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ABSTRACT: The wave of next-generation sequencing data has arrived. However, many questions still remain about how
to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical
methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical
power; however, the precise relation between the tests is often not well understood. We present a geometric representation
for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The
geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a
difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of
the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles,
directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which
tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately
suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to
noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare
variant methodology and provides guidelines for both applied and theoretical researchers.
Genet Epidemiol 37:345–357, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Several large sequencing efforts have established that an
abundance of rare functional variation exists in the hu-
man population [1000 Genomes, 2010; Nelson et al., 2012;
Tennessen et al., 2012]. The preponderance of such vari-
ants and their potential deleterious impact make them
candidates for putative risk variants contributing to com-
plex disease in humans. Thus, the development of pow-
erful statistical methods to analyze these rare genetic
variants observed in next-generation sequencing data is a
critical area of current research in human genetics. Tra-
ditional single-marker tests used in genome-wide associ-
ation studies lack sufficient power when applied to rare
variants. Instead, many novel “gene-based” methods have
been proposed with a common theme of combining associ-
ation signals for multiple rare variants from the same gene
into a single test of significance [Basu and Pan, 2011; Dai
et al., 2012; Feng et al., 2011; Han and Pan, 2010; Ionita-Laza
et al., 2011; Li and Leal, 2008; Li et al., 2011; Lin and Tang,
2011; Madsen and Browning 2009; Morgenthaler and Thilly,
2007; Morris and Zeggini 2010; Neale et al., 2011; Pan and
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Shen, 2011; Price et al., 2010; Sul et al., 2011; Wu et al., 2011;
Zawistowski et al., 2010; Zhang et al., 2011; among others].
Several summaries and reviews of these methods are available
[Asimit and Zeggini, 2010, Bansal et al., 2010; Cooper and
Shendure 2011; Dering et al., 2011; Gibson, 2012].

As reflected by the number and variety of proposed gene-
based methods, there is no clear-cut strategy to combine
the information from multiple sites into a single test statis-
tic. The existing methods differ not only in how individual
variants are summarized and weighted before being com-
bined but also the assumptions on the underlying disease
model. Not surprisingly, the performance varies dramatically
among proposed methods. The consensus among several
simulation-based studies comparing performance between
the gene-based tests is that there is no single best strategy
for testing rare variants [e.g., Basu and Pan 2011; Ladouceur
et al., 2012; Luedtke et al., 2011, Sun et al., 2011; Tintle et al.,
2011]. Differences in the underlying disease models on which
simulations are based, including frequency spectrum and ef-
fect sizes for risk variants, as well as analytic challenges such
as inclusion of neutral variants all directly impact test per-
formance. However, the severity of the effect differs among
the proposed tests. Although the results of these simulation
studies show that different tests are optimal for different sce-
narios, we often lack an intuitive understanding as to why
certain methods perform the way that they do. For example,
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Basu and Pan [2011], after conducting an extremely com-
prehensive simulation study, conclude that while a particular
variance components test appears to be the “best” across a
variety of disease models, the result is “surprising and in-
teresting.” Further complicating matters is that there have
been relatively few published applications of gene-based rare
variant tests on real data [e.g., Rivas et al., 2011, Torgerson
et al., 2012], leaving us unsure about what types of rare vari-
ant genetic architectures exist in nature.

To address some of the gaps in our understanding of rare
variant test performance, we introduce a novel framework for
considering such tests. Specifically, we consider case-control
sequence data as mathematical vectors in a geometric space
and relate differences in rare variation between cases and
controls to differences in the lengths and angles of vectors.
Based on this geometric framework, we show that the null
hypothesis of no association that is tested in gene-based rare
variant tests can be decomposed into a compound geomet-
ric null hypothesis based on the lengths and angle between
the vectors representing the case and control data. The geo-
metric framework allows an intuitive classification of many
existing tests into broad categories based on which portion
of the compound null hypothesis is being tested. We show
that within these categories, the general performance of in-
dividual tests is well predicted by the geometric properties
of the case and control vectors. In turn, we describe how as-
pects of the underlying disease model and study conditions
affect the geometry of the dataset, thus connecting test be-
havior to these more traditional study variables. We verify
these analytic insights using simulation.

The main benefit of the geometric framework is that it
provides a rigorous method with which to categorize existing
rare variant tests. The classification helps to explain why cer-
tain tests perform more similarly than others and provides a
means to evaluate new tests that are certain to be proposed
in the future. In addition to a classification scheme, the ge-
ometric framework suggests additional tests of rare variant
association unlike tests proposed to date. In particular, ex-
isting tests can be combined or modified to respond more
optimally to differing distributions of neutral, risk, and pro-
tective variants.

Methods

The Geometric Framework

Assume a dataset consisting of sequence information for
a gene of interest in N+ cases and N– controls. We restrict
attention to a subset of m variable sites in the dataset that
are putative risk variants satisfying some predefined minor
allele frequency (MAF ) threshold and predicted functional
annotation, for example, MAF < 1 % and nonsynonymous.
Let c+

j be the total number of rare alleles observed at site
j = 1, . . . , m among the cases. Similarly, let c–

j be the total
number of rare alleles observed at site j = 1, . . . , m among the
controls. Then we define f+

= (f +
1 , . . . , f +

m) to be the vector of
maximum likelihood estimates (MLEs) of allele frequencies

in cases at the m sites of interest, where f +
j = c+

j /2N+. Likewise,
define f– in the same manner for controls.

Assuming no genotype-phenotype association at the jth
site leads to the familiar single-marker null hypothesis of
equal allele frequency in the populations of cases and controls,
namely F +

j = F –
j , where we let F j be the population MAF at

site j. Assuming the null hypothesis of no association holds for
all m variable sites observed in the dataset, the null hypothesis
that rare, putatively functional observed variation in the gene
is not associated with disease risk can be formally stated as

H0 : F+
= F–

. (1)

Now, consider F+ and F– as mathematical vectors in m-
dimensional space. Two vectors are equivalent if and only if
both their magnitudes (lengths) and directions (angles) are
equal. Thus, the null hypothesis F+ = F– in Equation (1) is
equivalent to the geometric compound null hypothesis,

H0 : ‖F+‖p = ‖F–‖p and θ = 0, (2)

where ‖x‖p = (
∑n

i=1 |xi|p )
1/.p , p ≥ 1, denotes the Lp norm of

a vector x = (x1, x2, . . . xn) and θ = arccos( F+·F–

‖F+‖2·‖F–‖2
) is the

angle between the vectors F+ and F–. In order to show that the
null hypothesis in Equation (2) does not hold, it is sufficient
to show that either ‖F+‖p =/ ‖F–‖p or θ =/ 0. Thus, the null
hypotheses

H0,Length : ‖F+‖p = ‖F–‖p (3)

and

H0,Angle : θ = 0 (4)

are both necessary but not individually sufficient in order for
Equation (1) to hold.

Alternatively, two vectors are equivalent if the difference
vector that connects their endpoints is the zero vector, in this
case F+ – F– = (f +

1 – f –
1 , . . . , f +

m – f –
m). Thus, a further refor-

mulation of Equation (1) is

H0 : F+ – F–
= 0. (5)

Since a vector x = 0 if and only if ‖x‖p = 0, it is sufficient
to show that ‖F+ – F–‖p =/ 0 in order to show that Equation
(3) does not hold. Therefore,

H0,Joint : ‖F+ – F–‖p = 0 (6)

is equivalent to Equation (1) and we refer to it as the joint null
hypothesis since the difference vector F+ – F– jointly accounts
for both the lengths and angle of the frequency vectors F+

and F–. This is further illustrated by the fact that for L2

‖F+ – F–‖2
2 = (‖F+‖2 – ‖F–‖2)2 + 2 · ‖F+‖2 · ‖F–‖2

· (1 – cos(θ)). (7)

Essentially, Equation (7) combines a comparison of the
differences in the lengths of the two vectors F+ and F–

with an evaluation of the size of the angle, θ, observed be-
tween F+ and F–. Figure 1 gives a graphical rendering of the
geometric framework in order to provide visual intuition
about the behavior of length, joint, and angle tests.
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Figure 1. Two-dimensional rendering of the geometric framework for rare variant tests. The set of graphs shows simplified scenarios for two
rare variant sites in a case-control dataset and are designed to provide intuition into the geometric interpretation of rare variant tests. (A) The
vectors f+ = ( f +

1 , f +
2 ) and f− = ( f −

1 , f −
2 ) contain observed allele frequencies at two rare variant sites for cases and controls, respectively. ‖f+‖p and

‖f−‖p indicate the lengths of these frequency vectors with respect to the L pnorm, θ is the measure of the angle between f+ and f−, and ‖f+ − f−‖p
is the distance between the endpoints of f+ and f−. The null hypothesis of no rare variant association (H0 : F+ = F−) can be tested using any of the
three following null hypotheses related to the geometry of the frequency vectors: (i) ‖F+‖p = ‖F−‖p , the lengths of the vectors are equal, (ii) θ = 0,
the angle between the vectors is zero, or (iii) ‖F+ − F−‖p = 0, the distance between the endpoints of the vectors is zero. We refer to tests of the
three geometric null hypotheses as, respectively, length, angle, and joint tests. In the pictured scenario, the minor allele frequency is higher in
cases for each variant ( f +

1 > f −
1 and f +

2 > f −
2 ), indicating both as potential risk variants. (B) Under the null case of no association (F+ = F−) each of

the geometric null hypotheses hold: (i) ‖F+‖p = ‖F−‖p , (ii) θ = 0, and (iii) ‖F+ − F−‖p = 0. (C) Both variants are causative with the case vector being a
scalar multiple of the control vector (F+ = c F−). This occurs if the case frequency and control frequency are the same across all variant sites. The
result is that ‖F+‖p =/ ‖F−‖p and ‖F+ − F−‖p =/ 0, but the null hypothesis of θ = 0 still holds. This scenario highlights the reason that angle tests are
not powerful strategies and underscores why none have been proposed. (D) The scenario in which one rare variant is causative ( f +

1 > f −
1 ) and the

other is protective ( f −
2 > f +

2 ). In this case, it is possible that ‖F+‖p = ‖F−‖p so that the signals from the two variants effectively cancel each other
out, explaining reduced performance for length tests in the presence of a mix of risk and protective variants. Alternatively, ‖F+ − F−‖p =/ 0 and joint
tests remain powerful.

In the following sections, we show that many rare variant
tests of the null hypothesis H0 : F+ = F– can be formally
classified according to which geometric null hypothesis
(Equation (3), (4), or (6)) is being tested (see Table 1).

Length Tests

We refer to rare variant tests of the null hypothesis
H0,Length : ‖F+‖p = ‖F–‖p as length tests. Here we show two
examples of published statistics that are length tests. The
cumulative minor allele test [CMAT; Zawistowski et al.,
2010] compares the total number of minor and major
alleles in cases and controls across rare, functional vari-
ants within the same gene. Using our notation, the test

statistic for CMAT is �CMAT = N
2N+N–m

c+(2N––c–)–c–(2N+–c+)
(c++c–)(2N––c–+2N+–c+) ,

where c+ =
∑m

i=1 c+
j , which can be simplified to �CMAT =

k(‖f+‖1 – ‖f–‖1), where k is a function of N+, N–, m, and c =

c+ + c–. The CMAT statistic is significant (as determined by
permutation) when�CMAT , and therefore ‖f+‖1 – ‖f–‖1, be-
comes large.

Proportion regression [PR; Morris and Zeggini, 2010] uses
a logistic regression framework to test for a rare variant asso-
ciation. Specifically, PR uses the model logit(πi) = αX i + β ri

m
where X i is a vector of p covariate values for the ith individ-
ual, α is the vector of marginal effects of the p covariates on
the disease phenotype and ri =

∑m
j =1 c ij is the total number

of rare alleles possessed by the ith individual across the m
variants. The score statistic S = (y – π̂0)′G G ′(y – π̂0) is used
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Table 1. Classifying existing rare variant tests using the
geometric framework

Length Joint

Published
examples

CAST [Morgenthaler and Thilly,
2007]

CMC [Li and Leal, 2008]a

CMC [Li and Leal, 2008] a C-alpha [Neale et al., 2011]
WS [Madsen and Browning, 2009] SKAT [Wu et al., 2011]
PR [Morris and Zeggini, 2010] SSU [Basu and Pan, 2011]
CMAT [Zawistowski et al., 2010] GFRV [Lin and Tang, 2011]
aSUM [Han and Pan, 2010] AT [Pan and Shen, 2011]
Variable Threshold [Price et al.,

2010]
PRVT [Ionita-Laza et al.,

2011]
ORWSS [Feng et al., 2011]
PWST [Zhang et al., 2011]
RWAS [Sul et al., 2011]
WHaIT [Li et al., 2011]
WSCS [Dai et al., 2012]

a CMC is a length test when all variants are below an arbitrarily defined MAF
threshold; when some variants are above the threshold it acts as a combined
length/joint test. See Appendices A and B for details.

to test H0 : β = 0, where y is a length N vector (N = total
number of individuals in the study) of 0s and 1s, where 1 =

the individual is a case, 0 otherwise, π̂0 is a vector of pre-
dicted disease probabilities estimated under the null logistic
model, and G is a vector containing ri/m for each of the
N individuals in the study. Under the null hypothesis of no
association (Equation (1), S is distributed as a one degree of
freedom chi-squared random variable. For simplicity, con-
sider the case of no covariates and an equal number of cases
and controls, which yields π̂0 = 1

2 for all individuals. Then the
PR score statistic can be written in terms of the vector length
as follows:

S = (y – π̂0)′ G G ′(y – π̂0) ∝ 4 (y – π̂0)′ G G ′(y – π̂0)

= (2y – 1)′ G G ′(2y – 1)

= (G ′y – G ′ (1 – y))′(G ′y – G ′ (1 – y))

=
N

m2

(‖f +‖1 – ‖f –‖1

)2
.

The null hypothesis H0 : β = 0 will be rejected for large S,
which occurs when ‖f+‖1 =/ ‖f–‖1.

We identified a total of 12 recently proposed rare vari-
ant tests as length tests based on the fact that significance
of the test statistics was equivalent to testing ‖f+‖p =/ ‖f–‖p

(Appendix A). Many length tests have been referred to in the
literature as “burden” tests or “collapsing” tests [e.g., Der-
ing et al., 2011]. In general, length tests measure how rare
an individual is based on some index of the individual’s cu-
mulative rare allele profile across all variants in the set. This
can be viewed as measuring the overall disease “burden” or
as “collapsing” all variants in the set. The aggregate level of
burden within the cases is then compared to the aggregate
burden in the controls to test for association.

Angle Tests

Tests of the null hypothesis H0,Angle : θ = 0 are referred to
as angle tests. To the best of our knowledge, no rare variant
tests of this specific null hypothesis have been proposed. This

is not necessarily a surprising observation because, as shown
in Figure 1, if the case allele frequency vector, F+, is a scalar
multiple of the control allele frequency vector, F–, as is the
case when there is a consistent level of increased risk (the
scalar multiple) across the set of variants, there will be no
angle between the two vectors.

Joint Tests

We refer to rare variant tests of the null hypothesis H0,Joint :
‖F+ – F–‖p = 0 as joint tests since they jointly consider both
the lengths and angles of the observed frequency vectors f+

and f–. A common example of a joint test is the Sequence
Kernel Association Tests [SKAT, Wu et al., 2011]. Using a
scaled version of SKAT with a linear unweighted kernel, we
see that the test statistic is

(y – π̂01)′AA ′(y – π̂01)

∝
(

N

(N+)(N–)

)2

(y – π̂01)′AA ′(y – π̂01),

where A is an N × m genotype matrix containing the rare
allele count of each individual at each site, y is an N × 1
vector indicating disease status (1 or 0), and π̂0 is the fraction
of cases in the sample. We note that(

N

(N+)(N–)

)2

(y – π̂01)′AA ′(y – π̂01)

=

(
1

N+
y –

1

N–
(1 – y)

)′
AA ′

(
1

N+
y –

1

N–
(1 – y)

)

= (f+ – f–)′(f+ – f–) = ‖f+ – f–‖2
2.

Using similar rationale, we classified six additional rare vari-
ant tests as joint tests (Appendix B). Appendix B also illus-
trates how SKAT can be considered as a joint test for many,
but not all, kernel choices.

Unlike length tests, joint tests do not “collapse” or measure
the overall individual disease burden in cases as compared
to controls. Instead joint tests, by evaluating the length of
the difference between the case and control vectors, consider
differences in case-control allele frequency on a variant-by-
variant basis, and then combine the variant-by-variant dif-
ferences to obtain a statistic.

Novel Tests Suggested by the Geometric Framework

In addition to providing clarity on existing tests of asso-
ciation, the geometric framework also suggests alternative
rare variant tests of association. In the following two sec-
tions, we describe two alternative, generalized classes of rare
variant tests of association that are direct implications of the
geometric framework.

Alternative choice of norm. As shown in the previous sec-
tions, many length tests use p = 1, while most joint tests use
p = 2. While these choices are natural due to asymptotic the-
ory of resulting test statistics and typical conceptualizations
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of geometric spaces, the geometric framework suggests that
the choice of norm, p, in ‖x‖p , does not necessarily need
to take values of 1 or 2. In particular, we can select any
positive value for p, including infinity, ∞, where we define
‖x‖∞ = arg maxi(xi). Thus, we define the following general-
ized length (Lp) and joint (Jp) test statistics, with arbitrary
choice of norm, p, as L p = ‖f+‖p – ‖f–‖p and J p = ‖f+ – f+‖p .
Appendix C provides an overview of how to modify Lp and Jp

to handle covariates. Statistical significance is assessed via dis-
ease permutation. Note that L1 is approximately equivalent
to CMAT and J2 is approximately equivalent to SKAT.

Weighted length-angle test. Another way, the geometric
framework can be used to generate new rare variant tests
is by recognizing that length and angle tests represent two
“extremes” in rare variant testing strategies. As noted earlier,
joint tests of the form ‖f+ – f–‖p weight the “length” and
“angle” portions of the test statistic approximately equally.
This is a reasonable, though not necessary, choice. We define
the following generalized joint test statistic, W, which gives
the ability to increase or decrease the length or angle portion
of the test by modifying w1, as well as giving control over the
choice of norm used through choice of p and q.

W (p , q, w1) = w1

(‖f +‖p – ‖f –‖p

)2
+ (1 – w1) · 2 · ‖f +‖q

· ‖f –‖q · (1 – cos(θ)).

Again, statistical significance is assessed via disease per-
mutation. Appendix C provides a covariate adjusted version
of W.

Simulation

We use two main simulation studies to validate select find-
ings from our analysis. In the first simulation study, we simu-
late 1,500 cases and 1,500 controls according to the following
disease architecture. There are two rare variants in the set,
each with an MAF of 1% in the controls in the populations
from which the samples are selected. The choice of two vari-
ants was made to optimally illustrate the behavior of length
and joint tests. As we will demonstrate later (Results), results
easily generalize to any number of variants, m. Variant one has
a fixed relative risk of 1.25, and we change the relative risk of
variant two to take values of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,
1.8, 2.0, 2.5, and 3.0, for a total of 12 separate settings. At each
setting, we simulated 1,000 sets of data. Empirical power esti-
mates are calculated as the percentage of the 1,000 simulated
sets yielding a P-value less than 0.05. Three length tests (com-
bined multivariate and collapsing [CMC], CMAT, and PR)
and two joint tests (SKAT [linear kernel] and C-alpha) were
applied to the simulated data. Significance was determined
by asymptotic distributions or 1,000 permutations, depend-
ing upon the availability of an asymptotic distribution for
the test. A smaller follow-up study considered a select set of
these relative risks (0.2, 0.6, 1.0, 1.4, and 2.0) and applied the
weighted length/angle test (W(p , q, w1)).

In the second simulation study, we simulated 1,000 cases
and 1,000 controls, according to the following disease model.
We simulated eight causal variants: two with an MAF of
1%, and six with an MAF of 0.1% in the populations from
which the samples are selected. All eight causal variants have
a relative risk of 2.0. We then added increasing numbers of
noncausal variants (in sets of eight, two at 1%/six at 0.1%).
Ultimately, we considered 10 different simulation settings
representing 0, 8, 16, 24, 32, 40, 48, 56, 64, and 72 noncausal
variants in the set with the eight causal variants. Similar
to the first simulation, we simulated 1,000 sets of data at
each setting to estimate empirical power. We considered the
generalized length test statistic (L p ), with p = 1,2,4, or ∞,
and the generalized joint test statistic (J p ), with p = 1,2,4,
or ∞. Significance of these eight test statistics was assessed
using 1,000 permutations of case-control status.

Results

We have classified the majority of rare variant tests into
one of two types: length or joint tests. In the following sec-
tions, we (a) present simulation results illustrating how the
behavior of length and joint tests follows patterns suggested
by the geometric framework, (b) provided a detailed anal-
ysis of test behavior in light of genetic architecture, and (c)
demonstrate two specific ways that the geometric framework
can be used to suggest modifications to existing rare variant
tests of association.

Simulation Results

Figure 1 and the overview of the geometric framework in
the Methods section suggested that length tests focus solely
on testing the null hypothesis that there is no difference
in the lengths of the two allele frequency vectors, namely
‖F+‖p = ‖F–‖p , while joint tests focus on testing the null hy-
pothesis that the length of the difference between the two
allele frequency vectors ‖F+ – F–‖p is zero. We used simu-
lation to confirm that the behavior of these values directly
corresponds to the power of both length and joint tests
(Fig. 2).

Analytic Insights into Test Behavior

Having provided an overview of the geometric frame-
work and suggested intuition behind the behavior of different
classes (Fig. 1), as well as simulation results confirming this
intuition (Fig. 2), in the following sections, we will explicitly
demonstrate how genetic architecture affects the behavior of
length, angle, and joint tests. In particular, we will explore
how the three types of tests behave in relationship to three
components of the genetic architecture of disease: (1) The rel-
ative risk of disease λ = (λ1, λ2, . . . , λm), where λj ≈ F +

j /F –
j ,

(2) the number of variants, m, in the gene, and (3) the pop-
ulation minor allele frequencies at the m variant sites, F .
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Figure 2. Power of length and joint tests corresponds to the behavior
predicted by geometric framework. This graph illustrates the power of
length and joint tests in relation to the expected value of the difference in
lengths or length of difference of F + and F −. In particular, we consider
the simplified scenario of a gene containing two rare variants, both with
an allele frequency of 1%. The sample consists of 1,500 cases and 1,500
controls. The relative risk at the first variant site (λ1) is fixed at 1.25,
while the relative risk at the second site (λ2) varies along the x-axis.
We plot the power of a length test (CMC) alongside the expected value
of |‖f+‖2 − ‖f−‖2|. The expected value of the length test statistic will be
minimized (taking a value of zero) when the relative risk at site two is
0.75. As the relative risk at site two (λ2) moves away from the value
0.75, the expected value of the length test statistic increases linearly.
A similar pattern of behavior is observed for other length tests (e.g.,
CMAT and PR) though not shown here. We also plot the expected value
of ‖f+ − f−‖2 along with the power of a joint test (SKAT). Unlike length
tests, joint tests attain their minimum value when λ2 = 1, with the value
of the expected value of both statistics increasing symmetrically as λ2
moves away from 1. A similar pattern of behavior is observed for other
joint tests (e.g., C-alpha), though not shown here.

Changes in the Relative Risk Distribution

For low prevalence diseases, F –
j ≈ F j , and F +

j ≈ λj F j ,
where λj is the relative risk of site j, and so λj > 1 denotes
a site where the rare allele increases disease risk, λj <1 denotes
a site which reduces disease risk, and λj = 1 denotes a site
that does not impact disease risk. We will use the terms risk,
protective, and noncausal site to denote these three cases,
respectively.

Length tests. Length tests typically evaluate the difference be-
tween ‖f+‖p and ‖f–‖p , which is equivalent to comparing

(
∑m

j =1 |λ̂j f j |p )
1
p to (

∑m
j =1 |f j |p )

1
p , where λ̂j is the MLE of λj .

If F+ = F–, then, λ = (λ1, λ2, . . . , λm) = (1, 1, . . . , 1) = 1, and
so,

⎛
⎝ m∑

j =1

∣∣λj F j

∣∣p

⎞
⎠

1
p

=

⎛
⎝ m∑

j =1

∣∣F j

∣∣p

⎞
⎠

1
p

. (8)

The limitation of length tests described earlier is demon-
strated explicitly here, since λ = 1 is not a necessary condition
for Equation (8) to be true. In fact, there are an infinite num-
ber of values of λ which, for any given F, make Equation
(8) true, since Equation (8) is an underdetermined equation
(i.e., Equation (8) is a single equation with m unknowns,
namely λ1, λ2, . . . , λm for m > 1). For example, consider the
case where F j = k for all j, and p = 1. Then for any λ where∑m

j =1 λj = m, Equation (8) will be approximately true. In par-
ticular, if m = 2, λ1 = 1.25 and λ2 = 0.75, then

∑m
j =1 λj = 2

and, so, Equation (8) is true. This example demonstrates that,
within a gene with multiple variants at similar MAF, there will
be little difference in ‖f+‖p and ‖f–‖p if the relative risks can-
cel out because some variants are risk and other variants are
protective. Figure 2 illustrated this result.

Generally, a robust rare variant test of association will have
the characteristic that the value of its test statistic will move
farther from the null hypothesis value as |λj – 1| increases.
However, for length tests, the behavior of ‖f+‖p – ‖f–‖p as
|λj – 1| increases is variable. In situations where all variants
are risk (λj > 1 for all j) or all variants are protective (λj <

1 for all j ), the difference in the lengths of ‖f+‖p and ‖f–‖p

will increase as |λj – 1| increases. However, in cases where
there is a mix of protective and risk variants (some λj are
>1 and others are <1), the behavior of ‖f+‖p – ‖f–‖p may
or may not increase. In particular, if ‖f+‖p > ‖f–‖p then
increasing any λj will increase the difference in lengths of
‖f+‖p and ‖f–‖p , whereas if ‖f+‖p < ‖f–‖p decreasing any λj

will increase the difference in lengths of ‖f+‖p and ‖f–‖p .
Thus, length tests demonstrate a lack of robustness in the
presence of mixes of risk and protective variants.

Joint tests. While length tests illustrate a lack of robustness
in the presence of mixes of risk and protective variants, joint
tests, in testing ‖F+ – F–‖p = 0, do not have this same limi-

tation. In general, 0 = ‖F+ – F–‖p = (
∑m

j =1 |λj F j – F j |p )1/p =

(
∑m

j =1 F p
j |λj – 1|p

)1/p , which is true if and only if,

|λj – 1|p = |kj |p = 0 for all j = 1, . . . ,m, (9)

where λj = 1 + kj and kj can be interpreted as the “risk de-
viation.” Equation (9) is only true if and only if λj = 1 for
all j, alternatively kj = 0 for all j , which is true if and only if
F+ = F–. Thus, a joint test which considers ‖f+ – f–‖p , equals 0
(the null hypothesis value) exactly when the null hypothesis is
true. Alternatively, joint tests can be interpreted as finding the
length of the allele frequency weighted risk deviations since
‖F+ – F–‖p = ‖Fk‖p . Implicitly, joint tests, unlike length tests,
do not allow risk deviations to cancel out. Furthermore, it is
clear from Equation (9) that joint tests are robust to mixes of
risk and protective variants since the value of ‖f+ – f–‖p will
increase as |λj – 1| increases. Figure 2 provides an example of
this behavior.

Angle tests. Our results thus far suggest that handling mixes
of protective/risk variants may be problematic for length
tests, while joint tests more appropriately handle mixes of
protective/risk variants. Thus, since joint tests are testing a
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combined hypothesis which considers both length and angle
differences in the vectors (see Methods), this suggests that
angle tests might be robust to mixes of protective and risk
variants.

To test this claim, note that when the null hypothesis
(F+ = F–) is true, there is no angle between the two vectors
(θ = 0). When θ = 0,then F+ · F– = ‖F+‖2 · ‖F–‖2, or alter-

nately,
∑m

j =1 λj F j
2 =

√∑m
j =1 (λj F j )2

√∑m
j =1 (F j )2. But, we

note that if λ = l (l > 0; a constant value for all λj ), then√∑m
j =1(λj F j )2

√∑m
j =1(F j )2 =

√∑m
i=1

∑m
j =1(λiF i)2(F j )2 =

l
√∑m

i=1

∑m
j =1(F i)2(F j )2 = l

√
(
∑m

j =1 F 2
j )2 = l(

∑m
j =1 F 2

j ). Thus,

there is no angle between vectors F + and F – whenever
λ = l, not only when the null hypothesis is true (l = 1). In
general, larger angles will occur as the values of λj become
increasingly different (spread out), as will occur when
there are mixes of risk and protective variants. However,
when values of λj are not that different, there will be little
difference in the angle between the two vectors, even if the
values of λj are different than 1. Thus, importantly, sets of
variants showing consistent levels of risk or consistent levels
of protection will yield minimal angles between the case and
control allele frequency vectors. For example, if all variants
in the set had a relative risk of 2 (λ = 2), there would be
no angle between the two vectors; refer also to Figure 1C.
Hence, angle tests, like length, show lack of robustness to a
plausible scenario for the values of λ.

Changes in MAF

In the previous section, we described how changes to the
relative risk distribution impact length, angle, and joint tests.
With these results in mind, we now turn our attention to how
changes in the MAF vector, F impact the general behavior of
length and joint tests.

Increasing the MAF, F j , at a particular site j, will have differ-
ent effects on the difference in lengths of the case and control
allele frequency vectors, ‖f+‖p – ‖f–‖p , depending upon the
value of λj and the starting value of ‖f+‖p – ‖f–‖p . In partic-
ular, increasing F j for a risk variant (λj > 1) will increase the
value of ‖f+‖p – ‖f–‖p if ‖f+‖p – ‖f–‖p > 0 before the change.
Increasing F j for a protective variant (λj > 1) will decrease the
difference in lengths, and when λj = 1,changing F j does not
change the difference in lengths. In contrast, for joint tests,
the impact of MAF, F, on ‖f+ – f–‖p is straightforward. Sim-

ply stated, since ‖f+ – f–‖p = (
∑m

j =1 F p
j |λj – 1|p )1/p , increases

to the minor allele frequencies F j will always increase the
value of ‖f+ – f–‖p , regardless of λ.

Number of Variants

For length tests, the impact of increasing the number of
variants, m, in the set is straightforward. Simply stated, if the
length of the case vector (‖f+‖p ) is greater than the length
of the control vector (‖f–‖p ) before adding the additional
variant, then if the additional variant has f +

j > f –
j , the dif-

ference in lengths will increase whereas if f +
j < f –

j the dif-
ference in lengths will decrease. The addition of noncausal
variants will, on average, increase both the case and control
vectors a similar amount and, thus, have no impact on the
difference in lengths. However, for joint tests, the value of
‖f+ – f–‖p = (

∑m
j =1 f p

j |λj – 1|p )1/p will increase with the ad-
dition of each causal variant (λj =/ 1) and, on average, remain
the same for noncausal variants (λj = 1) that are added to the
set being tested.

Examples of Further Implications of the Geometric
Framework

In the previous sections, we have described how the geo-
metric framework provides direct insight into the behavior of
length and joint tests. The geometric framework also suggests
alternative rare variant tests of association, with predictable
behavior. Earlier, we proposed two generalized tests suggested
by the geometric framework. In the following two sections,
we describe the behavior of these tests on simulated data.

The Impact of the Choice of Norm, p

Earlier, we proposed generalized length and joint test statis-
tics, Lp and Jp, which allowed researchers to select any positive
value, p > 0 or ∞, for p. We now explore the behavior of these
test statistics as a function of the choice of norm, p.

In most realistic situations, a fraction of the m variants will
have λj = 1 since it is difficult to identify, a priori, which of
the variants in a set are causal (λj =/ 1). Thus, in the observed
sample, many of the estimated relative risks will be different
from 1 only by chance—not reflecting a population relative
risk different than 1. Intuitively, by increasing p, we are able
to mitigate the effect of noncausal sites on the test statistic, by,
in essence, up-weighting larger observed effects. Ultimately,
this translates into a mitigation of decreased power from the
addition of noncausal sites, as seen in Figure 3A and B for Lp

and Jp, respectively. Importantly, we see a complete reversal
in the ordering of most powerful tests as we move from 0 to
72 noncausal sites for the length test, and a near complete
reversal for the joint test.

The intuition in Figure 3 can be confirmed by looking
more carefully at the formulation of the test statistics. For Jp,
in all cases, increasing p, means that larger allele frequency
weighted risk deviations, f p

j |λ̂j – 1|p , are counted propor-

tionally more in J p = ‖f+ – f–‖p = (
∑m

j =1 f p
j |λ̂j – 1|p )1/p . For

L, a similar result also holds. Consider a case where the al-
lele frequency at all variant sites is constant, f j = f for all j.
Then,

L p = ‖f+‖p – ‖f–‖p ≈
⎛
⎝f p

m∑
j =1

|λ̂j |p

⎞
⎠

1
p

– (mf p )
1
p

= f

⎛
⎝ m∑

j =1

|λ̂j |p

⎞
⎠

1
p

– f (m)
1
p = f

⎛
⎜⎝

⎛
⎝ m∑

j =1

|λ̂j |p

⎞
⎠

1
p

– (m)
1
p

⎞
⎟⎠.
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Figure 3. Power of length and joint tests corresponds to the behavior
predicted by geometric framework. The two graphs illustrate the power
of length (L p = ‖f+‖p − ‖f−‖p) and joint tests (Jp = ‖f+ − f−‖p) with dif-
ferent norms (p = 1, 2, 4, and ∞). In each case, the test statistic is
computed and significance is assessed via permutation of case-control
status. We consider a scenario where a gene contains eight causal
risk variants, all with a relative risk of 2.0. Two of the risk variants have
MAF = 1%, the other six have MAF = 0.1%. We simulated a sample of
1,000 cases and 1,000 controls for this setting. We then considered nine
additional settings where we added 8, 16, 24, 32, 40, 48, 56, 64, and 72
additional noncausal variants (relative risk = 1), always maintaining 3:1
ratio of low MAF (0.1%) to high MAF (1%) variants in the set. (A) For
L p , as we move from no noncausal variants to 72 noncausal variants,
the order of most powerful tests completely reverses, suggesting that
higher norms are more optimal in situations with large numbers of non-
causal variants. (B) For Jp , as we move from no noncausal variants to
72 noncausal variants, the order of most powerful tests nearly reverses,
suggesting that, once again, higher norms are more optimal in situations
with large numbers of noncausal variants.

Figure 4. Arbitrary combining of length and angle tests. We con-
ducted a simulation analysis and used W(w1, p, q) with p = q = 2, and
let w1 = 1 (length only),w1 = 0.75, w1 = 0.5 (typical joint test), w1 = 0.25,
and w1 = 0 (angle only test). This figure illustrates the power of these
five tests across different values of λ2. Power curves are as predicted.
In particular, the length only (w1 = 1) and angle only (w1 = 0) tests show
the least robustness, while the (w1 = 0.5) test is quite robust. As ex-
pected, the (w1 = 0.75) weighted test outperforms the (w1 = 0.5) test
when both variants are risk-inducing, while providing more power than
the length only test when there is a mix of risk-inducing and protective
variants. The reverse is true for the (w1 = 0.25) test.

Thus, if all λ̂j > 1, increasing p means that variants with
larger estimated risk will be counted proportionally more
when finding the difference in lengths. In situations where
f is not constant, the same general result holds, but may be
mitigated or exacerbated based on the allele frequencies of
the noncausal and causal variants. Thus, higher choices of
norms exhibit more robustness to the inclusion of neutral
variants by upweighting larger effects and downweighting
weaker effects observed in the sample data.

Fine-Tuned Combinations of Length and Joint Tests

Earlier, we defined W(w1, p , q) = w1(‖f +‖p – ‖f –‖p )2 +

(1 – w1) · 2 · ‖f +‖q · ‖f –‖q · (1 – cos(θ)). Thus, W(w1, p , q)
gives more fine-tuned control over the contribution of length
and angle differences to the test statistic. Most joint tests
implicitly let w1 = 0.5. Figure 4 illustrates that more pow-
erful tests can be obtained for particular relative risks by
modifying w1.

Discussion

Observing all variation in large genetic datasets is fast be-
coming a reality due to high throughput sequencing tech-
nologies. However, an open question is how to best use these
datasets in order to test for association between rare variants
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and phenotypes of interest. The current strategy is to simul-
taneously analyze multiple rare variants in the same gene in
a single statistic, with at least 18 such methods having been
proposed to date. While the underlying intuition for some
tests provides a means for determining which are similar, in
other cases, it is less obvious how they are related. Here, we
have derived a formal geometric framework that provides a
rigorous method for comparing many existing rare variant
tests. Further, we have identified strategies to increase statis-
tical power both by adjusting features of existing tests and by
combining existing tests with different properties.

When placed in context of this geometric framework, we
find that the major distinguishing characteristic of rare vari-
ant tests is how they handle variants with opposing directions
of effect. The geometric framework differentiates between
tests that are robust to a mix of risk and protective variants
(joint tests) and those that are most powerful when all causal
variants have the same direction of effect (length tests). While
this distinction was previously known to exist, we are now
able to attribute the difference in performance to a theoretical
difference in the underlying null hypotheses of the respective
tests. By decomposing the compound null hypothesis of no
phenotype association within a set of multiple rare variants
into simple null hypotheses, it becomes clear that a “rare
variant association” can be interpreted in different fashions.
Namely, a rare variant association can be either a difference
between cases and controls in the cumulative frequency of
all rare alleles as assumed by the length tests, or a pattern
of frequency differences for individual variants as assumed
by the joint tests. Both definitions of rare variant association
are entirely reasonable and there are likely to be traits and
susceptibility genes that satisfy each definition.

We classified many existing rare variant tests according to
the geometric framework, including the most common and
cited methods; most could be categorized as either a length or
a joint test. Thus, despite the number and seeming diversity of
rare variant tests proposed to date, they are actually quite sim-
ilar in philosophy. However, we did observe some tests which
did not obviously fit the geometric framework; for exam-
ple, Bayesian approaches [Quintana et al., 2011; Yi and Zhi,
2011], extensions of single-marker methods [Li et al., 2010],
and other approaches [Wu et al., 2011 with a nonadditive
kernel]. We do not view the existence of such methods as a
limitation of the geometric framework, but rather a dramatic
shift in methodology from what has largely been developed
to date. If a test satisfies the definition of neither a length
nor a joint test, it could benefit the field as it would intro-
duce alternative interpretations of the rare variant problem
and potentially improve our ability to discover rare variant
associations.

The geometric framework provides several practical appli-
cations to rare variant analysis. With performance known to
differ between tests, however subtly, investigators are likely to
apply multiple gene-based tests to the same dataset. The geo-
metric classification method can be a useful tool in planning
an analysis that includes multiple tests on the same set of rare
variants. The investigator can choose a set of tests that provide

complementary pieces of information, for example, ensuring
both length- and joint-style tests are applied. If some prior
knowledge of the underlying genetic architecture is available,
it can inform the set of tests that are likely to perform best.
The geometric framework can also aid in the interpretation
of the results from multiple rare variant tests. Given that
we can predict which tests should produce similar P-values
based on their classification (length vs. joint), differences in
significance can be attributed to additional factors such as
variant weighting schemes, which in turn can be valuable
for interpreting a significant association signal. For example,
frequency-based weights that increase significance of a test
may provide some information on the underlying frequency
spectrum of causal variants. Furthermore, tests within each
category are likely to perform similarly with respect to arti-
facts in the data such as genotyping errors [Mayer-Jochimsen
et al., 2012; Powers et al., 2011] and population stratification
[Zawistowski et al., 2012]. Thus, methodological research in
these areas may not need to consider each of the many rare
variant tests individually, but rather consider implications
within each broad class of tests.

Our exploration of the effect of norms on test power also
has implications for rare variant analysis designs. Combin-
ing multiple rare variants into a single test statistic leads to
an inevitable signal-to-noise problem due to the inclusion
of noncausal variants. In our analysis, we observed that the
value of the norm used to compute distance between case
and control frequency vectors in a rare variant statistic con-
tributes to the robustness of that statistic to the inclusion of
noncausal variants in the analysis. We showed that in some
cases, increasing the norm of the statistic can reduce power
loss for inclusion of noncausal variants. However, only norms
of p = 1 and p = 2 have been used to date, indicating that this is
a relatively unexplored aspect of handling the signal-to-noise
problem in rare variant testing.

This is noteworthy because the common current strategy
for reducing the inclusion of noncausal variants is to combine
only nonsynonymous and nonsense coding variants within a
gene since these are assumed to be most likely to be causal.
This strategy ignores the potential deleterious effect of non-
coding and synonymous variants, both of which have been
shown in some cases to contribute to disease risk. In partic-
ular, the ENCODE database highlights the critical role that
the noncoding portion of the genome plays in gene expres-
sion [ENCODE, 2012]. Efficiently incorporating noncoding
variation into rare variant tests while controlling for non-
causal variants may be a powerfully strategy for detecting
novel associations. The increased-norm approach provides
an alternative to the nonsynonymous-only approach of con-
trolling power loss due to inclusion of noncausal variants
with the advantage that it allows a more complete set of rare
variation in the gene, particularly noncoding variants, to be
investigated.

The categorization of tests based on assumptions of risk
and protective variants helps to systematically explain some
of the differences in performance between rare variant tests.
However, there are likely several additional factors that can
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impact performance, most notably variant weighting strate-
gies. Weighting rare variants based on some criteria of ev-
idence for association is a common strategy to attempt to
increase power and includes allele frequency-based weights,
quantitative predictions of the damaging impact of a variant
or a measure of conservation across species. Though we have
not directly considered it here, the geometric framework can
provide a context for evaluating the effect of various weight-
ing strategies. The weighted variants can be viewed as trans-
formations of the original genotype frequency vectors, and
the merits of a weighting strategy could be determined by
comparing the change in the original and transformed vec-
tors. For example, if we considered weighting strategies for a
length test, a set of weights would be beneficial if the weighted
case and control vectors have a larger difference in normed
length than did the original unweighted vectors.

The geometric framework presented here provides a rather
unique perspective on the current field of rare variant asso-
ciation tests. In addition to improving our understanding of
why certain tests perform as they do and which are method-
ologically most similar, we have also uncovered areas in which
future modifications can be made to existing rare variant tests
to improve power to detect associations.
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References

1000 Genomes Project Consortium. 2010. A map of human genome variation from
population-scale sequencing. Nature 467:1061–1073.

Asimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits.
Annu Rev Genet 44:293–308.

Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for
association studies involving rare variants. 11:773–785.

Basu S, Pan W. 2011. Comparison of statistical tests for disease association with rare
variants. Genet Epidemiol 35:606–619.

Cooper GM, Shendure J. 2011. Needles in stacks of needs: finding disease causal variants
in a wealth of genomic data. Nat Genet 12:628–640.

Dai Y, Jiang R, Dong J. 2012. Weighted selective collapsing strategy for detecting rare
and common variants in genetic association study. BMC Genet 13:7.

Dering C, Pugh E, Ziegler A. 2011. Statistical analysis of rare sequence variants: an
overview of collapsing methods. Genet Epidemiol 35:S12–S17.

Feng T, Elston RC, Zhu X. 2011. Detecting rare and common variants for complex
traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genet
Epidemiol 35:398–409.

Gibson G. 2012. Rare and common variants: twenty arguments. Nat Rev Genet 13:135–
145.

Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple
common or rare variants. Hum Hered 70:42–54.

Ionita-Laza I, Buxbaum JD, Laird NM, Lange C. 2011. A new testing strategy to identify
rare variants with either risk or protective effect on disease. PLoS Genet 7:e1001289.

Ladouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB. 2012. The em-
pirical power of rare variant association methods: results from sanger sequencing
in 1998 individuals. PLoS Genet 8:e1002496.

Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common
diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321.

Li Q, Zhang H, Yu K. 2010. Approaches for evaluating rare polymorphisms in genetic
association studies. Hum Hered 69:219–228.

Li Y, Byrnes AE, Li M. 2011. To identify associations with rare variants, just WHaIT:
weighted haplotype and imputation-based tests. Am J Hum Genet 87:728–735.

Lin D, Tang Z. 2011. A general framework for detecting disease associations with rare
variants in sequencing studies. Am J Hum Genet 89:354–367.

Luedtke A, Powers S, Petersen A, Sitarik A, Bekmetjev A, Tintle NL. 2011. Evaluating
methods for the analysis of rare variants in sequence data. BMC Proc 5:S119.

Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using
a weighted sum statistic. PLoS Genet 5:e1000384.

Mayer-Jochimsen M, Fast S, Tintle NL. 2012. Assessing the impact of differential
genotyping errors on rare variant tests of association. PLoS One 8:e56626.

Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multiallelic or
mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat
Res Fund Mol Mech Mut 615:28–56.

Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant
analysis in genetic association studies. Genet Epidemiol 34:188–193.

Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan
S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of
rare variants. PLoS Genet 7:e1001322.

Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, Shen J, Tang Z,
Bacanu S, Fraser D and others. 2012. An abundance of rare functional variants in
202 drug target genes sequenced in 14,002 people. Science 337:100–104.

Pan W, Shen X. 2011. Adaptive tests for association analysis of rare variants. Genet
Epidemiol 35:381–388.

Powers S, Gopalakrishnan S, Tintle NL. 2011. Assessing the impact of non-differential
genotyping errors on rare variant tests of association. Hum Hered 72:152–159.

Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei L, Sunyaev SR. 2010.
Pooled association tests for rare variants in exon-resequencing studies. Am J Hum
Genet 86:832–838.

Quintana MA, Berstein JL, Thomas DC, Conti DV. 2011. Incorporating model uncer-
tainty in detecting rare variants: the Bayesian risk index. Genet Epidemiol 35:638–
649.

Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S,
Ellinghaus D, Burtt N and others. 2011. Deep resequencing of GWAS loci identifies
independent rare variants associated with inflammatory bowel disease. Nat Genet
43:1066–1075.

Sul J, Han B, He D, Eskin E. 2011. An optimal weighted aggregated association test for
identification of rare variants involved in common diseases. Genet 188:181–188.

Sun YV, Sung YJ, Tintle NL, Ziegler A. 2011. Identification of genetic association of
multiple rare variants using collapsing methods. Genet Epidemiol 35:S101–S106.

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do
R, Liu X, Jun G and others. 2012. Evolution and functional impact of rare coding
variation from deep sequencing of human exomes. Sci. Science 3337:64–69.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements
in the human genome. Nature 489:57–74.

Tintle NL, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates
when using aggregation methods to analyze rare variants in the 1000 Genomes
Project exon sequencing data in unrelated individuals: summary results from
group 7 at genetic analysis workshop 17. Genet Epidemiol 35:S56–S60.

Torgerson DG, Capurso D, Mathias RA, Graves PE, Hernandez RD, Beaty TH, Bleecker
ER, Raby BA, Meyers DA, Barnes KC and others. 2012. Resequencing candidate
genes implicates rare variants in asthma susceptibility. Am J Hum Genet 90:273–
281.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for
sequence data with the sequence kernel association test. Am J Hum Genet 89:82–93.

Yi N, Zhi D. 2011. Bayesian analysis of rare variants in genetic association studies. Genet
Epidemiol 35:57–69.

Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zollner S. 2010. Extend-
ing rare-variant testing strategies: analysis of noncoding sequence and imputed
genotypes. Am J Hum Genet 87:604–617.

Zawistowski M, Reppell M, Wegmann D, St. Jean PL, Ehm MG, Nelson MR, Novembre
J, Zollner S. 2012. Differential stratification in rare variant tests observed using an
analytic model of joint site frequency spectra. Unpublished manuscript.

Zhang Q., Irvin MR, Arnett DK, Province MA, Borecki I. 2011. A data-driven method
for identifying rare variants with heterogeneous trait effects. Genet Epidemiol
35:679–685.

Appendix A: Length Tests

Detailed justification is provided for 10 of the 12 length
tests (cohort allelic sums test [CAST], CMC, weighted sum
[WS], data-adaptive Sum test [aSUM], Variable Threshold,
odds ratio weighted sum statistic [ORWSS], P-value
weighted sum test [PWST], rare variant weighted aggregate
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statistic [RWAS], weighted haplotype and imputation-based
tests [WHaIT], and weighted selective collapsing strategy
[WSCS]; see Table 1) in the following sections of Appendix
A. Justification for CMAT and PR is provided in the main
text of the manuscript and not repeated here.

CAST [Morgenthaler and Thilly, 2007]

The CAST [Morgenthaler and Thilly, 2007] compares
the proportion of cases with at least one rare allele

across the m variant sites of interest,
∑N+

i=1 d+
i

N+ , to the pro-

portion of controls with at least one rare allele,
∑N–

i=1 d–
i

N– ,

where di =

{
1 if

∑m
i=1 c ij > 0

0 otherwise
. Note that ‖f +‖1 =

∑m
j =1 f +

j =

∑N+

i=1

∑m
j =1 c ij

2N+ ≈ 2
∑N+

i=1 d+
i

N+ since most individuals will only have a
single rare variant. Thus, CAST is a length test because the
quantities it compares are a function of ‖f+‖1 and ‖f–‖1.

CMC [Li and Leal, 2008]

The CMC test [Li and Leal, 2008] is similar to CAST in
that, for all variants in a subset of m (typically, all the variants
below some MAF threshold), an indicator variable, di , is
created indicating whether an individual has at least one rare
variant in the set. When all variants are in the same set, the test
is equivalent to CAST. When there are two or more subsets of
the m variants, then CMC becomes a joint test, as described
in Appendix B.

Weighted-Sum [Madsen and Browning, 2009]

The WS statistic [Madsen and Browning 2009], like other
length tests, first collapses across variants to obtain a measure
of rarity, ri for each individual i. That is ri =

∑m
j =1

c ij

ŵ j
, where

ŵj is the weight for the j th variant calculated using the MAF
in the control sample. Information is then combined across
individuals using ranks, where l + =

∑
cases rank (ri) and l – =∑

controls rank (ri), and the statistic of interest is the size of
the difference between l + and l –. If we consider the essence of
WS to be a comparison of rarity indices (l + and l –) in cases,
then WS is a length test as follows:

(l+ – l–)2 ∼
(∑

cases

ri –
∑

controls

ri

)2

=

⎛
⎝∑

cases

m∑
j =1

I ij

ŵ j

–
∑

controls

m∑
j =1

I ij

ŵ j

⎞
⎠

2

=

⎛
⎝ m∑

j =1

∑
cases

I ij

ŵ j

–

m∑
j =1

∑
controls

I ij

ŵ j

⎞
⎠

2

=
(‖f +‖1 – ‖f –‖1

)2
,

where the first equivalence is not formally true because of
the nonlinear nature of the rank operation, but it suffices to
show how WS is a test of the length variety.

aSUM [Han and Pan, 2010]

Han and Pan recognize that collapsing variants is equiv-
alent to assuming that all variants have the same odds ratio
(OR). To get around this assumption, they propose using
data-adaptive weights, where variants with larger ORs are
given more weight, and variants with ORs < 1 (protective
variants) are given negative weight so that risk and protec-
tive variants do not cancel each other out. Marker weights,
wj, are obtained through single-marker logistic regression.
All markers are then collapsed into a “super variant” as
G ∗

i =
∑m

j =1 wj G ij , where Gij is the genotype of the ith in-
dividual at variant j. The super variant is then incorporated
into a logistic regression model in the manner of PR. Thus, the
arguments used for PR hold here, and aSUM is a length test.

Variable Threshold Approach [Price et al., 2010]

Similar to aSUM, Price et al. [2010] attempt to use the
data to determine marker weights, wj. In the Price et al.
[2010] approach, they consider a simple (0,1) weighting strat-
egy whereby each marker is included or excluded based on
whether its MAF is less than a threshold, T. The approach
is called a Variable Threshold approach, because T is varied
across a range of values and each time G ∗

i =
∑m

j =1 wj G ij is
regressed against the phenotype. Because, at its root, the Vari-
able Threshold approach is similar to PR, for any particular
value of T, the Variable Threshold approach is a length test.

ORWSS [Feng et al., 2011]

As mentioned by the authors, the ORWSS approach is
similar to the WS statistic. The main difference is in the
choice of weights. Briefly, Feng et al. [2011] suggest a weight
that assigns more weight to a variant which appears to be
an “outlier” (large effect size) relative the majority of other
variants in the set. Each individual is assigned a genetic score
which is the WS of their genotypes. The ranks of the genetic
scores in the cases are compared to the controls. The similarity
to WS mean that ORWSS is a length test.

RWAS [Sul et al., 2011]

It is straightforward to see that the RWAS [Sul et al., 2011] is

a length test. The RWAS statistic is simply SRWAS =

∑m
j =1 wj zj√∑m

i=1 w2
j

,

where wj is a variant weight based on the markers allele

frequency and zj =
f +

j –f –
j

kj
and k is another weight based on

the observed MAF at site j. Thus, SRWAS ∝ ∑m
j =1 wj f +

j –∑m
j =1 wj f –

j ∝ ‖f +‖1 – ‖f –‖1.

PWST [Zhang et al., 2011]

The PWST [Zhang et al., 2011] extends the aSUM approach
of Han and Pan [2010], using a different, data-adaptive,
weighting strategy. Thus, PWST is a length test because aSUM
is a length test.
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WHaIT [Li et al., 2011]

The WHaIT approach [Li et al., 2011] is related to both
WS and ORWSS, and, thus, is a length test. Briefly, they
compute a weighted haplotype score for each individual (akin
to genetic score for ORWSS and WS), and then use rank test
to assess significance. The weighted haplotype score consists
of weights computed in a manner similar to ORWSS, except
they use a training set of data to help determine optimal
weights.

WSCS [Dai et al., 2012]

Similar to aSUM, the authors attempt to find data-
dependent weights, wj , with which to collapse a group of
variants into a super variantG ∗

i =
∑m

j =1 wj G ij . The authors
consider numerous approaches to determining the weights,
which we do not describe in detail here. Ultimately, the test
is a length test because a logistic regression model (see main
text section Length tests in section Methods) is used to de-
termine whether the set of variants is associated with the
disease.

Appendix B: Joint Tests

Detailed justification is provided for six of the seven joint
tests (CMC, C-alpha, SSU, PWST; Lin and Tang, 2011) in the
following sections of Appendix B. Justification for SKAT with
a linear kernel is provided in the main text of the manuscript
and not repeated here; however, we do discuss SKAT with
nonlinear kernels.

CMC [Li and Leal, 2008]

As noted in Appendix A and Table 1, CMC can act as both
a length and/or joint test. When all variants in the set are
in the same group, CMC is equivalent to CAST and acts as
a length test. However, when there are multiple groups of
variants, CMC is a joint test like SKAT. In particular, CMC
is a joint test because it tests (y – ȳ)′A∗WA∗′(y – ȳ), where
A* is a matrix of genotypes similar to A, but where some
variants may be collapsed. Thus, because the formulation of
the CMC test statistic is equivalent to SKAT acting on groups
of variants, CMC can act as a joint test.

C-Alpha [Neale et al., 2011]

As argued by Wu et al. [2011], C-alpha is a special case of
SKAT when there are no covariates, the phenotype of interest
is dichotomous and all variants are weighted equally. Thus,
C-alpha is a joint test.

SKAT [Wu et al., 2011]

Wu et al. [2011] showed that the SKAT statistic may be writ-
ten as a WS

∑m
j =1 wj S2

j , where Sj is a score for the jth variant.
When the linear kernel is used, the score can be written as

S2
j =

∑
i

∑
i′ (yi – π̂0i)Aij Ai′j (yi′ – π̂0i′). By changing the ker-

nel, we essentially change the way that S2
j is computed. As

long as the kernel function K (Ai, Ai′ ) can be linearized as
K (Ai, Ai′ ) =

∑m
j =1 K j (Aij , Ai′j ), the kernel function will be

additively combining information across variants, and so the
test will be a joint test. There are, however, kernel choices
which could lead to nonadditive combination of informa-
tion across variants (e.g., quadratic kernel).

SSU [Basu and Pan, 2011]

As noted by Basu and Pan [2011], the unweighted SSU
statistic is equivalent to SKAT using a linear kernel. As shown
earlier, SKAT is a joint test and, thus, SSU is a joint test.
Basu and Pan [2011] go on to propose a variety of different
variant weights that can be used with SSU; however, variant
weights do not fundamentally change the classification of the
test.

GFRV [Lin and Tang, 2011]

Lin and Tang [2011] propose a general framework for rare
variant (GFRV) testing. The focus of their work is on choosing
weights related to biological context. Each variant is given a
weight, and then the SSU test is applied. Thus, GFRV is a
joint test since SSU is a joint test.

AT [Pan and Shen, 2011]

Pan and Shen [2011] propose adaptive tests (AT) for rare
variant testing. In short, Pan and Shen [2011] propose an
adaptive approach to attempt to eliminate variants a priori
since they argue that power loss can be substantial from the
inclusion of no or weak effects variants.

PRVT [Ionita-Laza et al., 2011]

The Poisson rare variant test (PRVT) [Ionita-Laza et al.,
2011] attempts to leverage the fact that the frequency of rare
variants is approximately Poisson. The PRVT is a joint test
because it evaluates the difference in allele frequency between
cases and controls at each marker, and then sums over the
markers in the set. The unique aspect of PVRT is that rather
than simply take the difference in the case and control allele
frequencies, the PVRT assesses the likelihood of observing
at least c+

j rare alleles in the cases at site j and at most c–
j

rare alleles in the controls, given a Poisson distribution (with
parameter estimated from the data). In particular, at each
variant site j, the distance, D*

j, between the case and control
counts is defined as

D∗ (
c+

j , c–
j

)
=

⎧⎪⎨
⎪⎩

– log
(

p
(

c+
j , c–

j

))
, c+

j > c–
j

– log
(

p
(

c–
j , c+

j

))
, c–

j > c+
j

,

where p (c+
j , c–

j ) = ppois(c–
j , λ̂j )(1 – ppois(c+

j – 1, λ̂j )), ppois(·)
represents the Poisson cdf and λ̂j =

c+
j +c–

j

2 . For a generic joint
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test (see main text), instead of the distance metric shown

above, we use D(c+
j , c–

j ) = | c+
j

2N+ –
c–

j

2N– |p . Since the alternative

distance metric, D*, used by PRVT is monotonic increasing
in terms of D, PVRT is a joint test.

Appendix C: Handling Covariates in L p and Jp

In the main text, we show how the geometric framework
suggests alternative rare variant test statistics L p and J p . Our
presentation of these statistics in the manuscript does not
consider the case of covariates. We consider covariates briefly
here.

The presence of meaningful covariates suggests that the
contribution of each individual toward the value of the statis-
tic should not be equal, but rather weighted based on their
“background” covariates which increase or decrease an indi-
vidual’s disease risk independent of the presence of particular
genetic variants. Thus, we propose that in order to modify
L p and J p to account for covariates, we up- or down-weight
each individual according to their disease risk given covariates
under the null model.

To obtain intuition for the correct weighting scheme,
consider the case of no covariates and equal numbers
of cases and controls. In this situation, the estimated
null probability of disease is π̂0 = 0.5. We note that

c+
j – c–

j = A ′
j y – A ′

j (1 – y) = A ′
j (y – 0.5) – A ′

j ((1 – y) – 0.5) =

A ′
j (y – π̂0) – A ′

j ((1 – y) – (1 – π̂0)) ∝ (
∑

cases Aij (1 – π̂0i)) –

(
∑

controls Aij π̂0i). This suggests that the correct weight for
each individual, i, in the cases is 1 – π̂0i and is π̂0i in the
controls. This motivates the following adjusted genotype
counts: c̃+

j =
∑

cases Aij (1 – π̂0i) and c̃–
j =

∑
controls Aij π̂0i ,

where for a set of covariates, X, we estimate π̂0i under the
null model:

logit (P (Yi = 1)) = αXi.

Thus, we can write covariate adjusted versions of Lp and
Jp as

L̃ p =
∥∥f̃+

∥∥
p

–
∥∥f̃–

∥∥
p

J̃ p =
∥∥f̃+

∥∥ –
∥∥f̃–

∥∥
p
.

Where, f̃ +
j = c̃+

j and f̃ –
j = c̃–

j . We note that L̃ 1 is equivalent

to PR and J̃ p is equivalent to SKAT with a linear kernel and
equal weights.

Similarly, W̃(p , q, w1) = w1(‖f̃ +‖p – ‖f̃ –‖p )2 + (1 – w1) ·
2 · ‖f̃ +‖q · ‖f̃ –‖q · (1 – cos(θ̃)), where θ̃ is the angle between
f̃ + and f̃ –.
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