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Summary. Many regression analyses involve explanatory variables that are measured with error, and failing to account for
this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new
general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski–Nakamura
corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral
equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression,
nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of
measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of
the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression
setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses’ Health Study
concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast
cancer.
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1. Introduction
Many regression analyses involve explanatory variables that
are measured with error. Failing to account for the covariate
error leads to biased estimates of the regression coefficients,
and hence a large literature has developed on the problem of
correcting for covariate measurement error. Fuller (1987) pro-
vides an authoritative account for linear models, while Carroll
et al. (2006) summarizes the literature on nonlinear models.
The nonlinear case remains an active research area, bearing
on such common statistical models as nonlinear regression
with a continuous response, logistic regression for binary re-
sponses, Poisson regression for count data, and Cox regression
for survival data. This article presents a flexible new method
for nonlinear regression problems with covariate error, built
on earlier work.

Three basic study designs are of interest: (1) the replicate
measures design, where repeat covariate measurements are
available (either for all individuals or for a subsample), (2)
the internal validation design, where the true covariate values
are available on a sample of individuals in the main study,
and (3) the external validation design, where the key param-
eters of the measurement error distribution are estimated (as-
suming reasonable transportability) from an external study,
independent of the main study, with paired measurements of

the true and surrogate covariate. Also, two types of meth-
ods are of interest: structural methods, which involve model
assumptions on the distribution of the true covariates, and
functional methods, which do not require such assumptions.

Various approaches have been proposed. We focus on the
SIMEX and corrected score approaches, which are functional
modeling approaches. These are general approaches that can
handle both internal and external validation designs as well
as, with slight adaptation, the replicate measures design. Our
proposed method is based on the corrected score approach.

The SIMEX method of Cook and Stefanski (1994) involves
simulating new covariate values with various levels of artifi-
cially added measurement error, carrying out a naive model
fit for each of the resulting new data sets, and then back-
extrapolating to zero measurement error. While some success
has been achieved with this approach, obviously the back-
extrapolation process is uncertain. Moreover, SIMEX can be
hard to apply in certain nonclassical settings. One challenging
setting is when the measurement error variance depends on
the true covariate value. A version of SIMEX that can handle
this setting under the replicate measures design was devel-
oped by Devanarayan and Stefanski (2002), but it does not
appear that SIMEX can handle this setting under internal or
external validation study designs.
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The corrected score approach, advanced by Stefanski
(1989) and Nakamura (1990, 1992), involves replacing the
likelihood score in the conventional likelihood-based analy-
sis with a function of the surrogate covariates that serves
as an unbiased substitute. In Section 2, we present the ex-
act definition. For the independent additive error model,
Nakamura (1990) showed that this approach yields consistent
estimators in the case of normal linear regression, Poisson re-
gression, Gamma regression, and inverse Gaussian regression.
Nakamura (1992) presented an approximate corrected score
method for the Cox regression model, which Kong and Gu
(1999) later showed to yield consistent estimates. Novick and
Stefanski (2002) presented a corrected score method that is
aimed at the independent additive error model with normal
errors, and is valid when the likelihood score function is an en-
tire function in the complex plane (such as, for example, Pois-
son regression with an exponential link). Stefanski, Novick,
and Devanarayan (2005) elaborate on this approach. When
the error-prone covariate is discrete, a corrected score can be
formulated easily; the relevant theory was developed for gen-
eralized linear models by Akazawa, Kinukawa, and Nakamura
(1998), and extended to the Cox regression model by Zucker
and Spiegelman (2008).

On the other hand, for logistic regression with additive nor-
mal error, Stefanski (1989) showed that an exact corrected
score method does not exist. Huang and Wang (2001) pre-
sented an exact modified corrected score method for logistic
regression, with clever reweighting of the terms in the orig-
inal score function so that an exact corrected score can be
found. This reweighting leads to some loss in efficiency. More-
over, the method of Huang and Wang is designed only for
the case of independent additive measurement error. Buzas
(2009) presents an approximate corrected score method for
the logistic regression model with high efficiency when the
covariate effect is moderate, but this method is designed only
for the case of independent additive normal error.

The basic problem with the corrected score approach in the
logistic regression model and other cases with a continuous
error-prone covariate X is that obtaining the corrected score
requires solving a challenging integral equation. The equation
involved is a Fredholm integral equation of the first kind, dis-
cussed by Delves and Mohamed (1985, Ch. 12) and Kress
(1989, Ch. 16). Such equations do not always have an exact
solution; the logistic regression problem is one case of this.
Moreover, even when an exact solution exists, the problem
can be ill-conditioned. We tried to tackle the case of a contin-
uous covariate by discretizing the covariate to various degrees
of fineness and applying the methodology for the discrete case,
but with only limited success. The classification matrix tended
to be ill-conditioned even with a modest degree of fineness,
such as six categories.

In this article, we develop a new approach. The idea is
to handle the integral equation using the method of regular-
ization (Delves and Mohamed, 1985, Sec. 12.3; Kress, 1989,
Ch. 16), which involves minimizing a penalized distance func-
tion to obtain an approximate solution. In contrast with the
original integral equation problem, the regularized problem
always has a solution, and is reasonably well conditioned pro-
vided that the weight α on the penalty term is not too small.
As α tends to infinity, the estimation procedure tends to a

naive analysis in which we ignore the covariate error, and
simply substitute the surrogate covariate value for the true
value. Conversely, under suitable conditions, as α tends to
zero the procedure approaches an exact corrected score pro-
cedure. The idea is to push α as close as possible to zero
to get good estimates of the model parameters. We call our
approach the regularized corrected score (RECS) approach.

The advantage of RECS is that it is extremely flexible.
Its formulation is very general, and it is a functional method
with no modeling of the distribution of the true covariate, but
only of the conditional density of the surrogate covariate given
the true covariate. The method can handle both internal and
external validation designs. It can handle the replicate mea-
sures design as well, with the overall surrogate measurement
defined as the sample mean (or other summary measure) of
the available measurements on the individual. Moreover, the
method can handle arbitrary measurement error structures,
not just independent additive measurement error. Differential
measurement error, where the measurement error depends on
the response, is also covered. The goal of this article is to
develop the RECS method in detail for the classical likeli-
hood setting. Section 2 lays out the setting and background.
Section 3 presents the proposed procedure and its theoret-
ical properties. Section 4 presents simulation results under
the logistic regression model. Section 5 presents a real-data
illustration of the method in the logistic regression setting.
Section 6 presents a brief discussion.

2. Setting and Background
We assume a typical setup with n independent units whose
response values Yi , i = 1, . . . n, follow a regression model in-
volving several covariates. We assume for now that only one
of the covariates is subject to error; later we will generalize
to the case of multiple error-prone covariates. We denote by
Xi the true value of the error-prone covariate, and by Wi the
measured value. We let Zi denote the vector of error-free co-
variates, which may include an arbitrary number of discrete
and continuous components. We denote the conditional den-
sity or mass function of Yi given (Xi ,Zi ) by f (y|Xi ,Zi , θ),
where θ is a p-vector of unknown parameters, including re-
gression coefficients and auxiliary parameters such as error
variances. In contrast with the SIMEX method, the Huang
and Wang (2001) method, and most other methods in the lit-
erature, we provide the option of allowing the measurement
error to depend on Xi , Zi , and the outcome Yi (differential
error). We denote by ai (x, w) the conditional density of Wi

given Xi = x, with the subscript i signifying possible depen-
dence on Zi and Yi . To ease the presentation of the theoretical
results, we assume that (Xi ,Zi ) are i.i.d. random vectors. We
stress, however, that our method does not involve any model-
ing (either parametric or nonparametric) of the distribution
of (Xi ,Zi ). The theory can, in principle, be extended to the
case where (Xi ,Zi ) are nonrandom values satisfying suitable
ergodicity conditions.

The classical normalized likelihood score function
when there is no covariate error is given by U(θ) =
n−1

∑
i
ui (Xi , θ), where ui (x, θ) = u(Yi , x,Zi , θ) with

u(y, x, z, θ) = [∂/∂θ] log f (y|x, z, θ). The maximum likeli-
hood estimate (MLE) is obtained by solving the equation
U(θ) = 0. The idea of the Stefanski–Nakamura corrected
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score approach is to find a function ū(y, w, z, θ) such that

E[ū(Yi , Wi ,Zi , θ)|Xi ,Zi , Yi ] = u(Yi , Xi ,Zi , θ). (1)

We define ūi (w, θ) = ū(Yi , w,Zi , θ), and then use the mod-
ified likelihood score function Ū(θ) = n−1

∑
i
ūi (Wi, θ) in

place of U(θ) as the basis for estimation. The estimation
equation thus becomes Ū(θ) = 0.

In the present setting, equation (1) for the corrected score
function takes the form∫

ai (x, w)ūij (w)dw = uij (x), (2)

where uij (x) and ūij (w), respectively, denote the jth compo-
nent of ui (x, θ) and ūi (w, θ) (suppressing the argument θ in
the definitions), and the integral is over the entire range of
W . As indicated in the introduction, we do not seek an exact
solution to (2), but instead use the method of regularization
to find an approximate solution.

Define the integral operator Aig(x) =
∫

ai (x, w)g(w)dw.
Write Δij (x) = uij (x) − Aiuij (x) and Δ̄ij (x) = ūij (x) − uij (x).
We can then write (2) as AiΔ̄ij = Δij . We seek the Δ̄ij (·, θ, α)
that minimizes the penalized loss function

Lij (Δ̄ij ) = ‖AiΔ̄ij − Δij ‖2 + α‖Δ̄ij ‖2, (3)

where ‖g‖2 denotes the weighted squared L2 norm ‖g‖2 =∫
c(v)g(v)2dv and α > 0 is a penalty factor. The penalty

is introduced in order to avoid ill-conditioning and ensure
existence of a solution. After obtaining Δ̄ij (·, θ, α), we use
ūij (x, θ, α) = uij (x) + Δ̄ij (x, θ, α) as a corrected score term.

For the weight function c(v), we propose as a generic
choice the standard normal density, i.e., c(v) = ϕ(v) with
ϕ(v) = exp(−v2/2)/

√
2π, after standardizing W to mean 0

and variance 1. The weight function is designed to put em-
phasis on the region of the covariate space where the bulk of
the data lie. One could consider tailoring the choice of the
weight function to the pattern of the observed distribution of
W , but we do not discuss this here.

We formulate the minimization problem in terms of
Δ̄ij (·, θ, α) rather than ūij (·, θ, α) in order to anchor the proce-
dure at uij (w), which corresponds to the naive analysis where
we ignore the covariate error and substitute Wi for Xi . See
Hansen (1994, Sec. 2, second paragraph) for the idea of center-
ing the regularization process around an initial estimate of the
desired solution to the integral equation. As α → ∞, the loss
function Lij (Δ̄ij ) puts increasingly heavy weight on ‖Δ̄ij ‖2,
causing the minimizer Δ̄ij to tend to 0 and thus leading to
the naive estimates based on uij (w). At the other extreme,
as α → 0, the problem of minimizing Lij (Δ̄ij ) approaches the
problem of solving AΔ̄ij = Δij . We first describe the proce-
dure for a fixed α, and then discuss the selection of the value
of α.

By using the L2 norm, we ensure that the problem of
minimizing the loss function always has a unique solution,
and the solution has a convenient form. Delves and Mo-
hamed (1985, Sec. 12.3) and Kress (1989, Theorem 16.1)
present the relevant theory. Let A∗

i h(w) =
∫

ai (x, w)h(x)dx
denote the operator adjoint of Ai . Then, for any L2 function
δ, the minimizer of L(δ̄; Ai , δ, α) = ‖Ai δ̄ − δ‖ + α‖δ̄‖2 is given
by δ̄ = (A∗

i Ai + αI)−1A∗
i δ, where I is the identity operator.

The next section describes a numerical scheme for finding the

solution that leads to a simple linear system of equations. We
thus obtain an easily implemented procedure.

3. The Procedure
3.1 The Procedure for a Given α

To numerically determine the minimizer of Lij (Δ̄ij ), we use
a Galerkin-type basis expansion approach, in the spirit of
(though not identical to) Delves and Mohamed (1985, Sec.
12.4). Specifically, we represent the solution Δ̄ij (·, θ, α) in a
basis expansion

Δ̄ij (x, θ, α) =
M∑

m =1

dijm(α)ψm (x), (4)

where the ψm are specified basis functions. In our numerical
work, we use the “probabilists”’ Hermite polynomials, which
are orthonormal with respect to the weight function ϕ. One
has to choose the number M of basis functions to include. We
found that M = 6 yields good performance; the results with
M = 4 are inferior to those with M = 6, while the results
with M = 10 are similar to those with M = 6 but with more
outliers.

Denote φim (x) = Aiψm (x) and dij = [dij1 . . . dijM ]T (sup-
pressing the argument α in dijm for the time being). We then
can express the objective function Lij (Δ̄ij ) as

Lij (Δ̄ij ) = ‖
M∑

m =1

dijmφim − Δij ‖2 + α dT
ij dij ,

where ‖Δ̄ij ‖2 = dT
ij dij because of the orthonormality of the

ψm functions. We now approximate the L2 norm in the first
term on the right side via the quadrature approximation∫

ϕ(v)g(v)dv
.=

K∑
k=1

qk g(xk ), (5)

where xk and qk are the classical Gauss–Hermite quadrature
points and weights (modified slightly to account for our use
of the weight function exp(−v2/2)/

√
2π as opposed to the

standard Hermite weight function exp(−v2).) Given the ap-
proximation (5), we can express the objective function as

Lij (Δ̄ij ) =
K∑

k=1

qk

[
M∑

m =1

dijmφim (xk ) − Δij (xk )

]2

+ α dT
ij dij

=
K∑

k=1

[
M∑

m =1

dijm φ̃im k − Δ̃ijk

]2

+ α dT
ij dij ,

where φ̃imk =
√

qk φm (xk ) and Δ̃ijk =
√

qk Δij (xk ). Next, de-
fine the matrix Φ̃i by Φ̃ikm = φ̃im k and the vector Δ̃ij =
[Δ̃ij1 . . . Δ̃ijk ]. We obtain Lij (Δ̄ij ) = (Φ̃idij − Δ̃ij )T (Φ̃idij −
Δ̃ij ) + α dT

ij dij . We then find, by standard least-squares the-
ory, that the vector dij (α) that minimizes the above quantity

is given by dij (α) = C(α)Δ̃ij , where C(α) = (Φ̃
T
Φ̃ + αI)−1.

Note that C(α) does not depend on θ. Finally, we de-
fine ūij (w, θ, α) = uij (w, θ) + Δ̄ij (w, θ, α), where Δ̄ij (w, θ, α)
is given by (4) with dijm(α) as just described. Then,
as indicated in the preceding section, we put Ū(θ, α) =
n−1

∑
i
ūi (Wi, θ, α) and define the estimator θ̂(α ) to be the

solution to Ū(θ, α) = 0.
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In the course of the foregoing procedure, we have to evalu-
ate integrals of the form

E[g(Wi )|Xi = x] = Aig(x) =
∫

ai (x, w)g(w)dw. (6)

Integrals of this type appear in φim (x) = Aiψm (x) and in
Δij (x) = uij (x) − Aiuij (x). These integrals can be evaluated
by K ′-point numerical quadrature for suitable K ′. Web
Appendix A.1 presents the details. In regard to the choice
of K and K ′, in our numerical work we generally used K =
K ′ = 20; we reran selected simulations with K = K ′ = 30 and
obtained similar results. In a data analysis, the analyst can
try a succession of increasing values of K and K ′, and stop
when there is no further change in the results.

In practice, ai (x, w) has to be estimated, using data from an
internal or external validation study (or a replicate measures
study). We assume that ai (x, w) follows a known parametric
model depending on parameters ξ (distinct from θ) which are
estimated from the relevant data. We thus write ai (x, w, ξ).
The parametric model is allowed to be of any specified form.
Thus, in addition to the classical independent additive er-
ror model, we allow models with dependence between the er-
ror and the true covariate value, and models with differential
error. We have examined the effect of misspecifying the para-
metric form. In practice, the parametric model would be cho-
sen based on analysis of the validation data. Regression meth-
ods can be used to model E[W |X ]. Heterogeneity of variance
can be assessed and modeled by applying regression methods
to the squares of the residuals, as in Davidian and Carroll
(1987). These models can be checked using standard tools.
The distributional form for the error can be selected by ex-
amining the standardized residuals from the regression of W
on X .

3.2 Theoretical Properties
In general, θ̂(α ) will not converge to the true value θ0 of
θ, but rather to a limit θ̃(α ) that is close to θ0 when α is
small. We cannot make α arbitrarily small, but we can try
to make it small enough to obtain estimates with small bias,
and the numerical studies in the next section indicate that
this goal can be achieved. Thus, our method does not produce
an exactly consistent estimator, but it does produce an ap-
proximately consistent estimator. Moreover, under standard
regularity conditions,

√
n(θ̂(α ) − θ̃(α )) is asymptotically nor-

mal. These properties are formalized in the following theorem,
proved in Web Appendix A.2.

Theorem. Define ūE (θ, α) = E[ūi (Wi, θ, α)]. Let D̄(α )(θ)
be the Jacobian of −Ū(θ, α). Then, under the regularity condi-
tions A1–A4 in Web Appendix A.2, the following results hold.

(a) We have E[ūij (Wi, θ, α)|Xi ,Zi , Yi ] = uij (Xi , θ) +
rij (Xi , θ, α) with rij (·, θ, α) converging uniformly in θ to zero
as α → 0.

(b) Similarly, with uij (x, θ) = [∂/∂θs ]uij (x, θ) and
ūijs(w, θ, α) = [∂/∂θs ]ūij (w, θ, α), we have E[ūijs(Wi, θ, α)
|Xi ,Zi , Yi ] = uijs(Xi , θ) + rijs(Xi , θ, α) with rijs(·, θ, α) con-
verging uniformly in θ to zero as α → 0.

(c) For all α sufficiently small, the equation ūE (θ, α) = 0
has a unique solution, which we denote by θ̃(α ). For fixed α, we
have θ̂(α ) → θ̃(α ) almost surely as n → ∞.

(d) We have θ̃(α ) → θ0 as α → 0.
(e) If ai (x, w) is known,

√
n(θ̂(α ) − θ̃(α )) is asymptotically

mean-zero normal with covariance matrix that can be estimated
using the sandwich estimator

V(α )(θ̂(α )) = D̄(α )(θ̂(α ))−1F(α )(θ̂(α ))D̄(α )(θ̂(α ))−1

with F(α )(θ) = n−1
∑n

i=1 ūi (θ, α)ūi (θ, α)T . Under a para-
metric model for ai (x, w) with estimated parameters ξ, a sim-
ilar result holds, with a suitable adjustment to the estimated
covariance matrix to account for the estimation of ξ, as de-
scribed in Web Appendix A.3.

Remark: Assumptions A1–A3 are typical assumptions
made in asymptotic theory; see, for example, van der Vaart
(1998, p. 46, bottom). Assumption A4 is a modest assump-
tion that holds in many cases of interest. For example, sup-
pose (X, W ) follows the independent additive error model
W = X + σε, where ε is a random variable with density fε , in-
dependent of X . We then have a(x, w) = σ−1fε ((w − x)/σ) =
σ−1f̃ε ((x − w)/σ), with f̃ε (u) = fε (−u). The assumption thus
will be satisfied provided that the location-scale family of den-
sities f (x; w, σ) = σ−1f̃ε ((x − w)/σ) is a complete family of
densities with respect to the parameters (w, σ). This condition
certainly holds if fε is a density of exponential family form; see
Lehmann (1986, p. 142). Next, consider the extended model
W = X + σ(X, γ)ε, which we examine in our numerical stud-
ies, where γ is a vector of parameters. Assumption A4 will
hold in this setting if the family of densities

f (x; w, γ) =

1
σ (x ,γ ) f̃ε

(
x−w

σ (x ,γ )

)
∫

1
σ (x ′,γ ) f̃ε

(
x ′−w

σ (x ′,γ )

)
dx′

is a complete family of densities with respect to the param-
eters (w, γ). Again, this condition will hold if fε is a density
of exponential family form.

3.3 Choice of the Penalty Parameter α

The issue of how to choose the penalty parameter in a regular-
ization problem has been investigated in previous literature.
Hansen (1994, 2007) describes three leading criteria: the L-
curve criterion, the GCV criterion, and the quasi-optimality
criterion. We tried all three, and found the GCV criterion to
be the most satisfactory. The GCV criterion is

GCV(α) =
(Φ̃idij (α) − Δ̃ij )T (Φ̃idij (α) − Δ̃ij )

[trace(I − C(α))]2
,

and α is chosen to minimize this quantity. In our setting,
with a separate value GCVij (α) for each i and j, we use the
summary criterion GCV∗(α)= (np)−1

∑n

i=1

∑p

j=1 GCVij (α).
In implementing this rule, we evaluate Δ̃ij at the naive es-
timate of θ, and then keep α fixed at the resulting value for
the remainder of the estimation process.

3.4 Multiple Error-Prone Covariates
The method can be extended to the case of two error-prone
covariates X1 and X2. For the basis functions, we use the ten-
sor product of the univariate basis functions. The integrals in
quantities of the form Aig(x) become double integrals, which
are evaluated by bivariate quadrature. In the L2 norm ap-
pearing in the objective function, we take the weight function
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to be c(w1, w2) = ϕ(w1)ϕ(w2), and evaluate the integral using
the bivariate version of (5).

In the case of three or more error-prone covariates, the
situation becomes more complicated. Taking the basis func-
tion set to be the tensor product of the univariate basis
functions will typically produce too large a basis function
set, so some reduction will be necessary. One option is to
take the basis function set to include all the univariate ba-
sis functions for the individual covariates plus the cross-
products of the linear terms. In the evaluation of the integrals
Aig(x) = E[g(Wi )|Xi = x], a Monte-Carlo method will prob-
ably be more workable than a classical quadrature method.
The L2 norms can be computed using a multivariate version
of (5), but the computational load may be demanding.

The simulation work presented in the next section includes
results for the case of two error-prone covariates. On a prac-
tical level, it appears challenging to apply our method with
three or more error-prone covariates. However, many applica-
tions involve only one or two error-prone covariates, and thus
can be handled by our method in a reasonable way. An arbi-
trary number of error-free covariates can be handled without
difficulty.

4. The Logistic Regression Model: Simulation Studies
4.1 Simulation Study Designs
To investigate the finite sample performance of our method,
we conducted a series of simulation studies. This subsection
describes the simulation study designs; the next subsection
describes the results. The studies were conducted in the set-
ting of the logistic regression model. The response variable Yi

equals either 0 or 1. Defining Ti = (Xi ,Zi ) and Ti0 ≡ 1, the
model is logit Pr(Yi = 1|Xi = x,Z = z) =

∑p

j=1 βj−1tj−1 and
the score function u(y, x, z, θ) is

uj (y, x, z, θ) = tj−1

[
y − expit

(∑p

l=0 βl−1tl−1

)]
,

expit(a) = ea /(1 + ea ).

We examined the following methods: (1) naive analysis ignor-
ing measurement error, (2) RECS, (3) the Novick and Stefan-
ski (2001) complex variable corrected score method (N&S),
(4) SIMEX, (5) the Huang and Wang (2001) nonparamet-
ric corrected score method (H&W), (6) a Bayesian MCMC-
type method (at the suggestion of a referee), patterned after
Richardson et al. (2002). The SIMEX method was applied
with linear (SIMEX-L), quadratic (SIMEX-Q), and nonlinear
extrapolation (SIMEX-NL). We show the results for SIMEX-
Q in the tables, and the results for the other versions in the
web appendix. For the Huang and Wang method, which re-
quires replicate measurements of W , we took two replicates
per individual and doubled the error variance for compara-
bility with the other methods. Note that H&W is designed
to provide accurate estimates only for the slope, not for the
intercept. All simulation results for Methods 1–5 are based
on 1000 simulation replications. The MCMC method is very
time-consuming, so for this method we ran only 100 replica-
tions.

The SIMEX method is designed for independent additive
normal measurement error. The N&S method is designed for
the case where the measurement error is independent additive
normal and the likelihood score function is an entire function

in the complex plane. The latter condition does not hold for
logistic regression, and thus the N&S method is not designed
to handle any of the simulation scenarios we have studied.
The H&W nonparametric method is designed for independent
additive measurement error with an arbitrary distribution,
which is not modeled in any way. The RECS method is de-
signed for parametric measurement error models of arbitrary
form, including nonnormal, heteroskedastic, and differential
error.

The details of the Bayesian MCMC method are presented in
Web Appendix B. The MCMC algorithm was run for 100,000
iterations, with the last 40,000 iterations used for inference.
Our adaptation of the Richardson et al. method involves an
input parameter η that regulates the variance of the prior
distributions on β0 and β1. Specifically, the prior on βj was
taken to be normal with mean equal to the naive estimate and
variance equal to η times the estimated variance of the naive
estimate. We present results for η = 100. Results for η = 10
are provided in the web appendix. It was necessary for the
prior on β0 and β1 to be moderately informative to ensure
convergence of the MCMC sampler. This is an inherent diffi-
culty with the Bayesian approach in the context of the main
study/external validation study design that we consider, with
no individuals for which the outcome Y and the true covari-
ate X are both observed. The setting η = 100 corresponds
to the maximum degree of noninformativeness under which
convergence of the MCMC sampler is maintained across all
scenarios studied.

For each estimator, we summarize the bias in terms of the
mean and median of the difference between the estimated
and true parameter values, and the dispersion in terms of
the empirical standard deviation and standardized interquar-
tile range (dividing the raw interquartile range by 1.349,
which is the ratio between the interquartile range and the
standard deviation for a normal distribution). The median
and the interquartile range are more robust to outliers, and
thus provide further insight in addition to that provided
by the mean and the standard deviation. In addition, we
present the coverage rates of the 95% Wald confidence inter-
val based on asymptotic normal theory. For the naive method,
variance estimates were computed using the standard asymp-
totic variance formula. For the RECS and N&S methods,
an explicit sandwich-type formula was used. For SIMEX, we
used the jackknife estimator in the R package simex, while
for H&W we used a bootstrap variance estimator. For the
Bayesian MCMC method, interval estimation was based on
95% highest posterior density (HPD) intervals (Box and Tiao,
1973, Section 2.8).

In Simulation Sets A and B, we considered the case of a
single continuous error-prone covariate Xi and no other co-
variates. In these two simulation sets, we worked in the set-
ting of a main study/external validation study design, in-
volving a main study sample with data on W and Y and
an external validation sample with data on W and X . The
main study sample size was 200 and the external validation
sample size was 70. The measurement error parameters were
estimated by maximum likelihood. The RECS method was
implemented with M = 6 basis functions and K = K ′ = 20
quadrature points. The true values of the regression parame-
ters were set at β0 = β1 = 1.
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Simulation Set A involved measurement error models of the
form Wi = Xi + εi , where εi is normally distributed, but with
error variance possibly depending on Xi and Yi . We examined
three simulation scenarios, as follows:

Scenario A1: Xi ∼ N (0, 1), εi |(Xi , Yi ) ∼ N (0, γ)
Scenario A2: Xi ∼ N (0, 1), εi |(Xi , Yi ) ∼ N (0, γ1 + γ2|Xi |)
Scenario A3: Xi ∼ N (0, 1), εi |(Xi , Yi ) ∼ N (0, γ1 + γ2|Xi | +

γ3|Yi |).
For each of the above scenarios, we examined two sets

of measurement error parameters. In Scenario A1, we took
γ = 0.5 or 1. In Scenarios A2 and A3, the two sets of mea-
surement error parameters were chosen to make the uncon-
ditional variance of εi equal to about 0.5 or 1, respectively.
Scenario A1 is the classical additive error model, which is
theoretically covered by RECS, SIMEX, and H&W (for N&S,
the measurement error model assumption is satisfied but the
entire function condition is not). Scenarios A2 and A3 involve
heteroskedastic error models that are theoretically covered by
RECS but not by N&S, SIMEX, or H&W.

Simulation Set B involved measurement error models of
the form Wi = Xi + εi , with nonnormal εi . We considered
two distributions for εi , the double-exponential distribution
(DBLEXP(γ), with γ denoting the variance) and a mod-
ified chi-square distribution MODCHI which Huang and
Wang (2001) used in their simulation work. Specifically, the
MODCHI(γ) is defined to be the distribution of a χ2

1 variate
truncated at the value 5, recentered to mean zero, and then
rescaled to a variance of γ. In Scenario B3, we also take X to
have a MODCHI distribution. The DBLEXP distribution is
similar to the normal, but with heavier tails. The MODCHI
distribution is highly skewed. The specific scenarios examined
were as follows:

Scenario B1: Xi ∼ N (0, 1), εi |(Xi , Yi ) ∼ DBLEXP(γ)
Scenario B2: Xi ∼ N (0, 1), εi |(Xi , Yi ) ∼ MODCHI(γ)
Scenario B3: Xi ∼ MODCHI(1), εi |(Xi , Yi ) ∼ MODCHI

(γ).
These scenarios are theoretically covered by RECS and

H&W, but not by SIMEX or N&S.
For each of these scenarios, we ran simulations for γ = 0.5

and γ = 1. For the MODCHI distribution, integrals of the
form Aig(x) were evaluated as described at the end of Web
Appendix A.1. Note that the MODCHI(γ) is a nonregu-
lar distributional family: it has support that depends on γ.
Hence, classical asymptotic theory for MLE’s does not ap-
ply to the MLE of γ. However, due to the restricted range
of γ values that are compatible with a given dataset due
to the definition of the support, with an external validation
sample of 70 the value of γ is estimated with virtually no
error.

Simulation Set C considered the case of two error-prone
covariates X1, X2 and one error-free covariate Z . For this
simulation set, the sample size was 500, and the measure-
ment error parameters were taken as known. For the RECS
method, the basis function set was taken to be the tensor
product of the univariate basis functions sets with M = 6, and
in the quadrature calculations we took K ′ = 20 and K = 10.
The true regression coefficients were β0 = β1 = β2 = β3 = 1.
The scenarios examined were as follows.

Scenario C1: X1, X2, Z i.i.d. N (0, 1); ε1, ε2 i.i.d. N (0, γ), in-
dependent of X1, X2, Z

Scenario C2: X1, X2, Z i.i.d. N (0, 1); ε1, ε2 conditionally
independent given X1, X2, Z and distributed as N (0, γ1 +
γ2(|X1| + |X2| + |Z |))

Scenario C3: X1, X2 ∼ MODCHI(1); Z ∼ N (0, 1); ε1, ε2 ∼
MODCHI(γ), all random variables independent of each other.

In Scenarios C1 and C3, we took γ = 1, while in Scenario
C2 we took γ1 = 0.4 and γ2 = 0.25, so that the unconditional
variance of ε1 and ε2 was about 1. Scenario C1 is the classical
additive error model, which is theoretically covered by RECS,
SIMEX, and H&W (for N&S, the measurement error model
assumption is satisfied but the entire function condition is
not satisfied). Scenario C2 involves a heteroskedastic error
model that is theoretically covered by RECS, but not by N&S,
SIMEX, or H&W. Scenario C3 involves a nonnormal error
model that is theoretically covered by RECS and H&W, but
not by SIMEX or N&S.

Finally, in Scenario D, we examined the effect of misspec-
ifying the error distribution, in the setting of a single error-
prone covariate. The details are described in Web Appendix
C.2. The R code for the simulations can be found with the
supplemental web materials or on the first author’s website
(http://pluto.huji.ac.il/∼mszucker).

4.2 Simulation Results
Tables 1 and 2 present, respectively, the results of Simulation
Studies A and B, while Table 3 presents the results of Sim-
ulation Study C. In Tables 1 and 2, we present the results
only for the slope parameter β1, which is the parameter of
main interest. Results for the intercept parameter are given
in the web appendix. In Table 3, we present results only for
β1 and β3, the slope parameters for X1 and Z , respectively.
The web appendix provides the results for β0 and β2. The
results for β2 are similar to those for β1. The results of Sim-
ulation Scenario D are in the web appendix. Here we discuss
the findings, focusing on estimation of the slope parameter.
Overall, the RECS method performs very well in terms of bias
and confidence interval coverage. Below we discuss how RECS
compares with the competing methods.

We begin with the Simulation Study A, the setting of
normal measurement error with possible heteroskedasticity.
RECS showed low bias throughout, especially when we look
at the median of the estimates. N&S also generally showed
low bias, although the bias was greater than that of RECS in
a number of cases. SIMEX-NL also showed low bias in most
cases (the last panel of Web Table 1 being a notable excep-
tion), but the estimation procedure was unsuccessful 6–10% of
the time due to failure of the extrapolation process. SIMEX-L,
SIMEX-Q, H&W, and MCMC performed markedly less well
in terms of bias. The variability of the RECS estimates was
comparable to that of the SIMEX-NL estimates and generally
higher than that of the other methods.

We turn now to Simulation Study B, with nonnormal mea-
surement error. Again, RECS showed low bias throughout.
N&S had low bias with double exponential error, and showed
the best performance among the various methods in this case.
With MODCHI error, RECS had low bias, while all the other
methods had substantial bias.

We turn next to Simulation Study C, with two error-prone
covariates and one error-free covariate. SIMEX and H&W per-
formed poorly in estimating the slope parameters of the two
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Table 1
Simulation Study A: X ∼ N (0, 1) and ε ∼ N (0, γ1 + γ2|X | + γ3Y ); results for slope parameter β1; sample size n=200,

validation sample size m = 70

M MD Emp-SD IQ-SD 95% CI F M MD Emp-SD IQ-SD 95% CI F

γ1 = 0.5, γ2 = 0, γ3 = 0 γ1 = 1.0, γ2 = 0, γ3 = 0

Naive 0.6469 0.6379 0.1512 0.1520 0.360 0 0.4713 0.4660 0.1262 0.1264 0.027 0
RECS 1.0782 1.0314 0.3373 0.3013 0.958 0 1.1567 1.0231 0.5421 0.4266 0.933 2
N&S 1.0368 1.0257 0.2740 0.2867 0.907 0 0.9487 0.9859 0.2283 0.2365 0.897 8
SIMEX-Q 0.8940 0.8737 0.2245 0.2157 0.877 0 0.7182 0.6989 0.2048 0.2039 0.626 0
H&W 1.0600 0.9514 0.5264 0.3818 0.951 4 0.8840 0.7851 0.5249 0.3751 0.917 4
MCMC η =100 1.2797 1.2364 0.4072 0.4324 0.950 0 1.2304 1.1671 0.4350 0.4848 0.970 0

γ1 = 0.3, γ2 = 0.25, γ3 = 0 γ1 = 0.7, γ2 = 0.35, γ3 = 0
Naive 0.6573 0.6494 0.1553 0.1573 0.390 0 0.4812 0.4749 0.1284 0.1279 0.036 0
RECS 1.0429 1.0054 0.3102 0.2784 0.949 0 1.0658 0.9797 0.4673 0.3663 0.912 1
N&S 1.0929 1.0881 0.3001 0.3208 0.899 1 0.9926 1.0305 0.2402 0.2348 0.890 7
SIMEX-Q 0.9169 0.8926 0.2368 0.2313 0.891 0 0.7358 0.7167 0.2115 0.2053 0.660 0
H&W 1.0370 0.9679 0.4451 0.2980 0.949 1 1.0310 0.9134 0.5109 0.3566 0.941 4
MCMC η =100 1.2539 1.2292 0.3691 0.3750 0.950 0 1.2866 1.2396 0.4414 0.4678 0.940 0

γ1 = 0.15, γ2 = 0.25, γ3 = 0.25 γ1 = 0.35, γ2 = 0.25, γ3 = 0.50
Naive 0.6512 0.6437 0.1513 0.1488 0.373 0 0.5091 0.5029 0.1282 0.1285 0.060 0
RECS 1.0782 1.0316 0.3477 0.2921 0.950 0 1.1123 0.9989 0.4765 0.3793 0.929 0
N&S 1.1099 1.1037 0.2987 0.3215 0.896 2 1.0293 1.0674 0.2451 0.2514 0.858 12
SIMEX-Q 0.8718 0.8545 0.2241 0.2194 0.840 0 0.7259 0.7125 0.1986 0.1868 0.605 0
H&W 1.0410 0.9682 0.4373 0.3121 0.957 2 1.0600 0.9600 0.5004 0.3425 0.942 3
MCMC η =100 1.0950 1.0748 0.3028 0.3490 0.990 0 1.1408 1.0934 0.3828 0.3606 0.980 0

N&S, Novick and Stefanski (2002); H&W, Huang and Wang (2001). SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9)
and the simex R library. M, empirical mean; MD, empirical median; Emp-SD, empirical standard deviation; IQ-SD, interquartile dispersion; 95%
CI, empirical coverage rate of 95% Wald confidence interval (or HPD interval, for MCMC); F, number of samples with no solution.

error-prone covariates. The SIMEX-NL method performed es-
pecially poorly, producing estimates way off in the wrong
direction. The RECS method performed well. In Scenarios
C1 (normal homoskedastic error) and C3 (MODCHI error),
RECS performed markedly better than N&S in terms of pro-
ducing estimates with low bias, while in Scenario C2 (normal
heteroskedastic), the performance was similar, with RECS
overestimating and N&S underestimating. With the MCMC
method, the estimates with η = 10 were seriously biased,
while the estimates with η = 100 had low to moderate bias.

In all three of the above scenarios, RECS generally yielded
substantially better confidence interval coverage rates than
the competing methods. Often the difference was substantial.
We note that the SIMEX-NL method failed to admit a confi-
dence interval in a considerable number of cases because the
estimated variances were negative.

Finally, we turn to Simulation Study D, concerning the
performance of RECS when the error model is misspecified
(assumed normal but actually skewed normal or MODCHI).
Aside from the case with both X and ε distributed MODCHI,
the mean bias was in the range of 15–35% and the median
bias was in the range 10–20%. Thus, in terms of median bias,
RECS performed reasonably—certainly much better than the
naive analysis with no measurement error correction. When
both X and ε were distributed MODCHI, RECS performed
poorly. However, this result is not too disturbing—because of
the great difference between the MODCHI and normal dis-
tributions, it is unlikely that an analyst would mistakenly fit
a normal model to MODCHI measurement errors. In prin-
ciple, added robustness can be gained by using a flexible

distributional form for the error model, such as the “semi-
nonparametric normal” model of Gallant and Nychka (1987).

The degree of penalization in the RECS method tended to
be very low throughout. The mean α value was less than 0.01
in all simulation scenarios studied.

5. Practical Illustration
We illustrate the method on data from the Nurses’ Health
Study (NHS). The NHS began in 1976 when 121,700 fe-
male nurses aged 30–55 returned a questionnaire about their
lifestyle and their health. Here, we analyze the relationship
between physical activity and mortality among women diag-
nosed with breast cancer during the NHS follow-up. This re-
lationship was previously examined by Holmes et al. (2005).
The present analysis involves a subset of the nurses included
in the analysis of Holmes et al. Specifically, we consider the
group of 1660 nurses who were diagnosed with breast cancer
at least 10 years before the administrative end of the study,
June 2002. This is the main study. The endpoint is the bi-
nary variable defined as breast cancer death within 10 years
following diagnosis. The total number of such deaths was 188.
In NHS, physical activity was assessed by a questionnaire
in which women were asked how much time they spent on
average during the past year on each of the most common
forms of leisure time physical activity. The questionnaire re-
sults were then converted into metabolic equivalent task hours
per week (METS). Validation data were available from 149
women from the NHS II study (Wolf et al., 1994), a study
begun in 1989 which involved a cohort of U.S. female nurses
similar to that of the NHS, and in which the same physical
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Table 2
Simulation Study B: non-normal measurement error with normal or non-normal true covariate; results for slope parameter β1;

sample size n=200, validation sample size m = 70

M MD Emp-SD IQ-SD 95% CI F M MD Emp-SD IQ-SD 95% CI F

X ∼ N (0, 1) and ε ∼ DBLEXP(γ)
γ = 0.5 γ = 1.0

Naive 0.6378 0.6287 0.1609 0.1517 0.334 0 0.4659 0.4598 0.1370 0.1349 0.039 0
RECS 1.0684 0.9986 0.3611 0.3264 0.948 0 1.1362 1.0089 0.5714 0.4335 0.933 6
N&S 1.0471 1.0126 0.2970 0.3293 0.888 0 0.9625 1.0099 0.2794 0.2872 0.845 11
SIMEX-Q 0.8905 0.8641 0.2438 0.2276 0.871 0 0.7205 0.6970 0.2289 0.2165 0.629 0
H&W 1.0770 0.9848 0.4523 0.3202 0.951 0 0.9886 0.8985 0.4636 0.3336 0.942 1
MCMC η =100 1.2987 1.2613 0.3796 0.4360 0.970 0 1.1476 1.0940 0.3785 0.4483 0.990 0

X ∼ N (0, 1) and ε ∼ MODCHI(γ)
γ = 0.5 γ = 1.0

Naive 0.6822 0.6793 0.1706 0.1672 0.467 0 0.5196 0.5146 0.1547 0.1552 0.126 0
RECS 1.0555 1.0348 0.2981 0.2775 0.959 0 1.0869 1.0345 0.3970 0.3546 0.966 0
N&S 1.1449 1.1451 0.3230 0.3808 0.857 4 1.1232 1.1779 0.2711 0.2319 0.805 18
SIMEX-Q 0.9678 0.9500 0.2624 0.2617 0.890 0 0.8320 0.8234 0.2711 0.2765 0.747 0
H&W 1.0260 0.9809 0.3822 0.2861 0.956 2 0.9640 0.8949 0.4753 0.3069 0.927 3
MCMC η =100 1.2154 1.1673 0.3372 0.2999 0.920 0 1.1502 1.1252 0.2996 0.2924 0.980 0

X ∼ MODCHI(1) and ε ∼ MODCHI(γ)
γ = 0.5 γ = 1.0

Naive 0.5461 0.5348 0.1709 0.1662 0.250 0 0.3917 0.3824 0.1448 0.1402 0.063 0
RECS 1.1279 1.0479 0.4989 0.4415 0.938 0 1.1272 1.0319 0.5784 0.5316 0.932 0
N&S 1.2750 1.3552 0.4993 0.6506 0.672 51 1.0147 1.1508 0.4306 0.5522 0.545 212
SIMEX-Q 0.8175 0.7884 0.2870 0.2713 0.791 0 0.6396 0.6176 0.2602 0.2498 0.490 0
H&W 0.9610 0.8409 0.5507 0.3729 0.912 6 0.8084 0.6995 0.5894 0.4255 0.846 13
MCMC η =100 1.0279 1.0105 0.4865 0.4735 0.970 0 0.8416 0.8245 0.4370 0.4278 0.930 0

N&S, Novick and Stefanski (2002); H&W, Huang and Wang (2001). SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9)
and the simex R library. M, empirical mean; MD, empirical median; Emp-SD, empirical standard deviation; IQ-SD, interquartile dispersion; 95%
CI, empirical coverage rate of 95% Wald confidence interval (or HPD interval, for MCMC); F, number of samples with no solution.

activity questions were asked. In our analysis, these data are
regarded as arising from an external validation study. In the
validation study, METS was assessed using both the question-
naire and a detailed activity diary, with the diary regarded
as the gold standard. We denote the METS value based on
diary data by X and the METS value based on questionnaire
data by W . The degree of measurement error is consider-
able, with the correlation between X and W in the valida-
tion study being 0.47. Since the distribution of METS was
skewed, we developed the measurement error model from the
validation data using a transformed version of METS defined
by X∗ = log(1 + X). We considered two measurement error
models, denoted MEM1 and MEM2. Both models were of the
form W ∗

i = ω0 + ω1X
∗
i + εi . In MEM1, εi was taken to have

the N (0, σ2) distribution, independent of X∗
i . MEM2 incor-

porated dependence between εi and X∗
i , with the conditional

distribution of εi given X∗
i taken to be N (0, γ1 + γ2|X∗

i − μ|),
with μ = E[X∗

i ]. The parameters ω0, ω1 were estimated by
simple linear regression in both models (weighted regression
based on the MEM2 model for εi produced virtually identical
estimates of ω0 and ω1). For MEM1, σ2 was estimated by the
regression MSE in the standard manner. For MEM2, γ1 and
γ2 were estimated via regression analysis of the squares of the
residuals obtained from MEM1; in this regression analysis, the
t-test on γ2 was borderline significant (p = 0.0614), suggesting
some evidence of heteroskedasticity. The estimates obtained

were ω̂0 = 1.2271, ω̂1 = 0.5653, σ̂2 = 0.8181, γ̂1 = 0.5883, and
γ̂2 = 0.3497. Graphical inspection of the normalized residuals
based on the MEM2 model for εi showed reasonable conform-
ity to a normal distribution. A preliminary analysis of the
main study data indicated that the log odds of breast cancer
could be reasonably expressed as a linear function of X∗, so
we proceeded on this basis.

We ran RECS with 6 basis functions and K = K ′ = 20
quadrature points in the quadrature calculations. The rele-
vant R code can be found with the supplemental web ma-
terials or on the first author’s website. We also applied the
SIMEX and N&S methods to the data. The H&W method
is not relevant, since we have an external validation de-
sign rather than a replicate measures design. Standard er-
rors for the RECS and N&S methods were computed using
a sandwich-type estimator, while standard errors for SIMEX
were computed using the jackknife method in the R package
simex.

Table 4 presents the results for the various methods. The
naive method was applied in two forms: (1) using W ∗

i as is
(Naive1) and (2) using W̃ ∗

i = (W ∗
i − ω0)/ω1, thus correcting

for location-scale bias but not for measurement error
(Naive2). The table includes estimates of β0 and β1 and
corresponding standard errors. The table also includes an
estimate and a 95% confidence interval for the odds ratio
associated with a change in X∗ of 3.4, which corresponds
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Table 3
Simulation Study C: two error-prone covariates and one error-free covariate; sample size n = 500

β1 β3

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F

Scenario C1: X1, X2, Z ∼ N (0, 1) and ε1, ε2 ∼ N (0, 1)
Naive 0.4296 0.4242 0.0804 0.0781 0.000 0.8626 0.8599 0.1201 0.1223 0.769 0
RECS 1.0817 1.0341 0.3116 0.2595 0.972 1.0525 1.0286 0.2079 0.1907 0.979 0
N&S 0.8286 0.8288 0.1316 0.1319 0.826 0.9483 0.9448 0.1382 0.1412 0.951 52
SIMEX-Q 0.8113 0.8038 0.1377 0.1333 0.571 0.9587 0.9524 0.1452 0.1519 0.920 0
H&W 0.6678 0.6675 0.5038 0.3360 0.800 1.0277 0.9679 0.4669 0.3039 0.918 14
MCMC η =100 1.0608 1.0335 0.2765 0.2508 0.870 1.0445 1.0418 0.1622 0.1834 0.970 0

Scenario C2: X1, X2, Z ∼ N (0, 1) and ε1, ε2 ∼ N (0, 0.4 + 0.25(|X1| + |X2| + |Z |))
Naive 0.4386 0.4334 0.0824 0.0792 0.001 0.8712 0.8694 0.1223 0.1223 0.791 0
RECS 1.1884 1.1122 0.3800 0.3126 0.986 1.0828 1.0482 0.2405 0.2007 0.983 1
N&S 0.8606 0.8619 0.1329 0.1312 0.842 0.9668 0.9655 0.1439 0.1465 0.966 46
SIMEX-Q 0.8345 0.8242 0.1431 0.1394 0.819 0.9793 0.9746 0.1516 0.1562 0.933 0
H&W 0.6165 0.6176 0.4809 0.3277 0.733 0.9627 0.9279 0.4248 0.2837 0.905 9
MCMC η =100 1.0338 1.0084 0.2709 0.2637 0.890 1.0358 1.0339 0.1626 0.1701 0.950 0

Scenario C3: X1, X2 ∼ MODCHI(1), Z ∼ N (0, 1), and ε1, ε2 ∼ MODCHI(1)
Naive 0.3853 0.3814 0.0887 0.0915 0.000 0.8883 0.8893 0.1206 0.1207 0.809 0
RECS 1.0430 0.9841 0.3726 0.3328 0.942 1.0413 1.0232 0.1856 0.1667 0.971 0
N&S 0.8656 0.8664 0.2576 0.2880 0.782 0.9261 0.9201 0.1396 0.1415 0.946 34
SIMEX-Q 0.7463 0.7315 0.1586 0.1598 0.445 0.9626 0.9588 0.1402 0.1399 0.915 0
H&W 0.4723 0.4276 0.2733 0.2108 0.654 0.9155 0.9023 0.1798 0.1638 0.971 1
MCMC η =100 1.1462 1.1199 0.3153 0.3259 0.910 1.0167 0.9887 0.1713 0.1519 0.910 0

N&S, Novick and Stefanski (2002); H&W, Huang and Wang (2001). SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9)
and the simex R library. M, empirical mean; MD, empirical median; Emp-SD, empirical standard deviation; IQ-SD, interquartile dispersion; 95%
CI, empirical coverage rate of 95% Wald confidence interval (or HPD interval, for MCMC); F, number of samples with no solution.

Table 4
NHS results

β0 β1 Odds ratio for ΔX∗ = 3.4

Method Estimate SE Estimate SE Estimate 95% CI

Naive1 –1.7213 0.1436 –0.1802 0.0680 0.54 [0.34, 0.85]
Naive2 –1.9425 0.0862 –0.1019 0.0384 0.71 [0.55, 0.91]
RECS-MEM1 –1.7496 0.1328 –0.2733 0.1141 0.39 [0.18, 0.84]
RECS-MEM2 –1.6186 0.1693 –0.3970 0.1758 0.26 [0.08, 0.84]
N&S –1.7501 0.1348 –0.2726 0.1161 0.40 [0.18, 0.86]
SIMEX-L –1.9186 0.0887 –0.1223 0.0439 0.66 [0.49, 0.88]
SIMEX-Q –1.8722 0.0936 –0.1630 0.0539 0.57 [0.40, 0.82]
SIMEX-NL –1.7256 0.1155 –0.2966 0.0943 0.36 [0.19, 0.68]

approximately to the difference between the extreme lower
and upper METS categories defined in Holmes et al. (2005)
(walking less than 1 hour per week versus walking 8 or more
hours per week). SIMEX-L yielded a slope estimate similar
to that yielded by Naive2, while SIMEX-Q gave a slightly
larger estimate. RECS-MEM1, N&S, and SIMEX-NL yielded
slope estimates differing markedly from the Naive2 estimate,
and the estimates yielded by these three methods were com-
parable. RECS-MEM2 yielded a slope estimate differing sub-
stantially from RECS-MEM1, showing the impact of a more
refined error model.

6. Discussion
We have presented a new “regularized corrected score”
(RECS) approach to adjusting for covariate error in non-

linear regression problems. The approach builds on the cor-
rected score method developed by Stefanski, Nakamura, and
others. With a continuous error-prone covariate, the cor-
rected score approach involves solving an integral equation.
In many problems, an exact solution to this integral equa-
tion does not exist or cannot be practically obtained, and
so we have proposed using an approximate solution obtained
using the method of regularization. For logistic regression,
a series of simulation studies showed that the method per-
forms well in general, and offers some advantages over existing
methods.

The RECS method yielded estimates with substantially
less bias than competing estimators in the case of a single
error-prone covariate with MODCHI error and in the case of
two error-prone and one error-free covariates under two of the
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error models studied. The RECS estimator does tend to have
higher variance than the other estimators, particularly the
N&S estimator. We were unable to pinpoint the exact cause
for the higher variance with the RECS method, but it is com-
mon for estimators that rely on weaker assumptions to be
somewhat more variable than estimators that rely on stronger
assumptions. The RECS method had better confidence inter-
val coverage rates than the competing methods in all scenarios
studied.

We have developed the theory in the general setting of clas-
sical likelihood models, which covers, in particular, general-
ized linear models such as nonlinear regression, logistic re-
gression, and Poisson regression. It is possible to extend the
development to other settings. In particular, it is of interest to
extend the method to Cox survival regression, using the work
of Zucker and Spiegelman (2008) on corrected score analysis
for the Cox model with a discrete error-prone covariate as a
starting point. We plan to develop this extension in future
work.

The computational complexity and load of the method
is modest. For example, the data analysis described in the
preceding section finished in about 1 minute of real time,
when run in R in batch mode on a VMware virtual ma-
chine configured with one AMD 2700 MHz processor and
1GB memory, installed on a physical machine SUN FIRE
X4240.

The method presented here is a functional method in the
sense of not requiring information on the distribution of the
true covariate. This is in contrast to many other measurement
error methods, such as regression calibration and likelihood-
based methods. We do rely on a parametric model for the
conditional distribution of the surrogate variable given the
true variable, but our simulations suggest that the perfor-
mance of the estimates is robust to misspecification of para-
metric model unless the misspecification is extreme. Also, it
is possible in principle to use a flexible parametric model such
as Gallant and Nychka’s (1987) “semi-nonparametric” model,
which makes the reliance on parametric modeling less restric-
tive. The method is extremely general in terms of the types
of measurement error models covered. It allows the measure-
ment error to depend on the true covariate value and on other
covariates. It also allows differential error, where the mea-
surement error depends on the outcome. This flexibility is a
distinct advantage relative to other methods.

6. Supplementary Materials
Supplementary Materials are available with this article at the
Biometrics website on Wiley Online Library. These materials
include Web Appendices A–C, referenced in Sections 3 and
4. Also included are an additional Web Appendix D with a
brief overview of the computer codes used to generate the
numerical results of this article and a zip file with the codes
themselves.
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