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SUMMARY. Patients who were previously treated for prostate cancer with radiation therapy are monitored at regular intervals
using a laboratory test called Prostate Specific Antigen (PSA). If the value of the PSA test starts to rise, this is an indication
that the prostate cancer is more likely to recur, and the patient may wish to initiate new treatments. Such patients could
be helped in making medical decisions by an accurate estimate of the probability of recurrence of the cancer in the next few
years. In this article, we describe the methodology for giving the probability of recurrence for a new patient, as implemented
on a web-based calculator. The methods use a joint longitudinal survival model. The model is developed on a training dataset
of 2386 patients and tested on a dataset of 846 patients. Bayesian estimation methods are used with one Markov chain Monte
Carlo (MCMC) algorithm developed for estimation of the parameters from the training dataset and a second quick MCMC

developed for prediction of the risk of recurrence that uses the longitudinal PSA measures from a new patient.
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1. Introduction

Joint models of longitudinal and survival data, which have
been much researched in recent years (Henderson, Diggle, and
Dobson, 2000; Lin et al., 2002; Yu et al., 2004), are applicable
in situations where both the longitudinal data and the sur-
vival time data are considered as response variables. Many dif-
ferent model formulations have been suggested and different
estimation methods proposed. The most common formulation
is a random effects model for continuous longitudinal data,
and a proportional hazards model for the event time data.
The covariates in the hazard model typically include the ran-
dom effects or functions of the random effects, thus linking the
two models. A representative set of publications in this area is
Henderson et al. (2000), Xu and Zeger (2001), and Wang and
Taylor (2001), with a review given in Yu et al. (2004). Joint
models can be used for different purposes, one is estimation
of the parameters in the longitudinal model and another is
estimation of the parameters in the survival model. A dif-
ferent use of these models is for prediction purposes (Taylor,
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Yu, and Sandler, 2005; Yu, Taylor, and Sandler, 2008; Proust-
Lima and Taylor, 2009; Rizopoulos, 2011; Proust-Lima, Séne,
Taylor, and Jacqmin-Gadda, 2012) and that will be the focus
in this article.

The application of the methods we will describe comes from
the prostate cancer setting. After initial diagnosis of prostate
cancer and subsequent treatment by radiation therapy, pa-
tients are typically monitored at regular intervals using the
Prostate Specific Antigen (PSA) blood test. If during the
follow-up the values of PSA start to increase, this may be an
early indication that the cancer is growing or spreading within
the patient’s body, but has not grown or spread enough to be
clinically detectable by other means, such as imaging meth-
ods or biopsy. If the cancer does grow enough to be detectable
through these means, then the patient is said to have clinical
recurrence with the time of recurrence noted as the time of de-
tection. Thus higher levels of PSA or high rates of increase of
PSA indicate an increased risk for clinical recurrence. If PSA
is starting to rise, the patient may wish to start a treatment
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which is known to slow down the growth of the cancer. Specif-
ically they may elect to initiate salvage androgen deprivation
therapy, also called hormone therapy, in order to prevent or
delay the recurrence of cancer. However, the hormone therapy
has some side effects, so if the risk of recurrence is low, the
patient may opt not to start hormone therapy. Thus providing
the patient with an accurate estimate of the risk of clinical re-
currence would aid in the decision of whether or not to start
hormone therapy. The purpose of this article is to describe
the method we used to calculate the risk of future recurrence
for an individual patient, given the patient’s history of PSA
values up to the present time. The method will utilize a joint
longitudinal survival model.

We have implemented this method in a calculator that
is available on the web at http://psacalc.sph.umich.edu.
This calculator requires as input the patient’s baseline vari-
ables and their longitudinal sequence of PSA values, then it
gives as output predictions of future PSA values and estimates
of the probability of clinical recurrence of prostate cancer up
to 3 years in the future assuming the person does not initi-
ate hormone therapy. We choose a relatively short time frame
of 3 years because a longer time frame is not necessary as
the patient would be expected to have another PSA measure-
ment within 3 years, at which point the risk calculation can
be updated.

Developing a calculator for anonymous use by others raises
some statistical issues beyond the usual ones that statisticians
face when analyzing and interpreting data. One issue is that
the calculation has to be fast if it is going to be used in a
clinical setting. Another issue is that we need to be confident
that the model is applicable more generally than just on the
datasets that have been used to develop it. Another issue is
that we felt it important to alert the user if he was trying
to use the model outside of the range of values for the input
data that had been used to develop the model, or if it had
appeared that the user had input erroneous data.

In Section 2 of this article, we describe the joint model and
the datasets. In Section 3, we present the Bayesian estima-
tion method. In Section 4, we describe the method that is
used for individual prediction and illustrate the predictions
for different patients. In Section 5, we describe the warn-
ing messages that are built into the web-based calculator. In
Section 6, we describe validation of the model, and we end
with a discussion.

2. Datasets, Notation, and Model

We used four datasets, all consisting of patients treated with
radiation therapy, without surgery, for localized prostate can-
cer. We combined three of the datasets as a training dataset:
these were from the University of Michigan (503 patients),
the Radiation Therapy Oncology Group (RTOG) (615 pa-
tients), and Beaumont Hospital (1268 patients). Data from
Vancouver (846 patients) were held back as a separate testing
dataset. For all except the Vancouver data the basic patient
characteristics and response variable summaries are given in
Proust-Lima et al. (2008) and will not be repeated here. A
general description of the Vancouver data is given in Pickles
et al. (2003). Overall in the four datasets there were a to-
tal of 3232 patients of which 458 had a clinical recurrence.
Only data up to the time of clinical recurrence is used. Of the
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3232 patients 391 did receive hormone therapy prior to clin-
ical recurrence. The average number of postradiation PSA
measurements was 9.2 and the average follow-up time was
5.8 years, with a maximum of 15.4 years. The distribution of
the patient characteristics and follow-up time is similar in the
training and testing datasets.

The datasets have the following structure. All patients are
diagnosed with localized prostate cancer and initially treated
with external beam radiation therapy only. Patients have
pretreatment characteristics. The three variables used were
T-stage, Gleason grade, and baseline PSA. Each patient has
a sequence of values of PSA after the radiation therapy and
these are used to monitor the patient. These are denoted by
(Yi1,...,Yin,) measured at times (t;1,...,¢m,) for subject i.
Time is measured in years from the end of radiation therapy.
The typical pattern of PSA after radiation therapy is well
known. It decreases in everyone for about a year and then
may or may not start to rise; if it does rise, it increases ap-
proximately exponentially over time. Rising values of PSA are
indicative of tumor cells growing and dividing, but the tumor
may not have yet grown to such a size that it is clinically de-
tectable. The time of clinical recurrence is the time when the
tumor is clinically detected, denoted by R;, and that is the
event of interest. The recurrence can happen locally, region-
ally, or as distant metastases, and R; is the first occurrence
of any of these. Let §; be the associated censoring indicator.
Excluded from the datasets are patients with R; less than one
year, because such patients very likely had latent metastatic
disease at the time of diagnosis and radiation therapy will not
be effective. If the values of PSA start to rise, and particularly
if they rise steeply, some patients do begin hormone therapy
prior to any clinical recurrence; we denote the time of initiat-
ing hormone therapy as H;. Hormone therapy quickly reduces
the values of PSA in just about all patients, and to near zero
in most patients, but later PSA may rise and the patient
may experience clinical recurrence. In none of the modeling
or analysis we undertake do we consider the observed values
of PSA after H;, but we do consider the clinical recurrences
after H;.

The joint model has two components, a longitudinal model
and a survival model. The longitudinal model is a random
effects model with three random components with a multi-
variate normal distribution, fixed effects, and a T distribu-
tion with 5 degrees of freedom for the measurement error.
A T distribution is used to accommodate possible outliers.
The survival model is a time-dependent proportional hazards
model where the covariates are the baseline variables, time-
dependent PSA and rate of change of PSA, and an indicator
for hormone therapy. These models have been developed over
a number of years, and they are similar to, but not identical
to, models we have used in the past for similar data (Yu et al.,
2004; Proust-Lima and Taylor, 2009). The main structure of
the model and choice of covariates in different parts of the
model closely follow those developed in Proust-Lima et al.
(2008). In that paper five datasets were considered, which in-
cluded our three training datasets. Separate longitudinal and
survival models were fit using maximum likelihood methods
to those data, both as individual datasets and as pooled data.
The exact details of the model used in the current article are
given below.
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The assumed model for PSA in the absence of treatment
by hormone therapy is:

Y7j (t) = EY, (t) + €ity

where Y; () are the observed values of log(PSA + 0.1) for sub-
ject i at time ¢, and where €;; ~ T(0,02%,5), the central T dis-
tribution with scale parameter ¢ and 5 degrees of freedom.
The expected value of Y is given by

EY;(t) = Boi + Bu{(l+t)"° — 1} + Bot, (1)

ﬁll = (,60“/7)1,‘ s [)’2/;) ~ Ns(:cfa, ngg) are subjcct—
specific random effects, a are fixed effect parameters, x; is
a design matrix including baseline covariates. The choice of
covariates is described below.

In equation (1), (14 ¢)"% — 1, a Box—Cox transformation,
captures the short-term evolution of PSA, while ¢ captures
the long-term evolution. The justification for the linear term
in ¢ on the log scale is the following. In addition to the em-
pirical observation that log PSA values increase linearly with
time, the PSA value also approximately reflects the number
of tumor cells, and cancer cells divide approximately expo-
nentially, leading to a linear term on the log scale. For the
(1 term, the initial drop in PSA following radiation therapy,
Ankerst and Finkelstein (2006) have used log(1 + ¢). We con-
sidered generalizations of this and using just the longitudinal
data and mixed models from the five datasets pooled as de-
scribed in Proust-Lima et al. (2008), we considered Box—Cox
transformations of the form (14 ¢)* — 1. We estimated \ in
this model using profile likelihood methods and found that
the MLE was close to —1.5.

The specific covariates included for the three random ef-
fects in the longitudinal model are (i) an intercept and Base-
line PSA expressed as log(basePSA + 0.1) for the §y; term,
(ii) an intercept, log(basePSA + 0.1), I(T-Stage = 2) and I
(T-Stage >3) for the fy; term, and (iii) an inter-
cept, log(basePSA +0.1), I(T-Stage = 2), I(T-Stage > 3),
I(Gleason =7) ,and I(Gleason > 8) for the (3 term. The
choice of which covariates to include in each of the three terms
was based on the findings in Proust-Lima et al. (2008), where
separate analyses of each of the datasets found consistent pat-
terns of parameter estimates. The covariates for which the es-
timates were consistently close to zero were excluded in the
current model.

The model for the hazard of clinical recurrence at time ¢
for the ith person is:

Ai(t) = Ao(t) exp[Z; (t)" 6], (2)

where

where
Z;()T0 = [0T W, + Gslogit L (EY, (t) — 0.7)/0.45
+0:EY.(t) + 0sI(t > H;)],

where H; is the time of hormone therapy and EY/(t) is
the derivative of EY;(t). A piecewise constant function
is assumed for A\o(¢) with jumps at ¢ =0.95,2,3,5,7, and
30 years. There is zero hazard prior to ¢t =0.95 and the
five levels of the baseline hazard are denoted by \)=
(Mots -« -5 Aos). The knot locations were chosen to give simi-
lar numbers of events in each interval. The covariates W, in
the survival model are log(basePSA + 0.1), I(T-Stage = 2),
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I(T-Stage > 3), I(Gleason = 7), and I(Gleason > 8), and 6,
is the associated five-dimensional vector of hazard ratios. We
did not consider interactions between ¢t and any of W, EY(¢),
or EY/(t), although in principle that would be possible. We
note in this model that EY(t) and EY’,(¢) are the expected val-
ues of PSA and the slope of PSA under the assumption that
hormone therapy had not been given. The term I(t > H;) is
included to account for the fact that the hazard after hor-
mone therapy is given is less than it would have been had the
hormone therapy not been given.

The specific form of the covariates in equation (3) was again
arrived at based on the work in Proust-Lima et al. (2008). In
that paper we used the longitudinal mixed model to impute
values of PSA and the slope of PSA, then using a standard
Cox model with partial likelihood estimation, it was deemed
that all the baseline covariates W; were important. Possible
transformations of the covariates PSA and slope of PSA were
considered. The initial step was to discretize the covariates
into ranges and consider step functions, and compare the like-
lihood with a standard model. No transformation was deemed
necessary for slope of PSA, but a sigmoid transformation gave
a better fit for PSA. Then using profile likelihood we found
that coefficients of 0.7 and 0.45 as shown in equation (3) gave
a good fit.

The set of all population parameters is denoted by ¢ =
(a,0,%,0% X\), where 8" = (0}, 05,0, 05) .

3. Estimation Methods

Estimation was performed using a Bayesian approach via im-
plementation of a Markov chain Monte Carlo (MCMC) algo-
rithm. Upon convergence, the chain delivers draws from the
posterior distribution of all the parameters and of the three
random effects for all subjects. Details of the algorithm and
the priors used are given in the Supplementary Material. The
program was written in C and needed to be run for many
hours to be confident that the chain had converged. Most of
the parameters converged very quickly, the only exceptions
were the 6 parameters which could be slow to converge. Upon
convergence, we saved 1000 draws for each of the parameters,
which will be used later for individual predictions. Table 1
in the online Supplementary material gives estimates of the
main parameters in the model.

4. Individual Predictions

Predictions of future PSA values and distributions of time
to recurrence depend on the parameters and the random ef-
fects for that person. Consider a subject N who has avail-
able longitudinal PSA measurements (Y) up to time ¢, who
has not had hormone therapy or a recurrence prior to c,
and let Wy denote his baseline covariates. If we know the
random effects (By) for this person and the population pa-
rameters (¢), then the future PSA value at time ¢ is pre-
dicted by E(Y(t)) = Byo + Bx1{(1 + )75 — 1} + Bust. Sim-
ilarly the hazard is Ay (t) = Ao(t) exp{Z(¢)T 6} with the term
I(t > H) set to zero. From this we calculate the residual time
distribution

P(R>tWN,BN7¢,R>c)exp{—/ )\N(u)du}, (4)
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Figure 1. (a) Observed and predicted PSA values (on log scale) for years from the end of radiation therapy and (b) probability
of clinical recurrence for years starting at the end of PSA follow-up.

where Ay (u) is given by equation (2). In this expression the in-
tegral is calculated numerically using Gaussian quadrature. If
we have M draws of By and ¢ from the posterior distribution
using the training data set, then the final estimated residual
time distribution P(R > ¢|W y, R > ¢) is the average of the
M separate P(R > t|Wy,Bn,¢, R > ¢) estimates. Alterna-
tively, one could draw one value of R from each distribution
P(R|W x,Bx, ¢, R > c) for each draw of (By, ¢) to construct
an empirical histogram of the residual time distribution.

If person N is part of the training dataset, then the saved
values for ¢ and By can be used. If the person is not part of
the training dataset, one strategy would be to add this per-
son to the dataset and rerun the program, but this would not
be feasible for an online calculator. Instead as an approxima-
tion we use the saved values of ¢, and estimate By from this
new person’s data. Estimation of the random effects for new
person N is achieved by running a quick MCMC, where the
likelihood is for the data for this new person, and the prior
distribution for the population parameters comes from the
posterior distribution from the training datasets analysis. For
each of the saved values of ¢ the MCMC is run for 50 iter-
ations and the final value of the three random effects saved.
This is repeated for the 1000 saved values of ¢. Because there
are only three quantities to estimate for each person, we found
that 50 iterations was sufficient for convergence. Complete de-
tails of the algorithm are given in the online Supplementary
materials.

The prediction of future PSA values, given by EY(¢) =
Byo+ Byvi{(1+1)715 — 1} + Byot, similarly uses the drawn
values of ¢ and By. This leads to a set of 1000 curves,
from which at each time we report the pointwise median and
the 2.5th and 97.5th percentiles. The computational time to
produce the predictions for a range of values of ¢ is about
2 seconds.

To illustrate the prediction method in Figures 1 and 2,
we show the observed and predicted PSA values and the
estimated risk of recurrence for two new patients, who have
been followed for 13.5 and 6 years, respectively, after radia-

tion therapy without clinical recurrence or hormone therapy.
As expected the patient with the rising pattern of PSA has a
greater risk of recurrence.

5. Warning Messages on the Internet Calculator

We built into the program on the website a number of checks
to warn the user if we did not think the model was providing
reliable estimates for the data they entered. The approach
used was to calculate eight different statistics (Si,...,Ss).
These statistics, which are derived from the data and the re-
sults of the quick MCMC, capture different aspects of the
data the user had entered. Each statistic is compared with ei-
ther the 95th or 99th percentile of these statistics calculated
from the training data samples. If the magnitude of the de-
viation is greater than either the 95th or the 99th percentile
the program will either give a warning message or not give an
estimate of the risk of recurrence.

Three statistics (51, S2, S3) reflect the goodness-of-fit of the
longitudinal model. One statistic was an overall goodness-of-
fit measure given by S; = - '}"ZI(Y, —Y;)?, where Y; is the
PSA data input by the user, Y, is the predicted value of PSA
from the model, and m is the number of PSA values. Be-
cause of larger variability for small m compared to large m,
separate percentiles were used for m less than or equal to 4
and m larger than 4. Another summary statistic considered
the deviation from the predicted value of the most recent
PSA, given by Sy = (Y, — Y, )2. This criterion was used be-
cause it was felt to be very important that the model fits
adequately at the most recent time. Another statistic consid-
ered the largest deviation of a PSA value from its prediction,
given by S3 = max;(Y; — Y;)2. This was included to detect
single gross outliers, possibly due to a data entry error by the
user.

Four statistics (Sy,...,S7) relate to the estimated ran-
dom effects. We considered the deviation of each of the
three random effects separately from the population mean
estimates given by Sy = By — 2k ,&, S5 = By1 — 2% ,&, and
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Figure 2. (a) Observed and predicted PSA values (on log scale) for years from the end of radiation therapy and (b) probability
of clinical recurrence for years starting at the end of PSA follow-up.

S@ = B[\[Z — w?\}zd, where d,BN(),BNl, and B[\"Q are the mean
of the posterior distributions. We also assessed whether the
three raimdom effectsAas a set were extreme, using the statistic
S; = (,BN — {I)gvd)TEil(,BN — 2131\} d)

We also considered whether the uncertainty in the pre-
dicted PSA values 3 years after the current time was too large.
The statistic used was Sg, the variance of the predicted PSA
3 years in the future.

The 95th and 99th percentiles or the range of S; to Sy is
given in Table 2 in the Supplementary material. The user is
warned if any of S} to Ss are outside the 95th percentile range,
and the estimated risk of recurrence is not provided if any of
S1, S3, or S are outside the 99th percentile range. Since the
predictions are strongly impacted by the most recent PSA and
the calculator is really designed to be used with up-to-date
PSA values, we also warn the user if their latest PSA value is
more than 3 years old.

6. Validation of the Model

If a model such as this is to be used it needs to be exter-
nally validated. It was for this reason that a dataset was held
back to be used for validation. There is a large literature on
validating models with many different approaches described
in Taylor, Ankerst, and Andridge (2008) and Steyerberg
et al. (2010), including receiver operating characteristic
curves, Brier scores and other metrics for calibration, discrim-
ination and decision analysis. Most of these measures are for
binary predictions. Some have been developed for survival
analysis data, but we are not aware of any that can handle
time-dependent treatments in the validation data. Because
of this complicating issue in our data, we opt for a simple
graphical way to assess the predictions.

The complicating issue is that the predictions we make are
under the assumption that the person will not take hormone
therapy; however, in the testing data, some of the patients do
take hormone therapy prior to recurrence during their follow
up. Because hormone therapy tends to be taken by those at
higher risk of recurrence, and it delays recurrence, we would

expect to predict more recurrences than are actually seen in
the data. We attempt to address this in two ways. In one
approach we censor individuals in the testing data at the time
of hormone therapy, which results in dependent censoring. In
the other approach we call the initiation of hormone therapy
an event.

The graphical approach we use is to fix a time ¢ years after
baseline in the testing dataset, and consider all people who
are at risk at c. For these people, for the purpose of making
an individual prediction, we discard all their information af-
ter c¢. Then for each person separately we estimate the risk of
recurrence using the calculator for times after ¢, and repeat
this for all people. We now categorize the people into four
groups based on the estimated risk at ¢ + 3. The four groups
are defined by the ranges for the risk of 0-0.025, 0.025-0.1,
0.1-0.3, and 0.3-1.0. The exact choice of the groups is arbi-
trary but designed to have similar numbers in each group.
We then consider what actually happened to the patients in
the four groups after ¢ by constructing Kaplan—Meier plots
of time to recurrence. The Kaplan—Meier point estimates at ¢
plus 3 years should be in the appropriate range if the model
is valid, and if there were no dependent censoring and the
correct definition of the event is used.

Figure 3(a) shows these Kaplan—Meier plots when the
model is reapplied to the individuals in the training dataset
and Figure 3(b) shows the results when applied to the individ-
uals in the independent testing dataset, using ¢ = 3, when we
censor at the time of hormone therapy. The plots are similar
and both show that predictions give the correct ordering of
the groups. In both plots the curves are slightly higher than
would have been expected from the predictions, e.g. for the
group with predicted risk at the range of (0.1, 0.3), or equiva-
lently S(6) € (0.7,0.9), the Kaplan-Meier estimate is close to
0.9, whereas we might have liked it to be closer to the middle
of the 0.7 to 0.9 range. However, this is exactly the direction
of the bias we would have expected because of the depen-
dent censoring. The alternative strategy of counting hormone
therapy as an event is expected to cause bias in the other
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Figure 3. Kaplan—Meier plots of the patients who are at risk 3 years after radiation therapy. Groups are based on a range
of S(6), the predicted 3-year recurrence-free probability. Observations are censored at the time of hormone therapy.
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Figure 4. Kaplan—Meier plots of the patients who are at risk 3 years after radiation therapy. Groups are based on a range
of S(6), the predicted 3-year recurrence-free probability. Hormone therapy is treated as an event.

direction. The Kaplan—Meier plots from doing this are shown
in Figure 4. As expected the estimates from the Kaplan-Meier
curves are lower than the predictions.

Another consideration is the range of risks in which it is
most important for the predictions to be well calibrated. In
particular if the 3 year prediction is less than about 2.5% hor-
mone therapy would not be recommended, and thus it would
not be important that the predictions be highly accurate in
that low range. Similarly if the 3 year risk is larger than about
50%, that person should get hormone therapy, and very accu-
rate predictions of such high risk is not needed. Thus, based
on the ranges of the four groups it would be important that
the middle two lines in each of Figures 3 and 4 are accurate.
In Figure 3 these lines are within or near the high end of the
valid range at 3 years, and in Figure 4 they are within or near
the low end of the valid range at 3 years.

While different ad hoc strategies or more technical ap-
proaches to validation could be developed, the graphical ap-
proaches suggested that the model was adequate based on the
fact that the estimates from the training and testing datasets
were similar, that we had bracketed the predictions at 3 years
by treating the hormone therapy in different ways, and that
we were close to the valid range within the range of risk that
matters.

7. Discussion

There are numerous calculators available on the Internet for
prediction of prostate cancer recurrence, and they calculate
the risk of various types of recurrence, for differing groups of
patients, using different sets of input variables. To the best of
our knowledge, these calculators use only baseline variables.
The calculator in this article is unique in that it additionally
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incorporates a longitudinal series of PSA values, the strongest
predictor of recurrence. Thus it can be used to give real time
predictions and a patient can update his predictions as new
PSA values are obtained.

Radiation oncologists are very much aware that patients
with higher values of Gleason grade, T-stage, and pretreat-
ment PSA are more likely to recur and also that patients
with high and fast rising values of PSA after treatment are
at higher risk of recurrence. Various methods of summariz-
ing the pattern of PSA have been developed, including such
things as PSA doubling time and definitions of biochemical
recurrence based on the pattern of PSA changes (Roach et al.,
2006). Although somewhat ad hoc, these are very useful aids
in medical decision making. In a broad sense the model-based
predictions in this article are quite similar in that they take
the available data for the person and summarize them. The
advantage of the model-based approach is that it summarizes
the available data in a principled way, and it gives a summary
in terms of an interpretable number, the probability of clini-
cal recurrence. In contrast, biochemical recurrence is a binary
variable with varying definitions and PSA doubling time is a
continuous variable, neither are explicitly calibrated to risk of
clinical recurrence. The baseline variables also provide some
information about the future risk of recurrence; these are in-
corporated into the model-based predictions, but neither the
doubling time nor the biochemical recurrence definitions use
the baseline information.

The data that were used to develop the calculator is quite
old, and it may be important to update the model using newer
data to account for changes in clinical practice. However, it
will always be necessary to include old data so that there is
long follow-up in the training dataset.

There are a number of ways in which we can extend this
calculator. We have described in this article the predicted risk
of recurrence if the person does not start hormone therapy, we
could also give the predicted risk of recurrence if the person
were to start hormone therapy today. A common treatment
for more advanced stage of disease patients is to give a short
course of hormone therapy at the same time that radiation
therapy is given. We could also provide the risk of recur-
rence for such patients, using the joint modeling approach.
For these patients the pattern of PSA is quite different from
those who do not receive hormone therapy initially, and much
more heterogeneous, thus a different longitudinal model would
be needed.

For the goal of predicting the risk of recurrence without
hormone therapy, the presence of hormone therapy in the
training datasets is a nuisance. Our method for handling this
is to simply include it as a time-dependent covariate in the
hazard model. If the goal is to estimate the effect of hormone
therapy, experts in causal inference would prefer other strate-
gies than the regression adjustment in equation (3). However,
we demonstrate in Kennedy et al. (2010) that the modeling
approach in equation (3) is effective and justified. A more
important issue is whether the effect of hormone therapy dif-
fers from one person to the next and may depend on fac-
tors such as the patient’s age, T-stage, or current PSA value.
Equation (3) could be easily modified to accommodate such
effects by including interaction terms with I(¢t > H;). This
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would be very useful for calculation of the predicted risk of
recurrence if the person were to start hormone therapy today.

The model we presented is very parametric in its structure.
While there is a lot of prior analysis of other datasets by the
authors and others which would support the general form for
the models, it is certainly possible that they could be extended
and modified in a number of different ways. For example one
might consider splines and correlated errors in the longitudi-
nal model, interactions in the longitudinal or survival model,
other ways of linking the longitudinal and survival models,
different knot locations for the baseline hazard, smooth base-
line hazards, time-dependent parameters in the Cox model,
to name a few possibilities. Recent work (Proust-Lima et al.,
2012) has also suggested that a latent class structure for the
joint models can be very useful for predictions.

There is a large literature on methods of validation of pre-
diction models. While these methods have been extended to
handle censoring, an open question is how to extend them to
handle time-dependent covariates and dependent censoring.

An interesting, but nonstatistical question, is how to com-
municate risk estimates from a web calculator. While the
graphs such as those in Figures 1(b) and 2(b) might be very fa-
miliar and understandable to statisticians, they are probably
less well understood by clinicians, other health care providers,
and prostate cancer patients, the target users. We are cur-
rently in the process of pilot testing a number of different
graphical displays of the numerical results from this calcula-
tor to assess which displays are better understood.

8. Supplementary Materials

Web Appendices and Tables referenced in Sections 3, 4, and 5
are available with this article at the Biometrics website on
Wiley Online Library.
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