
Online Learning in Bandit Problems

by

Cem Tekin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2013

Doctoral Committee:

Professor Mingyan Liu, Chair
Professor Satinder Singh Baveja
Professor Demosthenis Teneketzis
Assistant Professor Ambuj Tewari

c© Cem Tekin 2013

All Rights Reserved

To my family, Hülya Tekin and Nuh Tekin

ii

ACKNOWLEDGEMENTS

My years in Ann Arbor have been a valuable experience for me. During these years

I have seen tremendous improvement in my problem solving and critical thinking

skills. Apart from my hard work and commitment, I owe this to the admirable people

I met in the University of Michigan.

First and foremost, I would like to thank my advisor, Professor Mingyan Liu,

who has been a great mentor for me. I appreciate her wonderful personality, broad

technical knowledge and generous support. It was her interest in my research and her

motivation that led me to explore many interesting and challenging problems that

forms this thesis. I have enjoyed and learned a lot from our discussions which have

made a big impact on my career.

I would also like to thank Professor Demosthenis Teneketzis for being in my com-

mittee, and for being an excellent teacher. The many courses I have taken from him

not only broadened my technical knowledge, but also extended my vision. I would

also like to express my gratitude to my committee members Professor Satinder Singh

and Professor Ambuj Tewari. Their interest in my research and their expertise in

learning problems has been a great incentive for me to write this thesis. Additionally,

thanks to all the professors and colleagues from whom I learned a lot.

Finally, my very special thanks to my parents Hülya Tekin and Nuh Tekin for

their lifelong support and love. They always believed in me and encouraged me to

pursue my goals. Without their guidance and help I would not be at the point where

I am today.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF APPENDICES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Description and Applications of Bandit Problems 1
1.1.1 Random Access in Fading Channels 2
1.1.2 Cognitive Radio Code Division Multiple Access . . . 3
1.1.3 Adaptive Clinical Trials 4
1.1.4 Web Advertising . 5
1.1.5 Online Contract Design 6

1.2 Problem Definition and Preliminaries 7
1.2.1 Arm Evolution Models 8
1.2.2 Reward Models . 9
1.2.3 Performance Models 13
1.2.4 Single-agent Performance Models 14
1.2.5 Multi-agent Performance Models 17
1.2.6 Degree of Decentralization 21

1.3 Literature Review . 23
1.3.1 Classical Single-agent Models 23
1.3.2 Classical Multi-agent Models 29
1.3.3 Models with Correlation 30
1.3.4 Non-stationary and Adversarial Models 33
1.3.5 Bandit Optimization Problems 35

iv

1.4 Our Contributions . 37
1.4.1 Algorithms for Single-agent Bandits 37
1.4.2 Algorithms for Multi-agent Bandits 39

1.5 Organization of the Thesis 41

II. Single-agent Rested Bandits . 43

2.1 Problem Formulation and Preliminaries 43
2.2 Rested Bandit Problem with a Single Play 45
2.3 Rested Bandit Problem with Multiple Plays 48
2.4 Numerical Results . 50
2.5 Discussion . 53

III. Single-agent Restless Bandits with Weak Regret 55

3.1 Problem Formulation and Preliminaries 56
3.2 Restless Bandit Problem with a Single Play 58
3.3 Restless Bandit Problem with Multiple Plays 64
3.4 Numerical Results . 67
3.5 Discussion . 72

3.5.1 Applicability and Performance Improvement 72
3.5.2 Universality of the Block Structure 73
3.5.3 Extension to Random State Rewards 75
3.5.4 Relaxation of Certain Conditions 76
3.5.5 Definition of Regret 77

IV. Single-agent Restless Bandits with Strong Regret 78

4.1 Problem Formulation . 79
4.2 Solutions of the Average Reward Optimality Equation 83
4.3 Countable Representation of the Information State 86
4.4 Average Reward with Estimated Probabilities (AREP) 88
4.5 Finite Partitions of the Information State 91
4.6 Analysis of the Strong Regret of AREP 97

4.6.1 An Upper Bound on the Strong Regret 98
4.6.2 Bounding the Expected Number of Explorations . . 102
4.6.3 Bounding EPψ0,α

[D1(ε, Jl, u)] for a suboptimal action
u /∈ O(Jl;P) . 102

4.6.4 Bounding EPψ0,α
[D2(ε, Jl)] 104

4.6.5 A Logarithmic Strong Regret Upper Bound 105
4.7 AREP with an Adaptive Exploration Function 106
4.8 AREP with Finite Partitions 108

V. Single-agent Feedback Bandit with Approximate Optimality 111

v

5.1 Problem Formulation and Preliminaries 112
5.2 Algorithm and Analysis . 114

5.2.1 Guha’s Policy . 114
5.2.2 A Threshold Policy 116
5.2.3 The Adaptive Balance Algorithm (ABA) 121
5.2.4 Number of Deviations of ABA from the ε1-threshold

policy . 123
5.2.5 Performance of ABA 129

5.3 Discussion . 131

VI. Multi-agent Restless Bandits with a Collision Model 133

6.1 Problem Formulation and Preliminaries 134
6.2 A Distributed Algorithm with Logarithmic Weak Regret . . . 136
6.3 Numerical Results . 142
6.4 Discussion . 143

VII. Online Learning in Decentralized Multi-agent Resource Sharing144

7.1 Problem Formulation and Preliminaries 147
7.1.1 Factors Determining the Resource Rewards 147
7.1.2 Optimal Allocations and the Regret 149

7.2 Achievable Performance without Feedback 156
7.3 Achievable Performance with Partial Feedback 164
7.4 Achievable Performance with Partial Feedback and Synchro-

nization . 175
7.4.1 Analysis of the regret of DLOE 178
7.4.2 Regret Analysis for IID Resources 181
7.4.3 Regret Analysis for Markovian Resources 187

7.5 Achievable Performance with Costly Communication 192
7.5.1 Distributed Learning with Communication 193
7.5.2 Analysis of the regret of DLC 194
7.5.3 Regret Analysis for IID Resources 196
7.5.4 Regret Analysis for Markovian Resources 197

7.6 Discussion . 199
7.6.1 Strategic Considerations 199
7.6.2 Multiple Optimal Allocations 200
7.6.3 Unknown Suboptimality Gap 203

VIII. An Online Contract Selection Problem as a Bandit Problem 205

8.1 Problem Formulation and Preliminaries 207
8.2 A Learning Algorithm with Variable Number of Offers 213
8.3 Analysis of the Regret of TLVO 217
8.4 A Learning Algorithm with Fixed Number of Offers 223

vi

8.5 Discussion . 227

IX. Conclusions and Future Work 230

APPENDICES . 233

BIBLIOGRAPHY . 279

vii

LIST OF FIGURES

Figure

2.1 pseudocode for the UCB algorithm 46

2.2 pseudocode for the UCB-M algorithm 48

2.3 regrets of UCB and Anantharam’s policy 53

3.1 example realization of RCA . 60

3.2 the block structure of RCA . 60

3.3 pseudocode of RCA . 62

3.4 example realization of RCA-M with M = 2 for a period of n slots . 65

3.5 pseudocode of RCA-M . 66

3.6 normalized regret of RCA-M: S1, L = 7200 70

3.7 normalized regret of RCA-M: S1, L = 1 70

3.8 normalized regret of RCA-M: S2, L = 360 70

3.9 normalized regret of RCA-M: S2, L = 1 70

3.10 normalized regret of RCA-M: S3, L = 3600 70

3.11 normalized regret of RCA-M: S3, L = 1 70

3.12 normalized regret of RCA-M: S4, L = 7200 71

3.13 normalized regret RCA-M: S4, L = 1 71

viii

3.14 regret of UCB, M = 1 . 71

3.15 regret of UCB, M = 1 . 71

3.16 regret of RCA with modified index 71

4.1 pseudocode for the Average Reward with Estimated Probabilities
(AREP) . 89

4.2 Partition of C on Ψ based on P and τtr. Gl is a set with a single
information state and Gl′ is a set with infinitely many information
states. 94

4.3 ε-extensions of the sets in Gτtr on the belief space. 95

5.1 policy Pkτ . 116

5.2 Guha’s policy . 116

5.3 procedure for the balanced choice of λ 116

5.4 pseudocode for the ε1-threshold policy 117

5.5 pseudocode for the Adaptive Balance Algorithm (ABA) 123

6.1 pseudocode of DRCA . 137

6.2 regret of DRCA with 2 users . 143

7.1 pseudocode of Exp3 . 160

7.2 pseudocode of RLOF . 166

7.3 pseudocode of DLOE . 179

7.4 pseudocode of DLC . 195

8.1 acceptance region of bundle (x1, . . . , xm) for UB(x, θ) = h(a(x−θ)+ +
b(θ − x)+) . 211

8.2 acceptance region of bundle (x1, . . . , xm) for UB(x, θ) = −a(θ−x)+−x212

8.3 pseudocode of TLVO . 214

ix

8.4 bundles of m contracts offered in exploration steps l = 1, 2, . . . , l′ in
an exploration phase . 225

8.5 pseudocode of the exploration phase of TLFO 226

x

LIST OF TABLES

Table

2.1 frequently used expressions . 45

2.2 parameters of the arms for θ = [7, 5, 3, 1, 0.5] 53

3.1 frequently used expressions . 61

3.2 transition probabilities of all channels 69

3.3 mean rewards of all channels . 69

xi

LIST OF APPENDICES

Appendix

A. Results from the Theory of Large Deviations 234

B. Proof of Lemma II.2 . 238

C. Proof of Lemma III.1 . 243

D. Proof of Theorem III.2 . 246

E. Proof of Theorem III.3 . 250

F. Proof of Lemma IV.13 . 258

G. Proof of Lemma IV.17 . 261

H. Proof of Lemma IV.18 . 264

I. Proof of Lemma IV.19 . 268

J. Proof of Lemma IV.20 . 269

K. Proof of Lemma VI.1 . 271

L. Proof of Lemma VI.3 . 273

M. Proof of Lemma VI.4 . 278

xii

ABSTRACT

Online Learning in Bandit Problems

by

Cem Tekin

Chair: Mingyan Liu

In a bandit problem there is a set of arms, each of which when played by an agent

yields some reward depending on its internal state which evolves stochastically over

time. In this thesis we consider bandit problems in an online framework which involves

sequential decision-making under uncertainty. Within the context of this class of prob-

lems, agents who are initially unaware of the stochastic evolution of the environment

(arms), aim to maximize a common objective based on the history of actions and ob-

servations. The classical difficulty in a bandit problem is the exploration-exploitation

dilemma, which necessitates a careful algorithm design to balance information gath-

ering and best use of available information to achieve optimal performance. The

motivation to study bandit problems comes from its diverse applications including

cognitive radio networks, opportunistic spectrum access, network routing, web ad-

vertising, clinical trials, contract design and many others. Since the characteristics

of agents for each one of these applications are different, our goal is to provide an

agent-centric approach in designing online learning algorithms for bandit problems.

When there is a single agent, different from the classical work on bandit problems

which assumes IID arms, we develop learning algorithms for Markovian arms by

xiii

considering the computational complexity. Depending on the computational power

of the agent, we show that different performance levels ranging from optimality in

weak regret, to strong optimality can be achieved.

Apart from classical single-agent bandits, we also consider the novel area of multi-

agent bandits which has informational decentralization and communication aspects

not present in single-agent bandits. For this setting, we develop distributed online

learning algorithms that are optimal in terms of weak regret depending on commu-

nication and computation constraints.

xiv

CHAPTER I

Introduction

1.1 Description and Applications of Bandit Problems

The bandit problem is one of the classical examples of sequential decision making

under uncertainty. There is a set of discrete time stochastic processes (also referred

to as arms) with unknown statistics. At any discrete time step (t = 1, 2, . . .), each

arm is in one of a set of states where the state process is generally assumed to be an

independent and identically distributed (IID) or Markovian process. There is a set

of players (agents), each selecting an arm at each time step in order to get a reward

depending on the state of the selected arm. The evolution of the state of an arm

may be independent of the actions of the agents or it may depend on the actions of

the agents who select that arm. An agent has partial information about the system,

which means that at any time step t, the agent only knows a subset of what has

happened up to time t, and is limited to base its decision at time t on its partial

information.

As an example, at any time step t, an agent can only observe the state of the

arm it selects but not the states of the other arms. Another example is a multi-agent

system in which an agent cannot observe the actions of other agents, or can only

observe the actions of agents that are located close to it.

The focus of this thesis is to design learning algorithms for the agents that satisfy

1

various performance objectives by taking into consideration a series of constraints

inherent in the system.

Constraints inherent in the system include decentralization, limited computational

power of the agents, and strategic behavior. We study various degrees of decentral-

ization ranging from no communication between the agents at any time to full com-

munication between the agents, in which each agent knows all the past observations

and actions of all the agents at any time. Computational power of the agents bounds

the computational complexity of the algorithms we design for the agents. Strategic

behavior makes an agent act in a selfish way to maximize its own total reward, which

may not coincide with the actions that will maximize the collective performance of

all agents.

While the details are different under different constraints, general idea is to balance

exploration and exploitation, i.e., reducing the uncertainty about the statistics of the

underlying stochastic process and state of the system by playing the infrequently se-

lected arms, and exploiting the best arms selected according to an optimality criterion

based on estimates of the statistics and the state of the system.

Our motivation to study bandit problems comes from its strength in modeling

many important sequential decision making scenarios such as those occur in commu-

nication networks, web advertising, clinical trials and economics. Several applications

of bandit problems are given below.

1.1.1 Random Access in Fading Channels

Consider a network of M decentralized agents/users and K arms/channels. Each

user can be seen as a transmitter-receiver pair. Let Sk be the set of fading states of

channel k. At each time step channel k is in one of the fading states s ∈ Sk which

evolves according to an IID or Markovian process with statistics unknown to the users.

If user i is the only one using channel k at time t with the channel in fading state s,

2

then it gets a certain (single-user) channel quality given by some qk(s), where without

loss of generality qk : Sk → [0, 1]; for instance this could be the received SNR, packet

delivery ratio or data throughput. When there are n users simultaneously using the

channel, then under a collision model in each time step each user has a probability 1
n

of obtaining access, which results in a channel quality/reward of

rk(s, n) =
1

n
qk(s) .

Although the system is decentralized, each user knows the number of users on the

channel it selects by using some signal detection method such as an energy detector

or a cyclostationary feature detector. The goal of the users is to maximize the total

cumulative expected reward of all users up to any finite time horizon T .

1.1.2 Cognitive Radio Code Division Multiple Access

Consider a network of M decentralized (secondary) agents/users and K (licensed)

arms/channels. Primary users who are the licensed users of the channels have the

priority in using the channels. Let s ∈ {0, 1} denote the primary user activity on

channel k: s = 1 if there is no primary user on channel (or channel is available) and

s = 0 otherwise. A secondary user is only allowed to access the channel if s = 1.

The primary user activity on channel k is modeled as a two-state Markov chain with

state transition probabilities pk01 and pk10 unknown to the users. Multiple secondary

users share access to the channel using code division multiple access (CDMA). When

channel k is not occupied by a primary user, the rate a secondary user i gets can be

modeled as (see, e.g. Tekin et al. (2012)),

log

(
1 + γ

hkiiP
k
i

No +
∑

j 6=i h
k
jiP

k
j

)
,

3

where hkji is the channel gain between the transmitter of user j and the receiver of

user i, P k
j is the transmit power of user j on channel k, No is the noise power, and

γ > 0 is the spreading gain. If we assume the rate function to be user-independent,

i.e., hkii = ĥk,∀i ∈M, hkji = h̃k, ∀i 6= j ∈M, P k
i = P k, ∀i ∈M, which is a reasonable

approximation in a homogeneous environment, then we obtain

rk(s, n) = s log

(
1 + γ

ĥkP k
i

No + (n− 1)h̃kP k

)
.

The goal of the users is to maximize the total cumulative reward by minimizing

the number of wasted time slots due to primary user activity, and minimizing the

congestion due to multiple secondary users using the same channel.

1.1.3 Adaptive Clinical Trials

Clinical trials are one of the main motivations in development of bandit problems.

In an adaptive clinical trial several treatments are applied to patients in a sequential

manner, and patients are dynamically allocated to the best treatment. Consider K

treatments/arms which represent K different doses of a drug. Consider a population

P for which this drug is going to be used. P may be the citizens of a country, or it can

be the set of people with a specific health condition such as diabetes. The effectiveness

of a dose can vary from patient to patient in population P depending on genetic

factors, lifestyle, etc. Let S be the space of genetic factors, lifestyle preferences, etc.,

that determines the effectiveness of the drug. Then, for any s ∈ S, the effectiveness

of dose K is given by rk(s). Let F be the distribution of population P over S. Then

the effectiveness of dose k is

µk =

∫
rk(s)F (ds).

4

F may be unknown since S can be very large, and not all the people in population

P is categorized based on the factors that determine the effectiveness of the drug. S

may be even unknown since all factors that determine the drug efficiency may not

be discovered yet. Consider a subset PT of population P , which will participate in

a clinical trial. We assume that PT represents the characteristics of P well, i.e., the

distribution of PT over S is also (approximately) F . Patients in PT are randomly

ordered, and sequentially treated. At each time step one of the doses is given to a

patient, then its efficiency is observed at the end of that time step. The goal of the

clinical trial is to find the most effective dose for population P while minimizing the

number of patients in PT that are given less effective doses.

1.1.4 Web Advertising

A significant portion of the revenues of Internet search engines such as Google,

Yahoo! and Microsoft Bing come from advertisements shown to a user based on its

search query. Usually, the search engine shows a list of results based on the query

with the top result being an advertisement related to that query. If the user clicks on

the ad, then the search engine receives a payment from the advertiser. Assume that

the search engine has K different ads/arms for a specific query. Let P denote the set

of internet users that use the search engine in a specific country. The search engine

does not know the percentage of users in P which will click on ad k if it is shown

for query q. Moreover, this percentage can change over time, due to changing trends,

consumer behavior, etc. The goal of the search engine is to display ads in a way

that will maximize the number of clicks, hence the revenue. The search engine can

maximize the number of clicked ads by balancing exploration of potentially relevant

ads and exploitation of estimated best ads.

5

1.1.5 Online Contract Design

Consider a seller, who offers a set of m contracts xt = (x1, x2, . . . , xm)t ∈ X at

each time step t to sequentially arriving buyers, where X is the set of feasible offers.

Without loss of generality, we assume that X includes all offers x = (x1, x2, . . . , xm)

for which xi ∈ (0, 1] and xi ≤ xi+1 for all i. Let θt be the type of buyer arriving at

time t, which is sampled from a distribution F that is unknown to the seller. Based

on its type, the buyer will accept a single contract in xt or it may reject all contracts

in xt. The preference of a type θ buyer is given in terms of its utility function UB(x, θ)

which is the payoff the buyer receives when it accepts contract x. In this problem,

the seller knows UB(x, θ), but it does not know the buyer’s type θ or its distribution

F . At time t, the seller receives a payoff Us(xt) = us(x) if the buyer accepts contract

x ∈ xt. For a set of contracts x, E[Us(x)] depends on UB(x, θ) and the distribution

of buyers type F . The goal of the seller is to maximize its expected payoff up to T

which is

T∑
t=1

E[Us(xt)].

This contract design problem is equivalent to the following bandit problem: Each

x = (x1, x2, . . . , xm) ∈ X is an arm. At each time step the seller selects one of the

arms x ∈ X , and receives a random reward Us(x). Let

x∗ = arg max
x∈X

E[Us(x)],

be the arm (or set of arms) that gives the highest expected reward to the seller. Then,

the goal of the seller can be restated as minimizing the regret which is given by

TE[Us(x
∗)]−

T∑
t=1

E[Us(xt)].

6

Note that online contract design is different from the previous applications in the

following ways. Firstly, X is an uncountable set. Therefore, exploring each arm

separately to assess its average reward is not feasible. Secondly, dimension of X

increases with the number of simultaneous offers m. This implies that the problem

has a combinatorial structure. Despite these difficulties, this problem is tractable

because the arms are correlated. The expected reward from each arm depends on the

buyer’s type distribution F .

Due to its different structure, we formulate this problem separately in Chapter

VIII, while the formulation for all other bandit problems we consider is given in the

next section.

1.2 Problem Definition and Preliminaries

In a bandit problem there are K arms indexed by the set K = {1, 2, . . . , K}.

There is a set of agents who select a subset of the arms in a sequential manner. We

assume a discrete time model, t = 1, 2, . . ., where state transitions and decisions occur

at the beginning of each time slot. Let Sk be the state space of arm k which can

be either finite or infinite. In the centralized setting, there is an agent who selects

M ≤ K of the arms at each time step. In the decentralized setting there are M

agents indexed by the set M = {1, 2, . . . ,M}, each of which selects a single arm at

each time step. An agent has a partial observation of the state of the system which

consists of observations of the rewards of the states of the arms that the agent has

selected up to the current time.

Upon selecting an arm, an agent receives a reward depending on the state of that

arm. The reward of arm k at time t is denoted by rk(t). This reward depends on the

state of the arm, as well as the selections of the other agents.

Initially, an agent does not have any information about how the rewards of the

arms are generated. The goal of the agents is to maximize a global objective. To

7

do this, they should learn how the rewards of the arms are generated and which

arms yield highest rewards based on the current state of the system. In the following

subsections we propose models for evolution of the arms, interaction between the

agents, and give the definitions of performance metrics.

1.2.1 Arm Evolution Models

We consider the following stochastic models for arm state evolution.

Definition I.1. IID model: At each time step the kth arm is in a state s which is

drawn from a distribution P k over Sk, independently from other time steps and other

arms.

Although, IID model is a simple yet elegant mathematical model for which sharp

results can be derived, realistic modeling of many real-world applications require

incorporation of temporal information. A more complicated, yet analytically tractable

model is the Markovian model. In a Markovian model, the quality of an arm is

reflected by its state, which evolves in a Markovian fashion. Below we give several

Markovian models.

Definition I.2. Rested Markovian model: An arm has two modes, active and passive.

An arm is active if it is selected by an agent, otherwise it is passive. In the active

mode the kth arm is modeled as a discrete-time, irreducible and aperiodic Markov

chain with a finite state space Sk. When an arm is played, transition to the next

state occurs according to the transition probability matrix P k =
(
pkxy
)
x,y∈Sk , where

pkxy is the transition probability from state x to state y. In the passive mode the state

of the arm remains frozen, i.e., it does not change. State changes of different arms

are independent.

Definition I.3. Restless Markovian model: An arm has two modes, active and pas-

sive. An arm is active if it is selected by an agent, otherwise it is passive. Arm k is

8

modeled the same way as its rested counterpart in the active mode, independent of

other arms. However, in the passive mode the state of the arm changes arbitrarily.

While in the restless Markovian model, we allow a very general model for the

passive mode of an arm, some of our results require a stronger assumption which

requires a restless arm to be uncontrolled, i.e., the state transition of the arm is

independent of the actions of agents.

Definition I.4. Uncontrolled restless Markovian model: The state evolution of an

arm is independent of actions of the agents. An arm is modeled the same way as a

rested arm in the active mode.

Many real-world problems can be modeled as a restless Markovian bandit. One

example is a patient for which a new treatment is applied. The health condition of

the patient can be modeled with a finite set of states which evolve differently when

she is under the treatment and when she is not. Moreover many real-world problems

are uncontrolled. For example, in a cognitive radio network, the primary user activity

is independent of the secondary users’ actions.

Under the Markovian models, since each arm in the active mode is a finite state,

irreducible, aperiodic Markov chain, a unique stationary distribution exists. Let

πk = {πkx, x ∈ Sk} denote the stationary distribution of arm k. For both the IID and

the Markovian models let P = (P 1, P 2, . . . , PK).

1.2.2 Reward Models

In this section we list the models which describe how the agents receive rewards

from the arms.

1.2.2.1 A Single-agent Reward Model

Reward the agent gets from arm k at time t only depends on the state xkt of arm

k at time t. We assume without loss of generality that reward from state x of arm k

9

is

rkx ∈ [0, 1],

while our results will hold for any reward function that is bounded. The mean reward

of arm k is given by

µk :=

∫
Sk

rkxP
k(dx),

in the IID arm evolution model, and by

µk :=
∑
x∈Sk

rkxπ
k
x,

in the Markovian arm evolution model.

1.2.2.2 Multi-agent Reward Models

In the decentralized multi-agent setting interaction between the agents plays an

important role in the performance. Agents interact when they select the same arm

at the same time. The interaction between agents may change their ability to collect

rewards. For example, in a communication network, a transmitter-receiver pair can

be regarded as an agent. If two transmitters use the same channel, due to the signal

interference the receivers of both transmitters may fail to correctly decode the signal.

As a result, communication is delayed, and the energy used in transmitting the signal

is wasted. Below we list different interaction models.

Definition I.5. Collision model: If more than one agent selects the same arm at the

same time step, all of the agents who selected the same arm gets zero reward. A

collision only affects the ability of an agent to collect the reward. It does not affect

the ability of an agent to observe the reward.

10

The communication network scenario described above fits to the collision model.

Definition I.6. Random sharing model: If more than one agent selects the same arm

at the same time step, they share the reward in an arbitrary way. Random sharing

only affects the ability of an agent to collect the reward. It does not affect the ability

of an agent to observe the reward.

An example of the random sharing model is the random access scheme in a com-

munication network. Upon selecting a channel, an agent generates an exponential

backoff time (which is negligible compared to the transmission/time slot length).

The agent waits, and senses the channel again at the end of the backoff time. If

sensed idle (there is no other agent transmitting on the channel), the agent transmits

on that channel. Otherwise it does not transmit and selects another channel in the

next time slot. Note that in both of the multi-agent models defined above, the mean

reward of arm k is the same as the mean reward in the single-agent model.

Definition I.7. General symmetric interaction model: An agent who selects arm k

at time t gets reward rk(x
t
k, n

t
k), where xtk is the state of arm k at time t and ntk is

the number of agents on arm k at time t. Without loss of generality we assume that

rk : Sk ×M→ [0, 1],

while our results will also hold for any bounded function.

Let (k, n) denote an arm-activity pair where k denotes the arm’s index, and n

denotes the number of agents selecting that arm. In the general symmetric interaction

model, the mean reward of an arm depends on the agents’ selections therefore it is

not only a function of the stochastic evolution of the states of that arm. However,

mean reward of the pair (k, n) does not depend on the agents’ selection and can be

written only in terms of the stochastic model of the states of arm k. For the general

11

symmetric interaction model with the IID arm evolution model the mean reward of

arm-activity pair (k, n) is given by

µk,n :=

∫
Sk

rk(x, n)P k(dx),

and with the Markovian arm evolution model it is given by

µk,n :=
∑
x∈Sk

rk(x, n)πkx.

It can be the case that the reward an agent gets decreases as more agents select the

same arm with it. In this case the interaction model is called the interference model.

An example of this is the random access in fading channels scheme given in Section

1.1.

Definition I.8. Agent-specific interaction model: An agent who selects arm k at time

t gets reward rik(x
t
k, n

t
k), where xtk is the state of arm k at time t and ntk is the number

of agents on arm k at time t. Without loss of generality we assume that

rik : Sk ×M→ [0, 1],

while our results will also hold for any bounded function.

For the agent-specific interaction model with the IID arm evolution model the

mean reward of arm-activity pair (k, n) for agent i is given by

µik,n :=

∫
Sk

rik(x, n)P k(dx),

12

and with the Markovian arm evolution model it is given by

µik,n :=
∑
x∈Sk

rik(x, n)πkx.

In the agent-specific interaction model, the reward an agent gets not only depends

on the state and the actions of other agents, but it is also depends on the type of the

agent itself. An example of this is the cognitive radio CDMA scheme given in Section

1.1.

1.2.3 Performance Models

In this thesis, unless otherwise stated, we assume that the agents are cooperative.

Their goal is to maximize a performance objective such as the sum of the expected

total rewards of all agents. Therefore, our goal is to design online learning algorithms

for the agents to reach their goal. The loss in performance can be due to the decen-

tralization of agents, the unknown stochastic arm rewards and partial observability

of the state of the system.

We compare the performance of the learning algorithms with performance of poli-

cies which are given hindsight information or information about the distribution of

arm states, or with centralized policies in which agents can agree at each time step

on which set of arms to select. The performance loss of an algorithm with respect

to such a policy is called the regret of the algorithm. We can extend the definition

of regret to capture computation, switching and communication costs. Although

these costs are not directly related with the stochastic evolution of the states and the

agents’ ability to collect rewards, they reduce the benefit of the collected reward to

an agent. For example when an agent needs to solve an NP-hard problem to find

which arms to select in the next time step, we can associate a cost Ccmp with such

a computationally hard operation. Moreover, we can add switching cost Cswc, which

13

is incurred when an agent changes the arm it selects, and communication cost Ccom,

which is incurred when an agent communicates with other agents to share its infor-

mation about the system or receive information from other agents. For example, in

opportunistic spectrum access, switching cost models the energy and time spent in

changing the operating frequency of a radio, while communication cost captures the

energy and other resources used to transmit signals between the agents. Without loss

of generality, we assume that computation, switching and communication costs are

agent-independent, i.e., the cost of each of these is the same for all agents.

Online learning algorithms used by the agents choose the arms based on the past

actions and observations. In the single-agent model for an agent using algorithm α,

the set of arms selected at time t is denoted by α(t) = {α1(t), . . . , αM(t)}. In the

multi-agent model, when agent i uses algorithm αi, the arm selected by agent i at

time t is denoted by αi(t), and the set of arms selected by all M agents at time t

is denoted by α(t) = {α1(t), . . . , αM(t)}. Let EPα denote the expectation operator

when algorithm α is used, and the set of arm state distributions is P . Whenever the

definition of expectation is clear from the context, we will drop superscript and the

subscript and simply use E for the expectation operator.

Below we give definitions of various performance measures used in single-agent

and multi-agent models.

1.2.4 Single-agent Performance Models

In a single-agent bandit, there is no decentralization of information. Therefore,

the contribution to regret comes from unknown stochastic arm rewards and partially

observable states.

Let σ = {σ1, σ2, . . . , σK} be a permutation of arms such that the mean arm

rewards are ordered in a non-increasing way, i.e., µσ1 ≥ µσ2 ≥ . . . ≥ µσK . Let rk(t)

be the random variable representing the reward from arm k at time t.

14

Below is the definition of weak regret for a single agent (stochastic) bandit.

Definition I.9. Weak regret in the single-agent model: For an agent using algorithm

α, selecting M ≤ K arms at each time step, the weak regret up to time T is

Rα(T) := T
M∑
k=1

µσk − EPα

 T∑
t=1

∑
k∈α(t)

rk(t)

 ,
where α(t) is the set of arms selected by the agent at time t.

When we add computation and switching costs, the weak regret becomes

Rα(T) := T
M∑
k=1

µσk − EPα

 T∑
t=1

∑
k∈α(t)

rk(t)− Ccmpmcmp(T)− Cswcmswc(T)

 , (1.1)

where mcmp(T) denotes the number of NP-hard computations by the agent by time

T , and mswc(T) denotes the number of times the agent switched arms by time T .

Under the IID model, weak regret compares the performance of the algorithm with

respect to the optimal policy given full information about the stochastic dynamics.

This is also true under the rested Markovian model with a large time horizon T . This

is because under these models the optimal policy is a static one. However, under the

restless Markovian model, the optimal policy is no longer a static one. In general,

the optimal policy dynamically switches between the arms based on the perceived

state of the system by the agent. The regret with respect to such an optimal policy

is called strong regret.

Definition I.10. Strong regret in the uncontrolled restless single-agent model: Let Γ

be the set of admissible policies which can be computed using the stochastic dynamics

of the arms. Those are the policies for which the action of agent at any time depends

on the set of transition probabilities P = {P 1, P 2, . . . , PK}, initial belief about the

state of the system ψ0, and past observations and actions. For an agent using a

15

learning algorithm α, selecting M ≤ K arms at each time step, the strong regret by

time T is

Rα(T) := sup
γ′∈Γ

EPψ0,γ′

 T∑
t=1

∑
k∈γ′(t)

rk(t)

− EPψ0,α

 T∑
t=1

∑
k∈α(t)

rk(t)

 .
In the definition of strong regret, we compare the performance of the learning algo-

rithm α with the optimal policy computed without taking computation and switching

costs into consideration. Note that when P is known, the optimal policy is computed

once, at the beginning, and the agent plays according to that policy. Therefore the

optimal policy given P does not depend on the cost of computation. However, a

policy which is optimal when there are no switching costs may not be optimal when

there are switching costs. When we introduce the switching cost Cswc, the strong

regret becomes

Rα(T) := sup
γ′∈Γ

EPψ0,γ′

 T∑
t=1

∑
k∈γ′(t)

rk(t)− Cswcmswc(T)


− EPψ0,α

 T∑
t=1

∑
k∈α(t)

rk(t)− Cswcmswc(T)− Ccmpmcmp(T)

 . (1.2)

Note that the strong regret is a stronger performance measure than infinite horizon

average reward. Firstly, it holds for all finite T . Secondly, even if two algorithms have

the same average reward, the difference between their asymptotic regret (as T →∞)

can be unbounded. In fact, strong regret specifies how fast the algorithm converges

to the optimal average reward. An alternative performance measure is to compare

the average reward of the algorithm with the average reward of the optimal policy

with known stochastic dynamics. This performance measure is called approximate

optimality.

Definition I.11. Approximate optimality in the single-agent model: Let OPT be the

16

average reward of the optimal policy given the stochastic dynamics. The learning

algorithm α for the agent is ε approximately optimal if

lim inf
T→∞

EPα

[∑T
t=1

∑
k∈α(t) r

k(t)

T

]
≥ εOPT.

Similar to the strong regret model, we can incorporate computation and switchings

costs to the approximate optimality criterion. Note that any algorithm with sublinear

number of computations and switchings in time will have the same average reward as

the optimal policy computed without computational and switching costs.

1.2.5 Multi-agent Performance Models

For the multi-agent model we only consider weak regret. For definition of the weak

regret we need to consider the interaction between the agents. Firstly, we define

the regret for the collision model given in Definition I.5. For all agent interaction

models except the agent-dependent interaction model, we assume that agents cannot

communicate with each other. Therefore, we do not include to cost of communication

for these models.

Definition I.12. Weak regret in the collision model: With M decentralized agents,

under the agent interaction model given in Definition I.5, when agent i uses algorithm

αi to select a single arm at each time step, the weak regret up to time T is

Rα(T) := T
M∑
k=1

µσk − EPα

[
T∑
t=1

M∑
i=1

rαi(t)(t)I(ntαi(t) = 1)

]
,

where αi(t) is the arm selected by agent i at time t, and I(ntαi(t) = 1), which is the

indicator function of the event {ntαi(t) = 1}, indicates that the reward from arm αi(t)

17

is collected only when agent i is the only agent on that arm, or equivalently

Rα(T) = T

M∑
k=1

µσk − EPα

[
T∑
t=1

K∑
k=1

rk(t)I(ntk = 1)

]
.

Definition I.13. Weak regret in the random sharing model: With M decentralized

agents, under the agent interaction model given in Definition I.6, when agent i uses

algorithm αi to select a single arm at each time step, the weak regret up to time T is

Rα(T) := T
M∑
k=1

µσk − EPα

[
T∑
t=1

K∑
k=1

rk(t)I(ntk ≥ 1)

]
.

Even though we will not analyze the random sharing model directly, for the al-

gorithms we propose, the upper bounds on regret we prove in the collision model

will also hold for the random sharing model. This is because the observations of the

agents remains the same (since we assume that collision does not affect an agents

ability to observe the reward, but only effects its ability to collect the reward), while

at each time step the collected reward in the random sharing model is greater than

or equal to the collected reward in the collision model.

Note that for all the definitions of the weak regret above, we compare the algo-

rithms performance with respect to the strategy that always selects the M best arms,

which is an orthogonal configuration, i.e., all agents select different arms. The com-

putation and switching costs can be added to the weak regret in a similar way with

the single agent model. For example, the weak regret of the collision model becomes

Rα(T) := T
M∑
k=1

µσk−EPα

[
T∑
t=1

K∑
k=1

rk(t)I(ntk = 1)− Ccmp
M∑
i=1

mi
cmp(T)

−Cswc
M∑
i=1

mi
swc(T)

]
, (1.3)

where mi
cmp(T) is the number of NP-hard computations by agent i by time T and

18

mi
swc(T) is the number of switchings by agent i by time T .

For the general symmetric interaction model given in Definition I.7, we need to

take into account the fact that there may be more than one agent on each arm in

the optimal allocation. In the general symmetric interaction model, let rk,n(t) be the

random variable which denotes the reward of arm-activity pair (k, n) at time t. It is

important not to confuse this random variable with rk(x, n) which denotes the reward

from state x of arm k when there are n agents on it.

Definition I.14. Weak regret in the general symmetric interaction model: Given

µk,n,∀k ∈ K, n ∈M, the optimal allocation of arms to agents is the set of allocations

A∗ := arg max
a∈A

M∑
i=1

µai,nai (a),

where a = (a1, a2, . . . , aM) ∈ A is the vector of arms chosen by the agents 1, 2, . . . ,M

respectively, nk(a), k ∈ K is the number of agents on arm k under vector a, and

A := {a : ai ∈ K,∀i ∈ M} is the set of possible arm selections by the agents. Let

N := {n = (n1, n2, . . . , nK) : nk ≥ 0, n1 + n2 + . . .+ nK = M} be the set of possible

number of agents on (agents selecting) each arm, where nk is the number of agents

on arm k. An equivalent definition of the optimal allocation in terms of elements of

N is

N ∗ := arg max
n∈N

K∑
k=1

nkµk,nk .

Let v∗ be the value of the optimal allocation. Then the weak regret by time T is

Rα(T) := Tv∗ − EPα

[
T∑
t=1

M∑
i=1

rαi(t),ntαi(t)
(t)

]
.

It turns out that in the general symmetric interaction model, an agent should form

an estimate of the best combination of agents and arms. Forming such an estimate

19

is a combinatorial optimization problem which is NP-hard in general. Thus, adding

computation and switching costs, the weak regret becomes

Rα(T) := Tv∗−EPα

[
T∑
t=1

M∑
i=1

rαi(t),ntαi(t)
(t)− Ccmp

M∑
i=1

mi
cmp(T)

−Cswc
M∑
i=1

mi
swc(T)

]
. (1.4)

A generalization of the general symmetric interaction model is the agent-specific in-

teraction model which is given in Definition I.8. In this model, let rik,n(t) be the

random variable which denotes the reward of arm-activity pair (k, n) to agent i at

time t. Since the observations of an agent in this case does not provide any informa-

tion about the rewards of other agents, agents should share their perception of the

arm rewards with other agents in order to cooperatively achieve some performance

objective. We assume that whenever an agent communicates with any other agent,

it incurs cost Ccom.

Definition I.15. Weak regret in the agent-specific interaction model: Given µik,n,∀k ∈

K, i, n ∈M, the set of optimal allocations is

A∗ = arg max
a∈A

M∑
i=1

µiai,nai (a),

where a = (a1, a2, . . . , aM) ∈ A is the vector of arms selected by agents 1, 2, . . . ,M

respectively, and A = KM is the set of possible arm selections by the agents. Let v∗

be the value of the optimal allocation. Then the weak regret by time T is

Rα(T) := Tv∗ − EPα

[
T∑
t=1

M∑
i=1

riαi(t),ntαi(t)
(t)

]
.

When computation, switching and communication costs are added, the weak re-

20

gret becomes

Rα(T) := Tv∗−EPα

[
T∑
t=1

M∑
i=1

riαi(t),ntαi(t)
(t)− Ccmp

M∑
i=1

mi
cmp(T)

−Cswc
M∑
i=1

mi
swc(T)− Ccom

M∑
i=1

mi
com(T)

]
. (1.5)

1.2.6 Degree of Decentralization

In this section we define various degrees of decentralization that may be possible

in a multi-agent system. These settings are ordered according to increasing feedback

and communication among the agents. Let rik(t) denote the reward agent i receives

from arm k at time t.

Model I.16. No feedback. Under this model, upon selecting arm k at time t, agent

i only observes the reward rik(t), but not the number of other agents selecting arm k

(ntk) or state of arm k (xtk).

For example, in a dynamic spectrum access problem where arms are channels,

Model I.16 applies to systems of relatively simple and primitive radios that are not

equipped with threshold or feature detectors.

Model I.17. Binary feedback. Under this model, upon selecting arm k at time

t, agent i observes the reward rik(t). At the end of the time slot t, agent i receives

a binary feedback z ∈ {0, 1} where z = 0 means that agent i is the only agent who

selected arm k at time t, and z = 1 means that there is at least one other agent who

also selected arm k at time t.

Similar to the previous example, in a dynamic spectrum access problem, agents

who are equipped with a threshold detector can infer if there are other agents who

used the same channel with them.

21

Model I.18. Partial feedback. Under this model, upon selecting arm k at time

t, agent i observes the reward rik(t) and acquires the value ntk. Moreover, each agent

knows the total number of agents M .

Again, Model I.18 applies to a system of more advanced radios, those that are

equipped with a threshold or feature detector. Based on the interference received, a

user/agent can assess the simultaneous number of users in the same channel. The

same can be achieved by each radio broadcasting its presence upon entering the

network, and upon selecting a channel.

Model I.19. Partial feedback with synchronization. Under this model, upon

selecting arm k at time t, agent i observes the reward rik(t) and acquires the value ntk.

Each agent knows the total number of agents M . Moreover, the agents can coordinate

and pre-determine a joint allocation rule during initialization.

As an example, Model I.19 applies to a system of more advanced radios as in the

previous model. Moreover, each radio is equipped with sufficient memory to keep an

array of exploration sequences based on its identity, i.e, a sequence of channels that

should be selected consecutively.

Model I.20. Costly communication. In this model, agents can communicate with

each other, but communication incurs some cost Ccom > 0. Upon selecting arm k at

time t, agent i observes the reward rik(t) but nothing more.

In Model I.20, we generally assume that the agents can exchange messages over a

common control channel. However, if arms are channels as in the dynamic spectrum

access problem, agents can communicate over the arms. A common control channel

is not needed in this case.

22

1.3 Literature Review

In this section we review the literature on bandit problems. We classify the bandit

problems according to the number and reward generation process of the arms, corre-

lation between the reward processes of the arms, and the number of agents. We also

mention the bandit optimization problems, in which the goal is find computationally

efficient methods to calculate the optimal policy. These problems do not involve any

learning.

1.3.1 Classical Single-agent Models

The single-agent bandit problem is investigated by many researchers over the past

decades. Motivated by clinical trials this problem is first studied in Thompson (1933),

and the seminal work Robbins (1952) set the foundations of the bandit problem. In

the classical single-agent models, there is a finite set of independent arms.

Most of the existing literature assumes an IID model for the reward process of

each arm. Below we discuss accomplishments in the IID model. Since the optimal

policy is a static policy in the IID model, weak regret which is given in Definition

I.9 compares the performance of the learning algorithm with respect to the optimal

policy. Therefore for the IID model, weak regret is the same as strong regret which

is given in Definition I.10. Since they are equivalent we simply call it the regret.

In Lai and Robbins (1985) the problem where there is a single agent that plays

one arm at each time step is considered, assuming an IID reward process for each arm

whose probability density function (pdf) is unknown to the agent, but lies in a known

parametrized family of pdfs. Under some regularity conditions such as the denseness

of the parameter space and continuity of the Kullback-Leibler divergence between

two pdfs in the parametrized family of pdfs, the authors provide an asymptotic lower

bound on the regret of any uniformly good policy. This lower bound is logarithmic

in time which indicates that at least logarithmic number of samples should be taken

23

from each arm to decide on the best arm with a high probability. They define a policy

to be asymptotically optimal if it achieves this lower bound, and then construct such

a policy. This result is extended in Anantharam et al. (1987a) to single agent and

multiple plays, in which the agent selects multiple arms at each time step. The policies

proposed in these two papers are index policies, which assign an index to each arm

based on the observations from that arm only, and select the arm with the highest

index at each time step. However, complexity of deciding on which arm to select

increases linearly in time both in Robbins (1952) and Anantharam et al. (1987a) which

makes the learning policies computationally infeasible. This problem is addressed

in Agrawal (1995a) where sample mean based index policies are constructed. The

complexity of a sample mean based policy does not depend on time since the decision

at each time step only depends on the average of the rewards in the previous time

steps, not on the reward sequence itself. The policies proposed in Agrawal (1995a)

are order optimal, i.e., they achieve the logarithmic growth of regret in time, which is

shown to be the best possible rate of growth. However, they are not in general optimal

because the constant term which multiplies the logarithmic expression in time is not

the best possible term.

In all the papers mentioned above, the limiting assumption is that there is a

known single parameter family of pdfs for arm reward processes in which the correct

pdf resides. Such an assumption virtually reduces the arm quality estimation problem

into a parameter estimation problem. This assumption is relaxed in Auer et al. (2002),

which requires that the reward of an arm is drawn from an unknown distribution with

a bounded support. Under this condition, the authors propose an index policy called

the upper confidence bound (UCB1) similar to the one in Agrawal (1995a) which only

uses the sample means of the reward sequences. They prove order-optimal regret

bounds that hold uniformly over time, not just asymptotically.

In Auer and Ortner (2010) a modified version of UCB1 with an order-optimal

24

regret bound that has a smaller constant than the regret bound of UCB1 is proposed.

In Garivier and Cappé (2011), the authors propose an index policy, KL-UCB, which

is uniformly better than UCB1. Moreover, this policy is shown to be asymptotically

optimal for Bernoulli arm rewards. Authors in Audibert et al. (2009) consider the same

problem with Auer et al. (2002), but in addition take into account empirical variance

of the arm rewards for arm selection. They provide a logarithmic upper bound on

regret with better constants under the condition that the suboptimal arms have low

reward variance. In addition, they derive probabilistic bounds on the variance of the

regret by studying its tail distribution.

In the papers that are mentioned above, the uniform regret bounds hold for

bounded reward distributions. Online learning in bandit problems is extended to

heavy-tailed reward distributions in Liu and Zhao (2011) using deterministic explo-

ration and exploitation sequences. Specifically, when the reward distributions have

central moments up to any order, logarithmic regret uniform in time is achievable.

It is also shown that even if the reward distributions have central moments up to a

finite order p, sublinear regret uniform in time, in the order O(T 1/p), is achievable.

Another part of the literature is concerned with the case when the reward process

for each arm is Markovian. This offers a richer framework for the analysis, especially

more suitable to real-world applications including opportunistic spectrum access. Re-

sults in the Markovian reward model can be divided into two groups

The first group is the rested Markovian model given in Definition I.2, in which

the state of an arm evolves according to a Markov rule when it is played by the

agent, and remains frozen otherwise. Similar to the IID model, it can also be shown

that the weak regret and strong regret is the same for the rested Markovian model

(after some finite number of time steps) and the optimal policy is a static policy that

plays the arms with the highest expected rewards. A usual assumption under this

model is that the reward process for each arm is modeled as a finite-state, irreducible,

25

aperiodic Markov chain. This problem is first addressed in Anantharam et al. (1987b)

assuming a single parametrized transition probability model, where asymptotically

optimal index policies with logarithmic regret is proposed. In Tekin and Liu (2010),

we relax the parametric assumption on transition probabilities, and prove that a slight

modification of UCB1 in Auer et al. (2002) achieves logarithmic regret uniformly in

time for the rested Markovian problem. Different from Anantharam et al. (1987b)

our result holds for any finite time, and our algorithm, which needs only the sample

mean of the collected rewards, is computationally simpler. However, the constant

that multiplies the logarithmic term is not optimal. This work constitutes Chapter

II of the thesis.

The second group is the restless Markovian model in which the state of an arm

evolves according to two different Markov rules depending on whether the agent

played that arm or not. Clearly, the optimal policy is not necessarily a static policy,

thus weak regret and strong regret are different performance measures for this model.

This problem is significantly harder than the rested Markovian case, and even when

the transition probabilities of the arms are known by the agent, it is PSPACE hard to

approximate as shown in Papadimitriou and Tsitsiklis (1999). Because of this diffi-

culty, most of the authors focus on algorithms whose performance can be evaluated in

terms of the weak regret. Specifically, in Tekin and Liu (2011b) we propose a learning

algorithm which estimates mean rewards of the arms by exploiting the regenerative

cycles of the Markov process. This algorithm is computationally simple and requires

storage which is linearly increasing in the number of arms. We prove that this algo-

rithm has logarithmic weak regret for a more general restless Markovian model given

in Definition I.3. This work constitutes Chapter III of the thesis. In a parallel work,

Liu et al. (2010), the idea of geometrically growing exploration and exploitation block

lengths is used to prove a logarithmic weak regret bound. The difference is that the

block lengths in Liu et al. (2010) is deterministic, while the block lengths in Tekin

26

and Liu (2011b) are random.

Since weak regret does not provide a comparison with respect to the optimal

policy for the restless Markovian model, we study stronger measures of performance

in Tekin and Liu (2012a) and Tekin and Liu (2011a), which forms Chapters V and

IV of this thesis. Specifically, in Tekin and Liu (2012a) we consider an approxi-

mately optimal, computationally efficient algorithm for a special case of the restless

Markovian bandit problem which is called the feedback bandit problem. This prob-

lem is studied in Guha et al. (2010) in an optimization setting rather than a learning

setting. We combine learning and optimization by using a threshold variant of the op-

timization policy proposed in Guha et al. (2010) in exploitation steps of the proposed

learning algorithm. Because of the computational complexity result in Papadimitriou

and Tsitsiklis (1999), it is not possible to achieve logarithmic strong regret with a

computationally feasible algorithm for the restless Markovian model. However, the

existence of a learning algorithm with logarithmic strong regret is still an interesting

open problem. In Tekin and Liu (2011a) we consider this problem, and propose a

learning algorithm with logarithmic strong regret uniform in time for the uncontrolled

restless Markovian model given in Definition I.4. This result can be seen as a step

towards optimal adaptive learning in partially observable Markov decision processes.

Different from our work, in Dai et al. (2011) strong regret is considered with a

policy-based approach. The authors assume that the agent is given a set of policies

which includes the optimal policy. They provide an algorithm where there is a pre-

determined sequence of blocks with increasing lengths, and during a block the policy

with the highest sample mean reward up to date is selected. In essence, the algorithm

treats each policy as a policy-arm, and keeps track of the sample mean rewards of each

policy-arm. This algorithm achieves G(T)O(logT) strong regret, where G(T) can be

an arbitrary slowly diverging sequence. Although this result is promising because it is

computationally simple, in a general restless bandit problem the number of policies is

27

infinite, and the policy space is exponential in the number of arms. Moreover, most of

the policies can be highly correlated but the algorithm considers them independently.

Other than the bounds on regret, another interesting study is to derive proba-

bly approximately correct (PAC) bounds on the number of explorations required to

identify a near-optimal arm. In other words, find the expected number of exploration

steps such that at the end of explorations the algorithm finds a near-optimal arm

with high probability. Even-Dar et al. (2002) and Mannor and Tsitsiklis (2004) are

some examples of the research in this direction.

Similar to learning in bandit problems, learning in unknown Markov decision pro-

cesses (MDPs) is considered by several researchers. In a finite, irreducible MDP with

bounded rewards, logarithmic regret bounds with respect to the best deterministic

policy is considered in Burnetas and Katehakis (1997); Ortner (2007); Tewari and

Bartlett (2008); Ortner (2008). In Burnetas and Katehakis (1997) the authors pro-

pose an index-based learning algorithm, where the indices are the inflations of right-

hand sides of the estimated average reward optimality equations based on Kullback-

Leibler (KL) divergence. Although not computationally feasible, assuming that the

support of the transition probabilities are known by the agent, they show that this

algorithm achieves logarithmic regret asymptotically, and it is optimal both in terms

of the order and the constant.

The same problem is also studied in Tewari and Bartlett (2008), and a learning

algorithm that uses l1 distance instead of KL divergence with the same order of regret

but a larger constant is proposed. Different form Burnetas and Katehakis (1997),

knowledge about support of the transition probabilities is not required. A learning

algorithm with logarithmic regret and reduced computation, which solves the average

reward optimality equation only when a confidence interval is halved is considered in

Auer et al. (2009), and learning in an MDP with deterministic transitions is studied

in Ortner (2008).

28

1.3.2 Classical Multi-agent Models

Unlike classical single-agent models, multi-agent bandit problems became a pop-

ular area of research recently. Many practical applications involving multi-agent dy-

namic resource allocation can be analyzed using the bandit framework. The properties

of the multi-agents models that are not present in the single-agent models include in-

formational decentralization, strategic/selfish behavior and communication between

the agents. In a classical multi-agent bandit problem there is a finite set of indepen-

dent arms.

Most of the relevant work in multi-agent bandit problems assumes that the best

static configuration of agents on arms is such that at any time step there is at most

one agent on an arm. We call such a configuration an orthogonal configuration.

Multi-agent bandits with IID reward model is considered in Liu and Zhao (2010)

and Anandkumar et al. (2011), and distributed learning algorithms with logarith-

mic regret are proposed assuming that the best static configuration is an orthogonal

configuration. Specifically, the algorithm in Liu and Zhao (2010) uses a mechanism

called time division fair sharing, where an agent shares the best arms with the others

in a predetermined order. Whereas in Anandkumar et al. (2011), the algorithm uses

randomization to settle to an orthogonal configuration, which does not require pre-

determined ordering, at the cost of fairness. In the long run, each agent settles down

to a different arm, but the initial probability of settling to the best arm is the same

for all agents.

In addition to the IID reward model, some researchers considered the restless

Markovian model. In Tekin and Liu (2012d), we design a distributed learning algo-

rithm with logarithmic weak regret for the restless Markovian model. Our approach

is based on a distributed implementation of the regenerative cycle algorithm we pro-

posed for the single-agent bandits. This work forms Chapter VI of the thesis. Different

from our work, in Liu et al. (2011) the authors propose a learning algorithm based

29

on deterministic exploration and exploitation blocks, which also achieves logarithmic

weak regret for the restless Markovian model.

Although the assumption on optimality of orthogonal configuration is suitable for

applications in communication systems such as random access or collision models, it

lacks the generality for applications like code division multiple access and power con-

trol in wireless systems. In a general resource sharing problem, agents may still get

some reward by sharing the same resource. This motivates us to have an agent-centric

approach to online resource sharing problems. Specifically, based on the character-

istics of the agents including computation power, switching costs, communication

ability and degree of decentralization, we propose online learning algorithms with

variaous performance guarantees in Tekin and Liu (2011c, 2012b). This work consti-

tutes Chapter VII of the thesis. Specifically, in Tekin and Liu (2011c) we propose a

randomized algorithm with sublinear regret with respect to the optimal configuration

of agents for the IID model, and in Tekin and Liu (2012b) we propose algorithms

based on deterministic sequencing of exploration and exploitation with logarithmic

weak regret with respect to the optimal configuration which work for both the IID

and restless Markovian models.

1.3.3 Models with Correlation

Both the classical single-agent and multi-agent models consider finite number of

independent arms. Therefore using the algorithms designed for these models will not

result in optimal performance when the arms are correlated, i.e., the reward of an

arm at time step t can depend on the reward of another arm at time step t. In these

settings, learning algorithms that exploit the correlation between the arms perform

better. In the literature there are many different assumptions about the correlation

structure. However, we can group these into two main areas: bandits with finite

number of arms with a combinatorial structure and bandits with infinite number of

30

arms.

Usually the classical models focus on achieving logarithmic regret in time, without

considering the dependency of regret on the number of arms (which is linear in most

of the cases), while models that exploit correlation between the arms also try to

reduce the growth of regret with the number of arms (sublinear or logarithmic for

finite number of arms). When there are infinitely many arms sublinear regret bounds

(in time) can be achieved by exploiting the correlation. Unless otherwise stated, the

results for the models with correlation is usually restricted to a single-agent.

When the number of arms is finite, an IID model where expected rewards of the

arms are correlated through a linear function of an unknown scalar whose distribution

is known by the agent is considered in Mersereau et al. (2009), where the agent knows

the distribution of the unknown scalar. Under some assumptions on the structure of

known coefficients, they prove that a greedy algorithm that chooses the arm with the

highest posterior mean reward is optimal in the infinite horizon discounted setting,

and the play settles to the best arm with probability one. This is in contrast to

the incomplete learning theorem stated in Brezzi and Lai (2000), which says that

in the classical bandit setting, the agent needs to indeterminately switch between

exploration and exploitation in order to avoid the possibility of settling down to a

suboptimal arm. The authors also show that under the undiscounted setting the

asymptotic weak regret of the greedy policy is finite, contrary to the unbounded

O(log T) regret results in the classical bandit problems. In Pandey et al. (2007)

a model where the arms are separated into clusters, with the correlation between

the arms in a cluster is described by a generative model with unknown parameters

is considered. Authors propose a two stage algorithm that first chooses a cluster,

and then an arm within that cluster. Numerical results show that exploiting the

dependencies in a cluster reduces the regret.

A combinatorial bandit framework is studied in Gai et al. (2012a, 2011, 2012b)

31

with IID, rested Markovian and restless Markovian models respectively. In a com-

binatorial bandit an agent chooses a set of arms. Reward the agent receives is a

linear combination of the rewards of the individual arms. In addition to receiving the

combination of rewards the agent observes the individual rewards generated by each

selected arm. The number of arm combinations that the agent can choose from is ex-

ponential in the number of arms, therefore classical bandit algorithms such as UCB1

suffers a regret exponential in the number of arms for this problem. Moreover UCB1

has to store an index for each combination, which also makes the storage exponential

in the number of arms. The authors overcome this problem by proposing algorithms

that update the index of each arm separately, and compute the optimal pair based

on a bipartite matching. Both the storage and the regret of these algorithms are

polynomials in the number of arms.

When there are infinitely many arms, the correlation is usually given by a dis-

tance metric that relates the distance between the arms with the distance between

their expected rewards. Examples of this line of work are given in Rusmevichientong

and Tsitsiklis (2010); Bartlett et al. (2008); Dani et al. (2008); Jiang and Srikant

(2011). Specifically, linearly parameterized bandits in which the expected reward of

each arm is a linear function of an r-dimensional random vector is considered in Rus-

mevichientong and Tsitsiklis (2010). A similar linear optimization formulation of the

bandit problem is considered in Dani et al. (2008). A high probability regret bound

is considered in Bartlett et al. (2008) for the problem studied in Dani et al. (2008).

In Jiang and Srikant (2011) the authors propose another parametric model, in which

an arm is associated with a finite dimensional attribute vector. In all of the papers

mentioned above, learning algorithms with sublinear regret bounds are proposed.

In Kleinberg et al. (2008) the authors study Lipschitz bandits, where agents’ ac-

tions form a metric space, and the reward function satisfies a Lipschitz condition with

respect to this metric. They provide a sublinear lower bound on regret, and propose

32

a zooming algorithm which achieves regret arbitrarily close to the lower bound.

In Tekin and Liu (2012c), we model an online contract selection problem as a

bandit problem with uncountable number of arms and a combinatorial structure.

Different from the work on bandits with infinitely many arms, we exploit the com-

binatorial structure to prove a sublinear regret bound that has linear dependence on

the dimension of the problem. This work forms Chapter VIII of the thesis.

Another type of bandits in which the correlation structure is exploited is con-

textual bandits (bandits with side information). In a contextual bandit there is a

predetermined unknown sequence of context arrivals. Different from the classical

bandit setting, the decision of the agent is also based on the newly arrived context.

The goal of the agent is to choose the best arm given the context. One of the early

notable work in this area is Wang et al. (2005) in which exploitation of side infor-

mation for a two-armed bandit setting is considered. Usually, the number of arms is

infinite and the agent is given a similarity metric by which it can deduce the correla-

tion between different context-arm pairs. Important papers under large arm sets are

Langford and Zhang (2007), which provides an epoch-greedy algorithm with sublin-

ear regret, Slivkins (2009), which gives tight upper and lower bounds on the regret

when the agent is provided with the similarity information, and Rosin (2011), which

considers episodic context arrivals.

1.3.4 Non-stationary and Adversarial Models

In this section we review the literature on bandit problems with rewards generated

either by a non-stationary process or by an adversary. In non-stationary bandits either

the number of arms or arm reward distributions vary dynamically over time, while in

adversarial bandits the arm rewards are generated by an adversary whose goal is to

minimize the total reward of the agent. The adversary can be an oblivious adversary,

which means that at the beginning it can choose a sequence of arm rewards according

33

to the agent’s algorithm to minimize the agent’s total reward, but once the agent

starts playing it cannot adaptively change the sequence of arm rewards based on the

history of play of the agent. The adversary capable of doing this is called the adaptive

adversary. Since the set of possible strategies for an adaptive adversary includes the

set of strategies for an oblivious adversary, the performance of the agent will be worse

for an adaptive adversary compared to an oblivious adversary.

The seminal work Auer et al. (2003) considers the adversarial bandit problem, and

proves sublinear upper and lower bounds on weak regret for an oblivious adversary.

The weak regret in this problem compares the performance of the agent’s learning

algorithm with the arm that yields the highest expected reward given the hindsight.

Their proof of the lower bound shows that there exists reward distributions for which

no learning algorithm can have a weak regret better than O(
√
T). Their upper bound

matches the lower bound up to a logarithmic factor. Since the oblivious adversary can

be seen as the worst-case reward distribution, their algorithm yields the same weak

regret result under both IID and Markovian reward models. In Bianchi and Lugosi

(2009) the authors study an adversarial-type combinatorial problem where at each

time step an agent chooses a binary vector from a subset S of K-dimensional vectors

and an adversary chooses a K-dimensional loss vector. They provide O(
√
TK log |S|)

weak regret bound with respect to the best fixed binary vector for this case. A special

case of this problem is considered in Kale et al. (2010), and a similar but more general

adversarial linear optimization version is considered in McMahan and Blum (2004),

where O(T 3/4
√

log T) weak regret bound is proved (ignoring the dependence on size

of S which may be infinite in this case). In Hazan and Kale (2009) the authors

propose a novel O(
√
Q) regret bound, where Q is the total observed variation in total

loss. Although the regret increases with increasing Q, this bound is never worse than

O(
√
T). When the adversary is adaptive, it is shown in Arora et al. (2012) that the

weak regret with respect to the best constant action sequence cannot be sublinear

34

in time. Therefore the authors consider a memory-bounded adaptive adversary, who

can set arm rewards adaptively only depending on the recent actions of the agent,

and show that it is possible to achieve sublinear weak regret.

Different from the research on adversarial bandits described above, in Garivier and

Moulines (2008) the authors consider a non-stationary model where arm reward dis-

tributions are IID and fixed through an interval and change at random time instants.

They provide O(
√
T) lower bound on regret and propose two algorithms: discounted

UCB with O(log T
√
T) weak regret and sliding window UCB with O(

√
log TT) weak

regret. A non-stationary IID model where mean reward changes according to a Brow-

nian motion with reflecting boundaries is studied in Slivkins and Upfal (2008). They

try to minimize the average cost per step compared to an algorithm which selects the

arm with the highest expected reward at each time step. Specifically, they consider

a state oblivious case where the agent only observes the reward and a state informed

case where the agent not only observes the reward but also observes the expected re-

ward of the selected arm. They propose algorithms with O(Kσ2) and O(Kσ) average

cost per step for the state informed and state oblivious cases respectively, based on

the volatility σ ∈ [0, 1) of the Brownian motion, where K is the number of arms.

1.3.5 Bandit Optimization Problems

In the bandit optimization problems agents are given the stochastic dynamics

of the system. Hence the difficulty is the computational complexity of the optimal

solution. The original rested multi-armed bandit optimization problem is proposed

in the seminal work Gittins and Jones (1972) under the infinite horizon discounted

setting with independent arms. They showed that the problem of finding the optimal

policy reduces to computing K dynamic allocation indices, one for each arm based

on the history of play only on that arm. The optimal policy selects the arm with the

highest index at each time step. Due to the rested nature of the problem, only the

35

index of the selected arm is updated at each time step, while the indices of other arms

remain constant. Whittle (1980) showed the optimality of dynamic allocation indices

via a dynamic programming approach by computing retirement values for each arm.

Alternative proofs of the optimality of dynamic allocation indices, and extensions are

given by many others, including Whittle (1981); Varaiya et al. (1985); Weber (1992);

Tsitsiklis (1994); Frostig and Weiss (1999). Specifically, Whittle (1981) considers

arm-acquiring bandits, where new branches of arms are formed from a selected (root)

arm.

The restless bandit optimization problem is first proposed in Whittle (1988), un-

der infinite horizon average reward (undiscounted) setting. A heuristic index policy

(Whittle’s index policy) is formed by relaxing the constraint of selecting a single arm

at each time step, to selecting a single arm on average. The linear program formed

this way is later named Whittle’s LP, and arms are decoupled via a Lagrangian ar-

gument. Although no optimality result is established for Whittle’s index policy, for

most of the instances its near-optimality is justified by numerical results. A special

case of this problem called monotone bandits is considered in Guha et al. (2010), and

an approximately optimal index policy based on a global Lagrange multiplier is pro-

posed. A special case of two-state, identical, positively correlated arms is studied by

Ahmad et al. (2009). They showed that a myopic policy which chooses the arm with

the highest probability of being in a good state is optimal for both the discounted

and undiscounted settings.

General conditions for indexability of bandit problems are studied in Bertsimas

and Niño-Mora (1996); Nino-Mora (2001). Comprehensive discussion on bandit op-

timization problems and their applications can be found in Gittins et al. (1989);

Mahajan and Teneketzis (2008); Bergemann and Valimaki (2006).

36

1.4 Our Contributions

In most of the systems, agents do not know the dynamics of the system a priori.

They learn the dynamics over time as a result of interaction with the system. In

this thesis we do not assume any a priori knowledge about the dynamics of the arms.

An agent’s task is to learn the stochastic dynamics by estimating system parameters

based on its own information, while incurring minimal loss in terms of system payoff

with respect to an agent which knows the dynamics of each arm perfectly. Some

researchers focus on unknown but stationary dynamics by assuming that each arm

evolves according to an independent and identically distributed (IID) process. In

this case, the problem is reduced to accurately estimating the expectation of the

distribution of each arm. We mainly focus on Markovian dynamics, which captures

the fact that the average quality of an arm may change over time. For example,

in web advertising the preferences of customers may change over time, or in clinical

trials a virus may mutate so that its response to a drug may change over time.

Our contributions can be divided into two main sections. The first is the design of

algorithms with various complexity and performance constraints for the single-agent

bandits. The second is the design of distributed algorithms for the decentralized

multi-agent bandits by taking into account additional constraints such as the degree

of decentralization and communication requirements.

1.4.1 Algorithms for Single-agent Bandits

For a single agent and Markovian arm rewards we can specify our achievements

as follows. Our first class of algorithms are index policies based on the agent’s sample

mean estimate of the quality of each arm using a regenerative cycle approach to trans-

form a Markovian observation process into an IID one. For this class of algorithms

we prove logarithmic weak regret results that holds uniformly in time, which implies

that the agent can run these algorithms for an indeterminate amount of time, with-

37

out knowing the time horizon a priori. Moreover, these algorithms are very simple

to implement since the agent can calculate the indices of arms in a recursive manner

by only keeping track of the sample mean of the observations from each arm.

The second class of algorithms we propose is optimal in the strong sense. That

is, they achieve logarithmic strong regret uniformly in time. We provide a character-

ization of arm statistics under which strong regret is achievable. The main problem

with strong regret algorithms is that they need to solve average reward optimality

equations based on the estimated statistics, which is computationally intractable in

general.

Our third class of algorithms provides a bridge between the first two classes.

Instead of logarithmic regret with respect to the optimal policy, they are guaranteed

to accrue reward within a constant factor of the optimal policy for the infinite horizon

average reward problem. This tradeoff in performance allows us to design algorithms

with linear complexity in the number of arms, and polynomial complexity in time.

We summarize our achievements for single-agent models in the list below:

(1) For the rested Markovian model (given in Definition I.2) with M ≤ K plays at

each time step, UCB (given in Figure 2.1) has weak regret (given in Definition

I.9) of O(K log T), uniformly in T (see Theorem II.3).

(2) For the restless Markovian model (given in Definition I.3) with M ≤ K plays at

each time step, RCA (given in Figure 3.3) has weak regret (given in Definition

I.9) of O(K log T), uniformly in T (see Theorem III.2).

(3) For the uncontrolled restless Markovian model (given in Definition I.4) with a

single play at each time step, IRCEP (given in Figure 4.1) has strong regret

(given in Definition I.10) of O(log T), uniformly in T (see Theorem IV.22).

(4) For a special case of the uncontrolled restless Markovian model (given in Defini-

tion I.4) called the feedback bandit model, with a single play at each time step,

38

ABA (given in Figure 5.5) is (2 + ε) approximately optimal (given in Definition

I.11) (see Theorem V.12).

(5) For the contract selection problem proposed in Chapter VIII, in which the number

of arms is exponential in the number of contracts, and each contract can be

selected from an uncountable set, when a continuity property holds for the seller’s

expected reward from the bundles of contracts, algorithms TLVO and TLFO

(given in Figures 8.3 and 8.5), which require the time horizon T as an input,

achieve sublinear regret uniformly in T (see Corollaries VIII.7 and VIII.9).

1.4.2 Algorithms for Multi-agent Bandits

As we mentioned before, multi-agent bandits have informational decentralization

and communication aspects which are not present in single-agent bandits. Similar to

the single-agent bandits, our regret bounds for the multi-agent bandits hold uniformly

over time, and the agents do not need to know the time horizon to adjust their learning

rates.

In the fully-decentralized multi-agent model without any communication and feed-

back, agents can converge to an equilbirium strategy of a well defined game, by using

a distributed learning algorithm.

In the decentralized multi-agent model with restless Markovian arms, when at each

time step a binary feedback about other agents’ activity is available to the agents, we

show that logarithmic regret with respect to the best static (centralized) policy with

known statistics is achievable with a distributed regenerative cycle algorithm. This

model is restricted in the sense that the optimal policy is the one where each arm is

selected by at most one agent, i.e., the optimal policy is an orthogonal policy.

In the partially decentralized model (where each agent observes the number of

agents using the same arm with it) with IID arms, we show that sublinear weak

regret with respect to the optimal policy (with known statistics) is achieved with a

39

distributed randomized algorithm using a decreasing exploration rate. For both IID

and restless Markovian arms, if synchronization between the agents is possible, then

logarithmic weak regret with respect to the best static policy is achievable by using

distributed sequencing of exploration and exploitation.

We summarize our achievements for multi-agent bandits in the list below:

(1) For the IID model (given in Definition I.1), with M ≤ K agents, each playing

a single arm at each time step, when agents receive rewards according to a spe-

cial case of the general symmetric interaction model (given in Definition I.7), in

which the reward an agent gets is the quality of the arm multiplied by the in-

terference from other agents, when no communication or feedback is available to

the agents, using Exp3 (given in Figure 7.1), the joint play of agents converge to

an equilibrium of a well defined congestion game (see Theorem VII.7).

(2) For the restless Markovian model (given in Definition I.3) with M ≤ K agents,

each playing a single arm at each time step, when the agents receive rewards

according to the collision model (given in Definition I.5) or the random sharing

model (given in Definition I.6), if binary feedback (given in Model I.17) is avail-

able to the agents, then DRCA (given in Figure 6.1) has weak regret (given in

Definitions I.12 and I.13) of O(M3K log2 T), uniformly in T (see Theorem VI.5).

(3) For the IID model (given in Definition I.1) with M ≤ K agents, each playing

a single arm at each time step, when agents receive rewards according to the

general symmetric interaction model (given in Definition I.7), if partial feedback

(given in Model I.18) is available to the agents, then RLOF (given in Figure 7.2)

has weak regret (given in Definition I.14) of O(T
2M−1+2γ

2M) for some γ > 0 which

can be chosen arbitrarily small with a tradeoff in finite time regret, uniformly in

T (see Theorem VII.12).

(4) For the IID model (given in Definition I.1) and the restless Markovian model

40

(given in Definition I.3) with M ≤ K agents, each playing a single arm at each

time step, when the agents receive rewards according to the general symmetric

interaction model (given in Definition I.7), if partial feedback with synchroniza-

tion (given in Model I.19) is available to the agents, then DLOE (given in Figure

7.3) has weak regret (given in Definition I.14) of O(M3K log T), uniformly in T

(see Theorems VII.19 and VII.24).

(5) For the IID model (given in Definition I.1) and the restless Markovian model

(given in Definition I.3) with M ≤ K agents, each playing a single arm at each

time step, when the agents receive rewards according to the agent-specific inter-

action model (given in Definition I.8), if costly communication (given in Model

I.20) is available to the agents, then DLC (given in Figure 7.4) has weak regret

(given in Definition I.15) of O(M3K log T), uniformly in T (see Theorems VII.28

and VII.30).

1.5 Organization of the Thesis

The organization of this thesis is as follows. In Chapter II we study the single-

agent rested Markovian bandit problem with single and multiple plays, and in Chapter

III we study the single-agent restless Markovian bandit problem with single and mul-

tiple plays. For both of these chapters, we consider algorithms in the weak regret

setting. We study the single-agent uncontrolled restless Markovian bandit problem

with a single play in Chapter IV in the strong regret setting. A special case of the

uncontrolled restless Markovian bandit problem, called the feedback bandit problem,

with a single agent and single play is considered in Chapter V in the approximate

optimality setting. In Chapter VI we consider the multi-agent restless bandit prob-

lem with a collision model in the weak regret setting. Then, we study multi-agent

bandit problems in a general resource sharing setting in Chapter VII. An online

41

contract selection problem is studied in Chapter VIII, and learning algorithms with

subliner regret are proposed. Finally in Chapter IX, we give concluding remarks and

emphasize possible future research directions.

42

CHAPTER II

Single-agent Rested Bandits

As mentioned in the introduction, in a single-agent rested bandit there is an

agent which sequentially selects M of K arms to maximize its total reward, while the

arms evolve in a Markovian fashion when selected by the agent, and remains frozen

otherwise. In this chapter we show that there exists a learning algorithm whose

weak regret is uniformly logarithmic in time. Previously, Anantharam et al. (1987b)

showed that for this problem asymptotic logarithmic weak regret is achievable when

the transition probabilities are parameterized. Our results in this chapter extends

the previous results by providing finite time regret bounds for a more general non-

parametric transition probability model.

The organization of this chapter is as follows. Problem definition and notations

are given in Section 2.1. Rested bandit problem with a single play is investigated,

and an algorithm with logarithmic regret is proposed in Section 2.2. Extension to

multiple plays is done in Section 2.3. A gambling application and numerical results

are given in Section 2.4. Finally, a discussion is given in Section 2.5.

2.1 Problem Formulation and Preliminaries

Consider K mutually independent rested Markovian arms described in Definition

I.2. For simplicity of presentation, without loss of generality, the arms are ordered

43

according to their mean reward, µ1 ≥ µ2 ≥ . . . ≥ µK (ordering not known by the

agent). Let (P k)′ denote the adjoint of P k on l2(π) where

(pk)′xy = (πkyp
k
yx)/π

k
x, ∀x, y ∈ Si,

and Ṗ k = (P k)′P denote the multiplicative symmetrization of P k. We will assume

that the P k’s are such that Ṗ k’s are irreducible. To give a sense of how weak or strong

this assumption is, we first note that this is a weaker condition than assuming the

arms are reversible Markov chains. This technical assumption is required in a large

deviation bound (Lemma A.1) that we will frequently use in the proofs.

There is an agent which plays M of the K arms at each time step. Although not

required, for simplicity of presentation in this chapter, we will make the additional

assumption that the mean reward of arm M is strictly greater than the mean reward

of arm M + 1, i.e., we have µ1 ≥ µ2 ≥ · · · ≥ µM > µM+1 ≥ · · · ≥ µK . The results

will still hold for µM ≥ µM+1.

We will refer to the set of arms {1, 2, · · · ,M} as the M -best arms and say that

each arm in this set is optimal, while referring to the set {M + 1,M + 2, · · · , K} as

the M -worst arms, and say that each arm in this set is suboptimal.

For a policy α its weak regret Rα(T) is the difference between the expected total

reward that can be obtained by only playing the M -best arms and the expected total

reward obtained by policy α up to time T , which is given in Definition I.9. The

objective is to examine how the regret Rα(T) behaves as a function of T for a given

policy α, and to construct a policy whose regret is order-optimal, through appropriate

bounding. As we will show and as is commonly done, the key to bounding Rα(T) is

to bound the expected number of plays of any suboptimal arm. Let Nα,k(t) be the

number of times arm k is played by policy α at the end of time t, and r̄k(Nα,k(t)) be

the sample mean of the rewards observed from the first Nα,k(t) plays of arm k. When

44

the policy used is clear from the context we will suppress the superscript α from the

above expressions. Although throughout our discussion we will consider a horizon of

T time slots, our regret bounds hold uniformly for all T . Time horizon T is not an

input to our algorithms, so agent does not need to know T .

The notation given in Table 2.1 is frequently used throughout this and the follow-

ing chapters.

β :=
∑∞

t=1 1/t2

πkmin = minx∈Sk π
k
x

πmin := mink∈K π
k
min

rmax := maxx∈Sk,k∈K r
k
x

Smax := maxk∈K |Sk|
π̂max := maxx∈Sk,k∈K

{
πkx, 1− πkx

}
εk: the eigenvalue gap (the difference between 1 and the second largest eigenvalue)

of the multiplicative symmetrization Ṗ k of P k

εmin := mink∈K ε
k

Table 2.1: frequently used expressions

In the next two sections we present algorithms with logarithmic weak regret for

the problem stated in this section for a single play M = 1, and multiple plays M > 1,

respectively.

2.2 Rested Bandit Problem with a Single Play

In this section we show that there exists an algorithm that achieves logarithmic

weak regret uniformly over time for the rested bandit problem with a single play.

The algorithm we consider is called the upper confidence bound (UCB), which is a

slight modification of UCB1 from Auer et al. (2002) with an unspecified exploration

constant L instead of fixing it at 2.

As shown in Figure 2.1, UCB selects the arm with the highest index at each time

step and updates the indices according to the rewards observed. Let yk(t) be the

reward from the tth play of arm k. The index given on line 4 of Figure 2.1 depends

45

on the sample mean reward and an exploration term which reflects the relative un-

certainty about the sample mean of an arm. We call L in the exploration term the

exploration constant. It can be shown that the exploration term grows logarithmically

when the arm is not played in order to guarantee that sufficient samples are taken

from each arm to approximate the mean reward.

The Upper Confidence Bound (UCB) Algorithm

1: Initialize: Play each arm once in the first K slots
2: while t ≥ K do

3: r̄k(t) =
yk(1)+yk(2)+...+yk(Nk(t))

Nk(t)
, ∀k

4: calculate index: gk
t,Nk(t)

= r̄k(Nk(t)) +
√

L ln t
Nk(t)

, ∀k
5: randomly select i∗ ∈ arg maxk∈K g

k
t,Nk(t)

6: t := t+ 1
7: play the arm α(t) = i∗, receive reward ri

∗
(t), N i∗(t) = N i∗(t− 1) + 1.

8: end while

Figure 2.1: pseudocode for the UCB algorithm

To upper bound the regret of the above algorithm logarithmically, we proceed

as follows. We begin by relating the regret to the expected number of plays of the

arms and then show that each suboptimal arm is played at most logarithmically in

expectation. These steps are illustrated in the following lemmas.

Lemma II.1. Assume that all arms are finite-state, irreducible, aperiodic, rested

Markov chains. Then using UCB we have:

∣∣∣∣∣R(T)−

(
Tµ1 −

K∑
k=1

µkE[Nk(T)]

)∣∣∣∣∣ ≤ CS,P,r, (2.1)

where CS,P,r is a constant that depends on the state spaces, rewards, and transition

probabilities but not on time.

Proof. We have,

∣∣∣∣∣R(T)−

(
Tµ1 −

K∑
k=1

µkE[Nk(T)]

)∣∣∣∣∣
46

=

∣∣∣∣∣∣E
 K∑
k=1

∑
x∈Sk

rkx

Nk(T)∑
t=1

I(yk(t) = x)

− K∑
k=1

∑
x∈Sk

rkxπ
k
xE[Nk(T)]

∣∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

∑
x∈Sk

rkx(E[Uk(x,Nk(T))]− πixE[Nk(T)])

∣∣∣∣∣
≤

K∑
k=1

∑
x∈Sk

rkxCPk = CS,P,r , (2.2)

where

Uk(x,Nk(T)) =

Nk(T)∑
t=1

I(yk(t) = x),

and (2.2) follows from Lemma A.3 using the fact that Nk(T) is a stopping time with

respect to the σ-field generated by the arms played up to time T .

Lemma II.2. Under UCB with L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, for any suboptimal arm

k, we have

E[Nk(T)] ≤ 1 +
4L lnT

(µ1 − µk)2
+

(|Sk|+ |S1|)β
πmin

Proof. see Appendix B.

Theorem II.3. With constant L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin the regret of UCB is upper

bounded by

R(T) ≤ 4L lnT
∑
k>1

1

(µ1 − µk)
+
∑
k>1

(µ1 − µk) (1 + Ck,1) + CS,P,r,

where Ck,1 = (|Sk|+|S1|)β
πmin

.

Proof.

R(T) ≤ Tµ1 −
K∑
k=1

µkE[Nk(T)] + CS,P,r (2.3)

47

≤
∑
k>1

(µ1 − µk)E[Nk(T)] + CS,P,r

≤
∑
k>1

(µ1 − µk)
(

1 +
4L lnT

(µ1 − µk)2
+

(|Sk|+ |S1|)β
πmin

)
+ CS,P,r (2.4)

= 4L lnT
∑
k>1

1

(µ1 − µk)
+
∑
k>1

(µ1 − µk) (1 + Ck,1) + CS,P,r,

where (2.3) follows from Lemma II.1 and (2.4) follows from Lemma II.2.

The above theorem says that provided that L satisfies the stated sufficient condi-

tion, UCB results in logarithmic weak regret. This sufficient condition does require

certain knowledge on the underlying Markov chains. This requirement may be re-

moved if the value of L is adapted over time. More is discussed in Section 2.5.

2.3 Rested Bandit Problem with Multiple Plays

In this section we consider the case where the agent selects M > 1 arms at each

time step. The multiple-play extension to UCB1, referred to as UCB-M given in

Figure 2.2 below, is straightforward: initially each arm is played M times in the first

K slots (M arms in each slot, in arbitrary order); subsequently at each time slot the

algorithm plays M of the K arms with the highest current indices.

The Upper Confidence Bound - Multiple Plays (UCB-M):

1: Initialize: Play each arm M times in the first K slots
2: while t ≥ K do
3: r̄k(Nk(t)) = yk(1)+yk(2)+...+yk(Nk(t))

Nk(t)
, ∀k

4: calculate indices: gk
t,Nk(t)

= r̄k(Nk(t)) +
√

L ln t
Nk(t)

, ∀k
5: Let M∗ be the vector of M arms with the highest indices
6: t := t+ 1
7: play armsα(t) = M∗, receive the reward rk(t) for k ∈M∗, Nk(t) = Nk(t−1)+1

for k ∈M∗.
8: end while

Figure 2.2: pseudocode for the UCB-M algorithm

Similar to the lemmas in the previous section, we first relate the regret with

48

expected number of plays of the arms, then bound the expected number of plays of

the suboptimal arms.

Lemma II.4. For an agent using UCB-M, we have

∣∣∣∣∣R(T)−

(
T

M∑
l=1

µl −
K∑
k=1

µkE[Nk(T)]

)∣∣∣∣∣ ≤ CS,P,r,

where CS,P,r is a constant that depends on the state spaces, rewards, and transition

probabilities but not on time.

Proof. The proof is similar to the proof of Lemma II.1.

Lemma II.5. For an agent using UCB-M with L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, for any

suboptimal arm k, we have

E[Nk(T)] ≤M +
4L lnT

(µM − µk)2
+

M∑
j=1

(|Sk|+ |Sj|)β
πmin

.

Proof. The proof is similar to the proof of Lemma II.2.

Theorem II.6. For an agent using UCB-M with L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, we have

R(T) ≤ 4L lnT
∑
k>M

(µ1 − µk)
(µM − µk)2

+
∑
k>M

(µ1 − µk)

(
M +

M∑
j=1

Ck,j

)
+ CS,P,r,

where Ck,j = (|Sk|+|Sj |)β
πmin

.

Proof.

T

M∑
l=1

µl −
K∑
k=1

µkE[Nk(T)] =
M∑
k=1

µk(T − E[Nk(T)])−
∑
k>M

µkE[Nk(T)]

≤
M∑
k=1

µ1(T − E[Nk(T)])−
∑
k>M

µkE[Nk(T)]

=
∑
k>M

(µ1 − µk)E[Nk(T)]

49

Thus,

R(T) ≤ T

M∑
j=1

µj −
K∑
k=1

µkE[Nk(T)] + CS,P,r (2.5)

≤
∑
k>M

(µ1 − µk)E[Nk(T)] + CS,P,r

≤
∑
k>M

(µ1 − µk)

(
M +

4L lnT

(µM − µk)2
+

M∑
j=1

(|Sk|+ |Sj|)β
πmin

)
+ CS,P,r (2.6)

= 4L lnT
∑
k>M

(µ1 − µk)
(µM − µk)2

+
∑
k>M

(µ1 − µk)

(
M +

M∑
j=1

Ck,j

)
+ CS,P,r,

where (2.5) follows from Lemma II.4 and (2.6) follows from Lemma II.5.

2.4 Numerical Results

In this section we study the following gambling problem as an application of

the rested bandit problem. Consider a player (agent) who plays one of 5 gambling

machines (arms) at each time (K = {1, 2, . . . , 5}). The goal of the player is to

maximize its returns from gamble. Each machine can be in one of two states g or b,

and is modeled as an irreducible and aperiodic Markov chain, which changes its state

only when it is played. State g yields reward 1, while state b yields reward 0.001,

which is consistent with the assumption of non-negative rewards. We assume that

the state transition probabilities of each machine is parameterized by θ ∈ (0, 10) such

that

pkgb(θ) = 1− (
θ

10
)2, (2.7)

pkbg(θ) = (
θ

10
)3, (2.8)

for all k ∈ K. The parameter set, which is unknown by the player, is θ = [7, 5, 3, 1, 0.5]

where kth element corresponds to the parameter of machine k. The stationary dis-

50

tribution of machine k is

πk = [πkb , π
k
g] =

[
pkgb

pkgb + pkbg
,

pkbg
pkgb + pkbg

]
.

The transition probabilities, stationary distributions and expected rewards of the

machines under the parameter set θ is given in Table 2.2. The machines are ordered

in terms of their expected rewards such that µ1 > µ2 > . . . > µ5.

We compare the performance of UCB with the index policy given in Anantharam

et al. (1987b). Irreducible multiplicative symmetrization assumption holds since pkgb >

0, pkbg > 0, for θk ∈ (0, 10), k ∈ K. Any policy α for which Rα(T) = o(T γ) for every

γ > 0 is called a uniformly good policy in Anantharam et al. (1987b). It was shown

that for any uniformly good policy α,

lim inf
T→∞

Rα(T)

lnT
≥

∑
k:µk<µ1

µ1 − µk

I(k, 1)
, (2.9)

where

I(k, 1) :=
∑
x∈Sk

πkx
∑
y∈Sk

pkxy(θ
k) ln

pkxy(θ
k)

pkxy(θ
1)
.

Furthermore, they showed that the index policy α∗ in Anantharam et al. (1987b)

satisfies

lim sup
T→∞

Rα∗(T)

lnT
≤

∑
k:µk<µ1

µ1 − µk

I(k, 1)
,

when some regularity conditions are satisfied, and the transition probabilities of the

arms are known functions of a single parameter θ, whose value is not known by the

player. One can check that these assumptions hold for the transition probabilities

given in (2.7) and (2.8) since µk(θ) is increasing in θ, and pkbg(θ) and pkgb(θ) are log-

51

concave in θ.

In the two state model, the eigenvalue gap of the multiplicative symmetrization

of the transition probability matrix of arm k is given by

εk = pkgb + pkbg .

When the parameter set is θ, 112S2
maxr

2
max/εmin = 525.07.

Figure 2.3 compares the regret of the index policy of Anantharam et al. (1987b)

(labeled as Anantharam policy in the figure) with UCB under different values of the

exploration constant L. Note that the index policy of Anantharam et al. (1987b) as-

sumes that the player knows the functions pkgb(θ) and pkbg(θ), while in UCB these

functions are unknown to the player. The player using UCB with L = 530 >

112S2
maxr

2
max/εmin satisfies the sufficient condition for the logarithmic regret bound

in Theorem II.3. The logarithmic term in Theorem II.3 for this case is 46.11L lnT =

24438 lnn, while Anantharam’s bound has the logarithmic term 4.406 lnT , which is

significantly better in terms of the constant.

The first thing to note is the gap between the bound we derived for UCB and the

bound of Anantharam et al. (1987b) given in (2.9). The second thing to note is that for

L = 0.05, UCB has smaller regret than the index policy of Anantharam et al. (1987b),

as well as the bound in (2.9), for the given time horizon. Note that Anantharam

et al. (1987b) proved that the performance of any uniformly good policy cannot be

better than the bound in (2.9) asymptotically. Since uniformly good policies have the

minimum growth of regret among all policies, this bound also holds for UCB. This

however is not a contradiction because this bound holds asymptotically; we indeed

expect the regret of UCB with L = 0.05 to be very close to this bound in the limit.

These results show that while the bound in Anantharam et al. (1987b) is better than

the bound we proved for UCB in this paper, in reality the UCB policy can perform

52

Arm p01, p10 π1 µ
1 0.0270, 0.9100 0.0288 0.4027
2 0.1250, 0.7500 0.1429 0.1437
3 0.3430, 0.5100 0.4021 0.0298
4 0.0010, 0.9900 0.0010 0.0020
5 0.0001, 0.9975 0.0001 0.0011

Table 2.2: parameters of the arms for θ = [7, 5, 3, 1, 0.5]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
1

10
2

10
3

L=423
L=10
L=1
L=0.05
Anantharam policy

Figure 2.3: regrets of UCB and Anantharam’s policy

very close to the tighter bound (uniformly, not just asymptotically).

2.5 Discussion

Although L ≥ 112S2
maxr

2
max/εmin is a sufficient condition for the upper bound in

Theorem II.3 to hold, from the numerical results in Section 2.4, we conclude that it

is not necessary. Results in Figure 2.3 imply that, for the rested bandit model of

Section 2.4 the regret is monotonically decreasing in L. This is because the rate of

exploration depends on the inflation term
√
L ln t/Nk(t) of the index of arm k. Large

values of L imply more exploration, which in turn implies more plays of suboptimal

arms. Note that the condition on L comes from the large deviation bound in Lemma

A.1. This observation opens up the question that which large deviation bound should

53

we use to obtain tighter regret bounds.

It can be shown that instead of using Lezaud’s large deviation bound given in

Lemma A.1, if we use Gillman’s large deviation bound given in Lemma A.2, logarith-

mic regret results in Theorems II.3 and II.6 still hold with different constants given

that the exploration constant L ≥ 90S2
maxr

2
max/ε̃min, where ε̃min = mink∈K ε̃

k, and ε̃k

is the eigenvalue gap of the transition probability matrix of arm k. The Gillman

bound requires Markov chains to reversible, instead of the irreducible multiplicative

symmetrization assumption of Lezaud’s bound. This trivially holds for irreducible

two state Markov chains. In the two state model in Section 2.4, the eigenvalue gap

of the transition probability matrix of arm k is given by

ε̃k = pkgb + pkbg ,

which is same as the eigenvalue gap of the multiplicative symmetrization of the tran-

sition probability matrix of arm k. For the setting in Section 2.4, 90S2
maxr

2
max/ε̃min =

422.04, which is smaller than L = 525.07 found according to Lezaud’s bound.

54

CHAPTER III

Single-agent Restless Bandits with Weak Regret

In this chapter we study the single-agent restless bandit problem in which the

state of on arm may also change when it is not played by the agent. Specifically,

we show that when the stochastic rewards from the arms are generated by unknown

Markov chains, the agent can achieve uniformly logarithmic weak regret over time.

Although in general the optimal policy computed based on the known transition

probabilities of the arms is a dynamic policy which may play different arms according

to the information state of the system, there are various reasons to approach the

restless bandit problem in terms of the weak regret which compares the performance

of the algorithm with the best static policy.

First of all, even in the optimization setting the restless bandit problem is P −

SPACE hard to approximate which is shown in Papadimitriou and Tsitsiklis (1999).

Since we are taking an agent-centric approach to the bandit problems, we also con-

sider computational power and memory requirements when designing online learning

algorithms. We consider weak regret because the algorithms to achieve order-optimal

(logarithmic) weak regret just requires storage linear in the number of arms, and

runs a few simple arithmetic operations at each time step. In real-world applications,

agents may be wireless sensor nodes with limited energy, computational power and

memory, therefore they may not be able to run complex algorithms.

55

Secondly, the agent might have costs associated with switching arms frequently.

For example, when the arms are frequency bands and the agent is a transmitter-

receiver pair, then switching to different bands frequently may not be a viable option

because of the associated energy cost. As another example, if the arms are products

which yields stochastic payoffs changing with time, and the agent is an investor, the

agent may not want to switch too many times because of the friction in the market

due to transaction costs. The algorithms we propose in this chapter switches arms

only logarithmically many times in expectation, thus advantageous for the agents

with high switching costs.

Thirdly, weak regret is a commonly used performance measure in the bandit litera-

ture, especially for adversarial bandits, in which the rewards of the arms are generated

by an adversary to minimize to payoff to the agent. The bounds derived for these

problems are worst-case in the sense that they hold for all stochastic processes that

generates the arm rewards not just the Markovian ones. For our weak regret results

to hold, the state of an arm should change in a Markovian way when it is played by

the agent. However, it might change adversarially when not played.

The organization of this chapter is as follows. Problem definition and notations

are given in Section 3.1. Restless bandit problem with single play is investigated, and

an algorithm with logarithmic weak regret is proposed in Section 3.2. Extension to

multiple plays is done in Section 3.3. An opportunistic spectrum access application

and numerical results are given in Section 3.4. Finally, discussion is given in Section

3.5.

3.1 Problem Formulation and Preliminaries

In this chapter we study the restless Markovian model. Consider K mutually

independent restless Markovian arms described in Definition I.3. For simplicity of

presentation, WLOG, the arms are ordered according to their mean reward, µ1 ≥

56

µ2 ≥ . . . ≥ µK (ordering not known by the agent). Let (P k)′ denote the adjoint of

P k on l2(π) where

(pk)′xy = (πkyp
k
yx)/π

k
x, ∀x, y ∈ Si,

and Ṗ k = (P k)′P denote the multiplicative symmetrization of P k. We have the same

assumption as in Chapter II that the P k’s are such that Ṗ k’s are irreducible. We note

that one condition that guarantees the P̂ i’s are irreducible is pxx > 0,∀x ∈ Si,∀i. This

assumption thus holds naturally for two of our motivating applications, opportunistic

spectrum access in fading channels and cognitive radio dynamic spectrum access,

as it’s possible for channel condition to remain the same over a single time step

(especially if the unit is sufficiently small). It also holds for a very large class of

Markov chains and applications in general. Consider for instance a queueing system

scenario where an arm denotes a server and the Markov chain models its queue length,

in which it is possible for the queue length to remain the same over one time unit.

There is an agent which plays M of the K arms at each time step. Similar to

Chapter II, we will make the additional assumption that the mean reward of arm

M is strictly greater than the mean reward of arm M + 1, i.e., we have µ1 ≥ µ2 ≥

· · · ≥ µM > µM+1 ≥ · · · ≥ µK . Contrary to Chapter II, strict inequality between µM

and µM+1 is needed because otherwise there can be a large number of arm switchings

between the Mth and the (M + 1)th arms (possibly more than logarithmic). Strict

inequality prevents this from happening. We note that this assumption is not in

general restrictive; in our motivating applications mentioned above, distinct channel

conditions typically mean different data rates. Possible relaxation of this condition is

given in Section 3.5.

For a policy α its weak regret Rα(T) is the difference between the expected total

reward that can be obtained by only playing the M -best arms and the expected total

57

reward obtained by policy α up to time T , which is given in Definition I.9. The

objective is to examine how the regret Rα(T) behaves as a function of T for a given

policy α and to construct a policy whose regret is order-optimal, through appropriate

bounding. Similar to the rested Markovian model, the key to bounding Rα(T) is

to bound the expected number of plays of any suboptimal arm. Let Nα,k(t) be the

number of times arm k is played by policy α at the end of time t, and r̄k(Nα,k(t)) be

the sample mean of the rewards observed from the first Nα,k(t) plays of arm k. When

the policy used is clear from the context we will suppress the superscript α from the

above expressions. Although, throughout our discussion we will consider a horizon of

T time slots, our regret bounds hold uniformly for all T . Time horizon T is not an

input to our algorithms, so agent does not need to know T .

In the next two sections we present algorithms with logarithmic weak regret for

the problem stated in this section for a single play M = 1, and multiple plays M > 1,

respectively. While the multiple-play case is more general, the analysis in the single-

play case is more intuitive to illustrate with less cumbersome notations.

3.2 Restless Bandit Problem with a Single Play

In this section we study the restless bandit problem, where an agent chooses a

single arm at each time step. We construct an algorithm called the regenerative cycle

algorithm (RCA), and prove that this algorithm guarantees logarithmic regret uni-

formly over time under the same mild assumptions on the state transition probabilities

as in the rested Markovian model. Below we first present the key conceptual idea

behind RCA, followed by a more detailed pseudocode. We then prove the logarithmic

regret result.

As the name suggests, RCA operates in regenerative cycles. In essence RCA

uses the observations from sample paths within regenerative cycles to estimate the

sample mean reward of an arm in the form of an index similar to that used in UCB

58

while discarding the rest of the observations (only for the computation of the index;

they contribute to the total reward). Note that the rewards from the discarded

observations are collected but are not used to make decisions. The reason behind

such a construction has to do with the restless nature of the arms. Since each arm

continues to evolve regardless of the agent’s action, the probability distribution of

the reward the agent gets by playing an arm is a function of the amount of time

that has elapsed since the last time the agent played the same arm. Since the arms

are not played continuously, the sequence of observations from an arm which is not

played consecutively does not correspond to a discrete time homogeneous Markov

chain. While this certainly does not affect the agent’s ability to collect rewards, it

becomes hard to analyze the estimated quality (the index) of an arm calculated based

on rewards collected this way.

However, if instead of the actual sample path of observations from an arm, we

limit ourselves to a sample path constructed (or rather stitched together) using only

the observations from regenerative cycles, then this sample path essentially has the

same statistics as the original Markov chain due to the renewal property and one

can now use the sample mean of the rewards from the regenerative sample paths to

approximate the mean reward under stationary distribution.

Under RCA the agent maintains a block structure; a block consists of a certain

number of slots. Within a block the agent plays the same arm continuously till a

certain pre-specified state (say γk) is observed. Upon this observation the arm enters

a regenerative cycle and the agent continues to play the same arm till state γk is

observed for the second time, which denotes the end of the block. For the purpose of

index computation and subsequent analysis, each block is further broken into three

sub-blocks (SBs). SB1 consists of all time slots from the beginning of the block to

right before the first visit to γk; SB2 includes all time slots from the first visit to γk

up to but excluding the second visit to state γi; SB3 consists of a single time slot with

59

the second visit to γk. Figure 3.1 shows an example sample path of the operation of

RCA.

γ i

SB1 SB3

play arm i

γi γi

SB1 SB2 SB3

play arm i

γi γi

SB1 SB2 SB3

play arm i

SB2 SB3SB2SB1

play arm k

SB1 SB2 SB3

play arm j

i γ γk γk

γj γj

compute index compute index compute index

Figure 3.1: example realization of RCA

j γi γiγi γi

2nd block1st block
last completed
block b(n)

slot T(n) slot (n)

γj γ

Figure 3.2: the block structure of RCA

The key to the RCA algorithm is for each arm to single out only observations

within SB2’s in each block and virtually assemble them. In addition to the notation

given in Table 2.1, we will also use the notation given in Table 3.2. Let yk(t) denote

the reward from the tth play of arm k in SB2’s.

The block structure along with some of the definitions above are presented in

Figure 3.2. RCA computes and updates the value of an index gk for each arm k at

the end of block b based on the total reward obtained from arm k during all SB2’s as

follows:

gkt2(b),Nk
2 (t2(b)) = r̄k(Nk

2 (t2(b))) +

√
L ln t2(b)

Nk
2 (t2(b))

, (3.1)

where L is a constant, and

r̄k(Nk
2 (t2(b))) =

yk(1) + yk(2) + ...+ yk(Nk
2 (t2(b)))

Nk
2 (t2(b))

60

Ωk
x,y is the mean hitting time of state y given the initial state x for arm k and P k

Ωk
max = maxx,y∈Sk .

γk: the state that determines the regenerative cycles for arm k.
α̃(b): the arm played in the bth block.
b(T): the number of completed blocks up to time T .
N(T): the time at the end of the last completed block (see Figure 3.2).
Bk(b): the total number of blocks within the first completed b blocks in which arm
k is played.
Xk

1 (b): the vector of observed states from SB1 of the bth block in which arm k is
played; this vector is empty if the first observed state is γi.
Xk

2 (b): the vector of observed states from SB2 of the bth block in which arm k is
played.
Xk(b): the vector of observed states from the bth block in which arm k is played.
Thus we have Xk(b) = [Xk

1 (b), Xk
2 (b), γk].

t(b): time at the end of block b.
t2(b): the number of time slots that lie within an SB2 of any completed block up to
and including block b.
Nk

2 (t): the number of time slots arm k is played during SB2’s when the number of
time steps that lie within an SB2 is t.

Table 3.1: frequently used expressions

denotes the sample mean of the reward collected during SB2. It is also worth noting

that under RCA rewards are also collected during SB1’s and SB3’s. However, the

computation of the indices only relies on SB2. The pseudocode of RCA is given in

Figure 3.3.

Proving the existence of a logarithmic upper bound on the regret for restless arms

is a non-trivial task since the blocks may be arbitrarily long and the frequency of arm

selection depends on the length of the blocks. In the analysis that follows, we first

show that the expected number of blocks in which a suboptimal arm is played is at

most logarithmic. By the regenerative property of the arms, all the observations from

SB2’s of an arm can be combined together and viewed as a sequence of continuous

observations from a rested arm. Therefore we can use a large deviation result to bound

the expected number of times the index of a suboptimal arm exceeds the index of

an optimal arm. Using this result, we show that the expected number of blocks in

which a suboptimal arm is played is at most logarithmic in time. We then relate

61

Regenerative Cycle Algorithm (RCA):

1: Initialize: b = 1, t = 0, t2 = 0, Nk
2 = 0, rk = 0,∀k = 1, · · · , K

2: for b ≤ K do
3: play arm b; set γb to be the first state observed
4: t := t+ 1; t2 := t2 + 1; N b

2 := N b
2 + 1; rb := rb + rb

γb

5: play arm b; denote observed state as x
6: while x 6= γb do
7: t := t+ 1; t2 := t2 + 1; N b

2 := N b
2 + 1; rb := rb + rbx

8: play arm b; denote observed state as x
9: end while

10: b := b+ 1; t := t+ 1
11: end for
12: for k = 1 to K do
13: compute index gk := rk

Nk
2

+
√

L ln t2
Nk

2

14: k + +
15: end for
16: k := arg maxj g

j

17: while (1) do
18: play arm k; denote observed state as x
19: while x 6= γk do
20: t := t+ 1
21: play arm k; denote observed state as x
22: end while
23: t := t+ 1; t2 := t2 + 1; Nk

2 := Nk
2 + 1; rk := rk + rkx

24: play arm k; denote observed state as x
25: while x 6= γk do
26: t := t+ 1; t2 := t2 + 1; Nk

2 := Nk
2 + 1; rk := rk + rkx

27: play arm k; denote observed state as x
28: end while
29: b := b+ 1; t := t+ 1
30: for k = 1 to K do
31: compute index gk := rk

Nk
2

+
√

L ln t2
Nk

2

32: k + +
33: end for
34: k := arg maxj g

j

35: end while

Figure 3.3: pseudocode of RCA

the expected number of blocks in which a suboptimal arm is played to the expected

number of time slots in which a suboptimal arm is played using the positive recurrence

property of the arms. Finally, we show that the regret due to arm switching is at

62

most logarithmic, and the regret from the last, incomplete block is finite due to the

positive recurrence property of the arms.

Below, we first bound the expected number of plays from a suboptimal arm.

Lemma III.1. For an agent using RCA with constant L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin,

we have

E[Nk(N(T))] ≤ Dk

(
4L lnT

(µ1 − µk)2
+ Ck,1

)
,

where,

Ck,1 =

(
1 +

(|Sk|+ |S1|)β
πmin

)
, β =

∞∑
t=1

t−2,

Dk =

(
1

πkmin

+ Ωk
max + 1

)
.

Proof. See Appendix C.

We now state the main result of this section.

Theorem III.2. For an agent using RCA with constant L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin,

the regret is upper bounded by

R(T) < 4L lnT
∑
k>1

1

µ1 − µk

(
Dk +

Ek
µ1 − µk

)
+
∑
k>1

Ck,1
(
(µ1 − µk)Dk + Ek

)
+ F

where

Ck,1 =

(
1 +

(|Sk|+ |S1|)β
πmin

)
, β =

∞∑
t=1

t−2

Dk =

(
1

πkmin

+ Ωk
max + 1

)
,

Ek = µk(1 + Ωk
max) + µ1Ω1

max,

63

F = µ1

(
1

πmin

+ max
k∈{1,...,K}

Ωk
max + 1

)
.

Proof. See Appendix D.

Theorem III.2 suggests that given minimal information about the arms such as

an upper bound for S2
maxr

2
maxπ̂

2
max/εmin the agent can guarantee logarithmic regret by

choosing an L in RCA that satisfies the stated condition. As in the rested case, this

requirement on L can be completely removed if the value of L is adapted over time;

more is discussed in Section 3.5.

We conjecture that the order optimality of RCA holds when it is used with any

index policy that is order optimal for the rested bandit problem. Because of the use

of regenerative cycles in RCA, the observations used to calculate the indices can be in

effect treated as coming from rested arms. Thus, an approach similar to the one used

in the proof of Theorem III.2 can be used to prove order optimality of combinations

of RCA and other index policies. We comment more on this in Section 3.5.

3.3 Restless Bandit Problem with Multiple Plays

In this section we extend the results of the previous section to the case of multiple

plays. The multiple-play extension to the regenerative cycle algorithm will be referred

to as the RCA-M. As in the rested case, even though our basic model is one of

single-agent with multiple plays, our description is in the equivalent form of multiple

coordinated agents each with a single play.

As in RCA, RCA-M maintains the same block structure, where the agent plays

the same arm till it completes a regenerative cycle. Since M arms are played (by M

agents) simultaneously in each slot, different blocks overlap in time. Multiple blocks

may or may not start or end at the same time. In our analysis below blocks will be

ordered; they are ordered according to their start time. If multiple blocks start at the

64

same time then the ordering among them is randomly chosen. Figure 3.4 shows an

example sample path of the operation of RCA-M. The block structure of two plays

and the ordering of the blocks are shown.

 γi γi

 γj

 γi γi

 γj

play arm i play arm i

play arm j

compute index

compute index compute index

compute index

SB1 SB1

SB1

SB2 SB2

SB2

SB3 SB3

SB3

block m block m+1

block m+2

 γk γk

play arm k

SB1 SB2 SB3

block m+3

 γl γl

play arm l

SB1 SB2 SB3

block m+4
(last completed block)

compute index compute index

compute index

time

slot n T(n)

b(n)=m+4

Figure 3.4: example realization of RCA-M with M = 2 for a period of n slots

The pseudocode of RCA-M is given in Figure 3.5. The analysis is similar to that

in Section 3.2, with careful accounting of the expected number of blocks in which a

suboptimal arm is played. The details are given in Theorem III.3.

Theorem III.3. For an agent using RCA-M with constant L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin

the regret is upper bounded by

R(T) < 4L lnT
∑
k>M

1

(µM − µk)2

(
(µ1 − µk)Dk + Ek

)
+
∑
k>M

(
(µ1 − µk)Dk + Ek

)(
1 +M

M∑
j=1

Ck,j

)
+ F,

65

The Regenerative Cycle Algorithm - Multiple Plays (RCA-M):

1: Initialize: b = 1, t = 0, t2 = 0, Nk
2 = 0, rk = 0, IkSB2 = 0, IkIN = 1,∀k ∈ K,

A = ∅
2: //IkIN indicates whether arm k has been played at least once
3: //IkSB2 indicates whether arm k is in an SB2 sub-block
4: while (1) do
5: for k = 1 to K do
6: if IkIN = 1 and |A| < M then
7: A← A ∪ {k} //arms never played is given priority to ensure all arms

are sampled initially
8: end if
9: end for

10: if |A| < M then
11: Add to A the set{

k : gk is one of the M − |A| largest among
{gj, j ∈ K − A}}

12: //for arms that have been played at least once, those with the largest
indices are selected

13: end if
14: for k ∈ A do
15: play arm k; denote state observed by xk

16: if IkIN = 1 then
17: γk = xk, Nk

2 := Nk
2 + 1, rk := rk + rk

xk
, IkIN = 0, IkSB2 = 1

18: //the first observed state becomes the regenerative state; the arm
enters SB2

19: else if xk 6= γk and IkSB2 = 1 then
20: Nk

2 := Nk
2 + 1, rk := rk + rk

xk

21: else if xk = γk and IkSB2 = 0 then
22: Nk

2 := Nk
2 + 1, rk := rk + rk

xk
, IkSB2 = 1

23: else if xk = γk and IkSB2 = 1 then
24: rk := rk + rk

xk
, IkSB2 = 0, A← A− {k}

25: end if
26: end for
27: t := t+ 1, t2 := t2 + min

{
1,
∑

k∈A I
i
SB2

}
//t2 is only accumulated if at

least one arm is in SB2
28: for k = 1 to K do
29: gk = rk

Nk
2

+
√

L ln t2
Nk

2

30: end for
31: end while

Figure 3.5: pseudocode of RCA-M

66

where

Ck,j =
(|Sk|+ |Sj|)β

πmin

, β =
∞∑
t=1

t−2

Dk =

(
1

πkmin

+ Ωk
max + 1

)
,

Ek = µk(1 + Ωk
max) +

M∑
j=1

µjΩj
max,

F =
M∑
j=1

µj
(

1

πmin

+ max
k∈K

Ωk
max + 1

)
.

Proof. See Appendix E.

3.4 Numerical Results

In this section we give numerical results for the algorithms we proposed under

the Gilbert-Elliot channel model in which each channel/arm has two states, good

and bad (or 1, 0, respectively). For any channel k the rewards are given by rk1 = 1,

rk0 = 0.1. We consider four opportunistic spectrum access (OSA) scenarios, denoted

S1-S4, each consisting of 10 channels with different state transition probabilities. The

state transition probabilities and mean rewards of the channels in each scenario are

given in Tables 3.2 and 3.3, respectively. The four scenarios are intended to capture

the following differences. In S1 channels are bursty with mean rewards not close to

each other; in S2 channels are non-bursty with mean rewards not close to each other;

in S3 there are bursty and non-bursty channels with mean rewards not close to each

other; and in S4 there are bursty and non-bursty channels with mean rewards close

to each other. All simulations are done for a time horizon T = 105, and averaged

over 100 random runs. Initial states of the channels are drawn from their stationary

distributions. For each algorithm that requires a regenerative state, the regenerative

state of an arm for an agent is set to be the first state the agent observes from that

67

arm, and is kept fixed throughout a single run.

We first compute the normalized regret values, i.e., the regret per play R(T)/M ,

for RCA-M. In Figures 3.6, 3.8, 3.10, 3.12, we observe the normalized regret of RCA-M

for the minimum values of L such that the logarithmic regret bound holds. However,

comparing with Figures 3.7, 3.9, 3.11, 3.13 we see that the normalized regret is smaller

for L = 1. Therefore it appears that the condition on L we have for the logarithmic

bound, while sufficient, may not be necessary.

We next compute the regret of UCB with single play under the OSA model. We

note that our theoretical regret bound for UCB is for rested channels but the numerical

results are given for a special case of restless channels. Results in Figure 3.14 show

that when L = 1, for S1, S3 and S4, UCB has negative regret, which means that it

performs better than the best single action policy, while for S2 it has a positive regret,

which is also greater than the regret of RCA with single play under S2 with L = 1. In

Figure 3.15, we see the regret of UCB for larger values of L. As expected, the regret

of UCB increases with L due to the increase in explorations. However, comparing

the regret of UCB with that of RCA under the same value of L, we see that UCB

outperforms RCA for all scenarios considered here. These results imply that although

there is no theoretical bounds for the regret of UCB, its performance is comparable

to RCA under the presented setting. This is because (1) RCA has a smaller update

rate due to the random length of the regenerative cycles; thus it takes longer to use

the latest observations in arm selection, and (2) even though there is no guarantee

that UCB produces accurate estimates on the mean rewards, the simple structure of

the problem helps UCB keep track of the shorter-term (not the stationary) quality of

each arm.

Instead of its original index given in (3.1), we can also use RCA with the index

gkt2(b),Nk
2 (t2(b)) = r̄k(Nk

2 (t2(b))) +

√
L ln b

Bk(b)
. (3.2)

68

The difference between the index given in (3.1) and (3.2) is that the exploration term

in (3.2) depends on the number of blocks completed by an agent, while in (3.1) it

depends on the number of time steps spent in SB2’s of an agent. Using the fact that

the average reward collected during each regenerative cycle of an arm can be modeled

as an IID process, we can exploit the well known result for the IID problem Auer et al.

(2002) which says that setting L = 2 is enough to get a logarithmic regret bound.

The regret for single play under different scenarios is given in Figure 3.16. Comparing

them with their counterparts using RCA with an L such that the logarithmic regret

bound holds, we observe that the modified index results in better performance. This

is because L is smaller, and the exploration is more balanced in a way that the growth

of the exploration term does not depend on the randomness of the block lengths.

channel 1 2 3 4 5 6 7 8 9 10
S1, p01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
S1, p10 0.08 0.07 0.08 0.07 0.08 0.07 0.02 0.01 0.02 0.01
S2, p01 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S2, p10 0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
S3, p01 0.01 0.1 0.02 0.3 0.04 0.5 0.06 0.7 0.08 0.9
S3, p10 0.09 0.9 0.08 0.7 0.06 0.5 0.04 0.3 0.02 0.1
S4, p01 0.02 0.04 0.04 0.5 0.06 0.05 0.7 0.8 0.9 0.9
S4, p10 0.03 0.03 0.04 0.4 0.05 0.06 0.6 0.7 0.8 0.9

Table 3.2: transition probabilities of all channels

channel 1 2 3 4 5 6 7 8 9 10
S1 0.20 0.21 0.28 0.30 0.35 0.37 0.70 0.82 0.74 0.85
S2 0.19 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91
S3 0.19 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91
S4 0.460 0.614 0.550 0.600 0.591 0.509 0.585 0.580 0.577 0.550

Table 3.3: mean rewards of all channels

69

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.6: normalized regret of RCA-
M: S1, L = 7200

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−20

0

20

40

60

80

100

120

140

160

180

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.7: normalized regret of RCA-
M: S1, L = 1

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.8: normalized regret of
RCA-M: S2, L = 360

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.9: normalized regret of RCA-
M: S2, L = 1

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.10: normalized regret of
RCA-M: S3, L =
3600

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

n

R
(n

)/
(M

 ln
(n

))

M=1
M=2
M=3
M=4
M=5

Figure 3.11: normalized regret of
RCA-M: S3, L = 1

70

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

50

100

150

200

250

300

350

400

450

500

n

R
(n

)/
ln

(n
)

M=1
M=2
M=3
M=4
M=5

Figure 3.12: normalized regret of
RCA-M: S4, L =
7200

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−10

0

10

20

30

40

50

60

70

n

R
(n

)/
ln

(n
)

M=1
M=2
M=3
M=4
M=5

Figure 3.13: normalized regret RCA-
M: S4, L = 1

0 2 4 6 8 10

x 10
4

−2500

−2000

−1500

−1000

−500

0

500

n

R
(n

)/
(

ln
(n

))

S1, L=1
S2, L=1
S3, L=1
S4, L=1

Figure 3.14: regret of UCB, M = 1

0 2 4 6 8 10

x 10
4

−1000

−500

0

500

1000

1500

R
(n

)/
(

ln
(n

))

S1, L=7200
S2, L=360
S3, L=3600
S4, L=7200

Figure 3.15: regret of UCB, M = 1

0 2 4 6 8 10

x 10
4

0

50

100

150

200

250

300

350

n

R
(n

)/
(

ln
(n

))

S1
S2
S3
S4

Figure 3.16: regret of RCA with mod-
ified index

71

3.5 Discussion

In this section we discuss how the performance of RCA-M and its special case

RCA may be improved (in terms of the constants and not in order), and possible

relaxation and extensions.

3.5.1 Applicability and Performance Improvement

We note that the same logarithmic bound derived in this chapter holds for the

general restless bandit problem independent of the state transition law of an arm

when it is not played. Indeed, the state transitions of an arm when it is not played

can even be adversarial. This is because the reward to the agent from an arm is

determined only by the active transition probability matrix and the first state after

a discontinuity in playing the arm. Since the number of plays from any suboptimal

arm is logarithmic and the expected hitting time of any state is finite, the regret is

at most logarithmic independent of the first observed state of a block.

The regenerative state for an arm under RCA is chosen based on the random

initial observation. It’s worth noting that the selection of the regenerative state γk in

each block in general can be arbitrary: within the same SB2, we can start and end

in different states. As long as we guarantee that two successive SB2’s end and start

with the same state, we will have a continuous sample path for which our analysis in

Section 2.2 holds.

It is possible that RCA may happen upon a state with long recurrence time which

results in long SB1 and SB2 sub-blocks. Consider now the following modification:

RCA records all observations from all arms. Let Nk(s, t) be the total number of

observations from arm k up to time t that are excluded from the computation of the

index of arm k when the regenerative state is s. Recall that the index of an arm is

computed based on observations from regenerative cycles; this implies that Nk(s, t)

is the total number of slots in SB1’s when the regenerative state is s. Let tb be the

72

time at the end of the bth block. If the arm to be played in the bth block is k then

the regenerative state is set to γk(b) = arg mins∈Sk N
k(s, tb−1). The idea behind this

modification is to estimate the state with the smallest recurrence time and choose

the regenerative cycles according to this state. With this modification the number of

observations that does not contribute to the index computation and the probability

of choosing a suboptimal arm can be minimized over time.

3.5.2 Universality of the Block Structure

We note that any index policy used under the IID reward model can be used in the

restless bandit problem with a Markovian reward model by exploiting the regenerative

cycles. This is because the normalized rewards collected in each regenerative cycle of

the same arm can be seen as IID samples from that arm whose expectation is equal

to the mean reward of that arm. Thus, any upper bound for the expected number of

times an arm is played in an IID problem will hold for the expected number of blocks

an arm is played for the restless bandit problem under the block structure proposed

in RCA. Specifically, we have shown via numerical results in Section 2.4 that if RCA

is used with the index given in (3.2), logarithmic regret is achieved assuming that the

regenerative state for each arm is kept fixed and the rewards are in the unit interval

[0, 1]. We do not provide a technical analysis here since the details are included in

the analysis of the IID model Auer et al. (2002) and our analysis of RCA. Instead,

we illustrate the generality of the block structure by using the KL-UCB algorithm

proposed in Garivier and Cappé (2011) for IID rewards inside our block structure.

KL-UCB is shown to outperform most of the other index policies for IID rewards

including UCB. For simplicity we only consider single play, i.e., M = 1.

Lemma III.4. Assume P k is such that arm k is irreducible (multiplicative sym-

metrization of P k need not be irreducible), and rkx ≤ 1,∀k ∈ K, ∀x ∈ Sk. Then, using

73

KL-UCB in the regenerative block under RCA, we have for any suboptimal arm k

lim sup
T→∞

E
[
Bk(b(T))

]
log b(T)

≤ 1

d(µk, µ1)
,

where

d(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

Proof. The normalized reward during a block (sum of the rewards collected during

an SB2 divided by the length of the SB2) forms an IID process with support in [0, 1].

Thus, the result follows from Theorem 2 of Garivier and Cappé (2011).

We see as before, bounding the expected number of blocks a suboptimal arm is

played is a key step in bounding the regret. The main result is given in the following

theorem.

Theorem III.5. Assume P k is such that arm k is irreducible (multiplicative sym-

metrization of P k need not be irreducible), and rix ≤ 1,∀i ∈ K, ∀x ∈ Si. Then, using

KL-UCB in the regenerative block under RCA, we have

lim sup
T→∞

R(T)

log T
≤
∑
k>1

(
1

d(µk, µ1)

)(
(µ1 − µk)Dk + Ek

)
,

where

Dk =

(
1

πkmin

+ Ωk
max + 1

)
,

Ek = µi(1 + Ωk
max) + µ1Ω1

max.

Proof. The result follows from Lemma III.4 and using steps similar to the proof of

Theorem III.2.

74

3.5.3 Extension to Random State Rewards

So far we considered the case where each state x ∈ Sk corresponds to a deter-

ministic reward rkx. An interesting extension is to consider the case where each state

x ∈ Sk has a random reward with a fixed, IID distribution. That is, after observing

the state x, the agent receives reward rkx which is drawn from a probability distribu-

tion F k
x . In our application context, this may correspond to a situation where the

agent/user observes the received signal to noise ratio (SNR) which gives the proba-

bility of correct reception, but not the actual bit error rate. When the distribution

(or its expectation) F k
x ,∀x ∈ Sk, k ∈ K is known to the agent, the agent can use the

expectation of the distribution of each state instead of the actual observed rewards

to update the indices. In doing so logarithmic regret will be achieved by using RCA.

A more complex case is when the reward distribution of each state is unknown

to the agent but has a bounded support. Then, to estimate the quality of each arm,

playing logarithmic number of blocks from each arm may not be sufficient because

there may be cases where the number of samples from some state of a sufficiently

sampled arm may not be enough to accurately estimate the quality of that state.

This may result in an inaccurate estimate of the expected reward received during

a regenerative cycle. To avoid this, we can use arbitrary regenerative states, and

modify RCA as follows: At the end of each block in which arm k is played, we record

the least sampled state x of arm k up to that point. Whenever arm k is played in a

block, the state x is then used as the regenerative state to terminate that block. This

guarantees that x is sampled at least once during that block. Of course, to preserve

the regenerative property the agent needs to set the first state of its next SB2 to

x in the next block it plays arm k. This way fairness between the states of each

arm is guaranteed. By logarithmically playing each arm, the agent can guarantee

logarithmic number of samples taken from each state, thus the sample mean estimate

of the expected reward of each state will be accurate. Then, the agent can use the

75

sample mean of the rewards for each state in calculating the index with RCA to obtain

good performance. In order to have theoretical results we will need to use two large

deviation bounds; one for the sample mean estimates of the rewards of each state of

each arm, the other for bounding the deviation of the index from the expected reward

of an arm.

3.5.4 Relaxation of Certain Conditions

As observed in Section 3.4 that the condition on L, while sufficient, does not

appear necessary for the logarithmic regret bound to hold. Indeed our examples

show that smaller regret can be achieved by setting L = 1. Note that this condition

on L originates from the large deviation bound by Lezaud given in Lemma A.1.

If we use an alternative bound, e.g., the large deviation bound in Lemma A.2, then

L ≥ 90S2
maxr

2
max/εmin will be sufficient, and our theoretical results will hold for smaller

L, provided that π̂2
max ≥ 90/112 and the arms are reversible Markov chains.

We further note that even if no information is available on the underlying Markov

chains to derive this sufficient condition on L, O(log(T)f(T)) regret is achievable by

letting L grow slowly with time where f(T) is any increasing sequence. Such approach

has been used in other settings and algorithms, see e.g., Anandkumar et al. (2011);

Liu et al. (2010).

We have noted earlier that the strict inequality µM > µM+1 is required for the

restless bandit problem because in order to have logarithmic regret, we can have

no more than a logarithmic number of discontinuities from the optimal arms. When

µM = µM+1 the rankings of the indices of arms M and M+1 can oscillate indefinitely

resulting in a large number of discontinuities. Below we briefly discuss how to resolve

this issue if indeed µM = µM+1. Consider adding a threshold ε to the algorithm

such that a new arm will be selected instead of an arm currently being played only if

the index of that arm is at least ε larger than the index of the currently played arm

76

which has the smallest index among all currently played arms. Then given that ε is

sufficiently small (with respect to the differences of mean rewards) indefinite switching

between the Mth and the M + 1th arms can be avoided. Further analysis is needed

to verify that this approach will result in logarithmic regret.

3.5.5 Definition of Regret

We have used the weak regret measure throughout this chapter, which compares

the learning strategy with the best single-action strategy. When the statistics are

known a priori, it is clear that in general the best policy is not a single-action policy

(in principle one can derive such a policy using dynamic programming). Ideally one

could try to adopt a stronger regret measure with respect to this optimal policy. Under

some conditions on the structure of the optimal policy, in Chapter IV, we propose a

learning algorithm with logarithmic regret with respect to the optimal policy, which

is defined as strong regret in Definition I.10. However, in general such an optimal

policy is PSPACE-hard even to approximate in the restless case (see e.g., Whittle

(1988); Papadimitriou and Tsitsiklis (1999)), which makes the comparison intractable,

except for some very limited cases when such a policy happens to be known (see e.g.,

Ahmad et al. (2009); Dai et al. (2011)) or special cases when approximation algorithms

with guaranteed performance are known (see e.g., Guha et al. (2010); Tekin and Liu

(2012a)).

77

CHAPTER IV

Single-agent Restless Bandits with Strong Regret

In this chapter we study the single-agent uncontrolled restless bandit problem

given in Definition I.4, and provide an algorithm whose strong regret given in Def-

inition I.10 grows logarithmically over time. Different from the previous chapter in

which we focused on computationally simple algorithms, the learning algorithm we

propose in this chapter is computationally intractable. However, if we want to have

logarithmic regret with respect to the optimal solution, we cannot hope to get a poly-

nomial complexity algorithm since the optimization problem itself is PSPACE-hard

to approximate as shown in Papadimitriou and Tsitsiklis (1999).

Therefore, in this chapter we only focus on the performance, ignoring computa-

tion and implementation issues. Since the uncontrolled restless bandit problem is

a subclass of partially observable Markov decision processes (POMDPs), our results

can be seen as an extension of optimal adaptive learning in finite Markov decision

processes (MDPs) developed in Agrawal et al. (1989) and Burnetas and Katehakis

(1997) to optimal adaptive learning in a subclass of POMDPs. The main difficulty in

this extension is dealing with infinite state spaces and lack of recurrence conditions

that are present in most of the finite MDPs.

The organization of the remainder of this chapter is as follows. In Section 4.1,

we present the problem formulation. In Section 4.2, we introduce the average reward

78

optimality equation, which gives the optimal solution in terms of the average reward

when the transition probabilities of the arms are known, and state the conditions

under which it has a continuous solution. In Section 4.3, we give an equivalent

countable representation of the information state. In Section 4.4, a learning algorithm

is given. Then, in Section 4.5 we define finite partitions of the information state which

is used to bound the strong regret of the learning algorithm. We analyze the strong

regret in Section 4.6, and prove that it increases logarithmically in time. In Section

4.7, we propose a variant of our learning algorithm which does not require a bound

on the accuracy of transition probability estimates. Then, in Section 4.8, we propose

a second variant of our learning algorithm which achieves logarithmic regret without

any assumptions on the structure of the optimal policy.

4.1 Problem Formulation

Consider K mutually independent uncontrolled restless Markovian arms, indexed

by the set K = {1, 2, . . . , K} whose states evolve in discrete time steps t = 1, 2, . . .

according to a finite-state Markov chain with unknown transition probabilities.

Let Sk be the state space of arm k. For simplicity of presentation, we assume

that for state x ∈ Sk, rkx = x, i.e., the state of an arm also represents its reward

under that state. This is without loss of generality as long as one of the following

is true: either the state is perfectly observed when played, or that the reward is

perfectly observed when received and a reward uniquely identifies a state for a given

arm (i.e., no two states have the same reward). It follows that the state space of

the system is the Cartesian product of the state spaces of individual arms, denoted

by S = S1 × . . . × SK . Let pkij denote the transition probability from state i to

state j of arm k. The transition probability matrix of arm k is denoted by P k,

whose ijth element is pkij. The set of transition probability matrices is denoted by

P = (P 1, . . . , PK). We assume that P ks are such that each arm is ergodic. This

79

implies that, for each arm there exists a unique stationary distribution which is given

by πk = (πkx)x∈Sk . At each time step, the state of the system is a K-dimensional

vector of states of arms which is given by x = (x1, . . . , xK) ∈ S.

The following notation will be frequently used throughout the chapter. Let ekx

represent the unit vector with dimension |Sk|, whose xth element is 1, and all other

elements are 0. N = {1, 2, . . .} denotes the set of natural numbers, Z+ = {0, 1, . . .}

the set of non-negative integers, (v • w) the standard inner product of vectors v

and w, ||v||1 and ||v||∞ respectively the l1 and l∞ norms of vector v, and ||P ||1 the

induced maximum row sum norm of matrix P . For a vector v, (v−u, v
′) denotes the

vector whose uth element is v′, while all other elements are the same as in v. For a

vector of matrices P , (P−u, P
′) denotes the vector of matrices whose uth matrix is

P ′, while all other matrices are the same as in P . The transpose of a vector v or

matrix P is denoted by vT or P T , respectively. In addition, the following quantities

frequently appear in this chapter:

• β =
∑∞

t=1 1/t2, πkmin = minx∈Sk π
k
x;

• πmin = mink∈K π
k
min;

• rmax = maxx∈Sk,k∈K r
k
x;

• Smax = maxk∈K |Sk|.

There is an agent who selects one of the K arms at each time step t, and gets

a bounded reward depending on the state of the selected arm at time t. Without

loss of generality, we assume that the state rewards are non-negative. Let rk(t) be

the random variable which denotes the reward from arm k at time t. The objective

of the agent is to maximize the undiscounted sum of the rewards over any finite

horizon T > 0. However, the agent does not know the set of transition probability

matrices P . In addition, at any time step t the agent can only observe the state

80

of the arm it selects but not the states of the other arms. Intuitively, in order to

maximize its reward, the agent needs to explore/sample the arms to estimate their

transition probabilities and to reduce the uncertainty about the current state x ∈ S

of the system, while it also needs to exploit the information it has acquired about

the system to select arms that yield high rewards. The exploration and exploitation

need to be carefully balanced to yield the maximum reward for the agent. In a more

general sense, the agent is learning to play optimally in an uncontrolled POMDP.

We denote the set of all possible stochastic matrices with |Sk| rows and |Sk|

columns by Ξk, and let Ξ = (Ξ1,Ξ2, . . . ,ΞK). Since P is unknown to the agent,

at time t the agent has an estimate of P , denoted by P̂ t ∈ Ξ. For two vectors of

transition probability matrices P and P̃ , the distance between them is defined as

||P − P̃ ||1 :=
∑K

k=1 ||P k − P̃ k||1. Let Xk
t be the random variable representing the

state of arm k at time t. Then, the random vector X t = (X1
t , X

2
t , . . . , X

K
t) represents

the state of the system at time t.

The action space U of the agent is equal to K since it chooses an arm in K at

each time step, and the observation space Y of the agent is equal to ∪Kk=1S
k, since

it observes the state of the arm it selects at each time step. Since the agent can

distinguish different arms, for simplicity we will assume Sk ∩ Sl = ∅ for k 6= l, so

that these states may be labeled distinctly. Let ut ∈ U be the arm selected by the

agent at time t, and yt ∈ Y be the state/reward observed by the agent at time t. The

history of the agent at time t consists of all the actions and observations of the agent

by time t, which is denoted by zt = (u1, y1, u2, y2, . . . , ut, yt). Let H t denote the set

of histories at time t. A learning algorithm α = (α(1), α(2), . . .) for the agent, is a

sequence of mappings from the set of histories to actions, i.e., α(t) : H t → U . Since

the history depends on the stochastic evolution of the arms, let Ut and Yt be the

random variables representing the action and the observation at time t, respectively.

81

Let QP (y|u) be the sub-stochastic transition probability matrix such that

(QP (y|u))xx′ = PP (X t = x′, Yt = y|X t−1 = x, Ut = u),

I changed Xt to Xt−1. The previous version was incorrect because it is taken from

work on POMDP, which is a little different from the work on bandits because when

you take action at time t, you observe its result in t + 1. where PP (.|.) denotes the

conditional probability with respect to distribution P . For URBP, QP (y|u) is the

zero matrix for y /∈ Su, and for y ∈ Su, only nonzero entries of QP (y|u) are the ones

for which xu = y.

Let Γ be the set of admissible policies, i.e., policies γ′ for which γ′(t) : H t → U .

Note that the set of admissible policies include the set of optimal policies which are

computed by dynamic programming based on P . Let ψ0 be the initial belief of the

agent, which is a probability distribution over S. Since we assume that the agent

knows nothing about the state of the system initially, ψ0 can be taken as the uniform

distribution over S.

Let EPψ,γ[.] denote the expectation taken with respect to an algorithm or policy

γ, initial state ψ, and the set of transition probability matrices P . I think here by

“algorithm” you mean a policy in the optimization context? This needs to be clarified

as it can be confused with an “algorithm” in the learning context which is denoted by

the same notation. Technically they are the same, i.e., they both produce a sequence

of actions, but we don’t want a reader to all of a sudden think we are talking about

the learning problem... The performance of an algorithm α can be measured by its

strong regret, whose value at time t is the difference between performance of the

algorithm and performance of the optimal policy by time t. It is given by

Rα(T) = sup
γ′∈Γ

(
EPψ0,γ′

[
T∑
t=1

rγ
′(t)(t)

])
− EPψ0,α

[
T∑
t=1

rα(t)(t)

]
. (4.1)

82

It is easy to see that the time average reward of any algorithm with sublinear

regret, i.e., regret O(T ρ), ρ < 1, converges to the time average reward of the optimal

policy. For any algorithm with sublinear regret, its regret is a measure of its conver-

gence rate to the average reward. In Section 4.4, we will give an algorithm whose

regret grows logarithmically in time, which is the best possible rate of convergence.

4.2 Solutions of the Average Reward Optimality Equation

As mentioned earlier, if the transition probability matrices of the arms are known

by the agent, then the URBP becomes an optimization problem (POMDP) rather

than a learning problem. In this section we discuss the solution approach to this

optimization problem. This approach is then used in subsequent sections by the

agent in the learning context using estimated transition probability matrices.

A POMDP problem is often presented using the belief space (or information state),

i.e., the set of probability distributions over the state space. For the URBP with the

set of transition probability matrices P , the belief space is given by

Ψ := {ψ : ψT ∈ R|S|, ψx ≥ 0,∀x ∈ S,
∑
x∈S

ψx = 1},

which is the unit simplex in R|S|. Let ψt denote the belief of the agent at time t.

Then the probability that the agent observes y given it selects arm u when the belief

is ψ is given by

VP (ψ, y, u) := ψQP (y|u)1,

where 1 is the |S| dimensional column vector of 1s. Given arm u is chosen under

83

belief state ψ and y is observed, the next belief state is

TP (ψ, y, u) :=
ψQP (y|u)

VP (ψ, y, u)
.

The average reward optimality equation (AROE) is

g + h(ψ) = max
u∈U

{
r̄(ψ, u) +

∑
y∈Su

VP (ψ, y, u)h(TP (ψ, y, u))

}
, (4.2)

where g is a constant and h is a function from Ψ→ R,

r̄(ψ, u) = (ψ • r(u)) =
∑
xu∈Su

xuφu,xu(ψ)

is the expected reward of action u under belief ψ, φu,xu(ψ) is the probability that arm

u is in state xu given belief ψ, r(u) = (r(x, u))x∈S and r(x, u) = xu is the reward

when arm u is chosen in state x. Is there a significance to this statement? If so we

should spell it out as in e.g., this fact is used later, etc..

Assumption IV.1. pkij > 0,∀k ∈ K, i, j ∈ Sk.

When Assumption IV.1 holds, the existence of a bounded, convex continuous

solution to (4.2) is guaranteed.

Let V denote the space of bounded real-valued functions on Ψ. Next, we define

the undiscounted dynamic programming operator F : V → V . Let v ∈ V , we have

(Fv)(ψ) = max
u∈U

{
r̄(ψ, u) +

∑
y∈Su

VP (ψ, y, u)v(TP (ψ, y, u))

}
. (4.3)

In the following lemma, we give some of the properties of the solutions to the average

reward optimality equation and the dynamic programming operator defined above.

84

Lemma IV.2. Let h+ = h− infψ∈Ψ(h(ψ)), h− = h− supψ∈Ψ(h(ψ)) and

hT,P (ψ) = sup
γ∈Γ

(
EPψ,γ

[
T∑
t=1

rγ(t)

])
.

Given that Assumption IV.1 is true, the following holds:

S-1 Consider a sequence of functions v0, v1, v2, . . . in V such that v0 = 0, and vl =

Fvl−1, l = 1, 2, This sequence converges uniformly to a convex continuous

function v∗ for which Fv∗ = v∗ + g where g is a finite constant. In terms

of (4.2), this result means that there exists a finite constant gP and a bounded

convex continuous function hP : Ψ→ R which is a solution to (4.2).

S-2 hP−(ψ) ≤ hT,P (ψ)− TgP ≤ hP+(ψ), ∀ψ ∈ Ψ.

S-3 hT,P (ψ) = TgP + hP (ψ) +O(1) as T →∞.

Proof. Sufficient conditions for the existence of a bounded convex continuous solu-

tion to the AROE are investigated in Platzman (1980). According to Theorem 4 of

Platzman (1980), if reachability and detectability conditions are satisfied then S-1

holds. Below, we directly prove that reachability condition in Platzman (1980) is

satisfied. To prove that detectability condition is satisfied, we show another condi-

tion, i.e., subrectangular substochastic matrices, holds which implies the detectability

condition.

We note that P (X t+1 = x′|X t = x) > 0, ∀x,x′ ∈ S since by Assumption IV.1,

pkij > 0 ∀i, j ∈ Sk, ∀k ∈ K.

Condition IV.3. (Reachability) There is a ρ < 1 and an integer ξ such that for all

x ∈ S

sup
γ∈Γ

max
0≤t≤ξ

P (X t = x|ψ0) ≥ 1− ρ, ∀ψ0 ∈ Ψ.

85

Set ρ = 1−minx,x′ P (X t+1 = x′|X t = x), ξ = 1. Since the system is uncontrolled,

state transitions are independent of the arm selected by the agent. Therefore,

sup
γ∈Γ

P (X1 = x|ψ0) = P (X1 = x|ψ0)

≥ min
x,x′

P (X t+1 = x′|X t = x) = 1− ρ.

Condition IV.4. (Subrectangular matrices) For any substochastic matrixQ(y|u), y ∈

Y, u ∈ U , and for any i, i′, j, j′ ∈ S,

(Q(y|u))ij > 0 and (Q(y|u))i′j′ > 0 ⇒ (Q(y|u))ij′ > 0 and (Q(y|u))i′j > 0.

Q(y|u) is subrectangular for y /∈ Su since it is the zero matrix. For y ∈ Su all

entries of Q(y|u) is positive since P (X t+1 = x′|X t = x) > 0, ∀x,x′ ∈ S. Yes for any

t since the arms are time homogeneous Markov chains.

S-2 holds by Lemma 1 in Platzman (1980), and S-3 is a consequence of S-2 and

the boundedness property in S-1.

4.3 Countable Representation of the Information State

The belief space, which is the set of probability distributions over the state space,

is uncountable. Since the problem we consider in this chapter is a learning problem,

it is natural to assume that the agent does not have an initial belief about the state of

the system, or the initial belief is just the uniform distribution over the state space.

Therefore, instead of considering initial beliefs which are arbitrary distributions over

the state space, we lose nothing by considering initial beliefs which are formed by

playing all the arms at least once. Assume that the initial K steps are such that

the agent select arm k at the kth step. Then, the POMDP for the agent can be

written as a countable state MDP. Specifically, the information state at time t can

86

be represented by

(st, τ t) = ((s1
t , s

2
t . . . , s

K
t), (τ 1

t , τ
2
t . . . , τ

K
t)),

where skt and τ kt are the last observed state of arm k and how long ago (from t) the

last observation of arm k was made, respectively. Note that the countable state MDP

obtained this way is a subset of the POMDP for the bandit problem in which the

agent can only be in one of the countably many points in the belief space Ψ at any

time step t. Our approach in this chapter is to exploit the continuity property of the

AROE to bound the regret of the agent. In order to do this we need to work in Ψ,

thus we make a distinction between ψt, which is a probability distribution over the

state space, and (st, τ t) which is a sufficient information for the agent to calculate

ψt when P is given. Therefore we call ψ ∈ Ψ, the belief, and (s, τ) the information

state.

The contribution of the initial K steps to the regret is at most Krmax, which we

will subsequently ignore in our analysis. We will only analyze the time steps after

this initialization, and set t = 0 upon the completion of the initialization phase. The

initial information state of the agent can be written as (s0, τ 0). Let C be the set of

all possible information states that the agent can be in. Since the agent selects a

single arm at each time step, at any time τ k = 1 for the last selected arm k. I’m

guessing you are reserving the term “belief state” for the ψ you previously defined,

and the term “information state” for the above countable representation. If so we

should make this distinction more explicit, because in the two are in general used

interchangeably...

The agent can compute its belief state ψt ∈ Ψ by using its transition probability

estimates P̂ together with the information state (st, τ t). We let ψP (st, τ t) be the

belief that corresponds to information state (st, τ t) when the set of transition prob-

87

ability matrices is P . The agent knows the information state exactly, but it only

has an estimate of the belief that corresponds to the information state, because it

does not know the transition probabilities. The true belief computed with the knowl-

edge of exact transition probabilities and information state at time t is denoted by

ψt, while the estimated belief computed with estimated transition probabilities and

information state at time t is denoted by ψ̂t.

When the belief is ψ and the set of transition probability matrices is P , the set

of optimal actions which are the maximizers of (4.2) is denoted by O(ψ;P). When

the information state is (st, τ t), and the set of transition probability matrices is P ,

we denote the set of optimal actions by O((s, τ);P) := O(ψP ((s, τ));P).

4.4 Average Reward with Estimated Probabilities (AREP)

In this section we propose the algorithm average reward with estimated probabilities

(AREP) given in Figure 4.1, as a learning algorithm for the agent. AREP consists

of exploration and exploitation phases. In the exploration phase the agent selects

each arm for a certain time to form estimates of the transition probabilities, while

in the exploitation phase the agent selects an arm according to the optimal policy

based on the estimated transition probabilities. At each time step, the agent decides

if it is an exploration phase or exploitation phase based on the accuracy of transition

probability estimates. Let Nk(t) be the number of times arm k is selected by time t,

Nk
i,j(t) be the number of times a transition from state i to state j of arm k is observed

by the agent by time t, and Ck
i (t) be the number of times a transition from state i of

arm k to any state of arm k is observed by time t. Clearly,

Ck
i (t) =

∑
j∈Sk

Nk
i,j(t).

Let f(t) be a non-negative, increasing function which sets a condition on the accuracy

88

Average Reward with Estimated Probabilities (AREP)

1: Initialize: f(t) given for t ∈ {1, 2, . . .}, t = 1, Nk = 0, Nk
i,j = 0, Cki = 0, ∀k ∈ K, i, j ∈ Sk. Play

each arm once to set the initial information state (s, τ)0. Pick α(0) randomly.
2: while t ≥ 1 do
3: p̄kij = (I(Nk

i,j = 0) +Nk
i,j)/(|Sk|I(Cki = 0) + Cki)

4: p̂kij = (p̄kij)/(
∑
l∈Sk p̄

k
il)

5: W = {k ∈ K : there exists i ∈ Sk such that Cki < f(t)}.
6: if W 6= ∅ then
7: EXPLORE
8: if α(t− 1) ∈W then
9: α(t) = α(t− 1)

10: else
11: select α(t) ∈W arbitrarily
12: end if
13: else
14: EXPLOIT
15: solve ĝt + ĥt(ψ) = maxu∈U{r̄(ψ, u) +

∑
y∈Su V (ψ, y, u)ĥt(TP̂ t(ψ, y, u))},∀ψ ∈ Ψ.

16: Let ψ̂t be the estimate of the belief at time t based on (st, τ t) and P̂ t.

17: compute the indices of all actions at ψ̂t:

18: ∀u ∈ U , It(ψ̂t, u) = r̄(ψ̂t, u) +
∑
y∈Su V (ψ̂t, y, u)ĥt(TP̂ t(ψ̂t, y, u)).

19: Let u∗ be the arm with the highest index (arbitrarily select one if there is more than one
such arm).

20: α(t) = u∗.
21: end if
22: Receive reward rα(t)(t), i.e., state of α(t) at t
23: Compute (st+1, τ t+1)
24: if α(t− 1) = α(t) then
25: for i, j ∈ Sα(t) do
26: if State j is observed at t, state i is observed at t− 1 then

27: N
α(t)
i,j = N

α(t)
i,j + 1, C

α(t)
i = C

α(t)
i + 1.

28: end if
29: end for
30: end if
31: t := t+ 1
32: end while

Figure 4.1: pseudocode for the Average Reward with Estimated Probabilities
(AREP)

of estimates. If Ck
i (t) < f(t) for some k ∈ K, i ∈ Sk, the agent explores at time t.

Otherwise, the agent exploits at time t. In other words, the agent concludes that the

sample mean estimates are accurate enough to compute the optimal action correctly

when Ck
i (t) ≥ f(t) ∀k ∈ K, i ∈ Sk. In an exploration step, in order to update the

estimate of pkij, j ∈ Sk, the agent does the following. It selects arm k until state i is

observed, then selects arm k again to observe the next state after i. Then, the agent

89

forms the following sample mean estimates of the transition probabilities:

p̄kij,t :=
Nk
i,j(t)

Ck
i (t)

, i, j ∈ Sk.

In order for this estimates to form a probability distribution, the agent should have∑
j∈Sk p̄

k
ij,t = 1. Therefore, instead of the estimates p̄kij,t, the agent uses the normalized

estimates, i.e.,

p̂kij,t :=
p̄kij,t∑
l∈Sk p̄

k
il,t

.

If AREP is in the exploitation phase at time t, the agent first computes ψ̂t, the

estimated belief at time t, using the set of estimated transition probability matrices

P̂ t. Then, it solves the average reward optimality equation using P̂ t, for which the

solution is given by ĝt and ĥt. We assume that the agent can compute the solution

at every time step, independent of the complexity of the problem. Even if the agent

cannot exactly solve it, it can use value iteration and belief state space discretization

to compute an approximate solution. Evaluation of the performance of approximate

solutions is out of the scope of this chapter. This solution is used to compute the

indices (given on line 18 of AREP) as

It(ψ̂t, u) = r̄(ψ̂t, u) +
∑
y∈Su

V (ψ̂t, y, u)ĥt(TP̂ t(ψ̂t, y, u)),

for each action u ∈ U at estimated belief ψ̂t. It(ψ̂t, u) represents the advantage of

choosing action u starting from information state ψ̂t, i.e, the sum of gain and bias.

After computing the indices for each action, the agent selects the action with the

highest index. In case of a tie, one of the actions with the highest index is randomly

selected. Note that it is possible to update the state transition probabilities even

in the exploitation phase given that the arms selected at times t − 1 and t are the

90

same. Thus Ck
i (t) may also increase in an exploitation phase, and the number of

explorations may be smaller than the number of explorations needed in the worst

case, in which the transition probability estimates are only updated at exploration

steps.

In the subsequent sections we bound the strong regret of AREP by bounding the

number of times a suboptimal arm selection is made at the information states visited

by the agent. Since there are infinitely many information states, in order to bound

the sum of the numbers of suboptimal plays we need to form a finite partition of the

information states. We do this in the next subsection. In the next section, we define

partitions of the agent’s belief state space that are used to bound the regret. From

now on we will denote AREP by α.

4.5 Finite Partitions of the Information State

Note that even when the agent is given the optimal policy as a function of the

belief state for any time horizon T , it may not be able to play optimally because it

does not know the exact belief ψt at time t. In this case, one way to ensure that

the agent plays optimally is to have an ε > 0 such that if ||ψt − ψ̂t||1 < ε, the set of

actions that are optimal in ψ̂t is a subset of the set of actions that are optimal in ψt.

This is indeed the case, and we prove it by exploiting the continuity of the solution

to (4.2) under Assumption IV.1.

We start by defining finite partitions of the set of information states C.

Definition IV.5. Let τtr > 0 be an integer which denotes the threshold in time lag.

This threshold is used to group information states in a way that treats all states of

an arm which is not played for more than this threshold as a single group. Consider

a vector i = (i1, . . . , iK) such that either ik = τtr or ik = (sk, τ k), τk < τtr, s
k ∈ Sk.

Each vector will define a set in the partition of C so we call i a partition vector. The

91

sets defined by different partition vectors form a partition of C such that each set

in this partition either consists of a single information state, or it includes infinitely

many information states of the arms for which ik = τtr. Maybe we should clarify that

each vector defines a point in the set C, except for vectors containing at least one

τtr; such a vector denotes a set of C. I think we did it below. Let Gτtr denote the

partition formed by τtr. Let s′(i) = {sk : ik 6= τtr} and τ ′(i) = {τ k : ik 6= τtr}. Let

M(i) := {k : ik = τtr} be the set of arms that are played at least τtr time steps ago.

Let M̄(i) := K −M(i). Vector i forms the following set in the partition Gτtr .

Gi = {(s, τ) ∈ C : (sM̄(i) = s′(i), τ M̄(i) = τ ′(i)), sk ∈ Sk, τ k ≥ τtr,∀k ∈M(i)}.

Let A(τtr) be the number of sets in partition Gτtr . Re-index the sets in Gτtr as

G1, G2, . . . , GA(τtr).

Consider a set of transition probability matrices P̃ for which Assumption IV.1

holds. Since each arm is ergodic, when we map a set Gl with infinitely many infor-

mation states to the belief space using ψP̃ , for any δ > 0, only a finite number of

information states in Gl will lie outside the radius-δ ball centered at the joint station-

ary distribution of arms for which ik = τtr. Is this a unique point? these arms will be

in stationary distribution, but the other arms are not...

For a set Gl ∈ Gτtr , given a set of transition probability matrices P , we define

its center as follows. If Gl only contains a single information state, then the belief

corresponding to that information state is the center of Gl. If Gl contains infinitely

many information states, then the center of Gl is the belief in which all arms for

which ik = τtr are in their stationary distribution based on P . In both cases, the

belief which is the center of Gl is denoted by ψ∗(Gl;P). Let O∗(Gl;P) be the set

of optimal actions at this belief. Note that as τtr increases, the number of sets with

infinitely many elements increases, and each of these sets are centered around the joint

92

stationary distribution. Similarly, as τtr increases, the number of sets with a single

information state increases. I think this is true. For example when τtr = 2, only

the information states with τk = 1 for all k can form a set with a single information

state. However when τtr = 3 informations states for which τk = 1 or τ k = 2 for

all k form a set with a single information state. However, the number of sets with

infinitely many elements remains always the same, because these can only be the sets

that are around the joint stationary distributions of the arms, and the number of

joint stationary distributions of the arms cannot change. The points in belief space

corresponding to these sets are shown in Figure 4.2. Example IV.6 shows the partition

of C formed by τtr = 3 when K = 2.

Example IV.6. Let K = 2, S1 = {0, 2}, S2 = {1} and τtr = 3. For convinicence

let (s, τ) = ((s1, τ 1), (s2, τ 2)). Then the partition formed by τtr, i.e., Gτtr contains the

following sets:

G1 = {((0, 1), (1, 2))} , G2 = {((2, 1), (1, 2))} ,

G3 = {((0, 2), (1, 1))} , G4 = {((2, 2), (1, 1))} ,

G5 = {((0, 1), (1, 3)) , ((0, 1), (1, 4)) , . . .} ,

G6 = {((2, 1), (1, 3)) , ((2, 1), (1, 4)) , . . .} ,

G7 = {((0, 3), (1, 1)) , ((2, 3), (1, 1)) , ((0, 4), (1, 1)) , ((2, 4), (1, 1)) , . . .}

Next, we define extensions of the sets Gl on the belief space. For a set B ∈ Ψ let

B(ε) be the ε extension of that set, i.e.,

B(ε) = {ψ ∈ Ψ : ψ ∈ B or d1(ψ,B) < ε},

where d1(ψ,B) is the minimum l1 distance between ψ and any element of B. The

ε-extension of Gl ∈ Gτtr corresponding to P is the ε-extension of the convex-hull of the

93

Figure 4.2: Partition of C on Ψ based on P and τtr. Gl is a set with a single infor-
mation state and Gl′ is a set with infinitely many information states.

points ψP (s, τ) such that (s, τ) ∈ Gl. Let Jl,ε denote the ε-extension of Gl. Examples

of Jl,ε on the belief space is given in Figure 4.5.

Let the diameter of a set B be the maximum distance between any two elements of

that set. Another observation is that when τtr increases, the diameter of the convex-

hull of the points of the sets in Gτtr that contains infinitely many elements decreases.

In the following lemma, we show that when τtr is chosen large enough, there exists

ε > 0 such for all Gl ∈ Gτtr , we have non-overlapping ε-extensions in which only a

subset of the actions in O∗(Gl;P) is optimal.

Lemma IV.7. For any P , ∃ τtr > 0 and ε > 0 such that for all Gl ∈ Gτtr, its

ε-extension Jl,ε has the following properties:

i For any ψ ∈ Jl,ε, O(ψ;P) ⊂ O∗(Gl;P).

ii For l 6= l′, Jl,ε ∩ Jl′,ε = ∅.

Proof. For Gl ∈ Gτtr consider its center ψ∗(Gl;P). For any ψ ∈ Ψ the suboptimality

gap is defined as

∆(ψ,P) = max
u∈U

{
r̄(ψ, u) +

∑
y∈Su

VP (ψ, y, u)h(TP (ψ, y, u))}

}

94

Figure 4.3: ε-extensions of the sets in Gτtr on the belief space.

− max
u∈U−O(ψ;P)

{
{r̄(ψ, u) +

∑
y∈Su

VP (ψ, y, u)h(TP (ψ, y, u))

}
. (4.4)

Since r, h, V and T are continuous in ψ, we can find an ε > 0 such that for any

ψ ∈ B2ε(ψ
∗(Gl;P)) and for all u ∈ U ,

∣∣∣∣∣r̄(ψ∗(Gl;P), u) +
∑
y∈Su

VP (ψ∗(Gl;P), y, u)h(TP (ψ∗(Gl;P), y, u))

−r̄(ψ, u) +
∑
y∈Su

VP (ψ, y, u)h(TP (ψ, y, u))

∣∣∣∣∣ < ∆(ψ∗(Gl;P),P)/2, (4.5)

and B2ε(ψ
∗(Gl;P))∩B2ε(ψ

∗(Gl′ ;P)) = ∅ for l 6= l′. Therefore, any action u which is

not in O∗(Gl;P) cannot be optimal for any ψ ∈ B2ε(ψ
∗(Gl;P)). Since the diameter of

the convex-hull of the sets that contains infinitely many information states decreases

with τtr, there exists τtr > 0 such that for any Gl ∈ Gτtr , the diameter of the convex-

hull Jl,0 is less than ε. Let τtr be the smallest integer such that this holds. Then,

the ε-extension of the convex hull Jl,ε is included in the ball B2ε(ψ
∗(Gl;P)) for all

Gl ∈ Gτtr . This concludes the proof.

Remark IV.8. According to Lemma IV.7, although we can find an ε-extension in

95

which a subset of O∗(Gl;P) is optimal for any ψ, ψ′ ∈ Jl,ε, the set of optimal actions

for ψ may be different from the set of optimal actions for ψ′. Note that agent’s

estimated belief ψ̂t is different from the true belief ψt. If no matter how close ψ̂t

to ψt, the set of optimal actions for the two is different, then the agent can make

a suboptimal decision even if it knows the optimal policy. The performance loss of

the agent, which can be bounded by the number of suboptimal decisions, may grow

linearly over time. It appears that this is a serious problem in the design of an efficient

learning algorithm. In this chapter, we present two different approaches which will

make performance loss (regret) grow logarithmically in time. The first approach is

based on an assumption about the structure of the optimal policy, while the second

approach is to construct an algorithm that will almost always choose near-optimal

actions, whose suboptimality can be bounded by a function of the time horizon T .

Assumption IV.9. There exists τtr ∈ N such that for any Gl ∈ Gτtr, there exists

ε > 0 such that the same subset of O∗(Gl;P) is optimal for any ψ ∈ Jl,ε−ψ∗(Gl;P).

When this assumption is correct, if ψt and ψ̂t are sufficiently close to each other,

then the agent will always chose an optimal arm. Assume that this assumption is

false. Consider the stationary information states for which τ k = ∞ for some arm k.

Then for any τtr > 0, there exists a set Gl ∈ Gτtr and a sequence of information states

(s, τ)n , n = 1, 2, . . ., such that ψP ((s, τ)n) converges to ψ∗(Gl;P) but there exists

infinitely many n’s for which O((s, τ)n;P) 6= O((s, τ)n+1;P).

For simplicity of analysis, we focus on the following version of Assumption IV.9,

although our results in Section 4.6 will also hold when Assumption IV.9 is true.

Assumption IV.10. There exists τtr ∈ N such that for any Gl ∈ Gτtr, a single action

is optimal for ψ∗(Gl;P).

Corollary IV.11. Let τtr ∈ N be the minimum integer such that Assumption IV.10

holds. Then, there exists ε̄ > 0, depending on τtr, such that for all ε ≤ ε̄, and any

96

ψ ∈ Jl,ε, a single action is optimal.

Proof. Result follows from Assumption IV.10 and Lemma IV.7.

Remark IV.12. Although we don’t know a way to check if Assumption IV.10 holds

given a set of transition probability matrices P , we claim that it holds for a large

set of P s. To explain better we may need a rigorous proof but I don’t know how we

can do it know. I wanted to say that at any time step the reward distributions and

the expected rewards of all the arms will be different no matter in which information

state we are in. Therefore at each time step there will only be a single optimal

arm. The agent’s selection does not affect state transitions of the arms; it only

affects the agent’s reward by changing the information state. Moreover, each arm

evolves independently from each other. Assume that P is arbitrarily selected from

Ξ, and the state reward rkx, x ∈ Sk is arbitrarily selected from [0, rmax]. Then at any

information state (s, τ) ∈ C, the probability that the reward distribution of two arms

are the same will be zero. Based on this, we claim that Assumption IV.10 holds with

probability one, if the arm rewards and P is chosen from the uniform distribution on

Ψ× [0, rmax]. In other words, the set of arm rewards and transition probabilities for

which Assumption IV.10 does not hold is a measure zero subset of Ψ× [0, rmax].

4.6 Analysis of the Strong Regret of AREP

In this section we show that when P is such that Assumptions IV.1 and IV.10

hold, if the agent uses AREP with f(t) = L log t with L sufficiently large, i.e., the

exploration constant L ≥ C(P), where C(P) is a constant that depends on P , then

the regret due to explorations will be logarithmic in time, while the regret due to all

other terms are finite, independent of t. No it does not only depend on the dimension.

It is true that Lemma 8 depends only on the dimension, but CP (ε) on Lemma 8 is

different form the constant here. Because the value of ε we want depends on P Note

97

that since the agent does not know P , it cannot know how large it should chose L.

For simplicity we assume that the agent starts with an L that is large enough without

knowing C(P). We also prove a near-logarithmic regret result when the agent sets

f(t) = L(t) log t, where L(t) is a positive increasing function over time such that

limt→∞ L(t) =∞.

In the following lemma, using Lemma A.7, we show that the probability that

an estimated transition probability is significantly different from the true transition

probability given AREP is in an exploitation phase is very small.

Lemma IV.13. For any ε > 0, for an agent using AREP with constant L ≥ CP (ε),

we have

P
(
|p̂kij,t − pkij| > ε, Et

)
:= P

(
{|p̂kij,t − pkij| > ε} ∩ Et

)
≤ 2Smax + 2

t2
,

for all t > 0, i, j ∈ Sk, k ∈ K, where CP (ε) is a constant that depends on P and ε.

Proof. See Appendix F.

4.6.1 An Upper Bound on the Strong Regret

For any admissible policy α, the regret with respect to the optimal T horizon

policy is given in (4.1), which we restate below:

sup
γ∈Γ

(
EPψ0,γ

[
T∑
t=1

rγ(t)(t)

])
− EPψ0,α

[
T∑
t=1

rα(t)(t)

]
.

First, we derive the regret with respect to the optimal policy as a function of the

number of suboptimal plays. Before proceeding, we define expressions to compactly

represent the right hand side of the AROE. Let

L(ψ, u, h,P) := r̄(ψ, u) + (V (ψ, ., u) • h(TP (ψ, ., u)))

98

L∗(ψ,P) := max
u∈U
L(ψ, u, hP ,P).

Let

∆(ψ, u;P) := L∗(ψ,P)− L(ψ, u, hP ,P), (4.6)

denote the degree of suboptimality of action u at information state ψ when the set of

transition probability matrices is P . From Proposition 1 in Burnetas and Katehakis

(1997), we have for all γ ∈ Γ

Rγ
(ψ0;P)(T) =

T∑
t=1

EPψ0,γ
[∆(ψt, Ut;P)] + C̄P , (4.7)

for some constant C̄P , depending on P . We have used the subscript (ψ0;P) to

denote the dependence of regret to the initial belief and the transition probabilities.

We assume that initially all the arms are sampled once thus the initial belief is

ψ0 = ψP ((s0, τ 0)). For the true set of transition probability matrices P , let τtr and

ε be such that Corollary IV.11 is true. Specifically, let τtr be the minimum over all

possible values so that Corollary IV.11 is true, and ε be the maximum over all possible

values given τtr so that Corollary IV.11 is true. Then, denote the ε-extension of the

set Gl ∈ Gτtr by Jl,ε. Note that at any t, the belief ψt ∈ Jl,ε for some l. When ε is

clear from the context, we simply write Jl,ε as Jl.

Let

∆̄(Jl, u;P) := sup
ψ∈Jl

∆(ψ, u;P).

Recall that Ut is the random variable that denotes the arm selected by the agent at

time t, which depends on the policy used by the agent. Note that if Ut ∈ O(ψt;P) then

∆(ψt, Ut;P)=0, else Ut /∈ O(ψt;P) then ∆(ψt, Ut;P) ≤ ∆̄(Jl, Ut;P) with probability

99

one. Let

NT (Jl, u) :=
T∑
t=1

I(ψt ∈ Jl, Ut = u).

We have the following lemma.

Lemma IV.14. For any admissible policy γ,

Rγ
(ψ0;P)(T) ≤

A(τtr)∑
l=1

∑
u/∈O(Jl;P)

EPψ0,γ
[NT (Jl, u)]∆̄(Jl, u;P) + C̄P .

Proof.

Rγ
(ψ0;P)(T) ≤

T∑
t=1

EPψ0,γ

 A∑
l=1

∑
u/∈O(Jl;P)

I(ψt ∈ Jl, Ut = u)∆̄(Jl, u;P)

+ C̄P

=
A∑
l=1

∑
u/∈O(Jl;P)

EPψ0,γ

[
T∑
t=1

I(ψt ∈ Jl, Ut = u)

]
∆̄(Jl, u;P) + C̄P

=
A∑
l=1

∑
u/∈O(Jl;P)

EPψ0,γ
[NT (Jl, u)]∆̄(Jl, u;P) + C̄P .

Now consider AREP, which is denoted by α. We will upper bound NT (Jl, u) for

suboptimal actions u by a sum of expressions which we will upper bound individually.

Let Et be the event that AREP is in an exploitation step at time t and

Ft(ε) :=
{∥∥∥ĥt − hP∥∥∥

∞
≤ ε
}
.

For an event F , denote its complement by F c. Consider the following random vari-

ables which count the number of times some event has happened by time T . Since

100

they all depend on T , we drop the time script in the notation for convenience.

D1,1(ε, Jl, u) :=
T∑
t=1

I
(
ψ̂t ∈ Jl, Ut = u, Et,Ft(ε)

)
,

D1,2(ε) :=
T∑
t=1

I(Et,F ct (ε)),

D1(ε, Jl, u) := D1,1(ε, Jl, u) +D1,2(ε),

D2,1(ε) :=
T∑
t=1

I(||ψt − ψ̂t||1 > ε, Et),

D2,2(ε, Jl) :=
T∑
t=1

I(||ψt − ψ̂t||1 ≤ ε, ψ̂t /∈ Jl, ψt ∈ Jl, Et),

D2(ε, Jl) := D2,1(ε) +D2,2(ε, Jl).

Lemma IV.15. For any P satisfying Assumption, we have IV.9

EPψ0,γ
[NT (Jl, u)] ≤ EPψ0,γ

[D1(ε, Jl, u)] + EPψ0,γ
[D2(ε, Jl)]

+ EPψ0,γ

[
T∑
t=1

I(Ect)

]
. (4.8)

Yes u is any action optimal or suboptimal

Proof.

NT (Jl, u) =
T∑
t=1

(I(ψt ∈ Jl, Ut = u, Et) + I(ψt ∈ Jl, Ut = u, Ect))

≤
T∑
t=1

I(ψt ∈ Jl, ψ̂t ∈ Jl, Ut = u, Et) +
T∑
t=1

I(ψt ∈ Jl, ψ̂t /∈ Jl, Ut = u, Et)

+
T∑
t=1

I(Ect)

≤
T∑
t=1

I(ψ̂t ∈ Jl, Ut = u, Et) +
T∑
t=1

I(ψt ∈ Jl, ψ̂t /∈ Jl, Et) +
T∑
t=1

I(Ect)

≤ D1,1(ε, Jl, u) +D1,2(ε) +D2,1(ε) +D2,2(ε, Jl)

101

+
T∑
t=1

I(Ect).

The result follows from taking the expectation of both sides.

4.6.2 Bounding the Expected Number of Explorations

The following lemma bounds the number of explorations by time T .

Lemma IV.16.

EPψ0,α

[
T∑
t=1

I(Ect)

]
≤

(
K∑
k=1

|Sk|

)
L log T (1 + Tmax), (4.9)

where Tmax = maxk∈K,i,j∈Sk E[T kij] + 1 and T kij is the hitting time of state j of arm

k starting from state i of arm k. Since all arms are ergodic E[T kij] is finite for all

k ∈ K, i, j ∈ Sk.

Proof. Assume that state i of arm k is under-sampled, i.e., Ck
i (t) < L log t. Since

each arm is an ergodic Markov chain, if the agent keeps playing arm k, the expected

number of time steps until a single transition out of state i of arm k is observed is at

most (1 + Tmax). If by time T transitions out of state i of arm k is observed at least

L log T times, for all states i of all arms k, then the agent will not explore at time T .

Therefore there can be at most
∑K

k=1

∑
i∈Sk L log T such transitions by time T that

take place in an exploration step. In the worst-case each of these transitions takes

(1 + Tmax) expected time steps.

4.6.3 Bounding EPψ0,α
[D1(ε, Jl, u)] for a suboptimal action u /∈ O(Jl;P)

We will first bound EPψ0,α
[D1,1(ε, Jl, u)] for any suboptimal u. Let

∆(Jl;P) := min
ψ∈Jl,u/∈O(Jl;P)

∆(ψ, u;P).

102

By Corollary IV.11, ∆(Jl;P) > 0 for all l = 1, . . . , A(τtr). Let

∆ := min
l=1,...,A(τtr)

∆(Jl;P).

In the following lemma we show that when the transition probability estimates are

accurate enough and the estimated solution to the AROE is close enough to the true

solution, a suboptimal action cannot be chosen by the agent.

Lemma IV.17. Let δe > 0 be the greatest real number such that

||P̂ t − P ||1 < δe ⇒
∣∣∣L(ψ, u, hP ,P)− L(ψ, u, hP , P̂ t)

∣∣∣ ≤ ∆/4,

for all ψ ∈ Ψ. Such δe exists because TP (ψ, y, u) is continuous in P , and hP (ψ) is

continuous in ψ. Then, for an agent using AREP with L ≥ CP (δe/(KS
2
max)), for any

suboptimal action u /∈ O(Jl;P), we have

EPψ0,α
[D1,1(ε, Jl, u)] ≤ 2KS2

max(Smax + 1)β,

for ε < ∆/4, where β =
∑∞

t=1 1/t2 and CP (.) is the constant given in Lemma IV.13.

Proof. See Appendix G.

Next, we consider bounding EPψ0,α
[D1,2(ε)]. To do this we introduce the following

lemma which implies that when the estimated transition probabilities get closer to the

true transition probabilities, the difference between the functions which are solutions

to the AROE based on the estimated and true transition probabilities diminishes.

Lemma IV.18. For any ε > 0, there exists ς > 0 depending on ε such that if∥∥∥P k − P̂ k
∥∥∥

1
< ς, ∀k ∈ K then ‖hP − hP̂ ‖∞ < ε.

Proof. See Appendix H.

103

The following lemma bounds EPψ0,α
[D1,2(ε)].

Lemma IV.19. For any ε > 0, let ς > 0 be such that Lemma IV.18 holds. Then for

an agent using AREP with L ≥ CP (ς/S2
max), we have

EPψ0,α
[D1,2(ε)] ≤ 2KS2

max(Smax + 1)β , (4.10)

where CP (.) is the constant given in Lemma IV.13.

Proof. See Appendix I.

4.6.4 Bounding EPψ0,α
[D2(ε, Jl)]

Lemma IV.20. For an agent using AREP with exploration constant

L ≥ CP (ε/(KS2
max|S1| . . . |SK |C1(P))),

we have

EPψ0,α
[D2,1(ε)] ≤ 2KS2

max(Smax + 1)β, (4.11)

where CP (.) is the constant given in Lemma IV.13, C1(P) = maxk∈K C1(P k,∞) and

C1(P k, t) is a constant that can be found in Lemma A.6.

Proof. See Appendix J.

Next we will bound EPψ0,α
[D2,2(ε, Jl)].

Lemma IV.21. Let τtr be such that Assumption IV.10 holds. Then for ε < ε̄/2,

where ε̄ is given in Corollary IV.11, EPψ0,α
[D2,2(ε, Jl)] = 0, l = 1, . . . , A(τtr).

Proof. By Corollary IV.11, any ψt ∈ Jl is at least ε̄ away from the boundary of Jl.

Thus given ψ̂t is at most ε away from ψt, it is at least ε̄/2 away from the boundary

of Jl.

104

4.6.5 A Logarithmic Strong Regret Upper Bound

Theorem IV.22. Assume that Assumptions IV.1 and IV.10 are true. Let τtr be the

minimum threshold, and ε = ε̄ be the number given in Corollary IV.11. Under these

assumptions, for an agent using AREP with L sufficiently large (depending on P and

ε), for any arm (action) u ∈ U which is suboptimal for the belief vectors in Jl, we

have

EPψ0,α
[NT (Jl, u)] ≤

(
K∑
k=1

|Sk|

)
L log T (1 + Tmax) + 6KS2

max(Smax + 1)β ,

for some δ > 0 depending on L. Therefore,

Rα
ψ0;P (T) ≤

((
K∑
k=1

|Sk|

)
L log T (1 + Tmax) + 6KS2

max(Smax + 1)β

)

×
A(τtr)∑
l=1

∑
u/∈O(Jl;P)

∆̄(Jl, u;P) + C̄P .

When the arm rewards are in [0, 1], strong regret at time T given as Rα
ψ0;P (T) can

also be upper bounded by

((
K∑
k=1

|Sk|

)
L log T (1 + Tmax) + 6KS2

max(Smax + 1)β

)
(KA(τtr)) + C̄P .

Proof. The result follows from Lemmas IV.14, IV.16, IV.19 IV.20 and IV.21.

Remark IV.23. Our regret bound depends on A(τtr). However, the agent does not

need to know the value of τtr for which Corollary IV.11 is true. It only needs to

choose L large enough so that the number of exploration steps is sufficient to ensure

a bounded number of errors in exploitation steps.

105

4.7 AREP with an Adaptive Exploration Function

In this section, we consider an adaptive exploration function for AREP, by which

the agent can achieve near-logarithmic regret without knowing how large it should

chose the exploration constant L, which depends on P . We note that the analysis in

Section 4.6 holds when AREP is run with a sufficiently large exploration constant L

such that at each exploitation step the estimated transition probabilities P̂ is close

enough to P to guarantee that all regret terms in (4.8) is finite except the regret due

to explorations which is logarithmic in time. In other words, there is an C(P) > 0

such that when AREP is run with L ≥ C(P), at the end of each exploration step

we have ||P̂ − P ||1 ≤ δ(P), where δ(P) > 0 is a constant for which Theorem IV.22

holds.

However, in our learning model we assumed that the agent does not know the

transition probabilities initially, therefore it is impossible for the agent to check if

L ≥ C(P). Let Ξ̃ ⊂ Ξ be the set of transition probability matrices where P lies in.

If the agent knows Ξ̃, then it can compute C̃ = supP̃∈Ξ̃C(P̃), and choose L > C̃.

In this section, we present another exploration function for AREP such that

the agent can achieve near-logarithmic regret even without knowing C(P) or C̃.

Let f(t) = L(t) log t where L(t) is an increasing function such that L(1) = 1 and

limt→∞ L(t) = ∞. The intuition behind this exploration function is that after some

time T0, L(t) will be large enough so that the estimated transition probabilities are

sufficiently accurate, and the regret due to incorrect calculations is a constant inde-

pendent of time.

Theorem IV.24. When P is such that Assumptions IV.1 and IV.10 hold, if the

agent uses AREP with f(t) = L(t) log t, for some increasing L(t) such that L(1) = 1

and limt→∞ L(t) =∞, then there exists τtr(P) > 0, T0(L,P) > 0 such that the strong

106

regret is upper bounded by

Rα
ψ0;P (T) ≤ rmax

(
T0(L,P) +

(
K∑
k=1

|Sk|

)
L(T) log T (1 + Tmax)

+6KS2
max(Smax + 1)β

A(τtr)∑
l=1

∑
u/∈O(Jl;P)

∆̄(Jl, u;P)


≤ rmax

(
T0(L,P) +

(
K∑
k=1

|Sk|

)
L(T) log T (1 + Tmax)

+6KS2
max(Smax + 1)β(τtr)

M

(
K∑
k=1

|Sk|

)
max

l∈{1,...,A(τtr)}
∆̄(Jl, u;P)

)
+ C̄P

Proof. The regret up to T0(L,P) can be at most rmaxT0(L,P). After T0(L,P), since

L(t) ≥ C(P), transition probabilities at exploitation steps sufficiently accurate so that

all regret terms in (4.8) except the regret due to explorations is finite. Since time t is

an exploration step whenever Ck
i (t) < L(t) log t, the regret due to explorations is at

most

rmax

(
K∑
k=1

|Sk|

)
L(T) log T (1 + Tmax) .

Remark IV.25. There is a tradeoff between choosing a rapidly increasing L or a slowly

increasing L. The regret of AREP up to time T0(L,P) is linear. Since T0(L,P) is

decreasing in function L, a rapidly increasing L will have better performance when the

considered time horizon is small. However, in terms of asymptotic performance, i.e.,

as T → ∞, L should be a slowly diverging sequence. For example if L = log(log t),

then the asymptotic regret will be O(log(log t) log t).

107

4.8 AREP with Finite Partitions

In this section we present a modified version of AREP, and prove that it can

achieve logarithmic regret without Assumption IV.9 if the agent knows the time

horizon T . We call this variant AREP with finite partitions (AREP-FP).

Basically, AREP-FP takes as input the threshold/mixing time τtr, then forms Gτtr

partition of the set of information states C. At each exploitation step (at time t)

AREP-FP solves the estimated AROE based on the transition probability estimate

P̂ t, and if the belief (st, τ t) is in Gl, the agent arbitrarily picks an arm in O∗(Gl; P̂ t),

instead of picking an arm in O(ψP̂ t((st, τ t)); P̂ t).

When the arm in O∗(Gl; P̂ t) selected by the agent is indeed in O(ψP ((st, τ t));P),

then it ends up playing optimally at that time step. Else if the selected arm is

in O∗(Gl;P) but not in O(ψP ((st, τ t));P) such that (st, τ t) ∈ Gl, it plays near-

optimally. Else, it plays suboptimally if the selected arm is neither inO(ψP ((st, τ t));P)

nor in O∗(Gl;P). By Lemma IV.7 we know that when τtr is chosen large enough,

for any Gl ∈ Gτtr , and (s, τ), O(ψP ((s, τ));P) is a subset of O∗(Gl;P). Since the

solution to the AROE is a continuous function, by choosing a large enough τtr, we can

control the regret due to near-optimal actions. The regret due to suboptimal actions

can be bounded the same way as in Theorem IV.22. The following theorem gives a

logarithmic upper bound on the regret of AREP-FP.

Theorem IV.26. When the true set of transition probabilities P is such that As-

sumption IV.1 is true, for an agent using AREP-FP with exploration constant L, and

mixing time τtr sufficiently large such that for any (s, τ) ∈ Gl, Gl ∈ Gτtr, we have

|hP (ψP ((s, τ))) − hP (ψ∗(Gl;P))| < C/2T , where C > 0 is a constant and T is the

time horizon, the regret of AREP-FP is upper bounded by

C +
(
L log T (1 + Tmax) + 6KS2

maxβ(Smax + 1)
)
×

A(τtr)∑
l=1

∑
u/∈O(Jl;P)

∆̄(Jl, u;P) + C̄P ,

108

for some δ > 0 which depends on L and τtr.

Proof. The regret at time T is upper bounded by Lemma IV.14. Consider any t which

is an exploitation step. Let l be such that (st, τ t) ∈ Gl. If the selected arm α(t) ∈

O(ψP ((st, τ t));P), then an optimal decision is made at t, so the contribution to regret

in time step t is zero. Next, we consider the case when α(t) /∈ O(ψP ((st, τ t));P). In

this case there are two possibilities: either α(t) ∈ O∗(Gl;P) or not. We know that

when O∗(Gl; P̂ t) ⊂ O∗(Gl;P) we have α(t) ∈ O∗(Gl;P). Since |hP (ψP ((s, τ))) −

hP (ψ∗(Gl;P))| < C/2T for all (s, τ) ∈ Gl, we have by (4.6),

∆(ψt, α(t);P) = L∗(ψt,P)− L(ψt, α(t), hP ,P) ≤ C/T. (4.12)

Therefore, contribution of a near-optimal action to regret is at most C/T .

Finally, consider the case when α(t) /∈ O∗(Gl;P). This implies that either the

estimated belief ψ̂t is not close enough to ψt or the estimated solution to the AROE,

i.e., ĥt, is not close enough to hP . Due to the non-vanishing suboptimality gap at any

belief vector ψ∗(Gl;P), and since decisions of AREP-FP is only based on belief vectors

corresponding to (s, τ) ∈ C, the regret due to suboptimal actions can be bounded by

Theorem IV.22. We get the regret bound by combining all these results.

Note that the regret bound in Theorem IV.26 depends on τtr which depends on T

since τtr should be chosen large enough so that for every Gl in the partition created

by τtr, function hP should vary by at most C/2T . Clearly since hP is a continuous

function, the variation of hP on Gl, i.e., the difference between the maximum and

minimum values of hP on Gl, decreases with the diameter of Gl on the belief space.

Note that there is a term in regret that depends linearly on the number of sets A(τtr)

in the partition generated by τtr, and A(τtr) increases proportional to (τtr)
K . This

tradeoff is not taken into account in Theorem IV.26. For example, if (τtr)
K ≥ T

then the regret bound in Theorem IV.26 is useless. Another approach is to jointly

109

optimize the regret due to suboptimal and near-optimal actions by balancing the

number of sets A(τtr) and the variation of hP on sets in partition Gτtr . For example,

given 0 < θ ≤ 1, we can find a τtr(θ) such that for any (s, τ) ∈ Gl, Gl ∈ Gτtr(θ), and

C > 0, we have

|hP (ψP ((s, τ)))− hP (ψ∗(Gl;P))| < C

2T θ
.

Then, the regret due to near-optimal decisions will be proportional to CT 1−θ, and

the regret due to suboptimal decision will be proportional to (τtr(θ))
K . Let

C = sup
ψ∈Ψ

hP (ψ)− inf
ψ∈Ψ

hP (ψ) .

Since T 1−θ is decreasing in θ and τtr(θ) is increasing in θ, there exists θ ∈ [0, 1], such

that

θ = arg min
θ′∈[0,1]

|T 1−θ − (τtr(θ))
K | ,

and

|T 1−θ − (τtr(θ))
K | ≤ (τtr(θ) + 1)K − (τtr(θ))

K .

If the optimal value of θ is in (0, 1), then given θ, the agent can balance the tradeoff,

and achieve sublinear regret proportional to T 1−θ. However, since the agent does not

know P initially, it may not know the optimal value of θ. Online learning algorithms

for the agent to estimate the optimal value of θ is a future research direction.

110

CHAPTER V

Single-agent Feedback Bandit with Approximate

Optimality

In this chapter we study a special case of the single-agent uncontrolled restless

bandit problem which is called the feedback bandit problem. In a feedback bandit

problem, each arm has two states; a bad state which yields zero reward when played,

and a good state which yields positive reward when played. In the previous chap-

ters we considered algorithms with logarithmic weak regret which are very simple to

implement, and algorithms with logarithmic strong regret which are computationally

intractable. However, in general optimality in terms of the weak regret does not

provide any information about how well the learning algorithm performs compared

to the best policy. This chapter’s goal is to explore algorithms that maximize the

performance of the agent without sacrificing computational tractability. The nega-

tive result in Papadimitriou and Tsitsiklis (1999) motivates us to focus on special

cases. Especially, the special structure of the feedback bandit problem allows us to

develop a computationally tractable learning algorithm that is approximately optimal

in terms of the average reward. As opposed to the learning algorithms in Chapter IV

whose complexity increases exponentially with the number of arms, this algorithm’s

complexity increases linearly with the number of arms, and it requires polynomial

number of operations to select an arm at each time step. Therefore, it can be used

111

in practical applications that can be modeled as a feedback bandit, such as target

tracking systems and dynamic spectrum access.

The organization of this chapter is as follows. Problem definition and notations

are given in Section 5.1. Feedback bandit problem with single play is investigated,

and an approximately optimal algorithm is proposed in Section 5.2. Discussion is

given in Section 5.3.

5.1 Problem Formulation and Preliminaries

In this chapter we study a special case of the uncontrolled restless Markovian

model under the approximate optimality criterion. Consider K mutually independent

uncontrolled restless Markovian arms described in Definition I.4 with the additional

property that Sk = {g, b}, ∀k ∈ K, and rkg = rk > 0, rkb = 0. Thus, each arm

has two states, a good state g which yields some positive reward, and a bad state b

which yields zero reward. This definition is called the feedback bandit in Guha et al.

(2010), which solves the optimization version of this problem. The arms are bursty,

i.e., pkgb + pkbg < 1,∀k ∈ K, and pkgb > δ, ∀k ∈ K for some δ > 0. If arm k is played

τ steps ago and the last observed state is s ∈ Sk, let (s, τ) be the information state

for that arm. Let vkτ be the probability that arm k will be in state g given that it is

observed τ steps ago in state b, and ukτ be the probability that arm k will be in state

g given that it is observed τ steps ago in state g. These probabilities can be written

in terms of the state transition probabilities as

vkτ =
pkbg

pkbg + pkgb
(1− (1− pkbg − pkgb)τ), ukτ =

pkbg
pkbg + pkgb

+
pkgb

pkbg + pkgb
(1− pkbg − pkgb)τ ,

and by the burstiness assumption (pkgb+p
k
bg < 1,∀k ∈ K), vkτ , 1−ukτ are monotonically

increasing concave functions of τ . Z+ denotes the set of non-negative integers, and

I(.) is the indicator function.

112

There is an agent whose goal is to maximize its infinite horizon average reward by

playing at most one of the arms at each time step. We assume that there is a dummy

arm which yields no reward, so the agent has the option to not play by selecting this

arm. The agent initially does not know the transition probability matrices P k, k ∈ K,

but knows the bound δ on pkgb. Without loss of generality, we assume that the agent

knows the rewards of bad and good states, thus observing the reward of an arm is

equivalent to observing the state of the arm from the agent’s perspective. Let α be

an admissible algorithm for the agent. We represent the expectation with respect α

when the transition probability matrices are P = (P 1, P 2, . . . , PK) and initial state

of the agent is ψ0 by EPψ0,α
[.]. Many subsequent expressions depend on the algorithm

α used by the agent, but we will explicitly state this dependence only when it is not

clear from the context.

Let α(t) denote the arm selected by the agent at time t, when it uses algorithm

α. We define a continuous play of arm k starting at time t with state s as a pair of

plays in which arm k is selected at times t and t + 1 and state s is observed at time

t. Let

Nk
T (s, s′) =

T−1∑
t=1

I(α(t) = α(t+ 1) = k,Xk
t = s,Xk

t+1 = s′) ,

be the number of times transition from s to s′ is observed in continuous plays of arm

k up to time T . Let

Ck
T (s) =

∑
s′∈{g,b}

Nk
T (s, s′) ,

be the number of continuous plays of arm k starting with state s up to time T . These

quantities will be used to estimate the state transition probabilities.

113

5.2 Algorithm and Analysis

5.2.1 Guha’s Policy

For the optimization version of the problem we consider, where P k’s are known

by the agent, Guha et al. (2010) propose a (2 + ε) approximate policy for the infinite

horizon average reward problem. Under this approach, Whittle’s LP relaxation in

Whittle (1988) is used, where the constraint that exactly one arm is played at each

time step is replaced by an average constraint that on average one arm is played. The

value (average reward) of the optimal solution to Whittle’s LP is denoted by OPT . In

Guha et al. (2010) it is shown that OPT is at least the average reward of the optimal

policy in the original problem, since Whittle’s LP is a relaxation. Then, the arms

are decoupled by considering the Lagrangian of Whittle’s LP. Thus instead of solving

the original problem which has a size exponential in K, K individual optimization

problems are solved, one for each arm. The Lagrange multiplier λ > 0 is treated as

penalty per play and it was shown that the optimal single arm policy has the structure

of the policy Pkτ given in Figure 5.1: whenever an arm is played and a good state is

observed, it will also be played in the next time; if a bad state is observed then the

agent will wait τ − 1 time steps before playing that arm again. Thus, τ is called the

waiting time. Let Rk
τ and Qk

τ be the average reward and rate of play for policy Pkτ

respectively. Qk
τ is defined as the average number of times arm k will be played under

a single arm policy with waiting time τ . Then from Lemma A.1 of Guha et al. (2010)

we have

Rk
τ =

rkvkτ
vkτ + τpkgb

, Qk
τ =

vkτ + pkgb
vkτ + τpkgb

.

114

Then, if playing arm k is penalized by λ, the gain of Pkτ , i.e., the average reward

subtracted by penalty times the rate of play is

F k
λ,τ = Rk

τ − λQk
τ . (5.1)

The optimal single arm policy for arm k under penalty λ is thus Pk
τk(λ)

, where

τ k(λ) = min arg max
τ≥1

F k
λ,τ ,

and the optimal gain, i.e, the gain under the optimal waiting time is

Hk
λ = max

τ≥1
F k
λ,τ .

Hk
λ is a non-increasing function of λ by Lemma 2.6 in Guha et al. (2010). Let Gλ =∑K
k=1H

k
λ be the sum of the gains of the optimal single arm policies. In Guha et al.

(2010) the algorithm in Figure 5.2 is proposed, and it is shown that the infinite

horizon average reward of this algorithm is at least OPT/(2 + ε), where ε > 0 is

the performance parameter given as an input by the agent which we will refer to as

the stepsize. The instantaneous and the long term average reward are balanced by

viewing λ as an amortized reward per play and Hk
λ as the per step reward. This

balancing procedure is given in Figure 5.3. After computing the balanced λ, the

optimal single arm policy for this λ is combined with the priority scheme in Figure

5.2 so that at all times at most one arm is played. Denote the gain and the waiting

time for the optimal arm k policy at the balanced λ by Hk and τ k.

Note that it is required that at any t one and only one arm must be in good

state in Guha’s policy. This can be satisfied by initially sampling from K − 1 arms

until a bad state is observed and sampling from the last arm until a good state is

observed. Such an initialization will not change the infinite horizon average reward,

115

so we assume that such an initialization is completed before the agent starts using its

learning algorithm.

At time t:
1. If arm k is just observed in state g, also play arm k at t+ 1.
2. If arm k is just observed in state b, wait τ − 1 steps, and then play arm k.

Figure 5.1: policy Pkτ

Choose a balanced λ by the procedure in Figure 5.3. Let Q = {k : Hk
λ > 0},

τ k = τ k(λ).
Only play the arms in Q according to the following priority scheme:
At time t:
1. Exploit: If ∃k ∈ Q in state (g, 1), play arm k.
2. Explore: If ∃k ∈ Q in state (b, τ) : τ ≥ τ k, play arm k.
3. Idle: If 1 and 2 do not hold do not play any arm.

Figure 5.2: Guha’s policy

Input: ε. Perform binary search to find the balanced λ = λ(ε):
1. Start with λ =

∑K
k=1 r

k, Calculate Gλ =
∑K

k=1H
k
λ .

2. While λ > Gλ

2.1 λ = λ/(1 + ε),
2.2 Calculate Gλ.
3. Output λ, τ k, k ∈ K

Figure 5.3: procedure for the balanced choice of λ

5.2.2 A Threshold Policy

In this section we consider a threshold variant of Guha’s policy, called the ε1-

threshold policy. The difference between the two is in balancing the Lagrange multi-

plier λ. Pseudocode of this policy is shown in Figure 5.4. Let H̃k
λ , τ̃ kλ denote the opti-

mal gain and the optimal waiting time for arm k calculated by the ε1-threshold policy

when the penalty per play is λ. For any λ if the optimal single arm policy for arm k

has gain Hk
λ < ε1, that arm is considered not worth playing and H̃k

λ = 0, τ̃ kλ =∞. For

any λ and any arm k with the optimal gain greater than or equal to ε1, the optimal

116

waiting time after a bad state and the optimal gain are the same as Guha’s policy.

We denote the stepsize used by the ε1-threshold policy by ε2, which is also an input

to the policy by the agent.

ε1-threshold policy

1: Input: ε1, ε2
2: Initialize: λ =

∑K
k=1 r

k.
3: Compute Hk

λ , τ
k
λ ,∀k ∈ K.

4: for k = 1, 2, . . . , K do
5: if Hk

λ < ε1 then
6: Set H̃k

λ = 0, τ̃ kλ =∞.
7: else
8: Set H̃k

λ = Hk
λ , τ̃

k
λ = τ kλ .

9: end if
10: end for
11: G̃λ =

∑K
k=1 H̃

k
λ .

12: if λ < G̃λ then
13: Play Guha’s policy with τ 1 = τ̃ 1

λ , . . . , τ
K = τ̃Kλ .

14: else
15: λ = λ/(1 + ε2). Return to Step 3
16: end if

Figure 5.4: pseudocode for the ε1-threshold policy

Note that at any λ, any arm k which will be played by the ε1-threshold policy will

also be played by Guha’s policy with τ kλ = τ̃ kλ . Arm k with Hk
λ < ε1 in Guha’s policy

will not be played by the ε1-threshold policy. The following Lemma states that the

average reward of an ε1-threshold policy cannot be much less than OPT/2.

Lemma V.1. Consider the ε1-threshold policy shown in Figure 5.4 with step size ε2.

The average reward of this policy is at least

OPT

2(1 + ε2)
−Kε1 .

Proof. Let λ∗ be the balanced Lagrange multiplier computed by Guha’s policy with

117

an input of ε2. Then from Figure 5.3 we have,

λ∗ <

K∑
k=1

Hk
λ∗ ≤ (1 + ε2)λ∗ .

For any λ we have

K∑
k=1

Hk
λ −Kε1 ≤

K∑
k=1

H̃k
λ ≤

K∑
k=1

Hk
λ . (5.2)

We consider two cases:

Case 1: λ∗ <
∑K

k=1 H̃
k
λ∗ . Then, λ∗ is also the balanced Lagrange multiplier computed

by the ε1-threshold policy.

Case 2: λ∗ ≥
∑K

k=1 H̃
k
λ∗ . Then, ε1-threshold policy will continue the process of

decreasing λ and recomputing G̃λ until it reaches some λ′ such that

λ′ <
K∑
k=1

H̃k
λ′ ≤ (1 + ε2)λ′ .

Since H̃k
λ is non-increasing in λ we have

K∑
k=1

H̃k
λ′ ≥

K∑
k=1

H̃k
λ∗ .

Thus by (5.2),

(1 + ε2)λ′ ≥
K∑
k=1

H̃k
λ∗ ≥

K∑
k=1

Hk
λ∗ −Kε1 .

By Guha’s policy
∑K

k=1H
k
λ∗ ≥ OPT/2. Therefore,

K∑
k=1

H̃k
λ′ ≥ OPT/2−Kε1, λ′ ≥ OPT/(2(1 + ε2))−Kε1 .

118

The result follows from Theorem 2.7 of Guha et al. (2010).

The following lemma shows that computing τ̃ k for the ε1-threshold policy can be

done by considering waiting times in a finite window.

Lemma V.2. For any λ, in order to compute τ̃ k, k ∈ K, the ε1-threshold policy only

requires to evaluate F k
λ,τ for τ ∈ [1, τ ∗(ε1)], where τ ∗(ε1) = drmax/(δε1)e.

Proof. For any λ, F k
λ,τ ≤ Rk

τ . For τ ≥ τ ∗(ε1),

Rk
τ = rk

vkτ
vkτ + τpkgb

≤ rmax

τpkgb
≤ rmax

δτ
.

The following lemma shows that the procedure of decreasing λ can only repeat a

finite number of times.

Lemma V.3. Assume that there exists an arm k such that for some λ > 0, H̃k
λ ≥ ε1.

Otherwise, no arm will be played by the ε1-threshold policy. Let

λ̂ = sup{λ : H̃k
λ ≥ ε1} ,

λ∗ = min{λ̂, ε1}. Let z(ε2) be the number of cycles, i.e., the number of times λ is

decreased until the computation of τ̃ k, k ∈ K is completed. We have

z(ε2) ≤ min

{
z′ ∈ Z+ such that (1 + ε2)z

′ ≥
K∑
k=1

rk/λ∗

}
.

Proof. Since H̃k
λ is non-increasing in λ, H̃k

λ∗ ≥ λ∗. The result follows from this

observation.

Let Θ(ε2) = {
∑K

k=1 r
k,
∑K

k=1 r
k/(1 + ε2), . . . ,

∑K
k=1 r

k/(1 + ε2)z(ε2)} be the set of

119

values λ takes in z(ε2) cycles, and

Tk(λ) = arg max
τ≥1

Rk
τ − λQk

τ ,

T ′k(λ) = arg max
τ≥1,τ /∈Tk(λ)

Rk
τ − λQk

τ ,

be the set of optimal waiting times, and best suboptimal waiting times under penalty

λ respectively. Let

δ(k, λ) = (Rk
τk − λQ

k
τk)− (Rk

τ ′k − λQ
k
τ ′k), τ

k ∈ Tk(λ), τ ′k ∈ T ′k(λ),

and δ2 = mink∈K,λ∈Θ(ε2) δ(k, λ). Consider a different set of transition probabilities

P̂ = (P̂ 1, . . . , P̂K). Let R̂k
τ , Q̂

k
τ and ˜̂τk denote the average reward, average number

of plays and the optimal waiting time for arm k under ε1-threshold policy and P̂

respectively.

Lemma V.4. For ε3 = δ2/
(

2(1 +
∑K

k=1 r
k)
)

, the event

{
|Rk

τ − R̂k
τ | < ε3, |Qk

τ − Q̂k
τ | < ε3, ∀τ ∈ [1, τ ∗(ε1)]

}
(5.3)

implies the event {τ̃ k = ˜̂τ k,∀k ∈ K}.

Proof. By (5.3), for any λ ∈ Θ, τ ∈ [1, τ ∗(ε1)],

|(Rk
τ − λQk

τ)− (R̂k
τ − λQ̂k

τ)| ≤ |Rk
τ − R̂k

τ |+ λ|Qk
τ − Q̂k

τ |

≤ |Rk
τ − R̂k

τ |+
K∑
k=1

rk|Qk
τ − Q̂k

τ |

< (1 +
K∑
k=1

rk)ε3 =
δ2

2
.

Thus, F̂ k
λ,τ̃k

can be at most δ2/2 smaller than F k
λ,τ̃k

, while for any other τ 6= τ̃ k, F̂ k
λ,τ

can be at most δ2/2 larger than F k
λ,τ for any λ. Thus the maximizers are the same

120

for all λ and the result follows.

The following lemma shows that τ̃ 1, . . . , τ̃K for the ε1-threshold policy can be

efficiently computed. We define a mathematical operation to be the computation of

Rk
τ − λQk

τ . We do not count other operations such as additions and multiplications.

Lemma V.5. Finding the balanced λ and τ̃ 1, . . . , τ̃K requires at most

K dlog(z(ε2))e τ ∗(ε1)

mathematical operations.

Proof. Since G̃λ =
∑K

k=1 H̃
k
λ is decreasing in λ, the balanced λ can be computed by

binary search. By Lemma V.3 the number of cycles required to find the optimal λ by

binary search is dlog(z(ε2))e. For each λ and each arm k, H̃k
λ and τ kλ can be calculated

by at most τ ∗(ε1) mathematical operations.

5.2.3 The Adaptive Balance Algorithm (ABA)

We propose the Adaptive Balance Algorithm (ABA) given in Figure 5.5 as a

learning algorithm which is based on the ε1-threshold policy instead of Guha’s policy.

This choice has several reasons. The first concerns the union bound we will use

to relate the probability that the adaptive algorithm deviates from the ε1-threshold

policy with the probability of accurately calculating the average reward and the rate

of play for the single arm policies given the estimated transition probabilities. In

order to have finite number of terms in the union bound, we need to evaluate the

gains F k
λ,τ at finite number of waiting times τ . We do this by the choice of a finite

time window [1, τ ∗], for which we can bound our loss in terms of the average reward.

Thus, the optimal single arm waiting times are computed by comparing F k
λ,τ ’s in

[1, τ ∗]. The second is due to the non-monotonic behavior of the gain F k
λ,τ with respect

to the waiting time τ . For example, there exists transition probabilities satisfying the

121

burstiness assumption such that the maximum of F k
λ,τ occurs at τ > τ ∗, while the

second maximum is at τ = 1. Then, by considering the time window [1, τ ∗], it will not

be possible to play with the same waiting times as in Guha’s policy independent of

how much we explore. The third is that for any OPT/(2 + ε) optimal Guha’s policy,

there exists ε1 and ε2 such that the ε1-threshold policy is OPT/(2+ ε) optimal. Thus,

any average reward that can be achieved by Guha’s policy can also be achieved by

the ε1-threshold policy.

Let p̂kbg,t, p̂
k
gb,t, k ∈ K, and P̂ t = (P̂ 1

t , . . . , P̂
K
t) be the estimated transition proba-

bilities and the estimated transition probability matrices at time t, respectively. We

will use .̂ to represent the quantities computed according to P̂ t.

ABA consists of exploration and exploitation phases. Exploration serves the pur-

pose of estimating the transition probabilities. If at time t the number of samples

used to estimate the transition probability from state g or b of any arm is less than

L log t, for some L > 0 which we call the exploration constant, ABA explores to in-

crease the accuracy of the estimated transition probabilities. In general it should be

chosen large enough (depending on P , r1, . . . , rK) so that the regret bounds hold. We

will describe an alternative way to choose L (independent of P , r1, . . . , rK) in Section

5.3. If all the transition probabilities are accurately estimated, then ABA exploits

by using these probabilities in the ε1-threshold policy to select an arm. Note that

the transition probability estimates can also be updated after an exploitation step,

depending on whether a continuous play of an arm occurred or not. In this section

we denote ABA by α.

In the next section, we will show that the expected number of times in which ABA

deviates from the ε1-threshold policy given P is logarithmic in time.

122

Adaptive Balance Algorithm (ABA)

1: Input: ε1, ε2 τ
∗(ε1), L > 0.

2: Initialize: Set t = 1, Nk(i, j) = 0, Ck(i) = 0,∀k ∈ K, i, j ∈ Sk. Play each
arm once so the initial information state can be represented as an element of
countable form (s1, τ 1), . . . , (sK , τK), where only one arm is observed in state
g one step ago while all other arms are observed in state b, τ k > 1 steps ago.

3: while t ≥ 1 do
4: p̂kgb = 1I(Nk(g,b)=0)+Nk(g,b)

2I(Ck(g)=0)+Ck(g)
,

5: p̂kbg = 1I(Nk(b,g)=0)+Nk(b,g)
2I(Ck(b)=0)+Ck(b)

,

6: W = {(k, i), k ∈ K, i ∈ Sk : Ck(i) < L log t }.
7: if W 6= ∅ then
8: EXPLORE
9: if u(t− 1) ∈ W then

10: α(t) = u(t− 1)
11: else
12: select α(t) ∈ W arbitrarily.
13: end if
14: else
15: EXPLOIT
16: Start with λ =

∑K
k=1 r

k.
17: Run the procedure for the balanced choice λ given by the ε1-threshold

policy with step size ε2 and transition matrices P̂ t.
18: Obtain τ̂ 1, . . . , τ̂K .
19: Play according to Guha’s Policy with parameters τ̂ 1, . . . , τ̂K for only one

time step.
20: end if
21: if u(t− 1) = α(t) then
22: for i, j ∈ Sα(t) do
23: if State j is observed at t, state i is observed at t− 1 then
24: Nα(t)(i, j) = Nα(t)(i, j) + 1, Cα(t)(i) = Cα(t)(i) + 1.
25: end if
26: end for
27: end if
28: t := t+ 1
29: end while

Figure 5.5: pseudocode for the Adaptive Balance Algorithm (ABA)

5.2.4 Number of Deviations of ABA from the ε1-threshold policy

Let γε1,P be the arm selection rule determined by the ε1-threshold policy given

ε2 and P = (P 1, . . . , PK); and τ̃ 1, . . . , τ̃K be the waiting times after a bad state for

123

γε1,P . Let NT be the number of times γε1,P is not played up to T . Let Et be the

event that ABA exploits at time t. Then,

NT ≤
T∑
t=1

I(τ̂ k(t) 6= τ̃ k for some k ∈ K)

≤
T∑
t=1

I(τ̂ k(t) 6= τ̃ k for some k ∈ K, Et) +
T∑
t=1

I(EC
t)

≤
K∑
k=1

T∑
t=1

I(τ̂ k(t) 6= τ̃ k, Et) +
T∑
t=1

I(EC
t)

≤
K∑
k=1

T∑
t=1

I(|Rk
τ − R̂k

τ (t)| ≥ ε3 or |Qk
τ − Q̂k

τ (t)| ≥ ε3

for some τ ∈ [1, τ ∗(ε1)], Et) +
T∑
t=1

I(EC
t)

≤
K∑
k=1

T∑
t=1

τ∗(ε1)∑
τ=1

(
I(|Rk

τ − R̂k
τ (t)| ≥ ε3, Et)

+I(|Qk
τ − Q̂k

τ (t)| ≥ ε3, Et)
)

+
T∑
t=1

I(EC
t) . (5.4)

We first bound the regret due to explorations.

Lemma V.6.

EPψ0,α

[
T−1∑
t=0

I(EC
t)

]
≤ 2KL log T (1 + Tmax),

where Tmax = maxk∈K,i,j∈Sk E[T kij] + 1, T kij is the hitting time of state j of arm k

starting from state i of arm k. Since all arms are ergodic E[T kij] is finite for all

k ∈ K, i, j ∈ Sk.

Proof. The number of transition probability updates that results from explorations up

to time T −1 is at most
∑K

k=1

∑
i∈Sk L log T . The expected time spent in exploration

during a single update is at most (1 + Tmax).

Using Lemma A.7, next we show that the probability that an estimated transition

124

probability is significantly different from the true transition probability given ABA is

in an exploitation phase is very small. Let C1(P k, τ k), k ∈ K, τ k ∈ [1, τ ∗(ε1)] be the

constant given in Lemma A.6, C1(P) = maxk∈K,τk∈[1,τ∗(ε1)] C1(P k, τ k).

Lemma V.7. For an agent using ABA with constant L ≥ 3/(2ε2), we have

P
(
|p̂kss′,t − pkss′ | > ε,Et

)
≤ 2

t2
,

for all t, s, s′ ∈ Sk, k ∈ K.

Proof. Let t(l) be the time Ck
t(l)(s) = l. We have,

p̂kss′,t =
Nk
t (s, s′)

Ck
t (s)

=

∑Ckt (s)
l=1 I(Xk

t(l)−1 = s,Xk
t(l) = s′)

Ck
t (s)

.

Note that I(Xk
t(l)−1 = s,Xk

t(l) = s′), l = 1, 2, . . . , Ck
t (s) are i.i.d. random variables

with mean pkss′ . Then

P
(
|p̂kss′,t − pkss′ | > ε,Et

)
= P

∣∣∣∣∣∣
∑Ckt (s)

l=1 I(Xk
t(l)−1 = s,Xk

t(l) = s′)

Ck
t (s)

− pkss′

∣∣∣∣∣∣ ≥ ε, Et


=

t∑
b=1

P

∣∣∣∣∣∣
Ckt (s)∑
l=1

I(Xk
t(l)−1 = s,Xk

t(l) = s′)− Ck
t (s)pkss′

∣∣∣∣∣∣ ≥ Ck
t (s)ε, Ck

t (s) = b, Et


≤

t∑
b=1

2e
−2(L log tε)2

L log t =
t∑

b=1

e−2L log t(ε)2

= 2
t∑

b=1

1

t2Lε2
=

1

t2Lε2−1
≤ 2

t2
,

where we used Lemma A.7 and the fact that Ck
t (s) ≥ L log t w.p.1. in the event

Et.

The following Lemma which is an intermediate step in proving that if time t is

an exploitation phase then the difference between Rkτ , R̂k
τ and Qk

τ ,Q̂
k
τ will be small

with high probability, is proved using Lemma V.7.

125

Lemma V.8. For an agent using ABA with constant L ≥ 3/(2(min{εC1(P)/4, ε/2})2),

we have

P (|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε, Et) ≤
18

t2
.

Proof.

P (|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε, Et)

≤ P (|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε, |pkgb − p̂kgb,t| < η,Et) + P (|pkgb − p̂kgb,t| ≥ η, Et),

for any η. Letting η = ε/2 and using Lemma V.7 we have

P (|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε, Et)

≤ 4

(
P

(
|pkgb − p̂kgb,t| ≥

ε

4C1(P)
, Et

)
+ P

(
|pkbg − p̂kbg,t| ≥

ε

4C1(P)
, Et

))
+ P (|pkgb − p̂kgb,t| ≥ ε/2, Et)

≤ 18

t2
.

The next two lemmas bound the probability of deviation of R̂k
τ (t) and Q̂k

τ (t) from

Rk
τ and Qk

τ respectively.

Lemma V.9. For an agent using ABA with constant

L ≥ 3

2(min{C1(P)εδ2

4rmax
, εδ2

2rmax
})2

,

we have on the event Et (here we only consider deviations in exploitation steps)

P (|Rk
τ − R̂k

τ (t)| ≥ ε) ≤ 18

t2
.

126

Proof.

P (|Rk
τ − R̂k

τ (t)| ≥ ε) = P

(∣∣∣∣∣ rkvkτ
vkτ + τpkgb

− rkv̂kτ (t)

v̂kτ (t) + τ p̂kgb,t

∣∣∣∣∣
)

= P
(
τrk|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε|vkτ + τpkgb||v̂kτ (t) + τ p̂kgb,t|

)
≤ P

(
τrk|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ετ 2δ2

)
≤ P

(
|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ εδ2

rmax

)
≤ 18

t2
,

where the last inequality follows form Lemma V.8 since

L ≥ 3/

(
2

(
min

{
C1(P)εδ2

4rmax

,
εδ2

2rmax

})2
)
.

Lemma V.10. For an agent using ABA with constant

L ≥ 3

2(min{ εδ2C1(P)
4

, εδ
2

2
})2

,

we have on the event Et

P (|Qk
τ − Q̂k

τ (t)| ≥ ε) ≤ 18

t2
.

Proof.

P (|Qk
τ − Q̂k

τ (t)| ≥ ε) = P

(∣∣∣∣∣ vkτ + pkgb
vkτ + τpkgb

−
v̂kτ (t) + p̂kgb,t
v̂kτ (t) + τ p̂kgb,t

∣∣∣∣∣
)

= P
(
(τ − 1)|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ε|vkτ + τpkgb||v̂kτ (t) + τ p̂kgb,t|

)
≤ P

(
(τ − 1)|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ ετ 2δ2

)
≤ P

(
|vkτ p̂kgb,t − pkgbv̂kτ (t)| ≥ εδ2

)
127

≤ 18

t2
,

where the last inequality follows form Lemma V.8 since

L ≥ 3/
(

2
(
min

{
εδ2C1(P)/4, (εδ2)/2

})2
)
.

The lower bound on the exploration constant L in Lemmas V.9 and V.10 is suf-

ficient to make the estimated transition probabilities at an exploitation step close

enough to the true transition probabilities to guarantee that the estimated waiting

time is equal to the exact waiting time with very high probability, i.e., the probability

of error at any time t is O(1/t2). The following theorem bounds the expected number

of times ABA differs from γε1,P .

Theorem V.11. For an agent using ABA with constant

L ≥ 3

2 min
{
C1(P)ε3δ2

4rmax
, ε3δ2

2rmax
, C1(P)ε3δ2

4
, ε3δ

2

2

} , (5.5)

expected number of deviations from the ε1-threshold procedure is bounded by

E[NT] ≤ 36Kτ ∗(ε1)β + 2KL log T (1 + Tmax) ,

where

β =
∞∑
t=1

1

t2
.

128

Proof. Taking the expectation of (5.4) and using Lemma V.6

E[NT] ≤
K∑
k=1

T∑
t=1

τ∗(ε1)∑
τ=1

(
P (|Rk

τ − R̂k
τ (t)| ≥ ε3, Et) + P (|Qkτ − Q̂k

τ | ≥ ε3, Et)
)

+ 2KL log T (1 + Tmax) .

Then, by the results of Lemmas V.9 and V.10, we have

E[NT] ≤
K∑
k=1

T∑
t=1

τ∗(ε1)∑
τ=1

20

t2
+ 2KL log T (1 + Tmax)

≤ 36Kτ ∗(ε1)β + 2KL log T (1 + Tmax) .

5.2.5 Performance of ABA

In this section we consider the performance of ABA. First we show that the

performance of ABA is at most ε worse than OPT/2. Since each arm is an ergodic

Markov chain, the ε1-threshold policy is ergodic. Thus, after a single deviation from

the ε1-threshold policy only a finite difference in reward from the ε1-threshold policy

can occur.

Theorem V.12. For an agent using ABA with δ, ε1, ε2 and L as in (5.5), the infinite

horizon average reward is at least

OPT

2(1 + ε2)
−Kε1 =

OPT

2
− ε ,

for

ε =
ε2OPT

2(1 + ε2)
+Kε1 .

129

Moreover, the number of mathematical operations required to select an arm at any

time is at most

K dlog(z(ε2))e τ ∗(ε1) .

Proof. Since, after each deviation from the ε1-threshold policy only a finite difference

in reward from the ε1-threshold policy can occur and the expected number of devia-

tions of ABA is logarithmic (even sublinear is sufficient), ABA and the ε1-threshold

policy have the same infinite horizon average reward. Computational complexity

follows from Lemma V.5.

ABA has the fastest rate of convergence (logarithmic in time) to the ε1-threshold

policy given P , i.e., γε1,P . This follows from the large deviation bounds where in

order to logarithmically upper bound the number of errors in exploitations, at least

logarithmic number of explorations is required. Although finite time performance of

Guha’s policy and γε1,P is not investigated, minimizing the number of deviations will

keep the performance of ABA very close to γε1,P for any finite time. We define the

regret of ABA with respect to γε1,P at time T as the difference between the expected

total reward of γε1,P and ABA at time T . Next, we will show that this regret is

logarithmic, uniformly over time.

Theorem V.13. Let rγ(t) be the reward obtained at t by policy γ. For an agent using

ABA with δ, ε1, ε2 and L as in (5.5),

∣∣∣∣∣EPψ0,α

[
T∑
t=1

rα(t)

]
− EPψ0,γε1,P

[
T∑
t=1

rγ
ε1,P (t)

]∣∣∣∣∣ ≤ Z(36Kτ ∗(ε1)β + 2KL log T (1 + Tmax)),

where Z is the maximum difference in expected reward resulting from a single deviation

from γε1,P .

Proof. A single deviation from γε1,P results in a difference at most Z. The expected

130

number of deviations from γε1,P is at most (36Kτ ∗(ε1)β+ 2KL log T (1 +Tmax)) from

Theorem V.11.

5.3 Discussion

We first comment on the choice of the exploration constant L. Note that in

computing the lower bound for L given by (5.5), ε3 and C1(P) are not known by the

agent. One way to overcome this is to increase L over time. Let L∗ be the value of the

lower bound. Thus, instead of exploring when Ck
t (s) < K log t for some k ∈ K, s ∈ Sk,

ABA will explore when Ck
t (s) < L(t) log t for some k ∈ K, s ∈ Sk, where L(t) is an

increasing function such that L(1) = 1, limt→∞ L(t) = ∞. Then after some t0, we

will have L(t) > L∗, t ≥ t0 so our proofs for the number of deviations from the ε1-

threshold policy in exploitation steps will hold. Clearly, the number of explorations

will be in the order L(t) log t rather than log t. Given that L(t) log t is sublinear in t,

Theorem V.12 will still hold. The performance difference given in Theorem V.13 will

be bounded by L(T) log T instead of log T .

Secondly, we note that our results hold under the burstiness assumption, i.e.,

pkgb + pkbg < 1, ∀k ∈ K. This is a sufficient condition for the approximate optimality

of Guha’s policy and the ABA. It is an open problem to find approximately optimal

algorithms under weaker assumptions on the transition probabilities.

Thirdly, we compare the results obtained in this chapter with the results in Chap-

ters III and IV. The algorithm in Chapter III, i.e., the regenerative cycle algorithm

(RCA) assigns an index to each arm which is based on the sample mean of the rewards

from that arm plus an exploration term that depends on how many times that arm

is selected. Indices in RCA can be computed recursively since they depend on the

sample mean, and the computation may not be necessary at every t since RCA op-

erates in blocks. Thus, RCA is computationally simpler than ABA. It is shown that

for any t the regret of RCA with respect to the best single-arm policy (policy which

131

always selects the arm with the highest mean reward) is logarithmic in time. This

result holds for general finite state arms. However, the best single-arm policy may

have linear regret with respect to the optimal policy which is allowed to switch arms

at every time Auer et al. (2003). Another algorithm is the inflated reward computa-

tion with estimated probabilities (IRCEP) proposed in Chapter IV. IRCEP assigns

an index to each arm based on an inflation of the right hand side of the estimated

average reward optimality equation. At any time step, if the transition probability

estimates are accurate, IRCEP exploits by choosing the arm with the highest in-

dex. Otherwise, it explores to re-estimate the transition probabilities. Thus, at each

exploitation phase IRCEP needs to solve the estimated average reward optimality

equations for a POMDP which is intractable. However, under some assumptions on

the structure of the optimal policy for the infinite horizon average reward problem,

IRCEP is shown to achieve logarithmic regret with respect to the optimal policy for

the finite horizon undiscounted problem. Thus, we can say that ABA lies in between

the two algorithms discussed above. It is both efficient in terms of computation and

performance.

Finally, we note that the adaptive learning approach we used here can be general-

ized for learning different policies, whenever the computation of actions are related to

the transition probability estimates in such a way that it is possible to exploit some

large deviation bound. As an example, we can develop a similar adaptive algorithm

with logarithmic regret with respect to the myopic policy. Although myopic policy

is in general not optimal for the restless bandit problem it is computationally simple

and its optimality is shown under some special cases in Ahmad et al. (2009).

132

CHAPTER VI

Multi-agent Restless Bandits with a Collision

Model

In this chapter we study the decentralized multi-agent restless bandit model, in

which each agent receives a binary feedback about the activity on the arm it selects.

Specifically we consider the collision model given in Definition I.5, in which an agent

gets zero reward if there is another agent who selected the same arm with it. Although

such an agent can not receive the reward, we assume that it still observes the reward.

We assume that the agents cannot communicate with each other. Therefore an agent

does not perfectly know the actions of other agents. However, we assume that there

is a feedback structure such as the one given in Model I.17 in which an agent receives

binary feedback about the other agents who selected the same arm with it. Basically,

this binary feedback provides the information about whether the agent is the only

agent who selected that arm or not.

For example, if the agents are cognitive radio devices which are transmitter-

receiver pairs, at the beginning of each time step they can first sense a channel to

learn about its reward, and then transmit on that channel. If more than one device

transmit on the same channel at the same time, there will be a collision and the

receivers of the agents will not receive the transmitted signal correctly. In this set-

ting, an agent will only receive the sensed reward/rate if its transmission is successful,

133

which is signaled to the agent by the binary feedback (ACK/NACK) at the end of the

time slot. This example justifies our assumption that the agent observes the reward

even when there is a collision.

This problem is studied for the IID arm rewards in Liu and Zhao (2010) and

Anandkumar et al. (2011), and distributed learning algorithms with logarithmic weak

regret are proposed. In both of these works, the main motivation is multi-user dy-

namic spectrum access. However, spectrum measurements (see, e.g., López-Beńıtez

and Casadevall (2011)) show that a discrete time Markov chain better models the

change in channel conditions. This motivates us to study the restless bandit problem

with the binary feedback model.

Since our main motivation is dynamic spectrum access in which wireless devices

are limited in terms of computational power and memory, similar to Chapter III,

we consider weak regret as the performance measure. The learning algorithm we

propose in this chapter is a distributed extension of the regenerative cycle algorithm

given in Chapter III, and it achieves logarithmic weak regret with respect to the best

centralized static policy.

The organization of this chapter is as follows. Problem definition and notations

are given in Section 6.1. Decentralized restless bandit problem with the collision

model is investigated, and an algorithm with logarithmic weak regret is proposed in

Section 6.2. A cognitive radio network application and numerical results are given in

Section 6.3. Finally, discussion is given in Section 6.4.

6.1 Problem Formulation and Preliminaries

In this chapter we study the restless Markovian model given in Definition I.3

with K arms, and M decentralized agents indexed by the set M = {1, 2, . . . ,M}.

All the assumptions given for the arms in Section 3.1 of Chapter III also holds in

this chapter. To summarize: (i) transition probability matrix of each arm has an

134

irreducible multiplicative symmetrization (this is not necessary with our alternative

proof), (ii) µ1 ≥ µ2 ≥ . . . ≥ µK without loss of generality, (iii) µM > µM+1.

At each time t, agent i selects a single arm based on the algorithm αi it uses.

Let αi(t) be the arm selected by agent i at time t when it uses algorithm αi. Let

α(t) = {α1(t), α2(t), . . . , αK(t)} be the vector of arm selections at time t. The

collision model between the agents is given in Definition I.5, where if more than one

agent selects the same arm at the same time step, then none of these agents get any

reward. The weak regret for the multi-agent model is given in Definition I.12 which

we restate below.

Rα(T) = T
M∑
k=1

µσ
k − E

[
T∑
t=1

M∑
i=1

rαi(t)(t)I(ntαi(t) = 1)

]
, (6.1)

where ntk is the number of agents on arm k at time t.

Although an agent does not receive any reward when there is collision, the agent

observes the reward process of the arm it selects perfectly. Therefore, learning is

affected by a collision only in an indirect way. Within the context of our motivating

application, this problem models a decentralized multi-user dynamic spectrum access

scenario, where multiple users compete for a common set of channels. Each user

performs channel sensing and data transmission tasks in each time slot. Sensing is

done at the beginning of a slot; the user observes the quality of a selected channel.

This is followed by data transmission in the same channel. The user receives feedback

at the end of the slot (e.g., in the form of an acknowledgement) on whether the

transmission is successful. If more than one user selects the same channel in the same

slot, then a collision occurs and none of the users gets any reward.

135

6.2 A Distributed Algorithm with Logarithmic Weak Regret

The algorithm we construct and analyze in this section is a decentralized extension

to RCA-M and will be referred to as the Decentralized Regenerative Cycle Algorithm

or DRCA. This algorithm works similarly as RCA-M, using the same block structure.

However, since agents are uncoordinated, each agent keeps its own locally computed

indices for all arms, and they may vary from agent to agent. As before, an agent

continues to play the same arm till it completes a block, upon which it updates the

indices for the arms using state observations from SB2’s. Within this completed block

it may experience collision in any of the time slots; for these slots it does not receive

any reward. At the end of a block, if the agent did not experience a collision in the

last slot of the block, it continues to play the arm with the same rank in the next

block after the index update. If it did experience a collision, then the agent updates

the indices for the arms, and then randomly selects an arm within the top M arms,

based on the indices it currently has for all the arms, to play in the next block. The

pseudocode of DRCA is given in Figure 6.1.

We see that compared to RCA-M, the main difference in DRCA is the random-

ization upon completion of a block. This is because if all agents choose the arm with

the highest index, then the number of collisions will be very high even if agents do

not have exactly the same local indices; this in turn leads to large regret. Letting an

agent randomize among its M highest-ranked arms can help alleviate this problem,

and aims to eventually orthogonalize the M agents in their choice of arms. This is the

same idea used in Anandkumar et al. (2011). The difference is that, in Anandkumar

et al. (2011) the randomization is done each time a collision occurs under an IID

reward model, whereas in our case the randomization is done at the end of a com-

pleted block and is therefore less frequent as block lengths are random. The reason

for this is because with the Markovian reward model, index updates can only be done

after a regenerative cycle; switching before a block is completed will waste the state

136

Decentralized Regenerative Cycle Algorithm (DRCA) for agent j:

1: Initialize: b = 1, t = 0, Bk,j = 0, Nk,j
2 = 0, rk = 0,∀k = K. Select θj uniformly from

{1, . . . ,M}
2: for b ≤ K do
3: play arm b; set γb to be the first state observed

4: t := t+ 1; N b,j
2 := N b,j

2 + 1; rb := rb + rbγb
5: play arm b; denote observed state as x
6: while x 6= γb do

7: t := t+ 1; N b,j
2 := N b,j

2 + 1; rb := rb + rbx
8: play arm b; denote observed state as x
9: end while

10: if Z(t) = 0 then
11: Select θj uniformly from {1, . . . ,M}
12: else
13: Do not change θ
14: end if
15: b := b+ 1; Bb,j := Bb,j + 1; t := t+ 1
16: end for
17: for k = 1 to K do

18: compute index gk,j := rj

Nk,j2

+
√

2 ln b
Bk,j

19: end for
20: k := σ(θ, gj)
21: while (1) do
22: play arm k; denote observed state as x
23: while x 6= γk do
24: t := t+ 1
25: play arm k; denote observed state as x
26: end while
27: t := t+ 1; Nk,j

2 := Nk,j
2 + 1; rk := rk + rkx

28: play arm k; denote observed state as x
29: while x 6= γk do

30: t := t+ 1; Nk,j
2 := Nk,j

2 + 1; rk := rk + rkx
31: play arm k; denote observed state as x
32: end while
33: if Z(t) = 0 then
34: Select θj uniformly from {1, . . . ,M}
35: else
36: Do not change θ
37: end if
38: b := b+ 1; Bk,j := Bk,j + 1 t := t+ 1
39: for k = 1 to K do

40: compute index gk,j := rk

Nk,j2

+
√

2 ln b
Bk,j

41: end for
42: k := σ(θ, gj)
43: end while

Figure 6.1: pseudocode of DRCA

observations made within that incomplete block.

In the remainder of this section we show that using the above algorithm, the

regret summed over all agents with respect to the optimal centralized (coordinated)

solution, where M agents always play the M -best arms, is logarithmic in time. Our

137

analysis follows a similar approach as in Anandkumar et al. (2011), adapted to blocks

rather than time slots and with a number of technical differences. In particular, the

proof of Lemma VI.3 is significantly different because a single block of some agent

may collide with multiple blocks of other agents; thus we need to consider the actions

of the agents jointly in order to bound the regret.

Let Y k,j(b) be the sample mean of the rewards inferred from observations (not

the actual rewards received since in this case reward is zero when there is collision)

by agent j during its bth block in which it plays arm k. Let Bk,j(b) be the number

of blocks in which arm k is played by agent j at the end of its bth block. Let bj(t)

be the number of agent j’s completed blocks up to time t. Then the index of arm k

computed (and perceived) by agent j at the end of its bth completed block is given

by

gk,j(b) =

∑Bk,j(b)
v=1 Y k,j(v)

Bk,j(b)
+

√
2 ln b

Bk,j(b)
. (6.2)

The difference between the index given in (3.1) and (6.2) is that the exploration term

in (6.2) depends on the number of blocks completed by an agent, while in (3.1) it

depends on the number of time steps spent in SB2’s of an agent.

Let J(t) be the number of slots involving collisions in the M optimal arms in the

first t slots, and let Nk,j(t) denote the number of slots agent j plays arm k up to time

t. Then from Proposition 1 in Anandkumar et al. (2011), we have

Rα(T) ≤ µ1

(
M∑
j=1

K∑
k=M+1

E[Nk,j(T)] + E[J(T)]

)
. (6.3)

This result relates the regret to the amount of loss due to collision in the optimal

arms, and the plays in the suboptimal arms.

Lemma VI.1. When all agents use DRCA, for any agent j and any suboptimal arm

138

k we have

E[Bk,j(bj(T))] ≤ 8 lnT

(µM − µk)2
+ 1 +Mβ .

Proof. See Appendix K.

The next lemma shows that provided all agents have the correct ordering of arms,

the expected number of blocks needed to reach an orthogonal configuration by ran-

domization at the end of blocks is finite.

Lemma VI.2. Given all agents have the correct ordering of the arms and do not

change this ordering anymore, the expected number of blocks needed summed over all

agents to reach an orthogonal configuration is bounded above by

OB = M

[(
2M − 1

M

)
+ 1

]
.

Proof. The proof is similar to the proof of Lemma 2 in Anandkumar et al. (2011),

by performing randomization at the end of each block instead of at every time step.

Consider a genie aided scheme. At the end of each block a genie checks if there is col-

lision in any of the arms. If this is the case, then genie orders all agents to randomize

(even the agents with incomplete blocks will randomize and their incomplete block

will also be counted in the number of blocks). Thus, in the worst case for each block

with a collision, M blocks (for all agents) is counted when calculating the number of

blocks spent to reach an orthogonal configuration. Then using the proof of Lemma 2

in Anandkumar et al. (2011), the expected number of blocks (which ends at different

times) until an orthogonal configuration is reached is (
(

2M−1
M

)
−1). Thus the expected

number of blocks until an orthogonal configuration is M(
(

2M−1
M

)
− 1)). Now consider

the model without the genie, in which any agent whose block is not complete or who

does not have a collision at the end of his block will not randomize. This means

139

that the number of configurations that can be reached in any randomization is less

then the one in the genie aided model. Since the orthogonal configuration is in the

set of configurations that can be reached for any randomization, the probability of

reaching an orthogonal configuration at the end of each block is at least the one in

the genie aided model. Thus the expected number of blocks to reach an orthogonal

configuration is at most the one in the genie aided model.

Let B′(t) be the number of completed blocks up to t, in which at least one of the

top M estimated ranks of the arms at some agent is wrong. Let pkxy(t) be the t step

transition probability from state x to y of arm k. Since all arms are ergodic, there

exists N > 0 such that pkxy(N) > 0, for all k ∈ K, x, y ∈ Sk. We now bound the

expectation of B′(t).

Lemma VI.3. When all agents use DRCA, we have

E[B′(T)] < M

[
2N(M − 1)

(
1 +

1

λ
(lnT + 1)

)
+ 1

]
×

(
M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

))
,

where N is the minimum integer such that pkxy(N) > 0 for all k ∈ K, x, y ∈ Sk,

λ = ln
(

1
1−p∗

)
and p∗ = mink∈K,x,y∈Sk p

k
xy(N).

Proof. See Appendix L.

Next we show that the expected number of collisions in the optimal arms is at

most log2(.) in time. Let H(t) be the number of completed blocks in which some

collision occurred in the optimal arms up to time t.

Lemma VI.4. Under DRCA, we have

E[H(T)] ≤ OBE[B′(T)]

140

Proof. See Appendix M.

Combining all the above lemmas and using the fact that the expected block length

is finite we have the following result.

Theorem VI.5. When all agents use DRCA, we have

R(T) ≤ µ1Dmax

[
M∑
j=1

K∑
k=M+1

(
8 lnT

(µM − µk)2
+Mβ + 2

)

+OBM

[
2N(M − 1)

(
1 +

1

λ
(lnT + 1)

)
+ 1

](M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

))]
,

where

Dmax =
1

πmin

+ Ωmax + 1, Ωmax = max
k∈K

Ωk
max, πmin = min

k∈K
πkmin,

and N is the minimum integer such that pkxy(N) > 0 for all k ∈ K, x, y ∈ Sk,

λ = ln
(

1
1−p∗

)
and p∗ = mink∈K,x,y∈Sk p

k
xy(N).

Proof. Since the expected length of each block is at most Dmax and the expected

number of time steps between current time T and the time of the last completed block

is at most the expected block length, we have E[Nk,j(T)] ≤ Dmax(E[Bk,j(bj(T))] + 1)

and E[J(T)] ≤ Dmax(E[H(T)] + 1). The result follows from substituting these into

(6.3) and using results of Lemmas VI.1 and VI.4.

It is worth mentioning that our proof of the logarithmic regret upper bound in

this section is based on the regenerative cycles but does not rely on a large deviation

bound for Markov chains as in the main results of Chapter III. The main idea is

that the sample mean rewards observed within regenerative cycles with the same

regenerative state form an IID random process; our results are easier to prove by

exploiting the IID structure. The same method can be used in the previous sections

as well by choosing a constant regenerative state for each arm. Moreover, under this

141

method we no longer need the assumption that pkxx > 0 for any k ∈ K, x ∈ Sk (or

the irreducible multiplicative symmetrization assumption). Indeed, with this method

the same results can be derived for arbitrary non-Markovian discrete time renewal

processes with finite mean cycle time and bounded rewards. However, we note that

the previous method based on the large deviation bound for Markov chains is still

of importance because it works when the regenerative states are adapted over time.

In this case the cycles are no longer IID and the expected average reward in a cycle

is not necessarily the mean reward of an arm. We give applications where there is a

need to change the regenerative state of an arm over time in Section 6.4.

6.3 Numerical Results

In this section we evaluate the performance of DRCA with M = 2 agents in the

opportunistic spectrum access (OSA) scenario described in Section 3.4 of Chapter

III. This scenario is equivalent to a cognitive radio network, where there are M

decentralized secondary users (agents), each of which senses a single channel at each

time step, and transmits on that channel if there is no primary user on that channel.

If an agent observes a primary user on the channel it senses, it does not transmit on

that channel. State of channel k is 0 when there is a primary user, and 1 when there

is no primary user. The rewards an agent gets from the states are rk1 = 1, rk0 = 0.1,

∀k ∈ K. We assume that if more than one secondary user transmits on the same

channel at the same time, then they collide. This means that the transmission is

unsuccessful for all of them, and they get 0 reward. Note that the reward a secondary

user gets when there is collision is 0 which is smaller than the reward it will get when

it sees the channel occupied by the primary user. This is because, the secondary

user will not attempt to transmit, hence will not consume energy in the latter case,

whereas it will consume some energy for the failed transmission in the former case.

We consider 4 different channel conditions S1-S4, each consisting of 10 channels with

142

different state transition probabilities. The state transition probabilities and mean

rewards of the channels in each scenario are given in Tables 3.2 and 3.3, respectively.

We present the regret of DRCA with 2 agents in Figure 6.2. The results are similar to

that of RCA with the index given in (3.2), but with a larger regret due to collisions.

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

600

700

800

n

R
(n

)/
(

ln
(n

))

S1
S2
S3
S4

Figure 6.2: regret of DRCA with 2 users

6.4 Discussion

Since DRCA is the decentralized extension of RCA, they share many properties.

Therefore the improvements and extensions on RCA discussed in Section 3.5, can

also be applied to DRCA. Especially if the reward from state x of arm k, i.e., rkx is

a random variable, the method of adapting the regenerative state, which is given in

Section 3.5 can also be used in DRCA to achieve logarithmic regret.

143

CHAPTER VII

Online Learning in Decentralized Multi-agent

Resource Sharing

In this chapter we consider a decentralized multi-agent online learning problem

in a resource sharing setting, where the reward an agent gets from using a resource

depends on not only the random realization of the resource quality, but also how many

other agents are simultaneously using that resource, both of which are unknown a

priori to the agent. Similar to the rest of the thesis, in this chapter we use the

mathematical framework of bandit problems. Specifically, we consider the resource

sharing setting as a bandit problem, where a resource corresponds to an arm, which

generates random rewards depending on the number of agents using that resource,

at discrete time steps. The goal of the agents is to achieve a system objective, such

as maximization of the expected total reward over time. One of the major challenges

in a decentralized system is the asymmetry in information possessed by different

agents. In the absence of communication or feedback, each agent acts based on its

own history of observations and actions, making it impossible to achieve an arbitrary

system objective.

The main contribution of this chapter is to establish certain relationship between

the degree of decentralization and the achievable performance of a learning algorithm.

The different degree of decentralization is captured in a sequence of four settings with

144

increasing feedback and communication. Specifically, we consider the no feedback, par-

tial feedback, partial feedback with synchronization and costly communication models

given in Section 1.2.6. As the feedback and communication level between the agents

increase, certain performance objectives will be achieved for a wider class of resource

rewards, ranging from a special case of the general symmetric interaction model given

in Definition I.7 to the agent-specific interaction model given in Definition I.8.

The performance measure we use in this chapter is the weak regret of a learning

algorithm with respect to the best static resource allocation rule. At time T , this is the

difference up to time T between the total expected reward of the best static allocation

rule and that of the algorithm. Note that a static allocation rule is an offline rule in

which a fixed allocation is selected at each time step. The regret quantifies the rate

of convergence to the best static allocation. As T goes to infinity the performance of

any algorithm with sublinear regret will converge in average reward to the optimal

static allocation, while the convergence is faster for an algorithm with smaller regret.

For the first three settings in which communication between the agents is not

possible, we consider the general symmetric interaction model. For the fourth set-

ting in which we assume costly communication structure, our results also hold for

the agent-specific interaction model. Specifically, for a special case of the general

symmetric interaction model, we show that when the agents are fully decentralized

without any communication or coordination, there exist learning algorithms under

which individual actions will converge to an equilibrium point of an equivalent con-

gestion game. Although this equilibrium may not be socially optimal, it has some

performance guarantees.

In the second setting, we show that if agents are given partial feedback about the

number of agents with whom they share the same resource, then they can achieve

sublinear regret with respect to the optimal static allocation, provided that rewards

obtained by agents sharing the same resource are governed by a general symmetric

145

interaction function, whereby the reward an agent gets from a resource is affected due

to sharing and this effect is the same for all agents sharing the same resource. In the

third setting, we show that if initial synchronization among agents is allowed which

may require a small amount of communication at the beginning, then the agents can

achieve logarithmic regret in the general symmetric interaction model. Finally, we

introduce the “costly communication model”, in which agents can communicate with

each other and share their past observations at a cost. We show that there exist

a distributed online learning algorithm that achieves logarithmic regret even when

rewards from resources are agent-specific.

The logarithmic regret results above hold under the condition that a lower bound

on the performance gap between the best and the second-best allocations is known by

the agents; if this gap is unknown, we prove that agents can achieve near-logarithmic

regret. Furthermore, our algorithms achieve the same order of regret when we in-

troduce computation and switching costs, with the former modeling the time and

resources it takes for the agents to compute the estimated optimal allocation, and the

latter modeling the cost of changing resource.

The organization of this chapter is as follows. Problem definition and notations are

given in Section 7.1. Achievable performance without feedback and communication

is considered in Section 7.2, and a convergent algorithm is proposed. Then, the

partial feedback model is considered in Section 7.3, and an algorithm with sublinear

regret is proposed for IID resource rewards. The model with initial synchronization is

studied in Section 7.4, and an algorithm with logarithmic regret for both the IID and

Markovian resource rewards is proposed. Then, we study the achievable performance

when costly communication is possible in Section 7.5. Finally, a discussion of models

we proposed in this chapter is given in Section 7.6.

146

7.1 Problem Formulation and Preliminaries

We consider M distributed agents indexed by the set M = {1, 2, . . . ,M}, and K

mutually independent resources indexed by the set K = {1, 2, . . . , K} in a discrete

time setting with time index t = 1, 2, At each time step t, an agent chooses a single

resource from the set K. The reward the agent gets from a resource depends on the

internal state of the resource which varies stochastically over time and the interaction

between the agents using that resource. For example, in a dynamic spectrum access

problem agents are transmitter-receiver pairs, while resources are channels. The

channel conditions vary stochastically over time due to reasons such as fading, primary

user activity, etc.

The objective is to maximize the total system reward, which is the sum of the

reward of all agents up to some T . The agents have no knowledge of the resource

reward statistics, either as an average or as a prior, so cannot simply solve a dis-

tributed optimization problem to find the optimal allocation. Instead, they need to

learn the resource rewards over time, and estimate the optimal allocation in a dis-

tributed way. The resource selected by agent i at time t depends on the algorithm αi

used by the agent. An agent’s decision at time t is based on the history of decisions

and observations it has by time t.

Our goal in this chapter is to design distributed algorithms α = (α1, α2, . . . , αM)

whose performance converges to the optimal allocation as fast as possible. Let αi(t)

be the resource selected by agent i at time t when it uses algorithm αi. Let α(t) =

(α1(t), α2(t), . . . , αK(t)) be the vector of resource selections at time t.

7.1.1 Factors Determining the Resource Rewards

The quality of a resource perceived by an agent depends on two factors: (1) the

state of the resource, and (2) the congestion or activity level in the resource, i.e.,

its number of simultaneous users. Specifically, we assume that when agent i selects

147

resource k at time t, it receives (and observes) a reward rik(s, n), where n denotes the

total number of users on channel k at time t, and s ∈ Sk the state of channel k at

time t with Sk being the state space of channel k. Let

rik : Sk ×M→ [0, 1] ,∀k ∈ K.

This resource rewards correspond to the agent-specific interaction model given in

Defition I.8. When the resource rewards are agent-independent, i.e., in the general

symmetric interaction model, we drop the superscript on the resource reward and

denote it by rk. In this case, The quantity rk(s, 1) will also be referred to as the single-

occupancy reward of the resource k in state s. For our application, rk is in general

non-increasing in n, i.e., more agents using the same resource leads to performance

degradation due to increased congestion or interference. However, all our analysis

holds regardless of this property. Below we show two examples of this type of multi-

agent resource sharing problems with these type of resource rewards which are taken

from Section 1.1.

Example VII.1. Random access. If user i is the only one using channel k at time

t with the channel in fading state s, it gets a single-occupancy channel quality given

by some qk(s), where qk : Sk → [0, 1]. For instance this could be the received SNR,

packet delivery ratio or data throughput. When there are n users simultaneously

using the channel, then under a collision model in each time step each user has a

probability 1
n

of obtaining access, which results in a channel quality of

rk(s, n) =
1

n
qk(s) .

Example VII.2. Code division multiple access (CDMA). In this case, let

s ∈ {0, 1} denote the primary user activity on channel k: s = 1 if there is no primary

user on channel (or channel is available) and s = 0 otherwise. A secondary user is

148

only allowed to access the channel if s = 1. Multiple secondary users share access to

the channel using CDMA. When channel k is not occupied by a primary user, the

rate a secondary user i gets can be modeled as (see, e.g. Tekin et al. (2012)),

log

(
1 + γ

hkiiP
k
i

No +
∑

j 6=i h
k
jiP

k
j

)
,

where hkji is the channel gain between the transmitter of user j and the receiver of

user i, P k
j is the transmit power of user j on channel k, No is the noise power, and

γ > 0 is the spreading gain. If we assume the rate function to be user-independent,

i.e., hkii = ĥk,∀i ∈M, hkji = h̃k, ∀i 6= j ∈M, P k
i = P k, ∀i ∈M, which is a reasonable

approximation in a homogeneous environment, then we obtain

rk(s, n) = s log

(
1 + γ

ĥkP k
i

No + (n− 1)h̃kP k

)
.

Note that in both examples above the effects of congestion and channel state on

the received reward are separable, i.e., rk(s, n) = gk(n)qk(s), for some functions gk(·)

and qk(·). Our results are not limited to this case, and holds for any general function

rk(·, ·).

7.1.2 Optimal Allocations and the Regret

In this subsection, we define the key properties of optimal resource allocations in

both the general symmetric and agent-specific interaction models. Then, we provide

the definitions of regret used in this chapter. We use these properties to design

learning algorithms with low regret.

149

7.1.2.1 General Symmetric Interaction Model

Consider the general symmetric interaction model given in Definition I.7. For a

resource-activity pair (k, n), the mean reward is given by

µk,n :=

∫
Sk

rk(x, n)P k(dx),

when the resource rewards evolve according to an IID model given in Definition I.1,

and

µk,n :=
∑
x∈Sk

rk(x, n)πkx,

when the resource rewards evolve according to the uncontrolled Markovian model

given in Definition I.41. Note that P k is the reward distribution of resource k, and

πkx is the stationary probability of state x of arm k. The set of optimal allocations is

given by

A∗ = arg max
a∈A

M∑
i=1

µai,nai (a),

where a = (a1, a2, . . . , aM) is an allocation of resources to agents, ai is the resource

used by agent i, A = {a = (a1, a2, . . . , aM) : ai ∈ K} is the set of possible allocations,

and nk(a) is the number of agents using resource k under allocation a. The value of

an allocation a ∈ A is given by

v(a) :=
M∑
i=1

µai,nai .

1Although for simplicity we only consider the uncontrolled restless Markovian model in this
chapter, all result which holds for this model also holds for the more general restless Markovian
model given in Definition I.3

150

Let

v∗ := max
a∈A

v(a),

be the value of the optimal allocation, and

A∗ := arg max
a∈A

v(a),

be the set of optimal allocations. Since rewards are agent-independent, the value of an

allocation will not change as long as the number of agents using each resource remains

the same. As a next step, we give the characterization of the optimal allocation

in terms of resource-activity vectors. A resource-activity vector is a vector n =

(n1, n2, . . . , nK), where nk denotes the number of agents using resource k. LetA(n) be

the set of allocations that result in resource-activity vector n. The value of resource-

activity vector n is given by

w(n) :=
K∑
k=1

nkµk,nk .

Note that for any a ∈ A(n), v(a) = w(n). A resource-activity vector whose value is

larger than or equal to the value of any resource-activity vector is called a number-

optimal allocation. Let w∗ denote the value of a number-optimal allocation. By the

above argument w∗ = v∗. The set of number-optimal allocations is given by

N ∗ := arg max
n∈N

K∑
k=1

nkµk,nk ,

151

where N is the set of feasible resource-activity vectors. For any n ∈ N , its subopti-

mality gap is defined as

∆(n) := v∗ −
K∑
k=1

nkµk,nk .

Then the minimum suboptimality gap, i.e., the difference between the best and the

second-best allocations, is

∆min := min
n∈N−N ∗

∆(n). (7.1)

We adopt the following assumption on the set of number-optimal allocations

Assumption VII.3. Uniqueness. There is a unique optimal allocation in terms

of the number of agents on each resource, i.e., the cardinality of N ∗, |N ∗| = 1.

Let n∗ denote the unique number-optimal allocation when Assumption VII.3

holds, and let O∗ be the set of resources used by at least one agent under the optimal

allocation. This assumption guarantees convergence by random selections over the

optimal resources, when each agent knows the number-optimal allocation. Without

this uniqueness assumption, even if all agents know all number-optimal allocations,

simple randomizations cannot ensure convergence unless the agents agree upon a

specific allocation. In Section 7.6 we discuss how the uniqueness assumption can be

relaxed. The uniqueness assumption implies the following stability condition.

Lemma VII.4. Stability. When Assumption VII.3 holds, for a set of estimated

mean rewards µ̂k,nk , if |µ̂k,nk − µk,nk | < ∆min/2M , ∀k ∈ K, nk ∈M, then

arg max
n∈N

K∑
k=1

nkµ̂k,nk = N ∗.

Proof. Let v̂(n) be the estimated value of resource-activity vector n computed using

152

the estimated mean rewards µ̂k,nk . Then, |µ̂k,nk − µk,nk | < ∆min/(2M), ∀k ∈ K, nk ∈

M implies that for any n ∈ N , we have |v̂(n)− v(n)| ≤ ∆min/2. This implies that

v∗ − v̂(n∗) < ∆min/2, (7.2)

and, for any suboptimal n ∈ N

v̂(n)− v(n) < ∆min/2. (7.3)

Combining (7.2) and (7.3), and using (7.1), we have for any suboptimal n

v̂(n∗)− v̂(n) > ∆min − 2∆min/2 = 0.

The stability condition suggests that when an agent estimates sufficiently accu-

rately the mean rewards of resource-activity pairs, it can find the optimal allocation.

In Sections 7.3 and 7.4 we study algorithms under the assumption that a lower bound

on ∆min is known by the agents. This assumption may seem strong with unknown

statistics of the resource rewards. However, if the resource reward represents a dis-

crete quantity such as the data rate of a channel in bytes or revenue from a business

in dollars, then all agents will know that ∆min ≥ 1 byte per second or dollars. Ex-

tension of our results to the case when ∆min is unknown to the agents can be done

by increasing the number of samples that are used to form estimates µ̂k,n of µk,n over

time at a specific rate. In Section 7.6 we investigate this extension in detail.

We measure the performance of our learning algorithm by calculating the weak

regret given in Definition I.14, which is

I: Rα(T) := Tv∗ − EPα

[
T∑
t=1

M∑
i=1

rαi(t),ntαi(t)
(t)

]
. (7.4)

153

where

rαi(t),ntαi(t)
(t) := rαi(t)(s

t
αi(t)

, ntαi(t)),

stk is the state of channel k at time t, and ntk is the number of agents on channel k

at time t. We also consider switching cost Cswc and computation cost Ccmp. When

these terms are added the regret at time T becomes

II: Rα(T) = Tv∗−EPα

[
T∑
t=1

M∑
i=1

rαi(t),ntαi(t)
(t)− Ccmp

M∑
i=1

mi
cmp(T)

−Cswc
M∑
i=1

mi
swc(T)

]
, (7.5)

where mi
cmp(T) and mi

swc(T) denote the number of computations of the optimal al-

location, and the number of resource switchings by agent i by time T , respectively.

With this definition, the problem becomes balancing the loss in the performance and

the loss due to the NP-hard computation and switchings that results from changes in

strategy. We will denote by Oi(t) the set of resources that are used by at least one

agent in the estimated optimal allocation of agent i, by N i
k,n(t) the number of times

agent i selected resource k and observed n agents using it by time t, and µ̂ik,n(t) the

sample mean of the rewards collected by agent i from resource-activity pair (k, n) by

its t-th observation of that pair.

7.1.2.2 Agent-specific Interaction Model

Consider the agent-specific interaction model given in Definition I.15. For a

resource-activity pair (k, n), the mean reward perceived by agent i is given by

µik,n :=

∫
Sk

rik(x, n)P k(dx),

154

when the resource rewards evolve according to an IID model given in Definition I.1,

and

µik,n :=
∑
x∈Sk

rik(x, n)πkx,

when the resource rewards evolve according to the uncontrolled Markovian model

given in Definition I.4. Similar to the definitions in the previous subsection, v(a)

is the value of allocation a, v∗ is the value of an optimal allocation, ∆(a) is the

suboptimality gap of allocation a and ∆min is the minimum suboptimality gap, i.e.,

∆min := v∗ − arg max
a∈A−A∗

∆(a),

where A∗ is the set of optimal allocations. For a learning algorithm

α = (α1, α2, . . . , αM),

we consider the weak regret in the agent-specific interaction model given in Definition

I.15, which is

III: Rα(T) := Tv∗ − EPα

[
T∑
t=1

M∑
i=1

riαi(t),ntαi(t)
(t)

]
. (7.6)

In order to estimate the optimal allocation, an agent must know how resource

qualities are perceived by the other agents. This is not possible in general, since

the reward function of an agent is its private information which is not known by the

other agents. Therefore, when designing online learning algorithms for agent-specific

resource rewards, we assume that communication between the agents is possible.

This can either be done by broadcasting every time communication is needed, or

broadcasting the next time to communicate on a specific channel initially, and then

155

using time division multiple access on that channel to transmit information about

the resource estimates, and next time step to communicate. Every time an agent

communicates with other agents, it incurs cost Ccom. Considering the computation

cost Ccmp and the switching cost Cswc the regret at time T becomes

IV: Rα(T) = Tv∗−EPα

[
T∑
t=1

M∑
i=1

riαi(t),ntαi(t)
(t)− Ccmp

M∑
i=1

mi
cmp(T)

−Cswc
M∑
i=1

mi
swc(T)− Ccom

M∑
i=1

mi
com(T)

]
, (7.7)

where mi
com(T) is the number of times agent i communicated (exchanged information)

with other agents by time T .

The following stability condition is the analogue of Lemma VII.4. Note that

due to sharing of information we do not require uniqueness of the number-optimal

allocations under the costly-communication model. The agents can coordinate on an

allocation to be played by communication.

Lemma VII.5. Stability. For a set of estimated mean rewards µ̂ik,n, if |µ̂ik,n−µik,n| <

∆min/(2M), ∀i ∈M, k ∈ K, n ∈M then,

arg max
a∈A

M∑
i=1

µ̂iai,nai (a) = A∗.

Proof. The proof is similar to the proof of Lemma VII.4, noting that the value of

each allocation is the sum of M resource-activity pairs.

7.2 Achievable Performance without Feedback

We begin with the scenario of IID resources given in Definition I.1 and the no

feedback model given in Model I.16; there is no communication among agents, and

they cannot differentiate the effect of congestion from that of resource condition. The

156

resource rewards are in separable form, i.e., rk(s, n) = qk(s)gk(n), for some functions

qk and gk. Note that two examples of this type of resource rewards are given earlier in

Examples VII.1 and VII.2. We assume that each agent selects resources according to

the Exp3 algorithm proposed in Auer et al. (2003), whose pseudocode is reproduced

in Figure 7.1. Exp3 is a randomized algorithm, whereby each resource has some

probability of being chosen, based on the history of resource selections and observed

rewards. The probability of agent i choosing resource k depends on the exploration

constant γ and weights wik that depend exponentially on past observations. Even

though each agent runs an instance of Exp3 independently, as resource rewards are

affected by the number of agents selecting a resource, every agent’s action affects all

other agents’ subsequent actions.

At each time step t before the resource state and agent actions are drawn from their

respective distributions, let Qk(t) = qk(S
k
t) denote the random variable corresponding

to the single-occupancy reward of the kth resource, where Skt is the random variable

corresponding to the state of resource k at time t. Let Gik(t) = gk(1 +N i
k(t)) be the

random variable representing the reward or payoff agent i gets from resource k where

N i
k(t) is the random variable representing the number of agents on resource k other

than agent i. Let Uik(t) = Qk(t)Gik(t) and ūik(t) = Ek[E−i[Uik(t)]] be the expected

payoff to agent i by using resource k where E−i represents the expectation taken with

respect to the randomization of the agents other than i, Ek represents the expectation

taken with respect to the random state realization of resource k. Since the resource

reward is in separable form, we have ūik(t) = q̄k(t)ḡik(t) where q̄k(t) = E[Qk(t)] and

ḡik(t) = E−i[Gik(t)].

We are interested in the asymptotic performance of agents when they are all

using the Exp3 algorithm. We will show that the resource selection probabilities

of a single agent converges to a point, where only a single resource will be selected

with very high probability, while all other resources have a very small probability

157

(proportional to γ/K) to be selected. We prove this by writing the dynamics of Exp3

as a replicator equation, and showing that this replicator equation converges to a set

of points which is equivalent to a pure Nash equilibrium of a congestion game played

by the agents when all agents have complete knowledge about the mean payoffs and

resource selections of all other agents. As noted earlier, the agents in our decentralized

system are not assumed to be strategic. The above equivalence simply suggests that

their asymptotic behavior coincides with an equilibrium point of a well-defined game.

Below, we give definitions of the replicator equation, the congestion game, and

pure Nash equilibrium.

The replicator equation is widely studied in evolutionary game theory, such as in

Sandholm (2011); Smith (1982); it models the dynamics of the survival of a particular

type in a population. Intuitively, if a type yields high rewards, then the proportion of

members in the population which has the characteristics of that type will increase over

time. Consider the distribution vector of a population x = (x1, x2, . . . , xK), where

xk denotes the ratio of type k members of the population. The replicator equation is

given by

ẋk = xk(fk(x)− f̄(x)),

where fk denotes the fitness of type k, which can be viewed as the survival rate of xk

in x, and

f̄(x) =
K∑
k=1

xkfk(x),

is the average population fitness.

A congestion game, which is defined in Monderer and Shapley (1996); Rosenthal

(1973), (with agent independent payoffs) is given by the tuple (M,K, (Σi)i∈M, (hk)k∈K),

where M denotes a set of players (agents), K a set of resources (resources), Σi ⊂ 2K

158

the strategy space of player i, and hk : N → R a payoff function associated with re-

source k, which is a function of the number of players using that resource. In essence,

a congestion game models the resource competition among a set of agents, where the

presence of an agent poses a negative externality to other agents.

Consider a strategy profile σ = (σ1, σ2, . . . , σM) for the players in a congestion

game (M,K, (Σi)i∈M, (hk)k∈K). Let (σ−i, σ
′
i) denote the strategy profile in which

player i’s strategy is σ′i, while any player j 6= i has strategy σj. A pure Nash equi-

librium of the congestion game is any strategy profile σ = (σ1, σ2, . . . , σM) such that

for σi ∈ K and for all i ∈M, we have

hσi(nσi(σ)) ≥ hσ′i(nσ′i((σ−i, σ
′
i))),

for any i ∈ M, σ′i ∈ K, where nσi(σ) denotes the number of agents using σi under

profile σ. This means that there exists no player who can unilaterally deviate from

σ and increase its payoff.

It is well known that the above congestion game (with agent independent payoff)

is an exact potential game with an exact potential function, a local maxima of the

potential function corresponds to a pure Nash equilibrium (PNE), and every sequence

of asynchronous improvement steps is finite and converges to a PNE.

The next lemma shows that the evolution of the resource selection probabilities

under Exp3 in time can be written as a replicator equation.

Lemma VII.6. When all agents use Exp3, the derivative of the continuous-time limit

of Exp3 is the replicator equation given by

χik =
1

K
(q̄kpik)

K∑
l=1

pil(ḡik − ḡil) .

159

Exp3 (for agent i)

1: Initialize: γ ∈ (0, 1), wik(t) = 1,∀k ∈ K, t = 1
2: while t > 0 do
3:

pik(t) = (1− γ)
wik(t)∑K
l=1wil(t)

+
γ

K

4: Sample σi(t) according to the distribution pi(t) = [pi1(t), pi2(t), . . . , piK(t)]
5: Select resource σi(t) and receive reward Ui,σi(t)(t)
6: for k = 1, 2, . . . , K do
7: if k = σi(t) then

8: Set wik(t+ 1) = wik(t) exp
(
γUi,σi(t)(t)

pik(t)K

)
9: else

10: Set wik(t+ 1) = wik(t)
11: end if
12: end for
13: t = t+ 1
14: end while

Figure 7.1: pseudocode of Exp3

Proof. By the definition of the Exp 3 algorithm we have

(1− γ)wik(t) =
K∑
l=1

wil(t)
(
pik(t)−

γ

K

)
. (7.8)

Now consider the effect of agent i’s action σi(t) on his probability update on resource

k. We have two cases: σi(t) = k and σi(t) 6= k. Let Aγ,ti,k = exp
(
γUik(t)
pik(t)K

)
.

Consider the case σi(t) = k:

pik(t+ 1) =
(1− γ)wik(t)A

γ,t
i,k∑K

l=1wil(t) + wik(t)
(
Aγ,ti,k − 1

) +
γ

K
. (7.9)

Substituting (7.8) into (7.9), we get

pik(t+ 1) =

∑K
l=1wil(t)

(
pik(t)− γ

K

)
Aγ,ti,k∑K

l=1wil(t)
(

1 +
pik(t)− γ

K

1−γ

(
Aγ,ti,k − 1

)) +
γ

K

160

=

(
pik(t)− γ

K

)
Aγ,ti,k

1 +
pik(t)− γ

K

1−γ

(
Aγ,ti,k − 1

) +
γ

K
.

The continuous time process is obtained by taking the limit γ → 0, i.e., the rate of

change in pik with respect to γ as γ → 0. Then, dropping the discrete time script t,

we have

˙pik = lim
γ→0

dpik
dγ

= lim
γ→0

(
−1
K
Aγ,ti,k +

(
pik − γ

K

)
Uik
pikK

Aγ,ti,k

)(
1 +

pik− γ
K

1−γ

(
Aγ,ti,k − 1

))
(

1 +
pik− γ

K

1−γ

(
Aγ,ti,k − 1

))2

+

(
pik − γ

K

)
Aγ,ti,k

(
pik− 1

K

(1−γ)2A
γ,t
i,k +

pik− 1
K

1−γ

(
γ
K
Aγ,ti,k

))
(

1 +
pik− γ

K

1−γ

(
Aγ,ti,k − 1

))2 +
1

K

=
Uik(1− pik)

K
. (7.10)

Consider the case σi(t) = k̄ 6= k:

pik(t+ 1) =
(1− γ)wik(t)∑K

l=1wil(t) + wik̄(t)
(
Aγ,t
i,k̄
− 1
) +

γ

K

=
pik(t)− γ

K

1 +
pik̄(t)− γ

K

1−γ

(
Aγ,t
i,k̄
− 1
) +

γ

K
.

Thus

˙pik = lim
γ→0

−1
K

(
1 +

pik̄−
γ
K

1−γ

(
Aγ,t
i,k̄
− 1
))

(
1 +

pik̄−
γ
K

1−γ

(
Aγ,t
i,k̄
− 1
))2

+

(
pik − γ

K

) (pik̄− 1
K

(1−γ)2A
γ,t

i,k̄
+

pik̄−
1
K

1−γ

(
γ
K
Aγ,t
i,k̄

))
(

1 +
pik̄−

γ
K

1−γ

(
Aγ,t
i,k̄
− 1
))2 +

1

K

= −pik̄Uik̄
K

. (7.11)

161

Then from (7.10) and (7.11), the expected change in pik with respect to the prob-

ability distribution pi of agent i over the resources is

Ei[ṗik] =
1

K
pik

∑
l∈K−{k}

pil(Uik − Uil).

Taking the expectation with respect to the randomization of resource rates and other

agents’ actions we have

χik = Ek[E−i[Ei[ṗik]]]

=
1

K
pik

∑
l∈K−{j}

pil (Ek[E−i[Uik]]− Ek[E−i[Uil]])

=
1

K
(q̄kpik)

K∑
l=1

pil(ḡik − ḡil) .

Lemma VII.6 shows that the dynamics of an agent’s probability distribution over

the actions is given by a replicator equation which is commonly studied in evolutionary

game theory, such as in Sandholm (2011); Smith (1982). With this lemma we can

establish the following theorem.

Theorem VII.7. For all but a measure zero subset of [0, 1]2K from which the q̄k’s

and gk’s are selected, when γ in Exp3 is arbitrarily small, the action profile converges

to the set of PNE of the congestion game (M,K, (Si)i∈M, (q̄kgk)k∈K).

Proof. Because the equation in Lemma VII.6 is identical to the replicator equation in

Kleinberg et al. (2009), the proof of convergence to a PNE follows from Kleinberg et al.

(2009). Here, we briefly explain the steps in the proof. Using a potential function

approach it can be shown that the solutions to the replicator equation converge to the

set of fixed points. Then, the stability analysis using the Jacobian matrix yields that

every stable fixed point corresponds to a NE. Then, one can prove that for any stable

162

fixed point the eigenvalues of the Jacobian must be zero. This implies that every

stable fixed point corresponds to a weakly stable NE strategy in the game theoretic

sense. Then using tools from algebraic geometry one can show that almost every

weakly stable NE is a PNE of the congestion game.

We also need to investigate the error introduced by treating the discrete time

update rule as a continuous time process. However, by taking γ infinitesimal we

can approximate the discrete time process by the continuous time process. For a

discussion when γ is not infinitesimal one can define approximately stable equilibria

as given in Kleinberg et al. (2009).

The main difference between Exp3 and Hedge algorithm proposed in Kleinberg

et al. (2009) is that in Exp3 agents do not need to observe the payoffs from the

resources that they do not select, whereas Hedge assumes complete observation. In

addition, in our analysis we have considered dynamic resource states which is not

considered in Kleinberg et al. (2009).

In this section we showed that convergence is possible under a completely decen-

tralized setting. The equilibrium may be suboptimal compared to the allocation that

maximizes the sum of expected rewards of all agents. The inefficiency of the equilib-

rium can be measured by using the notion of price of anarchy. However, owing to

the construction of Exp3, each agent is guaranteed sublinear regret with respect to

the worst-case reward distribution. Within this context if we define the regret of an

agent as the difference between the expected total reward the agent can obtain by

always selecting the best resource, calculated based on the IID resource rewards and

conditioned on the random resource selection by other agents, and the expected total

reward of the agent by using Exp32, then a result from Auer et al. (2003) shows that

this regret is O(
√
T) for all agents.

2Note that this is not the same as the weak regret measure used everywhere else in this chapter,
which is with respect to the optimal static allocations for all agents in the system.

163

7.3 Achievable Performance with Partial Feedback

In this section we study the scenario of IID resources given in Definition I.1 and

the partial feedback model given in Model I.18. We propose an algorithm, the Ran-

domized Learning with Occupancy Feedback (RLOF), whose weak regret with respect

to the optimal static allocation is O(T
2M−1+2γ

2M) for γ > 0 arbitrarily small. Clearly,

this regret is sublinear (it approaches linear as the number of agents M increases).

This means that the time average of the sum of rewards of all agents converges to the

average reward of the optimal static allocation.

Each agent independently runs an instance of RLOF; its pseudocode is given in

Figure 7.2. In running RLOF an agent keeps sample mean estimates of the rewards for

each resource-activity pair. A time step t is either assigned as an exploration step with

probability 1/(t
1

2M
− γ
M), or an exploitation step with probability 1−1/(t

1
2M
− γ
M). In an

exploration step, the agent explores by randomly choosing one of the resources. If time

t is an exploitation step for agent i, it exploits by first calculating an estimated optimal

allocation n̂i(t) = {n̂i1(t), . . . , n̂iK(t)} based on the sample mean reward estimates of

the resource-activity pairs given by

n̂i(t) = arg max
n∈N

K∑
k=1

nkµ̂k,nk(N
i
k,nk

(t)),

and then selecting a resource from the set Oi(t) which is the set of resources selected

by at least one agent in n̂i(t). N i
k,n(t) which is defined in Section 7.1, denotes the

number of times agent i selected resource k and observed n agents on it by time t.

When choosing a resource from the set Oi(t), agent i follows a specific rule so that

the joint resource selections by all agents can converge to the optimal allocation if

all agents have correctly estimated the optimal allocation. If αi(t − 1) ∈ Oi(t) and

nt−1
αi(t−1) ≤ n̂iαi(t−1)(t) (i.e., the actual occupancy/congestion level in resource αi(t− 1)

is below or at the estimated optimal congestion level), agent i will remain in the

164

resource it selected in the previous time slot, i.e., αi(t) = αi(t−1). Otherwise, agent i

randomizes within Oi(t): it selects resource k ∈ Oi(t) with probability n̂ik(t)/M . Note

that due to this randomization there may be a period of time in which the collective

actions of all agents are not optimal even though they each has the correct estimated

optimal allocation. This type of randomization guarantees that when agents have

estimated the optimal allocation correctly in consecutive time steps, they will converge

to the optimal allocation in finite expected time.

For notational convenience we will let li(t−1) = nt−1
αi(t−1). The following lemma on

partial sum of series will be useful in the proof of the main theorem of this section.

Lemma VII.8. For p > 0, p 6= 1

(T + 1)1−p − 1

1− p
<

T∑
t=1

1

tp
< 1 +

T 1−p − 1

1− p
(7.12)

Proof. See Chlebus (2009).

There are three factors contributing to the regret. The first is the regret due to

exploration steps, the second is the regret due to incorrect computation of the optimal

allocation by some agent, and the third is the regret due to the randomization steps

after each agent has computed the optimal allocation correctly, in which at least

one agent randomizes its selection due to higher-than-optimal congestion level in its

current resource.

In order to provide a bound on the regret of RLOF, we first bound the expected

number of time steps in which there exists at least one agent who computed the

socially optimal allocation incorrectly.

Lemma VII.9. When all agents use RLOF with parameter γ > 0, the expected

number of time steps by time T , in which there exists at least one agent who computed

165

Randomized Learning with Occupancy Feedback (RLOF) for agent i

1: Initialize: 0 < γ << 1, µ̂ik,n = 0, N i
k,n = 0,∀k ∈ K, n ∈ {1, 2, . . . ,M},

t = 1.
2: while t ≥ 1 do
3: Draw it randomly from Bernoulli distribution with

P (it = 1) = 1
t(1/2M)−γ/M .

4: if it = 0 then
5: Compute the estimated optimal allocation.
6: n̂i = arg maxn∈N

∑K
k=1 nkµ̂k,nk .

7: Set Oi to be the set of resources in n̂i with at least one agent.
8: if li(t− 1) > n̂iαi(t−1) then

9: Pick αi(t) randomly from Oi with P (αi(t) = k) = n̂ik/M .
10: else
11: αi(t) = αi(t− 1)
12: end if
13: else
14: Select αi(t) uniformly at random from K.
15: end if
16: Select resource αi(t), observe li(t) the number of agents using

resource αi(t) and the reward rαi(t),li(t)(t).
17: Set N i

αi(t),li(t)
= N i

αi(t),li(t)
+ 1.

18: Set µ̂iαi(t),li(t) =
(N i

αi(t),li(t)
−1)µ̂i

αi(t),li(t)
+rαi(t),li(t)(t)

N i
αi(t),li(t)

.

19: t = t+ 1
20: end while

Figure 7.2: pseudocode of RLOF

the optimal allocation incorrectly is upper bounded by

M2K (τ(M,K,∆min, γ) + 3β) ,

where β =
∑∞

t=1
1
t2

, τ is a number which depends on M , K, ∆min and γ, and τ is

non-decreasing in ∆min and non-increasing in γ.

Proof. Let H(t) be the event that at time t there exists at least one agent that

computed the socially optimal allocation incorrectly. Let ε = ∆min/2, and let ω

166

denote a sample path. Then

T∑
t=1

I(ω ∈ H(t))

≤
T∑
t=1

M∑
i=1

I(n̂i(t) 6= n∗)

≤
(T,M,K,M)∑

(t,i,k,n)=(1,1,1,1)

I(|µ̂ik,n(N i
k,n(t))− µk,n| ≥ ε)

=

(T,M,K,M)∑
(t,i,k,n)=(1,1,1,1)

I

(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ ε,N i
k,n(t) ≥ a ln t

ε2

)

+

(T,M,K,M)∑
(t,i,j,l)=(1,1,1,1)

I

(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ ε,N i
k,n(t) <

a ln t

ε2

)
, (7.13)

for some a > 0. Let εik,n(t) =
√

a ln t
N i
k,n(t)

. Then, we have

N i
k,n(t) ≥ a ln t

ε2
⇒ ε ≥

√
a ln t

N i
k,n(t)

= εik,n(t).

Therefore,

I

(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ ε,N i
k,n(t) ≥ a ln t

ε2

)
≤ I

(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ εik,n(t)
)
,

and

I

(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ ε,N i
k,n(t) <

a ln t

ε2

)
≤ I

(
N i
k,n(t) <

a ln t

ε2

)
.

Then, continuing from (7.13),

T∑
t=1

I(ω ∈ H(t))

167

≤
(T,M,K,M)∑

(t,i,k,n)=(1,1,1,1)

(
I
(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ εik,n(t)
)

+ I

(
N i
k,n(t) <

a ln t

ε2

))
.

(7.14)

Taking the expectation over (7.14),

E

[
T∑
t=1

I(ω ∈ H(t))

]
≤

(T,M,K,M)∑
(t,i,k,n)=(1,1,1,1)

P
(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ εik,n(t)
)

+

(T,M,K,M)∑
(t,i,k,n)=(1,1,1,1)

P

(
N i
k,n(t) <

a ln t

ε2

)
. (7.15)

We have

P
(
|µ̂ik,n(N i

k,n(t))− µk,n| ≥ εik,n(t)
)

= P
(
µ̂ik,n(N i

k,n(t))− µk,n ≥ εik,n(t)
)

+ P
(
µ̂ik,n(N i

k,n(t))− µk,n ≤ −εik,n(t)
)

≤ 2 exp

(
−

2(N i
k,n(t))2(εik,n(t))2

N i
k,n(t)

)
= 2 exp

(
−

2N i
k,n(t)a ln t

N i
k,n(t)

)
=

2

t2a
, (7.16)

where (7.16) follows from a Chernoff-Hoeffding inequality.

We next bound P
(
N i
k,n(t) < a ln t

ε2

)
. Let TRi

k,n(t) be the number of time steps in

which agent i picked resource k and observed n agents on resource k among the time

steps in which all agents explored up to time t. Then

{ω : N i
k,n(t) <

a ln t

ε2
} ⊂ {ω : TRi

k,n(t) <
a ln t

ε2
}.

Hence

P

(
N i
k,n(t) <

a ln t

ε2

)
≤ P

(
TRi

k,n(t) <
a ln t

ε2

)
. (7.17)

We now define Bernoulli random variables X i
k,n(t) as follows: X i

k,n(t) = 1 if all agents

168

explore at time t and agent i selects resource k and observes n agents on it; X i
k,n(t) = 0

otherwise. Then TRi
k,n(t) =

∑t
ζ=1X

i
k,n(ζ). P (X i

k,n(ζ) = 1) = ρζpl where pl =

(M−1
n−1)(M+K−n−2

K−2)
(M+K−1

K−1)
and ρζ = 1

ζ(1/2)−γ . Let ζt =
∑t

ζ=1
1

ζ(1/2)−γ Then

P

(
TRi

k,n(t) <
a ln t

ε2

)
= P

(
TRi

k,n(t)

t
− pnζt

t
<
a ln t

tε2
− pnζt

t

)

≤ P

(
TRi

k,n(t)

t
− pnζt

t
<
a ln t

tε2
− pn(t+ 1)(1/2)+γ − 1

t((1/2) + γ)

)
, (7.18)

where (7.18) follows from Lemma VII.8. Let τ(M,K, ε, γ, γ′, a) be the time that for

all n ∈ {1, 2, . . . ,M},

pn(t+ 1)(1/2)+γ − 1

t((1/2) + γ)
− a ln t

tε2
≥ t(1/2)+γ′ , (7.19)

where 0 < γ′ < γ. Then for all t ≥ τ(M,K, ε, γ, γ′, a) (7.19) holds since the

right hand side increases faster than the left hand side. Clearly, τ(M,K, ε, γ, γ′, a)

is non-decreasing in ∆min = 2ε and non-increasing in γ. Thus we have for t ≥

τ(M,K, ε, γ, γ′, a)

P

(
TRi

k,n(t)

t
− pnζt

t
<
a ln t

tε2
− pn(t+ 1)(1/2)+γ − 1

t((1/2) + γ)

)

≤ P

(
TRi

k,n(t)

t
− pnζt

t
< t−(1/2)+γ′

)

≤ e−2tt2γ
′−1

= e−2t2γ
′

≤ e−2 ln t =
1

t2
. (7.20)

Let a = 1, and τ(M,K,∆min, γ) = min0<γ′<γ τ(M,K, ε, γ, γ′, 1). Then continuing

169

from (7.15) by substituting (7.16) and (7.20) we have

E

[
T∑
t=1

I(ω ∈ H(t))

]
≤M2K

(
τ(M,K, ε, γ, γ′, 1) + 3

T∑
t=1

1

t2

)
. (7.21)

Thus we have proved that the expected number of time steps in which there exists at

least one agent that computed the socially optimal allocation incorrectly is finite.

We next consider a second element in regret, which is the number of times an

agent spends on exploration.

Lemma VII.10. When all agents use RLOF with parameter γ > 0, the expected

number of time steps by time T in which there exists at least one agent who explores

is upper bounded by

2M2

2(M + γ)− 1

(
1 + T

2(M+γ)−1
2M

)
.

Proof. Since RLOF explores with probability 1
t1/2M−γ/M

, the expected number of time

steps up to time T in which at least one agent explores is

T∑
t=1

(
1−

(
1− 1

t(1/2M)−γ/M

)M)
≤

T∑
t=1

M

t1/2M−γ/M

≤ 2M2

2(M + γ)− 1

(
1 + T

2(M+γ)−1
2M

)
,

by Lemma VII.8.

Now consider the time steps in which all agents compute the optimal allocation

correctly. In these time steps each agent knows the optimal joint strategy (in terms of

how many agents should use which resource), but due to lack of communication they

can only try to reach this optimal allocation by randomizing their selections within

the optimal resources based on the partial feedback. The next lemma states that

170

the expected number of time steps it takes to settle into optimal allocation given all

agents have computed it correctly is finite.

Lemma VII.11. Denote the number of resources which are selected by at least one

agent in the optimal allocation by z∗. Reindex the resources in O∗ by {1, 2, . . . , z∗}.

Let N ′ = {m : m1 + m2 + . . . + mz∗ ≤ M,mi ≥ 0,∀i ∈ {1, 2, . . . , z∗}}. When

all agents use RLOF, given that all agents computed the optimal allocation correctly,

the expected number of time steps before settling into the optimal allocation is upper

bounded by

OB :=
1

minm∈M PRLOF (m)
,

where

PRLOF (m) =
(M −m)!

(n1 −m1)! . . . (nz∗ −mz∗)!

(n1

M

)n1−m1

. . .
(nz∗
M

)nz∗−mz∗
.

Proof. We will refer to a sequence of exploitation steps of random length L starting

at time t (i.e., t, t + 1, . . . , t + L− 1) those in which all agents correctly calculate

the optimal allocation as a good sequence of exploitation steps. This means that

n̂i(t′) = n∗ for all i ∈M, for all t′ ∈ {t, t+ 1, . . . , t+ L− 1}. Since agent i does not

know the selections of other agents, knowing the optimal allocation is not sufficient to

guarantee that the agents’ joint selections are optimal. In these steps agent i remains

on resource k it had chosen in the previous exploitation step if the occupancy it

observed is no more than n∗k. Otherwise, agent i selects resource k with probability

n∗k/M .

Note that n1 +n2 + . . .+nz∗ = M . Consider the case where m of the agents do not

randomize while the others randomize. Let m = (m1,m2, . . . ,mz∗) be the number of

agents on each resource inO∗ who do not randomize; we have m = m1+m2+. . .+mz∗ .

The probability of settling to the optimal allocation in a single step of randomization

171

is

PRLOF (m) =
(M −m)!

(n1 −m1)! . . . (nz∗ −mz∗)!

(n1

M

)n1−m1

. . .
(nz∗
M

)nz∗−mz∗
,

where M !/(n∗1!n∗2! . . . n∗z∗ !) is the number of allocations that result in the unique opti-

mal allocation in terms of number of agents using each resource, and

(n1

M

)n1−m1

. . .
(nz∗
M

)nz∗−mz∗
is the probability that such an allocation happens. Then,

pW := min
m∈M

PRLOF (m),

is the worst-case probability of settling to an optimal allocation in the next time step,

given all agents estimated it correctly.

Let nI be the allocation at the beginning of a good sequence of exploitation steps,

in which all agents computed the optimal allocation correctly. Let pnI (t
′) be the

probability of settling to the optimal allocation in the t′th round of randomization

in this sequence. Then, the expected number of steps before settling to the optimal

allocation given L = l is

E[top|L = l] =
l∑

t′=1

tpnI (t
′)
t′−1∏
i=1

(1− pnI (i)).

Since pW ≤ pnI (t) for all nI and t, we have

E[top] ≤
∞∑
t′=1

t′pW (1− pW)t
′−1 = 1/pW .

Theorem VII.12. When all agents use RLOF with parameter γ > 0, the regret (7.4)

172

at time T is upper bounded by

MOB

(
2M2

2(M + γ)− 1

(
1 + T

2(M+γ)−1
2M

)
+M2K(τ + 3β)

)
,

where β =
∑∞

t=1 1/t2, τ = τ(M,K,∆min, γ) is as given in Lemma VII.9, and OB is

as given in Lemma VII.11. Asymptotically, the regret is

O(T
2M−1+2γ

2M) ,

where the parameter for RLOF, γ > 0, can be chosen arbitrarily small (tradeoff

between finite time and asymptotic regret).

Proof. We adopt a worst case analysis. We classify the time steps into two types:

good time steps in which all the agents know the optimal allocation correctly and

none of the agents randomize except for the randomization done for settling down

to the optimal allocation, and bad time steps in which there exists an agent that

does not know the optimal allocation correctly or there is an agent who explores.

The expected number of bad time steps in which there exists an agent that does

not know the optimal allocation correctly is upper bounded in Lemma VII.9, while

the expected number of time steps in which there is an agent who explores is upper

bounded in Lemma VII.10. The worst case is when each bad step is followed by a

good step, resulting in repeated periods of randomization. Then from this good step,

the expected number of times it takes to settle down to the optimal allocation is

upper bounded by OB which is given in Lemma VII.11. Since resource rewards are

bounded within [0, 1], contribution of a single time step to the regret can be at most

M .

We mentioned earlier that, under a classical multi-armed bandit framework used

in Anandkumar et al. (2011) and Liu and Zhao (2010), logarithmic regret (O(log T))

173

is achievable. The fundamental difference between these studies and the problem pre-

sented here is that we allow sharing of resources by agents. Without synchronization,

the exploration rate should grow with the number of agents so that each agent i’s es-

timate of resource-activity pair rewards are accurate enough. In the next section, we

will show that logarithmic regret can be achieved if we allow synchronization between

the agents.

Also note that in RLOF an agent computes the optimal allocation according to

sample mean estimates of resource-activity pair rewards. This could pose significant

computational requirement since integer programming is NP-hard in general. How-

ever, by exploiting the stability condition on the optimal allocation an agent may

reduce the amount of computation. Since small perturbations of the expected reward

of a resource-activity pair does not affect the optimal allocation, the computation

of optimal allocation can be made only after sample mean reward of some resource-

activity pair has significantly changed. This results in computation done at the end

of geometrically increasing intervals. More is discussed in Section 7.6.

Compared to the result in Section 7.2, the feedback on the number of agents on

the same resource significantly improves the performance. We not only designed an

algorithm which leads to the optimal allocation asymptotically, but also proved a

result on the rate of convergence of our algorithm. Although the regret is sublin-

ear, it degrades quickly when the number of agents increase. This is because each

resource-activity pair needs to be sampled sufficiently by each agent in order for all

agents to estimate the optimal allocation correctly with high probability. Due to the

randomized nature of the algorithm, the probability of an agent exploring a particular

resource-activity pair (k, n) is small when M is large, thus the exploration probability

should increase with M . We address this issue in the next section by assuming that

the agents can agree on the exploration order at the beginning.

174

7.4 Achievable Performance with Partial Feedback and Syn-

chronization

In this section we consider the partial feedback with initial synchronization model

given in Model I.19, under both the IID and Markovian resource models given in Def-

initions I.1 and I.4, respectively. We propose a distributed algorithm which achieves

logarithmic regret with respect to the optimal static allocation when agents are able

to observe the number of simultaneous agents on a resource, and can initially syn-

chronize their explorations.

This synchronization, which is absent in RLOF given in the previous section, is

sufficient to improve the regret bound for IID resources. The algorithm is called Dis-

tributed Learning with Ordered Exploration (DLOE); its pseudocode is given in Figure

7.3. DLOE uses the idea of deterministic sequencing of exploration and exploitation

with initial synchronization which was first proposed in Liu et al. (2011) to achieve

logarithmic regret for multi-agent learning with Markovian rewards. A key difference

between the problem studied here and that in Liu et al. (2011) is that the latter as-

sumes that the optimal allocation of agents to resources is orthogonal, i.e., there can

be at most one agent using a resource under the optimal allocation. For this reason

the technical development in Liu et al. (2011) is not applicable to the reward model

introduced in this chapter, which depends on the activity level in a resource.

DLOE operates in blocks. Each block is either an exploration block or an ex-

ploitation block. An agent running DLOE forms estimates of the resource-activity

pair rewards in exploration blocks, and uses these to compute an estimated opti-

mal allocation at the beginning of each exploitation block. One important property

of DLOE is that only the observations from exploration blocks are used to form

estimates of resource-activity pair rewards. While for the IID resource model, ob-

servations from exploitation blocks can also be used to update the estimates, this

175

will create problems in the Markovian resource model, since in order to capture the

average quality accurately, a resource-activity pair should be observed in contiguous

segments, which may not be always possible in exploitation blocks due to the lack

of communication between the agents. Therefore, in this section N i
k,n(t) denotes the

number of times resource k is selected and n agents are observed on resource k by

agent i in exploration blocks of agent i by time t.

The length of an exploration (exploitation) block geometrically increases in the

number of exploration (exploitation) blocks. The parameters that determine the

length of the blocks is the same for all agents. Agent i has a fixed exploration

sequence Ni, which is a sequence of resources of length N ′. In its lth exploration

block agent i selects resources in Ni in a sequential manner and use each resource for

cl−1 time slots before proceeding to the next resource in the sequence, where c > 1

is a positive integer. The zth resource in sequence Ni is denoted by Ni(z). The set

of sequences N1, . . . ,NM is created in a way that all agents will observe all resource-

activity pairs at least once, and that the least observed resource-activity pair for each

agent is observed only once in a single (parallel) run of the set of sequences by the

agents. For example when M = 2, K = 2, exploration sequences N1 = {1, 1, 2, 2}

and N2 = {1, 2, 1, 2} are sufficient for each agent to sample all resource-activity pairs

once. Note that it is always possible to find such a set of sequences. With M agents

and K resources, there are KM possible assignments of agents to resources. Index

each of the KM possible assignments as {α(1),α(2), . . . ,α(KM)}. Then using the

set of sequences Ni = {αi(1), αi(2), . . . , αi(K
M)} for i ∈ M, all agents sample all

resource-activity pairs at least once.

The sequence Ni is assumed known to agent i before the resource selection process

starts. Let liO(t) be the number of completed exploration blocks and liI(t) be the

number of completed exploitation blocks of agent i by time t, respectively. For agent

i, the length of the lth exploration block isN ′cl−1 and the length of the lth exploitation

176

block is abl−1, where a, b, c > 1 are positive integers.

At the beginning of each block, agent i computes N i
O(t) :=

∑liO(t)

l=1 cl−1. If N i
O(t) ≥

L log t, agent i starts an exploitation block at time t. Otherwise, it starts an ex-

ploration block. Here L is the exploration constant which controls the number of

explorations. Clearly, the number of exploration steps up to t is non-decreasing in L.

Since the estimates of mean rewards of resource-activity pairs are based on sample

mean estimates of observations during exploration steps, by increasing the value of L,

an agent can control the probability of deviation of estimated mean rewards from the

true mean. Intuitively, L should be chosen according to ∆min, since the accuracy of

the estimated value of an allocation depends on the accuracy of the estimated mean

rewards.

Because of the deterministic nature of the blocks and the property of the se-

quences N1, . . . ,NM discussed above, if at time t an agent starts a new exploration

(exploitation) block, then all agents start a new exploration (exploitation) block.

Therefore liO(t) = ljO(t), N i
O(t) = N j

O(t), liI(t) = ljI(t), for all i, j ∈ M. Since these

quantities are equal for all agents, we drop the superscripts and write them sim-

ply as lO(t), NO(t), lI(t). Let tl be the time at the beginning of the lth exploitation

block. At time tl, l = 1, 2, . . ., agent i computes an estimated optimal allocation

n̂i(l) = {n̂i1(l), . . . , n̂iK(l)} based on the sample mean estimates of the resource-

activity pairs, in the same way it was done under the RLOF algorithm in the previous

section, given by

n̂i(l) = arg max
n∈N

K∑
k=1

nkµ̂k,nk(N
i
k,nk

(tl)) .

Randomization at an exploitation block of DLOE is similar to the randomization at an

exploitation step of RLOF. Basically, the agent selects a resource from the set Oi(l),

the set of resources selected by at least one agent under n̂i(l). If n̂i(l−1) = n̂i(l) and

177

if in the last time step t′ of exploitation block l−1 the number of agents on the resource

selected by agent i is at most n̂iαi(t′)(l), then agent i selects the same resource at the

first time step of the lth exploitation block. Otherwise, agent i randomly chooses

a resource k within Oi(l) with probability n̂ik/M at the first time step of the lth

exploitation block. During the lth exploitation block, if the number of agents on

resource αi(t) that agent i selects is greater than the estimated n̂iαi(t)(l), then in the

next time step agent i randomly chooses a resource k within Oi(l) with probability

n̂ik/M ; otherwise the agent stays in the same resource in the next time step. Therefore,

it is more likely for an agent to select a resource which it believes should have a large

number of agents under the optimal allocation than a resource which it believes should

only be used by a smaller number of agents.

7.4.1 Analysis of the regret of DLOE

We next analyze the regret of DLOE. Similar to RLOF, there are three factors

contributing to the regret in both IID and the Markovian resource models. The first

is the regret due to exploration blocks, the second is the regret due to incorrect com-

putation of the optimal allocation by an agent, and the third is the regret due to the

randomization before settling to the optimal allocation given that all agents computed

the optimal allocation correctly. In addition to the above, another factor contributing

to the regret under the Markovian resource model comes from the transient effect of

a resource-activity pair not being in its stationary distribution when chosen by an

agent. Finally, in this section we will also consider the impact of computational effort

on the regret, by using both regret definitions 7.4 and 7.5.

In the following lemmas, we will bound parts of the regret that are common to

both the IID and the Markovian models. Bounds on the other parts which depend

178

Distributed Learning with Ordered Exploration (DLOE) for agent i

1: Input: Exploration sequence Ni, a, b, c ∈ {2, 3, . . .}.
2: Initialize: t = 1, lO = 0, lI = 0, η = 1, N i

O = 0, F = 2, z = 1, len = 2, µ̂ik,n = 0, N i
k,n = 0,

∀k ∈ K, n ∈ {1, 2, . . . ,M}, nold = 1, αold = 1, n̂old = 1.
3: while t ≥ 1 do
4: if F = 1 //Exploitation block then
5: if η = 1 //beginning of an exploitation block then

6: if n̂i = n̂old and nold ≤ n̂iαold then
7: αi(t) = αold
8: else
9: Pick αi(t) randomly from Oi with P (αi(t) = k) = n̂ik/M .

10: end if
11: else
12: //Not the beginning of an exploitation block
13: if nt−1αi(t−1) > n̂iαi(t−1) then

14: Pick αi(t) randomly from Oi with P (αi(t) = k) = n̂ik/M .
15: else
16: αi(t) = αi(t− 1)
17: end if
18: end if
19: Observe ntαi(t) and get the reward riαi(t),ntαi(t)

(t).

20: if η = len then
21: F = 0
22: n̂old = n̂i, αold = αi(t), nold = ntαi(t)
23: end if
24: else if F = 2 //Exploration block then
25: αi(t) = N ′i (z)
26: Observe ntαi(t) and get the reward riαi(t),ntαi(t)

(t).

27: + +N i
αi(t),ntαi(t)

, µ̂iαi(t),ntαi(t)
=

(Ni
αi(t),n

t
αi(t)

−1)µ̂i
αi(t),n

t
αi(t)

+ri
αi(t),n

t
αi(t)

(t)

Ni
αi(t),n

t
αi(t)

28: if η = len then
29: η = 0, + + z
30: end if
31: if z = |Ni|+ 1 then
32: N i

O = N i
O + len

33: F = 0
34: end if
35: end if
36: if F = 0 then
37: if N i

O ≥ L log t then
38: //Start an exploitation block
39: F = 1, + + lI , η = 1, len = a× blI−1
40: //Compute the estimated optimal allocation

41: n̂i = arg maxn∈N
∑K
k=1 nkµ̂

i
k,nk

42: Set Oi to be the set of resources in n̂i with n̂ik ≥ 1.
43: else if N i

O < L log t then
44: //Start an exploration block
45: F = 2, + + lO, η = 0, len = clO−1, z = 1
46: end if
47: end if
48: + + η, + + t
49: end while

Figure 7.3: pseudocode of DLOE

179

on the resource model are given in the next two subsections. Assume that

lO(t)−1∑
l=1

cl−1 ≥ L log t.

If this were true, then an agent would not start the lO(t)th exploration block at or

before time t. Thus, we should have

lO(t)−1∑
l=1

cl−1 < L log t.

This implies that for any time t, we have

lO(t)−1∑
l=1

cl−1 < L log t⇒ clO(t)−1 − 1

c− 1
< L log t

⇒ clO(t)−1 < (c− 1)L log t+ 1

⇒ lO(t) < logc((c− 1)L log t+ 1) + 1. (7.22)

Let TO(t) be the time spent in exploration blocks by time t. By (7.22) we have

TO(t) ≤
lO(t)+1∑
l=1

N ′cl−1 = N ′
clO(t)+1 − 1

c− 1

<
N ′(c((c− 1)L log t+ 1)− 1)

c− 1
= N ′(cL log t+ 1). (7.23)

Lemma VII.13. For any t > 0, regret due to explorations by time t is at most

MN ′(cL log t+ 1).

Proof. Due to the bounded rewards in [0, 1], an upper bound to the worst case is

when each agent loses a reward of 1 due to suboptimal decisions at each step in an

exploration block. The result follows the bound (7.23) for TO(t).

180

By time t at most t−N ′ slots have been spent in exploitation blocks (because of

the initial exploration the first N ′ slots are always in an exploration block). Therefore

lI(t)∑
l=1

abl−1 = a
blI(t) − 1

b− 1
≤ t−N ′

⇒ blI(t) ≤ b− 1

a
(t−N ′) + 1

⇒ lI(t) ≤ logb

(
b− 1

a
(t−N ′) + 1

)
. (7.24)

The next lemma bounds the computational cost of solving the NP-hard optimization

problem of finding the estimated optimal allocation.

Lemma VII.14. When agents use DLOE, the regret due to computations by time t

is upper bounded by

CcmpM

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
.

Proof. The optimal allocation is computed at the beginning of each exploitation block.

The number of completed exploitation blocks is bounded by (7.24). But time t might

be in an incomplete exploitation block, hence we add the regret from that block.

7.4.2 Regret Analysis for IID Resources

In this subsection we analyze the regret of DLOE under the IID resource model.

We note that in the IID model the reward of each resource-activity pair is generated by

an IID process with support in [0, 1]. With part of the regret bounded in Section 7.4.1,

our next step is to bound the regret caused by incorrect calculation of the optimal

allocation by some agent, using a Chernoff-Heoffding bound. Let ε := ∆min/(2M)

denote the maximum distance between the estimated resource-activity reward and

the true resource-activity reward such that Lemma VII.4 holds.

181

Lemma VII.15. Under the IID model, when each agent uses DLOE with constant

L ≥ 1/ε2, the regret due to incorrect calculations of the optimal allocation by time t

is at most

M3K(b− 1)(log(t) + 1) +M3K(a− (b− 1)N ′)+β,

where (a− (b− 1)N ′)+ = max{0, (a− (b− 1)N ′)} and β =
∑∞

t=1 1/t2.

Proof. Similar to the proof of Lemma VII.9 for RLOF, let H(tl) be the event that

at the beginning of the lth exploitation block, there exists at least one agent who

computed the optimal allocation incorrectly. Let ω be a sample path of the stochastic

process generated by the learning algorithm and the stochastic resource rewards. The

event that agent i computes the optimal allocation incorrectly is a subset of the event

{|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε for some k ∈ K, n ∈M}.

Therefore H(tl) is a subset of the event

{|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε for some i ∈M, k ∈ K, n ∈M}.

Using a union bound, we have

I(ω ∈ H(tl)) ≤
M∑
i=1

K∑
k=1

M∑
n=1

I(|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε).

Then taking its expected value, we get

P (ω ∈ H(tl)) ≤
M∑
i=1

K∑
k=1

M∑
n=1

P (|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε). (7.25)

182

Since

P (|a− b| ≥ ε) = 2P (a− b ≥ ε),

for a, b > 0, we have

P (|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε) = 2P (µ̂ik,n(N i

k,n(tl))− µik,n ≥ ε). (7.26)

Since l is an exploitation block we have N i
k,n(tl) > L log tl. Let rik,n(t) := rk(s

t
k, n

t
k)

and let t̃ik,n(l) denote the time when agent i chooses resource k and observes n agents

on it for the lth time. We have

µ̂ik,n(N i
k,n(tl)) =

∑N i
k,n(tl)

z=1 rik,n(t̃ik,n(z))

N i
k,n(tl)

.

Using a Chernoff-Hoeffding bound

P (µ̂ik,n(N i
k,n(tl))− µik,n ≥ ε) = P

N i
k,n(tl)∑
z=1

rik,n(t̃ik,n(z)) ≥ N i
k,n(tl)µ

i
k,n +N i

k,n(tl)ε


≤ e−2N i

k,n(tl)ε
2 ≤ e−2L log tlε

2 ≤ 1

t2l
, (7.27)

where the last inequality follows from the fact that L ≥ 1/ε2. Substituting (7.26) and

(7.27) into (7.25), we have

P (ω ∈ H(tl)) ≤M2K
1

t2l
. (7.28)

The regret in the lth exploitation block caused by incorrect calculation of the optimal

allocation by at least one agent is upper bounded by

Mabl−1P (ω ∈ H(tl)),

183

since there are M agents and the resource rewards are in [0, 1]. Since

lI(t)∑
l=1

abl−1 = a
blI(t) − 1

b− 1
≤ t−N ′,

for all t, the length of the lth exploitation block is bounded by

abl−1 ≤ (b− 1)(tl −N ′) + a

Note that by time t there can be at most lI(t) + 1 exploitation blocks. We do

the analysis for tlI(t)+1 < t. Otherwise, our results will still hold since we will not

include the regret in the lI(t) + 1 exploitation block in calculating the regret by time

t. Therefore, the regret caused by incorrect calculation of the optimal allocation by

at least one agent by time t is upper bounded by

lI(t)+1∑
l=1

Mabl−1P (ω ∈ H(tl)) ≤M3K

lI(t)+1∑
l=1

abl−1 1

t2l

≤M3K

lI(t)+1∑
l=1

((b− 1)(tl −N ′) + a)
1

t2l

≤M3K

lI(t)+1∑
l=1

(b− 1)
1

tl
+M3K

lI(t)+1∑
l=1

(a− (b− 1)N ′)+ 1

t2l

≤M3K(b− 1)
t∑

t′=1

1

t
+M3K(a− (b− 1)N ′)+

∞∑
t′=1

1

t′2

≤M3K(b− 1)(log(t) + 1) +M3K(a− (b− 1)N ′)+β.

The following lemma bounds the expected number of exploitation blocks where

some agent computes the optimal allocation incorrectly.

Lemma VII.16. When agents use DLOE with L ≥ 1/ε2, the expected number of

exploitation blocks up to any t in which there exists at least one agent who computes

184

the optimal allocation wrong is bounded by

E

[
∞∑
l=1

I(ω ∈ H(tl))

]
≤

∞∑
l=1

M2K

t2l
≤M2Kβ,

where β =
∑∞

t=1 1/t2.

Proof. Proof is similar to the proof of Lemma VII.15, using the bound (7.28) for

P (ω ∈ H(tl)).

Finally, we bound the regret due to the randomization before settling to the

optimal allocation in exploitation slots in which all agents have computed the optimal

allocation correctly.

Lemma VII.17. Denote the number of resources which are selected by at least one

agent in the optimal allocation by z∗. Reindex the resources in O∗ by {1, 2, . . . , z∗}.

Let M = {m : m1 + m2 + . . . + mz∗ ≤ M,mi ≥ 0,∀i ∈ {1, 2, . . . , z∗}}. In an

exploitation block where each agent computed the optimal allocation correctly, the

expected number of time steps in that block before settling to the optimal allocation in

this block is upper bounded by

OB :=
1

minm∈M PDLOE(m)
,

where

PDLOE(m) =
(M −m)!

(n1 −m1)! . . . (nz∗ −mz∗)!

(n1

M

)n1−m1

. . .
(nz∗
M

)nz∗−mz∗
.

Proof. The proof is similar to the proof of Lemma VII.11, thus omitted.

Lemma VII.18. The regret due to randomization before settling to the optimal allo-

185

cation is bounded by

OBM
3Kβ,

where

β =
∞∑
t=1

1

t2
.

Proof. Using similar terms as before, a good exploitation block is an exploitation

block in which all the agents computed the optimal allocation correctly, while a bad

exploitation block is a block in which there exists at least one agent who computed

the optimal allocation incorrectly. The worst case is when each bad block is followed

by a good block. The number of bad blocks is bounded by Lemma VII.16. After each

such transition from a bad block to a good block, the expected loss is at most OB,

which is given in Lemma VII.17.

Combining all the results above we have the following theorem.

Theorem VII.19. If all agents use DLOE with L ≥ 1/ε2, at any t > 0, the regret

defined in (7.4) is upper bounded by,

(M3K(b− 1) +MN ′cL) log(t) +M3K(1 + β((a− (b− 1)N ′)+OB)) +MN ′,

and the regret defined in (7.5) is upper bounded by

(M3K(b− 1) +MN ′cL) log(t) +M3K(1 + β((a− (b− 1)N ′)+OB)) +MN ′

+ CcmpM

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
,

where OB, given in Lemma VII.17, is the worst case expected hitting time of the

optimal allocation given all agents know the optimal allocation, (a − (b − 1)N ′)+ =

186

max{0, (a− (b− 1)N ′)} and β =
∑∞

t=1 1/t2.

Proof. The result follows from summing the regret terms from Lemmas VII.13, VII.15,

VII.18 and VII.14.

7.4.3 Regret Analysis for Markovian Resources

In this subsection we analyze the regret of DLOE in the case of Markovian re-

sources. The analysis in this section is quite different from that in Section 7.4.2 due

to the Markovian state transition rule. Similar as before, our next step is to bound

the regret caused by incorrect calculation of the optimal allocation by some agent.

Although the proof of the following lemma is very similar to the proof of Lemma

VII.15, due to the Markovian nature of the rewards, we need to bound the deviation

probability between the estimated mean resource-activity rewards and the true mean

resource-activity rewards in a different way. For simplicity of analysis, we assume

that DLOE is run with parameters a = 2, b = 4, c = 4; similar analysis can be done

for other, arbitrary parameter values. Again let ε := ∆min/(2M).

The following technical assumption, which is also given in Chapter III for the anal-

ysis of the single-agent restless bandit problem, ensures sufficiently fast convergence

of states to their stationary distribution.

Assumption VII.20. Let (P k)′ denote the adjoint of P k on l2(π) where

(pk)′xy = (πkyp
k
yx)/π

k
x, ∀x, y ∈ Sk .

Let Ṗ k = (P k)′P denote the multiplicative symmetrization of P k. We assume that

the P k’s are such that Ṗ k’s are irreducible.

To give a sense of the strength of this assumption, we note that this is a weaker

condition than assuming the Markov chains to be reversible. With this bound, if

an agent can estimate the mean rewards of resource-activity pairs accurately, then

187

the probability that the agent chooses a suboptimal resource can be made arbitrarily

small. Let ξk be the eigenvalue gap, i.e., 1 minus the second largest eigenvalue of Ṗ k,

and ξmin = mink∈K ξ
k. Let rΣ,max = maxk∈K

∑
x∈Sk r

k
x, rΣ,min = mink∈K

∑
x∈Sk r

k
x.

Lemma VII.21. Under the Markovian model, when each agent uses DLOE with

constant

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)ξmin)},

the regret due to incorrect calculations of the optimal allocation by time t is at most

3M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

(log(t) + 1).

Proof. Similar to the analysis for the IID rewards, let H(tl) be the event that at the

beginning of the lth exploitation block, there exists at least one agent who computes

the optimal allocation incorrectly, and let ω be a sample path of the stochastic process

generated by the learning algorithm and the stochastic rewards. Proceeding the same

way as in the proof of Lemma VII.15 by (7.25) and (7.26) we have,

P (ω ∈ H(tl)) ≤
M∑
i=1

K∑
k=1

M∑
n=1

2P (µ̂ik,n(N i
k,n(tl))− µik,n ≥ ε). (7.29)

Since tl is the beginning of an exploitation block we have N i
k,n(tl) ≥ L log tl, ∀i ∈

M, k ∈ K, n ∈M. This implies that N i
k,n(tl) ≥

√
N i
k,n(tl)L log tl. Hence

P (µ̂ik,n(N i
k,n(tl))− µik,n ≥ ε)

= P (N i
k,n(tl)µ̂

i
k,n(N i

k,n(tl))−N i
k,n(tl)µ

i
k,n ≥ εN i

k,n(tl))

≤ P
(
N i
k,n(tl)µ̂

i
k,n(N i

k,n(tl))−N i
k,n(tl)µ

i
k,n ≥ ε

√
N i
k,n(tl)L log tl

)
. (7.30)

To bound (7.30), we proceed in the same way as in the proof of Theorem 1 in Liu

188

et al. (2010). The idea is to separate the total number of observations of the resource-

activity pair (k, n) by agent i into multiple contiguous segments. Then, using a union

bound, (7.30) is upper bounded by the sum of the deviation probabilities for each

segment. By Assumption VII.20 we can use the large deviation bound given in Lemma

A.1 to bound the deviation probability in each segment. Thus, for a suitable choice

of the exploration constant L, the deviation probability in each segment is bounded

by a negative power of tl. Combining this with the fact that the number of such

segments is logarithmic in time (due to the geometrically increasing block lengths),

for block length parameters a = 2, b = 4, c = 4 in DLOE, and for

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)ξmin)},

we have,

P
(
N i
k,n(tl)µ̂

i
k,n(N i

k,n(tl))−N i
k,n(tl)µ

i
k,n ≥ ε

√
N i
k,n(tl)L log tl

)
≤

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

t−2
l .

Continuing from (7.29), we get

P (ω ∈ H(tl)) ≤M2K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

t−2
l . (7.31)

The result is obtained by continuing the same way as in the proof of Lemma VII.15.

The following lemma bounds the expected number of exploitation blocks where

some agent computes the optimal allocation incorrectly.

Lemma VII.22. Under the Markovian model, when each agent uses DLOE with

189

constant

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)ξmin)},

the expected number exploitation blocks up to any t in which there exists at least one

agent who computes the optimal allocation wrong is bounded by

E

[
∞∑
l=1

I(ω ∈ H(tl))

]
≤M2K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

β,

where β =
∑∞

t=1 1/t2.

Proof. The proof is similar to that of Lemma VII.21, using the bound (7.31) for

P (ω ∈ H(tl)).

Next, we bound the regret due to the randomization before settling to the opti-

mal allocation in exploitation blocks in which all agents have computed the optimal

allocation correctly.

Lemma VII.23. The regret due to randomization before settling to the optimal allo-

cation is bounded by

(OB + CP)M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

β,

where OB as given in Lemma VII.17 is the worst case expected hitting time of the

optimal allocation given all agents know the optimal allocation, β =
∑∞

t=1 1/t2, and

CP = maxk∈K CPk where CP is a constant that depends on the transition probability

matrix P .

Proof. Again, a good exploitation block refers to an exploitation block in which all

agents compute the optimal allocation correctly, whereas a bad exploitation block is

one in which there exists at least one agent who computes the optimal allocation

190

incorrectly. By converting the problem into a simple balls in bins problem where the

balls are agents and the bins are resources, the expected number of time slots spent

before settling to the optimal allocation in a good exploitation block is bounded above

by OB. The worst case is when each bad block is followed by a good block, and the

number of bad blocks is bounded by Lemma VII.22. Moreover, due to the transient

effect that a resource may not be at its stationary distribution when it is selected,

even after settling to the optimal allocation in an exploitation block, the regret of

at most CP can be accrued by an agent. This is because the difference between the

t-horizon expected reward of an irreducible, aperiodic Markov chain with an arbitrary

initial distribution and t times the expected reward at the stationary distribution is

bounded by CP independent of t. Since there are M agents and resource rewards are

in [0, 1], the result follows.

Combining all the results above we have the following theorem.

Theorem VII.24. Under the Markovian model, when each agent uses DLOE with

constant

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)ξmin)},

then at any time t > 0, the regret defined in (7.4) is upper bounded by

(
MN ′cL+ 3M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

)
log(t)

+M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

(β(OB + CP) + 1) +MN ′,

and the regret defined in (7.5) is upper bounded by

(
MN ′cL+ 3M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

)
log(tl)

191

+M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

(β(OB + CP) + 1) +MN ′

+ CcmpM

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
,

where OB as given in Lemma VII.17 is the worst case expected hitting time of the

optimal allocation given all agents know the optimal allocation, β =
∑∞

t=1 1/t2, and

CP = maxk∈K CPk where CP is a constant that depends on the transition probability

matrix P .

Proof. The result follows from summing the regret terms from Lemmas VII.13, VII.21,

VII.23 and VII.14, and the fact that a = 2, b = 4.

To summarize this section, our results show that when initial synchronization

between agents is possible, logarithmic regret, which is the optimal order of regret

even in the centralized case for the IID reward model (see, e.g., Anantharam et al.

(1987a)) can be achieved in a decentralized setting. Moreover, the proposed algorithm

does not need to know whether the rewards are IID or Markovian; the logarithmic

regret holds in both cases.

7.5 Achievable Performance with Costly Communication

In this section we consider the model where the resource rewards are agent-specific.

Different from the previous section, where an agent can compute the optimal alloca-

tion based only on its own estimates, with agent-specific resource rewards each agent

needs to know the estimated rewards of other agents in order to compute the opti-

mal allocation. We assume that agents can communicate with each other, but this

communication incurs a cost Ccom. For example, in an opportunistic spectrum access

model, agents are transmitter-receiver pairs that can communicate with each other on

one of the available channels, even when no common control channel exists. In order

192

for communication to take place, each agent can broadcast a request for communica-

tion over all available channels. For instance, if agents are using an algorithm based

on deterministic sequencing of exploration and exploitation, then at the beginning,

an agent can announce the parameters that are used to determine the block lengths.

This way, the agents can decide on which exploration and exploitation sequences to

use, so that all of them can start an exploration block or an exploitation block at

the same time. After this initial communication, just before an exploitation block,

agents share their perceived resource qualities with each other, and one of the agents,

which can be chosen in a round robin fashion, computes the optimal allocation and

announces to each agent the resource it should select in the optimal allocation.

7.5.1 Distributed Learning with Communication

In this subsection, we propose the algorithm distributed learning with commu-

nication (DLC) for this model. Similar to DLOE, DLC (see Figure 7.4) consists

of exploration and exploitation blocks with geometrically increasing lengths. The

predetermined exploration order allows each agent to observe the reward from each

resource-activity pair, and update its sample mean estimate. Note that in this case,

since feedback about ntk is not needed, each agent should be given the number of

agents using the same resource with it for each resource in the predetermined explo-

ration order. Similar to the previous section, this predetermined exploration order can

be seen as an input to the algorithm from the algorithm designer. On the other hand,

since communication between the agents is possible, the predetermined exploration

order can be determined by an agent and then communicated to the other agents,

or agents may collectively reach to an agreement over a predetermined exploration

order by initial communication. In both cases, the initial communication will incur a

constant cost C > 0, which we neglect in our analysis.

Let Ni be the exploration sequence of agent i, which is defined the same way as in

193

Section 7.4, and Li(z) be the number of agents using the same resource with agent i

in the zth slot of an exploration block. Based on the initialization methods discussed

above both Ni and Li are known by agent i at the beginning. At the beginning of

the lth exploitation block, all agents send their updated sample mean estimates of

resource rewards to agent i = (l mod M) + 1. Then agent i computes an optimal

allocation based on the estimated rewards, and announces to each agent the resource

it is going to use during the exploitation block. This round robin fashion fairly

distributes the computational burden over the agents. Note that, if the agent who

computed the optimal allocation announces the resources assigned to other agents

as well, then rewards from the exploitation blocks can also be used to update the

resource-activity pair reward estimates.

7.5.2 Analysis of the regret of DLC

In this section we bound the regret terms which are same for both IID and Marko-

vian resource rewards.

Lemma VII.25. For any t > 0, regret of DLC due to explorations by time t is at

most

MN ′(cL log t+ 1).

Proof. Since DLC uses deterministic sequencing of exploration and exploitation the

same way as DLOE, the proof is same as the proof of Lemma VII.13 by using the

bound (7.23) for TO(t).

Since communication takes place at the beginning of each exploitation block, it

can be computed the same way as computation cost is computed for DLOE. Moreover,

since resource switching is only done during exploration blocks or at the beginning of

a new exploitation block, switching costs can also be computed the same way. The

194

Distributed Learning with Communication (DLC) for agent i

1: Input: Exploration sequence Ni and Li, a, b, c ∈ {2, 3, . . .}.
2: Initialize: t = 1, lO = 0, lI = 0, η = 1, N i

O = 0, F = 2, z = 1, len = 2, µ̂ik,n = 0, N i
k,n = 0,

∀k ∈ K, n ∈ {1, 2, . . . ,M}.
3: while t ≥ 1 do
4: if F = 1 //Exploitation block then
5: Select resource αi(t) = α∗i .
6: Receive reward riαi(t)(t)

7: if η = len then
8: F = 0
9: end if

10: else if F = 2 //Exploration block then
11: Select resource αi(t) = N ′i (z)
12: Receive reward riαi(t)(t)

13: + +N i
αi(t),Li(z), µ̂iαi(t),Li(z) =

(Niαi(t),Li(z)
−1)µ̂iαi(t),Li(z))+r

i
αi(t)

(t)

Ni
αi(t),Li(z)

.

14: if η = len then
15: η = 0, + + z
16: end if
17: if z = |Ni|+ 1 then
18: N i

O = N i
O + len

19: F = 0
20: end if
21: end if
22: if F = 0 then
23: if N i

O ≥ L log t then
24: //Start an exploitation epoch
25: F = 1, + + lI , η = 0, len = a× blI−1
26: //Communicate estimated resource qualities µ̂ik,n, k ∈ K, n ∈M with other

agents.
27: if (lI mod M) + 1 = i then
28: //Compute the estimated optimal allocation, and sent each other agent the

resource it should use in the exploitation block.

29: α∗ = arg maxα∈KM
∑M
i=1 µ̂

i
αi,nαi (α)

30: else
31: //Receive the resource that will be selected, i.e., α∗i , in the exploitation block

from agent (lI mod M) + 1.
32: end if
33: else if N i

O < L log t then
34: //Start an exploration epoch
35: F = 2, + + lO, η = 0, len = clO−1, z = 1
36: end if
37: end if
38: + + η, + + t
39: end while

Figure 7.4: pseudocode of DLC

following lemma bounds the communication, computation and switching cost of DLC.

Lemma VII.26. When agents use DLC, at any time t > 0, the regret terms due to

195

communication, computation and switching are upper bounded by

CcomM

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
+ Ci,

CcmpM

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
,

CswcM

((
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
+N ′(cL log t+ 1)

)
,

respectively, where C is the cost of initial communication.

Proof. Communication is done initially and at the beginning of exploitation blocks.

Computation is only performed at the beginning of exploitation blocks. Switching is

only done at exploration blocks or at the beginning of exploitation blocks. Number

of exploitation blocks is bounded by (7.24), and time slots in exploration blocks is

bounded by (7.23).

In the next subsections we analyze the parts of regret that are different for i.i.d.

and Markovian rewards.

7.5.3 Regret Analysis for IID Resources

In this subsection we analyze the regret of DLC in the IID resource model. The

analysis is similar with the agent independent, general symmetric interaction reward

model given in Section 7.4.

Lemma VII.27. For the IID resource model, when each agent uses DLC with con-

stant L ≥ 1/ε2, regret due to incorrect calculations of the optimal allocation by time

t is at most

M3K(b− 1)(log(t) + 1) +M3K(a− (b− 1)N ′)+β,

where (a− (b− 1)N ′)+ = max{0, (a− (b− 1)N ′)} and β =
∑∞

t=1 1/t2.

196

Proof. Let H(tl) be the event that at the beginning of the lth exploitation block, the

estimated optimal allocation calculated by agent (l mod M) + 1 is different from the

true optimal allocation. Let ω be a sample path of the stochastic process generated

by the learning algorithm and the stochastic arm rewards. The event that agent (l

mod M) + 1 computes the optimal allocation incorrectly is a subset of the event

{|µ̂ik,n(N i
k,n(tl))− µik,n| ≥ ε for some i, n ∈M, k ∈ K}.

Analysis follows from using a union bound, taking the expectation, and then using a

Chernoff-Hoeffding bound. Basically, it follows from (7.25) in Lemma VII.15.

Combining all the results above we have the following theorem.

Theorem VII.28. If all agents use DLC with L ≥ 1/ε2, the regret by time t > 0 is

upper bounded by

MN ′(cL log t+ 1)(1 + Cswc)

+ (Ccom + Ccmp + Cswc)M

(
logb

(
b− 1

a
(t−N ′) + 1

)
+ 1

)
+ Ci

+M3K(b− 1)(log(t) + 1) +M3K(a− (b− 1)N ′)+β,

where (a− (b− 1)N ′)+ = max{0, (a− (b− 1)N ′)} and β =
∑∞

t=1 1/t2.

Proof. The result follows from combining the results of Lemmas VII.25, VII.26 and

VII.27.

7.5.4 Regret Analysis for Markovian Resources

We next analyze the regret of DLC for Markovian resources. The analysis in this

section is similar to the ones in Section 7.5.4. We assume that DLC is run with

parameters a = 2, b = 4, c = 4.

197

Lemma VII.29. Under the Markovian model, when each agent uses DLC with con-

stant

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)υmin)},

the regret due to incorrect calculations of the optimal allocation by time t is at most

3M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

(log t+ 1).

Proof. The proof follows the proof of Lemma VII.21.

Combining all the results above we have the following theorem.

Theorem VII.30. Under the Markovian model, when each agent uses DLC with

constant

L ≥ max{1/ε2, 50S2
maxr

2
Σ,max/((3− 2

√
2)υmin)},

the regret by time t is upper bounded by

MN ′(4L log t+ 1)(1 + Cswc)

+ (Ccom + Ccmp + Cswc)M

(
log4

(
3

2
(t−N ′) + 1

)
+ 1

)
+ Ci

+ 3M3K

(
1

log 2
+

√
2L

10rΣ,min

)
Smax

πmin

(log t+ 1),

where CP = maxk∈K CPk where CP is the constant that depends on the transition

probability matrix P .

Proof. The result follows from combining results of Lemmas VII.25, VII.26, and

VII.29, and the fact that a = 2, b = 4, c = 4. Note that due to the transient

effect that a resource may not be at its stationary distribution when it is selected,

198

even when all agents select resources according to the optimal allocation, a deviation

of at most CP from the expected total reward of the optimal allocation is possible.

Therefore, at most CP regret results from the transient effects in exploitation blocks

where the optimal allocation is calculated correctly. The last term in the regret is a

result of this.

7.6 Discussion

In this section we discuss several aspects of the problems studied in this chapter,

and discuss extensions and relaxations of assumptions we made.

7.6.1 Strategic Considerations

We have showed that in the case of Exp3 and a completely decentralized system,

this natural learning process converges to a PNE of a congestion game. This result

depicts the similarities between natural learning and better response updates in a

congestion game. While both converge to a PNE, the updates of an agent under

Exp3 does not explicitly depend on the actions of the other agents. In Auer et al.

(2003) it was shown that Exp3 has regret O(
√
T) with respect to the best single-

action strategy, under the worst-case distribution of the rewards. It is reasonable for

an agent to optimize over the worst-case distribution of the rewards when it does not

know the number or behavior of other agents in the system, and the distribution of

the rewards of the resources. Therefore, even when the agents are strategic, if their

goal is to have a high expected reward in the worst-case, they may wish to follow an

algorithm with guaranteed worst-case performance (Exp3 in our model) rather than

behaving strategically in the classical game-theoretic sense. This argument justifies

modeling the agents as non-strategic, even though their goal is self-interest, when

faced with uncertainty about the system dynamics.

199

When partial feedback exists, it is possible for an agent to manipulate the actions

of the other agents for its own gain. As an example of strategic behavior, an agent may

always choose a resource that it has learned to yield a high single-occupancy reward,

to prevent other agents from learning the single-occupancy quality of that resource.

This may help the agent avoid competing with the others for that resource. Such

strategic interactions can yield complex behavior, and the unknown dynamics of the

resources make it even harder to analyze. Therefore, for the partial feedback model

we studied, we considered cooperative agents whose joint goal is to maximize the

sum of the total rewards of all agents in a distributed way. Our future work involves

considering the strategic version of this problem. Designing a distributed learning

algorithm for strategic agents with provable performance guarantee with respect to

the optimal allocation in the cooperative setting remains an open problem.

7.6.2 Multiple Optimal Allocations

Under both the partial feedback and partial feedback with synchronization models,

if there are multiple optimal allocations, even if all agents correctly find an optimal

allocation, they may not choose the same optimal allocation since they cannot com-

municate with each other. To avoid this problem, we adopted Assumption VII.3,

which guarantees the uniqueness of the optimal allocation (in terms of the number

of agents using each resource). We now describe a modification on DLOE so this

assumption is no longer required. A similar modification will also work for RLOF.

We introduce the following subsidy scheme for DLOE. Agent i keeps a subsidy

number for each allocation in N . Let δ > 0 be the amount of subsidy. An allocation

n ∈ N is subsidized by an amount δ by agent i, if agent i adds δ to the estimated

value of n. Similarly, n is penalized by an amount δ by agent i, if agent i subtracts

δ from the estimated value of n. Let di = (din)n∈N be the subsidy vector of agent i,

where din = 1 means that i subsidizes n, and din = −1 means i penalizes n. DLOE

200

is initialized such that din = 1 for all n ∈ N . Let

v̂is(n) =
K∑
k=1

nkµ̂
i
k,nk

+ δdin,

be the estimated subsidized reward of n for agent i. At the beginning of each

exploitation block, agent i computes v̂is(n) based on its sample mean estimates of

resource-activity pair rewards and the subsidy vector. Agent i keeps an ordered list

σi = (σi1, . . . , σ
i
|N |) of allocations in N such that v̂is(nσij) ≥ v̂is(nσil) for j < l. The

subsidized estimated optimal allocation is given by

v̂is(nσi1) ∈ arg max
n∈N

v̂is(n). (7.32)

If there is more than one maximizer of (7.32), then agent i randomly places one

of them to the first place in its list. At each time step t in an exploitation block,

agent i selects a resource which is used by at least one agent in the first allocation

in its list. The subsidy vector and list of agent i dynamically changes during an

exploitation block in the following way. If agent i observed that the number of agents

is less than or equal to the number of agents under the subsidized estimated optimal

allocation for that resource at time t, then it sets din
σi1

= 1 so the list does not change

(the estimated value of the first allocation in the list does not decrease). Otherwise,

agent i sets din
σi1

= −1 and recomputes v̂is(nσi1). Based on the new value, it reorders

the allocations in the list. Note that it keeps selecting the same resource unless the

subsidy number for the allocation which is at the first place in its list changes from 1

to −1.

Let ε := ∆min/(2M), where ∆min is the minimum suboptimality gap given in

(7.1). Assume that each agent runs modified DLOE with subsidy value δ = ε/3, and

exploration constant L ≥ 36/ε2. Let Hε(l) be the event that at the beginning of the

lth exploitation block there exists some agent i for which |v̂i(n) − v(n)| ≥ ε/6 for

201

some n ∈ N . By Lemma VII.16, the expected number of exploitation blocks in which

event Hε(l) happens is at most M2Kβ.

We consider exploitation blocks l in which Hε(l) does not happen. We call such

an exploitation block a good exploitation block. This means that |v̂i(n)−v(n)| < ε/6

for all n ∈ N . In these blocks, for any agent i even if all optimal allocations in

N ∗ are penalized by ε/3, a suboptimal allocation which is subsidized by ε/3 cannot

have a larger estimated subsidized value than an optimal allocation. Therefore, in

all time steps in these blocks, each agent selects a resource according to one of the

optimal allocations. Next, we will show that the agents will settle to an optimal

allocation in finite expected time in these blocks. Since when Hε(l) does not happen,

the estimated optimal allocation of an agent is always one of the allocations in N ∗, we

are only interested in the components of the subsidy vector of agent i corresponding

to one of these allocations. Let D = {d = (d1
n)n∈N , . . . , (d

M
n)n∈N : din ∈ {−1, 1}}.

We call d the reduced subsidy vector. Let As(d) ⊂ A be the set of allocations that

can occur when the reduced subsidy vector is d.

Consider the Markov chain whose states are d × α , where d ∈ D and α ∈

As(d). Define the state transition probabilities of this Markov chain according to the

randomization rule in the modified DLOE. It can be seen that this Markov chain is

finite state and irreducible. Consider the set of states for which d is such that din′ = 1

for some n′ ∈ N ∗, and din = −1 for n ∈ N ∗ − {n′}, for all i ∈ M. These are the

set of states in which all agents subsidize the same optimal allocation n′, while any

other optimal allocation is penalized by all agents. Since |v̂i(n)− v(n)| < ε/6 for all

n ∈ N , the estimated optimal subsidized allocation is n′ for all agents. Therefore,

there is a positive probability of settling to the optimal allocation for such a d. The

state d×α in which α induces the allocation n′ in terms of number of agents on each

resource is an absorbing state. Note that there are at least |N ∗| absorbing states,

in which the same optimal allocation is the only subsidized optimal allocation by all

202

agents.

Therefore, the expected time to settle to an optimal allocation in a good exploita-

tion block is bounded above by the expected hitting time of any absorbing state of

this Markov chain, which is finite. Doing a worst-case analysis similar to Lemma

VII.18, we can show that the regret due to randomization before settling to an opti-

mal allocation is bounded by a finite term which is independent of the time horizon

T .

7.6.3 Unknown Suboptimality Gap

Algorithms DLOE and DLC requires that the agents know a lower bound ε on

the difference between the estimated and true mean resource rewards for which the

estimated and true optimal allocations coincide. Knowing this lower bound, these

algorithms choose an exploration constant L ≥ 1/ε2 so that N ′L log t time steps spent

in exploration is sufficient to result in resource-activity pair reward estimates that are

within ε of the true ones with a very high probability.

However, ε depends on the suboptimality gap ∆min which is a function of the true

mean resource rewards unknown to the agents at the beginning. This problem can

be solved in the following way for both DLOE and DLC. Here we explain it only

for DLOE and leave the explanation for DLC since it is similar. Instead of using

the exploration constant L, DLOE uses an increasing exploration function L(t) such

that L(1) = 1 and L(t) → ∞ as t → ∞. In doing so, the requirement L(t) ≥ 1/ε2

is satisfied after some finite number of time steps which we denote by T0. In the

worst case, an amount MT0 in regret will come from these time steps where L(t) <

1/ε2. After T0, only a finite amount of (time-independent) regret will result from

incorrect calculations of the optimal allocation due to the inaccuracy in estimates.

Since DLOE explores only if the least explored resource-activity pair is explored less

than L(t) log t times, regret due to explorations will be bounded by MN ′L(t) log t.

203

Since the order of explorations with L(t) is greater than with constant L, the order

of exploitations is less than the case with constant L. Therefore, the order of regret

due to incorrect calculations of the optimal allocation and communication at the

beginning of exploitation blocks after T0 is less than the corresponding regret terms

when L is constant. Thus, instead of having O(log t) regret, without a lower bound

on ε, the proposed modification achieves O(L(t) log t) regret.

204

CHAPTER VIII

An Online Contract Selection Problem as a Bandit

Problem

In this chapter we study an online contract selection problem, and propose learning

algorithms with sublinear regret. In an online contract selection problem there is a

seller who offers a bundle of contracts to buyers arriving sequentially over time. The

goal of the seller is to maximize its total expected profit up to the final time T , by

learning the best bundle of contracts to offer. However, the seller does not know the

best bundle of contracts beforehand because initially it does not know the preferences

of the buyers.

Assuming that the buyers’ preferences change stochastically over time, our goal

in this chapter is to design learning algorithms for the seller to maximize its expected

profit. Specifically, we assume that the preferences of a buyer depends on its type, and

is given by a payoff function depending on the type of the buyer. The type of the buyer

at time step t is drawn from a distribution not known by the seller, independently

from the other time steps. Obviously, the best bundle of contracts (which maximizes

the sellers expected profit) depends on the distribution of the buyers’ type and the

preferences of the buyers.

We assume that the seller can choose what to offer from a continuum of contracts,

but it should choose a finite number of contracts to offer simultaneously. We show

205

that if the buyers’ payoff function has a special property which we call the ordered

preferences property, then there exists learning algorithms for the seller by which the

seller can estimate the type distribution of the buyers by offering a set of contracts,

and observing which contract is accepted by the buyer. Then, the seller can com-

pute the expected payoff of different bundles of contracts using the estimated type

distribution.

The online contract selection problem can be viewed as a combinatorial multi-

armed bandit problem, where each arm is a vector (bundle) of contracts, and each

component of the vector can be chosen from an interval of the real line. Two aspects

that make this problem harder than the classical finite-armed bandit problem that

we studied in the rest of the thesis are: (i) uncountable number of contracts; (ii)

exponential number of arms in the number of contracts. We can overcome (i) by

offering bundles of sufficiently closely spaced contracts to form an estimate of the

distribution of buyer’s type, and (ii) by writing the expected payoff of an arm as

a function of the expected payoffs of the contracts in that arm. Different from the

previous chapters of the thesis, it is not possible to achieve logarithmic regret over

time, when the arm set is uncountable. However, any algorithm with sublinear regret

has the nice property that the time averaged expected reward will converge to the

optimal expected reward. With this motivation, in this chapter we prove sublinear

regret bounds for the contract selection problem. Our bounds scale linearly with

the dimension of the problem, i.e., the number of simultaneously offered contracts,

which is better than most of the exponentially scaling bounds in the literature for

bandit problems with uncountable number of arms. This improvement is due to the

dependence of sellers payoff to the single dimensional type distribution of the buyer.

The online learning problem we consider in this chapter involves large strategy

sets, combinatorial and contextual elements. Problems with continuum of arms are

considered in Agrawal (1995b); Kleinberg (2004); Cope (2009); Auer et al. (2007),

206

where sublinear regret results are derived. Several combinatorial bandit problems are

studied in Gai et al. (2012a,b), and problems involving stochastic linear optimization

are considered in Bartlett et al. (2008); Dani et al. (2008). Another line of work

Kleinberg et al. (2008) generalized the continuum armed bandits to bandits on metric

spaces. In this setting, the difference between the expected payoffs of a pair of arms is

related to the distance between the arms via a similarity metric. Contextual bandits,

in which context information is provided to the algorithm at each round is studied in

Langford and Zhang (2007); Slivkins (2009). The goal there is to learn the best arm,

given the context.

The organization of the rest of this chapter is as follows. In Section 8.1, we define

the online contract selection problem, the ordered preferences property, and provide

two applications of the problem. We propose a contract learning algorithm with

variable number of simultaneous offers at each time step in Section 8.2, and analyze

its performance in Section 8.3. Then, we consider a variant of this algorithm with

fixed number of offers in Section 8.4. Finally, we discuss the similarities and the

differences between our work and the related work in Section 8.5.

8.1 Problem Formulation and Preliminaries

In an online contract selection problem there is a seller who offers a bundle of

m ∈ {1, 2, . . .} contracts x ∈ Xm, where

Xm := {(x1, x2, . . . , xm), such that xi ∈ (0, 1], ∀i ∈ {1, 2, . . . ,m}, xi ≤ xi+1} ,

to buyers arriving sequentially at time steps t = 1, 2, . . . , T , where T is the time

horizon. Let x(t) be the bundle offered by the seller at time t. The buyer can accept

a single contract y ∈ x(t) and pay y to the seller, or it can reject all of the offered

207

contracts and pay 0 to the seller. Profit of the seller by time T is

T∑
t=1

(us(t)− cs(t)),

where us(t) represents the revenue/payoff of the seller at time t and cs(t) is any cost

associated with offering the contracts at time t. We have us(t) = x if contract x is

accepted by the buyer at time t, us(t) = 0 if none of the offered contracts at time t is

accepted by the buyer at time t.

The buyer who arrives at time t has type θt which encodes its preferences into a

payoff function. At each time step, the type of the buyer present at that time step is

drawn according to the probability density function f(θ) on [0, 1] independently from

the other time steps. We assume that buyer’s type density is bounded, i.e.

fmax := sup
θ∈[0,1]

f(θ) <∞.

Neither θt nor f(θ) is known by the seller at any time. Therefore, in order maximize

its profit, the seller should learn the best set of contracts over time. The expected

profit of the seller over time horizon T is given by

E

[
T∑
t=1

us(t)− cs(t)

]
,

where the expectation is taken with respect to buyer’s type distribution f(θ) and

the seller’s offering strategy. Our goal in this chapter is to develop online learning

algorithms for the seller to maximize its expected profit over time horizon T .

Let UB(x, θ) : [0, 1] × [0, 1] → R represent the payoff function of type θ buyer,

which is a function of the contract accepted by the buyer. We assume that the seller

knows UB. For example, when the contracts represent data plans of wireless service

providers, the service provider can know the worth of a 2gb contract to a buyer who

208

only needs 1gb a month. For instance, the amount of payment for the 2gb contract

that exceeds the payment for a 1gb can represent the loss of the buyer. Similarly,

a 500mb contract to a buyer who needs 1gb a month can have a cost equal to the

500mb shortage in data. Of course there should be a way to relate the monetary

loss with the data loss, which can be captured by coefficients multiplying these two.

These coefficients can also be known by the seller by analyzing previous consumer

data.

Based on its payoff function, the buyer either selects a contract from the offered

bundle or it may reject all of the contracts in the bundle. If x = (x1, x2, . . . , xm) is

offered to a type θ buyer it will accept a contract randomly from the set

arg max
x∈{0,x1,...,xm}

UB(x, θ),

where x = 0 implies that the buyer does not accept any of the offered contracts. Since

the seller knows the buyer’s payoff function UB(x, θ), for a given bundle of contracts

x = (x1, x2, . . . , xm), it can compute which contracts will be accepted as a function of

the buyer’s type. For y ∈ x, let Iy(x) be the acceptance region of contract y, which

is the values of θ for which contact y will be accepted from the bundle x. We assume

that the buyers payoff function induces ordered preferences, which means that for a

bundle of contracts (x1, . . . , xm), the values of θ for which xi is accepted only depends

on xi−1, xi and xi+1, and

Ixi−1
(x) < Ixi(x) < Ixi+1

(x),

for all i ∈ {1, 2, . . . ,m− 1}, which means that the acceptance regions are ordered.

Assumption VIII.1. Ordered Preferences. UB(x, θ) induces ordered preferences

which means that for any x ∈ X , Ixi(x) = (g(xi−1, xi), g(xi, xi+1)]. The function g is

such that g(x, y) < g(y, z) for x < y < z, and g is Hölder continuous with constant L

209

and exponent α, i.e.,

|g(x1, x2)− g(y1, y2)| ≤ L
√

(|x1 − y1|2 + |x2 − y2|2)
α
.

Although the assumption on UB(x, θ) is implicit, it is satisfied by many common

payoff functions. Below we provide several examples. For notational convenience for

any bundle of contracts (x1, x2, . . . , xm), let x0 = 0, xm+1 = 1 and g(xm, 1) = 1.

Example VIII.2. Wireless Data Plan Contract. In this case payoff function for

the buyers is given by

UB(x, θ) = h(a(x− θ)+ + b(θ − x)+),

where

(x− y)+ = max{0, x− y},

and h : R+ → R is a decreasing function. For data plan contracts, (x−θ)+ corresponds

to loss in accepting a contract which offers data less than the demand, while (θ−x)+

corresponds to loss in accepting a contract which offers data more than the demand

but have a higher price than the price of the demanded data service. The coefficients

a and b relate the buyers weighting of these losses. For this payoff function, the

accepted contract from any bundle (x1, x2, . . . , xm) of contracts is given as a function

of the buyer’s type in Figure 8.1. It is easy to check that the boundaries of the

acceptance regions are

g(xi−1, xi) =
bxi−1 + axi

a+ b
, ∀i = 1, 2, . . . ,m.

210

Figure 8.1: acceptance region of bundle (x1, . . . , xm) for UB(x, θ) = h(a(x − θ)+ +
b(θ − x)+)

Since

|g(x1, x2)− g(y1, y2)| =
∣∣∣∣b(x1 − y1)

a+ b
+
a(x2 − y2)

a+ b

∣∣∣∣
≤ max{|x1 − y1|, |x2 − y2|}

≤
√
|x1 − y1|2 + |x2 − y2|2,

Assumption VIII.1 holds for this buyer payoff function with L = 1 and α = 1.

Example VIII.3. Secondary Spectrum Contract. Consider a secondary spec-

trum market, where the service provider leases excess spectrum to secondary users.

For simplicity, assume that the service provider always have a unit bandwidth avail-

able. In general, due to the primary user activity the bandwidth available for leasing

at time t is Bt ∈ [0, 1], however, all our results in this chapter will hold for dynam-

ically changing available bandwidth, provided that the seller pays a penalty to the

buyers for any bandwidth it offers but cannot guarantee to a buyer. By this way, the

seller can still learn the buyer’s type distribution by offering a bundle of contracts x

for which there is some xi > Bt. The buyer’s payoff function in this case is

UB(x, θ) = −a(θ − x)+ − x,

where x is the amount of money that the buyer pays to the seller by accepting

contract x and a > 1 is a coefficient that relates the tradeoff between the loss in

data and monetary loss. For this payoff function it can be shown that the acceptance

211

Figure 8.2: acceptance region of bundle (x1, . . . , xm) for UB(x, θ) = −a(θ − x)+ − x

region boundaries are

g(xi−1, xi) =
(a− 1)xi−1 + xi

a
, ∀i = 1, 2, . . . ,m,

and Assumption VIII.1 holds with L = 1, α = 1.

By Assumption VIII.1, the expected payoff of a bundle of contracts x ∈ Xm to

the seller is

Us(x) = x1P (g(0, x1) < θ ≤ g(x1, x2)) + x2P (g(x1, x2) < θ ≤ g(x2, x3))

+ . . .+ xmP (g(xm−1, xm) < θ).

Note that the seller’s problem would be solved if it knew f(θ), since it could

compute the best bundle of m contracts, i.e.,

arg max
x∈Xm

Us(x). (8.1)

Remark VIII.4. We do not require that the maximizer of (8.1) is a bundle of m

distinct contracts. Note that by definition of the set Xm, the maximizer of (8.1) may

be a bundle (x1, . . . , xm) for which xi = xi+1 for some i ∈ {1, 2, . . . ,m − 1}. This

is equivalent to offering m − 1 contracts (x1, . . . , xi−1, xi, xi+2, . . . , xm). Indeed, our

results hold when the seller’s goal is to learn the best bundle of contracts that have

at most m contracts in it.

The key idea behind the learning algorithms we design for the seller in the sub-

212

sequent sections is to form estimates of the buyer’s distribution by offering different

sets of contracts. Each algorithm consists of exploration and exploitation phases.

Although we stated that the seller offers m contracts at each time step, in our first

algorithm m will vary over time, so we denote it by m(t). In our second algorithm m

will be fixed throughout the time horizon T .

We also assume that there is a cost of offering m contracts at the same time which

is given by c(m), which increases with m. The sellers objective of maximizing the

profit over time horizon T is equivalent to minimizing the regret which is given by

Rα(T) = T (Us(x
∗)− c(m))− Eα

[
T∑
t=1

r(x(t))− c(m(t))

]
, (8.2)

where

x∗ ∈ arg max
x∈Xm

Us(x), (8.3)

is the optimal set of m contracts, r(x(t)) is the payoff of the seller from the bundle

offered at time t, and α is the learning algorithm used by the seller. We will drop the

superscript α when the algorithm used by the seller is clear from the context. Note

that for any algorithm with sublinear regret, the time averaged expected profit will

converge to Us(x
∗)− c(m).

8.2 A Learning Algorithm with Variable Number of Offers

In this section we present a learning algorithm which has distinct exploration and

exploitation steps. The algorithm is called type learning with variable number of offers

(TLVO), whose pseudocode is given in Figure 8.3.

Instead of searching for the best bundle of contracts in Xm which is uncountable,

213

the algorithm searches for the best bundle of contracts in the finite set

Lm,T := {x = (x1, . . . xm) : xi ≤ xi+1 and xi ∈ KT ,∀i ∈ {1, . . . ,m}} ,

where

KT :=

{
1

nT
,

2

nT
, . . . ,

nT − 1

nT

}
.

Here nT is a non-decreasing function of the time horizon T . Since the best bundle

in Lm,T might have an expected reward smaller than the expected reward of the best

bundle in Xm, in order to bound the regret due to this difference sublinearly over

time, nT should be adjusted according to the time horizon.

Type Learning with Variable Number of Offers (TLVO)

1: Parameters: m, T , z(t), 1 ≤ t ≤ T , nT , KT , Lm,T .
2: Initialize: set t = 1, N = 0, µi = 0, Ni = 0,∀i ∈ KT .
3: while t ≥ 1 do
4: if N < z(t) then
5: EXPLORE
6: Offer all contracts in KT simultaneously.
7: if Any contract x ∈ KT is accepted by the buyer then
8: Get reward x. Find k ∈ {1, 2, . . . , nT − 1} such that k/nT = x.
9: + +Nk.

10: end if
11: + +N .
12: else
13: EXPLOIT
14: µi = Ni/N,∀i ∈ {1, 2, . . . , nT − 1}.
15: Offer bundle x = (x1, . . . , xm), which is a solution to (8.4) based on

µi’s.
16: If some x ∈ x is accepted, get reward x.
17: end if
18: + + t.
19: end while

Figure 8.3: pseudocode of TLVO

214

Exploration and exploitation steps are sequenced in a deterministic way. This

sequencing is provided by a control function z(t) which is a parameter of the learning

algorithm. Let N(t) be the number of explorations up to time t. If N(t) < z(t),

time t will be an exploration step. Otherwise time t will be an exploitation step.

While z(t) can be any sublinearly increasing function, we will optimize over z(t) in

our analysis.

In an exploration step, TLVO estimates the distribution of buyer’s type by simul-

taneously offering the (possibly large) set of nT −1 uniformly spaced contracts in KT .

Based on the accepted contract at time t, the seller learns the part of the type space

that the buyers type at t lies in, and uses this to form sample mean estimates of the

distribution of the buyer’s type. We simply call the contract i/nT ∈ KT as the ith

contract. Let θ be the unknown type of the buyer at some exploration step. If ith

contract is accepted by the buyer, then the seller knows that

g

(
i− 1

nT
,
i

nT

)
< θ ≤ g

(
i

nT
,
i+ 1

nT

)
.

Let Ni(t) be the number of times contract i is accepted in an exploration step up to

t. Then the sample mean estimate of

P

(
g

(
i− 1

nT
,
i

nT

)
< θ ≤ g

(
i

nT
,
i+ 1

nT

))
,

is given by

µi(t) :=
Ni(t)

N(t)
.

In an exploitation step, TLVO offers a bundle of m contracts chosen from Lm,T ,

which maximizes the seller’s estimated expected payoff. For constants θl and θu, let

P̂t(θl < θ ≤ θu) be the estimate of P (θl < θ ≤ θu) at time t. TLVO computes this

215

estimate based on the estimates µi(t) in the following way:

P̂t(θl < θ ≤ θu) =

i+(θu)∑
i=i−(θl)

µi(t),

where

i−(θl) = min

{
i ∈ {1, . . . , nT − 1} such that g

(
i− 1

nT
,
i

nT

)
≥ θl

}
,

and

i+(θu) = min

{
i ∈ {1, . . . , nT − 1} such that g

(
i

nT
,
i+ 1

nT

)
≥ θu

}
.

We can write xi ∈ Lm,T as ki/nT for some ki ∈ {1, 2, . . . , nT − 1}. If time t is

an exploitation step, TLVO computes the estimated best bundle of contracts x(t) by

solving the following optimization problem.

x(t) = arg max
x∈Lm,T

Ût(x), (8.4)

where

Ût(x) := x1P̂t (g(0, x1) < θ ≤ g(x1, x2)) + x2P̂t (g(x1, x2) < θ ≤ g(x2, x3))

+ . . .+ xmP̂t (g(xm−1, xm) < θ) .

Note that there might be more than one maximizer to (8.4). In such a case, TLVO

arbitrarily chooses one of the maximizer bundles. Maximization in (8.4) is a com-

binatorial optimization problem. In general solution to such a problem is NP-hard.

We assume that the solution is provided to the algorithm by an oracle. This is a

common assumption in online learning literature, for example used in Dani et al.

216

(2008). Therefore, we do not consider the computational complexity of this opera-

tion. Although we do not provide a computationally efficient solution for (8.4), there

exists computationally efficient methods for some special cases. We discuss more on

this in Section 8.5.

We analyze the regret of TLVO in the next section.

8.3 Analysis of the Regret of TLVO

In this section we upper bound the regret of TLVO. Let

S = {x ∈ Lm,T : |Us(x∗)− Us(x)| < βn−αT },

be the set of near-optimal bundles of contracts where α is the Hölder exponent in

Assumption VIII.1, and β = 5mfmaxL2α/2 is a constant where L is the Hölder constant

in Assumption VIII.1. Denote the complement of S by Sc. Let Tx(t) be the number

of times x ∈ Lm,T is offered at exploitation steps by time t. For TLVO, regret given

in (8.2) is upper bounded by

R(T) ≤
∑
x∈S

(Us(x
∗)− Us(x))E [Tx(T)]

+
∑
x∈Sc

(Us(x
∗)− Us(x))E [Tx(T)]

+N(T)(Us(x
∗) + c(nT)− c(m)), (8.5)

by assuming zero worst-case payoff in exploration steps. First term in (8.5) is the

contribution of selecting a nearly optimal bundle of contracts in exploitation steps,

second term is the contribution of selecting a suboptimal bundle of contracts in the

exploitation steps, and the third term is the worst-case contribution during the ex-

ploration steps to the regret.

217

The following theorem gives an upper bound on the regret of TLVO.

Theorem VIII.5. The regret of the seller using TLVO with time horizon T is upper

bounded by

R(T) ≤ 5mfmaxL2α/2n−αT (T −N(T)) +N(T)(Us(x
∗) + c(nT)− c(m))

+ 2nT

T∑
t=1

e
−f2

maxL
22αN(t)

n2+2α
T .

Remark VIII.6. In this form, the regret is linear in nT and T . The first term in the

regret decreases with nT while the second and third terms increase with nT . Since T

is known by the seller, nT can be optimized as a function of T .

Proof. Let δ∗x = Us(x
∗)− Us(x). By definition of the set S, we have

∑
x∈S

δ∗xE[Tx(T)] ≤ max
x∈S

δ∗x
∑
x∈S

E[Tx(T)]

≤ βn−αT (T −N(T)). (8.6)

Next, we consider the term

∑
x∈Sc

(Us(x
∗)− Us(x))E [Tx(T)] .

Note that even if we bound E [Tx(T)] for all x ∈ Sc, in the worst case |Sc| = cnmT , for

some c > 0. Therefore a bound that depends on nmT will scale badly for large m. To

overcome this difficulty, we will show that if the distribution function has sufficiently

accurate sample mean estimates µi(t) for all

pi := P

(
g

(
i− 1

nT
,
i

nT

)
< θ ≤ g

(
i

nT
,
i+ 1

nT

))
, i ∈ {1, 2, . . . , nT − 1},

then the probability that some bundle in Sc is offered will be small. Let TSc(t) be the

218

number of times a bundle from Sc is offered in exploitation steps by time t. We have

∑
x∈Sc

(Us(x
∗)− Us(x))E [Tx(T)] ≤ E [TSc(T)] , (8.7)

where

E [TSc(T)] = E

[
T∑
t=1

I(x(t) ∈ Sc)

]
=

T∑
t=1

P (x(t) ∈ Sc). (8.8)

For convenience let x0 = 0, xm+1 = 1 and g(xm, xm + 1) = 1. For any xi ∈ x ∈ Lm,T ,

we can write

P (g(xi−1, xi) < θ ≤ g(xi, xi+1)) = P (g(xi−1, xi) < θ ≤ i−(g(xi−1, xi)))

+

i+(g(xi,xi+1))∑
i=i−(g(xi−1,xi))

pi − P (g(xi, xi+1) < θ ≤ i+(g(xi, xi+1))).

Let

errx(xi) = |P (g(xi−1, xi) < θ ≤ i−(g(xi−1, xi)))

−P (g(xi, xi+1) < θ ≤ i+(g(xi, xi+1))) |.

Since

(g(xi−1, xi), i−(g(xi−1, xi))] ⊂ (i−(g(xi−1, xi))− 1, i−(g(xi−1, xi))],

and

(g(xi, xi+1), i+(g(xi, xi+1))] ⊂ (i+(g(xi, xi+1))− 1, i+(g(xi, xi+1))],

219

by Assumption VIII.1, we have for any xi ∈ x ∈ Lm,T

errx(xi)

≤ max{P (g(xi−1, xi) < θ ≤ i−(g(xi−1, xi))), P (g(xi, xi+1) < θ ≤ i+(g(xi, xi+1)))}

≤ fmaxL2α/2n−αT . (8.9)

Consider the event

ξt =

nT−1⋂
i=1

{
|µi(t)− pi| ≤

(β −mfmaxL2α/2)n−αT
4nTm

}
.

If ξt happens, then for any 1 ≤ a < b ≤ nT − 1

∣∣∣∣∣
b∑
i=a

µi(t)−
b∑
i=a

pi(t)

∣∣∣∣∣ ≤ (b− a)
(β −mfmaxL2α/2)n−αT

4nTm

≤ (β −mfmaxL2α/2)n−αT
4m

,

which implies that for any x ∈ Lm,T

|Ût(x)− Us(x)| ≤ x1

i+(g(x1,x2))∑
i=i−(g(0,x1))

|µi(t)− pi|+ errx(xi) + . . .

+ xm

i+(g(xm,xm+1))∑
i=i−(g(xm−1,xm))

|µi(t)− pi|+ errx(xm)

≤
i+(g(x1,x2))∑
i=i−(g(0,x1))

|µi(t)− pi|+ errx(xi) + . . .

+

i+(g(xm,xm+1))∑
i=i−(g(xm−1,xm))

|µi(t)− pi|+ errx(xm)

≤ 2mfmaxL2α/2n−αT . (8.10)

220

Let y∗ = arg maxx∈Lm,T Us(x). By Assumption (VIII.1) we have

Us(x
∗)− Us(y∗) ≤ mfmaxL2α/2n−αT .

Then, using the definition of the set Sc, which denotes the set of suboptimal bundles

of contracts, for any x ∈ Sc, we have

Us(y
∗)− Us(x) > (β −mfmaxL2α/2)Ln−αT = 4mfmaxL2α/2n−αT .

Since by (8.10) the estimated payoff of any bundle x ∈ Lm,T is within 2mfmaxL2α/2n−αT

of its true value, the event ξt implies that for any x ∈ Sc

Ût(x) ≤ Ût(y
∗),

which means

ξt ⊂ {Ût(x) ≤ Ût(y
∗),∀x ∈ Sc},

and

{Ût(x) > Ût(y
∗) for some x ∈ Sc} ⊂ ξct .

Therefore

P (x(t) ∈ Sc) ≤ P

(
nT−1⋃
i=1

{|µi(t)− pi| >
(β −mfmaxL2α/2)n−αT

4nTm
}

)

≤
nT−1∑
i=1

P

(
|µi(t)− pi| >

(β −mfmaxL2α/2)n−αT
4nTm

)

≤ 2nT e
−f2

maxL
22αN(t)

n2+2α
T ,

221

by using the Chernoff-Hoeffding bound given in Lemma A.7. Using the last result in

(8.7), we get

∑
x∈Sc

(Us(x
∗)− Us(x))E [Tx(T)] ≤ 2nT

T∑
t=1

e
−f2

maxL
22αN(t)

n2+2α
T . (8.11)

We get the main result by substituting (8.6) and (8.11) into (8.5).

The following corollary gives a sublinear regret result for a special case of param-

eters.

Corollary VIII.7. When the cost of offering n contracts simultaneously, i.e., c(n) ≤

nγ, for all 0 < n < T , for some γ > 0, the regret of the seller that runs TLVO with

nT =

⌊
(fmaxL2α/2)

2
4+2α

(
T

log T

) 1
4+2α

⌋
,

z(t) =

(
1

fmaxL2α/2

) 2+6α
2+α

(
T

log T

) 2+2α
4+2α

log t,

where byc is the largest integer smaller than equal to y, is upper bounded by

R(T) ≤ 5m(fmaxL2α/2)
2

2+α (log T)
α

4+2αT
4+α
4+2α

+

(
1

fmaxL2α/2

) 2+6α
2+α

(log T)
2+γ
4+2αT

2+2α+γ
4+2α

+ 2(fmaxL2α/2)
1

2+α (log T + 1)(log T)
1

4+2αT
1

4+2α .

Hence

R(T) = O(mT (2+2α+γ)/(4+2α)(log T)2/(4+2α)),

which is sublinear in T for γ < 2.

222

Proof. We want

e
−f2

maxL
22αN(t)

n2+2α
T ≤ 1

t
.

For this,we should have

−f 2
maxL

22αN(t)

n2+2α
T

≤ − log t,

which implies

N(t) ≥ (nT)2+2α

f 2
maxL

22α
log t. (8.12)

Note that at each time t either N(t) ≥ z(t) or z(t)− 1 ≤ N(t) < z(t) so we chose

z(t) =
(nT)2+2α

f 2
maxL

22α
log t+ 1.

Note that z(t) in this form depends on nT which we have not fixed yet. To have

minimum regret, we need to balance the first and second terms of the regret given in

Theorem VIII.5. Thus T/nT ≈ N(T)nT . Since nT must be an integer, substituting

(8.12) into N(T), we have

nT =

⌊
(fmaxL2α/2)

2
4+2α

(
T

log T

) 1
4+2α

⌋
.

Proof is completed by substituting these into the result of Theorem VIII.5.

8.4 A Learning Algorithm with Fixed Number of Offers

One drawback of TLVO is that in exploration steps it simultaneously offers nT −1

contracts, and this number increases sublinearly with T . Usually, the seller will offer

223

different bundles of contracts but it will include same number of contracts in each

bundle. For example, a wireless service provider usually adds new data plans by

removing one of the current data plans, thus the total number of data plans offered

does not change significantly over time. In this section, we are interested in the case

when the seller is limited to offering m contracts at every time step.

In this case, the exploration step of TLVO will not work. Because of this, we pro-

pose the algorithm type learning with fixed number of offers (TLFO) that always offers

m contracts simultaneously. TLFO differs from TLVO only in its exploration phase.

Each exploration phase of TLFO lasts multiple time steps. Instead of simultaneously

offering nT−1 uniformly spaced contracts at an exploration step, TLFO has an explo-

ration phase of d(nT − 1)/(m− 2)e steps indexed by l = 1, 2, . . . , d(nT − 1)/(m− 2)e.

The idea behind TLFO is to estimate the buyer’s type distribution from the estimates

of the segments of the buyer’s type distribution over different time steps of the same

exploration phase. Let time t be the start of an exploration phase for TLFO. Let

l′ = d(nT −1)/(m−2)e denote the last step of the exploration phase. Next, we define

the following bundles of m contracts. The overlapping portions of these bundles are

shown in Figure 8.4 for l = 1, 2, . . . , l′.

B1 =

{
1

nT
,

2

nT
, . . . ,

m

nT

}
,

B̃1 =

{
1

nT
,

2

nT
, . . . ,

m− 1

nT

}
,

Bl′ =

{
nT −m
nT

,
nT −m+ 1

nT
, . . . ,

nT − 1

nT

}
,

B̃l′ =

{
(l′ − 1)m− 2(l′ − 1) + 2

nT
,
(l′ − 1)m− 2(l′ − 1) + 3

nT
, . . . ,

nT − 1

nT

}
,

and for l ∈ {2, . . . , l′ − 1}

Bl =

{
(l − 1)m− 2(l − 1) + 1

nT
,
(l − 1)m− 2(l − 1) + 2

nT
, . . . ,

lm− 2(l − 1)

nT

}
,

224

Figure 8.4: bundles of m contracts offered in exploration steps l = 1, 2, . . . , l′ in an
exploration phase

B̃l =

{
(l − 1)m− 2(l − 1) + 2

nT
,
(l − 1)m− 2(l − 1) + 3

nT
, . . . ,

lm− 2(l − 1)− 1

nT

}
.

Similar to TLVO let N and Nk, k ∈ {1, 2, . . . , nT − 1} be the counters that are

used to form type distribution estimates which are set to zero initially. Basically, at

an exploitation step the estimates µk = Nk/N are formed based on the current values

of Nk and N . Different from the analysis of TLVO, N(t) which is the value of counter

N at time t represents the number of completed exploration phases by time t, not

the number of exploration steps by time t. The condition N(t) < z(t) is checked at

the end of each exploration phase or exploitation step, and if the condition is true, a

new exploration phase starts. In the first exploration step of the exploration phase,

TLFO offers the bundle B1. If a contract k/nT ∈ B̃1 is accepted, Nk is incremented

by one. In the lth exploration step, l ∈ {2, . . . , l′ − 1}, it offers the bundle Bl. If a

contract k/nT ∈ B̃l is accepted, Nk is incremented by one. In the last exploration

step l′, it offers Bl′ . If a contract k/nT ∈ B̃l′ is accepted, Nk is incremented by one.

At the time t′ when all the exploration steps in the exploration phase are completed,

N is incremented by one. Pseudocode of the exploration phase for TLFO is given in

Figure 8.5.

225

Exploration phase of TLFO.

1: for l = 1, 2, . . . , d(nT − 1)/(m− 2)e do
2: Offer bundle Bl.
3: Let k/nT ∈ Bl be the accepted contract. Get reward k/nT .
4: if k/nT ∈ B̃l then
5: + +Nk

6: end if
7: + + t
8: end for
9: + +N

Figure 8.5: pseudocode of the exploration phase of TLFO

Note that regret of the seller in this case is upper bounded by

R(T) ≤
∑
x∈S

(Us(x
∗)− Us(x))E [Tx(T)]

+
∑
x∈Sc

(Us(x
∗)− Us(x))E [Tx(T)]

+N(T)d(nT − 1)/(m− 2)e(U(x∗)). (8.13)

By the exploration phase of TLFO, the accuracy of the estimates µi(t) at the begin-

ning of each exploitation block is the same as TLVO. Moreover, the the regret due to

near-optimal exploitations can be upper bounded by the same term as in TLVO. Only

the regret due to explorations changes. The number of exploration steps of TLFO is

about (nT − 1)/(m − 2) times the number of exploration steps of TLVO, but there

is no cost of offering more than m (possibly a large number of) contracts in TLFO.

The following theorem and corollary gives an upper bound on the regret of TLFO,

by using an approach similar to the proofs of Theorem VIII.5 and Corollary VIII.7.

Theorem VIII.8. The regret of seller using TLFO with time horizon T is upper

bounded by

R(T) ≤ 5mfmaxL2α/2n−αT (T −N(T)) +N(T)

(
nT − 1

m− 2
+ 1

)
U(x∗)

226

+ 2nT

T∑
t=1

e
−f2

maxL
22αN(t)

n2+2α
T .

Since TLFO simultaneously offers m contracts both in explorations and exploita-

tions, its regret does not depend on the cost function c(.) of offering multiple contracts

simultaneously. Therefore our sublinear regret bound always holds independent of

c(.).

Corollary VIII.9. When the seller runs TLFO with time horizon T and

nT =

⌊
(fmaxL2α/2)

2
4+2α

(
T

log T

) 1
4+2α

⌋
,

z(t) =

(
1

fmaxL2α/2

) 2+6α
2+α

(
T

log T

) 2+2α
4+2α

log t,

we have

R(T) = Cm +mT (3+2α)/(4+2α)(log T)2/(4+2α),

uniformly over T for some constant Cm > 0. Hence,

R(T) = O(mT (3+2α)/(4+2α)(log T)2/(4+2α)).

8.5 Discussion

A contract design problem for a secondary spectrum market is studied in Sheng

and Liu (2012). In this work the authors assume that the type distribution f(θ) is

known by the seller, and they characterize the optimal set of contracts. They show

that when the channel condition is common to all types, i.e., probability that the

channel is idle is the same for all types of users, a computationally efficient procedure

exists for choosing the best bundle of m contracts out of Lm,T . This procedure can

227

be used by the seller to efficiently solve (8.4).

In the fixed number of offers case, we assume that at each time step the seller

offers a bundle (x1, x2, . . . , xm) ⊂ Xm ⊂ [0, 1]m. Therefore, the strategy set is a

subset of the m-dimensional unit cube. Because of this relation, we can compare

the performance of our contract learning algorithms with bandit algorithms for high

dimensional strategy sets. For example, if the reward from any bundle x were of

linear form, i.e., Us(x) = C · x for some C ∈ Rm, then the online stochastic linear

optimization algorithm in Dani et al. (2008) would give regret O((m log T)3/2
√
T).

However, in our problem Us(x) is not a linear function, thus this approach will not

work. One can also show that in general Us(x) is neither convex or nor concave,

therefore any bandit algorithm exploiting these properties will not work in our setting.

Another work, Bubeck et al. (2008), considers online linear optimization in a gen-

eral topological space. For an m-dimensional strategy space, they prove a lower

bound of Õ(T (m+1)/(m+2)). Therefore, our bound is better than their lower bound for

m > 2 + 2α. This is not a contradiction since in our problem it is the type θ that is

drawn independently at each time step, not the rewards of the individual contracts,

and we focus on estimating the expected rewards of arms (bundles of contracts)

from the type distribution. In the same paper, a Õ(
√
T) regret upper bound is also

proved, under the assumption that the mean reward function is locally equivalent to

a bi-Hölder function near any maxima, i.e., ∃c1, c2, ε0 > 0 such that for ||x−x′|| ≤ ε0

c1||x− x′||α ≤ |Us(x)− Us(x′)| ≤ c2||x− x′||α.

However, in this chapter, we only require a Hölder condition for the boundaries of

the acceptance regions (see Assumption VIII.1), which implies that

|Us(x)− Us(x′)| ≤ c3||x− x′||α,

228

for some c3 > 0 and ∀x,x′ ∈ Xm.

229

CHAPTER IX

Conclusions and Future Work

In this thesis we consider bandit problems in an agent-centric setting and develop

online learning algorithms with provable performance guarantees by considering com-

putation, decentralization and communication aspects of the problems. For single-

agent bandits, our results depict the tradeoff between computational complexity and

performance of the learning algorithms. Specifically, we show that in the general

(restless) Markovian model, learning the optimal solution with logarithmic regret is

possible, however the learning algorithm is computationally intractable. When we

restrict our attention to a special case of the general Markovian model, we can de-

sign polynomial complexity algorithms that are approximately optimal in terms of

the average reward. When we change our performance objective from the optimal

solution to the best static solution, we prove that linear complexity algorithms with

logarithmic weak regret exist.

For multi-agent bandits, we conclude that the achievable performance depends on

the communication and feedback structure of the agents. Due to the complexities

rising from informational decentralization, limited computational power and memory

requirements for the agents, in most of the multi-agent applications such as cognitive

radio networks, we only consider weak regret as the performance measure. Specifi-

cally, we show that as the degree of feedback and communication between the agents

230

increases, weak regret of the agents decreases from sublinear to logarithmic rates.

Apart from the work on single-agent and multi-agent bandits, we also consider a

novel application of the bandit problem, i.e., the online contract selection problem.

In this thesis, this problem is modeled as a combinatorial bandit with an uncountable

number of arms. The formulation and analysis of this problem is significantly different

then the single-agent and multi-agent models with finite number of independent arms.

We propose a learning algorithm for the contract seller so that it can achieve sublinear

regret with respect to the optimal set of contracts. Different from the related work

in bandit problems with large strategy sets, our regret bound only depends linearly

on the dimension of the problem.

In this thesis, the agents are collaborative and they simply follow the algorithms

that are given to them. However, there are multi-agent applications in which the

agents selfishly try to maximize their own payoff. For example, in a wireless power

control problem, an agent’s payoff an a channel depends on the power levels of the

other agents on the same channel. Payoff of the agent usually increases with its

own transmit power and decreases with the other agent’s transmit power. When the

agents selfishly aim to maximize their own payoffs, they suffer from the tragedy of the

commons (see Hardin (2009)), meaning that all agents get low payoffs. This example

illustrates that the selfish objectives of the agents may not coincide with the objective

of maximizing the system utility, which, for example, can be the sum of the payoffs

of all the agents. Several approaches based on game theory and mechanism design

are proposed to overcome this problem. For example, in Kakhbod and Teneketzis

(2010), authors consider the wireless power control problem, and propose a mechanism

in which a central entity enforces payments on the agents based on their reported

types. This mechanism is shown to achieve the desired outcome as an equilibrium of

the game induced by the mechanism. A different approach is adopted in Xiao and

van der Schaar (2012), where authors consider the wireless power control problem

231

as a repeated game between the agents, characterize the conditions under which

the desired outcome is an equilibrium point, and propose a deviation proof policy

that achieves this equilibrium. In both of the approaches mentioned above, agents

know their payoff function, but because of the informational decentralization they

do not perfectly know the payoffs or actions of other agents. However, in the multi-

agent learning settings we consider, agents do not know their (expected) payoffs but

learn them over time. For example, when an agent is a recently deployed wireless

device, it may need to explore the channels to learn which ones offer higher data rates

on average. As another example, when an agent is a business venture it needs to

experiment different investment strategies to find out which one offers higher payoffs.

An open question is under what conditions a desired objective can be achieved

when strategic agents dynamically learn their payoffs from the actions. Clearly, this

problem is harder to solve than a learning problem involving collaborative agents

because of the strategic behavior based on incomplete knowledge which may result

in a large set of outcomes. As a future work, we plan to develop novel techniques

that combine learning with game theory and mechanism design to achieve various

performance objectives when the agents are strategic.

232

APPENDICES

233

APPENDIX A

Results from the Theory of Large Deviations

In this appendix we list results from large deviations theory which are used through

our proofs. The following two lemmas bound the probability of a large deviation from

the stationary distribution of a Markov chain.

Lemma A.1. [Theorem 3.3 from Lezaud (1998)] Consider a finite-state, irreducible

Markov chain {Xt}t≥1 with state space S, matrix of transition probabilities P , an

initial distribution q and stationary distribution π. Let Vq =
∥∥∥(qx

πx
, x ∈ S)

∥∥∥
2
. Let

Ṗ = P ′P be the multiplicative symmetrization of P where P ′ is the adjoint of P

on l2(π). Let ε = 1 − λ2, where λ2 is the second largest eigenvalue of the matrix

Ṗ . ε will be referred to as the eigenvalue gap of Ṗ . Let f : S → R be such that∑
y∈S πyf(y) = 0, ‖f‖∞ ≤ 1 and 0 < ‖f‖2

2 ≤ 1. If Ṗ is irreducible, then for any

positive integer T and all 0 < γ ≤ 1

P

(∑T
t=1 f(Xt)

T
≥ γ

)
≤ Vq exp

[
−Tγ

2ε

28

]
.

Lemma A.2. [Theorem 2.1 from Gillman (1998)] Consider a finite-state, irreducible,

aperiodic and reversible Markov chain with state space S, matrix of transition prob-

abilities P , and an initial distribution q. Let Vq =
∥∥∥(qx

πx
, x ∈ S)

∥∥∥
2
. Let ε̃ = 1 − λ2,

234

where λ2 is the second largest eigenvalue of the matrix P . ε̃ will be referred to as

the eigenvalue gap of the transition probability matrix. Let A ⊂ S. Let NA(T) be the

number of times that states in the set A are visited up to time T . Then for any γ ≥ 0,

we have

P (NA(T)− TπA ≥ γ) ≤ (1 +
γε

10T
)Vqe

−γ2ε/20T ,

where

πA =
∑
x∈A

πx.

The lemma below relates the number of observations of a particular state of a

Markov chain with its stationary probability.

Lemma A.3. [Lemma 2.1 from Anantharam et al. (1987b)] Let Y be an irreducible

aperiodic Markov chain with a state space S, transition probability matrix P , an initial

distribution that is non-zero in all states, and a stationary distribution {πx},∀x ∈ S.

Let Ft be the σ-field generated by random variables X1, X2, ..., Xt where Xt corresponds

to the state of the chain at time t. Let G be a σ-field independent of F = ∨t≥1Ft,

the smallest σ-field containing F1, F2, Let τ be a stopping time with respect to the

increasing family of σ-fields {G ∨ Ft, t ≥ 1}. Define U(x, τ) such that

U(x, τ) =
τ∑
t=1

I(Xt = x).

Then ∀τ such that E [τ] <∞, we have

|E [U(x, τ)]− πxE [τ]| ≤ CP ,

where CP is a constant that depends on P .

235

The next lemma says that for a positive recurrent Markov chain, the conditional

expected number of visits to a state before a stopping time is equal to the conditional

expectation of the stopping time multiplied by the stationary probability of that state.

Lemma A.4. If {Xn}n≥0 is a positive recurrent homogeneous Markov chain with

state space S, stationary distribution π, and τ is a stopping time that is finite almost

surely for which Xτ = x then for all y ∈ S

E

[
τ−1∑
t=0

I(Xt = y)|X0 = x

]
= E[τ |X0 = x]πy .

Next, we define a uniformly ergodic Markov chain, and give a large deviation

bound for a perturbation of that uniformly ergodic chain. The norm used in the

definition and lemma below is the total variation norm. For finite and countable

vectors this corresponds to l1 norm, and the induced matrix norm corresponds to

maximum absolute row sum norm.

Definition A.5. Mitrophanov (2005) A Markov chain X = {Xt, t ∈ {1, 2, . . .}} on a

measurable space (S,B), with transition kernel P (x,G), x ∈ S, G ∈ B is uniformly

ergodic if there exists constants ρ < 1, C <∞ such that for all x ∈ S,

∥∥exP t − π
∥∥ ≤ Cρt, t ∈ {1, 2, . . .} . (A.1)

Clearly, for a finite state Markov chain uniform ergodicity is equivalent to ergod-

icity.

Lemma A.6. (Mitrophanov (2005) Theorem 3.1.) Let X = {Xt, t ∈ {1, 2, . . .}} be a

uniformly ergodic Markov chain for which (A.1) holds. Let X̂ = {X̂t, t ∈ {1, 2, . . .}}

be the perturbed chain with transition kernel P̂ . Given the two chains have the same

236

initial distribution, let ψt, ψ̂t be the distribution of X, X̂ at time t respectively. Then,

∥∥∥ψt − ψ̂t∥∥∥ ≤ C1(P, t)
∥∥∥P̂ − P∥∥∥ , (A.2)

where C1(P, t) =
(
t̂+ C ρt̂−ρt

1−ρ

)
and t̂ =

⌈
logρC

−1
⌉
.

Another large deviation bound is the Chernoff-Hoeffding bound which bounds

the difference between the sample mean and expected reward for distributions with

bounded support.

Lemma A.7. (Chernoff-Hoeffding Bound) Let X1, . . . , XT be random variables with

common range [0,1], such that E[Xt|Xt−1, . . . , X1] = µ. Let ST = X1 + . . . + XT .

Then for all ε ≥ 0

P (|ST − Tµ| ≥ ε) ≤ 2e
−2ε2

T .

Finally, we state a large deviation bound for independent Bernoulli random vari-

ables.

Lemma A.8. Let Xi, i = 1, 2, . . . be a sequence of independent Bernoulli random

variables such that Xi has mean qi with 0 ≤ qi ≤ 1. Let X̄t = 1
t

∑t
i=1 Xi , q̄t =

1
t

∑t
i=1 qi. Then for any constant ε ≥ 0 and any integer T ≥ 0,

P
(
X̄T − q̄T ≤ −ε

)
≤ e−2Tε2 .

Proof. The result follows from symmetry and D.W. Turner (1995).

237

APPENDIX B

Proof of Lemma II.2

We first state and prove the following lemma which will be used to prove Lemma

II.2.

Lemma B.1. Let gkt,s = r̄k(s) + ct,s, ct,s =
√
L ln t/s. Under UCB with constant

L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, for any suboptimal arm k we have

E

[
T∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk)

]
≤ |S

k|+ |S1|
πmin

β, (B.1)

where l =
⌈

4L lnT
(µ1−µk)2

⌉
and β =

∑∞
t=1 t

−2.

Proof. First, we show that for any suboptimal arm k we have that g1
t,w ≤ gkt,wk implies

at least one of the following holds:

r̄1(w) ≤ µ1 − ct,w (B.2)

r̄k(wk) ≥ µk + ct,wk (B.3)

µ1 < µk + 2ct,wk . (B.4)

238

This is because if none of the above holds, then we must have

g1
t,w = r̄1(w) + ct,w > µ1 ≥ µk + 2ct,wk > r̄k(wk) + ct,wk = gkt,wk ,

which contradicts g1
t,w ≤ gkt,wk .

If we choose wk ≥ 4L lnT/(µ1 − µk)2, then

2ct,wk = 2

√
L ln t

wk
≤ 2

√
L ln t(µ1 − µk)2

4L lnT
≤ µ1 − µi

for t ≤ T , which means (B.4) is false, and therefore at least one of (B.2) and (B.3) is

true with this choice of wk. Let l =
⌈

4L lnT
(µ1−µk)2

⌉
. Then we have,

E

[
T∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk)

]

≤
T∑
t=1

t−1∑
w=1

t−1∑
wk=

⌈
4L lnT

(µ1−µk)2

⌉
(
P (r̄1(w) ≤ µ1 − ct,w) + P (r̄k(wk) ≥ µk + ct,wk)

)

≤
∞∑
t=1

t−1∑
w=1

t−1∑
wk=

⌈
4L lnT

(µ1−µk)2

⌉
(
P (r̄1(w) ≤ µ1 − ct,w) + P (r̄k(wk) ≥ µk + ct,wk)

)
.

Consider an initial distribution qk for the kth arm. We have:

Vqk =

∥∥∥∥∥
(
qky
πky
, y ∈ Sk

)∥∥∥∥∥
2

≤
∑
y∈Sk

∥∥∥∥∥ qkyπky
∥∥∥∥∥

2

≤ 1

πmin

,

where the first inequality follows from the Minkowski inequality. Let nky(t) denote

the number of times state y of arm k is observed up to and including the tth play of

arm k. For simplicity of presentation assume that the state rewards are positive, i.e.,

rkx > 0 for all x ∈ Sk, k ∈ K. All of the analysis for the rested bandits will also hold

when we have rkx = 0 for some x ∈ Sk. In that case we define Sk+ ⊂ Sk as the set of

239

states of arm k with positive rewards, and perform the same analysis as below.

P (r̄k(wk) ≥ µk + ct,wk) = P

∑
y∈Sk

rkyn
k
y(wk) ≥ wk

∑
y∈Sk

rkyπ
k
y + wkct,wk


= P

∑
y∈Sk

(rkyn
k
y(wk)− wkrkyπky) ≥ wkct,wk


= P

∑
y∈Sk

(−rkynky(wk) + wkr
k
yπ

k
y) ≤ −wkct,wk

 (B.5)

Consider a sample path ω and the events

A =

ω :
∑
y∈Sk

(−rkynky(wk)(ω) + wkr
k
yπ

k
y) ≤ −wkct,wk

 ,

B =
⋃
y∈Sk

{
ω : −rkynky(wk)(ω) + wkr

k
yπ

k
y ≤ −

wkct,wk
|Sk|

}
.

If ω /∈ B, then

− rkynky(wk)(ω) + wkr
k
yπ

k
y > −

wkct,wk
|Sk|

, ∀y ∈ Sk

⇒
∑
y∈Sk

(−rkynky(wk)(ω) + wkr
k
yπ

k
y) > −wkct,wk .

Thus ω /∈ A, therefore P (A) ≤ P (B). Then continuing from (B.5):

P (r̄k(wk) ≥ µk + ct,wk) ≤
∑
y∈Sk

P

(
−rkynky(wk) + wkr

k
yπ

k
y ≤ −

wkct,wk
|Sk|

)

=
∑
y∈Sk

P

(
rkyn

k
y(wk)− wkrkyπky ≥

wkct,wk
|Sk|

)

=
∑
y∈Sk

P

(
nky(wk)− wkπky ≥

wkct,wk
|Sk|rky

)

=
∑
y∈Sk

P

(∑wk
t=1 I(yk(t) = y)− wkπky

π̂kywk
≥ ct,wk
|Sk|rky π̂ky

)

240

≤
∑
y∈Sk

Vqkt
− Lεk

28(|Sk|rky π̂ky)2 (B.6)

≤ |S
k|

πmin

t
− Lεmin

28S2
maxr

2
maxπ̂

2
max , (B.7)

where (B.6) follows from Lemma A.1 by letting

γ =
ct,wk
|Sk|rky π̂ky

, f(yk(t)) =
I(yk(t) = y)− πky

π̂ky
,

and recalling π̂ky = max{πky , 1− πky} (note Ṗ k is irreducible). Similarly, we have

P
(
r̄1(w) ≤ µ1 − ct,w

)
= P

∑
y∈S1

r1
y(n

1
y(w)− wπ1

y) ≤ −wct,w


≤
∑
y∈S1

P

(
r1
yn

1
y(w)− wr1

yπ
1
y ≤ −

wct,w
|S1|

)

=
∑
y∈S1

P

(
r1
y(w −

∑
x 6=y

n1
x(w))− wr1

y(1−
∑
x 6=y

π1
x) ≤ −

wct,w
|S1|

)

=
∑
y∈S1

P

(
r1
y

∑
x 6=y

n1
x(w)− wr1

y

∑
x 6=y

π1
x ≥

wct,w
|S1|

)

≤
∑
y∈S1

Nq1t
− Lε1

28(|S1|r1yπ̂1
y)2 (B.8)

≤ |S
1|

πmin

t
− Lεmin

28S2
maxr

2
maxπ̂

2
max (B.9)

where (B.8) again follows from Lemma A.1. The result then follows from combining

(B.7) and (B.9):

E

[
T∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk)

]
≤ |S

k|+ |S1|
πmin

∞∑
t=1

t−1∑
w=1

t−1∑
wk=1

t
− Lεmin

28S2
maxr

2
maxπ̂

2
max

=
|Sk|+ |S1|

πmin

∞∑
t=1

t
−Lεmin−56S2

maxr
2
maxπ̂

2
max

28S2
maxr

2
maxπ̂

2
max

≤ |S
k|+ |S1|
πmin

∞∑
t=1

t−2.

241

Let l be any positive integer and consider a suboptimal arm k. Then,

Nk(T) = 1 +
T∑

t=K+1

I(α(t) = k) ≤ l +
T∑

t=K+1

I(α(t) = k,Nk(t− 1) ≥ l) . (B.10)

Consider the event

E =
{
g1
t,N1(t) ≤ gkt,Nk(t)

}
,

For a sample path ω ∈ EC we have α(t) 6= k. Therefore {ω : α(t) = k} ⊂ E and

I(α(t) = k, Nk(t− 1) ≥ l) ≤ I(ω ∈ E, Nk(t− 1) ≥ l)

= I(g1
t,N1(t) ≤ gkt,Nk(t), N

k(t− 1) ≥ l).

Therefore continuing from (B.10),

Nk(T) ≤ l +
T∑

t=K+1

I(g1
t,N1(t) ≤ gkt,Nk(t), N

k(t− 1) ≥ l)

≤ l +
T∑

t=K+1

I

(
min

1≤w<t
g1
t,w ≤ max

l≤wk<t
gkt,wk

)

≤ l +
T∑

t=K+1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk)

≤ l +
T∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk).

Using Lemma B.1 with l =
⌈

4L lnT
(µ1−µk)2

⌉
, we have for any suboptimal arm

E[Nk(T)] ≤ 1 +
4L lnT

(µ1 − µk)2
+

(|Sk|+ |S1|)β
πmin

.

242

APPENDIX C

Proof of Lemma III.1

We first state and prove the following lemma which will be used to prove Lemma

III.1.

Lemma C.1. Assume all arms are restless Markovian with irreducible multiplicative

symmetrizations. Let gkt,w = r̄k(w)+ct,w, ct,w =
√
L ln t/w. Under RCA with constant

L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, for any suboptimal arm k we have

E

t2(b)∑
t=1

t−1∑
w=1

t−1∑
wi=l

I(g1
t,w ≤ gkt,wk)

 ≤ |Sk|+ |S1|
πmin

β, (C.1)

where l =
⌈

4L lnT
(µ1−µk)2

⌉
and, β =

∑∞
t=1 t

−2.

Proof. Note that all the quantities in computing the indices in (C.1) comes from

the intervals Xk
2 (1), Xk

2 (2), · · · ∀k ∈ K. Since these intervals begin with state γk and

end with a return to γk (but excluding the return visit to γk), by the strong Markov

property the process at these stopping times have the same distribution as the original

process. Moreover by connecting these intervals together we form a continuous sample

path which can be viewed as a sample path generated by a Markov chain with a

transition matrix identical to the original arm. Therefore we can proceed in exactly

243

the same way as the proof of Lemma II.2. If we choose sk ≥ 4L ln(T)/(µ1 − µk)2,

then for t ≤ t2(b) = T ′ ≤ T , and for any suboptimal arm k,

2ct,sk = 2

√
L ln(t)

sk
≤ 2

√
L ln(t)(µ1 − µk)2

4L ln(T)
≤ µ1 − µk.

The result follows from letting l =
⌈

4L lnT
(µ1−µk)2

⌉
as in the proof of Lemma II.2.

Let ct,s =
√
L ln t/s, and let l be any positive integer. Then,

Bk(b) = 1 +
b∑

m=K+1

I(α̃(m) = k)

≤ l +
b∑

m=K+1

I(α̃(m) = k,Bk(m− 1) ≥ l)

≤ l +
b∑

m=K+1

I
(
g1
t2(m−1),N1

2 (t2(m−1)) ≤ gkt2(m−1),Nk
2 (t2(m−1)), B

k(m− 1) ≥ l
)

≤ l +
b∑

m=K+1

I

(
min

1≤w≤t2(m−1)
g1
t2(m−1),w ≤ max

t2(l)≤wk≤t2(m−1)
gkt2(m−1),wk

)

≤ l +
b∑

m=K+1

t2(m−1)∑
w=1

t2(m−1)∑
wk=t2(l)

I(g1
t2(m),w ≤ gkt2(m),wk

) (C.2)

≤ l +

t2(b)∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(g1
t,w ≤ gkt,wk) (C.3)

where as given in (3.1), gkt,w = r̄k(w) + ct,w. The inequality in (C.3) follows from the

fact that the outer sum in (C.3) is over time while the outer sum in (C.2) is over

blocks and each block lasts at least two time slots.

From this point on we use Lemma C.1 to get

E[Bi(b(T))|b(T) = b] ≤
⌈

4L ln t2(b)

(µ1 − µk)2

⌉
+

(|Sk|+ |S1|)β
πmin

,

244

for all suboptimal arms. Therefore,

E[Bk(b(T))] ≤ 4L lnT

(µ1 − µk)2
+ Ck,1, (C.4)

since T ≥ t2(b(T)) almost surely.

The total number of plays of arm k at the end of block b(T) is equal to the total

number of plays of arm k during the regenerative cycles of visiting state γk plus

the total number of plays before entering the regenerative cycles plus one more play

resulting from the last play of the block which is state γk. This gives:

E[Nk(N(T))] ≤
(

1

πkmin

+ Ωk
max + 1

)
E[Bk(b(T))] .

245

APPENDIX D

Proof of Theorem III.2

Assume that the states which determine the regenerative sample paths are given

a priori by γ = [γ1, · · · , γK]. We denote the expectations with respect to RCA given

γ as Eγ. First we rewrite the regret in the following form:

Rγ(T) = µ1Eγ[N(T)]− Eγ

N(T)∑
t=1

rα(t)(t)


+ µ1Eγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

rα(t)(t)


=

{
µ1Eγ[N(T)]−

K∑
k=1

µkEγ
[
Nk(N(T))

]}
− Zγ(T)

+ µ1Eγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

rα(t)(t)

 , (D.1)

where for notational convenience, we have used

Zγ(T) = Eγ

N(T)∑
t=1

rα(t)(t)

− K∑
k=1

µkEγ
[
Nk(N(T))

]
.

We can bound the first difference in (D.1) logarithmically using Lemma III.1, so it

246

remains to bound Zγ(T) and the last difference. We have

Zγ(T) ≥
∑
y∈S1

r1
yEγ

B1(b(T))∑
j=1

∑
r1(t)∈X1(j)

I(r1(t) = y)


+

∑
k:µk<µ1

∑
y∈Sk

rkyEγ

Bk(b(T))∑
j=1

∑
rk(t)∈Xk

2 (j)

I(rk(t) = y)

 (D.2)

− µ1Eγ
[
N1(N(T))

]
−
∑
k>1

µk

(
1

πk
γk

+ Ωk
max + 1

)
Eγ
[
Bk(b(T))

]
,

where the inequality comes from counting only the rewards obtained during the SB2s

for all suboptimal arms. Applying Lemma A.4 to (D.2) we get

Eγ

Bk(b(T))∑
j=1

∑
rk(t)∈Xk

2 (j)

I(rk(t) = y)

 =
πky
πk
γk

Eγ
[
Bk(b(T))

]
.

Rearrange terms and noting µ1 =
∑

y r
1
yπ

1
y ,

Zγ(T) ≥ R1(T)−
∑

k:µk<µ1

µk(Ωk
max + 1)Eγ

[
Bk(b(T))

]
(D.3)

where

R1(T) =
∑
y∈S1

r1
yEγ

B1(b(T))∑
j=1

∑
r1(t)∈X1(j)

I(r1(t) = y)

−∑
y∈S1

r1
yπ

1
yEγ

[
N1(N(T))

]
.

Consider now R1(T). Since all suboptimal arms are played at most logarithmically,

the number of time steps in which the best arm is not played is at most logarithmic.

It follows that the number of discontinuities between plays of the best arm is at most

logarithmic. Suppose we combine successive blocks in which the best arm is played,

and denote by X̄1(j) the jth combined block. Let b̄1 denote the total number of

combined blocks up to block b. Each X̄1 thus consists of two sub-blocks: X̄1
1 that

contains the states visited from beginning of X̄1 (empty if the first state is γ1) to

247

the state right before hitting γ1, and sub-block X̄1
2 that contains the rest of X̄1 (a

random number of regenerative cycles).

Since a block X̄1 starts after discontinuity in playing the best arm, b̄1(T) is less

than or equal to total number of completed blocks in which the best arm is not played

up to time T . Thus

Eγ[b̄
1(T)] ≤

∑
k>1

Eγ[B
k(b(T))]. (D.4)

We rewrite R1(T) in the following from:

R1(T) =
∑
y∈S1

r1
yEγ

b̄1(T)∑
j=1

∑
r1(t)∈X̄1

2 (j)

I(r1(t) = y)

 (D.5)

−
∑
y∈S1

r1
yπ

1
yEγ

b̄1(T)∑
j=1

|X̄1
2 (j)|

 (D.6)

+
∑
y∈S1

r1
yEγ

b̄1(T)∑
j=1

∑
r1(t)∈X̄1

1 (j)

I(r1(t) = y)

 (D.7)

−
∑
y∈S1

r1
yπ

1
yEγ

b̄1(T)∑
j=1

|X̄1
1 (j)|

 (D.8)

> 0− µ1Ω1
max

∑
k>1

Eγ[B
k(b(T))],

where the last inequality is obtained by noting the difference between (D.5) and (D.6)

is zero by Lemma A.4, using non-negativity of the rewards to lower bound (D.7) by

0, and (D.4) to upper bound (D.8). Combine this with (C.4) and (D.3) we can thus

obtain a logarithmic upper bound on −Zγ(T). Finally, we have

µ1Eγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

rα(t)(t)

 ≤ µ1

(
1

πmin

+ max
k∈K

Ωk
max + 1

)
.

Therefore we have obtained the stated logarithmic bound for (D.1). Note that this

248

bound does not depend on γ, and therefore is also an upper bound for R(T), com-

pleting the proof.

249

APPENDIX E

Proof of Theorem III.3

Recall that our description of multiple-plays is in the equivalent form of multiple

coordinated agents each with a single play. A list of notations used in the proof (in

addition to the ones in Tables 2.1 and 3.2) is given below:

• Nk,i(t): the total number of times (slots) arm k is played by agent i up to the

last completed block of arm k up to time t.

• O(b): the set of arms that are free to be selected by some agent i upon its

completion of the bth block; these are arms that are currently not being played

by other agents (during time slot t(b)), and the arms whose blocks are completed

at time t(b).

Before proving Theorem III.3, we state the following lemmas which will be used in

the proof.

Lemma E.1. Let gkt,w = r̄k(w)+ct,w, ct,w =
√
L ln t/w. Under RCA-M with constant

L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, for any suboptimal arm k and optimal arm j we have

E

t2(b)∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(gjt,w ≤ gkt,wk)

 ≤ |Sk|+ |Sj|
πmin

β,

250

where l =
⌈

4L lnT
(µM−µk)2

⌉
and, β =

∑∞
t=1 t

−2.

Proof. Result is obtained by following steps similar to the proof of Lemma C.1.

Lemma E.2. For RCA-M run with a constant L ≥ 112S2
maxr

2
maxπ̂

2
max/εmin, we have

∑
k>M

(µ1 − µk)E[Nk(T)] ≤ 4L
∑
k>M

(µ1 − µk)Dk lnT

(µM − µk)2

+
∑
k>M

(µ1 − µk)Dk

(
1 +M

M∑
j=1

Ck,j

)
,

where

Ck,j =
(|Sk|+ |Sj|)β

πmin

, β =
∞∑
t=1

t−2, Dk =

(
1

πkmin

+ Ωk
max + 1

)
.

Proof. Let ct,w =
√
L ln t/w, and let l be any positive integer. Then,

Bk(b) = 1 +
b∑

m=K+1

I(α̃(m) = k) ≤ l +
b∑

m=K+1

I(α̃(m) = k,Bk(m− 1) ≥ l) (E.1)

Consider any sample path ω and the following sets

E =
M⋃
j=1

{
ω : gj

t2(m−1),Nj
2 (t2(m−1))

(ω) ≤ gkt2(m−1),Nk
2 (t2(m−1))(ω)

}
,

and

EC =
M⋂
j=1

{
ω : gj

t2(m−1),Nj
2 (t2(m−1))

(ω) > gkt2(m−1),Nk
2 (t2(m−1))(ω)

}
.

If ω ∈ EC then α̃(m) 6= k. Therefore {ω : α̃(m)(ω) = k} ⊂ E and

I(α̃(m) = k,Bk(m− 1) ≥ l)

≤ I(ω ∈ E,Bk(m− 1) ≥ l)

251

≤
M∑
j=1

I
(
gj
t2(m−1),Nj

2 (t2(m−1))
≤ gkt2(m−1),Nk

2 (t2(m−1)), B
k(m− 1) ≥ l

)
.

Therefore continuing from (E.1),

Bk(b) ≤ l +
M∑
j=1

b∑
m=K+1

I
(
gj
t2(m−1),Nj

2 (t2(m−1))
≤ gkt2(m−1),Nk

2 (t2(m−1)), B
k(m− 1) ≥ l

)
≤ l +

M∑
j=1

b∑
m=K+1

I

(
min

1≤w≤t2(m−1)
gjt2(m−1),w ≤ max

t2(l)≤wk≤t2(m−1)
gkt2(m−1),wk

)

≤ l +
M∑
j=1

b∑
m=K+1

t2(m−1)∑
w=1

t2(m−1)∑
wk=t2(l)

I(gjt2(m),w ≤ gkt2(m),wk
) (E.2)

≤ l +M
M∑
j=1

t2(b)∑
t=1

t−1∑
w=1

t−1∑
wk=l

I(gjt,w ≤ gkt,wk) , (E.3)

where gkt,w = r̄k(w)+ct,w, and we have assumed that the index value of an arm remains

the same between two updates. The inequality in (E.3) follows from the facts that

the second outer sum in (E.3) is over time while the second outer sum in (E.2) is

over blocks, each block lasts at least two time slots and at most M blocks can be

completed in each time step. From this point on we use Lemma E.1 to get

E[Bk(b(T))|b(T) = b] ≤
⌈

4L ln t2(b)

(µM − µk)2

⌉
+M

M∑
j=1

(|Sk|+ |Sj|)β
πmin

,

for all suboptimal arms. Therefore,

E[Bk(b(T))] ≤ 4L lnT

(µM − µk)2
+ 1 +M

M∑
j=1

Ck,j, (E.4)

since T ≥ t2(b(T)) almost surely.

The total number of plays of arm k at the end of block b(T) is equal to the total

number of plays of arm k during the regenerative cycles of visiting state γk plus

the total number of plays before entering the regenerative cycles plus one more play

252

resulting from the last play of the block which is state γk. This gives:

E[Nk(N(T))] ≤
(

1

πkmin

+ Ωk
max + 1

)
E[Bk(b(T))] .

Thus,

∑
k>M

(µ1 − µk)E[Nk(N(T))]

≤ 4L
∑
k>M

(µ1 − µk)Dk lnT

(µM − µk)2
+
∑
k>M

(µ1 − µk)Dk

(
1 +M

M∑
j=1

Ck,j

)
. (E.5)

Now we give the proof of Theorem III.3. Assume that the states which determine

the regenerative sample paths are given a priori by γ = [γ1, · · · , γK]. This is to

simplify the analysis by skipping the initialization stage of the algorithm and we will

show that this choice does not affect the regret bound. We denote the expectations

with respect to RCA-M given γ as Eγ. First we rewrite the regret in the following

form:

Rγ(T) =
M∑
j=1

µjEγ[N(T)]− Eγ

N(T)∑
t=1

∑
k∈α(t)

rk(t)


+

M∑
j=1

µjEγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

∑
k∈α(t)

rk(t)


=

{
M∑
j=1

µjEγ[N(T)]−
K∑
k=1

µkEγ
[
Nk(N(T))

]}
− Zγ(T) (E.6)

+
M∑
j=1

µjEγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

∑
k∈α(t)

rk(t)

 (E.7)

253

where for notational convenience, we have used

Zγ(T) = Eγ

N(T)∑
t=1

∑
k∈α(t)

rk(t)

− K∑
k=1

µkEγ
[
Nk(N(T))

]
.

We have

M∑
j=1

µjEγ[N(T)]−
K∑
k=1

µkEγ
[
Nk(N(T))

]
=

M∑
j=1

K∑
k=1

µjEγ[N
k,j(N(T))]−

M∑
j=1

K∑
k=1

µkEγ[N
k,j(N(T))]

=
M∑
j=1

∑
k>M

(µj − µk)Eγ[Nk,j(N(T))]

≤
∑
k>M

(µ1 − µk)Eγ[Nk(N(T))]. (E.8)

Since we can bound (E.8), i.e. the difference in the brackets in (E.6) logarithmi-

cally using Lemma E.2, it remains to bound Zγ(T) and the difference in (E.7). We

have

Zγ(T) ≥
M∑
k=1

∑
y∈Sk

rkyEγ

Bk(b(T))∑
b=1

∑
rk(t)∈Xk(b)

I(rk(t) = y)


+
∑
k>M

∑
y∈Sk

rkyEγ

Bk(b(T))∑
b=1

∑
rk(t)∈Xk

2 (b)

I(rk(t) = y)

 (E.9)

−
M∑
k=1

µkEγ
[
Nk(N(T))

]
−
∑
k>M

µk

(
1

πk
γk

+ Ωk
max + 1

)
Eγ
[
Bk(b(T))

]
,

where the inequality comes from counting only the rewards obtained during the SB2’s

for all suboptimal arms and the last part of the proof of Lemma E.2. Applying Lemma

254

A.4 to (E.9) we get

Eγ

Bk(b(T))∑
b=1

∑
rk(t)∈Xk

2 (b)

I(rk(t) = y)

 =
πky
πk
γk

Eγ
[
Bk(b(T))

]
.

Rearranging terms we get

Zγ(T) ≥ R∗(T)−
∑
k>M

µk(Ωk
max + 1)Eγ

[
Bk(b(T))

]
, (E.10)

where

R∗(T) =
M∑
k=1

∑
y∈Sk

rkyEγ

Bk(b(T))∑
b=1

∑
rk(t)∈Xk(b)

I(rk(t) = y)


−

M∑
k=1

∑
y∈Sk

rkyπ
k
yEγ

[
Nk(N(T))

]
.

Consider nowR∗(T). Since all suboptimal arms are played at most logarithmically,

the total number of time slots in which an optimal arm is not played is at most

logarithmic. It follows that the number of discontinuities between plays of any single

optimal arm is at most logarithmic. For any optimal arm k ∈ {1, · · · ,M} we combine

consecutive blocks in which arm k is played into a single combined block, and denote by

X̄k(j) the jth combined block of arm k. Let b̄k denote the total number of combined

blocks for arm k up to block b. Each X̄k thus consists of two sub-blocks: X̄k
1 that

contains the states visited from the beginning of X̄k (empty if the first state is γk)

to the state right before hitting γk, and sub-block X̄k
2 that contains the rest of X̄k (a

random number of regenerative cycles).

Since a combined block X̄k necessarily starts after certain discontinuity in playing

the kth best arm, b̄k(T) is less than or equal to the total number of discontinuities

of play of the kth best arm up to time T . At the same time, the total number of

discontinuities of play of the kth best arm up to time T is less than or equal to the

255

total number of blocks in which suboptimal arms are played up to time T . Thus

Eγ[b̄
k(T)] ≤

∑
j>M

Eγ[B
j(b(T))]. (E.11)

We now rewrite R∗(T) in the following from:

R∗(T) =
M∑
k=1

∑
y∈Sk

rkyEγ

b̄k(T)∑
b=1

∑
rk(t)∈X̄k

2 (b)

I(rk(t) = y)

 (E.12)

−
M∑
k=1

∑
y∈Sk

rkyπ
k
yEγ

b̄k(T)∑
b=1

|X̄k
2 (b)|

 (E.13)

+
M∑
k=1

∑
y∈Sk

rkyEγ

b̄k(T)∑
b=1

∑
rk(t)∈X̄k

1 (b)

I(rk(t) = y)

 (E.14)

−
M∑
k=1

∑
y∈Sk

rkyπ
k
yEγ

b̄k(T)∑
b=1

|X̄k
1 (b)|

 (E.15)

> 0−
M∑
k=1

µkΩk
max

∑
j>M

Eγ[B
j(b(T))], (E.16)

where the last inequality is obtained by noting the difference between (E.12) and

(E.13) is zero by Lemma A.4, using non-negativity of the rewards to lower bound

(E.14) by 0, and (E.11) to upper bound (E.15). Combining this with (E.4) and

(E.10) we can obtain a logarithmic upper bound on −Zγ(T) by the following steps:

− Zγ(T) ≤ −R∗(T) +
∑
k>M

µk(Ωk
max + 1)Eγ

[
Bk(b(T))

]
≤

M∑
k=1

µkΩk
max

∑
j>M

(
4L lnT

(µM − µj)2
+ 1 +M

M∑
l=1

Cj,lβ

)

+
∑
k>M

µk(Ωk
max + 1)

(
4L lnT

(µM − µk)2
+ 1 +M

M∑
j=1

Cj,kβ

)
.

256

We also have,

M∑
j=1

µjEγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

∑
k∈α(t)

rk(t)


≤

M∑
j=1

µjEγ[T −N(T)] =
M∑
j=1

µj
(

1

πmin

+ max
k∈K

Ωk
max + 1

)
. (E.17)

Finally, combining the above results as well as Lemma E.2 we get

Rγ(T) =

{
M∑
j=1

µjEγ[N(T)]−
K∑
k=1

µkEγ
[
Nk(N(T))

]}
− Zγ(T)

+
M∑
j=1

µjEγ[T −N(T)]− Eγ

 T∑
t=N(T)+1

∑
k∈α(t)

rk(t)


≤
∑
k>M

(µ1 − µk)Eγ[Nk(N(T))]

+
M∑
k=1

µkΩk
max

∑
l>M

(
4L lnT

(µM − µl)2
+ 1 +M

M∑
j=1

Cl,jβ

)

+
∑
k>M

µk(Ωk
max + 1)

(
4L lnT

(µM − µk)2
+ 1 +M

M∑
j=1

Cj,kβ

)

+
M∑
j=1

µj
(

1

πmin

+ max
k∈K

Ωk
max + 1

)
= 4L lnT

∑
k>M

1

(µM − µk)2

(
(µ1 − µk)Dk + Ek

)
+
∑
k>M

(
(µ1 − µk)Dk + Ek

)(
1 +M

M∑
j=1

Ck,j

)
+ F.

Therefore we have obtained the stated logarithmic bound for (E.6). Note that this

bound does not depend on γ, and thus is also an upper bound for R(T), completing

the proof.

257

APPENDIX F

Proof of Lemma IV.13

From symmetry we have

P
(
|p̂kij,t − pkij| > ε, Et

)
= P

(
p̂kij,t − pkij > ε, Et

)
+ P

(
p̂kij,t − pkij < −ε, Et

)
= 2P

(
p̂kij,t − pkij > ε, Et

)
. (F.1)

Then

P
(
p̂kij,t − pkij > ε, Et

)
= P

(
p̄kij∑
l∈Sk p̄

k
il

− pkij > ε, Et

)

= P

(
p̄kij∑
l∈Sk p̄

k
il

− pkij > ε,

∣∣∣∣∣∑
l∈Sk

p̄kil − 1

∣∣∣∣∣ < δ, Et

)

+ P

(
p̄kij∑
l∈Sk p̄

k
il

− pkij > ε,

∣∣∣∣∣∑
l∈Sk

p̄kil − 1

∣∣∣∣∣ ≥ δ, Et

)

≤ P

(
p̄kij

1− δ
− pkij > ε, Et

)
+ P

(∣∣∣∣∣∑
l∈Sk

p̄kil − 1

∣∣∣∣∣ ≥ δ, Et

)
. (F.2)

We have

P

(
p̄kij

1− δ
− pkij > ε, Et

)
≤ P

(
p̄kij − pkij > ε(1− δ)− δ, Et

)
. (F.3)

258

Note that ε(1− δ)− δ is decreasing in δ. We can choose a δ small enough such that

ε(1− δ)− δ > ε/2. Then

P
(
p̄kij − pkij > ε(1− δ)− δ, Et

)
≤ P

(
p̄kij − pkij >

ε

2
, Et
)

≤ 2

t2
, (F.4)

for L ≥ 6/(ε2). We also have

P

(∣∣∣∣∣∑
l∈Sk

p̄kil − 1

∣∣∣∣∣ ≥ δ, Et

)
≤ P

(∑
l∈Sk

∣∣p̄kil − pkil∣∣ ≥ δ, Et

)
.

Consider the events

Ak,i = {|p̄kil − pkil| < δ/|Sk|,∀k ∈ K} ,

Bk,i =

{∑
l∈Sk
|p̄kil − pkil| < δ

}
.

If ω ∈ Ak,i, then ω ∈ Bk,i. Thus, Ak,i ⊂ Bk,i, Bck,i ⊂ Ack,i. Then

P

(∑
l∈Sk
|p̄kil − pkil| ≥ δ, Et

)
= P (Bck,i, Et)

≤ P (Ack,i, Et)

= P

(⋃
l∈Sk

{
|p̄kil − pkil| ≥ δ/|Sk|

}
, Et

)

≤
∑
l∈Sk

P
(
|p̄kil − pkil| ≥ δ/Smax, Et

)
≤ 2Smax

t2
, (F.5)

for L ≥ S2
max/(2δ

2). Combining (F.1), (F.4) and (F.5) we get

P
(
|p̂kij,t − pkij| > ε, Et

)
≤ 2Smax + 2

t2
,

259

for L ≥ max{6/(ε2), S2
max/(2δ

2)} = CP (ε).

260

APPENDIX G

Proof of Lemma IV.17

When the estimated belief is in Jl, for any suboptimal action u, we have

L∗(ψt,P)− L(ψt, u, hP ,P) ≥ ∆. (G.1)

Let ε < ∆/4. When Ft(ε) happens, we have

∣∣∣It(ψ̂t, u)− L(ψ̂t, u, hP , P̂ t)
∣∣∣ ≤ ε, (G.2)

for all u ∈ U . Since TP (ψ, y, u) is continuous in P , and hP (ψ) is continuous in ψ,

there exists δe > 0 such that ||P̂ t − P ||1 < δe implies that

∣∣∣L(ψ̂t, u, hP ,P)− L(ψ̂t, u, hP , P̂ t)
∣∣∣ ≤ ∆/4, (G.3)

for all u ∈ U . Let u∗ ∈ O(Jl;P). Using (G.1), (G.2) and (G.3), we have

I(ψ̂t, u
∗) ≥ L(ψ̂t, u

∗, hP , P̂ t)− ε

≥ L(ψ̂t, u
∗, hP ,P)− ε−∆/4

= L∗(ψ̂t,P)− ε−∆/4

261

≥ L(ψ̂t, u, hP ,P) + 3∆/4− ε

≥ L(ψ̂t, u, hP , P̂ t) + ∆/2− ε

≥ I(ψ̂t, u) + ∆/2− 2ε

> I(ψ̂t, u) .

Therefore, we have

{
ψ̂t ∈ Jl, Ut = u, ||P̂ t − P ||1 < δe, Et,Ft

}
= ∅ . (G.4)

Recall that for any u /∈ O(Jl;P),

EPψ0,α
[D1,1(T, ε, Jl, u)] =

T∑
t=1

P
(
ψ̂t ∈ Jl, Ut = u, Et,Ft

)
=

T∑
t=1

P
(
ψ̂t ∈ Jl, Ut = u, ||P̂ t − P ||1 < δe, Et,Ft

)
+

T∑
t=1

P
(
ψ̂t ∈ Jl, Ut = u, ||P̂ t − P ||1 ≥ δe, Et,Ft

)
≤

T∑
t=1

P
(
||P̂ t − P ||1 ≥ δe, Et

)
, (G.5)

where (G.5) follows from (G.4). Therefore for any u /∈ O(Jl;P),

EPψ0,α
[D1,1(T, ε, Jl, u)]

≤
T∑
t=1

P
(∥∥∥P̂ t − P

∥∥∥
1
≥ δe, Et

)
≤

T∑
t=1

P

({
|p̂kij,t − pkij| ≥

δe
KS2

max

, for some k ∈ K, i, j ∈ Sk
}
, Et
)

≤
T∑
t=1

K∑
k=1

∑
(i,j)∈Sk×Sk

P

(
|p̂kij,t − pkij| ≥

δe
KS2

max

, Et
)

≤ 2KS2
max(Smax + 1)β,

262

for L ≥ CP (δe/(KS
2
max)), where the last equation follows from Lemma IV.13.

263

APPENDIX H

Proof of Lemma IV.18

Since hP̃ is continuous in ψ by Lemma IV.2 for any P̃ such that Assumption IV.1

holds, and since r̄(ψ), VP̃ , TP̃ are continuous in P̃ , we have for any ψ ∈ Ψ:

gP̂ + hP̂ (ψ) = arg max
u∈U

{
r̄(ψ, u) +

∑
y∈Su

VP̂ (ψ, y, u)hP̂ (TP̂ (ψ, y, u))

}

= arg max
u∈U

{
r̄(ψ, u) +

∑
y∈Su

VP (ψ, y, u)hP̂ (TP (ψ, y, u)) + q(P , P̂ , ψ, u)

}
, (H.1)

for some function q such that

lim
P̂→P

q(P , P̂ , ψ, u) = 0, ∀ψ ∈ Ψ, u ∈ U .

Let r̄(P , P̂ , ψ, u) = r̄(ψ, u) + q(P , P̂ , ψ, u). We can write (H.1) as

gP̂ + hP̂ (ψ) = arg max
u∈U

{
r̄(P , P̂ , ψ, u) +

∑
y∈Su

VP (ψ, y, u)hP̂ (TP (ψ, y, u))

}
. (H.2)

Note that (H.2) is the average reward optimality equation for a system with set of

264

transition probability matrices P , and perturbed rewards r̄(P , P̂ , ψ, u). Since

lim
P̂→P

r(P , P̂ , ψ, u) = r̄(ψ, u), ∀ψ ∈ Ψ, u ∈ U,

we expect hP̂ to converge to hP . Next, we prove that this is true. Let FP̂ denote

the dynamic programming operator defined in (4.3), with transition probabilities P

and rewards r(P , P̂ , ψ, u). Then, by S-1 of Lemma (IV.2), there exists a sequence of

functions v0,P̂ , v1,P̂ , v2,P̂ , . . . such that v0,P̂ = 0, vl,P̂ = FP̂ vl−1,P̂ and another sequence

of functions v0,P , v1,P , v2,P , . . . such that v0,P = 0, vl,P = FP vl−1,P , for which

lim
l→∞

vl,P̂ = hP̂ , (H.3)

lim
l→∞

vl,P = hP , (H.4)

uniformly in ψ.

Next, we prove that for any l ∈ {1, 2, . . .}, limP̂→P vl,P̂ = vl,P uniformly in ψ. Let

qmax(P , P̂) = sup
u∈U,ψ∈Ψ

|q(P , P̂ , ψ, u)| .

By Equation 2.27 in Platzman (1980), we have

sup
ψ∈Ψ

{
|vl,P̂ (ψ)− vl,P (ψ)|

}
= sup

ψ∈Ψ

{
|F l−1v1,P̂ (ψ)− F l−1vl,P (ψ)|

}
≤ sup

ψ∈Ψ

{
|v1,P̂ (ψ)− v1,P (ψ)|

}
≤ 2qmax(P , P̂), (H.5)

where the last inequality follows form v0,P = 0, v0,P̂ = 0, and

v1,P (ψ) = max
u∈U
{r̄(ψ, u)}

265

v1,P̂ (ψ) = max
u∈U

{
r̄(ψ, u) + q(P , P̂ , ψ, u)

}
.

Consider a sequence {P̂ n}∞n=1 which converges to P . Since limn→∞ qmax(P , P̂ n) = 0,

for any ε > 0, there exists N0 such that for all n > N0 we have qmax(P , P̂ n) < ε/2,

which implies by (H.5) that

sup
ψ∈Ψ

{
|vl,P̂n(ψ)− vl,P (ψ)|

}
< ε,

for all ψ ∈ Ψ. Therefore, for any l ∈ {1, 2, . . .}, we have

lim
P̂→P

vl,P̂ = vl,P , (H.6)

uniformly in ψ. Using (H.3) and (H.4), for any ε > 0 and any n ∈ {1, 2, . . .}, there

exists N1(n) such that for any l > N1(n) and ψ ∈ Ψ, we have

|vl,P̂n(ψ)− hP̂n(ψ)| < ε/3,

|vl,P (ψ)− hP (ψ)| < ε/3.

Similarly using (H.6), for any ε > 0, there exists N0 such that for all n > N0 and

ψ ∈ Ψ, we have

|vl,P̂n(ψ)− vl,P (ψ)| ≤ ε/3. (H.7)

These imply that for any ε > 0, there exists N2 ≥ N0 and such that for all n > N2,

such that for all ψ ∈ Ψ, we have

(H.8)

|hP (ψ)− hP̂n(ψ)| ≤ |hP (ψ)− vl,P (ψ)|+ |vl,P̂n(ψ)− vl,P (ψ)|+ |vl,P̂n(ψ)− hP̂n(ψ)|

266

< ε,

since there exists some l > N1(n) such that (H.7) holds. Therefore, for any ε > 0

there exists some η > 0 such that |P − P̂ | < η implies |hP (ψ)− hP̂ (ψ)|∞ ≤ ε.

267

APPENDIX I

Proof of Lemma IV.19

We have by Lemma IV.18,

{∥∥∥P k − P̂ k
t

∥∥∥
1
< ς, ∀k ∈ K

}
⊂ {‖hP − ht‖∞ < ε} ,

which implies

{∥∥∥P k − P̂ k
t

∥∥∥
1
≥ ς, for some k ∈ K

}
⊃ {‖hP − ht‖∞ ≥ ε} .

Then

EPψ0,α
[D1,2(T, ε)] = EPψ0,α

[
T∑
t=1

I(Et,F ct (ε))

]

≤
T∑
t=1

P
(∥∥∥P k − P̂ k

t

∥∥∥
1
≥ ς, for some k ∈ K, Et

)
≤

K∑
k=1

∑
(i,j)∈Sk×Sk

T∑
t=1

P

(
|pkij − p̂kij,t| >

ς

S2
max

, Et
)

≤ 2KS2
max(Smax + 1)β ,

where the last equation follows from Lemma IV.13.

268

APPENDIX J

Proof of Lemma IV.20

Consider t > 0

|(ψ̂t)x − (ψt)x| =

∣∣∣∣∣
K∏
k=1

(
(P̂ k

t)τ
k

eksk
)
xk
−

K∏
k=1

(
(P k)τkeksk

)
xk

∣∣∣∣∣
≤

K∑
k=1

∣∣∣((P̂ k
t)τ

k

eksk
)
xk
−
(
(P k)τkeksk

)
xk

∣∣∣
≤

K∑
k=1

∥∥∥(P̂ k
t)τ

k

eksk − (P k)τ
k

eksk
∥∥∥

1

≤ C1(P)
K∑
k=1

∥∥∥P̂ k
t − P k

∥∥∥
1
, (J.1)

where last inequality follows from Lemma A.6. By (J.1)

∥∥∥ψ̂t − ψt∥∥∥
1
≤ |S1| . . . |SK |C1(P)

K∑
k=1

∥∥∥P̂ k
t − P k

∥∥∥
1
.

Thus we have

P
(∥∥∥ψ̂t − ψt∥∥∥

1
> ε, Et

)
≤ P

(
K∑
k=1

∥∥∥P̂ k
t − P k

∥∥∥
1
> ε/(|S1| . . . |SK |C1(P)), Et

)

269

≤
K∑
k=1

P
(∥∥∥P̂ k

t − P k
∥∥∥

1
> ε/(K|S1| . . . |SK |C1(P)), Et

)
≤

K∑
k=1

∑
(i,j)∈Sk×Sk

P

(
|p̂kij,t − pkij| >

ε

(KS2
max|S1| . . . |SK |C1(P))

, Et
)

≤ 2KS2
max

Smax + 1

t2
,

where last inequality follows from Lemma IV.13 since

L ≥ CP (ε/(KS2
max|S1| . . . |SK |C1(P))) .

Then,

EPψ0,α
[D2,1(T, ε)] =

T∑
t=1

Pψ0,α

(∥∥∥ψt − ψ̂t∥∥∥
1
> ε, Et

)
≤ 2KS2

max(Smax + 1)β.

270

APPENDIX K

Proof of Lemma VI.1

Let α̃j(b) be the arm selected by agent j in its bth block. Assume that agent j

has completed the b′th block.

Bi,j(b′) = 1 +
b′∑

b=K+1

I(α̃j(b) = i)

≤ l +
b′∑

b=K+1

I(α̃j(b) = i, Bi,j(b− 1) ≥ l)

≤ l +
b′∑

b=K+1

M∑
k=1

I
(
gk,j
b−1,Bk,j(b−1)

≤ gi,j
b−1,Bi,j(b−1)

, Bi,j(b− 1) ≥ l
)

≤ l +
M∑
k=1

b′∑
b=K+1

I

(
min

0<sk<b
gk,jb−1,sk

≤ max
l≤si<b

gi,jb−1,si

)

≤ l +
M∑
k=1

b′∑
b=1

b−1∑
sk=1

b−1∑
si=l

I
(
gk,jb−1,sk

≤ gi,jb−1,si

)
. (K.1)

Then, proceeding from (K.1) the same way as in the proof of Lemma E.2, but using

the Chernoff-Hoeffding bound given in Lemma A.7 for the IID reward process instead

of the large deviation bound for a Markov chain, for l =
⌈

8 ln b′

(µM−µi)2

⌉
, we have

E[Bi,j(bj(T))|bj(T) = b′] ≤ 8 ln b′

(µM − µi)2
+ 1 +Mβ ,

271

which implies

E[Bi,j(bj(T))] ≤ 8 lnT

(µM − µi)2
+ 1 +Mβ .

272

APPENDIX L

Proof of Lemma VI.3

The event that the index of any one of the optimal arms calculated by agent j is

in wrong order at vjth block of agent j is included in the event

Ej(vj) :=
M⋃
a=1

K⋃
c=a+1

{ga,j
vj ,Ba,j(vj)

≤ gc,j
vj ,Bc,j(vj)

}.

Let Bi,j(b) denote the set of blocks that agent i is in, during the bth block of agent j.

The event that the index of any one of the optimal arms calculated by agent i 6= j is

in wrong order during any interval at vjth block of agent j is included in the event

Ei(vj) :=
⋃

vi∈Bi,j(vj)

M⋃
a=1

K⋃
c=a+1

{ga,i
vi,Ba,i(vi)

≤ gc,i
vi,Bc,i(vi)

}.

The event that the index of any one of the optimal arms calculated by any agent is

in wrong order during any interval at vjth block of agent j is included in the event

M⋃
i=1

Ei(vj).

Let B̃j(bj(T)) be the number of completed blocks of agent j up to time T in which

there is at least one agent who has a wrong order for an index of some optimal arm

273

during some part of a block of agent j. Then

B̃j(bj(T)) =

bj(T)∑
vj=1

I

(
M⋃
i=1

Ei(vj)

)
≤

M∑
i=1

bj(T)∑
vj=1

I(Ei(vj)).

Using union bound we have,

bj(T)∑
vj=1

I(Ej(vj)) ≤
bj(T)∑
vj=1

M∑
a=1

K∑
c=a+1

I(ga,j
vj ,Ba,j(vj)

≤ gc,j
vj ,Bc,j(vj)

), (L.1)

and

bj(T)∑
vj=1

I(Ei(vj)) ≤
bj(T)∑
vj=1

∑
vi∈Bi,j(vj)

M∑
a=1

K∑
c=a+1

I(ga,i
vi,Ba,i(vi)

≤ gc,i
vi,Bc,i(vi)

). (L.2)

Proceeding from (L.1) the same way as in the proof of Lemma VI.1, we have

E

bj(T)∑
vj=1

I(Ej(vj))

 ≤ M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

)
. (L.3)

In (L.2) for each block of agent j, the second sum counts the number of blocks of

agent i which intersects with that block of agent j. This is less than or equal to

counting the number of blocks of agent j which intersects with a block of agent i for

blocks 1, . . . , bi(T) + 1 of i. We consider block bi(T) + 1 of i because it may intersect

with completed blocks of agent j up to bj(T). Thus we have

bj(T)∑
vj=1

I(Ei(vj)) ≤
bi(T)+1∑
vi=1

∑
vj∈Bj,i(vi)

M∑
a=1

K∑
c=a+1

I(ga,i
vi,Ba,i(vi)

≤ gc,i
vi,Bc,i(vi)

)

with probability 1. Taking the conditional expectation we get

E

bj(T)∑
vj=1

I(Ei(vj))

∣∣∣∣∣|Bj,i(1)| = n1, . . . , |Bj,i(bi(T) + 1)| = nbi(T)+1



274

= E

bi(T)+1∑
vi=1

M∑
a=1

K∑
c=a+1

nviI(ga,i
vi,Ba,i(vi)

≤ gc,i
vi,Bc,i(vi)

)


≤ max

vi=1:bi(T)+1
E

 bi(T)+1,M,K∑
vi=1,a=1,c=a+1

I(ga,i
vi,Ba,i(vi)

≤ gc,i
vi,Bc,i(vi)

)

 .
Using the above result and following the same approach as in (L.3), we have

E

bj(T)∑
vj=1

I(Ei(vj))


≤ E

[
max

vi=1:bi(T)+1
|Bj,i(vi)|

](M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

))
. (L.4)

The next step is to bound E
[
maxvi=1:bi(T)+1 |Bj,i(vi)|

]
. Let li(vi) be the length

of the vith block of agent i. Clearly we have |Bj,i(vi)| ≤ li(vi) with probability

1. Therefore E
[
maxvi=1:bi(T)+1 |Bj,i(vi)|

]
≤ E

[
maxvi=1:bi(T)+1 li(vi)

]
. Note that the

random variables li(vi), vi = 1 : bi(T) + 1 are independent due to Markov property

but not necessarily identically distributed since agent i might play different arms at

different blocks.

Let pkxy(t) denote the t step transition probability from state x to y of arm k. Since

all arms are ergodic there exists N > 0 such that pkxy(N) > 0, for all k ∈ K, x, y ∈ Sk.

Let p∗ = mink∈K,x,y∈Sk p
k
xy(N). We define a geometric random variable lmax with

distribution

P (lmax = 2Nz) = (1− p∗)z−1p∗, z = 1, 2, . . .

It is easy to see that

P (li(vi) ≤ z) ≥ P (lmax ≤ z), z = 1, 2, . . .

275

Consider an IID set of random variables {lmax(1), . . . , lmax(bi(T) + 1)} where each

lmax(v), v = 1, 2, . . . , bi(T) + 1, have the same distribution as lmax. Since li(.) and

lmax(.) are non-negative random variables we have

E

[
max

vi=1:bi(T)+1
li(vi)

∣∣∣∣bi(T) = b

]
=
∞∑
z=0

P

(
max

vi=1:b+1
li(vi) > z

)

=
∞∑
z=0

(
1−

b+1∏
vi=1

P (li(vi) ≤ z)

)

≤
∞∑
z=0

(
1−

b+1∏
vi=1

P (lmax(vi) ≤ z)

)

= E

[
max

vi=1:bi(T)+1
lmax(vi)

∣∣∣∣bi(T) = b

]
.

Finally,

E

[
max

vi=1:bi(T)+1
lmax(vi)

∣∣∣∣bi(T) = b

]
=
∞∑
z=0

(
1− P (lmax ≤ z)b+1

)
= 2N

∞∑
z=0

(
1− P (lmax ≤ 2Nz)b+1

)
< 2N

(
1 +

1

λ

b+1∑
l=1

1

l

)
(L.5)

≤ 2N

(
1 +

1

λ
(lnT + 1)

)
, (L.6)

where λ = ln
(

1
1−p∗

)
, (L.5) follows from Equation 4 in Eisenberg (2008) and (L.6)

follows from bi(T) + 1 ≤ log T with probability 1. Using the above results on (L.4)

we get

E

bj(T)∑
vj=1

I(Ei(vj))


< 2N

(
1 +

1

λ
(lnT + 1)

)(M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

))
. (L.7)

276

Using (L.3) and (L.7), we have

E[B̃j(bj(T))] ≤ E

 M∑
i=1

bj(T)∑
vj=1

I(Ei(vj))


<

[
2N(M − 1)

(
1 +

1

λ
(lnT + 1)

)
+ 1

](M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

))
.

Thus we have

E[B′(T)] < M

[
2N(M − 1)

(
1 +

1

λ
(lnT + 1)

)
+ 1

]
×

M∑
a=1

K∑
c=a+1

(
8 lnT

(µa − µc)2
+ 1 + β

)
. (L.8)

277

APPENDIX M

Proof of Lemma VI.4

Let b be a block in which all agents know the correct order of the M -best channels

and b − 1 be a block in which there exists at least one agent whose order of indices

for M -best channels are different then the order of the mean rewards. We call such

an event a transition from a bad state to a good state. Then by Lemma VI.1 the

expected number of blocks needed to settle to an orthogonal configuration after block

b is bounded by OB. Since the expected number of such transitions is E[B′(T)], we

have E[H(T)] ≤ OBE[B′(T)].

278

BIBLIOGRAPHY

279

BIBLIOGRAPHY

Agrawal, R. (1995a), Sample mean based index policies with O(log(n)) regret for the
multi-armed bandit problem, Advances in Applied Probability, 27 (4), 1054–1078.

Agrawal, R. (1995b), The continuum-armed bandit problem, SIAM journal on control
and optimization, 33, 1926.

Agrawal, R., D. Teneketzis, and V. Anantharam (1989), Asymptotically efficient
adaptive allocation schemes for controlled Markov chains: Finite parameter space,
IEEE Trans. Automat. Control, pp. 258–267.

Ahmad, S., M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari (2009), Optimality
of myopic sensing in multichannel opportunistic access, Information Theory, IEEE
Transactions on, 55 (9), 4040–4050.

Anandkumar, A., N. Michael, A. Tang, and A. Swami (2011), Distributed algorithms
for learning and cognitive medium access with logarithmic regret, Selected Areas
in Communications, IEEE Journal on, 29 (4), 731–745.

Anantharam, V., P. Varaiya, and J. Walrand (1987a), Asymptotically efficient al-
location rules for the multiarmed bandit problem with multiple plays-Part I: IID
rewards, IEEE Trans. Automat. Contr., pp. 968–975.

Anantharam, V., P. Varaiya, and J. Walrand (1987b), Asymptotically efficient allo-
cation rules for the multiarmed bandit problem with multiple plays-Part II: Marko-
vian rewards, IEEE Trans. Automat. Contr., pp. 977–982.

Arora, R., O. Dekel, and A. Tewari (2012), Online bandit learning against an adaptive
adversary: from regret to policy regret, arXiv preprint arXiv:1206.6400.

Audibert, J., R. Munos, and C. Szepesvári (2009), Exploration-exploitation tradeoff
using variance estimates in multi-armed bandits, Theoretical Computer Science,
410 (19), 1876–1902.

Auer, P., and R. Ortner (2010), UCB revisited: Improved regret bounds for the
stochastic multi-armed bandit problem, Periodica Mathematica Hungarica, 61 (1),
55–65.

Auer, P., N. Cesa-Bianchi, and P. Fischer (2002), Finite-time analysis of the multi-
armed bandit problem, Machine Learning, 47, 235–256.

280

Auer, P., N. Cesa-Bianchi, Y. Freund, and R. Schapire (2003), The nonstochastic
multiarmed bandit problem, SIAM Journal on Computing, 32 (1), 48–77.

Auer, P., R. Ortner, and C. Szepesvári (2007), Improved rates for the stochastic
continuum-armed bandit problem, Learning Theory, pp. 454–468.

Auer, P., T. Jaksch, and R. Ortner (2009), Near-optimal regret bounds for reinforce-
ment learning.

Bartlett, P., V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and A. Tewari (2008), High-
probability regret bounds for bandit online linear optimization.

Bergemann, D., and J. Valimaki (2006), Bandit problems, Cowles Foundation dis-
cussion paper, 1551.

Bertsimas, D., and J. Niño-Mora (1996), Conservation laws, extended polymatroids
and multiarmed bandit problems; a polyhedral approach to indexable systems,
Mathematics of Operations Research, pp. 257–306.

Bianchi, C., and G. Lugosi (2009), Combinatorial bandits, in COLT 2009: proceedings
of the 22nd Annual Conference on Learning Theory, Montréal, Canada, Omnipress.

Brezzi, M., and T. Lai (2000), Incomplete learning from endogenous data in dynamic
allocation, Econometrica, 68 (6), 1511–1516.

Bubeck, S., R. Munos, G. Stoltz, and C. Szepesvari (2008), Online optimization
in X-armed bandits, in Twenty-Second Annual Conference on Neural Information
Processing Systems, Vancouver, Canada.

Burnetas, A., and M. Katehakis (1997), Optimal adaptive policies for Markov decision
processes, Mathematics of Operations Research, pp. 222–255.

Chlebus, E. (2009), An approximate formula for a partial sum of the divergent p-
series, Applied Mathematics Letters, 22, 732–737.

Cope, E. (2009), Regret and convergence bounds for a class of continuum-armed
bandit problems, Automatic Control, IEEE Transactions on, 54 (6), 1243–1253.

Dai, W., Y. Gai, B. Krishnamachari, and Q. Zhao (2011), The non-bayesian restless
multi-armed bandit: A case of near-logarithmic regret, in Acoustics, Speech and
Signal Processing (ICASSP), 2011 IEEE International Conference on, pp. 2940–
2943, IEEE.

Dani, V., T. Hayes, and S. Kakade (2008), Stochastic linear optimization under ban-
dit feedback, in Proceedings of the 21st Annual Conference on Learning Theory
(COLT).

D.W. Turner, J. S., D.M. Young (1995), A Kolmogorov inequality for the sum of inde-
pendent Bernoulli random variables with unequal means, Statistics and Probability
Letters, 23, 243–245.

281

Eisenberg, B. (2008), On the expectation of the maximum of IID geometric random
variables, Statistics and Probability Letters, 78 (2), 135–143.

Even-Dar, E., S. Mannor, and Y. Mansour (2002), PAC bounds for multi-armed
bandit and Markov decision processes, in Computational Learning Theory, pp. 193–
209, Springer.

Frostig, E., and G. Weiss (1999), Four proofs of Gittins multiarmed bandit theorem,
Applied Probability Trust, pp. 1–20.

Gai, Y., B. Krishnamachari, and M. Liu (2011), On the combinatorial multi-armed
bandit problem with Markovian rewards, in IEEE Global Communications Confer-
ence (GLOBECOM).

Gai, Y., B. Krishnamachari, and R. Jain (2012a), Combinatorial network optimization
with unknown variables: Multi-armed bandits with linear rewards and individual
observations, to appear in IEEE/ACM Trans. Netw.

Gai, Y., B. Krishnamachari, and M. Liu (2012b), Online learning for combinato-
rial network optimization with restless Markovian rewards, to appear in the 9th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON).

Garivier, A., and O. Cappé (2011), The KL-UCB algorithm for bounded stochastic
bandits and beyond, Arxiv preprint arXiv:1102.2490.

Garivier, A., and E. Moulines (2008), On upper-confidence bound policies for non-
stationary bandit problems, arXiv preprint arXiv:0805.3415.

Gillman, D. (1998), A Chernoff bound for random walks on expander graphs, SIAM
Journal on Computing, 27, 1203.

Gittins, J., and D. Jones (1972), A dynamic allocation index for sequential design of
experiments, Progress in Statistics, Euro. Meet. Statis., 1, 241–266.

Gittins, J., R. Weber, and K. Glazebrook (1989), Multi-armed bandit allocation in-
dices, vol. 25, Wiley Online Library.

Guha, S., K. Munagala, and P. Shi (2010), Approximation algorithms for restless
bandit problems, Journal of the ACM (JACM), 58 (1), 3.

Hardin, G. (2009), The tragedy of the commons*, Journal of Natural Resources Policy
Research, 1 (3), 243–253.

Hazan, E., and S. Kale (2009), Better algorithms for benign bandits, in Proceedings of
the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 38–47,
Society for Industrial and Applied Mathematics.

Jiang, C., and R. Srikant (2011), Parametrized stochastic multi-armed bandits with
binary rewards, in American Control Conference (ACC), 2011, pp. 119–124, IEEE.

282

Kakhbod, A., and D. Teneketzis (2010), Power allocation and spectrum sharing in
multi-user, multi-channel systems with strategic users, in Decision and Control
(CDC), 2010 49th IEEE Conference on, pp. 1088–1095, IEEE.

Kale, S., L. Reyzin, and R. Schapire (2010), Non-stochastic bandit slate problems,
Advances in Neural Information Processing Systems, 23, 1054–1062.

Kleinberg, R. (2004), Nearly tight bounds for the continuum-armed bandit problem,
Advances in Neural Information Processing Systems, 17, 697–704.

Kleinberg, R., A. Slivkins, and E. Upfal (2008), Multi-armed bandits in metric spaces,
in Proceedings of the 40th annual ACM symposium on Theory of computing, pp.
681–690, ACM.

Kleinberg, R., G. Piliouras, and E. Tardos (2009), Multiplicative updates outperform
generic no-regret learning in congestion games, in Annual ACM Symposium on
Theory of Computing (STOC).

Lai, T. L., and H. Robbins (1985), Asymptotically efficient adaptive allocation rules,
Advances in Applied Mathematics, 6, 4–22.

Langford, J., and T. Zhang (2007), The epoch-greedy algorithm for contextual multi-
armed bandits, Advances in Neural Information Processing Systems, 20.

Lezaud, P. (1998), Chernoff-type bound for finite Markov chains, Annals of Applied
Probability, pp. 849–867.

Liu, H., K. Liu, and Q. Zhao (2010), Learning in a changing world: Non-bayesian
restless multi-armed bandit, Techinal Report, UC Davis.

Liu, H., K. Liu, and Q. Zhao (2011), Learning and sharing in a changing world:
Non-bayesian restless bandit with multiple players, in Information Theory and Ap-
plications Workshop (ITA), 2011.

Liu, K., and Q. Zhao (2010), Distributed learning in multi-armed bandit with multiple
players, Signal Processing, IEEE Transactions on, 58 (11), 5667–5681.

Liu, K., and Q. Zhao (2011), Multi-armed bandit problems with heavy-tailed reward
distributions, in Communication, Control, and Computing (Allerton), 2011 49th
Annual Allerton Conference on, pp. 485–492, IEEE.

López-Beńıtez, M., and F. Casadevall (2011), Discrete-time spectrum occupancy
model based on Markov chain and duty cycle models, in New Frontiers in Dynamic
Spectrum Access Networks (DySPAN), 2011 IEEE Symposium on, pp. 90–99, IEEE.

Mahajan, A., and D. Teneketzis (2008), Multi-armed bandit problems, Foundations
and Applications of Sensor Management, pp. 121–151.

283

Mannor, S., and J. Tsitsiklis (2004), The sample complexity of exploration in the
multi-armed bandit problem, The Journal of Machine Learning Research, 5, 623–
648.

McMahan, H., and A. Blum (2004), Online geometric optimization in the bandit
setting against an adaptive adversary, Learning theory, pp. 109–123.

Mersereau, A., P. Rusmevichientong, and J. Tsitsiklis (2009), A structured multi-
armed bandit problem and the greedy policy, Automatic Control, IEEE Transac-
tions on, 54 (12), 2787–2802.

Mitrophanov, A. Y. (2005), Senstivity and convergence of uniformly ergodic Markov
chains, J. Appl. Prob., 42, 1003–1014.

Monderer, D., and L. S. Shapley (1996), Potential games, Games and Economic
Behavior, 14 (1), 124–143.

Nino-Mora, J. (2001), Restless bandits, partial conservation laws and indexability,
Advances in Applied Probability, 33 (1), 76–98.

Ortner, P. (2007), Logarithmic online regret bounds for undiscounted reinforcement
learning, in Advances in Neural Information Processing Systems 19: Proceedings of
the 2006 Conference, vol. 19, p. 49, The MIT Press.

Ortner, R. (2008), Online regret bounds for Markov decision processes with deter-
ministic transitions, in Algorithmic Learning Theory, pp. 123–137, Springer.

Pandey, S., D. Chakrabarti, and D. Agarwal (2007), Multi-armed bandit problems
with dependent arms, in Proceedings of the 24th international conference on Ma-
chine learning, pp. 721–728, ACM.

Papadimitriou, C., and J. Tsitsiklis (1999), The complexity of optimal queuing net-
work control, Mathematics of Operations Research, 24 (2), 293–305.

Platzman, L. K. (1980), Optimal infinite-horizon undiscounted control of finite prob-
abilistic systems, SIAM J. Control Optim., 18, 362–380.

Robbins, H. (1952), Some aspects of the sequential design of experiments, Bulletin of
the American Mathematical Society, 58, 527–535.

Rosenthal, R. (1973), A class of games possessing pure-strategy Nash equilibria, In-
ternational Journal of Game Theory, 2, 65–67.

Rosin, C. (2011), Multi-armed bandits with episode context, Annals of Mathematics
and Artificial Intelligence, pp. 1–28.

Rusmevichientong, P., and J. Tsitsiklis (2010), Linearly parameterized bandits, Math-
ematics of Operations Research, 35 (2), 395–411.

Sandholm, W. (2011), Population games and evolutionary dynamics, MIT press.

284

Sheng, S. P., and M. Liu (2012), Optimal contract design for an efficient secondary
spectrum market, in 3rd International Conference on Game Theory for Networks
(GAMENETS).

Slivkins, A. (2009), Contextual bandits with similarity information, Arxiv preprint
arXiv:0907.3986.

Slivkins, A., and E. Upfal (2008), Adapting to a changing environment: The Brownian
restless bandits, in Proc. 21st Annual Conference on Learning Theory, pp. 343–354.

Smith, J. M. (1982), Evolution and the theory of games, Cambridge University Press.

Tekin, C., and M. Liu (2010), Online algorithms for the multi-armed bandit prob-
lem with Markovian rewards, in Proc. of the 48th Annual Allerton Conference on
Communication, Control, and Computing, pp. 1675–1682.

Tekin, C., and M. Liu (2011a), Adaptive learning of uncontrolled restless bandits
with logarithmic regret, in Proc. of the 49th Annual Allerton Conference on Com-
munication, Control, and Computing, pp. 983–990.

Tekin, C., and M. Liu (2011b), Online learning in opportunistic spectrum access: A
restless bandit approach, in Proc. of the 30th Annual IEEE International Confer-
ence on Computer Communications (INFOCOM), pp. 2462 –2470.

Tekin, C., and M. Liu (2011c), Performance and convergence of multi-user online
learning, in Proc. of the 2nd International Conference on Game Theory for Net-
works (GAMENETS).

Tekin, C., and M. Liu (2012a), Approximately optimal adaptive learning in oppor-
tunustic spectrum access, in Proc. of the 31st Annual IEEE International Confer-
ence on Computer Communications (INFOCOM).

Tekin, C., and M. Liu (2012b), Performance and convergence of multi-user online
learning, in Mechanisms and Games for Dynamic Spectrum Allocation, edited by
T. Alpcan, H. Boche, M. Honig, and H. V. Poor, Cambridge University Press.

Tekin, C., and M. Liu (2012c), Online contract design with ordered preferences, in
Proc. of the 50th Annual Allerton Conference on Communication, Control, and
Computing.

Tekin, C., and M. Liu (2012d), Online learning of rested and restless bandits, Infor-
mation Theory, IEEE Transactions on, 58 (8), 5588–5611.

Tekin, C., M. Liu, R. Southwell, J. Huang, and S. Ahmad (2012), Atomic congestion
games on graphs and their applications in networking, Networking, IEEE/ACM
Transactions on, 20 (5), 1541 –1552.

Tewari, A., and P. Bartlett (2008), Optimistic linear programming gives logarithmic
regret for irreducible MDPs, Advances in Neural Information Processing Systems,
20, 1505–1512.

285

Thompson, W. (1933), On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples, Biometrika, pp. 285–294.

Tsitsiklis, J. (1994), A short proof of the Gittins index theorem, The Annals of Applied
Probability, pp. 194–199.

Varaiya, P., J. Walrand, and C. Buyukkoc (1985), Extensions of the multiarmed
bandit problem: the discounted case, Automatic Control, IEEE Transactions on,
30 (5), 426–439.

Wang, C., S. Kulkarni, and H. Poor (2005), Bandit problems with side observations,
Automatic Control, IEEE Transactions on, 50 (3), 338–355.

Weber, R. (1992), On the Gittins index for multiarmed bandits, The Annals of Applied
Probability, pp. 1024–1033.

Whittle, P. (1980), Multi-armed bandits and the Gittins index, Journal of the Royal
Statistical Society. Series B (Methodological), pp. 143–149.

Whittle, P. (1981), Arm-acquiring bandits, The Annals of Probability, pp. 284–292.

Whittle, P. (1988), Restless bandits: Activity allocation in a changing world, Journal
of Applied Probability, pp. 287–298.

Xiao, Y., and M. van der Schaar (2012), Spectrum sharing and resource allocation-
dynamic spectrum sharing among repeatedly interacting selfish users with imperfect
monitoring, IEEE Journal on Selected Areas in Communications, 30 (10), 1890.

286

