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Objective: Regulators of adipose tissue hormones remain incompletely understood, but may include sex

hormones. As adipose tissue hormones have been shown to contribute to numerous metabolic and

cardiovascular disorders, understanding their regulation in midlife women is of clinical importance.

Therefore, we assessed the associations between testosterone (T) and sex hormone binding globulin

(SHBG) with leptin, high molecular weight (HMW) adiponectin, and the soluble form of the leptin receptor

(sOB-R) in healthy midlife women.

Design and Methods: Cross-sectional analyses were performed using data from 1,881 midlife women

(average age 52.6 (62.7) years) attending the sixth Annual follow-up visit of the multiethnic Study of

Women’s Health Across the Nation.

Results: T was weakly negatively associated with both HMW adiponectin and sOB-R (r ¼ �0.12 and r ¼
�0.10, respectively; P < 0.001 for both), and positively associated with leptin (r ¼ 0.17; P < 0.001).

SHBG was more strongly and positively associated with both HMW adiponectin and sOB-R (r ¼ 0.29

and r ¼ 0.24, respectively; P < 0.001 for both), and more strongly and negatively associated with leptin (r

¼ �0.27; P < 0.001). Adjustment for fat mass, insulin resistance, or waist circumference only partially

diminished associations with HMW adiponectin and sOB-R, but attenuated associations with leptin. In

conclusion, in these midlife women, lower SHBG values, and to a lesser extent, higher T levels, were

associated with lower, or less favorable, levels of adiponectin and sOB-R, independent of fat mass.

Conclusions: These data suggest that variation in these adipose hormones resulting from lower SHBG

levels, and possibly, though less likely, greater androgenicity, may contribute to susceptibility for

metabolic and cardiovascular outcomes during midlife in women.

Obesity (2013) 21, 629-636. doi:10.1002/oby.2012.109

Introduction
Adipose tissue is well-recognized as an endocrine organ, which

secretes a number of hormones. Two such hormones, adiponectin and

leptin, are secreted solely by adipose tissue, and have been implicated

in metabolic and cardiovascular complications. Adiponectin is lower

among obese individuals, and possesses anti-inflammatory, antidia-

betic, and antiatherogenic properties. Leptin is higher among obese

individuals, thought to be due to leptin resistance, and is associated

with a pro-inflammatory, atherogenic milieu. Regulators of adipose tis-

sue-derived hormones remain poorly understood. While fat mass cer-

tainly regulates adipose tissue hormone levels, it is not the only regula-

tor, evidenced by the fact that adipose hormone levels vary

considerably in people of similar fat mass. Men have less favorable adi-

pose hormone profiles than women, even after accounting for differen-

ces in fat mass (1,2,3), raising the question of whether androgen levels

may regulate adipose hormone levels. Testosterone (T) administration

in men has been shown to decrease both adiponectin and leptin levels

(4,5), and adipose hormone levels in women with polycystic ovary syn-

drome (PCOS), a syndrome whose hallmark is hyperandrogenemia,

have been well-characterized, with similar leptin levels but lower adi-

ponectin levels compared with BMI-matched controls (6,7).
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Prior studies of the associations between sex hormones and adipose tis-

sue hormones have overwhelmingly focused on PCOS women, who

tend to be obese and metabolically dysregulated, leaving the under-

standing of regulators of adipose hormones in normal weight women

relatively unexplored. As some evidence suggests that associations

between androgens and adipose hormones may differ in normal weight

vs. obese individuals (8,9,10), examination of the potential modifying

role of fat mass on androgen-adipose hormone associations is needed.

In addition to being few in number, previous studies in healthy women

have adjusted for BMI, a poor proxy for adiposity levels, and have suf-

fered from relatively small sample sizes and failure to account for

potential confounders such as accompanying insulin resistance levels.

In addition, associations between androgens and soluble leptin receptor

(sOB-R), the primary leptin-carrier protein in the circulation and thus,

a potential regulator of leptin’s effects, have not been examined in

healthy women. Therefore, the purpose of the current study was two-

fold: (i) to examine the associations between T and SHBG with leptin,

high molecular weight (HMW) adiponectin, and sOB-R and(ii) to

examine whether these associations differed in nonobese vs. obese

women. These associations were examined in midlife women partici-

pating in the Study of Women’s Health Across the Nation (SWAN).

Methods and Procedures
Participants
SWAN is a multi-center, longitudinal study to characterize the bio-

logical and psychosocial changes with the menopause in a commu-

nity-based sample. SWAN sites are Boston, Chicago, Detroit, Los

Angeles, Newark, Pittsburgh, and Oakland CA. From 1996 to 1997,

3,302 women aged 42-52 years were enrolled. Each site recruited

white women plus one racial/ethnic group including white, African

American (Pittsburgh, Michigan, and Boston), Chinese (Oakland),

Japanese (UCLA) and Hispanic (Newark—Central American, South

American, and Caribbean origin) women. Complete information on

screening and data collection has been published previously (11).

Briefly, at SWAN baseline, women had an intact uterus and were

still menstruating, had at least one ovary and were not pregnant or

breastfeeding. Exclusion criteria included oral contraceptive or sex

steroid hormone therapy use in the prior 3 months. Institutional

review board approval and informed consent was obtained.

With the exception of race-ethnicity and highest grade level achieved,

which were assessed at the SWAN baseline examination, the current

report uses sex hormone, adipose tissue hormone, and covariate data

collected at the sixth annual follow-up visit, the only visit at which

adipose hormones were available on the full SWAN cohort. Among

the 2,441 women who attended the sixth annual visit, blood samples

were available and adipose hormone data were able to be assayed on

2,028 women, with 1,950 having data on all three adipose hormones

of interest. After excluding 69 women missing key covariates of inter-

est, data from 1,881 women were available for the current analyses.

Body size and composition measures
Height and weight were measured in light clothing without shoes and

using calibrated scales. BMI was calculated as weight in kilograms di-

vided by height in m2. Waist circumference was measured in nonrestric-

tive undergarments, or in cases where respondents refused, measures

were taken over light clothing. Waist circumference was measured at

the level of the natural waist, defined as the narrowest part of the torso

as seen from the anterior aspect. In cases where a waist narrowing was

difficult to identify, the measure was taken at the smallest horizontal

circumference in the area between the ribs and the iliac crest. Fat mass

was estimated from bioelectrical impedance analysis (BIA) (BIA-103

analyzer; RJL Systems, Mt. Clemens, MI). BIA is based on measure-

ment of the conductivity of an electrical pulse between electrodes

attached at the feet and the knuckles of the hand. Electrical conductivity

is greater in fat-free than in fat mass, and thereby resistance and react-

ance can be used to estimate fat and lean mass (12,13). Sex-specific val-

idation equations of Chumlea et al. were used (14).

Questionnaire data
Menopause status was assessed based on menstrual bleeding and use

of hormone therapy as follows:

• Pre- or early-perimenopause: monthly bleeding with or without a

perceived change in cycle interval, but at least one period within

the past 3 months.

• Late perimenopause: � three consecutive months of amenorrhea.

• Post menopause: � 12 consecutive months of amenorrhea.

• Surgical menopause: menopause induced by hysterectomy with or

without oophorectomy

• Unknown: use of menopausal hormone therapy (MHT) among

pre- or early-perimenopasual women

Smoking was assessed by questionnaire and coded as never, past, or

current. Physical activity was based on the Kaiser Permanente

Activity Score (15).

Assays
Fasting blood draws were targeted to the follicular phase of the

menstrual cycle (days 2-5) and maintained at 4 �C until separated and

frozen at �80 �C. T, sex hormone binding globulin (SHBG), and

estradiol were assayed at the University of Michigan Endocrine Labo-

ratory using an ACS-180 automated chemiluminescence analyzer

(Bayer Diagnostics, Norwood, MA), with modifications to enhance

sensitivity in the low ranges. To avoid disproportionate exclusion of

women with low hormone values, imputation of hormone values

below the lower limit of detection (n ¼ 8 for SHBG and n ¼ 3 for T)

was performed (16), such that a random value between zero and the

lower limit of detection was used for these women.

Leptin, sOB-R, and HMW adiponectin were determined in the labora-

tory of Dr. Peter Mancuso in duplicate using commercially available

colorimetric enzyme immunoassay kits according to the manufac-

turer’s instructions (leptin and HMW adiponectin; Millipore, St.

Charles, MO and sOB-R; R&D systems, Minneapolis, MN). The mean

coefficient of variation percent for duplicate samples for each subject

and lower limit of detection, respectively, were HMW adiponectin:

8.1%, 0.5 ng/ml; leptin: 4%, 0.5 ng/ml; and sOB-R: 3.7%, 0.31 ng/ml.

Serum insulin level was measured using a solid-phase radioimmuno-

assay (DPC Coat-A-Count Insulin RIA; Diagnostic Products, Los

Angeles, CA). Glucose levels were measured using a hexokinase-

coupled reaction (Boehringer Mannheim Diagnostics, Indianapolis,

IN). The homeostasis model assessment insulin resistance index

(HOMA-IR) was calculated from fasting insulin and glucose as

(fasting insulin (mU/l) � fasting glucose (mmol/l))/22.5.

Statistical methods
Characteristics of the study population were summarized as fre-

quency (%), mean (s.d.) for normally distributed variables, or as
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median (interquartile range) for skewed variables in the overall sam-

ple as well as in nonobese (BMI < 30 kg/m2) and obese (BMI � 30

kg/m2) women, separately. v2 tests for categorical variables, t-tests

for normally distributed continuous variables, and Wilcoxon tests for

skewed continuous variables were used to evaluate whether differen-

ces in characteristics between nonobese and obese women were stat-

istically significant.

Median (interquartile range) adipose hormone values were calculated

by quartiles of testosterone and SHBG. P values for linear trend

across quartiles were calculated using the median sex hormone value

in each quartile as a continuous variable in the context of linear

regression modeling, whereby log-transformed adipose hormones

were dependent variables.

Partial Spearman correlation coefficients were then calculated for

associations between testosterone, and SHBG with adipose tissue

hormones, initially adjusting for age, race-ethnicity, site, cycle day

of blood draw, menopausal status, physical activity, smoking status,

and education level. Additional adjustments were made for fat

mass, HOMA-IR, or waist circumference. To insure that SHBG

was not acting as a proxy for estradiol, further adjustment of the

correlation coefficient was also made for estradiol. Correlation

coefficients were calculated for each sex hormone and each adipose

hormone separately. Following this, for each adipose hormone,

partial correlation coefficients were adjusted for values of the other

sex hormone, and separately for values of the other adipose

hormones.

To examine whether associations between testosterone and SHBG

with adipose tissue hormones differed by body size, stratified analy-

ses were performed whereby partial correlation coefficients between

testosterone and SHBG with adipose tissue hormones were calcu-

lated in obese and nonobese women, separately. To formally evalu-

ate potential effect modification, multiplicative interaction terms

were tested for logged values of testosterone and SHBG with a cate-

gorical BMI variable (<30 kg/m2 (nonobese) vs. �30 kg/m2

(obese)) (log(SHBG) � BMI category and log(T) � BMI category)

in the context of log-adipose hormone linear regression models.

Similar interaction terms were tested with race-ethnicity and meno-

pausal status to evaluate effect modification by each of these.

Sensitivity analyses examined the consistency of the findings when

women reporting hysterectomy or MHT use were excluded, and

when BMI was adjusted for instead of fat mass. Additional sensitiv-

ity analyses repeated calculation of correlation coefficients excluding

the 82 women with a high probability of PCOS, per their designa-

tion as having hyperandrogenemic oligomenorrhea, defined as

having total testosterone values in the highest tertile of the cohort

distribution, and a reported history of oligomenorrhea, defined as

�3 months without a menstrual period between the ages of 25 and

35 years in the context of a negative report of pregnancy, breast-

feeding, or birth control use during those months, and exclusion of

other causes such as abnormal thyroid stimulating hormone using

National Institutes of Health criteria.

Results
By the sixth annual follow-up visit at which these cross-sectional

analyses took place, SWAN women were an average of 52.6 years

old, 51% were white, 28% African American, 9% Chinese, 11%

Japanese, and <1% Hispanic (Table 1). Over one-third of women

were still premenopausal or early-perimenopausal and were not

using MHT, while close to 50% had undergone surgical or natural

menopause, and 8% reported MHT use since the last study visit.

When stratified by body size, obese women (BMI � 30 kg/m2) were

more often African American, had lower education levels, were less

often still pre- or early-perimenopausal, and had higher fat mass,

waist circumference, HOMA, testosterone, and leptin values; and

lower SHBG, sOB-R, and HMW adiponectin values compared with

nonobese women (BMI < 30 kg/m2; Table 1).

HMW adiponectin and sOB-R were both negatively correlated with

BMI, fat mass, and waist circumference (Supplementary Table S1

online; Spearman correlation coefficients ranging from �0.33 to

�0.43; all P < 0.001), while leptin levels were positively correlated

with indices of body size and adiposity (correlation coefficients

ranging from 0.82 to 0.86). In addition, each of the adipose tissue

hormones was significantly associated with the others, with HMW

adiponectin significantly positively associated with sOB-R (correla-

tion coefficient 0.45, P < 0.001), and significantly negatively

correlated with leptin (correlation coefficient -0.34; P < 0.001), and

leptin and sOB-R similarly negatively correlated (correlation coeffi-

cient �0.42; P < 0.001).

With higher testosterone quartiles, HMW adiponectin and sOB-R

levels were lower, whereas leptin levels were higher (Table 2).

Opposite results were found with higher SHBG quartiles. After

multivariate adjustment which included not only age, race-ethnic-

ity, menopausal status, physical activity, smoking status, education

level, cycle day of blood draw, and study site, but also fat mass,

and subsequent models including waist circumference or HOMA-

IR, HMW adiponectin levels were lower and leptin levels higher

with higher testosterone levels, though the magnitude of associa-

tions were considerably reduced with adjustment for fat mass or

HOMA-IR (Table 3). The magnitude of correlation coefficients

was similar after further adjustment of testosterone results for

SHBG.

After initial adjustment for age, race-ethnicity, menopausal status,

physical activity, smoking status, education level, cycle day of blood

draw, and study site, SHBG was positively associated with HMW

adiponectin and sOB-R, and negatively associated with leptin. As

above, the association with leptin was substantially attenuated with

adjustment for fat mass. However, the positive associations between

SHBG and both HMW adiponectin and sOB-R were quite robust to

additional adjustment not only for fat mass, but also for HOMA-IR,

waist circumference, and testosterone. Results were also additionally

adjusted for estradiol to insure that SHBG was not acting as a proxy

for estradiol, and results were, again, similar (partial correlation

coefficients of 0.24 and 0.17 for HMW adiponectin and sOB-R,

respectively, after additional adjustment for estradiol; both P <
0.001).

When all three adipose hormones were also adjusted for each other

(Table 3, partial 6), HMW adiponectin results were only slightly

attenuated. The positive association between testosterone and leptin

was unchanged, while the negative association between SHBG and

leptin was only slightly attenuated, but lost statistical significance.

The opposite finding was true for sOB-R; the negative association

with testosterone was only slightly attenuated but lost statistical
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significance, while the positive association with SHBG was slightly

attenuated, but remained statistically significant.

We also examined effect modification of these associations by

body size, race-ethnicity, and menopausal status in models adjusted

for the factors listed above as well as fat mass. Significant interac-

tion terms were found for body size concerning the associations

between SHBG with both leptin (P-interaction < 0.001) and sOB-

R (P-interaction ¼ 0.025). For leptin, a negative association was

found with SHBG in nonobese participants (Table 4; r ¼ �0.11),

but a weak positive association in obese participants (Table 4; r ¼
0.08). For sOB-R, a positive association was found with SHBG in

nonobese participants (Table 4; r ¼ 0.19), but a null association in

obese participants (Table 4; r ¼ 0.05). Body size interaction terms

were not statistically significant for associations between T and

any of the adipose tissue hormones, or between SHBG and HMW

adiponectin.

Significant interaction terms were also found for race-ethnic effects

on the associations between SHBG and leptin (P ¼ 0.006), and tes-

tosterone and sOB-R (P ¼ 0.009). When stratified by race-ethnicity,

partial correlation coefficients between SHBG and leptin were simi-

lar in magnitude among African American and white women (r ¼
0.02 and �0.06, respectively), but were stronger in Chinese and

Japanese women (r ¼ �0.10 and �0.18, respectively). For the asso-

ciation between testosterone and sOB-R, it appeared to be null for

all, but the Japanese, in whom it was negative (r ¼ �0.13). Signifi-

cant interactions were not detected for menopausal status, indicating

that associations between sex hormones and adipose tissue hormones

were similar within each of the menopause status categories.

TABLE 1 Characteristics of the study population at the sixth annual SWAN visit

Obesity Associations of Testosterone and SHBG Wildman et al.
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Results were similar when women reporting hysterectomy or MHT

use were excluded from analyses, when BMI was adjusted for

instead of fat mass, and when the 82 suspected PCOS cases were

excluded.

Discussion
Testosterone receptors have been found in various tissues, includ-

ing adipose tissue (17), raising the possibility that testosterone

may serve as a regulator of adipose tissue hormones. SHBG is a

liver-derived binding and transport protein for both testosterone

and estradiol, though it has greater affinity for testosterone (18).

However, in addition to binding sex steroids and, therefore, deter-

mining the amount of free steroid, SHBG has also been shown to

bind to membrane receptor sites, itself, raising the possibility that

SHBG may have direct effects on cell signaling independent of

its influence on the biologic activity of estradiol and testosterone

(19). Therefore, like testosterone, SHBG is also a potential regu-

lator of adipose tissue hormone levels. However, few investiga-

tions have examined the relationships between testosterone or

SHBG and adipose tissue hormones in healthy women. Among

these midlife women, we found that higher testosterone levels

and lower SHBG levels were associated with lower HMW adipo-

nectin and sOB-R levels, and higher leptin levels, independent of

levels of fat mass, and in most cases, independent of HOMA-IR

and waist circumference as well. Therefore, our data support the

possibility that SHBG and testosterone may regulate adipose

tissue hormones.

The strongest associations documented in these midlife women were

between SHBG and both HMW adiponectin and sOB-R, whereby

even after adjustment for fat mass, HOMA-IR, waist circumference,

testosterone, or estradiol partial correlation coefficients were �0.20

for HMW adiponectin and 0.15 for sOB-R. In agreement with our

findings, several studies have documented a significant positive

association between SHBG and adiponectin (20-23). To our knowl-

edge, prior published reports have not examined the association

between SHBG and sOB-R. SOB-R is the primary carrier protein

for leptin in the blood stream, and is a cleaved derivative of mem-

brane-anchored leptin receptors. The scope of the physiologic role

of sOB-R is still largely unknown. Higher sOB-R levels may

TABLE 2 Median (25th percentile, 75th percentile) adipose hormone values by quartiles of testosterone and SHBG

TABLE 3 Spearman partial correlation coefficients between adipose hormones and testosterone and SHBG
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contribute to leptin resistance and, in part, determine the extent of

leptin’s effects; sOB-R is thought to delay leptin clearance, increas-

ing circulating leptin concentrations, but decreasing the availability

of biologically active leptin, which is the free rather than bound

form (24). Despite this, the association between SHBG and sOB-R

was independent of leptin levels, suggesting that sOB-R may have

associations with biological factors through means other than its reg-

ulation of leptin levels. SHBG and sOB-R may be linked through

liver-specific pathways; although in fairly low levels, the short form

of the leptin receptor has been observed in liver tissue, adjacent to

the hepatic vessels (25) and, as we noted above, the liver is the site

of SHBG production.

Although statistically significant, we found much weaker associa-

tions between testosterone and adipose hormones than was observed

between SHBG and adipose hormones, especially after adjustment

for fat mass, perhaps suggesting lesser biological relevance of

testosterone compared with SHBG in relation to adipose tissue hor-

mone pathways. The vast majority of prior research on the potential

regulation of adipose hormones by androgens has occurred in men

or in women with PCOS. There have been a limited number of

investigations into the associations between androgens and adiponec-

tin in healthy women, and results have been inconsistent, including

reports of both negative and positive associations, as well as null

findings (20-24,26-29). The reasons for these discrepancies are

unclear. Adiponectin is a multimeric complex, forming trimers (low

molecular weight), hexamers (medium molecular weight), and multi-

mers (HMW). In human plasma, the low molecular weight and

HMW forms are the most abundant, and the HMW form of adipo-

nectin is suggested to be the most biologically active form (30). All

but one of the cited studies reported relationships between testoster-

one and total adiponectin, with each of these reporting null or posi-

tive associations. The single study reporting associations with the

HMW adiponectin form was the only study to demonstrate a nega-

tive association with testosterone similar to our findings, but found

it only with the ratio of HMW to total adiponectin, rather than with

raw HMW adiponectin levels, alone, as we report (26). Therefore,

the failure of most prior studies to examine the HMW adiponectin

form, specifically, may partially underlie discrepant results.

In contrast to contradictory findings of an association between tes-

tosterone and HMW adiponectin, the positive relationship we report

between testosterone and leptin is consistent with prior findings

among healthy women (10,27,31,32). To our knowledge, only one

other published report has examined the relationship between

circulating testosterone and sOB-R levels, finding the same negative

relationship we saw, even after adjustment for fat mass among a

sample of adolescents and young adults (33).

Although associations between testosterone and adipose tissue hor-

mones were fairly weak, the presence of androgen receptors in both

adipocytes and preadipocytes supports the possibility of a regulatory

relationship between testosterone and adipose tissue hormones (17).

Androgen receptor density is greater in visceral compared with

subcutaneous fat (17). Given that visceral adipose tissue secretes

pro-inflammatory adipokines in greater quantity, and anti-inflamma-

tory adiponectin in lesser quantity than subcutaneous adipose tissue

(34,35), it may be that testosterone binding to visceral adipocytes

initiates adverse changes to the hormone secretion profile of adipose

tissue. In accordance with the negative association we report

between testosterone and HMW adiponectin, testosterone adminis-

tration has been shown to decrease adiponectin secretion, due to the

enhanced intracellular retention of the HMW adiponectin multimer,

specifically (36). However, in contrast to the positive association we

document between testosterone and leptin, testosterone exposure

suppressed leptin gene expression in human adipocytes (37).

It is also possible that the cross-sectional associations we document

here represent regulation of testosterone and SHBG levels by

adipose hormones. Conversion of androgens to estrogens via aroma-

tization occurs in adipose tissue. However, again possible mecha-

nisms support a negative, rather than positive, feedback loop

between leptin and testosterone; leptin may stimulate aromatase

expression and depending on the precursor, decrease circulating

androgen levels (38). As regards regulation of SHBG by adipose

hormones, in addition to regulation by testosterone and estradiol,

both leptin and adiponectin receptors have been documented in the

liver, the site of SHBG production (25,39).

Prior published data suggest effect modification of sex hormone-

adipose hormone relationships by body size. A synergistic

relationship was described for free testosterone and waist:hip ratio

associations with HMW adiponectin among women with PCOS,

whereby women with both high free testosterone and high waist:hip

ratio had the lowest HMW adiponectin values (9). For leptin, posi-

tive associations between total and free testosterone have been

reported in nonobese, whereas null or negative associations are

reported in obese (8,10). We found evidence of effect modification

of the associations between SHBG and both leptin and sOB-R by

body size; SHBG was negatively associated with leptin and posi-

tively associated with sOB-R in nonobese, but positively associated

with leptin, and not associated with sOB-R in obese. The opposing

TABLE 4 Spearman partial correlation coefficients between adipose hormones and testosterone and SHBG, stratified by BMI

Obesity Associations of Testosterone and SHBG Wildman et al.
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direction of the association between SHBG and leptin in obese vs.

nonobese individuals may relate to the loss of leptin sensitivity in

obese individuals; High leptin levels in obese individuals are thought

to be due to leptin resistance, while in nonobese individuals they

may represent functional leptin involved in appropriate feedback

responses. Regarding sOB-R, the null association in obese may also

relate to leptin resistance, whereby dysregulation of the leptin sys-

tem results in loss of association between leptin receptor levels and

regulators of leptin levels. Alternatively, should the current cross-

sectional associations represent regulatory relationships, the null

relationship between SHBG and sOB-R in obese women may also

represent a threshold effect of either SHBG or sOB-R; both SHBG

and sOB-R levels were substantially lower in obese vs. nonobese

women in the current study and may have been too low to elicit any

change in levels of the other.

The current analyses also identified effect modification of SHBG

and T associations with leptin and sOB-R, respectively, by race-

ethnicity, finding the strongest associations among Japanese women.

The biological explanation for this finding is unclear. As these are

cross-sectional analyses and temporality cannot be determined, this

finding may represent either a stronger influence of testosterone and

SHBG on leptin and sOB-R in Japanese women, or a stronger influ-

ence of leptin and sOB-R on testerone and SHBG in Japanese

women. In consideration of the first temporal sequence specified

above, abdominal visceral adipose tissue has been shown to have a

greater density of androgen receptors than subcutaneous adipose

tissue (17). However, Japanese women have strikingly lower waist

circumference values than the other race-ethnic groups represented

in SWAN, and therefore, the lesser abdominal adiposity in Japanese

women might be expected to attenuate the influence of androgens

on adipokines, rather than strengthen it. In reference to the opposite

temporal sequence, namely leptin and sOB-R possibly influencing

testosterone and SHBG more strongly in Japanese women, the Japa-

nese women in SWAN have the lowest BMI, even lower than the

Chinese SWAN women. Given that leptin sensitivity is proportional

to body size, it is conceivable that Japanese women are more sensi-

tive to leptin than the remaining race-ethnic groups. As a result, the

influence of leptin and sOB-R on testosterone and SHBG may be

greater in Japanese women, as reflected in our finding of stronger

associations among Japanese women. Although interaction analyses

were adjusted for fat mass, which should conceivably statistically

account for this effect, it may be that residual confounding by

adiposity remained. Given the number of significance tests per-

formed, these interaction results should be evaluated with extreme

caution and require confirmation by future studies.

The results of the current report must be viewed within the context

of the limitations of the study. We did not measure free testosterone.

This is a cross-sectional study, and therefore, directionality cannot

be inferred. However, this study had a number of strengths. Data

from three adipose hormones were available across a wide range of

BMI. In addition, women of varying menopausal status and ethnicity

were included, and a number of possible confounders not previously

accounted for were included, most importantly HOMA-IR and waist

circumference. Finally, we accounted for adiposity via fat mass,

rather than BMI. BMI cannot distinguish between fat mass and

muscle mass, and therefore, can be a poor proxy for adiposity

particularly in younger and older populations where the degree of

muscle mass may vary substantially between individuals or is chang-

ing within individuals over time. In the current study, results were

similar whether BMI or fat mass was used, suggesting that in these

midlife women, muscle mass was likely not significantly confound-

ing the ability of BMI to approximate fat mass.

In conclusion, these cross-sectional results suggest that unfavorable

adipose hormone levels are seen with higher testosterone and lower

SHBG levels in these midlife women, independent of fat mass and

waist circumference. It is known that individuals of similar body

size can have very different cardiometabolic profiles, potentially

explained in part by different adipose tissue distribution patterns,

receptor densities, or secretory profiles in adipose tissue of different

individuals (40). These data support the possibility that SHBG, and

less likely, though also possible, testosterone, may play a role in

determining the particular hormonal expression profile of adipose

tissue of a given midlife woman. Therefore, alterations in adipose

hormones resulting from alterations in the androgen/estrogen balance

determined by SHBG, independent of increases in body fat, may

partially explain enhanced susceptibility to metabolic and cardiovas-

cular outcomes with the menopause transition, and similarly, that

reduced SHBG levels, independently of any influence on androgen

or estrogen levels, further exacerbate disease susceptibility in

women during midlife. These intriguing data underscore the need

for assessment of the longitudinal relationships between androgens,

SHBG, and adipokines.
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Supplementary material is linked to the online version of the paper
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