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Interhemispheric magnetic conjugacy
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[1] The concept of the inter-hemispheric magnetic conjugacy was investigated by
comparing the conjugate points in the northern and southern hemispheres using the
Tsyganenko T02 magnetic field model together with the International Geomagnetic
Reference Field model for the internal magnetic field to follow the magnetic field lines.
We studied the influence of the dipole tilt angle, solar wind (solar wind dynamic pressure
and flow direction), and interplanetary magnetic field (IMF) parameters (IMF B), and B;)
on the latitudinal and longitudinal differences between the foot points of magnetic field
lines in both hemispheres. It was found that the dominant difference up to 30° is
longitudinal, while latitudinal differences are about 2°. The largest differences are
observed at dawn and dusk magnetic local times (MLTs) for large dipole tilt angles during
high solar wind dynamic pressure (16-20 nPa) and large IMF By, values (-15 and 15 nT).
The asymmetry of conjugate points is present due to nonzero values of IMF By, but there
is no real dependence on the magnitude of IMF By,. The influence of IMF B; on the
interhemispheric conjugacy depends on the sign of the IMF B; but not much on the
magnitude. The rotation of the tail current sheet from the Sun-Earth line by several
degrees resulted in latitudinal differences of 1° and longitudinal differences of 15° at
dawn and dusk MLTs for equinox. Testing the concept of magnetic conjugacy with
previously reported auroral event observed at Tjornes (Iceland) and Syowa (Antarctica)
observatories confirmed the importance of taking into account the solar wind flow
direction, especially when it deviates from radial by more than 2°
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1. Introduction

[2] Understanding of the magnetic mapping in different
conditions and between different regions of the near-Earth
space has become an increasingly interesting topic. This is
particularly important now during the era of clustered satel-
lite missions (e.g., Cluster and THEMIS), which aim at
studying ionospheric signatures of processes at the distances
of 10-20 Rz down in the magnetotail, or when study-
ing conjugate signatures of the aurora with ground-based
instruments on both hemispheres.

[3] The basic temporal variation of geomagnetically con-
jugate points was already described by Ono [1987], who
examined the excursion of the conjugate point of the
Antarctic Syowa station over Iceland in the northern hemi-
sphere during 30 years. The study was based on tracing
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of field lines with the International Geomagnetic Reference
Field (IGRF) 1980 as the internal field and the Tsyganenko
and Usmanov [1982] model for the external field. They
reported the 30 year secular variation as well as the seasonal
and daily variation of the conjugate point. During solstices,
the daily variation is largest (about 2° in latitude and about
9° in longitude for Kp = 1). Furthermore, the higher the
magnetic activity, the larger the daily variation becomes.
They concluded that more advanced magnetic mapping is
required to solve the dislocation of the conjugate points
during high geomagnetic activity.

[4] Conjugacy of large-scale auroral activity has been
studied using simultaneous global satellite images of the
auroral zone, namely, data from Visible Imaging Sys-
tem (VIS) Earth camera [Frank et al, 1995] on board
the Polar satellite and images from Wideband Imaging
Camera (WIC) on board the IMAGE satellite [Mende et al.,
2000]. The two imaging spacecrafts were operating simulta-
neously during 2001 and 2002. The number of events with
good viewing conditions for both hemispheres and inter-
esting auroral activity occurring is limited, but nonetheless,
some valuable science results have been reported based on
this unique data set. For instance, interhemispheric compari-
son of the polar cap boundary demonstrated that the amount
of open magnetic flux is equal between the hemispheres
[Laundal et al, 2010]. Asymmetries in the polar cap
boundary location up to 5° in latitude were observed,
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and they arise when the magnetic flux closure rate is high-
est and in particular when the oval is contracting and the
magnetotail flux is rapidly closing during sub-storm expan-
sions. These inter-hemispheric asymmetries were explained
by seasonal differences as the summer hemisphere responds
to the magnetospheric convection changes faster than the
winter hemisphere does.

[5] Simultaneous observations of 15 sub-storms demon-
strated that the main contribution to the displacement of
the auroral sub-storm location on the two hemispheres
comes from the orientation of the interplanetary magnetic
field (IMF), as the dawn-dusk component penetrates to the
magnetosphere-ionosphere system [Dstgaard et al., 2005].
A minor effect is controlled by the dipole tilt angle of
the Earth. These observations qualitatively agree with the
magnetic field model results of interhemispheric asymme-
try as produced by the Tsyganenko T96 and T02 models
[T3yganenko, 1995, 2002a, 2002b]. The models predict the
observed linear relationship between the azimuthal displace-
ment of the sub-storms and the IMF clock angle or the dipole
tilt angle but tend to underestimate the effect by an order
of magnitude.

[6] A recent study by Saita et al. [2011] reported an
attempt to study the interhemispheric displacement of sub-
storms with a numerical magnetohydrodynamics (MHD)
simulation of the solar wind—magnetosphere—ionosphere
system. The simulation models by Tanaka et al. [2010]
have been able to reproduce magnetospheric sub-storm sig-
natures, such as formation of the near-Earth neutral line
(NENL), tailward plasmoid release, and Earthward flows,
as a consequence of the southward turning of the IMF. The
magnetic field lines traced to the two hemispheres from the
near-Earth magnetotail show approximately the displace-
ments described by previous studies (4—5 h in magnetic local
time (MLT)), even though the dipole tilt angle was set to
zero for the simulation runs. Furthermore, the displacement
during negative IMF B, was shown to be larger than the
displacement during positive IMF B,. Temporal evolution
was also observed as the inter-hemispheric displacement
gradually increased until the sub-storm onset. Asymmetric
field line distortions on different hemispheres for constant
IMF B, and non-tilted dipole axis was concluded to be
mainly caused by the field-aligned current (FAC) distri-
bution along the field lines in the high-pressure region of
near-Earth space.

[7] Quite opposite to these studies that demonstrate the
conjugacy of the aurora and IMF-controlled displacement of
auroral activations, Laundal and Ostgaard [2009] reported
non-conjugate large-scale enhancements in the auroral pre-
cipitation pattern. Simultaneous global images of the two
hemispheres showed strongly non-conjugate auroral inten-
sifications with different intensities and different tempo-
ral evolution and almost opposite locations within the
auroral oval during strongly positive IMF B,. This pecu-
liar observation is concluded to result from a predicted
but previously unobserved inter-hemispheric FAC system,
which originates in the region of high conductivity gra-
dients near the terminators. Vorobjev et al. [2001] ana-
lyzed the coordinated Antarctic ground and Polar Ultra-
violet observations to study aurora conjugacy during sub-
storms. They found that the displacements of the poleward
edge of the auroral bulge can be significant, up to 5°.

The sense and magnitude of displacements are related to the
IMF orientations.

[8] For mesoscale auroral conjugate studies, the most
commonly investigated conjugate stations are Japanese
Syowa-Iceland station pairs [Safo et al., 2005; Motoba
et al., 2010, 2012]. The conjugate point distance between
the Icelandic Tjornes station and the Antarctic Syowa sta-
tion is of the order of a few tens of meters according to the
IGRF model. The two stations have similar all-sky TV cam-
eras, which allow visual tracing of similar auroral forms and
their evolution to deduce the motion of the geomagnetic con-
jugate point throughout the period of auroral activity [Sato
et al., 2005]. It was concluded that the northern hemispheric
conjugate point of Syowa station moved about 200 km in
longitude and about 50 km in latitude in an hour during
steady solar wind and small IMF B, component. The studied
event took place close to the equinox in September. Defor-
mation of the magnetic field topology or a localized FAC
was suggested to explain the observed conjugate point dis-
location. However, it was clearly due to neither IMF B,
polarity nor seasonal differences in ionospheric conditions
between the hemispheres.

[o] The conjugate auroral sub-storm studied by Motoba
et al. [2010] demonstrated well how rare fully conjugate
auroral events are. Previous and following activations were
reported to be completely displaced and dissimilar within the
all-sky field of view (about 1000 km across at the auroral
altitudes), but one weak sub-storm event in between showed
strikingly similar and simultaneous structures. The maxi-
mum visually determined displacement was 3° in latitude
during the sub-storm expansion, while the MLT displace-
ment (up to about 1 h) varied faster in time but consistently
with the IMF clock angle changes.

[10] In this paper, we investigate the effect of the dipole
tilt angle and different solar wind and IMF parameters on
the magnetic mapping between the hemispheres. As demon-
strated by the previous studies, systematic analysis is needed
to improve our understanding of the changing mapping
properties. The range of different driving conditions during
the limited number of conjugate point observations makes
this a challenging task from an observational point of view.
Thus, we use magnetic field modeling to provide an unlim-
ited range and number of combinations of the tilt angle and
solar wind parameters, but also, we analyze the previously
reported conjugate events in more detail.

2. Modeling Approach

[11] To investigate the question of magnetic conjugacy,
we follow the magnetic field lines from the northern to the
southern hemisphere using the T02 Tsyganenko magneto-
spheric magnetic field model [7syganenko, 2002a, 2002b].
In the T02 model, the general approach is to parametrize
the current systems and evaluate these parameter values in
a statistical sense, using a large magnetospheric database.
Several revisions were introduced in the mathematical
description of the major sources of the magnetospheric field
and in their parametrization with respect to the earlier T96
model [Tsyganenko, 1995]. A partial ring current with field-
aligned current closure is included, and the cross-tail current
sheet is warped in two dimensions in response to the geo-
dipole tilt, with its inner edge shifting along the Sun-Earth
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line and its thickness varying along and across the tail. The
magnetopause is specified according to the empirical model
by Shue et al. [1997]. The model parameters are geo-dipole
tilt angle, IMF B, and B. components, solar wind dynamic
pressure, and the Dst index. An attempt is made to take into
account the preceding history of the solar wind by introduc-
ing two functions, G1 and G2, that depend on the IMF B,
and solar wind velocity and their time history.

[12] We have chosen to use the T02 model from among
the three most recent and available Tsyganenko models
(such as T96, T02, and TSO05) [ Tsyganenko and Sitnov, 2005]
due to several reasons. As compared to T96 model, (1)
the T02 model contains the partial ring current and thus
dawn-dusk asymmetry of the inner magnetosphere mag-
netic field and (2) the model has a better representation
of the interconnection of IMF B, with the magnetospheric
magnetic field. Simple dependencies on solar wind and
IMF parameters are introduced into the model as two addi-
tional G1 and G2 input parameters. A later version, TSO0S5,
has a similar mathematical structure, but the data used
were only for 37 storms with Dst < —65 nT that occurred
between October 1996 and November 2000 [Tsyganenko
et al., 2003]. In addition to Dst, solar wind dynamic pres-
sure, and IMF B, and B., the TS05 model parameters include
six variables W;,i = 1,6. These variables, W, enter in the
six magnitude coefficients for the magnetic fields from each
source.

[13] In addition to the standard input parameters in the
T02 model, we introduced the possibility to incorporate
changes in the model magnetic field due to rotation of a
tail current sheet from the Sun-Earth line. In most models,
the tail current sheet is aligned with Xggy line. In reality, it
is not necessarily true, but the non-radial flow of the solar
wind can cause the rotation of the tail current sheet [ Hones
et al., 1986; Tsyganenko et al. 1998]. When solar wind flow
is radial with V, component dominant over small V, and
V, components, the tail is aligned with the solar wind flow.
When either of the V), and V., components are not close to
zero, even small deviations of the tail location relative to the
Sun-Earth line can cause notable variations in the magnetic
field. In this study, we consider only a nonzero V, compo-
nent. To take into account the rotation, we simply rotate the
original GSM coordinate system in the XZgsy plane for a
specific angle «, which can be obtained from the solar wind
flow data as tan o = % This angle is the angle at which
solar wind flows relative to the Xgsm axis. Then we compute
the external magnetic field from the T02 model in this coor-
dinate system, where the tail current sheet is again directed
along the Xgsv axis. In fact, the rotation will result in a
change of an effective “tilt angle,” which is defined as an
angle between the Zgsy axis direction and the dipole axis
direction. From that point of view, changes coming from tak-
ing into account the real direction of the solar wind flow are
the same as the changes coming from dipole angle change,
and depending on the direction of the solar wind may both
increase or decrease the “effective dipole tilt.”

3. Differences in Latitudinal Conjugacy in the
Northern and Southern Hemispheres

[14] We start from the circles of latitudes from 55° to 75°
with 5° step at all MLTs with 15 min step in the northern

hemisphere. We trace magnetic field lines from these points
in the northern hemisphere to the corresponding points in the
southern hemisphere using the T02 Tsyganenko magnetic
field model. We use the corrected geomagnetic coordinate
(CGM) system to remove the non-dipolar effects from the
internal magnetic field. CGM coordinates of a point are
computed by tracing the magnetic field line using inter-
nal field model (IGRF in our case) through the specified
point to the dipole geomagnetic equator and then returning
to the same altitude along the dipole field line and assign-
ing the obtained dipole latitude and longitude as the CGM
coordinates to the starting point. Using of the corrected coor-
dinates results in the geometrically symmetrical northern
grid seen in Figure 1. Figure 1 presents the results of this
mapping by red lines in the northern hemisphere and blue
lines in the southern hemisphere. The mapping was done
for three dipole tilt angles, namely, for northern winter —33°
(winter) shown on the left-side plots, 0° (equinox) in the
middle, and for northern summer +33° (summer) on the
right-side plots. The upper row of polar plots in Figure 1 was
computed for a quiet period with P,,, = 2 nPa, Dst =10 nT,
IMF B, = 0 nT, and IMF B, = 10 nT as input parameters
to the T02 model (Figures la—1c). The row of plots in the
middle corresponds to the moderately disturbed conditions
with P, = 2 nPa, Dst = —20 nT, IMF B, = 0 nT, and IMF
B, = -5 nT (Figures 1d—1f). The bottom row presents the
results for disturbed conditions reflected in the T02 param-
eters, such as Py, = 8 nPa, Dst = =100 nT, IMF B, = 0 nT,
and IMF B, = -20 nT (Figures 1g—11i).

[15] As can be seen, for the quiet period, the deviations
in latitudes for magnetic field lines coming from the north-
ern hemisphere (red circles) to the southern hemisphere
(blue circles and lines) is present only for higher latitudes
(75°) and for dipole tile angles corresponding to winter
(Figure la) and summer (Figure 1c). For zero dipole tilt
angle (Figure 1b), the magnetic field lines starting from the
northern hemisphere at circles with latitudes 55° to 75°
come to the same circles of latitudes in the southern hemi-
sphere. It should be noted that here we can detect only the
differences in latitudes for magnetic field lines connecting
both hemispheres, not in longitudes.

[16] For moderately disturbed conditions during equinox
(Figure 1e), magnetic field lines have their both ends at the
same latitudes from 55° to 70° in the northern and south-
ern hemispheres. At the same time, the magnetic field lines
starting at 75° latitudes on the dayside in the northern hemi-
sphere are open in the 08-16 MLT sector in terms of that they
do not come to the southern hemisphere. Magnetic field lines
starting at 75° latitudes do not come to the southern hemi-
sphere on the dayside in the 07-17 MLT sector for dipole tilt
angle —33° (Figure 1d), and they are open both on the day-
side (10-14 MLT) and nightside (21-03 MLT) for dipole tilt
angle +33° (Figure 1f). The deviations in latitudes can be
seen for magnetic field lines starting at 70° in the northern
hemisphere.

[17] For the disturbed period, only magnetic field lines
starting at 55° in the northern hemisphere come to the
same latitudes to the southern hemisphere during winter
(Figure 1g) and summer (Figure 1i) times. For winter time,
the magnetic field lines starting at 65° and 70° are open
on the dayside (07-17 MLT) and field lines starting at 75°
come all the way to the southern hemisphere only in the
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Dipole tilt angle = -33°, winter

Dipole tilt angle ~ 0°, equinox

Dipole tilt angle = +33°, summer

Quiet period: Psw = 2 nPa, Dst = 10 nT, IMF By =0 nT, IMF Bz =10 nT

Figure 1. Latitudinal positions of field lines in the northern (red) and southern (blue) hemispheres

showing latitudinal conjugacy.

narrow 22-03 MLT sector around midnight. For summer
time the magnetic field lines starting at 70° are open on the
dayside (08-16 MLT) and on the nightside (21-02 MLT).
All magnetic field lines starting at 75° do not come to the
southern hemisphere. For zero tilt angle (Figure 1h), mag-
netic field lines are closed and at the same latitudes in both
hemispheres for 55°, 60°, and 65°. Field lines are open on
the dayside in 08-16 MLT sector for 70° and at all MLTs
for 75°.

[18] The latitudinal differences exhibit the reversed asym-
metry depending on the season. The magnetic field lines
come to southern hemisphere at higher latitudes on the
dayside and at lower latitudes on the nightside in win-
ter (Figures la, 1d, and 1g) and vice versa in summer
(Figures 1c, 1f, and 1i). For summer, the magnetosphere is
more open (field lines starting at 75° in northern hemisphere
do not come to the southern hemisphere at all).

4. Parameters Influencing the Interhemispheric
Magnetic Conjugacy

[19] The magnetic conjugacy depends on many factors
including the solar wind and IMF parameters, dipole tilt

angle, and conditions in the magnetosphere and its configu-
ration. Since we use the TO2 model to follow the magnetic
field lines, we can study the latitudinal and longitudinal
dependencies of conjugate points on the model parameters,
such as solar wind dynamic pressure P;,, and IMF B, and
B.. Dependence on dipole tilt angle can be revealed by trac-
ing magnetic field lines on different months during the year.
Simple rotation of the original GSM coordinate system in
XZgswm plane for a specific angle «, obtained as tan « = %,
also allow us to investigate the influence of rotation of the
tail current sheet from the Sun-Earth line. By doing this,
we can study the influence of non-radial solar wind flow on
the magnetic field configuration, magnitude, and magnetic
conjugacy. The above-mentioned dependencies are studied
by following the magnetic field lines, which start at the cir-
cle of 70° at all MLTs in the northern hemisphere, to the
southern hemisphere. According to Figure 1, the moderately
disturbed period suits best for this study, since the magnetic
field lines starting at 70° latitudes exhibit latitudinal differ-
ences in the southern hemisphere and are not open for both
winter and summer times. The quiet period mapping lacks
significant latitudinal deviations, and the magnetic field lines
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Figure 2. Differences in latitudinal and longitudinal conjugacy as dependent on the dipole tilt angle.

are already open for 65° of latitude for the disturbed period.
We use the corrected geomagnetic coordinate system as was
mentioned in the previous section.

4.1. Dipole Tilt Angle

[20] To produce Figure 2, the magnetic field lines were
followed from the circle of 70° at all MLTs with 15 min
step from the northern hemisphere to the southern hemi-
sphere for dipole tilt angles from —33° to +33° with 3° step
during moderately disturbed conditions (P, = 2 nPa, Dst
= 20 nT, IMF B, = 0 nT, IMF B, = -5 nT). Figure 2a
presents the latitudinal difference AA = Ay — A5 between the
starting latitude Ay of a magnetic field line in the northern
hemisphere (set to 70°) and the final latitude Ay in the south-
ern hemisphere. Positive values mean that the magnetic field
comes to the southern hemisphere at lower latitudes than
it started in the northern hemisphere, and negative values
at higher latitudes. Figure 2b shows the longitudinal differ-
ences AMLT = MLTy—MLTy in degrees between the starting
MLTy of amagnetic field line in the northern hemisphere and
the final MLTs in the southern hemisphere. Positive values
correspond to magnetic field lines coming to the south-
ern hemisphere earlier in MLT compared to the MLT they
started from in the northern hemisphere, and negative values
to later MLTs.

[21] As can be seen in Figure 2a, the dependence of the
latitudinal difference on the tilt angle and MLT is symmet-
ric relative to noon being very similar on dawn and dusk
MLTs. The latitudinal difference can reach values of sev-
eral degrees. During equinox, there is no difference for any
MLT. For large negative tilt angles, the difference is —2.5° at
06-08 MLT and 16-18 MLT and persist around these MLTs
with increasing tilt angle up to about —10°. The difference of
+2° exists at 02-04 MLT and 20-22 MLT and is present for
tilt angles up to —5°. For positive tilt angles, the picture is

reversed with +2° at 06-08 MLT and 16-18 MLT and —2.5°
at 02-04 MLT and 20-22 MLT.

[22] At the same time, the longitudinal differences can
reach values of several tens of degrees (Figure 2a), and
the symmetry is reversed related to noon. For negative tilt
angles, the differences are from —30° to —5° at around 04-08
MLT and from +30° to +5° at around 16-20 MLT. For posi-
tive tilt angles, the pattern is reversed with an appearance of
narrow bands of longitudinal differences with opposite signs
as +15° at 19 MLT and —15° at 05 MLT. This is due to the
complex configuration of model magnetic field lines at dawn
and dusk.

4.2. Solar Wind Dynamic Pressure

[23] To study the dependence of magnetic conjugacy on
the solar wind dynamic pressure (Figure 3), the magnetic
field lines were followed from the circle of 70° at all MLTs
with 15 min step from the northern hemisphere to the south-
ern hemisphere for dipole tilt angles of —33° and +33° during
moderately disturbed conditions (Dst = —20 nT, IMF B, =
0 nT, IMF B, = -5 nT) and varying solar wind dynamics
pressure values from 1 nPa to 20 nPa with 1 nPa step. The
latitudinal difference (Figures 3a and 3b) can be as large as
2° and longitudinal difference as large as 20° (Figures 3¢ and
3d), and the picture is similar but reversed in sign in summer
compared to winter. For P, below 10 nPa, the latitude dif-
ferences vary no more than £1° for both winter (Figure 3a)
and summer (Figures 3b) times for all MLTs. Maximum lat-
itudinal difference of £2° is present only around midnight
for large values of Py, > 10 nPa. This day-night asymmetry
in the latitudinal difference is observed for both winter and
summer. The significant longitudinal difference of £15-20°
appears for Py,, > 12 nPa on dawn and dusk for both winter
(Figure 3c) and summer (Figure 3d) times. Positive differ-
ence is at 16-22 MLT (02-08 MLT) for winter (summer) and
negative is at 02-08 MLT (16-22 MLT) for winter (summer).
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Figure 3. Magnetic conjugacy dependence on solar wind dynamic pressure.

There is no dependence on Py, magnitude on the dayside
(09-15 MLT), but, even though the longitudinal difference
was close to zero around midnight, already at 22 and 02
MLT, it was 10°, so the day-night asymmetry is also present
for longitudinal difference. In general, conjugacy in the
nightside magnetosphere is much more affected by large
solar wind dynamic pressure.

43. IMF B,

[24] Since the T02 model contains IMF B, as an input
parameter, we varied it from —18 nT to +18 nT and mapped
the magnetic field lines from a 70° latitude circle in the
northern hemisphere to the southern hemisphere (Figure 4)
during moderately disturbed conditions (P, = 2 nPa, Dst
= =20 nT, IMF B, = =5 nT). Similar to the dependence on
solar wind dynamic pressure, the pictures in Figure 4 for
northern winter and summer are reversed in terms of the sign
of latitudinal and longitudinal differences and also in terms
of the sign of IMF B,. The obtained latitudinal difference is
quite small, within £1° for both winter (Figure 4a) and sum-
mer (Figure 4b) times. It reaches —2° only for B, > 15 nT
at 03-06 MLT and B, < —15 nT at 18-21 MLT in summer.
Negative 15-20° of longitudinal difference is present also
only for B, > 15 nT at 21-06 MLT for winter and 18-03

MLT for summer with small MLT area of 15-19 MLT for
B, < —15 nT in summer. Positive 15-20° of longitudinal
difference exists also only for B, <15 nT at 18-03 for win-
ter and at 21-06 MLT for summer with small MLT area of
04-09 MLT for B, > 15 nT in summer. For other IMF B,,
the difference does not exceed about £5°. The asymmetry
of conjugate points is present due to nonzero values of IMF
B,, but there is only a weak dependence on the magnitude
of IMF B,. The asymmetry depends on MLT and dipole tilt
angle.

4.4. IMF B,

[25] We varied IMF B, from —20 nT to +20 nT as an input
parameter to the T02 model and mapped the magnetic field
lines from 70° latitude circle in the northern hemisphere to
southern hemisphere (Figure 5) during moderately disturbed
conditions (P, = 2 nPa, Dst = —20 nT, IMF B, = 0 nT)
for dipole tilt angles of —33° and +33°. The white areas seen
in Figures 5a and 5c for large negative IMF B, correspond
to the magnetic field lines which are open and do not have
their foot points in the southern hemisphere when leaving
the northern hemisphere. The influence of IMF B, on inter-
hemispheric conjugacy depends very much on the sign of
IMF B, but not much on the magnitude. As can be seen in
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Figure 5. Magnetic conjugacy dependence on IMF B,.

Figures 5a and 5b, the latitudinal difference is close to zero
for positive IMF B, in northern winter and summer. The pic-
ture is very different for negative IMF B,. The latitudinal
difference can reach 3 or 4° in absolute values around 20
and 05 MLT. The longitudinal difference is not large, but it
also shows a clear dependence on the sign of IMF B,, not
much on the magnitude. For positive IMF B,, the difference
of about +2° is on the duskside and —2° on the dawnside
(Figure 5c) in winter and reverse (Figure 5d) in summer.

It increases up to 10° for negative IMF B, and becomes more
localized at around 18 and 6 MLTs.

4.5. Rotation of Neutral Sheet from the Sun-Earth Line

[26] Figure 6 demonstrates the dependence of the lati-
tudinal and longitudinal differences between the northern
and southern hemispheric foot points on the rotation angle
of the neutral sheet from the Sun-Earth line. Figure 6a
shows the latitudinal differences for the magnetic field lines
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Figure 6. Dependence on rotation of neutral sheet from Sun-Earth line.

starting at a circle of 65° latitude and Figure 6b for the mag-
netic field lines starting at a circle of 70° of latitude in the
northern hemisphere for rotation angles from —9° to 9°. Neg-
ative values of rotation angles tan o = % mean that the
neutral sheet is above the Sun-Earth line, and positive values
mean that it is below the Sun-Earth line.

[27] For the circle of 65° latitude, the differences are very
small, less than 0.2°. When the circle is moved poleward
by 5°, the difference becomes as large as —1.0° to 1.5°. The
patterns of the latitudinal difference dependence on the rota-
tion angle and MLT are symmetric relative to the MLT = 12
line for both starting latitudes. The largest positive differ-
ences are reached for negative rotation values < —4° at dawn
and dusk for both starting latitudes. The largest negative
differences are present at dawn and dusk for positive rotation
angles > 4° and at 06-18 MLT for negative rotation values
<—4°,

[28] The longitudinal difference is small (only +2°) for
magnetic field lines starting at 65° (Figure 6c¢). It reaches the
maximum positive values at dusk (dawn) and the maximum
negative values at dawn (dusk) for negative rotation angle
values < —4° (positive rotation angle values > 7°), respec-
tively. The picture is reversed relative to the MLT = 12 line.
For the higher starting latitude of 70°, the longitudinal dif-
ferences are 7 times larger, being £15° (Figure 6d). Similar
structure of the locations of largest positive and negative dif-
ferences is present as in Figure 6¢ with additional areas with
similar signs of longitudinal differences closer to midnight.

5. Conjugate Points in the Northern and
Southern Hemispheres: Observed and Modeled

[29] While there are plenty of ground-based magnetic
field observations from both hemispheres (one recent exam-
ple is by Viljanen and Tanskanen, [2012]), only a few
simultaneous auroral observations made in the northern
and southern hemispheres were done. One of them was
reported by Sato et al. [2005] where two similar auroras
were simultaneously acquired with all-sky TV cameras at
the Tjornes (Iceland) and Syowa (Antarctica) magnetically
conjugate observatories. The magnetic latitude (MLAT) and
longitude (MLON) of the two stations are 66.5°N and
73.1°E for Tjornes and 66.1°S and 71.6°E for Syowa.
Thus, their locations were ideal for studying geomagnetic
conjugacy of auroras. The event occurred during magnetic
pre-midnight at 2230-2400 UT on 26 September 2003. One
of the results of this study was the existence of both lat-
itudinal (poleward ~ 50 km) and longitudinal (westward
~ 200 km) displacement of the conjugate point in the
southern hemisphere after 1 h of observations. Since the
auroral images were so similar, it was possible to follow
the conjugate points at both hemispheres and test the accu-
racy of the Tsyganenko models. Sato et al. [2005] found
that none of the T96 and T02 Tsyganenko models used in
this study could reproduce the observed displacement with
the observed solar wind and IMF parameters, even taking
into account the possible displacement due to the IMF B,
component and the possible time delay. However, with the
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Figure 7. (a) V, and (b) 7, components of the solar wind velocity observed during 20-24 UT on 26
September 2003 and (c) the computed rotation angle o = arctg(%) of the tail current sheet from the
Sun-Earth line. Black rectangle shows the time of the observed conjugate auroras in both hemispheres.

V. correction to the TO2 model, we find that the locations of
the conjugate aurora could be explained.

[30] To verify this result, we first examined the observed
parameters of the solar wind during 20-24 UT on 26 Septem-
ber 2003. We used the 5 min averaged data provided by
OMNIWeb (http://omniweb.gsfc.nasa.gov/form/omni_min.
html) and found that the period was characterized by a
significant deviation of the solar wind from the radial (Sun-
Earth) direction. Figure 7 presents (a) V, and (b) V, com-
ponents of the observed solar wind velocity and (c) the
computed rotation angle o = arctan(%) of the tail current
sheet from the Sun-Earth line. The black rectangle shows
the time of the observed conjugate auroras in both hemi-
spheres. It can be seen that during the marked period, the
magnitude of V., was as large as 55 km/s, and the rota-
tion angle can be as large as 3-5°. The magnetospheric
plasma sheet is supposed to follow the solar wind flow
direction [ Tsyganenko and Fairfield, 2004], but the possible
delays related to variable solar wind flow velocity are
still unknown.

[31] Next, we analyzed the mapping changes, which may
be caused by the inclination of the plasma sheet from the
Xgsm axis. We mapped the location of the Tjornes observa-
tory in the northern hemisphere to the southern hemisphere
and obtained the foot point of the corresponding magnetic
field line there. We use the Tsyganenko T02 magnetic field
model, in which the real direction of solar wind flow was
taken into account by rotating the model neutral plasma

sheet by the observed angle (Figure 7c¢). We used the 5 min
averaged solar wind velocity values without any time delay.
The result is given in Figure 8.

[32] Figure 8 presents the evolution of (a) the geographic
latitude and (b) longitude of the foot points of the Tjornes
station in the southern hemisphere. The blue lines in both
Figures 8a and 8b show the latitude and longitude of the
Tjornes station obtained using the T02 model, which does
not take into account non-radial solar wind flow. The black
lines show the latitude and longitude of the Tjornes station
computed using the TO2 model with the additional rotation
angle procedure, described above. The red arrows indicate
the displacement of the location of the conjugate aurora in
latitude and longitude at around 2230 UT during 1 h of
observations.

[33] Itcan clearly be seen that the foot point of the Tjornes
station in the southern hemisphere moves poleward and
westward during the period of observations, which corre-
sponds to the observed conjugate point displacement. The
meridional displacement is ~ 0.5° poleward, which cor-
responds to ~ 50 km, and the azimuthal shift is ~ 1.6°
westward, which is about ~ 80 km. The value of the mod-
eled poleward displacement is close to the observed one.
Thus, we can conclude that the configurational changes of
the magnetic field resulting from the variations of the solar
wind and dipole tilt are one of the main reasons for the
conjugate points displacements in latitude. It is important
not only to take into account the influence of the IMF B,
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Figure 8. (a) The geographic latitude and (b) longitude of the foot points of the Tjornes station in
the southern hemisphere obtained by using the T02 model (blue lines) and using the T02 model with
the additional rotation angle procedure (black lines). Red arrows indicate the displacement of the initial
latitude and longitude at around 2230 UT during 1 h of observations [Sato et al., 2005].

component resulting in twisting of the magnetic field lines
but also to consider the solar wind flow direction when it
deviates from radial by more than 1-2° (Figure 7c). At the
same time, the modeled longitudinal displacement is two
times smaller than the observed.

6. Discussion and Conclusions

[34] The concept of the inter-hemispheric magnetic con-
jugacy was investigated by finding the conjugate points in
the northern and southern hemispheres and analyzing their
dependence on the dipole tilt angle, solar wind and IMF
parameters, and conditions in the magnetosphere and its
configuration. The Tsyganenko T02 magnetic field model
was used to follow the magnetic field lines in the corrected
geomagnetic coordinate system. Since observations of two
points of magnetic field line are not possible, we can only
use models. The better the model, the better the chance
that we will obtain real conjugacy with the model. As it
was stated in the description of our modeling approach,
this model fits the best for our study from all the available
models, since the earlier version T96 does not include the
dawn-dusk asymmetry of the inner magnetosphere and the
TS05 model was constructed only for storm times. The T02
model has its limitations, such as (1) it is valid only inside
15 Rg and (2) it does not include sub-storm variations of the
magnetic field. The 15 Rg limitation is important for highly
disturbed periods, when extreme currents form in the mid-
dle part of the plasma sheet. Due to them, negative B, could
occur in the magnetotail. These highly disturbed periods
are not the subject of the present study; we concentrate on
moderately disturbed conditions. Similarly, substorm varia-
tions are beyond our consideration; we study the configu-
rations, for which averaging over a sub-storm time should
be valid.

[35] In our study, we set three levels of geomagnetic activ-
ity (quiet, moderately disturbed, and disturbed) defined by

the appropriate choice of the model parameters to obtain data
for Figure 1. We did not try to analyze any effects of sub-
storm activity, although several observational and modeling
studies have noted the existence of the displacements of con-
jugate points dependent on sub-storms [Stenbaek-Nielsen et
al., 1972; Frank and Sigwarth., 2003; Motoba et al., 2010;
Saita et al., 2011; Ostgaard et al., 2011]. We presented
other results (Figures 2-5) for the moderately disturbed
period of the magnetic field lines starting at 70° latitudes,
since these lines exhibit latitudinal differences in the south-
ern hemisphere and are closed for both winter and summer
times.

[36] It was found that while the latitudinal difference is of
the order of 2°, the longitudinal difference can be as large as
30°. This is in agreement with the previous studies, where
it was demonstrated that auroral features may not always be
conjugate [Belon et al., 1969; Stenbaek-Nielsen et al., 1972;
Sato et al., 2004] and the longitudinal displacements are
more pronounced [Sato et al., 1998; Minatoya et al., 1996;
Frank and Sigwarth., 2003; Ostgaard et al., 2004].

[37] The magnitudes of the differences depend on the
dipole tilt angle, solar wind dynamic pressure, presence
of IMF B,, and the sign of IMF B.. The dipole tilt angle
is an important factor of the relative displacement of the
auroral features between the hemispheres [Dstgaard et al.,
2005]. Saita et al. [2011] interpreted the role of the dipole
tilt as being the result of the seasonally dependent field-
aligned current (FAC) intensity in the pre-midnight sector.
According to Ohtani et al. [2005, 2009], the dayside FAC
is more intense in summer than in winter, and for FAC in
the pre-midnight sector, the opposite. If there is a stronger
FAC in winter, the two pairs of FACs give a larger mag-
netic field variation in winter. This is in agreement with our
Figure 1, where the magnetic field lines come to the southern
hemisphere at higher latitudes on the dayside and at lower
latitudes on the nightside in northern winter and vice versa
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in summer. Laundal and Ostgaard [2009] reported that the
displacement of auroras in the opposite hemispheres is due
to the seasonal effects.

[38] Solar wind dynamic pressure has not been considered
as a critical parameter when studying magnetic conjugacy,
most probably because any solar wind pressure is thought to
apply evenly on both hemispheres. We found that the mag-
netic mapping on the nightside magnetosphere is much more
affected by large solar wind dynamic pressure (Figure 3)
than the dayside magnetosphere: the maximum latitudinal
difference of & 2° is present only around midnight for large
values of Py, (> 10 nPa), and with no dependence of lon-
gitudinal difference on Py, magnitude on the dayside, it can
be as large as 10° at 22 and 02 MLT. When large solar
wind dynamic pressure is present, it compresses the magne-
tosphere and the tail becomes inflated. If IMF B, is negative,
reconnection is going on, and magnetic flux is accumulated
in the tail. The tail current is strong under the compression.
As aresult, the magnetic field in the lobes increases, the cur-
rent in the tail increases, and the asymmetric configuration
forms. Due to this, the latitudinal difference also increases.
Here such a configuration is discussed that is already asym-
metric due to nonzero dipole tilt (+33°). The effect of
nonzero tilt is that it shifts the plasma sheet (and, therefore,
the tail current) from the equatorial plane of the Earth’s mag-
netic dipole. Thus, in the absence of tail current, there would
be symmetric north-south mapping of the field lines. The
strong tail current will move tailward the end of the field line
in the neutral sheet (and away from the equatorial plane of
the Earth’s dipole) and create the asymmetry in ionospheric
points of a field line in two hemispheres. The stronger the tail
current, the larger the difference in ionospheric foot points.
The longitudinal difference is also present with a day-night
asymmetry.

[39] It is well known that the interplanetary magnetic field
orientation controls the magnetospheric morphology. In par-
ticular, when the IMF B, component penetrates into the
magnetotail, the tail configuration twists [Cowley, 1981].
Since the magnetic field lines are distorted by the twisted
magnetotail, the conjugate points will be displaced. Our find-
ings (Figure 4) that the latitudinal differences reach about
2° and longitudinal differences are about 20° at dawn and
dusk MLTs for large dipole tilt angles and large IMF B,
values (—15 and 15 nT) are in agreement with previous stud-
ies [Dstgaard et al., 2004, 2005]. At the same time, the
important fact found in this study is that the asymmetry of
conjugate points is present due to nonzero values of IMF B,
but there is no real dependence on the magnitude of IMF
B,. The influence of IMF B, on the interhemispheric con-
jugacy depends very much on the sign of IMF B, but not
much on its magnitude. There are only very small variations
when IMF B, is positive, but the dependence is very pro-
nounced when IMF B, is < -2 nT (Figure 5). Only IMF B,
gives large latitudinal differences in two hemispheres (3 or
4° in absolute values around 20 and 05 MLT) due to intense
dayside reconnection for negative B, values. This leads to
strong tail current enhancement and north-south asymme-
try for nonzero tilts. The effect is similar to that of the
dynamic pressure increase, but here it is the result of mag-
netic flux increase due to the dayside reconnection, which is
more efficient than the flux increase due to magnetospheric
contraction under a pressure pulse.

[40] In addition to the standard T02 parameters, a notable
dependence on the non-radial solar wind flow was revealed
by rotating the model tail current sheet above and below
the Sun-Earth line. The importance of taking into account
the solar wind flow direction was confirmed by the anal-
ysis of the observed and modeled magnetic conjugacy of
Tjornes (Iceland) and Syowa (Antarctica) observatories,
which detected two similar auroras simultaneously with all-
sky TV cameras. For these conjugate observations, Sato
et al. [2005] found that none of the T96 and T02 Tsyganenko
models could reproduce the observed displacement, when
the observed solar wind and IMF parameters were used as
input. However, during this event the V, component of the
solar wind velocity was not close to zero but about 50 km/s.
When any of V), and V., components are not close to zero,
even small deviations of the tail location relative to the Sun-
Earth line can cause notable variations in the magnetic field.
This effect must be taken into account when studying the
magnetic conjugacy. With the inclusion of the tail tilt as a
modification to the T02 model, we can explain the latitudinal
locations of the conjugate auroral observations.

[41] On the other hand, we obtained the longitudinal dis-
placement of the observed auroras 2 times smaller than that
observed. There are two possible interpretations:

[42] 1. We modeled the foot points with the T02 model
which gives only an averaged magnetic configuration and
does not have sub-storm variations included which should be
present. At the same time, it is rather hard to estimate what
could be the locations of the foot prints if we have a better
model. For example, it may be that stretching of field lines
will increase the difference due to the solar wind non-radial
flow in the same direction. The field lines will cross the equa-
tor at larger radial distances where neutral sheet is rotated
further away the Xgsp axis. It may result in the longitudinal
displacement comparable to observations.

[43] 2. During the conjugacy event reported by Sato et al.
[2005], the IMF B, decreased from —1.0 nT to —2.5 nT. This
can have the same effect on the footprints in the southern
hemisphere as the presence of positive V, and result in the
increase of the model longitudinal (and latitudinal) shift
[Kubyshkina et al., 2012].

[44] The problem of the inter-hemispheric conjugacy still
remains open since there is only very few possibilities
to monitor the real conjugacy with simultaneous obser-
vations in both hemispheres. The existing magnetic field
models are not able to give the true conjugate points
with high accuracy. There is a good number of additional
factors which may change the given field line config-
uration including the hemispherically asymmetric strong
field-aligned currents [Kaufinann et al., 1990; Sato et al.,
1998], or inter-hemispheric currents [Benkevich et al., 2000;
Stenbaek-Nielsen and Otto, 1997], or even ionospheric cur-
rents and conductivities. Nevertheless, the main properties
of the behavior of the magnetic field lines can be derived
from the solar wind and IMF input to the model. Our study
indicates the regular displacements of conjugate points due
to the presence of the asymmetries in the model magnetic
field. The model can be not completely accurate but the real
asymmetry exists.

[45] The main conclusions obtained are given below:

[46] 1. Latitudinal and longitudinal differences of conju-
gate points and their dependence on the dipole tilt angle:
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(a) For quiet conditions, only slight deviations in latitudes
at which the magnetic field lines start from the northern
hemisphere and to which they come down to the south-
ern hemisphere are present for higher latitudes (75°) for
dipole tilt angles corresponding to winter (—33°) and
summer (+33°).

(b) For moderately disturbed conditions, the magnetic field
lines starting at 75° latitudes on the dayside in the
northern hemisphere do not come at all to the southern
hemisphere regardless of the tilt angle, and for disturbed
periods, this happens to the magnetic field lines starting
at as low as 60°.

(c) The latitudinal differences exhibit the reversed asymme-
try depending on the season: The magnetic field lines
come to the southern hemisphere at higher latitudes on
the dayside and at lower latitudes on the nightside in
winter and vice versa in summer.

(d) While peak magnitudes of latitudinal differences for
magnetic field lines starting at 70° in the northern hemi-
sphere during moderately disturbed conditions are only
about 2°, the longitudinal differences are as large as 30°
at dawn and dusk MLTs for large dipole tilt angles.

[47] 2. Latitudinal and longitudinal differences of conju-
gate points and their dependence on the solar wind and IMF
parameters:

(a) Latitudinal differences reach about 2°, whereas longi-
tudinal differences are 20° at dawn and dusk MLTs for
large dipole tilt angles during high solar wind dynamic
pressure (1620 nPa) and large IMF B,, values (=15 and
15 nT).

(b) Magnetic conjugacy in the nightside magnetosphere is
much more affected by large solar wind dynamic pres-
sure: the maximum latitudinal difference of £2° is
present only around midnight for large values of P,
(> 10 nPa), and with no dependence of the longitudinal
difference on P;, magnitude on the dayside, it can be as
large as 10° at 22 and 02 MLT.

(c) The asymmetry of conjugate points is present due to
nonzero values of IMF B,, but there is only a weak
dependence on the magnitude of IMF B,.

(d) The influence of IMF B, on the inter-hemispheric conju-
gacy depends very much on the sign of the IMF B, but
not much on its magnitude. There are only small vari-
ations when IMF B, is positive, but the dependence is
very pronounced when IMF B, is < -2 nT (large lati-
tudinal differences in the two hemispheres; 3 or 4° in
absolute values around 20 and 05 MLT).

[48] 3. The rotation of the tail current sheet from the
Sun-Earth line by several degrees (from +8 to —8°), which
represents the influence of non-radial solar wind flow on
the magnetic field configuration, results in latitudinal differ-
ences of 1° and longitudinal differences of 15° at dawn and
dusk MLTs during equinox. Analysis of the magnetic con-
jugacy of Tjornes (Iceland) and Syowa (Antarctica) obser-
vatories, which detected two similar auroral structures with
all-sky TV cameras, confirmed the importance of taking into
account the solar wind flow direction when it deviates from
radial by more than 1-2°.
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