Redwood Shrinkage

Leonard 1. Barrett.

Barre II, Leonard

NATURAL SCIENCE LIBRARY

Redwood Shrinkage Experiments.

Redwood Shrinkage.
This investication was made for the purpose of comparine three types of shrinkage in redwood.nanely, radial, taneential and longitudiral. Redwood boards were secured which had been sawed in such a way that proper samples could be cut from them. A quarter sawed board was selected for the radial samples and eicht blocks $4^{\prime \prime} \times 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ werc out from it. Two pencil lines were drawn across the fece of each block, one near each end. These lines were drawn at right angles to the grain and thus extended along what would be the radius of a cross section of the log from which the blocks were removed. Each line was marked A or B, the blocks numbered and the leneth of A and B recorded for each block. This first measurement was made of course with the block in an air dry condition.

Four blocks were placed in a tank to soak and four were placed in a dry kiln. At the end of one week the lires on each block were remeasured and the results recorded. The same was done at the end of three weeks and since there was no great difference between these measuremerts and those at the end of the first week. they were used to compute the percentages shown in Table No. 1. The above measurements along with the individual line percentages can be seen in the tables under Radial Shrinkace.

In studying the tangential, shrinkage the procedure was essentially the same. In this case however it was necessary to select the blocks from boards that had been "slash"sawn. In other words the lines A and B were drawn alone the blocks so that they were tangent to the annual rings. The decrease and increase in the lergth of the penciled lines due to kiln drying and soaking respectively can be seen in the tables under tangential Shrinkage. The average percentages of ircrease and decrease are shown in Table 1 along with those of radial and longitudinal shrinkage.

The study of the longitudinal shrinkage required a slightly different procedure. Four foot sticks twoinchestoquare were selecbed these sticks having been cut lengthwise of the log. Near each end of
a. stick a rivet was placed and driven in with the head flush with the wood surface. A cross was scratched on each rivet head and the distance between the points of intersection measured. After each stick had been so measured and the distances recorded for the air dry condition, they were placed in a kiln and remeasured after a period of time as shown in the tables. They were then put in a tank and soaked and later again remeasured Below are the results as computed from the tables.

Since tle longitudinal shrinkage was more greatly desired two sets of samples were run thru.

An inspection of the tables shows that the longitudinal shrinkage falls considerably below both radial and tangential. In other words the length or distance alone the grain is less susceptible to weather conditions than the width or thickness. The actual shrinkage or swelling of a board may appear to be greater in its length than in either of the other two dimensions, but this is due to the greater length of boards in comparison to their width or thickness. It is also interesting to note that the deviation due to drying is much ereater that that due to soaking.

Average percent of difference or deviation from air dry condition.
Block
No.
1
2
3
4

Soaked	one week	
Length in.		
Block	Line	Line
No.	A	B
1	4.150	4.140
2	4.150	4.110
3	4.170	4.170
4	4.150	4.180

Kiln	Dried one	week
5	4.025	4.020
6	4.020	4.000
7	4.010	4.005
8	4.015	4.000

Soaked three weeks		
	Length in.	
Block	Line	Line
No,	A	B
1	4.150	4.145
2	4.150	4.110
3	4.175	4.175
4	4.150	4.180

$\begin{array}{ccc}\text { Kiln } & \text { Driec three weeks } \\ 5 & 4.025 & 4.025 \\ 6 & 4.020 & 4.00 \\ 7 & 4.010 & 4.010 \\ 8 & 4.015 & 4.000\end{array}$

Percentage Differences in Line Lengths Due to Different Treatments.

Soaked Kiln Dried

Diff. in Length \% Block Line A Line B No. | | Plus | |
| :--- | :--- | :---: |
| 1.22 | 1.34% | |
| 1.22 | 1.35 | |
| 1.46 | 1.58 | |
| 1.47 | 2.08 | | 5

6
7
8

Diff. in Length \%

Air Dry			Soaked ore week			Soaked three weeks		
Block	Line	Line	Block	Line	Line B	Block	Line	Line
No.	A	B	No.	A		No.	A	B
1	4.00	4.00	1	4.075	4.065	1	4.070	4.065
2	4.00	4.015	2	4.060	4.060	2	4.060	4.060
3	4.02	4.02	3	4.060	4.055	3	4.060	4.060
4	4.00	4.01	4	4.050	4.055	4	4.060	4.060
5	4.04	4.03	5	4.110	4.090	5	4.110	4.100
			Kiln Dr	ed one	week	Kiln d	dried th	e weeks
6	4.04	4.03	6	3.93	3.93	6	3.930	3.935
- 7	4.04	4.03	7 '	3.935	3.925	7	3.935	3.925
8	4.04	4.035	8	3.920	3.915	8	3.920	3.920
9	3.99	4.00	9	3.88	3.90	9	3.88	3.90
10	4.04	4.03	10	3.945	3.930	10	2.35	3.93

Percentage Differences in Line lengths				
Soaked			Kiln Dried	
Diff. in	Length \%	Block	Diff.	in Lemgth
Line A	Line B	No.	Line A	A Line B
Plus				Minus
1.75%	1.62 \%	6	2.72%	$\% \quad 2.36 \%$
1.50	1.12	7	2.60	2.60
0.99	0.99	8	2.97	2.86
1.50	1.25	9	2.76	2.50
1.73	1.74	10	2.35	2.48

Average \% of difference $\begin{array}{lll}\text { or cieviation from air } \\ \text { dry condition } & \text {.41\% 2.62\% }\end{array}$

Longitudinal Shrinkage. Exp. No. i

