1991).  SPACE achieved 

higher spatial resolution by attributing Cartesian coordinates to individual trees in a stand 

(Bushing 1991). 

 The approach of SPACE was extended with horizontal and vertical structure 

modeling in DRYADES to simulate boreal coniferous forests of British Columbia 
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(Mailly et al 2000).  This approach allowed understory trees to persist within proximity to 

large over story trees. Pacala et al (1993) employed a similar approach in modeling a 

Connecticut forest.  Hurtt et al (2010) used lidar measured canopy heights to initialize the 

Ecosystem Demographic (ED) model developed by Moorcroft (2001) to predict biomass.   

SORTIE, the model we use in this study, also added a significantly more complex light 

regime, with seasonal and daily movements of the sun used to calculate available light.  

More complex algorithms replaced the regeneration, growth and mortality processes of 

the simpler gap models.  SORTIE has a number of useful spatial and 3D features. Within 

SORTIE, each individual tree is attributed a Cartesian coordinate, and the canopy has a 

height, width and depth.  

 In forests, the physical propagation, extinction, and scattering of light is in part a 

function of the depth, width and structure of forest tree crowns and gaps between them.  

Spatially explicit 3D simulated forests from IBMs could be coupled with a lidar 

scattering model.  First a 3D scene of the forest plot could be constructed and divided 

into cubic cells of a size corresponding to the resolution of the lidar system. The resulting 

cells are attributed to the different structural components of the forest.  A physics-based 

scattering algorithm can be used to estimate the lidar backscatter from each of these cells 

(e.g. Sun and Ranson, 2000). For both landscape to regional carbon modeling and linkage 

with lidar remote sensing, a coupled model approach which: a) could be used to predict 

biomass and b) is based on more ecologically robust and spatially explicit 3D forest 

models, would be an important next step forward. The aim of this study is to develop a 

spatially explicit model to support such a remote sensing approach. 
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2.  STUDY SITE  

The Harvard Forest Long Term Ecological Research site (LTER) is a 1200 hectare (ha) 

experimental forest acquired by Harvard University in 1907 (Foster, 1992).  Located near 

Petersham, Massachusetts, the forest is broken in three tracts, named Prospect Hill, Tom 

Swamp and Slab City (Figure 1).  The general native forest type is Transitional 

Hardwoods of central New England (Stehman et al 2003). Most of the forest is composed 

of artificially planted stands over abandoned agricultural fields (Fisher 1921).  

 Prospect Hill is the 375 ha northernmost tract within Harvard Forest. The tract is 

located at roughly 42°32'N and 72°10'W and is situated at an average elevation of 340 

meters above sea level.  The soil is generally an acidic sandy loam with variable 

drainage. The dominant forest cover is Red-maple dominated mixed hardwood, with an 

older growth hemlock-dominated section in the center of the tract. Seven percent of the 

tract was planted as red-pine (Pinus resinosa Ait.) plantations by the Civilian 

Conservation Corps in the 1930s. Historically, the land use included cultivated crops, 

improved pastureland, unimproved pastureland and permanent woodlot (Foster, 1992).  

The average annual temperature of Prospect hill is 8.5 degrees Celsius and receives an 

annual average precipitation of 105 cm with 150 cm of snowfall.  (Rasche, 1953) 

Tom Swamp is a 475 ha tract to the south of Prospect Hill. The tract surrounds a 

reservoir, and exhibits much wetter soil conditions than Prospect Hill, with an average 

elevation of 240 m. The predominant cover type is hemlock dominated conifer stands.  

Slab City is the southernmost 200 ha tract of Harvard Forest. The dominant forest cover 

is red-maple and red-oak dominated hardwood forest.  The mean elevation is 265 m. 
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Figure 1. Harvard Forest tracts and plots. The inset shows a 1-hectare plot with its sixteen 25m by 25m 
subplots numbered one through sixteen.  
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3.  DATA AND MODELS 

This section describes the input datasets and the modeling software used in the analysis. 

The land-use history spatial data was compiled from the Harvard Forest Data Archive 

and further processed at the University of Michigan School of Natural Resources and 

Environment (SNRE) Environmental Spatial Analysis Laboratory (ESALab).   Field data 

was collected in 2009 as part of the NASA Deformation, Ecosystem Structure and 

Dynamics of Ice (DESDynI) project (Cook et al, 2011).  The SORTIE-ND model of 

forest succession was developed by Steven Pacala and associates (Pacala 1996) and 

further parameterized by us for this study.  

 

3.1 Harvard Forest GIS Data  

The first layer used in constructing a GIS map of Prospect Hill is a historical land-use 

map (landuse_history.shp). This layer documents the historical land use within Prospect 

Hill based upon historical records compiled by David Foster. The land-use types are 

cultivated crops, mowing improved, unimproved pasture and woodlot (Foster and Boose 

1999, Figure 2) 

Because some study plots had previously been converted to agriculture and then 

abandoned, a layer on agricultural extent and abandonment was selected 

(PH_agricultural_abandonment.shp) for model initialization purposes. This layer 

provides recorded dates of agricultural field abandonment within the Prospect Hill tract 

of Harvard Forest (Foster and Boose, 1999). 
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Figure 2. Prospect Hill Historical Land Use. Compiled from historical land parcel records by David 
Foster (1992) Prospect Hill Plots are overlayed, PH 8 falls outside the coverage of the map.  

 

The first fields were abandoned in the 1840s, with abandonment continuing up through 

the 1980s.  The layer also provides information on areas that had not been converted to 

agriculture, for example, the central portion of the Prospect Hill tract is characterized as a 

permanent woodlot (Figure 3). Field plot PH8 is not included within the coverage of this 

layer.  
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Figure 3. Prospect Hill Agricultural Abandonment. This map displays the year parcels of land within 
the Prospect Hill tract of Harvard Forest were abandoned from agricultural use. Prospect Hill Plots are 
overlaid, PH8 lies outside the coverage of the map.  

 

Included in the Harvard Forest GIS is a layer (1938_hurricane_damage.shp) 

which displays the damage to each stand as percentage of all trees in each stand felled by 

a hurricane which impacted the area in 1938 (Hall, 2005). The data was collected by Will 

Rowland between 1938 and 1939 (Roland, 1939). The degree of damage is expressed as a 

percentage and represents the proportion of all dominant and co-dominant trees which 

were uprooted, leaning or broken off (Hall, 2005; Figure 4). Directly after the hurricane 

all the downed trees were salvaged, and in 1949 the most plots were thinned to control 
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the dense regeneration after the hurricane. Field plots PH8 and PH9 were not included 

within the coverage of this layer. 

 

Figure 4. Prospect Hill 1938 Hurricane Damage. Damage is expressed as the percent of dominant or co-
dominant trees felled by during the 1938 New England hurricane. Prospect Hill Plots are overlayed, PH8 
and PH9 fall outside the coverage of the map.  

 

A fourth GIS layer (silviculture_shp) tracks all management activities or 

silvicultural treatments within the forest from 1909 until 1994 (Hall, 2005). As treatments 

overlap spatially and temporally, the polygons representing them also overlap. In order to 

determine all treatments applied at a given site the silviculture layer was intersected with 

a polygon representing the area of interest to extract the overlapping silviculture 
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treatments. The resulting intersected polygons were output to a database to develop a 

silviculture history for each area of interest (Hall, 2005). 

 

3.2 Harvard Forest Field Campaign Data 

Forest composition, structure and biomass ground validation plots were established and 

surveyed during the summer of 2009.  These field data were subsequently transcribed 

into electronic format at Goddard Space Flight Center (GSFC) and stored in Oak Ridge 

national Laboratory Distributed Active Archive Center (Cook et al 2011).  Ten plots were 

established at the Prospect Hill tract.  Additionally, two plots were measured in the 

nearby Harvard Forest Tom Swamp tract and one in the Slab City tract.  Each plot was 

one ha, measuring 200m by 50m. The location of each plot by the sampling teams took 

into consideration the forest species composition, age/structure, topography, and lidar 

coverage. The one-ha plots were divided into 16 subplots, each measuring 25m by 25m.  

All plots locations were established using GPS and these coordinates were used to create 

a GIS layer of plot and subplot boundaries (ESALab 2010). 

Data collected in the field for all plots/subplots included the diameter (dBH, 

diameter at breast height 1.37 m above the ground), species and condition of each 

individual tree larger than 10 cm. Canopy height was collected for a subset of dominant 

trees in each subplot.  Statistics calculated from this field data were done at the individual 

tree, subplot and plot levels.  In addition to the data directly collected in the field (e.g. 

species, stem diameter), basal area and biomass were calculated for individual stems.  

Biomass was calculated for each stem using the allometric equations of Jenkins et al 
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(2004). At the plot levels, species proportional composition, stem density/ha, mean dBH, 

basal area/ha, and total above ground biomass/ha were compiled.  

 

3.3 The SORTIE Model 

SORTIE (or SORTIE-ND) is a forest model simulator based on individual tree 

competition for forest resources, principally light. It is a descendent of the JABOWA-

FORET family of gap-based forest models. SORTIE has the ability to predict large-scale 

forest dynamics from a model parameterized exclusively from individual trees. The 

model accomplishes this by using the positions of tree crowns in three-dimensional space 

along with a complex routine used to calculate light regimes beneath forest canopies. 

SORTIE does not take into account the soil and drainage characteristics of the site.  The 

light available to each tree is then used to calculate species-specific growth rate and risk 

of mortality. Surviving trees produce seedlings as an increasing function of tree size, and 

the seedlings are dispersed away from the parent tree in accordance with estimated 

dispersal functions. The model uses a time step of 5 years. Forest dynamics and simulated 

tree locations emerge as the collective result of these localized interactions among trees. 

(Pacala et al 1993). 

 These simulations can then be used to derive bulk forest parameters such as 

diameter distributions, height distributions, biomass/carbon/carbon value, basal area and 

species composition.  External disturbance events such as harvest, planting, storms, insect 

infestations and other mortality events can be included as behaviors in the model. 

SORTIE was developed using empirical data derived from the Green Mountain Forest 

study site in northeast Connecticut. (Pacala et al 1993) The current version SORTIE-ND 
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has been parameterized for nine tree species of the Northeastern Forests. The Prospect 

Hill ground validation plots contain all of these trees; however Pinus resinosa, Ait. (red 

pine), which dominates three of the Prospect Hill stands, had not to date been included in 

the SORTIE model.  

 

4.  ANALYSIS METHODS 

4.1 Objective 1: History of Prospect Hill Plots and Model Initialization 

The first objective was to create an ecological history for each plot using maps from the 

time of agricultural abandonment, 1938 hurricane damage and silviculture treatments. 

The results of this were used to initialize a SORTIE model for each Prospect Hill Plot. 

The year of abandonment was determined from Foster’s Land-use history paper and the 

Prospect Hill Tract GIS in the Harvard Forest Archive (Foster, 1992; Hall, 2005).  The 

agricultural abandonment, land-use history, silviculture treatments, and 1938 hurricane 

damage shapefiles from the Prospect Hill Tract Harvard Forest Properties GIS were 

combined Harvard Forest history and disturbance GIS ( Foster, 1992; Hall, 2005).  . 

In order to determine the important disturbance regime in the Prospect Hill plots, 

the silviculture treatments, natural disturbance and 1938 hurricane damage maps were 

intersected with the Prospect Hill DESDynI Plot polygons in the Harvard Forest History 

and Disturbance GIS.  The resulting polygons from intersection indicated within each 

plot the resulting percent damage to the dominant or co-dominant trees during the 

hurricane, the year of agricultural abandonment and all silvicuture treatments applied 

throughout time.  
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These data were used as inputs to a discrete SORTIE model for all ten plots. Each 

model was initialized by translating the vector GIS data onto the raster grids used by each 

corresponding SORTIE behavior. While the SORTIE simulations are conducted on the 

one-ha scale, the scale of interest in this study is 25 x 25 meters.  The cell size of the 

SORITE grids is 10 x 10 meters, so the results from the GIS analysis of each subplot 

were translated onto the scale of the grids. The year of agricultural abandonment was 

used as time step zero (T0)  If there was differential abandonment within a plot, the entire 

plot was initialized using the oldest abandonment age, and a clear cut applied in each 

time step to the cells which were still in agricultural use. This method models the 

maintenance clearing of woody plants from agricultural fields.  The hurricane damage 

was modeled using a partial harvest, as the canopy trees were salvaged immediately after 

the hurricane.  The silviculture treatments were implemented as either a harvest or 

planting based upon the historical records. The DESDynI field data indicates red maple 

Acer rubrum L., which has a relative dominance greater than 25 percent in six of the 

Prospect hill plots. (Cook et al 2011).  According to Motzkin et. al., historical land use is 

the strongest indicator for the dominance of red maple, which is most competitive on 

agricultural land uses, especially former unimproved pastures and woodlots. (Motzkin et 

al., 1999) For this reason the initial sapling densities, which are set to 1 per hectare for all 

nine species, were modified to model this dominance, as SORTIE does not take into 

account soil characteristics affected by agriculture. The initial density of red maple was 

increased to 25 seedlings per hectare.   
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4.1.1 Prospect Hill Plot 1 

Prospect Hill Plot 1 represents the first of two Pinus resinosa Ait. (red pine) plantation 

plots within the field campaign. The Prospect Hill GIS agricultural abandonment layer 

indicates the majority of this plot was abandoned from agriculture in 1895 (Foster and 

Boose 1999). Thus, as SORTIE uses five year time steps, the simulations were started 23 

time steps ago, with T0 representing 1895 and  T23 representing 2010.  The 1938 

hurricane layer indicated differential damage across the plot (Hall, 2005), which was 

simulated during time step nine, by implementing the resulting tree damage as reduction 

in basal area corresponding to the GIS layer (1 – 10%, 11 – 25% and 26 – 50%). 

Silviculture records indicate the plot was clear cut in 1923 and then planted as a Red pine 

plantation, however a triangle encompassing most of subplots 4 and 5 was planted with 

Picea glauca Voss (white spruce) and Larix laricina Koch (tamarack) (Hall 2005), which 

are not important in the current forest and therefore not modeled in this study. This 

historical management regime was modeled with a clear cut and a planting of red pines in 

a grid pattern with 1.5 m spacing to achieve the tree density surveyed in 2009, with the 

exception area planted with spruce and Tamarack. The hurricane damage seems to mirror 

the abandonment, with the portion of the plot abandoned in 1870 receiving minor (10%) 

damage, while the subplots abandoned in 1900 received severe (80%) damage (Hall, 

2005).  

4.1.2 Prospect Hill Plot 2 

Prospect Hill Plot 2 is one of the two ‘late successional’ Tsuga canadensis L. (Eastern 

hemlock) dominated stands within the field campaign plots within this specific tract. The 
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Prospect Hill GIS indicated different times of agricultural abandonment in Prospect Hill 

plot 2.  The northern portion of the plot was abandoned in 1850, while subplots 1 and 4 

were abandoned in 1885 (Foster and Boose 2005). This was simulated in SORTIE by 

starting the simulations with T0=1850 and T32 = 2010. The thirty five years during which 

subplot 1 and 4 were still under agricultural use were simulated by implementing a clear-

cut in these subplots for the first seven time steps, and the forest starting to grow in T7. 

Silviculture records indicate the subplots 1, 4, 13 and 16 were clear cut in 1925-26, and 

this was simulated using the harvest function in T15  (Hall 2005). The clear cuts led to 

these subplots escaping damage in the 1938 hurricane (Hall 2005), thus, the storm 

damage implemented in year T18 was not applied to these plots. Subplots 7, 8, 9, 10, 11, 

12, 14 and 15 incurred 50% damage during this time step, while subplots 2, 3, 5 and 6 

only received slight (10%) damage (Hall 2005). Silviculture records also indicate a 

thinning in subplots 7, 8, 9, 10, 12, 14 and 15 in 1957, which was simulated using a 30% 

harvest (Hall 2005).  

4.1.3 Prospect Hill Plot 3 

Prospect Hill Plot 3 represents one of the red maple dominated plots within this field 

campaign. The Prospect Hill GIS indicated the entire Prospect Hill Plot PH3 was 

abandoned in 1850 (Foster and Boose 1999). Thus, the SORTIE simulations began with 

T0=1850 and T32 =2010.  The 1938 Hurricane damage layer indicated the Southwest 

portion of the plot incurred 50% damage, while the Northwest corner of the plot only 

sustained minor damage (~10%) (Hall 2005).  These values were used to simulate the 
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hurricane damage in T18.  Silviculture records also indicated a thinning in 1949 (Hall 

2005), which was modeled as a 40% partial harvest in year T20.   

 4.1.4 Prospect Hill Plot 4 

Prospect Hill Plot 4 represents the oldest growth, late successional hemlock dominated 

plot within the field campaign.  The Prospect Hill GIS indicates most of Prospect Hill 

Plot 4 fell within the ‘permanent woodlot’ section of the Prospect Hill Tract (Foster and 

Boose 1999). The records also indicate a clear cut in 1780 (Hall 2005). Thus the 

simulation was initiated in 1730, with a clear cut occurring in 1780. The section which 

was abandoned in 1880 (Foster and Boose 1999) was simulated by implementing clear-

cuts each time step in subplots 6, 7, 10 and 11 until the year 1880. The GIS layer for the 

1938 hurricane indicates homogenous moderate damage (26-50%) across the plot (Hall 

2005), which was modeled using 40 percent damage in the corresponding time step. 

4.1.5 Prospect Hill Plot 5 

Prospect Hill Plot 5 is currently dominated by a mixture of upland hardwoods, mainly red 

maple and Quercus rubra L. (red oak). The Prospect Hill GIS indicated the middle 

section of Prospect Hill Plot 5 was abandoned in 1870 (Foster and Boose 1999). This was 

simulated as T0, with clear cuts occurring in the northwest subplots (10, 11, 14, and 15) 

until T6=1900. Subplots 1, 2, part of 3 and 4 were abandoned in T8=1910 (Foster and 

Boose 1999), which was simulated with clear cuts up until the eighth time step.  The 

1938 Hurricane damage layer indicates the subplots 3 and 6-16 sustained moderate 

damage (26-50%)(Hall 2005), which was modeled using 40% storm damage in T13.  The 

lower portions of subplots 4, 5 and 8 received severe damage (76-90%)  (Hall 2005) 
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which was modeled using 80% storm damage. Silviculture records indicate a thinning in 

1949 to control the rapid growth after the hurricane damage (Hall 2005). This was 

modeled with a partial harvest of 50% in T16.  

4.1.6 Prospect Hill Plot 6 

Prospect Hill Plot 6 is representative of the Red oak dominated forest of the Prospect Hill 

tract. The Prospect Hill GIS indicates the western section of Prospect Hill Plot 6 

(subplots 1-19) was abandoned in 1875, while the eastern section (subplots 11-16) was 

abandoned in 1860 (Foster and Boose 1999). Thus, the eastern section simulation began 

with T0=1860, with a clear cut occurring during the first three time steps in western 

section.  Silviculture records indicate a saw timber cutting in the middle section of the 

plot in 1937, leaving this section open for the hurricane occurring in 1938 (Hall 2005). 

The section to the west of this cut was completely destroyed (Hall 2005), which was 

modeled with a clear cut in T16. For modeling purposes, these sections were both clear cut 

at the same time. The portion of the plot to the east of the cutting received moderate 

damage (26-50%) (Hall 2005), which was modeled using 40% storm damage. The 

Natural Disturbance layer of the Prospect Hill GIS indicates a fire affected the plot in 

1957 (Foster and Boose 1999). As SORTIE does not include a fire disturbance behavior 

in its model, here a partial harvest of 70% was applied.  This behavior was calibrated to 

reflect the current tree density and small average diameter within the plot.  

4.1.7 Prospect Hill Plot 7 

Prospect Hill Plot 7 is one of the red pine plantations surveyed in this study. The Prospect 

Hill GIS indicates the majority of the plot was abandoned from agriculture in 1870, while 
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the subplots 10, 11, 13 and 14 were abandoned in 1900 (Foster and Boose 1999). This 

was modeled starting the simulations with T0 = 1870 and T28 = 2010. Clear cuts were 

implemented in each time step until T6=1900 in subplots 10, 11, 14 and 14.  Silviculture 

records indicate the plot was clear cut in 1923 and then planted as a red pine plantation 

(Hall 2005).  This was modeled with a clear cut and a planting of red pines in a grid 

pattern with 1.5 m spacing to achieve the tree density surveyed in 2009. The hurricane 

damage seems to mirror the abandonment, with the portion of the plot abandoned in 1870 

receiving minor (10%) damage, while the subplots abandoned in 1900 receiving severe 

(80%) damage (Hall 2005).  

4.1.8 Prospect Hill Plot 8 

Prospect Hill Plot 8 is almost completely dominated by red maple. However, the plot falls 

outside the coverage of the Prospect Hill and Harvard Forest GIS datasets (Foster and 

Boose 1999; Hall 2005).   Thus, the year of abandonment and effects of the hurricane 

were estimated from both the closest polygon and most similar field campaign plot, PH3.   

4.1.9 Prospect Hill Plot 9 

Prospect Hill Plot 9 is currently dominated by red maple, with oak and Betula 

alleghaniensis Britton (yellow birch) as co-dominants. The Prospect Hill GIS indicates 

Prospect Hill Plot 9 was abandoned in 1870 (Foster and Boose 1999). Although the 

easternmost portion of the plot falls outside the map layer, for modeling purposes 

uniform abandonment is assumed. The model begins with T0  1870 and ends with T28 = 

2010.  Silviculture records indicate a uniform “cutting” in 1910 (Hall 2005).  This is 

modeled by implementing a selective partial harvest of 40% in T8.  Records also indicate 
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a partial harvest and improved cut in 1958 (Hall 2005), which is modeled as another 40% 

selective partial harvest in T18.  Prospect Hill Plot 9 falls outside the coverage of the 1938 

Hurricane Damage layer (Hall 2005), so the model uses the damage from the most 

proximate polygon included in the layer, moderate damage (50%).  

4.1.10 Prospect Hill Plot 10 

The Prospect Hill GIS indicates a very complex history for Prospect Hill Plot 10. This 

complex history has led to great variance in aboveground biomass at the 25 by 25m 

subplot level and currently this plot is dominated by Red maple. Subplots 15 and 16 were 

abandoned from agriculture in 1850, while subplots 5 and 7-17 were abandoned in 1890.  

Subplots 1 and 4 were abandoned in 1870 and subplots 2, 3, and 6 were abandoned in 

1905 (Foster and Boose 1999).  This differential abandonment scheme is modeled 

starting with T0=1850 and running through T32=2010.  The subplots abandoned after 

1850 have a clear cut applied every time step until the corresponding time step of 

abandonment indicated in the historical record.  The 1938 Hurricane Damage map also 

indicates a complex pattern of damage to PH10 (Hall 2005).  Silviculture records indicate 

a clear cut in subplots 7-16 in 1936, the year before the hurricane damaged the rest of the 

plot (Hall 2005). However, subplot 6 was completely destroyed during the hurricane. 

Uncannily, the portion of the plot to the south remained undamaged (Hall 2005). This 

heterogeneous damage shows the complexity of effects upon the forest of large 

infrequent disturbances such as hurricanes. The effects of this can be seen in the variance 

in density and biomass across the plot in both the simulations and the field campaign 

measurements. 
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4.2 Objective 2: Model Parameterization 

The second objective is to parameterize an SORTIE to simulate the forest dynamics 

within each plot from abandonment to its current state for the species measured in the 

Harvard Forest field plots (Cook 2010, Table 1). The initialized SORTIE grids for each 

Prospect Hill plot were run first using the initial SORTIE parameters (Table 2).  

 

Acronym Latin Name Common Name 

ACRU Acer rubrum L Red maple 
ASCA Acer saccharum Marshall Sugar maple 
BEAL Betula alleghaniensis Britton Yellow birch 
FAGR Fagus grandifolia Ehrh. American beech 
TSCA Tsuga Canadensis L. Eastern hemlock 
FRAM Fraxinus americana L. White ash 
PIST Pinus strobus L White pine 
PRSE Prunus serotina Ehrh. Black cherry 
QURU Quercus rubra L Northern red oak 
PIRE Pinus resinosa Aiton Red pine 
 

Table 1.  Species modeled in the Prospect Hill SORTIE Simulations.  

 

Species Asymptotic 
Diameter 
Growth 
(A) 

Slope of 
Diameter 
Growth 
Response 
(S) 

ACRU 0.167 0.270 
ASCA 0.125 0.159 
BEAL 0.169 0.137 
FAGR 0.152 0.075 
TSCA 0.229 0.051 
FRAM 0.226 0.025 
PIST 0.230 0.019 
PRSE .0249 0.064 
QURU .0266 0.022 
 

Table 2.  SORTIE initial growth parameters 
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4.2.1 Parameter estimation 

In forest stands, the density and biomass of trees is determined by a complex interplay 

between ecological factors which control 1) growth, 2) mortality, 3) species specific 

growth response, and 4) senescence and dispersal parameters.  The underlying ecological 

factors controlling the above four parameters change between sites due to different soil 

conditions, hydrologic conditions and elevation; this is why these factors were chosen for 

modification to model the Prospect Hill research plots. The canopy light penetration 

parameters, which were empirically derived by Pacala et al (2003), do not change by 

location with similar species thus the initial SORTIE parameters were used.   

Using initial parameters provided along with the SORTIE program, preliminary 

simulations produced plots with unrealistically high biomass and too few trees with 

average DBH much higher than the field measurements.  To accurately model the forest 

dynamics of Prospect Hill, it was necessary to adjust the SORTIE growth, mortality 

senescence and dispersal parameters. All parameters adjustments fall within the prior 

distributions included with the SORTIE documentation (Pacala 1996, 2010). The initial 

tree growth parameter provided with the SORTIE-ND program is 0.3 cm per year. While 

this growth rate produced realistic results in the Connecticut forest in which the SORTIE 

model was developed, in the Prospect Hill simulations this growth rate produced forest 

stands with a mean dBH much higher than the field measurements. Through 

systematically decreasing the growth rates and using a two-sample t-test to compare the 

modeled results to 2009 ground truth data, a reasonable annual Prospect Hill growth rate 

was determined to have a mean of 0.1 cm per year with a standard deviation of 0.02 cm 

per year (Cook et al 2011).   
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The Adult Background Mortality Rate included in the original SORTIE program 

is 0.01, which means any given tree has a one per cent chance of dying in any given year. 

In the Prospect Hill simulations it seemed too few adult trees were dying, growing over-

large and dominating the forest stands.  Systematically increasing the mortality rate using 

a two sample t-test comparing simulated to field densities used to generate a mean Adult 

Background Mortality Rate of 0.018 with a standard deviation of 0.005 (Cook et al 

2011).  

Originally, the species specific growth parameters (Asymptotic Diameter Growth 

and Slope of Diameter Growth Response) produced forests dominated with a late 

successional mix of Hemlock and Beech trees. Only two Prospect Hill plots are 

dominated by Hemlock, and none of the ten plots have a significant relative dominance 

of beech. It was necessary to adjust the species specific growth parameters to produce 

forest stands with similar composition to the Prospect Hill ground validation plots 

(Tables 2 and 3).  As previously mentioned the DESDynI field data indicates red maple 

Acer rubrum L., which has a relative dominance greater than 25 percent in six of the 

Prospect hill plots. (Cook et al 2011).  According to Motzkin et. al., historical land use is 

the strongest indicator for the dominance of red maple, which is most competitive on 

agricultural land uses, especially former unimproved pastures and woodlots. (Motzkin et 

al. 1999) To model this dominance in succession, the Asymptotic Diameter Growth was 

increased from the initial value of 0.156 to 0.2 and the Slope Diameter Response was 

increased from 0.0015 to 0.0024. The rest of the Asymptotic Diameter Growth  and Slope 

Diameter Response values were altered to reflect each species current relative dominance 
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in the field plots (Cook et al 2011) All the changed species specific growth parameters 

were within their prior distributions according to Steven Pacala (Pacala, 2010).   

 The Standardized Total Recruits (STR) parameter provided with the initial 

SORTIE package was 0.09 seedlings per year. This parameter controls the number of 

seedling recruits each adult tree produces each year.   In tracking the tree life stage 

distribution of the simulations it was found far too few seedlings were being produced, 

which exacerbated the problem of over large old trees dominating the simulated forest 

stands. Increasing the STR parameter to 1.0 increased the number of seedlings to a 

reasonable amount of seedlings per hectare as counted in the field measurements.  

 In order to add red pine into the SORTIE simulations, the species parameters had 

to be estimated. Most parameters were based upon those generated by Pacala et al (1996) 

of white pine; however the maximum height and crown radius parameters were reduced 

to reflect field measurements taken at the University of Michigan Saginaw Forest, a north 

temperate forest of similar latitude and forest species composition.   

 

Species Asymptotic 
Diameter 
Growth 
(A) 

Slope of 
Diameter 
Growth 
Response 
(S) 

ACRU 0.200 0.240 
ASCA 0.00* 0.00* 
BEAL 0.155 0.160 
FAGR 0.152 0.050 
TSCA 0.229 0.051 
FRAM 0.180 0.015 
PIST 0.16 0.014 
PRSE 0.16 0.019 
QURU 0.18 0.018 
PIRE 0.2395 0.0415 
 

Table 3. Prospect Hill SORTIE modified growth parameters. *ACRU was not significant in any plot. 
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4.2.2 Biomass calculations 

Detailed output files from a SORTIE run record data for each individual tree at each time 

step.  Tree aboveground biomass was calculated within the SORTIE program using the 

allometric equations generated by Jenkins et al. (Jenkins et all 2004).   The Jenkins study 

aimed to develop generalizable equations by compiling allometric equation studies from 

all over the continental United States. A species specific set of allometric coefficients 

along with a tree’s diameter is entered into the general power equation: 

     M = aDb 

Where M is the above ground biomass of a tree, D is the diameter at breast height and a 

and b are species specific allometric coefficients (Table 4). 

 

Species Equation 
Id 

Correction 
Factor 

a b C d DBH 
units 

Biomass 
units 

ACRU 2 1.01 -2.01074 0 2.363 1 Cm kg 
ASCA 2 1.016 -2.034 0 2.451 1 Cm kg 
BEAL 2 1.02 -2.1306 0 2.451 1 Cm kg 
FAGR 1 1 2.1112 2.462 1 0 Cm g 
TSCA 2 1 0.8645 0 2.3859 1 In lb 
FRAM 1 1.105 1.27844 1.4248 2 0 Cm g 
PIST 2 1 5.281 0 2.3069 1 Cm g 
PRSE 1 1.017 1.1981 1.5876 2 0 Cm g 
QURU 2 1 4.9667 0 2.394 1 Cm g 
PIRE 2 1 5.281 0 2.0369 1 Cm g 

Equation 1:  log( biomass)  = a + b * (log(diac)) 
Equation 2:  ln  ( biomass ) = a + b * dia + c * (ln(diad)) 
  

Table 4. Allometric parameters. Jenkins equations, parameters and coefficients. All final biomass values 
were calculated in units of Mg/ha.  
 

 Some equations contained in the Jenkins database specify a correction factor to 

correct for bias introduced by using log functions.  The parameters published in the 
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Jenkins database come from many sources which use a range of units. The SORTIE 

program performs all unit conversions and reports final biomass in metric tons (Mg). 

 

4.3 Objective 3: Model Performance Evaluation 

In the third objective the objective is to evaluate the parameterization of the model both 

against current field data for each plot and applied to plots outside the research area.   A 

second evaluation step uses Monte Carlo simulations to conduct a sensitivity analysis to 

investigate and ensure proper functioning of the model.  

4.3.1 Application of model to Field Plots outside Prospect Hill 

To test the validity of this parameterization of the SORTIE model over areas outside the 

model development plots, the parameters were applied to three plots also at Harvard 

Forest but outside of the Prospect Hill Tract.  These plots were Tom Swamp Plot 1, Tom 

Swamp Plot 2 and Slab City Plot 1. While falling within the coverage of the 1938 

Hurricane Damage and Silviculture Treatments GIS layers, there is no information of the 

year of agricultural abandonment for these plots. The hurricane damage and silviculture 

treatments were programmed into the SORTIE interface as with the Prospect Hill Plots, 

however the age of the plots had to be estimated based upon the average DBH of the trees 

and the degree of succession of the forest type. Thus, the choice of time step 0 is 

considered somewhat imprecise and a potential source of error.  The number of time 

steps of the plot within Prospect Hill most like the validation plot was used.  
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4.3.2 Data processing 

In the detailed output file each SORTIE, the x-coordinate, y-coordinate, dbh, height, 

canopy height and biomass for each individual tree were recorded. These trees were then 

attributed to their proper 25 x 25 meter subplot using the sortie_read algorithm we 

developed in the MATLAB suite. The sortie_subplot_stats algorithm then calculated a 

density, biomass (Mg/ha) and an average canopy height for each subplot.  

4.3.3 Probability Density Functions 

In order to generate probability density functions of the SORTIE simulations to compare 

to the field data and validate the model, each SORTIE Prospect Hill Plot was run 100 

times. The sortie_assemble_forest program assembled these 100 hectare plots into a 

virtual forest while still assigning each tree to its respective 25 x 25 meter subplot, with 

each plot containing 16 subplots.  The resulting 1600 subplot measurements were then fit 

to probability density functions in order for statistical evaluation (p </=0.05).  The large 

sample sizes allow for more robust conclusions of the evaluation techniques described in 

the model performance section.  

4.3.4 Statistical Testing 

To evaluate the accuracy of the modeled plots, two sample t-tests were used to verify no 

significant difference in the average biomass and density at the subplot level between the 

modeled plots and the field measurements.  That is to say the field measurements could 

have been sampled from the probability density function of the simulated results.  To be 

considered statistically similar, the test had to fail to reject the null hypothesis of no 

difference in means (p </=0.05).   
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 The second phase of statistical evaluation involved passing each set of 

simulations though an F-statistic variance test to test for similar variances in biomass 

distribution and tree density at the subplot level in both the simulations and the field 

measurements.  For the variances to be considered statistically similar, the test had to fail 

to reject the null hypothesis of no differences in variance (p </=0.05). 

4.3.5 Sensitivity Analysis 

In order to verify the correct functioning of the model, a sensitivity analysis was 

conducted on the growth and mortality parameters of the current SORTIE 

parameterization. The method used was a Monte Carlo simulation of 1000 runs of the 

model, randomly and independently varying both the growth and mortality parameters in 

each run. The Monte Carlo simulation was broken up between all ten Prospect Hill plots, 

with 100 simulations assigned to each.  A Python script was used to generate two lists of 

random numbers, one for the growth parameter and one for the mortality parameter. 

 For the growth parameter, the mean growth rate of 0.1 cm/year was used, with a 

standard deviation of 0.02 cm/year. The random numbers were drawn using a Gaussian 

distribution.  Of the resulting 1000 numbers, 95 per cent fell within the range of 0.06 to 

0.14 cm/year, which we consider to be a realistic range for the growth parameter based 

on stand ages and current field measured average diameter (Hall, 2005, Cook et al 2011).  

Python uses the Mersenne Twister as its core random number generator. It produces 53-

bit precision floats and has a period of 2**19937-1. The Mersenne Twister is one of the 

most extensively tested random number generators in existence (Matsumoto and 

Nishimura, 1998). 
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The set of random mortality values was generated using the same algorithm. The 

mean input into the random number generator was a 0.018 probability of mortality in any 

given year, with a standard deviation of 0.005. Of the resulting 1000 numbers, 95 per 

cent fell within the interval of 0.012 and 0.023, which we considered to be a reasonable 

range of mortality probability from based on the densities and average DBH of the field 

measured plots (Cook et al 2011).    

The lists of both randomly generated growth and mortality values were combined, 

and a unique set of both parameters assigned a run number.  The value sets were divided 

into subsets of 100 and assigned to one of the ten Prospect Hill plots. The growth and 

mortality values were entered into the SORTIE parameter set for each individual run, and 

the simulations were batched into sets of 100 runs. The resulting average biomass at the 

subplot level was extracted using the MATLAB SORTIE processing suite, and attributed 

to the unique growth and mortality parameter set.  These values were then fed into the R 

statistical package, and a scatter plot produced for each Prospect Hill plot and all 1000 

runs. Linear regression was used to fit a model to the Monte Carlo simulation of each of 

the Prospect Hill plots.  

 

4.4 Objective: Visualizations  

The final objective was to create a three dimensional (3-D) model of the forest using 

realistic canopy structures.  For each tree in a simulated plot, the detailed output files 

generated by the SORTIE program included the species, x coordinate, y coordinate, 

DBH, tree height, canopy depth, and biomass.  These data for each tree are stored in .xml 

format. 
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 The detailed output .xml files from the final time step of one model run were fed 

into the suite of MATLAB programs to process the trees into an array. The sortie_forest 

program translated the tree height, diameter of the trunk, canopy depth and canopy width 

into a virtual three dimensional tree. To produce realistic canopy profiles for each tree 

species, profile views of each of the nine tree species were scanned from Trees of the 

Northern United States and Canada (Farrar 1991). The profile of the canopy was traced 

and translated into a vector. This vector was then rotated cylindrically to produce an 

idealized canopy structure for each tree species. 

 In order to validate the realism of the visualizations created in MATLAB,   in 

2012 the canopy profiles generated by the simulations were compared to new field 

measurements. The exact spatial locations of trees were mapped in plot PH3 subplot 1, 

along with the DBH, canopy height and depth.  These measurements were inserted into 

the MATLAB visualization suite, for comparison to visualizations generated by SORTIE 

simulations. 

  

5. RESULTS 

Prospect Hill Plot 3 was the primary plot upon which this parameterization of SORTIE 

was trained. For clarity, the focus of this section will focus upon the results obtained from 

Prospect Hill Plot 4. Results from the remaining plots are included in Appendix 1.   

 

5.1 History of Prospect Hill Plots and Model Initialization  

The vector GIS layers were intersected with the DESDynI field plots, and the resulting 

polygons translated into the SORTIE grid system to initialize a model for each plot.  The 
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natural and anthropogenic histories both between and within these plots is very 

heterogeneous.  Prospect Hill Plot 3 displayed the most homogenous pattern of 

disturbance, so it was chosen for initial estimation of modeling parameters.   

 According to historical records, Prospect Hill Plot 3 was abandoned in 1980 

(Foster and Boose 1999; Figure 5). A small portion of the plot is listed in the agricultural 

abandonment map as being abandoned “pre-1908”, which implies uncertainty in the 

historical records (Foster and Boose 1999). For modeling purposes homogenous 

abandonment in 1870 is assumed. The portion of plot PH3 which intersects the “pre-

1908” polygon is negligible, and probably within the margin of spatial error of the map.  

 

Figure 5. Prospect Hill Plot 3 Agricultural Abandonment. Older ages of abandonment are shown by 
darker green with more recent abandonment shown as tan to brown 
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The 1938 hurricane damage map indicates damage of 21 -50 % in all of subplots 

6, 7 and 10 through 16, and similar damage in the half of subplots 5, 6 and 9 (Hall 2005). 

This damage was translated as a partial harvest of 50% to the SORTIE grids representing 

these subplots ( Figure 7). The higher end of the damage range reported within these 

subplots programmed into the model because all damaged timber was harvested in the 

period 1931 to 1941 (Foster 1992, Rowlands 1938). 

 

 

Figure 6. Prospect Hill Plot 3 1938 Hurricane Damage. Higher levels of damage are indicated by darker 
red shades.   
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Figure 7. PH3 SORTIE harvest interface grid.  A partial harvest was applied to the south eastern 
subplots. Distances in meters.  
 

5.2 Modeling 

The final model parameters were run for 100 simulations for each simulated field plot. 

Because SORTIE is a stochastic model, the results varied between each simulation. As 

statistical validations were only conducted on the final time step of each simulation it is 

important to make sure the dynamics of the simulation through time are capturing the 

desired historical events modeled within each plot. The effects of the 1938 hurricane and 

the thinning in 1949 are very apparent in the model of PH3 (Figure 8). Visual validation 

was used to determine if the simulations were capturing the relative dynamics of 

historical events. These results were also used to determine if the simulations were 

producing the correct relative dominance of tree species as measured in the field.  
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Figure 8. Modeling run of Prospect Hill PH3. X axis indicates time step, with T0 corresponding to 1850.  
Y axis indicates basal area (m2). 
 

5.3 Evaluation of Model Performance 

5.3.1Plots outside Prospect Hill 

For Tom Swamp Plot 1, which was most like Prospect Hill Plot 2 , T0 was chosen to be 

1890, meaning the simulations were run for 24 time steps. The hurricane damage map 

does include Tom Swamp, and the resulting damage was 50 per cent uniformly to the 

entire plot (Hall 2005).  Tom Swamp is also included in the silviculture treatments map, 

so the thinning in time step 14 was included in the model (Hall 2005).  

 Tom Swamp Plot 2 most resembles Prospect Hill Plot 3, therefore 1850 was 

chosen as the initial time step, and the model run for 30 time steps.  The hurricane 

damage within the plot was also uniformly 50 per cent. There were two thinning 

treatments in portions of the plot in time steps 20 and 25 (Hall 2005).   

1938 Hurricane (50% damage) 
and salvage harvest 1949 Thinning 

Total 
ACRU 
QURU 
ACSA 
BEAL 
TSCA 
FAGR 
FRAM 
PIST 
PRSE 
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 Slab City Plot 1 seems to match up with Prospect Hill Plot 5, and 1870 was 

chosen for T0. Slab City also falls within the coverage of the hurricane damage and 

silviculture treatments layers. The hurricane damage to the plot was uniformly 90 percent 

and there was a thinning in time step 22 (Hall 2005).  

5.3.2 Probability Density Functions 

Prospect Hill Plot 3, which was the first plot to be parameterized and validated, is 

included here to illustrate the process of validation. The distribution appears to be 

Gaussian, according to the MATLAB function FITDIST.  This indicates the field 

measured distribution could have been sampled from the simulated distribution. 
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Figures 9-10. Probability Density Function of Prospect Hill Plot 3 simulations.  A fitdist test shows the 
field measured distribution could have been sampled from the Gaussian distribution formed by the 
simulations (p</=0.05). Number of simulated subplots = 1600.  Number of field measured subplots = 16.   
 

5.3.3 Statistical Testing 

The results of the statistical evaluation show that most of the field measurements could 

have been drawn from the probability density function formed by the combined simulated 

runs for each plot (Table 5).  All simulations produce the realistic biomass estimates. 

Within the Prospect Hill Plots, PH1, PH2, PH3 and PH8 display the best fits.  Of the 

evaluation plots, SC1 displays the best fit.  TS1 and TS2 produce the correct biomasses, 

however under predict the densities. The variance test seems to fail the most often, 

however when assembling the simulations and calculating their statistics, all the runs are 

averaged, which tends to lower the variance. If a single run is selected from the 100 total 

runs, the variance test fails to reject much less often.   
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Plot Field 
Biomass 

Simulated 
Biomass 

Biomass 
p 

Field 
Density 

Simulated 
Density 

Density 
P 

Variance 
P 

Simulation 
runs 

PH1 304.8133 330.1012 0.2130* 937 978.69 0.6253* 0.1103* 100 
PH2 256.0364 239.9719 0.2887* 967 851.30 0.6992* 0.5462* 100 
PH3 248.7106 237.4050 0.4104* 476 460.76 0.5233* 0.0773* 100 
PH4 271.6172 265.7428 0.5979* 551 554.27 0.9187* 0.00097 100 
PH5 214.401 257.5401 0.2151* 702 560.31 0.00820 0.4952* 100 
PH6 110.2564 135.4696 0.0941* 817 797.73 0.8258* 0.01860 100 
PH7 279.5748 284.5996 0.7183* 834 779.78 0.2335* 0.02800 100 
PH8 218.4617 203.6723 0.3866* 489 439.79 0.0669* 0.3726* 100 
PH9 189.7594 192.2628 0.7518* 574 602.18 0.2497* 1.66E-23 100 

PH10 134.5962 129.9585 0.8072* 785 664.92 0.1739* 0.03200 100 
TS1 230.2684 233.0315 0.8497* 874 626.76 2.1e-017 0.01460 100 
TS2 231.1013 240.3166 0.4609* 520 459.72 0.00630 0.4166* 100 
SC1 192.0549 213.9481 0.2294* 762 823.50 0.2812* 0.0616* 100 

 
Table 5. Statistical Evaluation. A two sample t-test was used to compare the simulated and field biomass 
and density measurements at the subplot (25m x 25m) level. An F-statistic variance test was used to 
compare the field measured and simulated variances. 
 * Significantly similar (p>0.05) 
 

5.3.4 Sensitivity Analysis 

The Monte Carlo simulations show the model to be functioning as intended, and the 

ranges of the growth and mortality parameters selected to be within the range of the 

model’s functioning (Figures 25 and 26).  All lines, with the exception of the biomass 

parameter for PH6 in green, display a slope of less than one. This means that for a 10 

percent change in the parameter, there is a less than 10 percent change in the response 

variable. This is due to the negative feedbacks in the model.  PH2, in red, seems to have a 

noisy response to changing the growth parameter, as the coefficient of determination is 

only 0.06, indicating dispersed residuals.  
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Figure 11. Sensitivity analysis of SORTIE growth parameter. Each line represents the best fit linear 
regression through the 100 simulated points for each Prospect Hill Plot. The r-squared coefficient of 
determination is included to indicate the fit of each line.  

 

Figure 12. Sensitivity analysis of SORTIE mortality parameter. Each line represents the best fit linear 
regression through the 100 simulated points for each Prospect Hill Plot. The r-squared coefficient of 
determination is included to indicate the fit of each line.  
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5.4 Visualizations 

Each plot measures 50 meters by 200 meters. Red canopies represent red maples, while 

brown canopies represent red oaks. Dark green canopies represent hemlocks while grey 

canopies represent white pine. Light green canopies represent yellow birch. The spatial 

configuration of the trees in the visualizations displays the influence of the historical 

natural and anthropogenic disturbances on current forest structure, biomass distribution 

and tree density.   

 The visualizations demonstrate the effects of differential disturbance patterns on 

the different plots. The northern section of Prospect Hill Plot 3 more resembles a late 

succession forest, with larger, less densely spaced trees Figure (12). These visualizations 

also demonstrate the high level of variability of both tree density and biomass distribution 

at the 25 x 25 meter scale.  

 

 

Figure 13. Visualization of Prospect Hill Plot 3 simulation. 
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The visualization of the 2012 field measured PH3 subplot 1 shows the simulationed 

visualizations are producing realistic canopy structures (Figure 14). The SORTIE model 

seems to assign canopy heights which are too deep. This indicates the canopy depth 

allometric parameters of SORTIE need to be adjusted for different sites.  

 Figure 15. Visualization of 2012 field measurements for PH3 subplot 1.  

  

6. DISCUSSION 

Individual-Based Modeling offers a way to investigate the above ground biomass 

distribution within a forest stand based upon differential ecological and historical 

phenomena which had led to a specific distribution. This analysis will help to inform us 

of both how different parameters affect biomass distribution and the impacts of changing 

these parameters.  This form of modeling will also help those attempting to develop 
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techniques for remote sensing of biomass and carbon in addressing sources of error and 

uncertainty in biomass estimation.   

 We have parameterized and validated the SORITE model of forest succession to 

reflect the how differential ecological and historical parameters have led to the specific 

biomass distribution in ten Prospect Hill plots. This parameterization tells the history of 

each plot.  To further this investigation, we have used the output from this modeling to 

produce three dimensional representations of the forest structure within these plots.   

In lieu of growth records for individual trees, or estimating rates based upon 

measuring the width of rings obtained from core samples, we have developed an 

approach to solve this parameter value by combining historical records with current field 

measurements.  If it is known when a plot started to grow, all the disturbances which 

happened within the plot, and the current biomass and tree density, we can estimate the 

growth parameter with a degree of confidence.  

 We have also developed a method to account for the lack of soil and moisture 

mechanisms in the SORITE model (Pacala 1996) and model the relative competiveness 

of each tree species.  By examining the current stand composition, examining historical 

land use maps (Foster 1992), and researching the relative competitiveness of tree species 

on these land use types (Motzkin 1990), we were able to alter the asymptote and slope of 

the growth response curves for each species to produce realistic results. Through an 

iterative process we were able to produce a set of relative slope response parameter 

values which produce the correct species compositions in all plots, even the three upon 

which the model was not trained.   
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The sensitivity analysis using Monte Carlo methods to test the effects of randomly 

perturbing the growth and mortality parameters shows the model to be functioning 

properly.  Increasing the intrinsic growth rate parameter (cm/year) by ten percent results 

in an increase of plot biomass by less than ten percent in all Prospect Hill plots except for 

PH6 (Figure 11). The reason for the odd functioning of PH6 will be discussed later.  

Increasing the intrinsic probability of the mortality parameter in the simulations by ten 

percent in all plots results in a decrease of less than ten percent biomass (Figure 12).  

These results indicate proper negative feedback loops are functioning to dampen the 

changes in these parameters. The regressions of the points for each plot show a linear 

relationship between the independent and response variables.  

The results of the Monte Carlo simulations give realistic ranges for the growth 

and mortality parameters in future SORTIE simulations. However the factors controlling 

tree mortality operate at a much larger scale then those controlling the growth parameters. 

These smaller scale variables such as elevation and soil type are not included in the 

SORTIE modeling framework (Pacala 1996). This leads to the argument of assigning the 

average mortality rate derived from the Monte Carlo simulations to all the plots, while 

varying the growth conditions about a much larger prior probability density function to 

account for factors not included in SORTIE.  

 While model performance evaluation shows most simulations seem to match the 

field data, not all plots are fit perfectly (Table 5). The biomass from the field all fall 

within the prior distribution created by the simulations. However, some of the densities 

and variances are not fit perfectly. The danger in over fitting a model lies in how useful it 

will be outside the specific area in which it was parameterized.  A model which has been 
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over fit will likely impose an understanding of a system which in reality only represents 

the data upon which it was trained.  This study makes every attempt to avoid this pitfall; 

however the detailed nature of the data used to train this model may in fact lead to a site 

specific model.    

 A number of available data were used to parameterize this model.  From land use 

history, detailed silviculture records, hurricane damage maps and extensive field 

observations, the rich historical and ecological record that exists for the Prospect Hill plot 

of Harvard Forest allows for a fine level of historical resolution in modeling.  Though this 

process, however, we found clear path dependence in forest makeup, density and biomass 

distribution from historical events.  

The increase in models that represent the functioning of complex adaptive 

systems has led to an increased awareness of path dependency and multiple equilibria in 

ecological systems (Pahl-Wostl 1995). This path dependence stems from negative and 

positive feedbacks.  For example, just changing the intensity of one simulated thinning of 

a plot by ten percent can lead to more than ten percent change in tree density and biomass 

in the final time step of plot PH3(Figure 8).   Chaotic systems are characterized by 

sensitivity to small perturbations, implying that small disturbances have disproportionally 

large and long lived effects (Phillips 2004). Similar path dependence also applies to the 

simulated hurricane damage within Prospect Hill Plot 3 (Figure 8). 

 Path dependence related to historical events both natural and anthropogenic 

highlights a source of uncertainty and error in both forest modeling and biomass 

estimation that is relatively unexplored.   Prospect Hill plot 6 was the last plot to be 

parameterized and validated, due to the high density and small average diameter of trees 
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within the plot (Cook 2010).  Within the data used to train the other nine plots there were 

no historical factors or events to explain the forest composition of PH6. However 

discovery of a natural disturbance map indicated a forest fire affected the northeastern 

section of Prospect Hill in 1957 (Foster and Boose 1999).  Of the ten research plots the 

fire only affected PH6; in fact PH6 was the only field plot affected by any recorded 

natural disturbance (the hurricane damage within Harvard Forest is recorded separately).  

Without simulating the fire, there is no way to produce results similar to the field 

validation measurements of PH6 without altering many other parameters in the SORTIE 

model. As red oak is more tolerant to fire than the other species present, and more 

quickly to regenerate after (Farrar, 1991), it has come to dominate the plot (Figure 16).   

 

 

Figure 16. Visualization of Prospect Hill Plot 6.  

 



   

53 

 

The path dependence inferred by historical anthropogenic events is best illustrated 

by the three dimensional visualizations. The visualization of the PH5 simulation shows 

the effects of differential abandonment, the path dependence caused of different starting 

points.  It is apparent the portion of the plot abandoned in 1870 is more dominated by late 

successional species such as white pine, whereas the portions of the plot abandoned later 

are dominated by red oak (Appendix Figure 26).  The effects of a thinning are most 

evident in the visualization for PH2, in which a thinning took place in 1957 in the north 

portion of the plot. The trees in the north part of the plot appear much less densely 

configured than the southern portion, which is also dominated by more red oaks while the 

rest of the plot is hemlock dominated (Appendix Figure 28).  This path dependence poses 

a problem in attempting to model forests, especially those with a less complete history 

than the Prospect Hill Tract.   

 This limitation is evident when the SORITE parameterization of this is applied to 

plots outside Prospect Hill.  Although the simulations of the Tom Swamp plots and Slab 

City plots accurately model the biomass measured in the field, the model systematically 

under-predicts the density (Table 5).  This is most likely due to the fact that although the 

hurricane damage and silviculture treatments within these plots are known, the starting 

time point and other natural disturbance factors are unknown. These simulations may be  

missing some factor which causes density of the trees within the plots to increase and lies 

outside the historical record.  In addition, it is well-known that diverse combinations of 

height, BA and density can produce similar biomass quantities. Thus biomass may be a 

more realistic estimate for similar modeling estimates, or for remote sensing-based 

estimates, than density alone.  
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Exploration of path dependence in biomass distribution and forest density brought 

about by a specific, spatially explicit history of natural and anthropogenic disturbances is 

now possible through advances in both computing power and three dimensional spatially 

explicit forest modeling.  Obrien et al have investigated the effects of differential 

hurricane regimes on tropical forests, although they used the ZELIG model with 

hypothetical forests and differential hypothetical hurricane regimes (Obrien et al 1992). 

Desai et al parameterized the ED model with ecological, forest inventory, and historical 

land use observations in an intensively managed forested landscape in the upper Midwest 

United States to study the effects of disturbance on carbon cycling (Desai et al 2007). 

However,  as the ED model only considers canopy height (Moorcroft et al 2001), the 

modeling methodology of this paper allows for more detailed research into the effects of 

disturbance on three dimensional canopy structures produced by differential disturbances.   

Most spatially explicit studies of path dependence in complex adaptive systems 

are limited to describing the configuration of city growth in urban planning (Atkinson 

and Oelson 1996, Wilson 2000), landform evolution (Perron and Fagherazzi, 2011) and 

the role of initial conditions and divergences from those in ecological systems (Phillips, 

2004).   

Motzkin et al studied the impacts of initial conditions, natural and anthropogenic 

disturbances on the specific species compositions of plots within Prospect Hill (1999). 

They were able to correlate the dominance of specific tree species to different 

disturbances. These findings were used in our parameterization to make red maple and 

red oak more competitive. Uriate et al (2007) used the SORTIE model to investigate the 

effects of increased hurricane frequency on carbon storage over the entire southern New 
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England region. They concluded over the short term increased hurricane damage will 

lead to a drop in biomass and carbon storage, however the long term effects depend on 

the fate of the downed timber; whether it is salvaged or not. However this study only 

projected the current SORTIE model into the future and extrapolated the potential effects 

of increasing hurricane frequency, with no validation to back up their findings. This 

highlights the need for data driven modeling research into the dynamics of path 

dependency and multiple equilibria in above ground biomass distribution and tree density 

brought about by natural and anthropogenic disturbances in forest ecosystems supported 

by historical records and field measurements.  

The Harvard Forest (USA) Nitrogen saturation experiment reports increased 

aboveground production in hardwood stands with elevated nitrogen levels, while red pine 

plantations under elevated nitrogen displayed a decrease over the period ( Magill et al 

2004). These show the importance of soil nitrogen in determining above ground biomass 

production. The version of SORTIE used in this study (Pacala 1996) does not consider 

soil nitrogen, although a grid ‘labeled secondary resource’ could be used to account for 

the element. However, the field data was collected for remote sensing purposes and soil 

samples were not taken (Cook 2010). Including nitrogen cycling in this model would help 

to produce its accuracy.   

The depth of the historical record for Prospect Hill belies both strength and 

weakness to the model parameterization of this study.  The detail with which the model 

was parameterized will allow for confident forecasts of forest dynamics into the future 

for Prospect Hill under different scenarios. This may prove useful in modeling the effects 

of the Adelges tsugae (Hemlock Woolly adelgid), an invasive pest which causes high 
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mortality in hemlocks (Orwig & Foster, 1998).   As hemlock is one of the most abundant, 

long lived and shade tolerant species in Northeastern forests (Rogers, 1978), the unique 

role it plays in these ecosystems will cause its loss to dramatically alter the landscape of 

this region.   

 Another possible future scenario this model may prove useful in forecasting is 

the effects of increased atmospheric carbon dioxide levels on biomass distribution and 

carbon storage within Prospect Hill.   The path dependence caused by disturbance events 

encountered in this study may prove useful in generating management plans to maximize 

the amount of carbon stored in these forest stands. The actual modeling of actual 

hurricane damage and it measured results in 2009 will allow for more confident 

predictions about the effects of increased hurricane frequencies.  However, the site 

specificity of the data with which this model was trained makes any forecasting only 

applicable to the Prospect Hill site, and the specific forest dynamics within.   The general 

model can be applied outside the plot, but the actual forest structure generated by the 

model may not reflect the dynamics of that specific forest.   

Due to the high level of spatial resolution included in this model however, its 

results may prove useful in developing an approach to remotely sense biomass using 

lidar. In forests, the physical propagation, extinction, and scattering of light is in part a 

function of the depth, width and structure of forest tree crowns and gaps between them.  

Spatially explicit 3D simulated forests from IBMs can be coupled with a lidar scattering 

model.   

First the three dimensional scenes generated during the visualization step of this 

study would be divided into cubic cells of a size corresponding to the resolution of the 
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lidar system. This process is known as voxelization. The resulting cells are attributed to 

the different structural components of the forest and assigned different densities.  A 

physics-based scattering algorithm is used to estimate the lidar backscatter from each of 

these cells (e.g. Sun and Ranson, 2000), as the energy from the lidar pulse is either 

reflected from the cell or transmitted through the cell to those below. 

 Although Sun and Ranson successfully modeled the 3D lidar returns over a 

simulated Maine forest in 2000, they did not predict forest biomass. The IBM model used 

in the study (ZELIG) also did not provide spatially explicit tree locations or crown 

metrics, and the shapes assigned to tree canopies were simple cones and cylinders. Hutt et 

al (2010) used lidar measured canopy heights to initialize the Ecosystem Demographic 

(ED) model developed by Moorcroft (2001) to predict biomass. However, the study sites 

used for these studies had a great deal of heterogeneity of canopy heights, and the ED 

model only tracks the height dimension of canopies. Within certain forests, stands of the 

same height have been measured to have differing biomasses. Previous studies of remote 

sensing biomass through lidar have reported high correlation coefficients of 

determinations (~R2=0.8), however have included a wide range of forest heights (Nelson 

et al 2003).  The approach we have developed to model the Prospect Hill tract was 

designed specifically to address the shortcomings of these previous studies.  The results 

from our SORTIE modeling have a much higher degree of spatial resolution than either 

the ZELIG or the ED models.  The shapes used to give the crowns a three dimensional 

shape in this study are also much more realistic than the simple cones and cylinders used 

by Sun and Ranson.  
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 In order to better support this mission, a more generalizable form of this model 

needs to be developed.  Most forests lack historical records of disturbances, whether 

natural or anthropogenic. This proves very troublesome for accurate modeling of forest 

structure and dynamics due to the path dependence brought about by these disturbances.  

It seems some form of average disturbance needs to be applied to a given plot where the 

historical disturbance regime is unknown and/or poorly documented.   

 Another aspect of the forest structure which is important to the remote sensing of 

biomass is the density of trees within the forest. While the end goal is to obtain the 

biomass, the density of the forest is also very important.  Two forests which have similar 

biomasses can display greatly differing tree densities (Table 5).  Further research is 

needed to determine if the structure of a lidar return can be used to differentiate forests of 

different densities. This would help the modeling process, as the path dependence 

inferred by disturbance seems to be more directly related to density than biomass per se. 

A thinning more recently in time seems to decrease density while a thinning farther in the 

past seems to increase density.  If lidar could differentiate between differing densities, the 

model could be more accurately tuned to reflect the actual forest structure and more 

accurate biomass estimate could be obtained.  

 The next step in creating an even more realistic model of forest structure is to use 

fractal geometry to generate virtual trees with realistic branching structures.  The use of 

fractal geometry to produce realistic plant structures was pioneered by Arstid 

Lindenmeyer (1968).  He developed a formal language, or grammar, known as L-systems 

which modeled the branching habits of plants.  This method works by rewriting, for 

example a ->ab means a is replaced by sting ab and b ->a means b is replaced by a. This 
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can be used to model the branching habits of trees, as trees demonstrate self-similarity as 

they branch.  An angle of divergence must be specified to capture the angle at which a 

particular species branches (Prusinkiewicz and Lindermayer, 1990).  

 As an exploration, we have implemented an L-system in MATLAB to generate a 

sample fractal red maple (Figures 40 and 41).  By measuring branching angles of red 

maples in the field plots, we determined the average angle of divergence to be 37.5 

degrees.  The implementation used the stochastic form of the L-systems, and branching 

angle and shoot length varied randomly about a mean based on a Gaussian distribution. 

  

 

Figure 16. Simple fractal red maples.  
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Figure 17. Sample fractal red maple with taper factor and shading.  

 

Ideally, and with enough computational power, each tree output by the SORTIE 

simulations would be used to generate a unique fractal tree. Then the above ground 

biomass could be split into its different components (trunk, branches and leaves) and 

allocated accordingly.  When put through the voxelation process, the result should 

provide a much more realistic model of forest structure.  Hopefully this would greatly 

improve the accuracy of the simulated lidar return over this forest plot.    
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7. CONCLUSIONS 

We developed a method to modify the SORITE model (Pacala 1996) to accurately 

estimate growth rate and relative competition between tree species by combining in 

absence of measurements of these parameters. This was made possible by combining 

detailed historical records of land use and disturbance with current field data. This 

method of parameter estimation is most useful when spatially explicit detailed historical 

data is available. 

 This technique has allowed us to construct one of the first spatially explicit 

historical models of biomass distribution within an actual forest. The visualizations can 

be used to create animations depicting the forest dynamics within these plots since 

agricultural abandonment. These plot histories will add to the already extensive records 

contained within the Harvard Forest Data Archive.  

  The accuracy of the simulations was statistically evaluated and a sensitivity 

analysis used to ensure proper functioning of the model and its assumptions.  Through 

this modeling and the process of three dimensional visualization we discovered a high 

degree of path dependence in biomass distribution and tree density related to historical 

disturbance factors both natural and anthropogenic.  

The nature of this path dependence will be of importance for future management 

decisions in the face of climate change and invasive pests. The level of historical detail 

upon which this model was trained will allow for more confident projection of future 

dynamics (Pacala 2010).  Although the projections may be site specific to Prospect Hill, 
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the results of recorded disturbances should allow for accurate modeling of these 

dynamics in other sites.  

The results of this study also display the limitations in developing accurate forest 

succession models in stands which lack historical records of natural and human induced 

disturbances.  This shows the need to development of the ability to develop mechanisms 

which simulate these disturbances to see if they produce accurate representations of 

current forest structures. The methods of constructing disturbance regimes employed in 

this study are an important first step toward this goal.  

The three dimensional results of this modeling can be used to develop an 

approach for the remote sensing of biomass and carbon storage by lidar.  This approach 

can be trained upon the Prospect Hill modeling results and hopefully prove useful outside 

the tract. Future areas of research include investigating the nature of the path dependency 

inferred by natural and anthropogenic disturbance and more realistic methods of creating 

three dimensional forest structures.  
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9. APPENDIX 1: ADDITIONAL FIGURES 

 

 

Appendix Figure 1. Prospect Hill Plot 1 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 
 

 
Appendix Figure 2. Prospect Hill Plot 1 1938 Hurricane Damage. Higher levels of damage are indicated 
by darker red shades.   
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Appendix Figure 3. Prospect Hill Plot 2 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown 
 

 

Appendix Figure 4. Prospect Hill Plot 2 1938 Hurricane Damage. Higher levels of damage are indicated 
by darker red shades.   
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Appendix Figure 5. Prospect Hill Plot 4 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown 
 

 

Appendix Figure 6. Prospect Hill Plot 4 1938 Hurricane Damage. Higher levels of damage are indicated 
by darker red shades.   
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Appendix Figure 7. Prospect Hill Plot 5 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 
 

 

Appendix Figure 8. Prospect Hill Plot 5 1938 Hurricane Damage. Higher levels of damage are indicated 
by darker red shades.   
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Appendix Figure 9. Prospect Hill Plot 6 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 
 

 

Appendix Figure 10. Prospect Hill Plot 6 1938 Hurricane Damage. Higher levels of damage are 
indicated by darker red shades.   
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Appendix Figure 11. Prospect Hill Plot 7 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 

 

Appendix Figure 12. Prospect Hill Plot 7 1938 Hurricane Damage. Higher levels of damage are 
indicated by darker red shades.   
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Appendix Figure 20. Prospect Hill Plot 9 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 
 

 

Appendix Figure 21. Prospect Hill Plot 10 Agricultural Abandonment. Older ages of abandonment are 
shown by darker green with more recent abandonment shown as tan to brown. 
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Appendix Figure 22. Prospect Hill Plot 10 1938 Hurricane Damage. Higher levels of damage are 
indicated by darker red shades.   
 

 

Appendix Figure 23. Visualization of Prospect Hill Plot 1. 
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Appendix Figure 24. Visualization of Prospect Hill Plot 2.  

 

 

 

Appendix Figure 25. Visualization of Prospect Hill Plot 4.  
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Appendix Figure 26. Visualization of Prospect Hill Plot 5. 

 

Appendix Figure 27. Visualization of Prospect Hill Plot 7.  
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Appendix Figure 28. Visualization of Prospect Hill Plot 8.  

 

 

Appendix Figure 29. Visualization of Prospect Hill Plot 9.  
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Appendix Figure 30. Visualization of Prospect Hill Plot 10.  
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10. APPENDIX 2: SORTIE PROCESSING SUITE CODE 

 

function[gz] = batch_gunzip(directory,outputdir) 
% function [gz] = batch_gunzip(directory,outputdir) 
% gunzip(files) uncompresses all GNU zip files from the specified  
% directory. Output files have the same name, exluding the .gz and are  
% stored in the specified output directory.  
 
 
 
if(~strcmp(directory(end),filesep)) 
filesearch = [directory filesep'*28.xml.gz']; 
% '*xx.xml.gz' specifies the timestep you wish to retrieve 
else 
filesearch = [directory '*28.xml.gz']; 
directory = directory(1:(end-1)); 
end 
 
D = dir(filesearch); 
nfiles = length(D); 
 
 
if(nfiles == 0) 
fprintf('No gz files found in the directory: %s\n',directory); 
return 
end 
 
gunzip([directory filesep D(1).name],outputdir); 
forifile = 2:nfiles, 
gunzip([directory filesep D(ifile).name],outputdir) 
end 
end 
 

 

function[tar] = batch_untar(directory,outputdir) 
%function [tar] = batch_untar(directory,outputdir) 
%extracts contents of all tarball archives within a folder into the 
specified outputdir 
%directory. 
if(~strcmp(directory(end),filesep)) 
filesearch = [directory filesep'*.tar']; 
else 
filesearch = [directory '*.tar']; 
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directory = directory(1:(end-1)); 
end 
 
D = dir(filesearch); 
nfiles = length(D); 
 
 
if(nfiles == 0) 
fprintf('No tar files found in the directory: %s\n',directory); 
return 
end 
 
untar([directory filesep D(1).name],outputdir); 
forifile = 2:nfiles, 
untar([directory filesep D(ifile).name],outputdir) 
end 
end 
 
 

function tree = sortie_read(file_name) 
% function tree = sortie_read(file_name) 
% 
% read an xml file that has been generated by the SORTIE program.  The 
% output is a matlab structure which contains information about 
individual 
% trees in the simulation.example filename:  'PH3large.xml' 
 
% xdoc = xmlread(which(file_name)) 
xdoc = xmlread(file_name); 
 
% first, get all of the species names 
tm_species = xdoc.getElementsByTagName('tm_species'); 
Nspecies = tm_species.getLength; 
forispecies = 1:Nspecies 
species_name(ispecies) = {char(tm_species.item(ispecies-
1).getAttribute('speciesName'))}; 
end 
 
% this next set of routines is not necessary 
if(false) 
% then, find the "tp" code associated with the species names 
tm_tree_settings = xdoc.getElementsByTagName('tm_treeSettings'); 
Nspecies = tm_tree_settings.getLength; 
forispecies = 1:Nspecies 
species_name(ispecies) = {char(tm_tree_settings.item(ispecies-
1).getAttribute('sp'))}; 
tp_code(ispecies) = str2num(char(tm_tree_settings.item(ispecies-
1).getAttribute('tp'))); 
end 
end 
 
% relate species names to the common names of trees 
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forispecies = 1:Nspecies 
switch char(species_name(ispecies)) 
case'ACRU' 
common_name(ispecies) = {'Red Maple'}; 
case'ACSA' 
common_name(ispecies) = {'Sugar Maple'}; 
case'BEAL' 
common_name(ispecies) = {'Yellow Birch'}; 
case'FAGR' 
common_name(ispecies) = {'American Beech'}; 
case'TSCA' 
common_name(ispecies) = {'Eastern Hemlock'}; 
case'FRAM' 
common_name(ispecies) = {'White Ash'}; 
case'PIST' 
common_name(ispecies) = {'White Pine'}; 
case'PRSE' 
common_name(ispecies) = {'Black Cherry'}; 
case'QURU' 
common_name(ispecies) = {'Red Oak'}; 
case'PIRE' 
common_name(ispecies) = {'Red Pine'}; 
otherwise 
common_name(ispecies) = {'unknown'}; 
 
end 
end 
 
trees = xdoc.getElementsByTagName('tree'); 
Ntrees = trees.getLength; 
foritree = 1:Ntrees 
tree_characteristics = trees.item(itree-1); 
% the values of 'x' and 'y' are swapped below from the definition in 
the xml file 
tree(itree).y = str2num(tree_characteristics.item(0).getTextContent); 
tree(itree).x = str2num(tree_characteristics.item(1).getTextContent); 
tree(itree).dbh = str2num(tree_characteristics.item(2).getTextContent); 
tree(itree).hv = str2num(tree_characteristics.item(3).getTextContent); 
tree(itree).crown_radius = 
str2num(tree_characteristics.item(4).getTextContent); 
tree(itree).crown_depth = 
str2num(tree_characteristics.item(5).getTextContent); 
tree(itree).biomass = 
str2num(tree_characteristics.item(6).getTextContent); 
tree(itree).species = char(species_name(1 + str2num(trees.item(itree-
1).getAttribute('sp')))); 
tree(itree).common = char(common_name(1 + str2num(trees.item(itree-
1).getAttribute('sp')))); 
tree(itree).sp_code = str2num(trees.item(itree-1).getAttribute('sp')); 
end 
 
return 
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function stats = sortie_subplot_stats(tree,Dx,Dy,overlap) 
% function stats = sortie_subplot_stats(tree,Dx,Dy,overlap) 
% 
% compute statistics of the input file on a basis of Dx x Dy m 
subplots.   
% If Dx&Dy are not specified, they are assigned to be 25m each.  
Statistics 
% are computed with no overlap in either direction; this can be changed 
by  
% specifying the overlap in the function call to be something else 
(e.g. 12.5) 
 
x = flatten(tree.x);   % the x & y coordinates 
y = flatten(tree.y); 
 
min_delta = 5;   % minimum increment in spatial dimension (used for 
truncation) 
 
xmax = ceil(max(x)/min_delta)*min_delta; 
ymax = ceil(max(y)/min_delta)*min_delta; 
xmin = floor(min(x)/min_delta)*min_delta; 
ymin = floor(min(y)/min_delta)*min_delta; 
 
if(~exist('Dx','var')) 
Dx = 25; 
end 
 
if(~exist('Dy','var')) 
Dy = 25; 
end 
 
if(~exist('overlap','var')) 
overlap = 0; 
end 
 
% overlap = 12.5; 
% overlap = 0; 
% delta_side = 25;   % the size of subplot 
step_size_x = Dx - overlap; 
step_size_y = Dy - overlap; 
area = Dx*Dy / (100*100);   % portion of one hectare of the subplot 
 
ii = 0; 
jj = 0; 
for xx = xmin:step_size_x:(xmax-Dx); 
foryy = ymin:step_size_y:(ymax-Dy); 
idex = find( (x >= xx) & (x <xx+Dx) & (y >= yy) & (y <yy+Dy) ); 
% fprintf('sortie_subplot_stats:  ii=%d 
length(idex)=%d\n',ii,length(idex)); 
if(length(idex)~=0) 
ii = ii + 1; 
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stats = sortie_stats(tree(idex),area); 
N(ii) = stats.N; 
biomass(ii) = stats.biomass; 
rh100(ii) = stats.rh100; 
density(ii) = stats.density; 
else 
jj = jj + 1; 
end 
end 
end 
 
if(jj~=0) 
fprintf('  Note:  there were %d subplots with zero trees inside.  This 
effect is not \n   included in the statistics\n',jj); 
end 
 
clearstats 
stats.biomass = biomass; 
stats.density = density; 
stats.rh100 = rh100; 
 
return 
 
 
function h = make_tree(tree) 
% function h = make_tree(tree) 
% 
% 
 
trunk_height = tree.hv - tree.crown_depth; 
x = tree.x; 
y = tree.y; 
trunk_profile = 
[1.6,1.2,1.15,1.11,1.1,1.05,1,0.99,0.95,0.92,0.91,0.85,0.8,0.75,0.7,0.6
5,0.6,0.55,0.5]; 
 
[xt,yt,zt] = cylinder((trunk_profile*tree.dbh)/100,24);   % dbh is in 
units of cm, 24 points in circumference 
zt = zt * trunk_height; 
 
if(top_level) 
clf; 
holdon; 
end 
 
trunk_standard = [80 40 10]/255; 
alpha_standard = 0.5; 
switchtree.species 
case'ACRU'% red maple 
crown_shape = 'profile'; 
crown_color = [.8 .1 .1]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
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crown_profile = 
[0.4,0.8,1.4,2.0,2.9,3.8,4.8,6.0,7.0,8.6,12.4,13.0,13.1,13.3,13.8,14.0,
13.8,13.0,12.0,11.0,9.8,8.8,8.0,6.5,5.0,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'ACSA'% sugar maple 
crown_shape = 'ellipsoid'; 
crown_color = [.4 .7 .1]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
case'BEAL'% yellow birch 
crown_shape = 'profile'; 
crown_color = [.7 .9 .4]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,10.0,11.3,11.2,11.0,10.5,10.0,9.6,9.1,8.5,8.1,7.8,7.2,6.6,5.0,4.8,
3.2,1.3,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'FAGR'% american beech 
crown_shape = 'profile'; 
crown_color = [.4 .3 .1]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,1.8,3.0,13.0,12.8,12.2,11.8,11.2,10.5,9.8,8.9,7.5,6.0,4.0,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'TSCA'% hemlock 
crown_shape = 'profile'; 
crown_color = [.3 .5 .4]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,4.0,8.0,11.0,9.0,10.1,8.8,9.8,10.0,8.1,8.9,8.3,7.9,7.0,7.3,5.2,6.4
,5.0,6.6,6.4,6.2,4.0,5.5,3.2,4.2,3.0,1.9,3.0,2.0,2.8,0.9,2.1,0.9,0.3,0]
; 
crown_profile = crown_profile/max(crown_profile); 
case'FRAM'% white ash 
crown_shape = 'profile'; 
crown_color = [.6 .6 .6]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,2.3,4.0,5.7,7.0,8.1,9.2,10.3,11.1,11.0,10.8,10.4,10.2,9.8,9.5,9.0,
8.2,7.2,6.2,4.3,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'PIST'% white pine 
crown_shape = 'profile'; 
crown_color = [.4 .4 .4]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
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trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,2.0,3.2,4.2,4.9,5.2,4.3,3.0,1.8,3.0,4.3,4.3,3.3,4.0,5.5,5.2,4.2,3.
2,4.3,3.8,2.9,1.2,1.8,2.2,1.0,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'PRSE'% black cherry 
crown_shape = 'profile'; 
crown_color = [.6 .4 .4]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[1.0,1.3,2.0,2.6,3.6,12.4,12.6,12.9,13.0,13.1,13.0,12.5,12.0,11.6,11.0,
10.0,9.0,7.6,5.8,3.5,0]; 
crown_profile = crown_profile/max(crown_profile); 
case'QURU'% red oak 
crown_shape = 'profile'; 
crown_color = [.6 .4 .1]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
crown_profile = 
[0.8,0.9,1.0,1.3,2.0,3.0,5.2,14.0,14.2,14.3,14.2,14.1,13.5,12.2,11.0,10
.0,8.7,7.4,6,4,0]; 
crown_profile = crown_profile/max(crown_profile); 
otherwise% unknown 
crown_shape = 'sphere'; 
crown_color = [.1 .4 .1]; 
crown_alpha = alpha_standard; 
trunk_color = trunk_standard; 
trunk_alpha = alpha_standard; 
end 
 
ht = surf(xt+x,yt+y,zt); 
set(ht,'edgecolor','none'); 
set(ht,'facecolor',trunk_color); 
alpha(ht,trunk_alpha); 
 
switchcrown_shape 
case'cone'% a cone shape 
    [xc,yc,zc] = cylinder(tree.crown_radius,24); 
xc(2,:) = 0; 
yc(2,:) = 0; 
zc(2,:) = tree.crown_depth; 
case'ellipsoid' 
    [xc,yc,zc] = 
ellipsoid(0,0,0,tree.crown_radius,tree.crown_radius,tree.crown_depth/2)
; 
zc = zc + tree.crown_depth/2; 
case'cylinder' 
    [xc,yc,zc] = cylinder(tree.crown_radius,24); 
case'profile' 
    [xc,yc,zc] = cylinder(crown_profile*tree.crown_radius,24); 
zc = zc*tree.crown_depth; 
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otherwise% a sphere; 
    [xc,yc,zc] = sphere; 
xc = xc*tree.crown_radius; 
yc = yc*tree.crown_radius; 
zc = zc*tree.crown_radius + tree.crown_radius; 
end 
hc = surf(xc+x,yc+y,zc+trunk_height); 
set(hc,'edgecolor','none'); 
set(hc,'facecolor',crown_color); 
alpha(hc,crown_alpha); 
 
if(top_level) 
holdoff; 
end 
 
h = [hthc]; 
 
return 
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