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SUMMARY. In order to monitor a medical center’s survival outcomes using simple plots, we introduce a risk-adjusted
Observed-Expected (O-E) Cumulative SUM (CUSUM) along with monitoring bands as decision criterion.The proposed
monitoring bands can be used in place of a more traditional but complicated V-shaped mask or the simultaneous use of
two one-sided CUSUMs. The resulting plot is designed to simultaneously monitor for failure time outcomes that are “worse
than expected” or “better than expected.” The slopes of the O-E CUSUM provide direct estimates of the relative risk (as
compared to a standard or expected failure rate) for the data being monitored. Appropriate rejection regions are obtained by
controlling the false alarm rate (type I error) over a period of given length. Simulation studies are conducted to illustrate the
performance of the proposed method. A case study is carried out for 58 liver transplant centers. The use of CUSUM methods

for quality improvement is stressed.
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1. Introduction

Control charts are used to continuously monitor outcomes
of a process, and hence to guide improvement in quality by
providing timely feedback. CUmulative SUM (CUSUM) con-
trol charts were first introduced by Page (1954), in an in-
dustrial quality control setting. Over the last decade or so,
CUSUMs have been suggested to monitor the performance of
clinicians by, for example, measuring the occurrence of deaths
or other outcomes after a surgical procedure. This approach
enables early detection of an unacceptable number of deaths,
and helps with the identification and correction of problems.
Steiner et al. (2000) and Steiner, Cook, and Farewell (2001)
developed a risk-adjusted one-sided CUSUM procedure based
on the likelihood ratio in a logistic model. Axelrod et al.
(2006) demonstrated the utility of the one-sided CUSUM
method for analyzing 1-year binary mortality outcomes using
a cohort of transplanted patients at multiple centers. How-
ever, a built-in 1-year lag is necessary in this approach. Biswas
and Kalbfleisch (2008) developed a risk-adjusted one-sided
CUSUM procedure that is based on a continuous timescale,
incorporating a failure as soon as it occurs. In their method, a
selected alternative hypothesis defines the one-sided CUSUM
from a sequential probability ratio test (SPRT). They applied
the procedure to detect “worse than expected” outcomes,
but it can also be used to detect the alternative hypothesis
“better than expected” in a separate one-sided chart. Gandy
et al. (2010) discussed a timescale transformation under which
some properties of the one-sidled CUSUM can be obtained
analytically.
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The path of the one-sided CUSUM, however, does not
clearly exhibit the true difference between observed and ex-
pected failures. For example, a horizontal path does not mean
that the center is operating at the national average level, but
rather that it has a risk approximately half way between the
national average and the target risk used in constructing the
chart. Collett et al. (2009) suggested supplementing the one-
sided chart with an O-E CUSUM for which the slopes of the
plot provide a simple estimate of the relative risk of death as-
sociated with the outcomes for the center under investigation.
If O(t) is the observed number of failures in (0,t] and E(t) rep-
resents the expected number of failures; a plot of O(t) — E(t)
versus t or E(t) is called an O-E CUSUM plot (Collett et al.,
2009).

In this article, we consider such a risk-adjusted O-E
CUSUM, and propose monitoring bands along the CUSUM
path; when the CUSUM crosses either band, a signal occurs.
This approach has the advantage of providing a true reading
as to whether the rate of deaths at a center is above or below
a chosen standard, while being a simple monitoring tool that
is easy for clinicians to operate and interpret. The reader is
referred to Figures 2.I and 3.I for example charts. The sin-
gle plot suffices for summarizing the past data and trends,
and provides signals in the same way as the two one-sided
CUSUMs.

The monitoring bands are obtained from the V-mask
approach which was proposed in the context of normally
distributed outcomes by Barnard (1959). He suggested
a CUSUM as a “reversed” SPRT and showed that a
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predetermined shift of the process mean can be detected
through the use of a cursor, called a V-mask, superimposed
on the chart following each observation. It triggers a signal if
either of its arms cuts the CUSUM path. This idea is quite
elegant, although the V-mask has been found to be more dif-
ficult to implement than the one-sided CUSUM. In Section 2,
we study the V-mask approach to monitoring a failure time
mechanism, show its equivalence to the one-sided CUSUMs,
and develop an alternative plotting mechanism based on mon-
itoring bands that are simpler to use.

This work was motivated by the wish to provide real-time
feedback to transplant centers given data reported to the
Scientific Registry of Transplant Recipients (SRTR). For this
purpose, we compared posttransplant outcomes at the center
to those that would be expected from a model based on
national data, where the expectations were risk adjusted to
reflect the patient mix at the center under review. In this
approach, the standard for comparison was obtained from a
population model fitted to all centers combined. An alterna-
tive approach would use historical data for each center as the
benchmark to define the expected outcomes, as suggested in
Steiner et al. (2000, 2001) and Collett et al. (2009). This fo-
cuses on determining whether the center is performing better
or worse than it has previously done. The use of historical
benchmark can be satisfactory with very large centers or with
the overall national picture, but it could be problematic for
smaller centers, where the baseline rates (e.g., of 1-year pa-
tient survival) are rather poorly estimated (Kalbfleisch, 2009).

2. Method
2.1 Notation

In this section, we first describe an adjusted “national average
failure rate,” which is estimated by combining the outcomes
from all of the transplant centers in the United States. Sec-
ond, we consider individual centers and introduce a process to
count the cumulative observed failures over time at each cen-
ter. This is compared to a center-specific expected number
of cumulative failures, which is obtained assuming that the
outcome distribution of this center corresponds to that of the
national average having adjusted for patient characteristics.

Let X represent the time from transplant to death, and
suppose that we have a model for X based on transplantation
data from all centers in the country. Given covariate vector
Z; for patient ¢ measured at the time of transplant, a hazard
function is defined as

a;(z) = a(x; Z;) = }SiiréP{X € (x,x+9)|X >x,2}/5, (1)

which can be estimated through a failure time model. For
example, we might have a (stratified) Cox model, an accel-
erated failure time model, or a parametric model to describe
the national experience accounting, so much as possible, for
covariates that influence outcomes.

Consider following a specific center in chronological time ¢
beginning at ¢ = 0 and suppose that patients receive trans-
plants at times S} < Sy < ---. In particular, subject i receives
transplant at time S; and subsequently fails at time T}, so
that the time to failure from transplant is X; = T; — S;. Sup-
pose that survival over a 1-year period is of interest, so that
a qualifying failure occurs if X; < 1. Other longer or shorter

periods could also be considered. It is also assumed that, con-
ditional on covariates Z;, the null or “expected” distribution
of X; is known and defined by the hazard function «;(x); in
our case, «;(z) is estimated based on the very large sample
obtained by combining national experience of all transplant
facilities. We suppose that the error in estimation of a;(z) is
small enough to be ignored.

Let NP (t) count the number of qualifying failures for sub-
ject i in (0,t]. Thus, NP (¢) is 0 until a qualifying failure is
observed, at which time it jumps to 1; if, on the other hand,
a qualifying failure never occurs for subject i, NP (¢) remains
at 0 for all ¢. Thus,

NP

i

() = (T, <t<S;+1) fort <8, +1,
TAINPSi+1) for t > S; + 1.

Let NP (t) = Zlvj (t)NI-P (t) be the total observed number
of qualifying failures in (0,¢] at the center, where Ny (t) =
> 1(S; <t) denotes the number of transplants that have
taken place in (0, ¢]. We define the “at risk” process for subject
ias Y (t) =I{S; <t <min(7;,S; + 1)}.

We now suppose that the risk of a qualifying fail-
ure at this center is e times the null or predicted rate
a;(z). Let the history for this center at ¢ be given by
Fi- = {Ng(u), NP (u),Yi(u),Z;, i=1,---,Ng(t);0 <u<t}
and define the intensity function of subject i at this center
as

E{dNP (t)|Fi-, pn} = e*dA; (1)

[ Yi(t)erai(t — Sy)dt if t > S;; (2)
10 otherwise,
where «a; is defined in (1) and dA;(¢t) is being de-
fined implicitly. When p =0, national rates prevail

and E{dNP (t)|F,-,u =0} = dA;(t). In this case, A,;(t)=
fot dA;(s) represents the cumulative intensity for individual

i up to time ¢, and A(t) = Zf\:({ 2y (t) denotes the overall
cumulative intensity for the center up to t. Note that if u = 0,
the death rates for patients at this center are identical to the
expected or national rates; if u > 0 (or g < 0), the death rates
in this center are higher (or lower) than the national rates.

We make the following notes: (i) Although we only include
administrative censoring in this formulation, other indepen-
dent censoring could be incorporated by suitable definition of
Y;(t). (ii) We define the hazard o, () for all z > 0 and restrict
attention to qualifying failures through setting Y;(¢) = 0 once
1-year exposure is completed. Therefore, the proportional haz-
ards assumption based on the constant relative risk e for the
center under review is only relevant for 0 < z < 1. (iii) Fi-
nally, the choice of the proportional hazards model for center
departures from the predicted rate is for convenience; other
models, such as an accelerated failure time model or paramet-
ric model, could be used, but it would alter the formulation
of the likelihood ratio and may increase the computational
difficulty of the control limits.

2.2 The O-FE CUSUM with a V-Mask

Based on the model (2), the likelihood of p on data
{Ng (u), NP (u),Y;(u),0 <u<t,i=1,---,Ng(t)} is propor-
tional to L(u) = [[¢ O exp{uNP () — et A; (1)}
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Figure 1. An O-E CUSUM with V-mask triggering “worse
than expected” signal.

To construct the CUSUM, we consider a likelihood ratio
test. The null hypothesis of interest is that the process is “in
control” with relative risk 1 (Hy: g = 0). We consider simulta-
neously two alternative hypotheses: the process is “worse than
expected” with a relative risk ¢t (H_: u = 6, with 6, > 0),
and the process is “better than expected” with a relative risk
e’ (H,: p = 0y with 6, < 0).Here, 6, and 6, are predetermined
constants.

The likelihood ratio of p = 6 versus pu = 0 for a specified
center based on the data in (s, ¢] with starting time s € (0, ¢] is
LR(0; 5,1) = exp[0{N? (£)~ NP ()} (e’ — 1) {A(t)~A(s)} .
Therefore, the rejection region for H_ is log{LR(6;;s,t)} >
a>0 (or log{LR(6s;s,t)} >b>0 for H;). These two
rejection regions can be rewritten as

C(s) < {C(t) = hy — ki A()} + k1 A(s), for H_,  (3)

C(s) > {C(t) + ha — ko A(t)} + ko A(s), for H, (4)

where C(t) = NP (t) — A(t), ki = ("1 —1)/6, — 1 >0, ky =
(e’ —1)/0, —1 <0, hy =a/0;, > 0,and hy = —b/0, > 0. Note
that k; and ks are determined based on the target relative risk
0, and 0y, whereas h; and hy can be adjusted to obtain de-
sired properties (e.g., to achieve a certain false alarm rate
over a given period of time). Here, we can view NP (t) as
O(t) and A(t) as E(t), as introduced in Section 1, so that
C(t) =0(t) — E(t).

Now consider a plot of C(s) versus A(s) for all s € (0,¢] at
a given t. The inequalities (3) and (4) correspond to straight-
line boundaries (Figure 1) crossing the points (A(t), C(t) —
hy) and (A(t), C(t) + hy) with slopes ki and ks, respectively.
These boundaries described the appropriate V-mask similar
to that proposed by Barnard (1959) in the Gaussian case.

An alternative approach is to view the SPRT process in
reverse time beginning with the “origin” (A(t), C(t)) at the
current time ¢ and looking backward at all previous times
s <t (Wetherill, 1977). The same boundaries (3) and (4) can
also be obtained from this approach.

We could plot the O-E CUSUM as C(t) versus A(t) or
versus t. The former has the advantage of leading to the lin-
ear V-mask discussed earlier. In this plot, if either arm of
the V-mask intersects the previous CUSUM path, a signal is
recorded, suggesting a decrease (or increase) in the underlying
failure rate from the nominal value. Thus, the O-E CUSUM
can be implemented by applying the V-mask at each point
in time until a signal occurs. If one continues a CUSUM in-
definitely, whatever the true value of 6 is, the CUSUM will
eventually hit one of the boundaries and thus lead to rejection
of the null hypothesis. Over any finite interval, however, there
is a positive chance of no signal. Power and size are then of
interest.

In the test outlined earlier, we plot C(t) versus A(t) and
use the linear bounds. However, it is more natural to plot C(t)
versus t. In the next section, we respecify the CUSUM signals
so that they can be implemented in a plot against t.

2.3 Monitoring Bands

The V-mask is generally viewed as a rather complicated
presentation, which may be one reason why the one-sided
CUSUMs discussed in the next section have been more widely
used, at least in medical applications. In this section, we de-
scribe a novel way to present the O—E CUSUM chart to avoid
the need of repeatedly applying the V-mask.

Consider the alternative hypothesis H_ at time ¢. From (3),
let

Mi(t) = nf{C(s) — kA(s)} + b = {C(t) — ki A(1)}, ()

so that the chart signals at time ¢ if M;(¢) < 0, or it continues
if M;(t) > 0. In addition to the path C(t), we can also plot
C(t) + M,(t), graphically displaying the minimum distance
of the CUSUM from the lower control arm of the V-mask at
time t.

Similarly, we plot C(t) — My(t) for “better than ex-
pected” detection, where My(t) = inf<,{—C(s) + ks A(s)} +
ha + {C(t) — ko A(t)}. The CUSUM chart signals at time ¢ if
M, (t) <0, or it continues if My(t) > 0. We refer to C(t) +
M, (t) and C(t) — My(t) as “monitoring bands,” which now
serve as control limits with the same signaling properties as
the V-mask. These “monitoring bands” apply equally to a
plot of C(t) versus ¢ as to a plot of C(t) versus A(t). Sample
plots and detailed interpretations are given in Section 2.6.

It is worth noting that the computation of monitoring
bands M;(t) and M,(t) is not so difficult as it might seem
to be. For example, the infimum on the right side of (5) must
occur before a jump point of C(s). We only need to evalu-
ate {C(s7) —kiA(s7)} + hi —{C(t) — kiA(t)} at the failure
times s1, 89 -+ - ¢, and select the minimum value as M (t).

2.4 The One-Sided CUSUM

For comparison purposes, we discuss the one-sided CUSUM,
which was introduced in the case of binary outcomes by
Steiner et al. (2000) and modified to the present setting of con-
tinuous failure times by Biswas and Kalbfleisch (2008). The
one-sided CUSUM is also based on an SPRT. For the alter-
native hypothesis of a relative risk e’, the one-sided CUSUM
is defined by G;;qr = max(0,G; + dU;) for t > 0, with Gy =0
and dU; = 0dNP (t) — (e’ — 1)dA(¢).
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If we are interested in detecting a relative risk of either e’1
(6, > 0) or €’ (0, < 0), two one-sided CUSUMs can be per-
formed simultaneously (Gandy et al., 2010), denoted as GEU
and GEQ). The process G;l) remains at 0 until the first quali-
fying failure occurs, whereas Giz) immediately increases from
0. The G’El) CUSUM gives a signal of “worse than expected”
when Gfl) exceeds a predetermined control limit L; (> 0); and
similarly, 052) CUSUM signals “better than expected” when
GEQ) is greater than a predetermined control limit L, (> 0).

In contrast to the O-E CUSUM, the slope of any interval
in the one-sided CUSUM is not directly interpretable as an
estimated relative risk.

2.5 Control Limits

It is perhaps not so surprising that the O-E CUSUM with
a V-mask is equivalent to the two one-sided CUSUMs with
the usual horizontal control lines, because they are both de-
rived from an SPRT. Both approaches lead to signals at the
exact same time if the control lines and the parameters of
the V-mask are suitably chosen. Specifically, with the choice
h; =1L;/0;, i =1 or 2, the O-E CUSUM V-mask designed to
test Hy: 0 =0versus H_: 0 =6, >0and H, : § = 0, < 0 has
identical signal times to the simultaneous use of two one-sided
CUSUMs constructed with regard to the same hypotheses. We
show this equivalency in the Appendix.

Generally, we wish to choose a control limit so that there
will tend to be a long waiting time until a signal occurs if
the center failure rates are similar to the national average;
at the same time, we wish to identify as quickly as possible
the situation where the death rates are substantially higher
(or lower) than the national average. The average run length
(ARL) of a CUSUM is defined as the expected time to a
signal. With the one-sided CUSUM G’El) and control limit Ly,
the signal time is 7 = inf{s : G\ > L,;} and the ARL at a
given relative risk ¢’ is ARL(0) = E(7;6). One approach is to
determine the control limit so as to attain a specified ARL
when the process is operating at the null value; that is, we fix
E(1;0 =0).

In the one-sided CUSUM setting, Gandy et al. (2010) con-
sidered a timescale transformation s = A(t). The modulated
Poisson process N (t) with intensity A(t) is transformed to
the new timescale s in which the event process ]\7(5) is a homo-
geneous Poisson process with rate 1. The log likelihood ratio
up to time s is AN (s) — (¢! — 1)s, where N(s) = NP (A1(s))
and A7'(s) = inf{t : A(t) > s}. Denote the signal time in the
new timescale as 7, so that 7 = A(7) where 7 is the signal
time on the original timescale. They showed that the ARL in
control on this new timescale, E(7;0), can be obtained analyt-
ically through constructing a Markov chain. This ARL is equal
to the expected number of events until stopping on the orig-
inal scale, E(7) = E(NP(7)). In practice, one can calibrate
L to obtain a desired ARL on a transformed timescale or,
equivalently, expected number of failures until a false alarm
on the original timescale. Since the one-sided CUSUM and
O-E CUSUM with a V-mask both lead to signals at the same
time when h; = L; /6;, i = 1 or 2, we can also calibrate h; in
the O—E chart to obtain desired expected number of failures
until a false alarm.

Biswas and Kalbfleisch (2008) conducted simulations to de-
termine control limits. For a given center size, they set a false
positive rate over a certain period, so that each center is sub-
ject to the same error rate if it operates at the national level.
This yields control limits that are lower for smaller centers
and higher for larger centers. We use a similar method of con-
trolling type I error over a fixed period to obtain a control
limit A for the O—E CUSUM; in the simulation, we categorize
the results by the expected number of failures at a center.
In the application of SRTR dataset, we use center size mul-
tiplied by national failure rate to approximate the number of
expected failures and to determine the appropriate h. This
approach subjects all centers regardless of size to a similar
probability of a false positive.

2.6 Some Examples of CUSUM Charts

We consider liver transplant centers A and B followed over
3.5 years to illustrate the use and interpretation of CUSUM
charts. For each center, the O-E CUSUM and two one-sided
CUSUMs for 1-year posttransplant patient survival are pre-
sented. Similar charts could be constructed for other outcomes
or other length of follow-up, such as 1-year graft survival or
one-month survival.

In the O-E CUSUM chart, monitoring bands C(t) + M;(t)
and C(t) — M(t), chosen for testing alternatives of relative
risk 2 and 0.5, respectively, are plotted along with the O-E
CUSUM trajectory over time. M;(t) and M, (¢) indicate how
many additional and fewer failures at time ¢t would have re-
sulted in a signal. The values 2 and 0.5 as alternatives are
chosen to represent differences in rates that would clearly be
clinically important. These same values have been used in
other presentations (e.g., Axelrod et al., 2009). For the one-
sided charts, two one-sided CUSUMs are displayed on sep-
arate plots. We reflected the one-sided CUSUM versus the
relative risk 0.5 and its control line through the X-axis in the
presentation.

Center A. No signal of either “worse than expected” or
“better than expected” was suggested in either CUSUM
(Figure 2). The O-E chart (Figure 2.I) suggests that the
outcomes of the center were similar to the national aver-
age over the 3.5 years. In July 2008, the CUSUM would
have signaled “better than expected,” had there been two
fewer failures. The one-sided charts (Figure 2.1I) show sim-
ilar results that Center A performs at the national average
level.

Center B. The failure rate at this center is close to the na-
tional average for the first year and a half, as suggested by the
nearly horizontal plot line in the O-E chart (Figure 3.I). After
that, the death rates were approximately twice the national
average as illustrated by the O—E path having a slope close to
the one for relative risk 2 in the legend. The CUSUM triggers
a “worse than expected” signal in March 2008. Note that if the
center had one more failure in November 2007, it would have
triggered the signal then. As expected, the one-sided CUSUM
chart (Figure 3.II) indicates a “worse than expected” signal
at the same time.

It is worth noting that because we use national average
rates as reference, an increasing trend, for example, could in-
dicate either that the performance of the center has suddenly

¢
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I: O-E CUSUM Chart for one year survival
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Figure 2. Center A, with 378 patients between January 01,
2006 and June 30, 2009.

changed to “worse than expected” or that it has consistently

had “worse than expected” outcomes. When a center expe-
riences a sudden change causing higher mortality rates, the
CUSUM is expected to show a flat trajectory for a period of
time followed by a substantially positive slope indicating such
change, such as Center B in the example above. It then makes
sense to look for an assignable cause associated with the time
at which the change occurred. On the other hand, if the center
has consistently had higher mortality rates compared to the
national average, there would be no identifiable change point.
In this situation, however, it is also desirable for the center
to review its practice in light of the fact that its outcomes
are poorer than one would expect based on the risk-adjusted
national average outcomes.

I: O-E CUSUM Chart for one year survival
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Figure 3. Center B, with 173 patients between January 01,
2006 and June 30, 2009.

2.7 Head-Start

When the CUSUM of a center leads to a “worse than ex-
pected” signal, it is appropriate for the center to examine its
practice, especially changes in practice, to look for assignable
causes, and to make adjustment as appropriate. Rather than
resetting the CUSUM to zero, it is preferable to use a “head-
start” by taking the plotting position somewhere less than the
control limit (Lucas and Crosier, 1982). Gandy et al. (2010)
discussed a head-start scheme in the one-sided CUSUMs.
They reset the CUSUM to L/2 after a signal, and conducted
a series of simulations to demonstrate the advantage of uti-
lizing such head-start value. Collett et al. (2009) also used
this head-start technique and argued the appropriateness of
such resetting in monitoring transplant centers. The same idea
could be used in an O-E CUSUM. For example, resetting the
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CUSUM at h;/2 below C(t) + M;(t) when a “worse than ex-
pected” signal occurs is equivalent to resetting the one-sided
CUSUM to L,/2.

3. Simulation Studies
3.1 Control Limits

We consider transplants arriving according to a homogeneous
Poisson process and suppose that the posttransplant fail-
ure time distribution for the national average is exponen-
tial with rate )y, corresponding to a l-year failure rate of
1 —e 0 =10%. As discussed before, the choice of a control
limit for a center is affected by the size or the number of ex-
pected failures if the center failure rates are at the national av-
erage. To simulate centers that have expected failures within
1 year as 2, 5, 10, 15, and 20, Poisson processes are generated
with rates 20, 50, 100, 150, and 200 transplants per year. Take
0; = —0y = 0 = log(2) so that H, and H_ are symmetric hy-
potheses.

We chose parameter k based on the target relative risk e,
and chose h by controlling the rate of false signals to 8% over
3.5 years for each category of the expected number of failures
per year. The choice of the 8% rate for the 3.5-year period
gives a similar false positive rate to the standard 5% type I
error rate over a 2.5-year period that has been used by the
SRTR.

Simulation results confirm the equivalence of the one-sided
CUSUM and the O-E CUSUM with respect to the signals
that they generate, if L1 = h16; and Ly = hyf,. Table 1 gives
the control limits of the O-E CUSUM obtained through con-
trolling the type I error as described earlier. The column enti-
tled “Power” specifies the probability that a center with rela-
tive risk 2 (or 0.5) would signal in a 3.5-year period. The ARLs
in the table give the average number of follow-up years before
the first signal occurs when the failure rate at the center is
twice (or half) the national average. For example, if a center is
expected to have five failures per year based on the national
rates, but its true rate is twice that, there is a 92% proba-
bility that a “worse than expected” signal would be detected
in the 3.5-year period, and on average, the first signal occurs
after 1.71 years. The signal threshold & increases with the ex-
pected number of failures to maintain a constant probability
of a false positive. As expected, when the expected number of
failures increases, the power of CUSUMs increases.

3.2 Sensitivity to Process Change in Relative Risk

Of some particular interest is the behavior of the CUSUM
when the center is initially experiencing failures at the over-
all (adjusted) national rate, but at a specific point in time,
the rate changes substantially. To examine how sensitive the
CUSUM is to sudden changes, we conducted simulations in
two scenarios with a change point in the underlying risk.

In scenario 1, the process is under control with a relative
risk 1 for subjects entering during the first year, and it changes
to “worse than expected” with a relative risk 2 for subjects en-
tering after year 1. This scenario mimics a systematic change
in the quality of treatment that occurs at the time of trans-
plant, such as the quality of the transplant surgical procedure.
In scenario 2, the process operates at the national average
level for the first year, and changes to “worse than expected”
with a relative risk 2 for every subject that remains at risk

or enters after year 1. This scenario reflects a sudden change
of environment such as a change in the quality of care for
all patients. In each case, the simulation evaluates the statis-
tical power of the O-E CUSUM at the end of years 2, 2.5,
3, and 4. A signal counts in the power calculation only if it
occurs after the change in rates at the end of year 1; if the
chart signals before the end of year 1, we reset the CUSUM
by applying the head-start described in Section 2.7 and then
continue monitoring.

Table 2 shows that the CUSUM detects the sudden changes
quickly, especially in centers with higher expected failures.
After the change, the increase of cumulative failures is faster
in scenario 2. Thus, as expected, the CUSUM is more powerful
in detecting the scenario 2 type of change.

4. Case Studies

To demonstrate the use of the O-E CUSUM, we performed a
retrospective analysis on 1-year posttransplant survival out-
comes at liver transplant centers in the SRTR database. The
cohort of patients receiving transplants between July 1, 2005
and December 31, 2008 was reviewed. Data included 11,861
liver transplants at 68 centers which ranged in size from 1 to
572 liver transplants over the 3.5-year period. We omitted 10
centers with fewer than eight transplants per year, for which
the CUSUMs would be expected to yield little power.

The SRTR models for posttransplant survivals were uti-
lized to represent the national rates and to compute the
expected outcomes. The SRTR 1-year survival model for
deceased donor transplants adjusted for 60 donor and recip-
ient characteristics, whereas the model for living donor ad-
justed for eight donor and recipient characteristics. Because
the models for deceased and living donors were quite different,
SRTR computed expected outcomes for deceased and living
donor cohorts separately using these two models. We do the
same for the CUSUMs.

To specify control limits, we utilized the simulated values
presented in Table 1. Thus, given the estimated expected
number of failures at a center, we used linear interpolation
to find an appropriate control limit h.

It is important to note that although we used a histori-
cal dataset for the purpose of demonstration, CUSUM charts
can and should be used to monitor the center performance in
real time; being able to effectively do this depends on prompt
reporting of failures.

The number of signals and the average time to detect a
signal for centers categorized by volume are summarized in
Table 3. The O-E CUSUMs lead to relatively quick signals
and for the most part, identify more quickly the same cen-
ters that are eventually identified as having results that are
higher or lower than expected under the previous SRTR rules.
Furthermore, if these charts were provided in real time (say
quarterly) to the centers, they would have provided a sim-
ple graphical tool to identify when the center is experiencing
relatively higher death rates and a clear indication of the po-
tential for a signal as illustrated in Section 2.6.

It is worth noting if all centers perform at the national aver-
age level, we would expect to see 8% (about five signals out of
58 centers of interest) signaling on either direction. However,
some centers may not operate at the null level during the time
of interest; so as in this illustration, the test may detect more



68

Biometrics, March 2013

Table 1
Control limits, power and ARL of the O-E CUSUM

Expected failures Relative risk 2

Relative risk 0.5

per year hy Power ARL ho Power ARL

2 4.08 0.70 2.98 3.00 0.42 4.60

5 5.34 0.92 1.71 4.36 0.71 3.04

10 6.36 1.00 1.05 5.50 0.91 2.04

15 6.81 1.00 0.77 6.10 0.98 1.56

20 7.25 1.00 0.61 6.46 0.99 1.27
Table 2

Statistical power of the CUSUM in scenario 1 where failure rates change for subjects entering after year 1, and scenario 2
where failure rates change for subjects at risk at year 1

Expected failures Scenario 1 Scenario 2

per year Year 2 Year 2.5 Year 3 Year 4 Year 2 Year 2.5 Year 3 Year 4
2 0.08 0.20 0.34 0.56 0.21 0.34 0.47 0.67

5 0.13 0.37 0.59 0.83 0.38 0.60 0.74 0.90
10 0.24 0.60 0.81 0.96 0.64 0.83 0.92 0.99
15 0.34 0.73 0.91 0.99 0.80 0.94 0.98 1.00
20 0.42 0.85 0.97 1.00 0.89 0.98 0.99 1.00

Table 3 in a somewhat disguised way. In the “worse than expected”

The number of centers signaled by the CUSUM (# of signals)
and average time to signal (AVE) among signalled centers

Expected H_: RR=2 H,.: RR=0.5
failures Total # of  No. of No. of

per year centers signals AVE signals AVE
1-3 14 2 2.10 3 2.90
3-7 26 6 1.80 5 2.37
7-13 14 5 1.96 1 1.55
13-18 3 1 1.97 1 1.97
> 18 1 0 — 1 2.67

signals. In addition, the statistical power of each category in
Table 1 shows that the test is more powerful in detecting the
alternative hypothesis in larger centers (with more expected
failures). This is consistent with what we see in Table 3.

5. Discussion

The usual one-sided CUSUM has the disadvantage of not
giving a simple reading of the accumulating difference
between observed and expected failures. For example, a
horizontal path does not mean that the center is operating
at the national average level, but rather that the center has a
risk approximately half way between the national average and
the target risk used in constructing the chart. In contrast, the
O-E CUSUM gives a true reading as to whether or not the
rate of deaths at a center is above or below the national av-
erage. The O—E CUSUM is easily plotted and its trends are
easily interpreted; furthermore, when the monitoring bands
are included, it provides simple rules for flagging.
Monitoring bands in O—E CUSUMs record the number of
additional or fewer failures required for a signal. The one-
sided CUSUM charts also provide such information, although

one-sided CUSUM chart, the distance between CUSUM and
the control line is proportional to the number of additional
failures required for a signal at that time, with the constant of
proportionality being the absolute value of the log of relative
risk used in determining the chart.

Steiner and Jones (2010) proposed a risk-adjusted exponen-
tially weighted moving average (EWMA) chart and claimed
that its main advantage over a one-sided CUSUM is to provide
an ongoing local estimate of the average score that is easier
for clinical staff to interpret and understand. O-E CUSUM
also provides such information, but in a simple chart based
on the likelihood ratio.

Monitoring bands are similar to the Bollinger bands
(Bollinger, 2002) used as a tool for technical evaluation of
stock trading. Bollinger bands consist of a set of three curves
drawn in relation to securities prices. The middle band is
a measure of the intermediate-term trend, usually a simple
moving average, that serves as the base for the upper band
and lower band. The interval between the upper (or lower)
and middle bands is determined by volatility, typically the
standard deviation of the same data that were used for the
average. Although somewhat different in purpose and con-
struction, the Bollinger bands are used to graphically guide
when appropriate actions (buying, holding, or selling) should
be taken.

In constructing the CUSUM charts, we used a proportional
hazards alternative. Other alternatives could be considered.
Practitioners should be aware that a misspecified alternative
would lead to reduced power and reduce the efficiency of the
method. Also, the construction of the monitoring bands re-
quires specification of alternative relative risk e’! and e’2. We
chose 0; =log(2) = —6, in this article, which would repre-
sent important clinical differences. Other choices of 6; and 6,
(e.g., 6, =log(1.5) = —6,) could lead to different monitoring
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bands and somewhat different operating characteristics. A
systematic evaluation of the dependence of the ARL on the
true relative risk e’ and the specified alternatives would be of
interest.

The national average failure rate is used in this article as
the reference for evaluating each individual center. Alterna-
tively, depending on one’s interest, the historical performance
of individual centers could also serve as the benchmark. In
that case, a signal would indicate that the performance of the
center has been improved or worsened compared to its own
previous performance. Although this alternative way to set up
a reference level has some appeal, one needs to be careful in
interpretation. There is no guarantee on the quality of perfor-
mance during reference period of time and the results would
only show the comparison of the current performance relative
to the historical performance for the particular center. For
example, if a center has good performance during the refer-
ence period, the CUSUM could yield a “worse than expected”
signal even though the center might in fact have normal per-
formance levels compared to other centers. In addition, this
approach can be problematic for smaller centers where there
is a lot of inherent variation in the baseline period. Where
possible, we believe that basing risk-adjusted charts on na-
tional outcomes, as we have discussed, provides a better ap-
proach to monitoring centers. Such plots indicate an overall
propensity for the center to have higher rates of failure than
the population as a whole. Abrupt changes in the slope of the
CUSUM identify time points at which the rates within the
center changed, and suggest the need of further explanation.
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APPENDIX: THE EQUIVALENCY BETWEEN THE O-E
CUSUM wiITH A V-MASK AND THE ONESIDED
CUSUM

With the choice h; = L; /6;, i = 1 or 2, the O-E CUSUM with
V-mask designed to test Hy : @ = 0 versus H_: 6 = 6, > 0 and
H, : 0 =0, <0 has identical hitting times to the simultane-
ous use of two one-sided CUSUMs constructed with regard to
the same hypotheses.

Consider the path of one-sided CUSUM for “worse than
expected” with parameters ¢#; and L;. Consider an excursion
beginning at s where G,(sl) >0 and Gil,) = 0. This excursion
ends when the CUSUM reaches the control limit L; and trig-
gers a signal or when it returns next to 0. If it returns to
0, it stays at 0 until the next failure when a new excur-
sion begins. Suppose the original excursion begins at s =0
and ends at time 7 =inf{t > 0:G\" =0 or GV > L,}, and
let J = I(Gf) > Ly). If J =1, for example, then

() 0<O{ND (1)~ NP ()} — (e — {A(1) — A(s)} <
Li,s<t<T;and

(i1) 02{N? () = NP ()} — (" — 1){A(r) — A(s)} = L1.

If J=0, then (ii) becomes (ii*) 6;{NP (1) — NP (s)} —
(el — 1{A(r) - A(s)} = 0.

It is easily seen that (i) implies that

el
{5t - 1f - amy < 0 - am)
et —1

v - e < {5 P

—1}{A(t>—A<s>}+gl,

for s <t < 7. This can be seen to be of the same form of the
O-E CUSUM in (3). If we choose h; = L;/6;, the one-sided
CUSUM does not signal on the interval (0, 7) if and only if the
O-E CUSUM does not signal on the same interval. Similarly
the two CUSUMs both signal at 7 if the inequality (ii) holds.
A similar argument shows an equivalence between the O-E
CUSUM and the one-sided CUSUM for the test of “better
than expected.”



