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ABSTRACT

A Robust hp-Adaptation Method for Discontinuous Galerkin Discretizations
Applied to Aerodynamic Flows

by

Marco Antonio de Barros Ceze

Chair: Krzysztof J. Fidkowski

Quantitatively accurate results from realistic Computational Fluid Dynamics (CFD)

simulations are often accompanied by high computational expense. Higher-order

methods are good candidates for providing accurate solutions at reduced cost. How-

ever, these methods are still not robust for industrial applications.

This thesis presents a solution advancement method that improves robustness of

discontinuous Galerkin (DG) discretizations in the iteration to steady-state. The

method includes physical realizability constraints in the solution path and provides

the solver with the ability of circumventing non-physical regions of the solution space

that can occur during the solution transient.

Affordable accurate solutions for challenging problems are obtained via output-

based hp-adaptation. The adaptation method proposed in this thesis directly targets

output error by locally choosing between subdividing an element or raising the approx-

imation order. The decision is made by finding the refinement option that maximizes

a merit function that involves output sensitivity and computational cost. Results in

two and three dimensions show savings of up to an order of magnitude in terms of

number of degrees of freedom and at least a factor of two in terms of computational

time when compared to uniform refinement.

xv



CHAPTER 1

Introduction

1.1 Context and Motivation

The presence of Computational Fluid Dynamics (CFD) tools in the engineering

environment has steadily increased in the past few decades. With the evolution of

algorithms and the substantial enhancement of computational power, CFD tools now

provide the ability to explore new configurations and test flow conditions that may be

otherwise difficult to produce experimentally. As the range of applications becomes

wider and the number of simulations increases, requirements of high-accuracy and

robustness present challenges for the CFD development community [12].

Analyses using Breguet’s range equation show that variations in aerodynamic

drag of a large transport airplane as small as 1% affect its payload by ∼ 7% [77, 19],

which clearly impacts the profitability of its operation as airlines rarely achieve profit

margins superior to 8% (Figure 1.1). Therefore, accurate prediction of an aircraft’s

performance in the design stage is important for its market success.

Aerodynamic flow over an aircraft, as for many other cases, exhibits features with

unknown spatial distribution, and the range of the features’ length scales can easily

span six orders of magnitude. Furthermore, flows can exhibit singularities that pose

additional challenges for output prediction. The trivial solution to these problems

is to globally refine the mesh. However, this strategy is generally inefficient due to
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Figure 1.1:
Profit margin over the past 10 years for various airlines. Source:
http://www.ycharts.com

very large grid sizes required to appropriately resolve the relevant flow features and

to accurately predict the outputs of interest.

The American Institute of Aeronautics and Astronautics (AIAA) organizes drag

and lift prediction workshops (DPW and HLPW) with the purpose of assessing the

capability of state-of-the-art computational methods and turbulence modeling for

predicting forces and moments on relevant geometries in the aeronautical industry. In

these workshops, starting meshes are generated based on industry’s best practices and

mesh independence is generally sought via uniform refinement studies. Nevertheless,

the spread of results is significant [49, 48, 78, 79]. Figure 1.2 shows the evolution of

the finest-mesh-sizes and the spread1 of results computed with those meshes for the

past four workshops. After the first DPW, when the best-practices were formulated,

there was a large reduction in the spread of computed drag values. However, over the

course of the next three workshops the spread was reduced by a factor of ∼ 10 while

the finest-mesh size increased by a factor of ∼ 100. It is worth emphasizing that the

1Difference between maximum and minimum computed values.
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values shown in Figure 1.2 for the fourth workshop correspond to the data submitted

by a smaller number of participants that had enough computational resources to

use the extra-fine mesh level. Therefore, the computational cost incurred in uniform

refinement strategies clearly makes those simulations far from routine.

Figure 1.2:
Spread of drag values computed with the finest, provided mesh for the
AIAA drag prediction workshops – DPW 1: DLR-F4 wing-body geome-
try; DPW 2 and 3: DLR-F6 wing-body geometry; DPW 4: NASA CRM
wing-body-horizontal-tail geometry.

Mesh adaptation methods present an attractive alternative for robust and accurate

calculations on affordable grid sizes. These methods rely on the definition of an

adaptive indicator which localizes the regions of the computational domain that need

mesh modification through refinement, coarsening, or node movement. An effective

indicator is obtained through output-based error estimation methods, which have

already been demonstrated for many complex problems, including those in aerospace

applications [22]. The goal of these methods is to provide confidence measures in

the form of error bars for scalar outputs of engineering interest. In addition, one
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can use the error contributions of different elements or volumes of the computational

mesh as an adaptive indicator that specifically targets errors in the outputs of interest

[82, 61, 33, 21, 57, 14].
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Figure 1.3: General solution process with error estimation and mesh adaptation.

Despite the effectiveness of output-based error estimation and mesh adaptation

methods, they are not typically used in CFD practice. When they are used, they

usually follow the process illustrated in Figure 1.3. For efficiency, the output-based

adaptation processes should start with the coarsest mesh that still enables a solution

[12] and should improve spatial resolution in areas of the computational domain that

are relevant to the particular calculation being performed.

General gridding guidelines for complex problems are not widely available, and

this presents the question of what is a fine enough mesh that allows the flow solver

to converge. In the context of mesh adaptation, this solution does not have to be

accurate, and most likely will not be on the initial meshes, but it should allow the
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adaptive algorithm to proceed to meshes that do allow accurate predictions of engi-

neering quantities. When the flow solver fails to converge, a typical approach is for

the user to modify the solver parameters or the mesh in an attempt to help the solver.

These modifications are generally heuristic and difficult to automate, and they can

be avoided by improving the robustness of the flow solver and by identifying areas of

the mesh that are hampering convergence.

Solvers typically fail to converge due to under-resolved flow features such as shocks,

boundary layers, and wakes. These features often cause oscillations in the numerical

solution whose amplitudes can lead to non-physical values [12] and prevent the solver

from providing a solution.

1.2 Objective

The objective of this work is to improve the robustness with which computa-

tional fluid dynamics methods solve problems of engineering relevance. This involves

development of effective mesh adaptation methods and improvements in nonlinear

solvers.

1.2.1 Output-Based Error Estimation and Mesh Adaptation

Output-based error estimation techniques identify all areas of the domain that are

important for the accurate prediction of an output. The resulting estimates properly

account for error propagation effects that are inherent to hyperbolic problems, and

they can be used to ascribe confidence levels to outputs or to drive adaptation. A

key component of output error estimation is the solution of an adjoint equation for

the output of interest.

Intuitively, an adjoint (or dual) solution represents the sensitivity of an output

with respect to residual perturbations. The output error is estimated via an inner

product between the adjoint and residual perturbations produced by injecting the
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approximate flow solution into an enriched approximation space that serves as a

surrogate for the continuum. This procedure is referred to as the Dual-Weighted

Residual (DWR) method. For discretization methods that subdivide the domain into

smaller elements or volumes, the elemental contributions to that error estimate can

be treated as adaptive indicators. That is, large contributions to the error estimate

indicate under-resolved areas of the domain that affect the accurate prediction of the

output.

The adaptive indicators can be used to define a metric field that represents the

spatial resolution desired for the modified mesh [22]. This field is then used to re-

mesh the entire domain. Another approach is to locally modify the mesh. These

modifications can be classified into two types: element size (h modification) or local

polynomial approximation order (p modification). Within h-adaptation, elements can

be subdivided/agglomerated, thus modifying the total number of degrees of freedom

(DOF), or the nodes can move to modify the element size distribution at a constant

number of DOF’s.

The choice between resizing the elements or locally changing the scheme’s dis-

cretization order is not trivial and has been the subject of much previous research

[8, 37, 65, 39, 28, 10]. Bey [8] uses the error equidistribution principle to first subdi-

vide elements and then increase the polynomial order where the solution is deemed

smooth. Conversely, Heuveline and Rannacher [37] propose a process that prioritizes

p-refinement and only subdivides an element when the previous step leads to an in-

crease in the elemental error indicator. Houston and Süli [39] present two methods for

assessing the local smoothness of the solution using Legendre series expansions and

for obtaining estimates of the local regularity of the underlying analytical solution. In

that same article, they also provide an overview of different strategies for deciding the

refinement type. Burgess and Mavriplis [10] use a solution-jump indicator to decide

between h and p refinements. Following a different approach, Rachowicz et al. [65]
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choose h or p refinement based on an estimated lowest interpolation error.

Aerodynamic flow features also exhibit anisotropy, that is, variations of disparate

magnitudes in different directions. The dominant method for detecting anisotropy

has relied on estimates of the directional interpolation error of a representative scalar,

such as the Mach number [63, 52]. When used alone, this technique reduces to equidis-

tributing the interpolation error of the chosen scalar over the computational domain,

with the absolute level of interpolation error prescribed by the user [13, 32]. Alter-

nately, this technique can be combined with output-based error estimation by using

the output adaptive indicator to set the element size and the directional interpola-

tion error to set the element stretching [80, 82]. The same idea can be extended to

high-order discretizations [20, 18], although the measurement of directional interpo-

lation error becomes more tedious. A more fundamental problem with this approach

in the context of output-based adaptation is the assumption that mesh anisotropy

should be governed by the directional interpolation error of one scalar quantity. This

assumption is heuristic because it does not take into account the process by which

interpolation errors create residuals that affect the output of interest. As a result,

recent research has turned to adaptation algorithms that directly target the output

error.

Formaggia et al. [25, 24, 23, 53] combine Hessian-based interpolation error esti-

mates with output-based a posteriori error analysis to arrive at an output-based error

indicator that explicitly includes the anisotropy of each element. Park [62] introduces

an algorithm that directly targets the output error through local mesh operators of

element swapping, node movement, element collapse, and element splitting. Using

the output error indicator to rank elements and nodes, these operations are performed

in sequence and automatically result in mesh anisotropy. Schneider and Jimack [71]

calculate the sensitivities of the output error estimate with respect to node positions

and formulate an optimization problem to reduce the output error estimate by redis-
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tributing the nodes. They then combine this node repositioning with isotropic local

mesh refinement sequentially in a hybrid optimization/adaptation algorithm. Yano

[85] uses the duality between simplex meshes and their implied metric field to formu-

late a mesh optimization problem that minimizes output error while maintaining the

number of degrees of freedom. More degrees of freedom are introduced if the output

error estimate does not satisfy the user-specified tolerance.

This thesis presents a method for concurrent mesh and polynomial-order adap-

tation with the objective of direct minimization of output error. The method uses

a selection process for choosing the optimal refinement option from a discrete set of

choices that includes directional h-refinement and p-increment. No attempt is made,

however, to measure the solution anisotropy or smoothness directly or to incorporate

it into the scheme. Rather, mesh anisotropy and approximation order distribution

arise naturally from the optimization of a merit function that incorporates both out-

put sensitivity and measures of solution cost.

1.2.2 Robust High-Order Implicit Methods

The dominant method for solving flow problems in the aeronautical industry is

the finite-volume method (FVM). This method is generally limited to second-order-

accurate variants. That is, if the underlying exact solution is smooth, the discretiza-

tion error is expected to decrease quadratically as the mesh is uniformly refined.

However, for many problems of practical interest, accuracy requirements are increas-

ingly more stringent and second-order accuracy may not suffice [12].

In finite-volume and finite-difference schemes, higher orders of accuracy are gen-

erally achieved by extending the approximation stencil. This extension does not

come free as it interferes with parallelization, hinders the treatment of boundary

conditions, and, more importantly, requires time-integration methods with stronger

stability properties.
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Alternatively, finite-element methods (FEM) can achieve higher orders of accuracy

with a fixed, element-wise compact stencil by approximating the flow field using poly-

nomials with local support. The discrete system is coupled by either enforcing solution

continuity across element boundaries or by defining unique numerical fluxes between

elements. The latter choice yields the discontinuous Galerkin method (DG), which is

specifically suited for aerodynamics as it provides stability for convection-dominated

problems. Yet, DG methods still present robustness challenges that prevent them

from being widely used to solve industry problems. In fact, one of the findings of a

recent workshop2 was that high-order methods are still not as robust as second-order

finite-volume methods for problems with turbulence.

An important ingredient for the robustness of second-order finite-volume methods

is the advent of limiters. Cockburn et al. [16] extended that idea, originally pro-

posed by van Leer [75], to the discontinuous Galerkin finite-element discretization

with Runge-Kutta time stepping. This method is know as RKDG and it preserves

monotonicity of mean values. More recently, Kuzmin[46] proposed a form of RKDG

that uses a hierarchical derivative limiting approach. This is convenient with Taylor

basis functions since the limiter acts directly on the degrees of freedom by a process

that is equivalent to p-coarsening (lowering the polynomial order) the cells where the

solution is not monotone. Unfortunately, limiting methods are not mature yet in

higher-order implicit DG formulations.

Schemes with limiters are robust in time-accurate calculations because they en-

force monotonicity restrictions on the discrete solution. However, the steady solution

of the discrete residual may not be monotonic [83]. Therefore, enforcing monotonicity

can prevent the solver from converging. Conversely, without limiters, numerical oscil-

lations can lead to violations of physicality constraints and also prevent convergence.

Alternatively, artificial dissipation is often used as an attempt to smooth out os-

2The 1st International Workshop on High-Order CFD Methods was part of the 50th AIAA
Aerospace Sciences Meeting held in January 2012.
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cillations. Originally proposed by Von Neumann and Richtmyer [58] for capturing

shocks and explored by many others, artificial dissipation methods generally use dis-

continuity sensors that control even-order derivative terms that damp wave-lengths

of the order of the local mesh resolution. This is achieved by augmenting the residual

expression with dissipative terms that are negligible in smooth regions of the flow

and are triggered at regions with certain features, such as strong gradients or lack

of smoothness. Because of the residual modification, these methods do not prevent

Newton-based methods from converging to steady-state. The challenge, however, is

to determine the level of artificial dissipation that is adequate for robustness but not

too large to destroy solution accuracy. In the finite volume community, this balance

was found in a seminal paper by Jameson et al. [40]. In high-order finite elements dis-

cretizations, robust artificial dissipation methods are still being pursued for complex

problems [4, 64].

Full nonlinear convergence of the residual to machine precision levels is not strictly

necessary for most flow simulations in the design environment. However, in some

practical cases of the aeronautical industry, quantities such as drag and moment vary

significantly despite the residual being reduced by several orders of magnitude[12].

Additionally, the theory of error estimation makes use of Galerkin orthogonality which

is only theoretically valid if the discrete residual is zero. Therefore, the development of

solution advancement methods that robustly drive the residual to zero (up to machine

precision) is an important step in increasing the prevalence of high-order methods in

the aeronautical industry.

This thesis presents a method for directly incorporating physicality constraints in

the iterative solution path. This improves robustness by providing the solver with

the ability of circumventing non-physical regions of the solution space that can occur

during the iterations towards zero residual.
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1.3 Scope

Robustness of high-order solvers and output-based error estimation/mesh adap-

tation are broad topics of research. This work restricts these topics to the following:

• Discontinuous Galerkin discretization: DG methods provide the ability

of locally changing the discretization order while maintaining a compact stencil

and for straightforward treatment of hanging-nodes. Additionally, output-based

error estimation fits naturally into the scheme due to the Galerkin orthogonality

property.

• Steady problems: the majority of the computational analyses in the aero-

nautical industry are of steady, compressible, turbulent flow. This work focuses

on improving the robustness of the nonlinear solution technique in achieving

spatial residual convergence for these types of flows.

• Quadrilateral and hexahedral meshes: such meshes naturally yield high-

quality anisotropic elements and lend themselves to hanging-node refinement.

In addition, many boundary-conforming quadrilateral or hexahedral meshes and

associated meshing programs exist in the structured CFD community.

1.4 Thesis Overview

This thesis addresses the development of an optimization-based hp-adaptation

framework that directly targets output error. The guiding philosophy for this work

was to successfully apply the methods developed here to industry-relevant problems.

The specific contributions of this thesis are as follows:

• A time integration technique that accounts for realizability constraints in the

solution path.
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• A line-search update method that extends the sphere of convergence of Newton-

based solvers.

• An algorithm that reduces the heuristics on deciding between h and p refine-

ments.

• A mesh partitioning method that effectively accounts for inhomogeneous com-

putational cost that arises from hp-adaptation.

Chapter 2 describes the discontinuous Galerkin method used for the spatial dis-

cretization. The constrained time-integration and the solution update methods are

described in Chapter 3. Chapter 4 presents the output error estimation and the

hp-adaptation methods followed by the description, in Chapter 5, of certain imple-

mentation aspects of this work. No specific chapter is dedicated to results. Instead,

we present them along with discussions in the pertinent chapters. Finally, Chapter 6

presents conclusions and ideas for future work.
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CHAPTER 2

Flow Equations and Discretization

The solver robustness improvements presented in this thesis are applied to a dis-

continuous Galerkin spatial discretization of the Navier-Stokes equations. These

equations are augmented with the Spalart-Allmaras turbulence model for simulat-

ing Reynolds-averaged turbulent flow. This chapter reviews the flow equations and

presents the discontinuous Galerkin (DG) discretization along with the shock-capturing

scheme used. The chapter ends with a procedure for scaling the discrete equations

resulting from the DG discretization.

2.1 Compressible Navier-Stokes Equations

The Navier-Stokes equations include convective and diffusive terms. In compact,

conservative form, they can be written as

∂tus + ∂iCis(u)− ∂iDis(u) = 0, (2.1)

where i ∈ [1, .., dim] indexes the spatial dimensions and s indexes the equations

of conservation of mass, momentum, and energy. Accordingly, the state vector is

denoted by u = [ρ, ρvi, ρE]T , where ρ is the density, vi are the spatial components

of the velocity and E is the specific total energy. In Eqn. 2.1, the convective and
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diffusive fluxes are denoted by C and D respectively. These terms correspond to the

following conservation statements:

• Conservation of mass, s = 1:

Ci1 = ρvi, Di1 = 0. (2.2)

• Conservation of momentum, s = 2→dim+1:

Cis = ρvs−1vi + δi (s−1)p, Dis = τi (s−1). (2.3)

• Conservation of energy, s = dim + 2:

Cis = ρviH, Dis = κT∂iT + vjτij. (2.4)

Note, δij is the Kronecker delta symbol. For inviscid calculations, the physical diffu-

sion term D is not included in the equation set. In viscous calculations, we consider

Newtonian fluids for which the viscous stress tensor is given by

τij = µ(∂ivj + ∂jvi) + λδij∂kvk, (2.5)

where µ and λ are the dynamic and bulk viscosities, respectively. Note that the

diffusive flux is non-linear with respect to the state, but linear with respect to the

gradient of the state.

We assume a calorically and thermally perfect gas to close the system in Eqn. 2.1.

This allows us to relate the pressure, p, temperature, T and specific total enthalpy,
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H, to the conserved variables as follows:

p = (γ − 1)
(
ρE − ρvivi

2

)
, (2.6)

H = E +
p

ρ
, (2.7)

T =
p

Rρ
. (2.8)

For all results presented in this thesis, the fluid is air and its physical properties are:

Dynamic viscosity: µ = µref

(
T

Tref

)1.5(
Tref − Ts

T + Ts

)
,

(Sutherland’s law: Tref = 288.15K, Ts = 110K)

Bulk viscosity coefficient: λ = −2

3
µ,

Thermal conductivity: κT =
γµR

(γ − 1)Pr
,

Specific-heat ratio: γ = 1.4,

Prandtl number: Pr = 0.71,

where R is the gas constant.

2.2 Spalart-Allmaras Turbulence Model

In this work we use the Spalart-Allmaras (SA) turbulence model [73]. The model

takes the form of a partial-differential-equation (PDE) for the quantity ν̃ which rep-

resents a turbulent kinematic viscosity. This quantity is non-dimensionalized by to

the physical kinematic viscosity to yield χ = ν̃/ν.

The turbulent flows presented in this thesis are assumed to be fully-turbulent.

Hence, we do not include turbulent transition approximation terms in the model.

Oliver and Allmaras [59] proposed modifications to the original SA model that ensure

stability of the model at negative ν̃. Those modifications are adopted in this work as
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they are specifically suited for discontinuous Galerkin discretizations.

The SA equation is written in conservation form as

∂t(ρν̃) + ∂iC(SA)
i (u)− ∂iD(SA)

i (u) = S(SA)(u), (2.9)

where the state, u, now contains the conserved quantity ρν̃. In the remainder of

the text, ν̃ will be referred as the SA working variable. The convective and diffusive

fluxes are respectively given by

C(SA)
i (u) = ρviν̃, D(SA)

i (u) =
η

σ
∂iν̃, (2.10)

where σ is a closure parameter and η is a diffusivity defined as,

η =

 µ(1 + χ), χ ≥ 0

µ(1 + χ+ 1
2
χ2), χ < 0.

(2.11)

The source term is given by a balance of production, distribution and destruction

terms,

S(SA)(u) = P(SA)(u) + B(SA)(u)− T (SA)(u). (2.12)

The distribution term remains unaltered from the original model,

B(SA)(u) = σ−1cb2ρ∂j ν̃∂j ν̃. (2.13)

The production and destruction terms, however, are modified to ensure stability of

the magnitude of ν̃.
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The modified production term is given by

P(SA)(u) =


cb1s̃ρν̃ χ ≥ 0,

cb1s̃ρν̃gn(χ) χ < 0,

(2.14)

and

s̃ =


|ω|+ s̄ s̄ ≥ −cv2|ω|,

|ω|+ |ω|(c2
v2|ω|+ cv3s̄)

(cv3 − 2cv2)|ω| − s̄ s̄ < −cv2|ω|,
(2.15)

where |ω| =
√

2ΩijΩij is the vorticity magnitude and the function gn provides C1-

continuity to P(SA) at ν̃ = 0,

gn(χ) = 1− 103χ

1 + χ2
. (2.16)

The modified destruction term is

T (SA)(ρν̃) =


cw1fw

ρν̃2

d2
w

χ ≥ 0,

−cw1
ρν̃2

d2
w

χ < 0,

(2.17)

where dw is distance to the nearest wall and the wall function fw is given by

fw = g

(
1 + c6

w3

g6 + c6
w3

) 1
6

, g = r + cw2(r6 − r), and r =
ν̃

s̃κ2d2
w

. (2.18)

The closure functions are

s̄ =
ν̃fv2

κ2d2
w

, fv2 = 1− χ

1 + χfv1

, fv1 =
χ3

χ3 + c3
v1

, (2.19)

and the coefficients for the SA model are given in Table 2.1.
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Table 2.1: Spalart-Allmaras turbulence model closure parameters.
Parameter Value

cb1 0.1355
cb2 0.622
σ 2/3
κ 0.41
cw1 cb1/κ

2 + (1 + cb2)/σ
cw2 0.3
cw3 2.0
cv1 7.1
cv2 0.7
cv3 0.9

Finally, the SA equation is coupled with the Navier-Stokes system through the

diffusion term in the momentum equation. We use Boussinesq’s assumption and

augment the viscous stress tensor in Eqn. 2.5 with the eddy viscosity µt as follows:

τij = (µ+ µt)(∂ivj + ∂jvi) + λδij∂kvk, (2.20)

where µt is also modified according to

µt =

 ρν̃fv1 ν̃ > 0

0 ν̃ ≤ 0.
(2.21)

2.3 Discontinuous Galerkin Spatial Discretization

In this section, we describe the discontinuous Galerkin (DG) spatial discretization

of the flow equations. Let VH,p be the space of piecewise polynomials of degree p with

local support on each element κH ∈ TH , where TH is the set of elements resulting

from a non-overlapping discretization of the domain, D. Using the method of weighted

residuals, the spatial terms of the flow equations are written in the following semilinear
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form:

R(uH,p,wH,p) =
∑

κH∈TH
CκH (uH,p,wH,p)− DκH (uH,p,wH,p) = 0, (2.22)

where wH,p
s and uH,ps are piecewise polynomials that reside in VH,p and s is a local

index in each element that corresponds to the conserved state components. C and D

are weighted residual statements of the convective and diffusive terms.

The weak form of the convective term splits into volume and boundary integrals

via integration by parts and by invoking Gauss’s theorem,

CκH (uH,p,wH,p) = −
∫
κH

∂iw
H,p
s Cis(uH,p)dx

+

∫
∂κH

w(H,p)+
s Ĉis(u(H,p)+,u(H,p)−,n) ds.

(2.23)

The superscripts + and − respectively indicate values corresponding to the interior

and exterior of element κH on the boundary ∂κH with outward normal n. The

Riemann flux, Ĉis, is approximated with Roe’s [68] solver in which the SA working

variable is transported as a conserved scalar.

The diffusion term is discretized using the second form of Bassi & Rebay [6] (BR2)

in which Dis is expressed as

Dis(u) = Aisjk(u)∂juk, (2.24)

where the tensor Aisjk is a nonlinear function of the state vector. Note, i, j index the

spatial dimension and s, k index the state vector.

The weak form of the diffusion term is obtained via integration by parts and by
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invoking Gauss’s theorem.

DκH (uH,p,wH,p) = −
∫
κH

∂iw
H,p
s Aisjk(uH,p)∂juH,pk dx

+

∫
∂κH

∂iw
(H,p)+
s Aisjk(u(H,p)+)u

(H,p)+
k nj ds

−
∫
∂κH

∂iw
(H,p)+
s

̂AisjkuH,pk nj ds+

∫
∂κH

w(H,p)+
s D̂isni ds

(2.25)

In Equation 2.25, ·̂ indicates flux averaging of discontinuous quantities and D̂is is a

viscous flux that includes jump stabilization terms. For the conservation of mass,

momentum, and energy, the choice of flux averages that yields a compact, primal and

dual-consistent discretization is shown in Table 2.2 [20].

Table 2.2: Viscous fluxes for Navier-Stokes.

D̂is ̂AisjkuH,pk

Interior faces {Aisjk(uH,p)∂juH,pk } − ηf{δ
(H,p)f
is } Aisjk(u(H,p)+){uH,pk }

Dirichlet boundary Aisjk(u(H,p)b)∂ju
(H,p)+
k − ηbfδ(H,p)bf

is Aisjk(u(H,p)b){u(H,p)b
k }

Neumann boundary Aisjk(u(H,p)b)∂ju
(H,p)b
k Aisjk(u(H,p)+)u

(H,p)+
k

In Table 2.2, {·} is the arithmetic average {·} = 1
2
((·)+ +(·)−), and the superscript

b indicates constructed states that enforce the boundary conditions. ηf and ηbf are

stability constants defined by:

ηf = κBR2 ·max(N face
κH+ , N

face
κH−), ηbf =

N face
κH+

2
, (2.26)

where N face
κH is the number of faces of element κH and κBR2 ≥ 1 is a user-defined

stabilization factor. δ
(H,p)f
is , δ

(H,p)bf
is are auxiliary variables corresponding to internal
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and boundary faces respectively that satisfy the integral equations ∀vis ∈ VH,p,

∫
κH+

δ
(H,p)f+
is visdx +

∫
κH−

δ
(H,p)f−
is visdx =

∫
σf

{visAisjk(uH,p)}(u(H,p)+
k − u

(H,p)−
k )nj ds,∫

κH

δ
(H,p)bf
is visdx =

∫
σbf

visAisjk(u(H,p)b)(u
(H,p)+
k − u

(H,p)b
k )nj ds,

where the superscripts f+ and f− indicate each side of an interior face and σf and

σbf indicate interior and boundary faces respectively. Note that vis are components

of a vector test function where i indexes the spatial directions and s indexes the state

components.

For the diffusive fluxes and the source terms in the SA model, we use Oliver’s [59]

dual-inconsistent formulation due to its simpler implementation and similar output-

adapted results when compared to dual-consistent formulations which introduce ad-

ditional terms into R(uH,p,wH,p).

In each element, the state uH,ps and the weight functions wH,p
s are expanded in

terms of the basis functions φH,pb as follows:

uH,ps = Usbφ
H,p
b (x), wH,p

s = Wsbφ
H,p
b (x), (2.27)

where Usb is the unknown discrete state. Note that the number of unknowns per

element is Nb × Ns, where Nb is the number of basis functions in the element and

Ns is the number of components in the conserved state vector. The discrete residual

operator is obtained by substituting the expressions in Eqn. 2.27 into the semi-linear

form of Eqn. 2.22 and choosing, in each element, Wsb to have the value of 1 for each

combination of state and basis components. Finally, the semi-discrete flow equations

are written as:

MdtU = −R(U), (2.28)
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where R is the discrete residual operator and M is the block diagonal mass matrix

that corresponds to the volume integral of basis function products on each element in

the mesh. In the interest of notation, we will refer to the discrete residual and state

as vectors that correspond to unrolling Usb,

Ul ⇐ UsbVsbl, (2.29)

where Vsbl is a bookkeeping tensor that encodes the unrolling and the index l ranges

from 1 to the total number of unknowns in the discrete system. The time integration

of Eqn. 2.28 is described in Chapter 3.

2.3.1 Physicality constraints

The flow field is subject to physicality constraints that are not guaranteed to be

satisfied as the discretized equations only enforce conservation. In this section we

review these constraints for the RANS-SA equations, and in Section 3.2 we present

the method by which we incorporate the constraints into the solver.

2.3.1.1 Thermodynamic realizability

The thermodynamic realizability constraints are:

p(u(t,x))

p∞
> 0,

ρ(u(t,x))

ρ∞
> 0,

(2.30)

where p∞ and ρ∞ refer to free-stream pressure and density, respectively. These quan-

tities are included here only for non-dimensional convenience and they clearly do not

alter the positivity constraints. Note that ρ is a conserved variable and, therefore, its

extrema match the extrema of the corresponding position in the conserved state u.

Pressure, however, does not have this property. In fact, its curvature along a spatial

22



direction ζ is given by

∂2p

∂ζ2
=

(
∂u

∂ζ

)T
∂2p

∂u∂uT︸ ︷︷ ︸
Hp

(
∂u

∂ζ

)
+

(
∂p

∂u

)T
∂2u

∂ζ2
. (2.31)

The eigenvalues of the Hessian of the pressure with respect to the state are

eigs(Hp) =


0, for s = 1, 2,

−γ − 1

ρ
, for dim > 1, s = 3→ dim + 1,

−(γ − 1)(1 + vivi)

ρ
, for s = dim + 2.

(2.32)

Note that for a linear distribution of state quantities along ζ, the only local extremum

possible in pressure between two points is a maximum since the eigenvalues of Hp are

non-positive. Therefore, when the state is linearly distributed, we only need to check

the pressure constraint at the end points. However, it is difficult to ensure positivity

for generic state distributions because the second term in Eqn. 2.31 involves the sum

of positive and negative terms.

2.3.1.2 RANS

Physical intuition indicates that eddy viscosity should be constrained similarly to

pressure and density, i.e. νt > 0. Despite the fact that Oliver’s modifications already

impose that constraint, we found that enforcing positive total viscosity,

ν(u(t,x)) + νt(u(t,x))

ν(u(t,x))
> 0, (2.33)

in the solution path helps convergence in many flow cases. Similarly to the thermo-

dynamic constraints, the physical kinematic viscosity in the denominator of Eqn. 2.33

makes the constraint non-dimensional. An example of a case where the constraint

above helps convergence is shown in Figure 2.1 which presents turbulent, transonic
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flow over the RAE2822 airfoil. A p = 1 discretization is used to solve the flow equa-

tions with and without imposing Eqn. 2.33 and the residual convergence is shown in

Figure 2.2 for both cases. The inclusion use of constraint 2.33 reduces the frequency

at which the solution update is limited (explained in Chapter 3) which, in turn, helps

convergence.

(a) Mach contours. (b) Mesh and ρν̃ contours.

Figure 2.1:
RAE2822 - M∞ = 0.734, Re = 6.5 × 106, α = 2.79◦: Mach and ρν̃
contours.
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Figure 2.2:
RAE2822 - M∞ = 0.734, Re = 6.5× 106, α = 2.79◦: residual convergence
using p = 1 with and without the total viscosity constraint (Eqn. 2.33).
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2.3.2 Shock-capturing

Some results presented in this thesis use the artificial viscosity method of Persson

and Peraire [64] for capturing shocks. In this method, a regularity sensor is defined

as the ratio

SκH =
(ρH,p − ρ̃H,p−1, ρH,p − ρ̃H,p−1)|κH

(ρH,p, ρH,p)|κH
(2.34)

where (·, ·)|κH indicates an inner product restricted to the element κH , and ρ̃H,p−1 is

the solution for the mass conservation equation, ρH,p projected to VH,p−1.

The following diffusion term is added to the left-hand side of the flow equations:

Ls = −∂i(ε∂ius), (2.35)

where ε is the artificial diffusivity that, in general, can be an anisotropic tensor.

However, this work uses an element-wise constant, isotropic viscosity that is defined

by the switch,

εκH = ε0
f 2

f + 1
, f ≡ SκH

S0

. (2.36)

The parameters S0 and ε0 are defined heuristically as,

S0 = 0.5× 10p, and ε0 =
λmaxhκH

p
,

where p is the element’s polynomial order, λmax is the element’s maximum character-

istic speed, and hκH is the element’s hydraulic diameter.
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2.3.3 Scaling of the Discrete Equations

The Navier-Stokes equations are discretized in their dimensional form. In order

to prevent ill-conditioning and to improve floating point precision, appropriate scales

are chosen so that the numeric values of the conserved variables have similar orders of

magnitude. These scales are not unique and can be dependent on the flow problem.

The scales used for the cases presented in this work were defined according to the

following steps, which are geared for solutions to external flow problems:

• Given: free-stream Mach number (M∞), Reynolds number (Re), reference

length (c), angle of attack (α), and sideslip angle (β – 3D only).

• Set free-stream density and speed to ρ∞ = 1 and |v∞| = 1.

• Calculate the momentum components with the angle of attack α and angle of

sideslip β:

2D: ρ∞vx∞ = ρ∞|v∞| cos(α),

ρ∞vy∞ = ρ∞|v∞| sin(α).

3D: ρ∞vx∞ = ρ∞|v∞| cos(α) cos(β),

ρ∞vy∞ = ρ∞|v∞| cos(α) sin(β),

ρ∞vz∞ = ρ∞|v∞| sin(α).

• Use the specific heat ratio for air, γ = 1.4, and set the gas constant to R = 0.4.

Note that this corresponds to setting the specific heats to Cp = 1.4 and Cv = 1.0.

• Calculate the free-stream pressure and temperature in the newly defined units:

p∞ =
ρ∞
γ

( |v∞|
M∞

)2

, T∞ =
p∞
ρ∞R

.
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• Calculate the total energy per unit volume:

ρ∞E∞ =
p∞
γ − 1

+ ρ∞
|v∞|2

2
.

• The temperature constants in Sutherland’s law must be converted from known

physical units into the new units. This requires knowledge of the free-stream

temperature in the physical units, e.g. TKelvin
∞ , in which case the conversion

from (TKelvin
ref , TKelvin

s ) to (Tref, Ts) reads:

Tref = TKelvin
ref

T∞
TKelvin
∞

, Ts = TKelvin
s

T∞
TKelvin
∞

.

• Calculate the free-stream viscosity and the reference viscosity for Sutherland’s

law in the new units using the reference length c and the Reynolds number:

µ∞ =
ρ∞|v∞|c
Re

, µref =
µ∞

Tref+Ts
T+Ts

(
T∞
Tref

)1.5 .

Most practical cases in the aeronautical industry are in the Reynolds number

regime of 106 → 107. In this regime, ν̃/ν∞ typically ranges 4 to 5 orders of magnitude.

Therefore, it is also desirable to choose an appropriate scale for ν̃. The scale used in

this work is

(ρν̃)′ =
ρν̃

κSAµ∞
, (2.37)

where (ρν̃)′ is the scaled conserved variable that is stored and evolved by the solver.

κSA is a scaling factor and µ∞ is the dynamic viscosity expressed in the units defined

above. Essentially, we are non-dimensionalizing ρν̃ by a factor larger than the physical

viscosity.

To exemplify the effect of κSA, we show in Figure 2.3 the residual history for
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two flows at Re = 6.5 × 106, one subsonic and one transonic. For each case, three

scaling factors were used, κSA = 1, 100, 1000. Note that κSA significantly affects the

convergence history. Specifically, the larger values of κSA ameliorate the secondary

transient observed in RANS computations using DG [11].
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(a) RAE2822 - M∞ = 0.3, Re = 6.5 × 106, α =
2.31◦.
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(b) RAE2822 - M∞ = 0.734, Re = 6.5 × 106,
α = 2.79◦.

Figure 2.3: Residual convergence using p = 1 for different ν̃ scaling factors (κSA).

The drag and lift coefficients (CD and CL respectively) for both flow conditions

are shown in Table 2.3 and Table 2.4. As expected, the scaling factor has virtually no

effect on the results. However, it makes the conserved variables closer in magnitude

which, in turn, helps implicit time integration methods.

Table 2.3:
RAE2822 - M∞ = 0.3, Re = 6.5 × 106, α = 2.31◦ – Comparison of force
coefficients and maximum values of x-momentum and SA working variable
for different scaling factors.

Quantity κSA = 1 κSA = 100 κSA = 1000
CD 0.0122 0.0122 0.0122
CL 0.4507 0.4507 0.4506

(ρvx)max 1.25182 1.25182 1.25192
(ρν̃)′max 1.03775× 103 1.03775× 101 1.03783
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Table 2.4:
RAE2822 - M∞ = 0.734, Re = 6.5×106, α = 2.79◦ – Comparison of force
coefficients and maximum values of x-momentum and SA working variable
for different scaling factors.

Quantity κSA = 1 κSA = 100 κSA = 1000
CD 0.0198 0.0198 0.0198
CL 0.7334 0.7334 0.7334

(ρvx)max 1.11808 1.11808 1.11811
(ρν̃)′max 1.64361× 103 1.64362× 101 1.64378
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CHAPTER 3

Time Integration

This chapter describes the solution advancement scheme. First, we review the

pseudo-transient continuation (PTC) method and then we show how the physicality

constraints are incorporated in the solution path. We then present different solution

update methods and compare them for a set of cases ranging from intermediate to

difficult.

3.1 Pseudo-transient Continuation

Since we are interested in the steady-state solution of the flow equations, high-

accuracy is not required for discretizing the unsteady term of Eqn. 2.28. Instead,

stability is the main attribute which makes backward Euler an attractive choice. The

fully-discrete form of Eqn. 2.28 is then:

M
1

∆t
(Un+1 −Un) + R(Un+1) = 0, (3.1)

where M is the mass matrix and n indexes the time step.

The residual at the future state in Eqn. 3.1 is expanded about the current state
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and the steps in the iterative procedure require linear solves for the update ∆Uk,

(
M

1

∆t
+
∂R

∂U

∣∣∣
Uk

)
∆Uk = −R(Uk), (3.2)

where k is used for the nonlinear iteration number to distinguish the method from the

time-accurate backward Euler case. Note that for ∆t → ∞ the iterative procedure

of Eqn. 3.2 reduces to Newton’s root-finding method.

The linearization of the residual operator involves simplifications due to non-

differentiable terms in numerical flux functions and artificial dissipation sensors. Ad-

ditionally, the sparse structure of the linear system given in Eqn. 3.2 depends on the

type of spatial scheme used for R, and an appropriate choice of iterative solver and

preconditioner must be made. In this work, a restarted Generalized Minimal Residual

(GMRES) linear solver [70, 69], aided by a line-Jacobi preconditioner [19], solves the

linear system at each step. The DG discretization described in Chapter 2 produces a

residual Jacobian that is block-sparse: degrees of freedom in an element are coupled

only to degrees of freedom in neighbor elements. Within each block, sparsity may

exist for certain choices of basis functions, but we do not take advantage of such

sparsity.

In the first stages of calculations initialized by states that do not satisfy all bound-

ary conditions, strong transients are observed due to the propagation of boundary

information into the domain. To alleviate those transients, small time steps are used

in an attempt to make the solution follow a physical path. This causes a diagonal

dominance in the coefficient matrix in Eqn. 3.2 and makes the calculation closer to

time-accurate if ∆t does not vary spatially. As an alternative to global time stepping,

element-wise time steps can be used by setting a global CFL number defined as:

CFL =
λmax∆tκH

LκH
, (3.3)
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where λmax is the maximum wave speed and LκH is a measure of element size, e.g. hy-

draulic diameter.

At each iteration, k, the flow state vector Uk is updated with ∆Uk. For robustness

purposes, an under-relaxation parameter, ωk, is used to ensure a physical solution at

the next iteration (Eqn. 3.4).

Uk+1 = Uk + ωk∆Uk (3.4)

The methods for calculating ωk are presented in Section 3.3.

3.1.1 CFL evolution strategies

In a pseudo-transient continuation method, the continuation parameter is the CFL

number. Hence, a strategy must be chosen to evolve the CFL from its initial value to

a large value such that Eqn. 3.2 becomes Newton’s method and the state approaches

the steady solution.

Switched Evolution Relaxation - SER

Many strategies for evolving the time step are available [9, 43]. Amongst them, a

widely used strategy is the Switched Evolution Relaxation (SER) method proposed

by Mulder and van Leer [55]. The general idea of SER is to change the time step

or the CFL number based on a measure of convergence which is inferred from the

reduction in a residual norm between consecutive iterations. Typically, the L2 norm

is used. The algorithm reads as follows:

CFLk = min

(
CFLk−1 |Rk−1|L2

|Rk|L2

,CFLmax

)
. (3.5)

SER is an effective time step evolution strategy. However, the physicality con-

straints are verified after the direction ∆U is computed and the relaxation parameter
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ω in Eqn. 3.4 must be such that the updated state is physical. In the event of ω

becoming too small and the time step not changing significantly, a contingency plan

needs to be designed so that the direction ∆U changes. This is discussed in Section

3.3.

Exponential progression with under-relaxation - EXPur

Alternatively, the CFL evolution can be based on the value of the under-relaxation

parameter. Specifically, the CFL increases by a factor β > 1 if a full update (ω = 1)

happened in the previous step of the solver. On the other end, if ω < ωmin the CFL

is reduced by multiplying it by κ < 1 and the solver step is repeated. The relaxation

factor is limited such that the solution stays physical at selected limit points of the

interpolated field uH,p. The methods for computing the under-relaxation factor are

described in Section 3.3

This strategy accounts for the physical feasibility constraints for the next update.

However, it is an indirect way of avoiding non-physical states in the flow field since

the direction ∆Uk may still produce states that are closer to becoming non-physical

even at the minimum CFL. In particular, this is observed in highly under-resolved

meshes.

The CFL evolution strategy is summarized below:

CFLk+1 =


β · CFLk for β > 1 if ωk = 1

CFLk if ωmin < ωk < 1

κ · CFLk for κ < 1 if ωk < ωmin

. (3.6)

The parameters are typically set to: ωmin = 0.01, β = 1.05↔ 2.0, and κ = 0.1.

Residual Difference Method - RDM

This CFL evolution strategy is based on a method described in Ref. [9] and it is a

blend of EXP and SER. Similarly to SER, this strategy monitors the solution evolu-
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tion and increases/decreases the CFL when the residual norm is reduced/increased.

However, the maximum change in CFL is limited from above by a factor β. The

algorithm reads as follows:

CFLk = min

(
CFLk−1 · β

|Rk−1|L2
−|Rk|L2

|Rk−1|L2 ,CFLmax

)
for β > 1. (3.7)

Note that CFLk

CFLk−1 ≤ β, where the equality corresponds to Rk vanishing completely.

A monotonic variant of RDM is obtained by setting the exponent in Eqn. 3.7 to zero

when |Rk|L2 > |Rk−1|L2 . This variant will be referred as mRDM in the remainder of

the text.

3.1.2 Optimization aspect of PTC

Assume the coefficient matrix in Eqn. 3.2 is real and non-singular and the update

direction ∆Uk is not zero. Multiplying the left-hand side of Eqn. 3.2 by its transpose

gives:

∆UkT
(

M
1

∆t
+
∂R

∂U

∣∣∣
Uk

)T
︸ ︷︷ ︸

AT

(
M

1

∆t
+
∂R

∂U

∣∣∣
Uk

)
︸ ︷︷ ︸

A

∆Uk = −∆UkT ATR(Uk)︸ ︷︷ ︸
∂f

∂U

∣∣∣
Uk

> 0. (3.8)

We note that the inequality comes from the fact that ATA on the left-hand side is

a symmetric positive-matrix. Therefore, ∆Uk is a descent direction for the scalar

function f(Ũ) defined by its gradient in the right-hand side of Eqn. 3.8. Here, Ũ is

a trial future state.

Now, consider the unsteady residual,

Rt(Ũ) = M
1

∆t
(Ũ−Uk) + R(Ũ), (3.9)

By taking one step of Newton’s method for Rt(Ũ) = 0 with initial guess Ũ0 = Uk,
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we conclude that,

f(Ũ) =
1

2
|Rt(Ũ)|2L2

=
1

2
Rt(Ũ)TRt(Ũ). (3.10)

This is verified by differentiating Eqn. 3.10 and setting Ũ = Uk. Consequently, there

is a trial state Ũ along the direction ∆Uk such that f(Ũ) < f(Uk).

3.2 Incorporating constraints

The minimization character of the PTC method motivates the use of constraint

handling techniques from the optimization field. Non-physical states (e.g. negative

pressure) can lead to instability[3], and therefore we need to keep the iterates within

the physical region of the solution space. Interior penalty methods [36] are attractive

because of their simplicity and efficiency in acknowledging feasibility constraints in

the solution path. These methods augment a scalar objective function with a term

that tends to infinity as the solution path approaches a feasibility boundary creating

a repelling effect with respect to prohibited regions of the domain.

A different approach for incorporating constraints into pseudo-transient methods

was proposed by Kelley et al. [44]. Their approach involves a step that projects the

state into the feasible domain after each non-linear iteration and the fundamental dif-

ference between their method and the method we propose here is that we incorporate

the constraints when computing the solution update.
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3.2.1 Scalar penalization

A simple way of incorporating the realizability constraints in the solution path is

to formulate an optimization problem that reads:

minimize: f(U) = |Rt(U)|2L2

by varying: U, and ∆t→∞

subject to: ci(u
H,p(t,x)) > 0. ∀x ∈ D

The constraints, ci(u
H,p(t,x)) > 0, are dependent on the equations being solved. In

this work, we consider the RANS-SA constraints presented in Section 2.3.1.

An interior penalty method handles the constraints by augmenting the objective

function, f(U), with an inverse-barrier function of ci(u
H,p(t,x)). Since the constraints

are applied to a functional representation of the state, an integral of the inverse barrier

would have to be evaluated in order to enforce the constraints everywhere in the

domain. We approximate this integral by using a quadrature rule and the penalty

function is written as,

P(U, µ) = µ
∑

κH∈TH

Nc∑
i

Nq∑
q

wq
ci(uH,p(xq))

, (3.11)

where Nq is the number of quadrature points xq with weights wq, Nc is the number of

constraints indexed by i, and µ, in this context, is a scalar penalty factor. Note that

P in Eqn. 3.11 tends to infinity as the constraints approach zero from the positive

side. The augmented function is then given by:

g(U, µ) = f(U) + P(U, µ). (3.12)

The main idea of the interior penalty method is to solve a sequence of optimization
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problems for diminishing penalty factors, µj+1 < µj. For each optimization problem

j, Newton’s approach can be used to compute a search direction for a minimizer of

g(U, µj),

Hg(U
k, µj)∆Uk = − ∂g

∂U

∣∣∣
Uk,µj

, (3.13)

where Hg is the Hessian of the augmented objective function,

Hg(U, µ) =
∂Rt

∂U

(
∂Rt

∂U

)T
+

∂2Rt

∂U∂UT
Rt(U)︸ ︷︷ ︸

Hf (U)

+HP(U, µ) (3.14)

and the Hessian of the penalty function, HP, is a block diagonal matrix due to the

local support of uH,p.

It is customary in nonlinear least-squares problems to use the Gauss-Newton [44]

approximation to the Hessian, i.e.to ignore the second derivative of Rt with respect

to U:

Hg ≈ H̃g(U, µ) =
∂Rt

∂U

(
∂Rt

∂U

)T
+HP(U, µ). (3.15)

In spite of the regularization effect of HP and M 1
∆t

via their diagonal dominance,

in general, the simplified full Hessian in Eqn. 3.15 is very ill-conditioned due to the

squaring of the residual Jacobian, and solving the linear system in Eqn. 3.13 is very

computationally expensive. This is the disadvantage of having a scalar function in

Eqn. 3.10 which permits a simple penalization for enforcing the constraints. Addition-

ally, factorizing H̃g would generally require the explicit construction of that matrix

which can be computationally intensive even for small problems. For this reason, the

pure optimization approach is intractable for any realistic problem.
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3.2.2 Vector penalization

As an alternative to the scalar penalization, we propose augmenting the residual

with a penalty vector to account for the constraints:

Rp(U) = R(U) + P(U, µ). (3.16)

In order to have the repelling effect with respect to non-feasible regions of the

domain, the penalization vector P must have a positive projection on the direction of

the residual vector R. To satisfy this requirement, we define the penalization vector

as:

P(U, µ) = Φ(U, µ) R(U), (3.17)

where µ is a penalty factor and Φ is a diagonal matrix of the same size as the residual

Jacobian with the elemental penalties PκH for each row corresponding to an element

κH .

Φij(U, µ) =

 µ PκH (U) if i = j ∈ dof(κH)

0
(3.18)

Note that j ∈ dof(κH) denotes the degrees of freedom, in global ordering, pertinent

to κH . The elemental penalty is given by:

PκH (U) =

Ni∑
i

Nq∑
q

wq
ci(uH,p(xq))

. (3.19)

Equation 3.19 involves a summation over quadrature points, xq, that lie inside κH ,

with weights wq. This summation corresponds to integrating the inverse barrier func-

tion in a reference element with unitary volume.
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Note that the projection of P – as defined in Eqn. 3.17 – onto the residual vector

is always positive for non-zero R since the elemental penalties are strictly positive in

the feasible domain, i.e., physical states.

A root of the residual operator corresponds to a root of Rp, so that the steady-state

solution is independent of the values of the elemental penalties. We emphasize that

the objective of this method is to change the path to the solution, not the solution

itself. By applying the pseudo-transient continuation procedure (Eqn. 3.2) to Rp we

are including physicality constraints in the solution path from the initial condition to

steady state. The update direction along that path at step k satisfies

(I + Φk)−1M
∆t︸ ︷︷ ︸

a

+
∂R

∂U

∣∣∣
Uk

+ (I + Φk)−1

(
∂Φ

∂U

∣∣∣
Uk

R(Uk)

)
︸ ︷︷ ︸

b

∆Uk = −R(Uk), (3.20)

where I is the identity matrix and Φk = Φ(Uk, µk). The equation above is derived

by the substituting Rp into Eqn. 3.2 and by separating the terms such that the

unpenalized residual, R, is on the right hand-side. This adds the implementation

convenience of simply adding entries to the coefficient matrix of the linear systems

solved at each step k.

The terms “a” and “b” in Eqn. 3.20 are block diagonal for the DG method in this

work. Additionally, the elemental CFL number gets amplified by (1+µ PκH ) as I+Φk

is a diagonal matrix. In the limit of an infinite time step, the solution path seeks a

minimum of |Rp|L2 . Similarly, the time continuation term “a” vanishes at elements

where the solution approaches a non-physical region while the penalization term “b”

does not vanish because the function value of inverse barrier penalties (Eqn. 3.19)

tends to infinity at a slower rate than the magnitude of its derivative. In the remainder

of the text, we will refer to the method in Eqn. 3.20 as Constrained Pseudo-transient

Continuation (CPTC).
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The penalty factor is evolved using a form of SER:

µk+1 = min

(
µk

1 + µk max(PκH (Uk))

1 + µk−1 max(PκH (Uk−1))
, µmax

)
. (3.21)

This evolution strategy for µ tries to make the solver acknowledge the presence of

a feasibility constraint by increasing its repelling effect as the solution path goes

towards a non-physical state anywhere in the domain. This latter point is due to the

use of the max function over the elements in Eqn. 3.21. Conversely, if the solution

path is moving away from a feasibility boundary the repelling effect decreases.

The penalty factor is initialized such that (1 + µ max(PκH )) = O(1) but µ >

0. This keeps the pseudo-transient term active and alleviates the initial solution

transients while helping the spectral conditioning of initial linear systems. For all the

results in this thesis, µ is initialized according to:

1 + µ0 max(PκH (U0)) = 100.25. (3.22)

The CPTC method is summarized in Algorithm 3.1. The unconstrained PTC

method follows a similar algorithm, where the steps related to the penalty factor

(steps 3 and 10) are ignored and the update direction (step 6) is computed using

Eqn. 3.2. For all the cases presented here, the CFL is reduced by a factor κ = 0.1

when the under-relaxation factor is below ωmin = 0.01. At that point the state is

reverted to a safe state stored when a full update occurs.
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ALGORITHM 3.1 Constrained PTC
1: Choose initial CFL and its evolution strategy (Section 3.1.1)

2: Set a residual tolerance, εres

3: Initialize µ according to Eqn. 3.22

4: Initialize Usafe to initial condition

5: while |R(Uk)| > εres, k < maximum iterations do

6: Compute ∆Uk by solving Eqn. 3.20 using GMRES

7: Compute under-relaxation parameter ωk (Section 3.3)

8: if ωk ≥ ωmin then

9: Uk+1 ← Uk + ωk∆Uk.

10: Evolve µ using Eqn. 3.21

11: Evolve CFL with chosen strategy

12: if ωk = 1 then

13: Usafe ← Uk+1 . Store a safe state

14: end if

15: else

16: CFLk ← κ CFLk for κ < 1

17: Uk+1 ← Usafe . Revert to last safe state

18: Return to step 6

19: end if

20: k ← k + 1

21: end while

3.3 Solution update

The solution update methods described here use two main ingredients. First, they

require interpolating the state, uH,p, and its update, ∆uH,p, at certain points, xm.

This involves evaluating the basis functions at xm and using the unrolling tensor in
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Eqn. 2.29 to transfer the discrete vectors U and ∆U to their field representations, uH,p

and ∆uH,p. The second ingredient is an update limiter that restricts the changes in

primitive variables to a maximum fraction, ηmax, of the current values. This procedure

is described for the RANS-SA equations in Algorithm 3.2.

ALGORITHM 3.2 Limit physical update

1: Given uH,p(xm)|κH , ∆uH,p(xm)|κH , and a fraction ηmax < 1
2: ωκH ← 1
3: for all xm ∈ κH do
4: ωρ ← 1 . ωρ is the step size for density
5: ρm = ρ(uH,p(xm)|κH ) . Current density at xm
6: ρ̃m = ρ(uH,p(xm)|κH + ωρ∆uH,p(xm)|κH ) . Trial density at xm
7: if ρ̃m is not within ηmax of ρm then
8: Reduce ωρ such that ρ̃m is within ηmax of ρm
9: end if

10: ωp ← ωρ . ωp is the step size for pressure
11: pm = p(uH,p(xm)|κH ) . Current pressure at xm
12: p̃m = p(uH,p(xm)|κH + ωp∆uH,p(xm)|κH ) . Trial pressure at xm
13: while p̃m is not within ηmax of pm do

14: ωp ←
ωp
2

15: p̃m = p(uH,p(xm)|κH + ωp∆uH,p(xm)|κH )
16: end while
17: Limit ων̃ such that χ changes by a maximum fraction ηmax

18: ωκH ← min(ωρ, ωp, ων̃ , ωκH )
19: end for
20: return ωκH

Some clarifications are in order. First, the maximum fractional change is fixed at

ηmax = 10% – based on experimentation – for all cases presented in this thesis. Also,

the points xm can be chosen arbitrarily, the more the better, and we select them

to be the quadrature points used for computing the interior and boundary integrals

involved in the residual calculation. Finally, the bisection method is used in step 13

of Algorithm 3.2 because pressure is a nonlinear function of the state.
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3.3.1 Maximum Primitive Change

The Maximum Primitive Change (MPC) method limits the step size such that

the physical update limiter (Algorithm 3.2) passes for all the elements in the mesh.

This procedure is summarized in Algorithm 3.3.

ALGORITHM 3.3 Maximum Primitive Change

1: ωk ← 1 . Assume full update initially

2: for all κH ∈ TH do . Loop over element in the mesh

3: Select limit points, xm

4: Evaluate uH,p(xm)|κH and ∆uH,p(xm)|κH

5: Call Algorithm 3.2 . Limit change in primitive state

6: ωk ← min(ωκH , ω
k)

7: end for

8: return ωk

3.3.2 Line-search

In optimization problems, line-searches are used to find a step-size along a de-

scent direction that sufficiently reduces the value of the objective function and its

gradient. These conditions are known as the Wolfe conditions. When solving sys-

tems of nonlinear equations, line-searches improve the global convergence properties

of Newton-based methods [42].

The line-search algorithm developed in this work is based on Modisette’s method

[54], and it relies on the optimization character of pseudo-transient continuation (Sec-

tion 3.1.2). In short, both algorithms satisfy Armijo’s rule [2] by back-tracking from

an initial step-size until an update leads to a reduction in the 2-norm of the unsteady

residual.

The difference between Modisette’s method and ours is in computing an initial

guess for the step size. While Modisette uses the ωk computed with MPC as a starting
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step-size, our method only checks the physicality for elements whose update directions

are deemed “unsafe”. This is assessed by computing the projection,

θ = ∆Uk · ∂P
∂U

∣∣∣
Uk
, (3.23)

where P is the sum of all elemental penalties PκH . The elements with positive con-

tributions to θ have update directions deemed “unsafe” since ∆Uk will lead to an

increase in PκH for those elements.

The line-search algorithm is summarized below.

ALGORITHM 3.4 Line-search
1: ωphys ← 1 . Initial guess for physical update

2: for all κH with positive contribution to θ do

3: Select limit points, xm

4: Evaluate uH,p(xm)|κH and ∆uH,p(xm)|κH

5: Call Algorithm 3.2 . Limit physical update

6: ωphys ← min(ωκH , ωphys)

7: end for

8: ωk ← ωphys

9: Ũ← Uk + ωk∆Uk . Trial state vector

10: while |Rt(Ũ)|L2 > |R(Uk)|L2 OR Ũ is not physical do

11: ωk ← ωk

2

12: Ũ← Uk + ωk∆Uk

13: end while

14: return ωk

Note that step 10 in Algorithm 3.4 checks if the trial state, Ũ, is physical. This

check involves verifying if the physicality constraints (Section 2.3.1) are satisfied at the

limit points. Also, we separate the 2-norm of residual into the individual conservation
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equations and require a drop in each of those norms. This reduces the effect of badly-

scaled discrete systems that cause the residual norm to be dominated by the worst

residual component which is also observed by Modisette [54].

3.3.2.1 Greedy algorithm

The physical update limiter in Algorithm 3.2 is heuristic and the line-search al-

gorithm described above can prematurely exit with ωk = ωphys while ωphys < 1. This

can slow-down the convergence and increase the susceptibility to limit cycles. To

address this possibility, a greedy algorithm is introduced. This algorithm amplifies

ωk while Armijo’s rule is satisfied or until a full update is obtained, ωk = 1.

A safety check based on the projection in Eqn. 3.23 is performed before amplifying

ωk. Specifically, a negative projection, θ, indicates that is globally “safe” to proceed

along ∆Uk. However, even with θ < 0, amplifying ωk may not be locally safe because

certain elements may have positive contributions to θ and ∆Uk may lead to non-

physical states on those elements. The algorithm is summarized below.
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ALGORITHM 3.5 Greedy algorithm

1: if ωk = ωphys AND θ < 0 then . θ is defined in Eqn. 3.23

2: while ωk ≤ 1 do

3: ωk ← βω · ωk . For all cases, we use βω = 1.1

4: Ũ← Uk + ωk∆Uk

5: if Ũ is not physical then

6: ωk ← ωk

2

7: return ωk

8: end if

9: if |Rt(Ũ)|L2 > |R(Uk)|L2 then

10: ωk ← ωk

βω
11: return ωk

12: end if

13: end while

14: end if

15: return ωk

3.4 Test-suite results

We now present results for a set of flow cases ranging from intermediate to dif-

ficult.1 For each case, we combine the PTC and CPTC methods with each of the

CFL evolution strategies and solution update algorithms. We identify each run with

a sequence of 3 digits (Table 3.1) that respectively correspond to the continuation

method, the solution update method, and the CFL evolution strategy.

For all cases, the residual convergence criterion is 9 orders of magnitude reduction

compared to its initial norm. In order to compare the methods under equal-footing,

the discretization and the GMRES parameters are the same for all runs in Table 3.1

1Level of difficulty assessed by the 1st International Workshop on High-Order CFD Methods.
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Table 3.1:
Summary of combinations of algorithms; PTC: pseudo-transient continua-
tion; CPTC: constrained pseudo-transient continuation; MPC: maximum
primitive change; LS: line-search; LS+G: line-search with greedy algo-
rithm; SER: switched evolution relaxation; EXP: exponential progression;
RDM: residual difference method; mRDM: monotonic residual difference
method.

Run ID ∆Uk method ωk method CFLk method
1.1.1 PTC MPC EXP (β = 1.2)
1.1.2 PTC MPC SER
1.1.3 PTC MPC RDM (β = 2.0)
1.1.4 PTC MPC mRDM (β = 2.0)
1.2.1 PTC LS EXP (β = 1.2)
1.2.2 PTC LS SER
1.2.3 PTC LS RDM (β = 2.0)
1.2.4 PTC LS mRDM (β = 2.0)
1.3.1 PTC LS+G EXP (β = 1.2)
1.3.2 PTC LS+G SER
1.3.3 PTC LS+G RDM (β = 2.0)
1.3.4 PTC LS+G mRDM (β = 2.0)
2.1.1 CPTC MPC EXP (β = 1.2)
2.1.2 CPTC MPC SER
2.1.3 CPTC MPC RDM (β = 2.0)
2.1.4 CPTC MPC mRDM (β = 2.0)
2.2.1 CPTC LS EXP (β = 1.2)
2.2.2 CPTC LS SER
2.2.3 CPTC LS RDM (β = 2.0)
2.2.4 CPTC LS mRDM (β = 2.0)
2.3.1 CPTC LS+G EXP (β = 1.2)
2.3.2 CPTC LS+G SER
2.3.3 CPTC LS+G RDM (β = 2.0)
2.3.4 CPTC LS+G mRDM (β = 2.0)

and they only vary between flow cases. Similarly, a single mesh is generated and

used for all the runs in each case. The meshes used in this chapter are not chosen

specifically to produce accurate solutions. Instead, they are generated so as to have

enough spatial resolution to reveal the flow features relevant for each case.

The cases are initialized with uniform flow under free-stream conditions and initial

CFL0 = 1. For each case, we present a color-coded table that assesses the success of
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all the runs. In these tables, green means the run converged, yellow means that the

run reached the total wall time or maximum iterations without convergence and red

means the run had either a non-physical error or the CFL is decreased below minimum

(CFLmin = 10−10 for all cases). The converged runs in each case are compared with

respect to number of nonlinear iterations, number of GMRES iterations and total

wall time.

3.4.1 RAE 2822 – M∞ = 0.734, Re = 6.5× 106, α = 2.79◦

The first case is transonic, turbulent flow over the RAE 2822 airfoil. The scheme’s

polynomial order for this case is p = 2. The residual operator includes the shock-

capturing term described in Chapter 2 and κBR2 = 5 for the viscous discretization.

The SA equation is scaled by κSA = 1000 and the free-stream turbulence level is 0.1%.

The outer boundary of the domain is located 100 chord-lengths away from the airfoil

and each edge of the mesh shown in Figure 3.1(a) is a quartic (q = 4) polynomial.

The mesh has 990 quadrilaterals and the height of the first layer of elements off the

wall is such that y+ ≈ 5× 103, based on a flat-plate correlation for the coefficient of

friction.

Note the coarse resolution in Figure 3.1(b), this is because accuracy is not the

primary goal of these cases, but rather to assess the ability of the solver to get a

zero-residual solution.

The maximum number of iterations for each run is 10000 and the computational

resources are 32 processors and a maximum wall time of 8 hours. Both PTC and

CPTC converges with all solution update methods using either EXP or mRDM while

none of the runs using SER and RDM converges for this case (Table 3.2). Those

evolution strategies are non-monotonic as they can decrease or increase the CFL at

each iteration. In this case, they are distracted by secondary transients and reduce the

CFL, making the solver resolve those transients and thereby consume many iterations.
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(a) Quartic mesh (990 elements). (b) Mach number contours.

Figure 3.1:
RAE2822 - M∞ = 0.734, Re = 6.5 × 106, α = 2.79◦, p = 2: mesh and
Mach number contours.

The constrained version of PTC is not able to converge using MPC and mRDM

(run 2.1.4) while the unconstrained version converges under the same conditions (run

1.1.4). As the penalization term increases in run 2.1.4, MPC keeps limiting the update

and eventually it becomes small enough that the CFL decreases at a faster rate than

the penalty increases.

Table 3.2:
RAE 2822 - M∞ = 0.734, Re = 6.5 × 106, α = 2.79◦, p = 2: success
assessment of all runs.

PTC CPTC
MPC LS LS+G MPC LS LS+G

EXP run 1.1.1 run 1.2.1 run 1.3.1 run 2.1.1 run 2.2.1 run 2.3.1
SER run 1.1.2 run 1.2.2 run 1.3.2 run 2.1.2 run 2.2.2 run 2.3.2
RDM run 1.1.3 run 1.2.3 run 1.3.3 run 2.1.3 run 2.2.3 run 2.3.3

mRDM run 1.1.4 run 1.2.4 run 1.3.4 run 2.1.4 run 2.2.4 run 2.3.4

Table 3.3 compares the converged runs for this case. The fastest run for this case

is 1.2.1 followed by run 2.3.1. Within the runs using the greedy line-search (runs

x.3.x in Table 3.3), CPTC takes fewer nonlinear iterations and less time. This is due
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to the greedy algorithm being triggered more often since the update direction at each

nonlinear step accounts for the physicality constraints.

Table 3.3:
RAE 2822 - M∞ = 0.734, Re = 6.5 × 106, α = 2.79◦, p = 2: metrics for
converged runs normalized by run 1.1.1 – absolute values in parentheses.

Run ID Nonlinear iterations GMRES iterations Wall time
1.1.1 1.000 (2184) 1.000 (41527) 1.000 (8.886× 103s)
1.1.4 1.652 1.006 1.410
1.2.1 0.421 0.574 0.582
1.2.4 1.841 1.307 2.140
1.3.1 0.243 0.291 0.682
1.3.4 1.282 0.921 1.833
2.1.1 0.595 0.598 0.685
2.2.1 0.851 0.899 1.352
2.2.4 1.404 1.254 2.148
2.3.1 0.150 0.280 0.673
2.3.4 0.603 0.543 1.502

3.4.2 NACA 0012 – M∞ = 0.8, Re = 6.5× 106, α = 0◦

The second test case is also transonic, turbulent flow over an airfoil. The scheme’s

polynomial order is p = 2 and κBR2 = 5 for the viscous discretization. The SA model

is scaled by κSA = 100 and the free-stream turbulence level is 0.01%. Since this is a

non-lifting case, the outer boundary of the domain is located at 30 chord-lengths from

the airfoil and the mesh is composed of 1740 quadrilaterals with quartic polynomial

edges (Figure 3.2). The height of the first layer of elements is such that y+ ≈ 2×103,

based one a flat-plate correlation for the friction at the wall. We emphasize that the

purpose of meshes in this chapter is not to allow for accurate solutions but to simply

reveal the relevant flow features. The computational resources for this case are 40

processors for 8 hours of wall-time and the maximum number of iterations is 10000.

We present two sets of runs for this case. The first set uses the shock-capturing

term described in Chapter 2. Figure 3.3(a) shows the Mach number contours ob-
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Figure 3.2:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2: quartic mesh
(1740 elements).

tained using that term. The second set of runs does not use shock capturing and

Figure 3.3(b) shows the Mach contours for this condition. Note the oscillatory be-

havior of the solution in the vicinity of the shocks. Clearly, it is not ideal to simulate

flows with shocks without shock-capturing terms. However, this exercise is useful to

assess the robustness of the solution advancement methods.
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(a) Mach number contours with shock-capturing. (b) Mach number contours without shock-

capturing.

Figure 3.3:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2: Mach number

contours.

Table 3.4 shows the success of the runs using the shock-capturing term, with

which most of the runs converge. Interestingly, the constrained solver with the greedy

line-search and SER (run 2.3.2) exceeds the maximum allotted time while the uncon-

strained solver with the same update method and CFL strategy (run 1.3.2) converges

within the time limit.

Table 3.4:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2 with shock-
capturing: success assessment of all runs

PTC CPTC
MPC LS LS+G MPC LS LS+G

EXP run 1.1.1 run 1.2.1 run 1.3.1 run 2.1.1 run 2.2.1 run 2.3.1
SER run 1.1.2 run 1.2.2 run 1.3.2 run 2.1.2 run 2.2.2 run 2.3.2
RDM run 1.1.3 run 1.2.3 run 1.3.3 run 2.1.3 run 2.2.3 run 2.3.3

mRDM run 1.1.4 run 1.2.4 run 1.3.4 run 2.1.4 run 2.2.4 run 2.3.4

Figure 3.4 compares the final states for the runs using the greedy line-search and
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SER (runs x.3.2). Note the under-development of the wake and the residual for

the turbulence equation for run 2.3.2 (Figure 3.4(b)). During that run, the CFL is

reduced from its initial value after the initial transient and remains below 1 for most

of the iterations and, thus, not reaching Newton convergence. The same issue occurs

with all runs using RDM for evolving the CFL.

(a) Contours for ρν̃ and its residual for run 1.3.2. (b) Contours for ρν̃ and its residual for run 2.3.2
(not converged).

Figure 3.4:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2 with shock-
capturing: comparison of final states for runs x.3.2.

Within the successful runs using shock-capturing (Table 3.5), the quickest are

2.3.1 and 2.3.4, as they take practically the same time to converge. Similarly to the

previous case, the number of iterations for run 2.3.1 is smaller than its unconstrained

counterpart, run 1.3.1, due to the greedy algorithm being triggered more often with

the constrained solver.

We now discuss the runs without the shock-capturing scheme. Table 3.6 shows

the success of all these runs. Again, the monotonic CFL strategies perform better

than the non-monotonic strategies. The constrained solver is successful with all the

solution update strategies using both EXP and mRDM, while the unconstrained

method using MPC and EXP finishes with the CFL below minimum.
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Table 3.5:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2 with shock-
capturing: metrics for converged runs normalized by run 1.1.4 – absolute
values in parentheses.

Run ID Nonlinear iterations GMRES iterations Wall time (seconds)
1.1.1 1.000 (1133) 1.000 (37374) 1.000 (7.301× 103)
1.1.2 4.185 2.501 3.130
1.1.4 1.109 1.169 1.129
1.2.1 0.733 0.958 0.875
1.2.2 4.162 2.488 3.137
1.2.4 1.237 1.171 1.191
1.3.1 0.387 0.653 0.589
1.3.2 3.996 2.420 3.062
1.3.4 0.646 0.695 0.724
2.1.1 0.945 0.931 0.934
2.1.2 2.178 1.662 1.843
2.1.4 1.139 1.172 1.171
2.2.1 0.606 0.830 0.739
2.2.2 2.143 1.646 1.846
2.2.4 0.954 1.054 1.010
2.3.1 0.317 0.633 0.554
2.3.4 0.400 0.585 0.554

Table 3.7 compares the runs that converge without the shock-capturing scheme.

Note that the runs using the greedy algorithm are the fastest as they save many

nonlinear iterations and they also compute fewer matrix-vector products involved in

the GMRES iterations. Amongst the converged runs using the greedy algorithm,

the runs using the unconstrained solver (runs 1.3.x) are slightly faster than their

constrained counterpart (runs 2.3.x) despite the greedy algorithm being triggered

more often. This is because the constrained runs use more GMRES iterations.

3.4.3 MDA 30p30n – M∞ = 0.2, Re = 9× 106, α = 16◦

This test case is subsonic, turbulent flow over a high-lift, multi-element airfoil.

The scheme’s approximation order is p = 1 and κBR2 = 20, which is much higher

than the theoretical linear stability limit. However, runs with lower κBR2 turned out
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Table 3.6:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2 without shock-
capturing: success assessment of all runs

PTC CPTC
MPC LS LS+G MPC LS LS+G

EXP run 1.1.1 run 1.2.1 run 1.3.1 run 2.1.1 run 2.2.1 run 2.3.1
SER run 1.1.2 run 1.2.2 run 1.3.2 run 2.1.2 run 2.2.2 run 2.3.2
RDM run 1.1.3 run 1.2.3 run 1.3.3 run 2.1.3 run 2.2.3 run 2.3.3

mRDM run 1.1.4 run 1.2.4 run 1.3.4 run 2.1.4 run 2.2.4 run 2.3.4

Table 3.7:
NACA 0012 - M∞ = 0.8, Re = 6.5 × 106, α = 0◦, p = 2 without shock-
capturing: metrics for converged runs normalized by run 1.1.4 – absolute
values in parentheses.

Run ID Nonlinear iterations GMRES iterations Wall time
1.1.4 1.000 (3707) 1.000 (34671) 1.000 (1.347× 104s)
1.2.1 0.281 0.456 0.327
1.2.4 0.454 0.557 0.477
1.3.1 0.0968 0.316 0.170
1.3.4 0.179 0.301 0.229
2.1.1 0.401 0.440 0.410
2.1.4 0.308 0.537 0.367
2.2.1 0.250 0.474 0.309
2.2.4 0.386 0.542 0.422
2.3.1 0.127 0.335 0.200
2.3.4 0.136 0.529 0.275

to be very challenging and results for lower κBR2 require a sequence of runs with

increasing Reynolds numbers. This Reynolds number sequencing would make the

robustness assessment more difficult. Furthermore, in an adaptive framework, the

effect of κBR2 in the final output values is minimal since the solution jumps decrease

as the mesh is refined.

The discrete equation for the turbulence model is scaled by κSA = 1000 and the

free-stream level of turbulence is 1%. Figure 3.5 shows the mesh and Mach number

contours for this flow. A linear multi-block mesh is generated with the objective of

having a good alignment of the cells with the wake. Patches of elements from the linear
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mesh were then agglomerated to generate the quartic mesh shown in Figure 3.5(a).

The agglomerated mesh has 4070 elements and the off-wall spacing is such that y+ ≈

3× 103, based on a flat-plate correlation.

(a) Quartic mesh (4070 elements). (b) Mach number contours.

Figure 3.5:
MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦: mesh and Mach
number contours.

For each run, 8 wall-clock hours of 16 processors are allotted and the maximum

number of iterations is 10000. Table 3.8 shows the success of all the runs for this

flow. Note that the rate of success is considerably smaller than in the previous cases.

The non-monotonic CFL strategies, SER and RDM, reduce the CFL in an attempt

to resolve the transients, a process which takes many iterations due to the stiffness

of this problem.

Both PTC and CPTC are able to obtain converged solutions with the update

methods based on the line-search. However, the constrained solver with the greedy

line-search (run 2.3.4) reaches the maximum number of iterations before convergence

while the unconstrained counterpart succeeds in converging the residual within the

iteration limit.

It is worth emphasizing the challenging nature of this case. The blunt flap cove
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Table 3.8:
MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦, p = 1: success
assessment of all runs

PTC CPTC
MPC LS LS+G MPC LS LS+G

EXP run 1.1.1 run 1.2.1 run 1.3.1 run 2.1.1 run 2.2.1 run 2.3.1
SER run 1.1.2 run 1.2.2 run 1.3.2 run 2.1.2 run 2.2.2 run 2.3.2
RDM run 1.1.3 run 1.2.3 run 1.3.3 run 2.1.3 run 2.2.3 run 2.3.3

mRDM run 1.1.4 run 1.2.4 run 1.3.4 run 2.1.4 run 2.2.4 run 2.3.4

and the sharp turn behind the slat are geometric features that cause flow separation

and hence the flow exhibits strong initial transients when initialized with uniform free-

stream conditions. Clearly, such a flow initialization strategy is not ideal. However,

we believe it is a useful exercise to test the solver under such demanding conditions.

Amongst the converged runs (Table 3.9), the constrained solver with line-search

and mRDM (run 2.2.4) is the most efficient in this case. Note that the wall-time is

strongly related to the number of GMRES iterations. This is expected, as most of the

computational time in an implicit solver is spent computing matrix-vector products

involved in the linear solves.

Table 3.9:
MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦, p = 1: metrics for
converged runs normalized by run 1.3.1 – absolute values in parentheses.

Run ID Nonlinear iterations GMRES iterations Wall time (seconds)
1.3.1 1.000 (1412) 1.000 (608770) 1.000 (5.085× 103)
1.3.4 4.750 0.935 1.005
2.2.4 5.135 1.346 1.059
2.3.1 1.161 0.881 0.920

3.4.4 DPW 3 Wing 1 – M∞ = 0.76, Re = 5× 106, α = 0.5◦

This case is transonic, turbulent flow over the baseline wing from the Third Drag

Prediction Workshop. A linear multi-block (C-topology) mesh is generated following

the workshop’s guidelines [26]. The linear elements were agglomerated to generate
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a cubic (q = 3) mesh with 29310 elements (Figure 3.6(a)). The spacing of the

linear mesh is such that the agglomerated mesh presents y+ ≈ 1, based on a friction

coefficient correlation for a flat plate. Figure 3.6(b) shows the contours of Mach

number and SA working variable at a mid-span slice of the flow domain.

(a) Mesh and static pressure contours. Upper
left corner shows a view of the full computational
domain (29310 elements).

(b) Mach number and ρν̃ contours.

Figure 3.6:
DPW 3 Wing 1 – M∞ = 0.76, Re = 5× 106, α = 0.5◦, p = 1: mesh and
Mach number contours.

We show in Chapter 2 that higher values of κSA improve the performance of

the solver, however the results presented in this section were obtained prior to that

realization, and, for this reason, the SA discrete equation is not rescaled (κSA = 1).

The free-stream level of turbulence is 0.1%.

The scheme’s approximation order is p = 1, κBR2 = 2, and the shock-capturing

term is included in the residual operator. Each run uses 804 processors for a maximum

of 5 hours and the maximum number of iterations is 4000. Under these limits, only the

constrained solver converges as shown in Table 3.10. Note that the greedy line-search

fails in most of the runs. This is due to excessively large updates in the beginning

of the calculation that eventually lead to non-physical states at the trailing edge of
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the wing. The greedy algorithm is prematurely triggered because the inner-product

in Eqn. 3.23 is dominated by negative contributions. In the case of the constrained

solver, the local penalization is not enough to make the projection, θ, globally positive.

Table 3.10:
DPW 3 Wing 1 – M∞ = 0.76, Re = 5 × 106, α = 0.5◦, p = 1: success
assessment of all runs

PTC CPTC
MPC LS LS+G MPC LS LS+G

EXP run 1.1.1 run 1.2.1 run 1.3.1 run 2.1.1 run 2.2.1 run 2.3.1
SER run 1.1.2 run 1.2.2 run 1.3.2 run 2.1.2 run 2.2.2 run 2.3.2
RDM run 1.1.3 run 1.2.3 run 1.3.3 run 2.1.3 run 2.2.3 run 2.3.3

mRDM run 1.1.4 run 1.2.4 run 1.3.4 run 2.1.4 run 2.2.4 run 2.3.4

The constrained solver using MPC and mRDM (run 2.1.4) takes the shortest time

and fewest number of GMRES iterations to converge (Table 3.11). As discussed in

the previous cases, the number of GMRES iterations strongly affects the run time.

However, other aspects can significantly affect the total run time. For example,

runs 2.1.1 and 2.2.4 have significantly different run times even though they take

virtually the same number of GMRES iterations. The extra time in run 2.2.4 is mostly

due to the additional residual evaluations involved in the line-search algorithm that

compensate for the fewer nonlinear iterations.

Table 3.11:
DPW 3 Wing 1 – M∞ = 0.76, Re = 5×106, α = 0.5◦, p = 1: metrics for
converged runs normalized by run 2.1.1 – absolute values in parentheses.

Run ID Nonlinear iterations GMRES iterations Wall time (seconds)
2.1.1 1.000 (1255) 1.000 (68253) 1.000 (5.694× 103s)
2.1.4 0.897 0.935 0.845
2.2.1 0.880 0.944 1.021
2.2.4 0.751 1.002 1.127

Figure 3.7 shows the residual and penalization histories for the runs listed in

Table 3.11. Note that runs 2.1.1 and 2.2.1 track similar penalization paths with the
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exception that the run with the line-search (2.2.1) takes fewer non-linear iterations.

The runs using mRDM also follow similar paths in the first ∼ 40 iterations but the

line-search (2.2.4) returns a few “no-updates” (marked by the sudden drops in CFL

Figure 3.7(b)), that is, when ωk < ωmin and the state is reset to the last safe update.

3.4.5 Remarks about the test-suite results

The results presented here are sensitive to various parameters in the discretization,

in the linear solver, and, more importantly, in the solution update methods. Specifi-

cally, the β parameter in the CFL strategies significantly affects the performance of

the solver. The value of this parameter is somewhat heuristic and the rationale for

deciding on its value is that β closer to 1 is less aggressive and it tends to be more

robust. However, this is not always the case, as less aggressive CFL strategies are

more likely to trap the solver in transients that may not be physical. An example

of such a problem occurs when the flow is initialized with uniform free-stream flow

next to a wall and, if a flow expansion, e.g. at a blunt trailing edge, is solved time-

accurately, cavitation may occur. The penalization approach reduces the sensitivity

to these non-physical transients but it is not a bullet-proof approach and better flow

initialization methods are certainly helpful.

The combination of the constrained solver with line-search and the mRDM CFL

strategy converges all the cases presented here and it also helps in the even more

challenging case of transonic, turbulent flow over NASA’s CRM2 wing-body geom-

etry (presented in Chapter 4). Also, the line-search algorithms make use of the

penalization idea and using them with PTC is very effective in obtaining solutions

for most of the cases presented in this thesis.

2Common Research Model
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Figure 3.7:
DPW 3 Wing 1 – M∞ = 0.76, Re = 5 × 106, α = 0.5◦, p = 1: residual
norm and penalization histories for converged runs.
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CHAPTER 4

Error Estimation and Mesh Adaptation

This chapter presents a method for concurrent mesh and polynomial-order adap-

tation with the objective of direct minimization of output error using a selection

process for choosing the optimal refinement option from a discrete set of choices

that includes directional spatial resolution and approximation order increment. The

scheme is geared towards compressible viscous aerodynamic flows, in which various

solution features make certain refinement options more efficient compared to oth-

ers. No attempt is made, however, to measure the solution anisotropy or smoothness

directly or to incorporate it into the scheme. Rather, mesh anisotropy and approx-

imation order distribution arise naturally from the optimization of a merit function

that incorporates both an output sensitivity and a measure of the computational cost

of solving on the new mesh. The method is applied to output-based adaptive simula-

tions of the Euler equations and of the laminar and Reynolds-averaged compressible

Navier-Stokes equations on body-fitted meshes in two and three dimensions.

4.1 Output error estimation

Output-based error estimation techniques identify all areas of the domain that are

important for the accurate prediction of an engineering output. The resulting esti-

mates properly account for error propagation effects that are inherent to hyperbolic
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problems, and they can be used to ascribe confidence levels to outputs or to drive

adaptation. A key component of output error estimation is the solution of an adjoint

equation for the output of interest. In a continuous setting, an adjoint, ψ ∈ V , is a

Green’s function that relates residual source perturbations to a scalar output of in-

terest, J(u), where u ∈ V denotes the state, and where V is an appropriate function

space. Specifically, given a variational formulation of a partial differential equation:

determine u ∈ V such that

R(u,w) = 0, ∀w ∈ V , (4.1)

the adjoint ψ ∈ V is the sensitivity of J to an infinitesimal source term added to the

left-hand side of the original PDE. ψ satisfies a linear equation,

R′[u](w,ψ) + J ′[u](w) = 0, ∀w ∈ V , (4.2)

where the primes denote Fréchét linearization with respect to the arguments in square

brackets. Details on the derivation of the adjoint equation can be found in many

sources, including the review in Ref. [22]. Specifically, in the present work we employ

the discrete adjoint method, in which the system is derived systematically from the

discretized primal system [31, 51].

An adjoint solution can be used to estimate the numerical error in the corre-

sponding output of interest. The resulting adjoint-weighted residual method is based

on the observation that a solution uH,p in a finite-dimensional approximation space

VH,p, polynomials of order p on a subdivision TH of the domain into elements κH ,

will generally not satisfy the original PDE. The adjoint ψ ∈ V translates the residual

perturbation to an output perturbation via,
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δJ = J(uH,p)− J(u) ≈ −R(uH,p,ψ). (4.3)

This expression is based on a linear analysis, and hence for nonlinear problems

and finite-size perturbations, the result is approximate.

Although the continuous solution u is not required directly, the continuous adjoint

ψ must be approximated to make the error estimate in Eqn. 4.3 computable. In

practice, ψh,p+ is solved approximately or exactly on a finer finite-dimensional space

Vh,p+ ⊃ VH,p [66, 5, 72]. This finer space can be obtained either through mesh

subdivision or approximation order increase [50, 34, 59] – denoted here by changes in

the superscript H and p, respectively.

The adjoint-weighted residual evaluation in Eqn. 4.3 can be localized to yield

an adaptive indicator consisting of the relative contribution of each element to the

total output error. In this work, the finer space is obtained by approximation order

increment, VH,p+1 ⊃ VH,p, and ψH,p+1 is approximated by injecting ψH,p into VH,p+1

and applying 5 – unless otherwise noted – element block-Jacobi smoothing iterations.

The output perturbation in Eqn. 4.3 is approximated as

δJ ≈ −
∑

κH∈TH
RκH (IH,p+1

H,p (uH,p),ψH,p+1 − IH,p+1
H,p (ψH,p)), (4.4)

where IH,p+1
H,p (·) is an injection operator from p to p + 1 in the coarse mesh TH ,

and RκH corresponds to the elemental residual as defined in Eqn. 2.22. Note, the

difference between the coarse-space and fine-space adjoints is not strictly necessary

due to Galerkin orthogonality [22]. However, when the primal residual is not fully-

converged to machine precision levels the use of the adjoint perturbation gives better

error estimates. Equation 4.4 expresses the output error in terms of contributions

from each coarse element. A common approach for obtaining an adaptive indicator is
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to take the absolute value of the elemental contribution in Eqn. 4.4 [81, 7, 35, 30, 5, 14],

ηκH =
∣∣∣RκH (IH,p+1

H,p (uH,p),ψH,p+1 − IH,p+1
H,p (ψH,p))

∣∣∣. (4.5)

With systems of equations, indicators are computed separately for each equation

and summed together. Due to the absolute values, the sum of the indicators,
∑

κH ηκH ,

is greater or equal to the original output error estimate. However, it is not a bound

on the actual error because of the approximations made in the derivation.

4.2 Mesh adaptation mechanics

The elemental adaptive indicator, ηκH , drives a fixed-fraction hanging-node adap-

tation strategy. In this strategy, which was chosen for simplicity and predictability

of the adaptive algorithm, a certain fraction, f adapt, of the elements with the largest

values of ηκH is marked for refinement. Marked elements are refined according to

discrete options which correspond to subdividing the element in different directions

or increasing the approximation order. For quadrilaterals, the discrete options are:

x-refinement, y-refinement, xy-refinement, and p-increment, as depicted in Figure 4.1.

Note, x and y refer to reference-space coordinates of elements that can be arbitrarily

oriented and curved in physical space. Also, the subelements created through refine-

ment inherit the approximation order from the original element. In three dimensions

a hexahedron can be refined in eight ways: three single-plane cuts, three double-plane

cuts, isotropic refinement, and p increment.

h-refinement is performed in an element’s reference space by employing the coarse

element’s reference-to-global coordinate mapping in calculating the refined element’s

geometry node coordinates. The refined elements inherit the same geometry approx-

imation order and quadrature rules as the parent coarse element. As a result, there

is no loss of element quality when a nonlinear mapping is used to fit the element to
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Figure 4.1:
Quadrilateral refinement options. The dashed lines indicate the neighbors
of the refined element.

a curved geometry. Therefore, curved elements near a boundary can be efficiently

refined to capture boundary layers in viscous flow. For simplicity of implementation,

the initial mesh is assumed to capture the geometry sufficiently well, through a high

enough order of geometry interpolation on curved boundaries, such that no additional

geometry information is used throughout the refinements. That is, refinement of el-

ements on the geometry boundary does not change the geometry. We note that for

highly-anisotropic meshes, curved elements may be required away from the boundary,

and for simplicity we use meshes with curved elements throughout the domain.

Note that elements created in a hanging-node refinement can be marked for h-

refinement again in subsequent adaptation iterations. In this case, neighbors will be

cut to keep one level of refinement difference between adjacent cells. This is illustrated

in Figure 4.2.

Figure 4.2: Hanging-node adaptation for a quadrilateral mesh, with a maximum of
one level of refinement separating two elements. The shaded element on
the left is marked for isotropic refinement, and the dashed lines on the
right indicate the additional new edges formed.
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4.3 Merit function

The choice of a particular refinement option is made locally in each element flagged

for refinement. This choice is made by defining a merit function m(i) that ranks each

available refinement option i. This function is defined as

m(i) =
b(i)

c(i)
, (4.6)

where b and c respectively correspond to measures of the benefit and the computa-

tional cost of the refinement option indexed by i. These measures depend on the

method used for solving the flow equations and they should be tailored for each spe-

cific solver. We define them further in this section in the context of the applications

presented in this thesis.

During calculation of the merit function, local mesh and data structures are cre-

ated, one for each element, that include the flagged element and its first-level neigh-

bors along with the corresponding primal and adjoint states. In these local structures,

the central element is refined in turn according to each of the discrete options. On

the refined local mesh, the merit function is computed and the refinement option with

the largest value of m(i) is chosen.

The method for selecting a refinement option presented in this thesis is similar to

that presented by Houston et al. [38] for quadrilateral meshes. These authors employ

a heuristic that consists of the sum of the subelement error indicators computed for

each refinement option, and a ratio, θ, of the maximum to minimum sum to make

the decision of adapting isotropically or in one direction. Anisotropy is only deemed

important when θ is larger than a user-prescribed threshold, for which a value of 3

is found to work well. The method proposed in the present work is an extension

to hp-adaptation of the method proposed in Ref. [14] and it differs from Houston’s

approach in that it employs the merit function in Eqn. 4.6 instead of a user-prescribed
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parameter. The cost and benefit functions that define m(i) are described next.

4.3.1 Cost

We consider two measures of computational cost. The first measure is solution

storage that is proportional to the number of degrees of freedom in the discrete state

vector. For tractability, we consider only the degrees of freedom pertinent to the

flagged element κH ,

cDOF(i) =
∑
κh∈κH

(pκh(i) + 1)dim, (4.7)

where κh ∈ κH denotes the subelements embedded in the original element selected

for refinement and pκh(i) is the element’s approximation order after the refinement

as depicted in Figure 4.1. Note that pκh = pκH for h-refinement while the number of

embedded elements changes. Conversely, pκh = pκH + 1 for p-refinement and there is

only one embedded element, i.e. the original element. Also, we are not considering

the rank of the conserved state vector, Ns, because it is a constant throughout the

mesh. It is worth emphasizing that this measure of cost is insensitive to the type of

time integration used to solve Eqn. 2.28, and therefore it is a generic measure of cost.

The second measure of computational cost incorporates information about the

time integration method. In this work, most of the computational time is spent solving

the linear system in Eqn. 3.2 using the GMRES algorithm. In a sparse structure such

as in Eqn. 3.2, we approximate the number of floating point operations in applying

GMRES by the number of non-zero entries in the Jacobian matrix. Based on this

observation, we define the second measure of cost as:

cNZ(i) =
∑
κh∈κH

(pκh(i) + 1)2·dim +
∑

∂κh\∂D

[(pκh(i) + 1) · (p−
κh

(i) + 1)]dim

 , (4.8)
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where p−
κh

denotes the approximation order of the neighboring element across face

∂κh, which must not be part of the boundary of the domain, ∂D. The first term in

Eqn. 4.8 accounts for the self-blocks of the residual Jacobian matrix corresponding

to each of the subelements. The second term corresponds to the dependence of the

subelements’ residual on the neighboring states. The cost function does not take into

account possible sparsity within the blocks of the Jacobian matrix, as such sparsity is

not taken into account by the solver. Note that cNZ is more sensitive to the number

of spatial dimensions than cDOF.

4.3.2 Benefit

The benefit b(i) is a measure of how much improvement in the prediction of an out-

put results from refinement option i. Evidently, the definition of benefit is not unique

and it may be tailored for different applications and solution methods. However, it

is desirable that such a definition is tractable and computationally inexpensive.

In an output-based mesh adaptation cycle, the steady-state residual is driven

to zero at each step. Therefore, mesh modification on the element level can be

interpreted as a local residual perturbation. Since an adjoint solution represents the

sensitivity of an output with respect to a residual perturbation, we define our benefit

function as:

b(i) =
∑
κh∈κH

|Rκh(UsbTbd(i))j||ΨsbTbd(i)Vsdj|, (4.9)

where Rκh(·)j is a discrete residual component in the embedded element, d indexes

the basis functions, Tbd(i) is a matrix that transfers the discrete solution Usb to the

local meshes for each refinement i, Ψsb is the discrete adjoint solution and Vsdj is

an unrolling tensor as defined in Eqn. 2.29. Note that the adjoint variables act as

positive weights for each of the perturbations.
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The definition in Eqn. 4.9 relies on the following observations:

• At each step of the adaptation cycle, a discrete primal solution is found so that

the residual vector is machine-zero. Therefore, the benefit as defined in Eqn. 4.9

is also machine-zero if computed before refining the central element.

• In the limit of the discrete solution representing the exact solution to machine

precision, the result of Eqn. 4.9 will be of the order of machine precision for any

refinement option.

• The refinement option with the largest b(i) is expected to be the option that

produces the largest change in the output of interest.

Note that Eqn. 4.9 is inexpensive to compute since only a residual calculation

in the local mesh and data structures is required for each refinement option. Also,

this framework is different than a residual-based decision because the values of the

discrete adjoint provide information on the distribution of output sensitivity.

4.4 hp-adaptation results

In this section, we assess the performance of our hp-adaptation framework using

the cost measures cDOF and cNZ. The performance is measured in terms of number

of degrees of freedom and CPU time. In the output-based adaptation methods, the

time stamps include the solution of both the primal and adjoint solves, while for the

uniform refinements only the primal solve time is included.

We limit the maximum approximation order to pmax = 3 for the two-dimensional

cases to improve the performance and robustness of the adaptive method. Specifically,

cDOF under-estimates the computational expense of p-increment so that the adap-

tive algorithm prioritizes increasing p over anisotropically h-refining. Even though

cNZ more accurately estimates the computational expense of the different refinement
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options, pmax is the same for both cost measures to establish a basis of comparison

between the cost measures. In addition, the artificial viscosity shock capturing ap-

proach used in some of the cases is not perfect and suffers from increased dissipation

at high p that pollutes the error estimates and interferes with adaptation; limiting

p is a simple and effective fix to this problem. In three dimensions, the effect of

spatial dimensionality on cDOF reduces the impact of its under-estimation of cost on

the adaptive process, resulting in fewer elements targeted for p-refinement. For this

reason, the p-orders are not limited in the three-dimensional problems.

4.4.1 NACA 0012

The first set of results we present consists of the NACA 0012 airfoil under three

flow conditions:

1. M∞ = 0.5, α = 2.0o, inviscid;

2. M∞ = 0.5, α = 1.0o, Re = 5× 103;

3. M∞ = 0.8, α = 1.25o, inviscid.

The airfoil was modified to have zero-thickness at the trailing edge and its geometry

is given by the following formula:

y = ±0.6(0.2969
√
x− 0.1260− 0.3516x2 + 0.2843x3 − 0.1036x4), (4.10)

where x and y are coordinates normalized by the chord length. The initial meshes

(Figure 4.3) for these cases are composed of quartic (q = 4) quadrilaterals and the

outer boundary is located 50 chord-lengths away from the airfoil. Our output of

interest is the near-field drag. We compare the performance of the hp-adaptation

routine using cDOF and cNZ against uniform h and p refinements. At each step of the

adaptive procedure, f adapt = 10% of elements with the largest error indicators, ηκH ,
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is selected for refinement. All runs used 4 Nehalem 8-core nodes from the Nyx cluster

at the University of Michigan.

(a) Initial mesh for inviscid flows over the
NACA 0012.

(b) Initial mesh for viscous flow over the NACA
0012.

Figure 4.3: Initial quartic (q = 4) meshes for the NACA 0012 cases.

4.4.1.1 M∞ = 0.5, α = 2.0o, inviscid

The first test case is inviscid flow at M∞ = 0.5 and α = 2.0o. In the hypothetical

case of the outer boundary of the computational domain being located infinitely far,

the drag measured on the surface of the airfoil should converge to zero since there are

neither viscous effects nor shocks in the flow. However, when the far-field is located at

a finite distance the near-field drag converges to a finite value [17] as plotted in Figure

4.4. When corrected by the error estimates, the performance of the hp-adaptation

routine is not very sensitive, in this case, to the different cost measures. However,

the uncorrected drag values (solid lines) converge faster when the hp-adaptation uses

cDOF, both in degrees of freedom (Figure 4.4(a)) and in CPU time (Figure 4.4(b). Note

that uniform p-refinement performs very well in this case since the flow is smooth and

the cost of uniformly high-order solutions is moderate in two dimensions. Also, the
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computational load imbalance in parallel runs adversely affects the hp-runs due to

non-uniformity of p-orders.
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Figure 4.4: NACA 0012, M∞ = 0.5, α = 2.0o, inviscid: drag coefficient convergence;
�: uniform h-refinement; 4: uniform p-refinement; ◦: hp-adaptation with
cDOF; +: hp-adaptation with cNZ. The dashed lines correspond to the drag
values corrected with the error estimate.

Figure 4.5 shows the final hp-adapted meshes. In both cDOF and cNZ cases,

isotropic h-refinement and order increment are active at the trailing edge in order

to accurately capture the total-pressure recovery that is important to elimination of

drag through spurious entropy generation [60, 17]. Note that the hp-mesh obtained

with cDOF has a larger area at higher approximation order (p > 1), while the adaptive

method with cNZ shows significantly more mesh subdivisions.

4.4.1.2 M∞ = 0.5, α = 1.0o, Re = 5× 103

The second two-dimensional test case is subsonic viscous flow at M∞ = 0.5, α =

1.0o and Re = 5× 103. Similarly to the previous case, we compare the hp-adaptation

framework using both cost measures against uniform h and p refinements. Figure

4.6(a) shows the drag coefficient convergence in terms of number of degrees of freedom.

While both hp-adaptation runs present similar convergence histories for the corrected
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(a) 10th Mesh with Mach contours for cDOF. (b) 10th Mesh with Mach contours for cNZ.

(c) 10th p-order distribution for cDOF; blue in-
dicates p = 1; red indicates p = 3.

(d) 10th p-order distribution for cNZ; blue indi-
cates p = 1; red indicates p = 3.

Figure 4.5: NACA 0012, M∞ = 0.5, α = 2.0o, inviscid: hp-adapted meshes for drag.

output (dashed lines), the uncorrected drag values (solid lines) converge faster with

cDOF than when cNZ is employed. Additionally, the hp-adaptation runs converge

the corrected output with significantly fewer degrees of freedom than the uniform

refinements although uniform p-refinement performs reasonably well for this smooth

problem. This observation is also valid in terms of CPU time (Figure 4.6(b)), however

the savings are smaller.
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(b) Drag coefficient evolution with respect to
CPU time

Figure 4.6: NACA 0012, M∞ = 0.5, α = 1.0o, Re = 5 × 103: drag coefficient con-
vergence; �: uniform h-refinement; 4: uniform p-refinement; ◦: hp-
adaptation with cDOF; +: hp-adaptation with cNZ. The dashed lines
correspond to the drag values corrected with the error estimate.

As observed in the previous case, the adaptive scheme produces a larger area of the

domain with higher order cells when cDOF is used to measure the cost of the refinement

options (Figure 4.7(c)). In contrast, the adaptive algorithm, when using cNZ, chooses

p-increment mostly in the wake region combined with anisotropic h-refinement as

seen in Figures 4.7(d) and 4.7(b) respectively.

4.4.1.3 M∞ = 0.8, α = 1.25o, inviscid

The final two-dimensional case we present is inviscid transonic flow over the NACA

0012 geometry. For shock-capturing, we use an element-wise constant artificial vis-

cosity approach [64]. The ability to robustly resolve discontinuities like shocks in

high-order discretizations is a current challenge in CFD. Due to robustness problems,

the error estimates can suffer and their convergence may not be reliable. Specifically,

noise in the error estimates arises from dual-inconsistency of the shock indicator and

the use of hierarchical mesh refinement on a fixed background topology. For this rea-

son, we consider in this case only the pure drag output, that is, the output without

the correction by the error estimate.
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(a) 10th Mesh with Mach contours for cDOF. (b) 10th Mesh with Mach contours for cNZ.

(c) 10th p-order distribution for cDOF; blue in-
dicates p = 1; red indicates p = 3.

(d) 10th p-order distribution for cNZ; blue indi-
cates p = 1; red indicates p = 3.

Figure 4.7: NACA 0012, M∞ = 0.5, α = 1.0o, Re = 5 × 103: hp-adapted meshes for
drag.

We limit the maximum approximation order to pmax = 3 for the reason described

in the beginning of this section. Also, we found that the piecewise-constant artificial

viscosity combined with a resolution-based discontinuity indicator used for shock

capturing adds excessive dissipation for p ≥ 4. The excessive dissipation leads to

benefit-function values that do not necessarily favor the best refinement direction.
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Figure 4.8(a) shows the drag convergence with respect to degrees of freedom.

Note that the adaptation converges slightly faster with cNZ than with cDOF and in

comparison with uniform h-refinement, the hp methods use approximately an order

of magnitude fewer degrees of freedom. The savings in CPU time are smaller but still

significant, since the hp methods took about half the time to achieve drag convergence

to within 2 counts of drag (Figure 4.8(b)).
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(a) Drag coefficient evolution with respect to
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CPU time.

Figure 4.8: NACA 0012, M∞ = 0.8, α = 1.25o, inviscid: drag coefficient convergence;
�: uniform h-refinement; 4: uniform p-refinement; ◦: hp-adaptation with
cDOF; +: hp-adaptation with cNZ.

The meshes for cDOF and cNZ are shown in Figure 4.9. Note that both methods

choose anisotropic h-refinement in combination with p−increment in the vicinity of

the strong shock on the upper surface and the weaker shock on bottom surface of the

airfoil. It is also notable that both isotropic h-refinement and higher-order cells are

present at the trailing edge in order to accurately represent the pressure recovery.

4.4.2 NLR Delta wing, M∞ = 0.3, α = 12.5o, Re = 4× 103

The second case we present is laminar flow over the NLR delta wing at a high

angle of attack [67, 45]. The vortical structure of this flow presents both sharp and

smooth features that can benefit from hp-adaptation. We consider the hp-adaptation
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(a) 10th Mesh with Mach contours for cDOF. (b) 10th Mesh with Mach contours for cNZ.

(c) 10th p-order distribution for cDOF; blue in-
dicates p = 1; red indicates p = 3.

(d) 10th p-order distribution for cNZ; blue indi-
cates p = 1; red indicates p = 3.

Figure 4.9: NACA 0012, M∞ = 0.8, α = 1.25o, inviscid: hp-adapted meshes for drag.

framework using both cDOF and cNZ cost measures. At each step of these strategies,

f adapt = 10% of the elements in the mesh was adapted starting from a p = 1 solution

(Figure 4.10(a)) on the second-level linear mesh generated by NLR as part of the

ADIGMA [1] project. The output of interest is drag and we present uniform h-

refinement and uniform p-refinement along with the output-adapted meshes.

All calculations used 50 Harpertown 8-core nodes from NASA’s Pleaides super-
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(a) Initial mesh with Mach number contours
computed with p = 1 (3264 linear elements).

(b) Mach contours on a finer mesh with p = 2.

(c) Two levels of uniform h-refinement with
p = 1 (208896 linear elements).

(d) Two levels of uniform p-refinement p = 1→
3 (3264 linear elements).

(e) 4th drag-adapted mesh using cDOF (5778
elements).

(f) 8th drag-adapted mesh using cNZ (16260 el-
ements).

Figure 4.10: NLR Delta wing, M∞ = 0.3, α = 12.5o, Re = 4×103: Initial and adapted
meshes with Mach number contours.

computer and we fixed the maximum CPU time for each of the mesh-improvement

strategies. The reason for fixing a CPU budget is to simulate a condition in which

a practitioner has a certain amount of time to provide an answer to an engineering
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problem. We then assess the quality of the answer that each of the mesh-improvement

strategies obtained within that CPU-time budget. The last converged solutions of all

strategies are shown in Figure 4.10 along with the initial and reference solutions in

Figure 4.10(a) and Figure 4.10(b) respectively.
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Figure 4.11: NLR Delta, M∞ = 0.3, α = 12.5o, Re = 4 × 103: drag coefficient con-
vergence; �: uniform h-refinement; 4: uniform p-refinement; ◦: hp-
adaptation with cDOF; +: hp-adaptation with cNZ. The drag values with
the error estimates for the first three adaptive steps are out of the range
of the vertical axis. The dashed lines correspond to the drag values
corrected with the error estimate.

Figure 4.11 shows the evolution of the drag coefficient in terms of degrees of

freedom and CPU-time. The dashed lines in that figure are the outputs of the adjoint-

based adaptation methods corrected by their corresponding error estimates. Note

that in the initial adaptation steps, the error estimates are very large. However,

they converge rapidly after 2 to 3 adaptation steps. Even though the performance of

cNZ and of cDOF are similar in terms of degrees of freedom (Figure 4.11(a)), in terms

of computational time (Figure 4.11(b)), cNZ shows a clear advantage over cDOF since

higher p-orders are more expensive than cDOF estimates. Also, the uniform refinement

strategies perform remarkably well in CPU-time. This is due to an adequate off-

wall spacing and overall high-quality of the initial mesh which makes the error close
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to equally-distributed and, in this case, the large increments in number of degrees

of freedom provides an advantage since no time is spent solving on intermediate

meshes and the homogeneity of p-order helps the balance of computational load on

the processors.

Table 4.1 lists the frequency of choice of each of the refinement options for the dif-

ferent cost measures. When using cDOF, the adaptation method chooses p-refinement

significantly more often compared to when cNZ is employed. This larger frequency

of p-refinement with cDOF is due to under-estimation of the computational cost of

solving higher-order discretizations and it causes the slower output convergence in

terms of CPU time shown in Figure 4.11(b). Note that both methods tend to choose

p-refinement more frequently in the later adaptation steps.

Table 4.1:
NLR Delta wing, M∞ = 0.3, α = 12.5o, Re = 4 × 103, drag-driven adap-
tation: percentage of choice for each refinement option; iso-h: isotropic h-
refinement; sc-h: single-cut h-refinements; dc-h: double-cut h-refinements;
iso-p: isotropic p-refinement.

cDOF cNZ

Adaptation step iso-h sc-h dc-h iso-p iso-h sc-h dc-h iso-p
1 0.0 84.9 0.0 15.0 0.0 100.0 0.0 0.0
2 0.0 75.1 0.8 24.0 0.0 98.0 1.5 0.5
3 0.0 66.8 1.4 31.8 0.0 95.4 2.5 2.1
4 0.0 70.4 0.0 29.6 0.0 96.2 0.4 3.4
5 – – – – 0.0 95.2 1.2 3.5
6 – – – – 0.0 96.0 0.9 3.0
7 – – – – 0.0 95.7 0.6 3.9
8 – – – – 0.0 95.9 0.3 3.8

The larger frequency of p-refinement when using cDOF is illustrated in Figure

4.12. This figure compares the mesh and approximation order distribution for both

measures of cost at a mid-chord cut of the delta wing. Note that both methods choose

h-refinement on the upper sharp corner where shear effects are prominent. When

using cNZ, the adaptation routine reserves p-refinement mostly for regions where the
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flow field is smooth, while with cDOF the mesh shows a combination of h and p

refinements in sharp and smooth areas.

(a) 4th Mesh with Mach contours for cDOF. (b) 8th Mesh with Mach contours for cNZ.

(c) 4th p-order distribution for cDOF; the range
is p = 1→ 5.

(d) 8th p-order distribution for cNZ; the range
is p = 1→ 6.

Figure 4.12: NLR Delta wing, M∞ = 0.3, α = 12.5o, Re = 4 × 103: half-chord cut of
the drag-adapted meshes.

4.4.3 DPW III - W1 geometry, M∞ = 0.76, α = 0.5o, Re = 5× 106

In this case study, we consider the baseline wing geometry (DPW-W1) from the

third AIAA Drag Prediction Workshop [27]. This case consists of turbulent, transonic

flow over a tapered wing and the mesh adaptation routine is driven by the drag

output. The initial curved mesh, shown in Figure 4.13(a), was obtained through

agglomeration of cells from a finer structured linear C-grid generated specifically for
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this purpose. In the agglomeration, each curved hexahedral element was obtained by

merging twenty seven linear elements using a distance-based Lagrange interpolation

of the nodal coordinates, resulting in cubic (q = 3) geometry interpolation. Also,

the spacing of the linear mesh is such that the agglomerated mesh presents y+ ≈ 1

for the first element off the wall as recommended in the workshop [26] and the outer

boundary is located at 100 mean-aerodynamic-chord-lengths away from the wing.

As described in Section 2.2, we use the Spalart-Allmaras turbulence model without

trip terms and we assume fully-turbulent flow. Also, Persson and Peraire’s [64] shock-

capturing method is used to improve stability. The baseline flow solution is obtained

with linear (p = 1) approximation order. As a basis of comparison, all the adaptive

schemes start from the same initial solution so that all methods are compared against

the same initial time-stamp. For the adjoint-based adaptation methods, the CPU

time taken for the initial adjoint solve is also included in the initial starting time.

All of the calculations for this case were executed on 180 Harpertown 8-core nodes

from NASA’s Pleiades supercomputer. Due to the computational expense of these

runs, we did not perform a statistical study to account for machine performance

variability in the CPU-time measurements.

We compare three mesh improvement strategies starting from the initial p = 1

solution shown in Figure 4.13(a). As a reference, one of the strategies is uniform

h-refinement (Figure 4.13(b)) in which all hexahedra are divided into 8 elements.

The two cost measures described earlier are compared for hp-adaptation in which a

fraction f adapt = 10% of the elements is selected for refinement at each adaptation

step. Additionally, we fix the overall budget of CPU wall-time for each of the three

runs and the last converged solutions obtained within that budget are shown in Figure

4.13.

Figure 4.14 shows the drag coefficient convergence for the mesh refinement strate-

gies. The solid lines in Figures 4.14(a) and 4.14(b) are the computed drag values and
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(a) Initial pressure contours (29310 cubic ele-
ments, p = 1).

(b) Pressure contours on the 1st level of uni-
form h-refinement (234480 cubic elements, p =
1).

(c) Pressure contours on the 5th drag-adapted
mesh using cDOF (59503 cubic elements).

(d) Pressure contours on the 7th drag-adapted
mesh using cNZ (85377 cubic elements).

Figure 4.13: DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: Initial and
drag-adapted meshes with pressure contours.

the dashed lines correspond to the output corrected with the error estimate. The

difference between these corrected values for the last two adaptation steps of the

output-based strategies is within 0.15 counts of drag. Note that the performance in

terms of degrees of freedom of the output-based strategies is very similar. However, in

terms of CPU time, the use of cNZ leads to faster output convergence. This difference

is due to the more representative measure of solution cost by cNZ. This effect is illus-

trated in Table 4.2 where we show the frequency at which the refinement options are

chosen for each cost measure at each adaptation step. Note that for cNZ, p-refinement

is chosen significantly less often than for cDOF and both methods have a propensity to

choose p-refinement more often in the later stages of adaptation. Moreover, the large

increase in CPU time between the third and fourth adaptation steps for cDOF (Figure
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Figure 4.14: DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5× 106: drag coefficient
convergence; �: uniform h-refinement; ◦: hp-adaptation with cDOF; +:
hp-adaptation with cNZ. The dashed lines correspond to the drag values
corrected with the error estimate.

4.14(b)) is an effect of p-increment being chosen more often for cDOF (Table 4.2) which

makes the primal and adjoint solves more expensive.

Table 4.2:
DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: percentage
of choice for each refinement option; iso-h: isotropic h-refinement; sc-h:
single-cut h-refinements; dc-h: double-cut h-refinements; iso-p: isotropic
p-refinement.

cDOF cNZ

Adaptation step iso-h sc-h dc-h iso-p iso-h sc-h dc-h iso-p
1 0.0 99.3 0.0 0.7 0.0 100.0 0.0 0.0
2 0.0 97.3 0.0 2.7 0.0 99.9 0.0 0.1
3 0.0 94.9 0.0 5.1 0.0 99.8 0.0 0.2
4 0.0 91.8 0.4 7.8 0.0 99.1 0.3 0.6
5 0.0 90.6 0.3 9.1 0.0 98.7 0.5 0.8
6 – – – – 0.0 98.6 0.5 0.9
7 – – – – 0.0 98.6 0.4 1.0

In flows with high Reynolds number, highly stretched cells in regions such as

boundary layers and wakes are key to an efficient calculation. To assess the levels

of anisotropy in our meshes, we define an aspect ratio measure for one element as
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follows:

Λ =

( S
2·dim

) dim
(dim−1)

V
, (4.11)

where S and V are the cell surface area and volume respectively. Note that Λ = 1 for

a square in two dimensions and a cube in three dimensions, and that Λ > 1 indicates

anisotropic elements. Since the refinement is performed in the elements’ reference

space, isotropic refinement does not necessarily preserve Λ on curved elements.

Figure 4.15 shows histograms of the aspect ratios of the cells in the initial and

adapted meshes. Note that the aspect ratios in the adapted meshes are in the range

of tens of thousands and the higher-order cells generally have lower aspect ratios (in

the hundreds range).

Figures 4.16 and 4.17 show two cuts at representative span-wise positions. For

comparison purposes, the contours are scaled to the same range for both cDOF and

cNZ. The Mach-number contours are similar for both strategies, however cNZ presents

a larger number of anisotropic cells along the shock and on the boundary layer.

The larger percentage of p-refinement observed for cDOF is illustrated in the order

distribution figures. Note that both methods have mostly p = 1 cells at the shock

and higher-order cells on each side of the shock.

Design optimization methods offer insight on improving vehicle configurations.

Similarly, an optimization-based mesh adaptation algorithm offers insight on improv-

ing gridding guidelines. We notice that several regions of the flow are frequently

targeted for refinement. One of these regions is near the leading edge where the

flow accelerates through the sonic condition. This acceleration causes strong vari-

ations in the adjoint solution which are responsible for large error indicators. In

fact, the adjoint solution is C1-discontinuous through the sonic condition in inviscid

quasi-1D flows [84]. Another region is the edge of the boundary layer, where the tur-
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(b) Final (5th) adapted mesh with cDOF.
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(c) Final (7th) adapted mesh with cNZ.

Figure 4.15: DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: aspect ratio
histograms for the initial and adapted meshes.

bulent working variable, ν̃, transitions to zero rapidly. The other two regions are the

shock-boundary-layer interaction and the trailing edge. These regions exhibit strong

gradients of ν̃ that contribute to the drag output. Figure 4.18 shows the interaction

between the shock and the boundary layer. Note the concentration of cells in the

boundary layer and the sharp variation of ν̃. Further downstream, in the trailing

edge region (Figure 4.19), the beginning of turbulent wake is also adapted.
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(a) 5th Mesh with Mach contours for cDOF. (b) 7th Mesh with Mach contours for cNZ.

(c) 5th p-order distribution for cDOF; the range
is p = 1→ 5.

(d) 7th p-order distribution for cNZ; the range
is p = 1→ 5.

Figure 4.16: DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: cut at y =
220mm of the drag-adapted meshes.

4.4.4 MDA 30p30n – M∞ = 0.2, Re = 9× 106, α = 16◦

This test case is subsonic, turbulent flow over the MDA 30p30n multi-element

airfoil. The purpose of this test case is to assess the effect of limiting the maximum

p-order in the hp-adaptation cycle. We consider lift-based hp-adaptation using the

cNZ measure with unlimited pmax and with pmax = 3. The fraction of elements selected

for adaptation at each step is f adapt = 10%. Uniform h and uniform p refinements

are presented to establish a reference for computational cost.

The initial p = 1 flow solution and the baseline mesh for this case are presented in

Section 3.4.3. CPTC with line-search and exponential CFL evolution is used to solve

the discretized equations at each adaptive step. Sixty four processors are used for

each run and a maximum of 10 hours is allotted for each adaptation strategy. Figure
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(a) 5th Mesh with Mach contours for cDOF. (b) 7th Mesh with Mach contours for cNZ.

(c) 5th p-order distribution for cDOF; the range
is p = 1→ 4.

(d) 7th p-order distribution for cNZ; the range
is p = 1→ 5.

Figure 4.17: DPW III Wing 1, M∞ = 0.76, α = 0.5o, Re = 5×106: cut at y = 620mm
of the drag-adapted meshes.

4.20(b) shows the solutions obtained within this time limit. The initial time stamp is

set to zero as all strategies start with the same converged initial solution. The time

stamps for the output-based strategies include the time consumed by the primal and

adjoint solves, error estimation and mesh adaptation.

Similarly to the previous cases, hp-adaptation is significantly more efficient than

the uniform refinements (h and p) which can only provide one refined solution within

the computational resources allocated. This advantage is also observed in terms of

degrees of freedom (Figure 4.20(a)). An additional advantage is that the output-based

strategies provide error estimates that can be used to improve the rate of convergence

of the output of interest.

Limiting the maximum p-order slightly affects the lift convergence for this case.
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(a) Mach contours for initial
mesh.

(b) Mach contours for the 5th

mesh with cDOF.
(c) Mach contours for the 7th

mesh with cNZ.

(d) ν̃ contours for initial mesh. (e) ν̃ contours for the 5th mesh
with cDOF.

(f) ν̃ contours for the 7th mesh
with cNZ.

Figure 4.18: DPW III - Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: interaction
between shock and boundary-layer at y = 620mm.

(a) ν̃ contours for initial mesh. (b) ν̃ contours for the 5th mesh
with cDOF.

(c) ν̃ contours for the 7th mesh
with cNZ.

Figure 4.19: DPW 3 Wing 1, M∞ = 0.76, α = 0.5o, Re = 5 × 106: trailing edge at
y = 620mm.

The error estimates, on the other hand, are more sensitive to this limitation as they

use a locally finer space (VH,p+1|κH ) as surrogate for the continuum . Specifically, the

corrected lift for the unlimited-p case in Figure 4.20 becomes “flatter” earlier in the

adaptive process. Conversely, the reduced computational cost resultant from limiting

p allows for the limited-p run to obtain an additional solution within the time limit.

We now analyze how the refinement choices are affected by limiting pmax. Table
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Figure 4.20: MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦: lift coefficient
convergence: the dashed lines correspond to the lift values corrected
with the error estimate.

4.3 shows the frequency at which the adaptation algorithm chooses each refinement

option at each adaptation step. Note that the percentages are identical for both runs

in the first two adaptation steps as the constraint of p ≤ 3 only becomes active at the

third adaptation step. At this point, the adaptive algorithm in the limited-p run stops

considering p-refinement as an option for elements with p = pmax and we observe an

increase in isotropic and anisotropic h-refinements.

Table 4.3:
MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦: percentage of choice
for each refinement option; iso-h: isotropic h-refinement; sc-h: single-cut
h-refinements; iso-p: isotropic p-refinement.

cNZ (pmax = 3) cNZ (unlimited pmax)
Adaptation step iso-h sc-h iso-p iso-h sc-h iso-p

1 0.0 62.9 37.1 0.0 62.9 37.1
2 0.0 54.2 45.8 0.0 54.2 45.8
3 1.5 64.7 33.8 0.9 57.4 41.7
4 2.0 68.2 29.8 1.2 53.7 45.1
5 5.5 66.3 28.2 1.7 51.0 47.3
6 3.7 66.8 29.5 3.5 47.1 49.4
7 4.8 68.0 27.2 – – –

Figure 4.21 shows the histograms of elemental aspect ratio (Eqn. 4.11) for the
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initial and adapted meshes. Note that elements with p > 1 are generally more

isotropic than elements with p = 1.

Define an element’s length as the length of its largest edge. In this work, elemental

aspect ratio only changes via directional cuts. Then, we can conclude that elements

that are marked for p-refinement are not frequently marked for length-wise (parallel to

the largest edge) cuts in subsequent adaptation steps as only length-wise cuts increase

aspect ratio. This observation relies on the fact that we do not allow p-coarsening is

this work and the elements created with h-refinement inherits the p-order.
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(b) Final (7th) adapted mesh with cNZ and
pmax = 3.
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(c) Final (6th) adapted mesh with cNZ and un-
limited pmax.

Figure 4.21: MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦: aspect ratio his-
tograms for the initial and adapted meshes.
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It is also interesting to analyze how the various refinement options are distributed

in the domain in correspondence with certain flow features. Figure 4.22 shows the

mesh and p-order distribution with Mach contour lines for both runs. Note the h-

refinement on the trailing edges of the slat and the main airfoil where strong shear is

present. Higher-order elements are mostly distributed along the slat’s wake and the

main airfoil’s upper boundary layer as well as the wake.

(a) 6th adapted mesh and p-order distribution for unlimited pmax.

(b) 7th adapted mesh and p-order distribution for pmax = 3.

Figure 4.22: MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦: final lift-adapted
mesh and p-order distribution for cNZwith unlimited pmax and pmax = 3;
red lines: Mach number contours.
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Figure 4.23 shows the gap between the slat and the main airfoil. In this region,

the fluid experiences a strong acceleration and accurately predicting the shape of the

recirculation bubble on the concave side of the slat is important for predicting lift

as this bubble affects the mass flow rate through the gap. Note that the adaptive

algorithm adequately recognizes that p-refinement is the most efficient option in this

region where the flow features are smooth. Furthermore, both runs present similar

p-orders in the bubble which indicates that p-refinement is not frequently limited in

this region.

(a) 6th adapted mesh and p-order distribution for
unlimited pmax.

(b) 7th adapted mesh and p-order distribution for
pmax = 3.

Figure 4.23: MDA 30p30n – M∞ = 0.2, Re = 9 × 106, α = 16◦ - slat zoom: fi-
nal lift-adapted mesh and p-order distribution for cNZ with unlimited
pmax and pmax = 3; red lines: Mach number contours; blue arrow-lines:
streamlines in circulation region.

Figure 4.24 shows the flap cove and the gap between the flap and the main airfoil.

This region also presents a recirculation bubble that strongly affects the lift force as it

dictates the mass flow rate over the upper surface of the flap as shown in Figure 4.25.

Note that the path that the fluid takes from the lower side of the main airfoil to the

upper side of the flap is paved with higher-order elements. Also, the thin shear layer

originating from the trailing edge of the main airfoil is refined in both h and p.
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(a) 6th adapted mesh and p-order distribution for
unlimited pmax.

(b) 7th adapted mesh and p-order distribution for
pmax = 3.

Figure 4.24: MDA 30p30n – M∞ = 0.2, Re = 9×106, α = 16◦ - flap zoom: final lift-
adapted mesh and p-order distribution for cNZwith unlimited pmax and
pmax = 3; red lines: Mach number contours; blue arrow-lines: stream-
lines in circulation region.

(a) Flap-cove bubble for initial solution. (b) Flap-cove bubble for lift-adapted solution

with unlimited pmax.

(c) Flap-cove bubble for lift-adapted solution

with pmax = 3.

Figure 4.25: MDA 30p30n – M∞ = 0.2, Re = 9× 106, α = 16◦ - flap zoom: recircu-

lation bubble and streamlines for the initial and lift-adapted solutions.
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4.4.5 NACA 0012, M∞ = 0.15, Re = 6× 106, drag polar

This case is one of the NASA’s Turbulence Modeling Resource cases [56]. The

purpose of this case is to validate the modifications made to the SA model. As

suggested by NASA’s Turbulence Modeling Resource, the domain’s outer boundary

is located 500 chord-lengths away from the airfoil. We consider eight angles of attack

in the drag polar: α = 0◦, 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, and 15◦. For each angle of attack,

an initial quartic mesh is generated by agglomerating 16 quadrilaterals from a linear

mesh. The linear meshes are generated so as the cells downstream from the airfoil

are approximately aligned with the wake. Figure 4.26 shows an example of an initial

quartic mesh.

Figure 4.26:
NACA 0012, M∞ = 0.15, Re = 6 × 106, drag polar: Initial mesh for

α = 10◦ (720 quartic elements).

In this case, we fix the polynomial order at p = 2 and consider only the h-

refinement options in the adaptive method. The discretized SA equation is scaled by

κSA = 1000 and κBR2 = 10 for the viscous discretization. The adaptation is driven

by drag error and f adapt = 10%. The physicality-constrained solver is used with
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line-search and exponential CFL progression for the primal solves.

To simplify our analyses, we limit the number of the adaptive steps to 6 for all

the angles and measure the error level of the final result. Figure 4.27 shows the drag

convergence for three representative angles of attack. The largest final error estimate

over all the angles of attack is approximately 3 drag counts (∼ 3%) in the α = 15◦

case.

(a) α = 0◦. (b) α = 10◦.

(c) α = 15◦.

Figure 4.27: NACA 0012, M∞ = 0.15, Re = 6 × 106, drag polar: drag convergence
for three angles of attack; solid lines: drag values; dashed lines: drag
corrected by its error estimate; shading: magnitude of the sum of error
indicators.
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Figure 4.28: NACA 0012, M∞ = 0.15, Re = 6 × 106, drag polar: comparison with

experimental data.

Figure 4.28 compares our adaptive results with Ladson’s experimental data [47]

and with computational results computed with CFL3D on a fine, 897× 257 element,

structured grid [56]. The experimental data consists of three sets of wind tunnel runs

with varying roughness of carborundum strips to force transition to turbulence at the

5% position along the chord. This reduces transition effects and allows for a more

adequate comparison with fully turbulent simulations.

In spite of the adaptation being driven by drag error, the lift values in Fig-

ure 4.28(a) are in close agreement with the experimental data. Our computed drag

values are within 3% difference with respect to CFL3D’s results which is within the

spread of 4% in the CFD results with the SA model presented in Ref. [56]. With

respect to the experimental values in Figure 4.28(b), the simulations show slightly

larger drag values. We attribute these differences to the turbulence model and to ex-

perimental errors as the adjoint-based error estimation and adaptation only targets

discretization error.
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(a) 6th drag-adapted mesh and SA-working vari-

able contours.

(b) 6th drag-adapted x-momentum adjoint solu-

tion for drag.

Figure 4.29: NACA 0012, M∞ = 0.15, Re = 6 × 106, drag polar: final mesh, ρν̃

contours, and drag adjoint for α = 10◦.

The adjoint solution offers insight on regions of the computational domain where

discretization errors affect the output of interest. Figure 4.29(b) shows the x-momentum

drag-adjoint solution for the α = 10◦ case. The most notable feature of this adjoint

solution is the stagnation streamline which, in the inviscid limit, is a weak inverse-

square-root singularity [29]. This sharp variation of the adjoint is reflected in the

adapted mesh in Figure 4.29(a).

Other features that are important for accurate prediction of drag are the boundary

layer, the upper flow acceleration region, the trailing edge, and the wake. These

regions are also frequently targeted for refinement as they present large magnitudes

of the adjoint variables.

4.4.6 CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5× 106

This case is part of the Fifth Drag Prediction Workshop and it consists of tran-

sonic, turbulent flow over NASA’s Common Research Model [76]. This wing-body

99



geometry mimics a modern passenger aircraft and its purpose is to establish a refer-

ence for testing computational tools for simulation and design. This case is the most

challenging case of this thesis and certain aspects of the results presented here could

lead to additional investigations in the future. These aspects are discussed later in

this section.

The cubic mesh used in this case was generated via agglomeration of linear cells.

The initial linear mesh was generated with the tradeoff of being coarse to use in our

adaptation routine but fine-enough to represent the geometry adequately. Figure

4.30 shows the linear and the agglomerated meshes. The off-wall spacing in the

agglomerated mesh is such that y+ ≈ 100, based on a flat-plate correlation for the

coefficient of friction and with the Reynolds number based on the mean aerodynamic

chord (ReMAC = 5× 106).

(a) Linear mesh used for agglomeration (1218375
elements).

(b) Cubic mesh generated via agglomeration
(45125 elements).

Figure 4.30: CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106:
linear and agglomerated cubic meshes.

The discretized SA equation is scaled by κSA = 100 and the stabilization constant

in the viscous discretization is κBR2 = 15. Also, the shock-capturing term described

in 2.3.2 is added to the residual operator.
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We consider anisotropic h-adaptation at fixed p = 1. Converging the initial solu-

tion for this problem is difficult. The physicality-constrained solver with the greedy

line-search and mRDM is used for the first primal solve. In addition, one step of mesh

adaptation based on the penalty projection (Eqn. 3.23) is taken to help the solver to

converge. This adaptation method is presented in Ref. [15]. In subsequent solves,

converging the residual is significantly easier. The greedy algorithm is then turned

off and the mRDM strategy is substituted by exponential CFL progression.

The output used for adaptation is the total drag at a fixed lift. That is, at

each primal solve, the angle of attack is trimmed so that the coefficient of lift is

CLtarget = 0.5± 0.001. The method for trimming α is described in Section 5.2.

Due to lack of spatial resolution in the initial mesh, the flow separates (Fig-

ure 4.32(a)) before the lift requirement is achieved. The solution in the initial mesh

is nearly unsteady which makes the adjoint problem very ill-conditioned and, conse-

quently, causes the error-estimates to be very large as shown in Figures 4.33(a) and

4.33(b). In this situation, the lift requirement is relaxed and the adaptive process pro-

ceeds. This decision is not yet automated and is one of the aspects of this problem

that could benefit from further research.

After the first drag-based adaptation step, the flow field is significantly different

(Figure 4.32(b)). The supersonic region is larger and no visible flow separation is

present. The lift requirement is now satisfied and the error estimates for lift and drag

are significant smaller (Figure 4.33).

The Mach number contours shown in Figure 4.32 do not present large differences

after the second adaptation step. Also, the areas targeted for adaptation are similar

to the regions observed in the DPW III - W1 case. These regions are: the stagnation

streamline, the sonic transition, the shock-boundary-layer interaction, and the wake.

Figure 4.31 compares the pressure coefficient at two span locations with the cor-
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responding experimental data1 [74]. Note that the initial result is very far from the

experiments, however, after one adaptation step the pressure distribution is much

closer to the experimental data and as the adaptation progresses, the shock profile

becomes sharper and the changes in pressure distribution become smaller.
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(a) Pressure coefficient at 13.06% of the reference
span.
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(b) Pressure coefficient at 50.24% of the reference
span.

Figure 4.31: CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106:
comparison of pressure coefficient with experimental data.

Figure 4.33 shows the convergence history for drag, lift, and pitching moment.

Note that our results for pitching moment are within the range of data submitted to

the workshop, while the drag values are above the range of results from the workshop.

However, it is worth emphasizing that the finest solution presented here has a factor

of 5 to 10 fewer degrees of freedom than the mid-range meshes used in the uniform

refinement studies in the workshop.

Drag error estimation with fixed lift

In a fixed-lift run, we directly solve the discrete residual equations and indirectly,

via a feedback loop (Section 5.2), solve for α to satisfy the lift constraint. This can

1Experimental data was digitized from the 5th Drag Prediction Workshop summary presentation.
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(a) Initial mesh (α = 2.8◦). (b) 1st drag-adapted mesh (α = 2.675◦).

(c) 2nd drag-adapted mesh (α = 2.465◦). (d) 3rd drag-adapted mesh (α = 2.37◦).

(e) 4th drag-adapted mesh (α = 2.2665◦). (f) 5th drag-adapted mesh (α = 2.1598◦).

Figure 4.32: CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106:
slice at 37% of the span (428 inches).
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(a) Drag convergence; dashed line: drag corrected
by its error estimate; red shaded region is delim-
ited by sum of drag error indicator over the ele-
ments.

(b) Lift history; red shaded region is delimited by
sum of the lift error indicator over the elements.

(c) Pitching moment history.

Figure 4.33: CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106:
drag, lift, and pitching moment for the sequence of adapted meshes; gray
shaded region: range of data submitted to DPW-V.

be written as the following system:

 R(α,U) = 0

L(α,U) = 0,
(4.12)

where L(α,U) = CL(α,U) − CLtarget . Here, we introduce α as an argument in the

residual operator to explicitly denote the parameterization of the free-stream bound-

ary condition.
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As we are interested in computing drag with a solution that satisfies the constraints

in Eqn. 4.12, we form a Lagrangian by introducing adjoint variables:

L(α,U,ΨR,ΨL) = D(α,U) + ΨT
RR(α,U) + ΨCL(α,U), (4.13)

where D(α,U) is the drag function, ΨR is the drag adjoint as defined previously and

ΨC represents the discrete sensitivity of drag with respect to perturbations in the lift

constraint. In the continuum limit, this would represent the slope of a tangent to the

drag polar curve.

We seek variations of the drag function, i.e. a drag error estimate, that satisfy the

constraints in Eqn. 4.12. This corresponds to setting δL = 0 for general perturbation

in the input parameters. Taking the variation of the Lagrangian yields:

δL = δD + ΨT
RδR︸ ︷︷ ︸
(a)

+ ΨCδL︸ ︷︷ ︸
(b)

= 0, (4.14)

where “a” is the drag error estimate for fixed α described in Section 5.2,“b” is the

influence of the lift error in the drag error due to the lift constraint and δL is the lift

error estimate.

We compute ΨC according to:

ΨC =
∂D/∂α

∂L/∂α
, (4.15)

where the sensitivities with respect to α are approximated via an inner product be-

tween the drag and lift adjoints and a residual perturbation due to a perturbation in

α. This procedure is described in Section 5.2.
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CHAPTER 5

Implementation aspects

In this chapter we describe three important implementation aspects of this work.

First, we describe the parallel algorithm for the optimization-based adaptation method

from Chapter 4. Then, we present the adjoint-based boundary condition correction

algorithm used for the fixed-lift runs. The chapter ends with a weighted mesh parti-

tioning algorithm that makes use of preconditioner information to improve the parallel

efficiency of the solver.

5.1 Parallel adaptation algorithm

The methods for solving the flow equations, estimating output error, and selecting

the elements for adaptation are implemented in a distributed-memory architecture.

That is, the processors only have direct access to mesh and corresponding data that

are subsets of the global domain and they exchange information using a routed net-

work. Due to the compact stencil of DG methods, the inter-processor communication

is only through one layer of elements, resulting in a easily-parallelizable algorithm

with a large ratio of computation per communication. The hanging-node refinement,

however, creates meshes with communication patterns that are not easily predictable

due to possible differences of level of refinement between adjacent elements (Sec-

tion 4.2). For this reason, the refinement process is performed serially by merging the
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subdomains from all the processors into one processor. Fortunately, the refinement

overhead is not significant because the operations involved in this process are not

computationally intensive compared to the primal and adjoint solves. On the other

hand, the operations involved in the discrete mesh optimization problems can be ex-

pensive if performed serially, especially in three-dimensional problems. Our trade-off

is to merge the subdomains from all of the processors and to distribute copies of

the global domain to all processors prior to solving the local optimization problems.

This way, the full mesh already resides in one processor for the refinement using the

computed optimum options. This process is illustrated in Figure 5.1.
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Figure 5.1: Parallel algorithm for distributing the local discrete optimization prob-
lems.

Once each processor has a copy of the full domain, the elements are sorted (Al-

gorithm 5.1) such that each processor solves its share of local mesh optimization

problems. The resulting optimum refinement decisions – arrays of integers – are then

merged into the main processor and the mesh is refined.
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ALGORITHM 5.1 Algorithm for sorting elements to be optimally refined

1: Input: Elem2Refine[i = 1→ N ref
κH ] . Array of elements marked for refinement

2: for j = 1→
⌈
Nref
κH

NCPU

⌉
do . where d·e is the ceiling function

3: k ← (j − 1) ·NCPU + iCPU . iCPU is the processor number

4: if k ≤ N ref
κH then

5: κref
H ←Elem2Refine[k]

6: Find optimal refinement for element κref
H

7: else

8: Processor “iCPU” finished its work.

9: end if

10: end for

5.2 Adjoint-based boundary condition correction

Frequently in the aeronautical industry, CFD simulations are conducted under

trimmed conditions, meaning, under fixed, user-defined values of certain outputs –

typically lift or pitching moment. This means that certain boundary condition pa-

rameters, e.g. angle of attack, depend on outputs computed from the flow solution.

Thus, a feedback loop must be used to correct those input parameters.

Mesh

Initial Conditions

Jtarget, εtol, αguess

Solve

Solve

R(α,U) = 0
|J − Jtarget| ≤ εtol Finished

True

False

∂R
∂U

T
Ψ = − ∂J

∂U

Compute

δR = R(α+ δα,U)

Update

α ⇐ α+
(J − Jtarget)δα

ΨT δR

Figure 5.2: Adjoint-based boundary-condition parameter correction.
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The feedback loop used in this work is illustrated in Figure 5.2, where Jtarget is the

target value of the output for which the parameter, α, is trimmed. The cycle starts

by solving the flow equations using an initial guess for α. Then, J is computed and

checked against Jtarget under a trimming tolerance, εtol. Until this tolerance is met, α

is corrected using Newton’s method for which the sensitivity of J with respect to α

is needed. This sensitivity is computed via an inner product between an adjoint for

J and a residual perturbation δR resultant from a perturbation in α. This residual

perturbation is computed by evaluating the residual with the boundary condition

perturbed by δα.

In cases where the target value for the output is not achievable or the initial guess

is bad, the cycle in Figure 5.2 may not converge. In those cases, a contingency plan

is needed, e.g., a maximum number of iterations is assigned or the cycle is restarted

with a better initial guess. In the output-based adaptation framework presented in

this work, the boundary conditions are only trimmed if the error estimate for J is

smaller then its trimming tolerance, εtol.

5.3 Weighted mesh partitioning

The time taken to solve the primal and dual problems increases with approxima-

tion order, p, and the non-homogeneity of p affects the distribution of computational

work amongst the processors. Therefore, dynamic load-balancing for hp-adaptive

methods is important for efficient use of computational resources. However, such bal-

ance is not trivial and, in fact, is a topic of research rarely explored. Two difficulties

are that the computational effort required for evaluating the residual operator and

its Jacobian is not constant amongst elements in the mesh and that the performance

of the line-Jacobi preconditioner deteriorates when cells with strong coupling reside

on different processors [19].

Typically in CFD, the mesh is represented as an irregular graph where each el-

109



ement κH is a node in the graph and the interior faces ∂κH \ ∂D are edges in the

graph (Figure 5.3). This graph is then partitioned using a multilevel algorithm in

which sequences of smaller graphs are systematically generated and partitioned until

the partitions are as close to equal size as possible.

Figure 5.3: Example of mesh (continuous black lines) and corresponding graph
(dashed lines); the sets of elements circled in red represent lines of the
preconditioner.

In our work, we use the multilevel k-way graph partitioning algorithm imple-

mented in the ParMETIS library [41] which permits the attribution of weights to

nodes and edges of the graph. The node weights are used to represent the compu-

tational effort for each element due to non-uniformity of p-orders. The edge weights

are used to make the partitioning algorithm avoid separating elements with strong

coupling, thus improving the effectivity of the preconditioner.

The inter-domain communication stores the data in one layer of fictitious elements

neighboring each inter-domain boundary. This information is enough for the resid-

ual calculation and the assembly of its Jacobian due to the compact stencil of DG

discretizations.

Various choices are possible for the node weights. In this work, we choose the

weights based on the number of non-zero entries in the self-blocks,i.e. the main-
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diagonal blocks, of the Jacobian matrix,

ωκH = (pκH + 1)2·dim, (5.1)

where pκH is the polynomial order of element κH . Equation 5.1 assumes a tensor-

product approximation space, such as the case of this work. When a different ap-

proximation space is used, the expression for the node weights may be different but

they should adequately represent the solution cost for the corresponding elements.

The edge weights are computed in the following sequence.

1. Loop through edges of the graph and compute:

ω∂κH\∂D = (p+
κH

+ 1)dim + (p−
κH

+ 1)dim, (5.2)

where p+
κH

and p−
κH

are the polynomial orders of the elements on both sides of

the interior face.

2. Loop through edges of the graph that are part of lines of the preconditioner

(red node groups in Figure 5.3) and augment ω∂κH\∂D with

ω∂κH\∂D ⇐ ω∂κH\∂D ·max(v+
κH
, v−
κH

), (5.3)

where v+
κH

and v−
κH

are the valencies of the nodes, in the connectivity graph,

connected by the edge ∂κH \ ∂D.

Equation 5.2 gives weights to the edges that are proportional to the amount of data

transferred in each exchange of information between processors, that is, the number

of degrees of freedom of the fictitious cells used to store the data to be transferred.

The second step (Eqn. 5.3) makes the partitioner prefer to separate elements that are

not strongly coupled.
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The effect of the mesh partitioning algorithms is assessed in an output-adaptive

context by comparing runs using the unweighted and weighted partitioning methods.

The first case considered is hp-adaptation applied to the viscous flow over the NACA

0012 airfoil presented in Section 4.4.1.2. Eight processors are used for this case and

Figures 5.4(a) and 5.4(b) show the time taken to solve the flow and adjoint equations

in each adaptive step. In the case of weighted partitioning runs, the primal solve time

includes the time taken to compute the weights and partition the mesh. Note that

the runs with weighted partitioning are significantly faster and, more importantly, the

savings increase as the adaptation evolves. This is not surprising, as the unweighted

partitioning assumes equal computational cost for each element. Perhaps more in-

teresting, are the savings in number of GMRES iterations shown in Figure 5.4(d).

Those savings are mostly due to using the element lines of the preconditioner [19] to

assign weights to the edges of the graph.

The adaptive process uses block-Jacobi smoothing for the fine-space approxima-

tions involved in error estimation, therefore, the savings shown in Figure 5.4(c) are

due to a better distribution of computational work amongst the processors.

When the computational work is not well distributed amongst the processors,

the overall time consumed by a parallel operation will be dictated by the processor

that has the most work load. With an iterative solver, such as the flow solver, it

is difficult to estimate a priori the total amount of computational work required to

converge the solution. Hence, it is important to find adequate representations of

computational work imbalance. For this purpose, we analyze the standard deviation

of different characteristic quantities of each mesh partition. We then relate large

standard deviations with imbalance of a specific quantity in the partition map.

The most trivial characteristic quantity of a mesh partition is the number of

elements and its standard deviation: this is shown for each adaptive step in Fig-

ure 5.5(b). Note that the unweighted method presents much less variation in the
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(a) Primal solve time.
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(b) Adjoint solve time.
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(c) Adaptation time.
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(d) Number of GMRES iterations for primal and
adjoint solves.

Figure 5.4:
NACA 0012 - M∞ = 0.5, Re = 5× 103, α = 1◦, hp-adaptation: compar-
ison of runs with unweighted and weighted mesh partitioning. The data
points correspond to the adaptation steps

number of elements compared to the weighted method. This is clear evidence that

number of elements is not a good measure of computational work in an hp-adaptive

framework as Figure 5.5(b) does not reflect the savings observed in Figure 5.4.
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Figure 5.5:
NACA 0012 - M∞ = 0.5, Re = 5× 103, α = 1◦, hp-adaptation: statistics

for the partitioning methods.

Another measure of computational work is the number of degrees of freedom for

which the standard deviation is shown in Figure 5.5(a). Even though this quantity

accounts for the elements’ orders, it indicates that the unweighted partitions are

better balanced than the weighted ones, which clearly disagrees with the performance

measures in Figure 5.4.

As discussed previously in this work, the computational effort for solving the

flow and adjoint equations is dominated by matrix-vector products in the GMRES
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algorithm which are dependent on the number of non-zero entries in the Jacobian

matrix. The standard deviation for this quantity is shown in Figure 5.5(d). Note

that this quantity reflects the time savings observed previously.

Another important aspect of parallel computations is data transfer between pro-

cessors. Figure 5.5(c) shows the average number of degrees of freedom correspondent

to the fictitious elements used for inter-processor communication. Note that the

weighted partitioning leads to more inter-domain communication. This is a result

of using preconditioner lines to assign edge weights. However, this does not impact

significantly the parallel performance because of the large ratio of computation per

communication in the implicit implementation of DG used in this work [19].

To support this analysis, we superimpose, in Figure 5.6, the subdomain boundaries

on the mesh and the global preconditioner lines, i.e., the lines of strongly-coupled

elements in the ideal case where the entire mesh and data reside in one processor.

Note that the subdomains for the weighted partitioning method are generally more

anisotropic compared to the unweighted partitioning, especially on the wake region.

This anisotropy is responsible for the larger average communication in the weighted-

partitioned cases shown in Figure 5.5(c). It is such anisotropy, on the other hand,

that makes the subdomains contain more strongly coupled elements resulting in the

savings observed in Figure 5.4(d).

We now analyze the effect of the weighted partitioning algorithm in the three

dimensional case of transonic, turbulent flow over the DPW III - Wing 1 presented

in Section 4.4.3. At each adaptive step, the computational domain is distributed

amongst 720 processors using both the weighted and the unweighted partitioning

methods. Figures 5.7(a) and 5.7(b) show the time taken for the primal and adjoint

solves respectively. Note that the weight-partitioned run is approximately 70% faster

than its unweighted counterpart at the fourth adaptive step. This is because the com-

putational work amongst the unweighted partitions quickly becomes poorly balanced
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as the hp-adaptation progresses.
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(b) Adjoint solve time.
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(c) Adaptation time.
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(d) Number of GMRES iterations for primal and

adjoint solves.

Figure 5.7:
DPW III Wing 1 - M∞ = 0.76, Re = 5 × 106, α = 0.5◦, hp-adaptation:

comparison of runs with unweighted and weighted mesh partitioning. The

data points correspond to the adaptation steps

Another interesting aspect of this test case is that the primal solve time for the

second adaptive step is shorter than the initial solve despite the increase in number

of degrees of freedom. This is because the flow is initialized with uniform free-stream

conditions for the initial solve and, due to the difficulty of this case, the solver takes

many nonlinear iterations to converge. In subsequent adaptive iterations, the most
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recent solution is used as the initial condition.

In the weighted-partitioning, the initial primal solve is the longest of all the solves.

This is because the preconditioner lines used for the weighted partitioning are com-

puted with the initial condition for each primal solve which, in turn, makes the subse-

quent weighte-partitioned solves more efficient as they are initialized by the converged

state from the previous adaptive iteration.

As observed in the previous case, the adaptation time (Figure 5.7(c)) is also sen-

sitive to the partitioning algorithm. This measure includes the time taken by the

parallel adaptation algorithm described in Section 5.1, but it is dominated by the

time consumed in the block-Jacobi smoothing iterations involved in error estimation.

The computational effort of these iterations is dictated by the number of entries in

the self-blocks of the Jacobian matrix (Eqn. 5.1) which explains the savings observed

in Figure 5.7(c).

The statistical analysis of the computational work distribution is shown in Fig-

ure 5.8. This figure confirms what is observed in the previous case. Specifically, the

anisotropic nature of the weighted partitions results in more inter-processor commu-

nication when compared to the unweighted partitioning (Figure 5.8(c)). Additionally,

Figures 5.8(a) and 5.8(b) respectively confirm that number of degrees of freedom and

number of elements are not good measures of computational effort in a hp-adaptation

framework as uniform distribution of these quantities does not reflect the savings

observed in Figure 5.7.
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(a) Mesh, element lines, and subdomain bound-
aries for cDOF with unweighted partitioning.

(b) Mesh, element lines, and subdomain bound-
aries for cDOF with weighted partitioning.

(c) Mesh, element lines, and subdomain bound-
aries for cNZ with unweighted partitioning.

(d) Mesh, element lines, and subdomain bound-
aries for cNZ with weighted partitioning.

Figure 5.6:
NACA 0012 - M∞ = 0.5, Re = 5 × 103, α = 1◦, 6th adaptation step;
mesh: fine dotted black lines; subdomain boundaries: thick dotted black
lines; global preconditioner lines: red lines.
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Figure 5.8:
DPW III Wing 1 - M∞ = 0.76, Re = 5 × 106, α = 0.5◦, hp-adaptation:
statistics for the partitioning methods.
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CHAPTER 6

Conclusions and Future Work

6.1 Summary

This thesis presents an optimization-based hp-adaptation method that considers

p-refinement as a refinement option amongst directional cuts in a element. The re-

finement options are ranked based on a cost-benefit analysis in which the benefit is

an output sensitivity with respect to the different ways of refining the solution space.

The cost is estimated considering two measures of CPU work: number of degrees

of freedom and number of floating point operations. The latter is correlated to the

number of non-zero entries in the residual Jacobian.

The discontinuous Galerkin method is used for the spatial discretization of the

flow equations and a physicality-constrained pseudo-transient continuation is pro-

posed for advancing the solution to steady-state. This method includes information

of physical realizability constraints in the solution path with the objective of improv-

ing robustness by trying to circumvent non-physical regions of the solution space.

From an optimization argument that stems from the backward Euler time continua-

tion scheme, the constraints are incorporated in the iterative solution path by a vector

penalization technique that makes the prohibited regions of the solution space less

attractive for the solver, and thus shifting the solution path away from non-physical

states without affecting the final zero-residual solution. A robustness improvement
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is observed when the method is applied to challenging problems in the aeronauti-

cal industry. Furthermore, a line-search method is proposed with the objective of

improving the global convergence properties of time continuation methods.

In the implementation realm, we propose a method for assigning weights to the

nodes and edges of the connectivity graph used for partitioning the mesh for solution

on distributed-memory architectures. The method accounts for the non-homogeneity

of computational cost of the elements in the mesh and uses preconditioner information

to improve parallel efficiency. A significant speedup is observed, despite the increase

in inter-processor communication. This is accomplished by assigning edge weights

that make the line-Jacobi preconditioner more globally effective and by using node

weights that represent adequately the non-homogeneity of computational cost that

arises in hp-adaptation routines.

In spite of DG’s attractive qualities, its application to practical problems in the

aeronautical industry has been somewhat limited due to robustness challenges and

high computational cost. The main contribution of this work is to address some of

these challenges by demonstrating the applicability of the methods presented here to

industry-relevant problems.

6.2 Conclusions

The test-suite results in Chapter 3 show that the inclusion of physicality con-

straints in the solution path increases the robustness with which the solver can con-

verge the residual in more challenging cases such as the DPW-III wing and the tran-

sonic NACA case without shock-capturing. In problems with higher free-stream Mach

number, initializing the flow with uniform free-stream conditions produces strong ex-

pansions that can lead to cavitation. The constrained solver reduces the impact of

such an aggressive flow initialization but it is not a bullet-proof method and better

flow initialization strategies are certainly desirable.
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The proposed optimization-based hp-adaptation method is effective in achieving

output convergence. This is demonstrated in challenging cases of the aeronautical

industry. The method’s effectivity is due to the use of adjoint information to guide

the refinement decision and the use of measures of computational cost. The cost

measures presented here are not perfect as they do not account for stiffness effects

of different refinements in the iterative solution method. These effects have a direct

impact on the CPU time, but they are difficult and computationally intensive to

estimate because they are global measures and their effect depends on the type of

solver and preconditioner used. Since the merit function is computed multiple times

in each refinement cycle, the local property of cost and benefit measures is attractive.

The two-dimensional adaptation results show savings of up to an order of magni-

tude in terms of degrees of freedom and up to a factor of two in terms of CPU time

when compared to uniform refinement. In three dimensions, hp-adaptation using

cNZ saves degrees of freedom and CPU time require to achieve output convergence,

especially when the output is corrected by its error estimate. Properly accounting for

the effect of dimensionality in the computational expense is the reason for cNZ out-

performing cDOF in three dimensions.

The weighted mesh-partitioning method accounts for the non-homogeneity of com-

putational cost of the elements in the mesh and uses preconditioner information to

improve parallel efficiency. The results show speedup of up to two with the weighted

partitioning in three dimensions. Although not yet fully robust due to the possibility

of empty partitions, the weighted-partitioning algorithm is an attractive option for

the element-line preconditioner.

6.3 Future work

Certain topics for future work were identified during the course of this work. These

topics are listed below:
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1. Better flow initialization strategies: as mentioned previously, the phys-

icality constrained solver reduces the impact of aggressive flow initialization

strategies but it is not perfect. Better flow initialization methods can further

improve the robustness of the solver.

2. h and p coarsening: the adaptation mechanics presented in this work incre-

ments the solution cost at each adaptive step. The use of coarsening allows for a

reallocation of computation cost in the mesh, thus permitting mesh adaptation

at approximately-fixed solution cost.

3. Adaptive node movement: the performance of the adaptation method pre-

sented here depends, to a certain extent, on the initial mesh topology. The

ability of moving the nodes in the mesh would reduce the dependence on the

initial mesh.

4. µ-evolution in the constrained solver: only one strategy for evolving the

penalty factor was explored. Other strategies may further improve the robust-

ness of the solver.

5. Extension to other DG methods: the methods presented in this work are

not exclusively applicable to the nodal DG method used here and they can be

extended to more cost-efficient discretizations like hybridized -DG.

6. Weighted-partitioning: the partitioning method presented in this work is

not yet fully robust as empty partitions may occur during the adaptation cycle.

In addition, the method for assigning edge weights can be extended to other

types of preconditioners.
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