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Abstract 

Much of the work in modern human genetics and bioinformatics is focused on 

identifying the connection between our genomes and disease. Genome-wide 

association studies (GWAS) aim to identify common genetic variants across the 

genome associated with a disease or trait. Chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) studies aim to identify genes potentially regulated by disease-

related DNA-binding proteins. I describe two bioinformatic tools for researching 

associated variants from GWAS and visualizing the properties of their genomic regions. 

The first tool, Snipper, automatically reports the biological functions of genes near 

associated variants. The second tool, LocusZoom, creates visualizations of the genomic 

regions near associated variants. I identify 41 genetic variants associated with glycemic 

traits (fasting levels of glucose, insulin, and glucose measured 2 hours after ingestion), 

bringing the total number of variants associated with these traits to 53. Of these 

variants, 33 are also associated with increased type 2 diabetes (T2D) risk. I apply 

Snipper and LocusZoom to investigate the variants for connections with their associated 

traits. Future functional follow-up work to investigate these variants will yield additional 

insights into the mechanisms behind glucose control, and potentially T2D. For ChIP-seq 

studies, I describe ChIP-Enrich, a method that identifies likely biological function(s) of 

DNA-binding proteins given knowledge of the functions of the genes surrounding the 

proteins’ binding sites. ChIP-Enrich is compared with existing methods. The results 

show that earlier methods do not properly control for the confounding effect of gene 

length and intergenic distance, and as a result exhibit an inflated type 1 error rate. ChIP-

Enrich uses all ChIP-seq peaks for analysis, rather than only those near transcription 

start sites (TSSs) as in earlier methods, and can therefore potentially identify functions 

of proteins binding distally to TSSs. ChIP-Enrich may prove useful in future studies for 

identifying the function of DNA-binding proteins involved in T2D and other multi-genic 

diseases, and could also be applied to other whole-genome experiments, such as DNA 
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methylation experiments (MeDIP-seq) and open chromatin sequencing (DNAse-seq or 

FAIRE.)

xvi 
 



 

Chapter 1 Introduction 

Much of the work in my dissertation has been in response to research questions raised 

by genome-wide association studies (GWAS). GWAS have become an important 

approach for identifying common genetic variants associated with various complex 

traits. As of this writing, over 1600 variants for 249 traits have been identified either 

through individual GWAS, or GWAS meta-analysis 

(http://www.genome.gov/gwastudies/). It is clear that these studies have been quite 

successful in identifying genetic variants underlying complex traits, and it is likely that 

such discoveries will lead to an improved understanding of many diseases and 

phenotypes present in the general population.  

To perform a GWAS, one typically starts by collecting a large sample of many hundreds 

or thousands of individuals (Hirschhorn and Daly 2005; McCarthy et al. 2008). The 

number of individuals may vary considerably, depending on the availability of samples, 

the cost of phenotyping/genotyping, the penetrance of the disease, and the rarity of 

genetic variants one wishes to consider. These subjects may be sampled by a number 

of potential strategies depending on the trait or disease, for example: case/control 

sampling, population cohorts, sib-pairs or family pedigrees. The samples are then 

genotyped at hundreds of thousands or millions of single nucleotide polymorphisms 

(SNPs) using a commercial genotyping array. Once the data are collected, tests of 

association between the trait or disease phenotype and the genotypes of each SNP are 

conducted. Significant SNPs (either those reaching a genome-wide significance 

threshold, or at the very least the top ranked SNPs) are then usually taken forward for 

follow-up genotyping in a stage 2 study. Joint analysis of the significant SNPs in both 

the original GWAS (stage 1) and the stage 2 study is then performed, and those SNPs 

exceeding a genome-wide significance threshold (P≤5x10-8) are then considered to be 

identified associations (Skol et al. 2006).  
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It is often the case, however, that individual GWAS are under-powered to detect 

association owing to the small effect size of the common SNPs being assayed and 

relatively small sample sizes. To increase sample sizes and therefore power, GWAS on 

the same trait are meta-analyzed together (Begum et al. 2012). This has proven to be 

an effective strategy by a number of large-scale meta-analysis consortia identifying low 

effect variants with sample sizes numbering in the tens (Dupuis et al. 2010; Voight et al. 

2010; Strawbridge et al. 2011) and hundreds (Speliotes et al. 2010) (Teslovich et al. 

2010) of thousands.  

Once associated SNPs have been identified, either by GWAS or GWAS meta-analysis, 

it is usually unclear how they may be functionally related to the trait of interest (Wang et 

al. 2010). The associated SNP is often in linkage disequilibrium (LD) with other SNPs or 

variants in the genomic region, making identification of the true causal variant(s) 

difficult. Even if the truly causal variant(s) were known, it still may not be clear how that 

variant(s) functions biologically. One possible mechanism is that the variant causes an 

amino acid substitution, potentially altering the function of a protein. Another possible 

mechanism could be that SNPs influence the expression of one or more genes, perhaps 

by altering DNA regulatory domains such as promoters, enhancers, and silencers, or by 

changing a genes rate of transcription via synonymous variants within a gene. 

Therefore, we examine the genes underlying association signals to shed light on the 

potential mechanism through which these variants are acting.  

In chapter 1, I introduce software called Snipper that is designed to aid in the research 

of genes near associated SNPs. This software eliminates many of the challenges 

present in systematically researching the numerous genes near association signals. For 

example, in a recent meta-analysis of GWAS for lipid traits, there were 866 genes within 

300KB of 101 independent associated SNPs. Clearly, researching this number of genes 

manually would prove difficult for a number of reasons: 1) retrieving each gene’s 

information is itself a time-consuming task, 2) reviewing each gene for relevance to the 

trait, without a method of searching the available information, is quite difficult, and 3) 

organizing the information in a fashion suitable for review would be exhaustively time-

consuming. Snipper provides solutions for these problems by automatically identifying 
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genes near associated SNPs, downloading their latest information from public 

databases, searching the information for relevant terms, and formatting the information 

for display to the user.  

When considering a genome-wide association signal, we are not only interested in the 

genes, but other genetic and genomic features in the region. Visualizing these features 

simultaneously can aid in our understanding of the nature of the association. Such 

features include: the extent of the association signal, either in terms of p-values, or 

linkage disequilibrium with nearby variants, position of the signal relative to nearby 

genes, recombination hotspots, and variant annotations. Seeing these features plotted 

together can help identify interesting patterns in the region. For example, one might 

identify potential secondary signals (SNPs) contained within recombination hotspots 

that are not in LD with the most strongly associated SNP.  

In chapter 2, I introduce a tool called LocusZoom that allows visualization of results from 

a genome-wide association scan or meta-analysis. LocusZoom creates plots that can 

display all of the features mentioned above. LocusZoom also provides the ability to 

create plots from published meta-analysis results for multiple traits. This allows 

researchers to look up genomic regions of interest or genes from their current study in 

one of our available GWAS or meta-analysis scans and to look for association signals 

with their trait of interest. LocusZoom improves on previous tools by providing support 

for multiple sources of LD information (1000 Genomes, HapMap), functional annotation 

of SNPs, the ability to plot large (> 500 kb) regions, greatly improved automated gene 

spacing, and a batch mode that can create plots for many traits and loci at once. 

LocusZoom exists as both a web program and a downloadable software package that 

can be run locally, without the need to upload results to a server thus providing 

confidentiality. Our paper introducing LocusZoom was published in Bioinformatics in 

2010 (Pruim et al. 2010), and became the 8th most cited paper in the journal for that 

year. To date, LocusZoom has been used to create over 110,000 plots on our website, 

the standalone software has been downloaded over 500 times, and our plots are often 

featured in many prominent publications and journals, for example: (Willer et al. 2009; 

Teslovich et al. 2010; Voight et al. 2010; Burdon et al. 2011; Scott et al. 2012). My role 
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as part of the LocusZoom team was in collaborating on the design of the plots, creating 

the software and backend databases, and contributing to the manuscript.  

Meta-analysis of GWAS allows one to achieve greater power to detect association by 

increasing sample sizes (Chapman et al. 2011), but as meta-analysis sample sizes 

have increased the feasibility of testing small set of SNPs in a second stage of 10's or 

100's of thousands of samples had become more limiting. Genotyping costs and small 

panel sizes (of typically 20-30 SNPs) have prevented follow-up of many potentially 

associated variants. To genotype a greater number of potentially associated variants in 

a cost-effective manner, a number of meta-analysis consortia for various heart and 

metabolic traits partnered with Illumina to create the CardioMetabochip (hereafter 

referred to simply as the Metabochip) (Voight et al. 2012), a custom Illumina array of ~ 

200,000 SNPs designed primarily for two purposes: to facilitate large-scale investigation 

of loci from previous meta-analyses (~66,000 SNPs), and to provide SNPs for fine-

mapping of >250 known associated regions (~120,000 SNPs.)   

In chapter 3, I present my work with the Meta-Analysis of Glycaemic and Insulin-related 

Traits (MAGIC) consortium. Previously, MAGIC conducted meta-analyses of GWAS for 

glycaemic traits in non-diabetic individuals, identifying 16 novel loci for fasting glucose, 

2 for fasting insulin, and 5 for 2-hr glucose (Prokopenko et al. 2009; Dupuis et al. 2010; 

Saxena et al. 2010). Second stage genotyping was limited to a relatively small number 

of SNPs for each of these traits, and therefore only a handful of loci were able to be 

identified as genome-wide significant. In our present work, multiple studies within the 

consortium genotyped additional samples using the Metabochip, increasing our total 

discovery and replication sample size to 133,010 / 108,557 / 42,854 for studies of 

fasting glucose, fasting insulin, and 2-hour glucose, respectively. Our efforts lead to the 

discovery of 41 additional glycemic associations. My contributions as one of three lead 

analysts in this effort were to perform the statistical analyses and quality control for 

GWAS of 2-hr glucose, to research the discovered loci (all traits) with Snipper and 

visualize them with LocusZoom, to determine the effects of the glucose or insulin-raising 

alleles on the risk of diabetes in a meta-analysis of T2D GWAS and metabochip-based 
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studies (Morris et al. 2012), and to contribute to our manuscript published in Nature 

Genetics (Scott et al. 2012).  

While GWAS and meta-analysis studies, such as those we describe here, have been 

successful in identifying SNPs associated with common traits and diseases, they are 

dependent on having a deep catalog of SNPs and other sequence variants available for 

inclusion on a genotyping array. Within the last few years, whole genome sequencing of 

100's or 1000's of samples by individual research groups had been made possible by 

the introduction of efficient and large-scale genome sequencers by Illumina, Agilent, 

and other companies (Shendure and Ji 2008; Altshuler et al. 2010). Genome 

sequencing allows an unbiased view of the genome without the need for a priori 

knowledge of variants potentially present in a sample. This technology also allows for 

the discovery and genotyping of much rarer genetic variants (MAF < 1%) than were 

previously available in GWAS (Cirulli and Goldstein 2010).  

Sequencing technology has been quickly adapted for use in other areas beyond 

detection and analysis of sequence variants. One such application is to identify the 

binding regions of DNA-binding proteins, using chromatin immunoprecipitation with 

massively parallel DNA sequencing (ChIP-Seq) (Park 2009). This method allows for 

sequencing millions of short reads from regions in the genome where a protein of 

interest is bound. These reads are then fed into a statistical algorithm to call “peaks”, i.e. 

regions where reads have significantly piled up relative to a background distribution of 

reads (Zhang et al. 2008; Spyrou et al. 2009). Peaks are then considered to be the 

locations of the genome where the protein binds, under the biological conditions for the 

experiment (such as tissue type or cell line, or drug treatment.)  

In many cases, the biological function of the protein of interest is not well understood. A 

first step in understanding the function of the protein in a ChIP-seq experiment is to 

consider the functions of genes near the binding locations (peaks) of the protein. To do 

this, one could use gene set enrichment testing (Subramanian et al. 2005), which tests 

for an enrichment of genes containing a peak within or near biologically related sets of 

genes. Databases such as Gene Ontology (GO) (Ashburner et al. 2000) maintain sets 

of genes that are grouped together according to their known molecular functions, 
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biological processes, and cellular localizations. Using GO (or other databases) and this 

type of analysis, we can attempt to infer the biological function of the protein.  

Gene set enrichment testing applied to ChIP-seq peaks requires careful consideration 

of the potential biases present in the data. In the classic application of gene set 

enrichment analysis with differential gene expression data, each gene is a priori equally 

likely to be selected as differentially expressed. The same is often not true for ChIP-seq 

peaks, where genes of longer locus length are more likely to contain a peak (Taher and 

Ovcharenko 2009). Genes with longer (or shorter) locus lengths also tend to belong to 

specific GO terms (Ovcharenko et al. 2005; Taher and Ovcharenko 2009). Therefore, 

gene locus length can act as a confounder and can lead to spurious detection of 

enriched GO terms. Enrichment testing requires a way to account for gene locus length, 

and other potential confounders as they are discovered.  

In chapter 4, I introduce a method for performing gene set enrichment testing on ChIP-

seq peaks, called “ChIP-Enrich.” This method is capable of empirically adjusting for 

gene locus length and other confounding variables that could lead to biased enrichment 

results. I also compare ChIP-Enrich to two existing methods: Fisher’s exact test and a 

binomial test on the count of peaks within GO terms (Taher and Ovcharenko 2009), 

Through simulation and permutation, I show examples under which these methods have 

strongly anti-conservative type 1 error rates, while ChIP-Enrich has the expected (or 

slightly conservative) type 1 error rate, and therefore produces the best calibrated 

results (as defined by not exceeding the nominal thresholds for type 1 error) for 

performing gene set enrichment on ChIP-seq data. I also identify another potential 

confounder not currently considered by other methods – the mappability of a gene locus 

– and show how ChIP-Enrich is able to adjust for it. Through the application of ChIP-

Enrich to experimental data, I show that it is able to identify the function of two well-

studied transcription factors, E2F transcription factor 4 (E2F4) and glucocorticoid 

receptor (GR), and also discover a potentially novel function for GR in angiogenesis. 

With each dataset, I investigate whether the same GO terms are detectable using only 

those peaks near the transcription start site (TSS), instead of using all peaks in the 

data, and show that much of the information regarding the function of GR would be lost 
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without considering all peaks in the data. I have implemented ChIP-Enrich as an R 

package soon to be available through Bioconductor (Gentleman et al. 2004), providing 

researchers with an easy-to-use implementation that can test for gene set enrichment 

on over 15 databases spanning 20,000 sets of genes.  
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Chapter 2 Snipper: a tool for extracting and searching biological 

annotations of genes implicated by trait-associated SNPs 

2.1 Introduction 

During the last few years, genome-wide association studies (GWAS) have been 

conducted for a multitude of traits. A GWAS may identify a handful to hundreds of trait-

associated SNPs, located both within and outside of genes. It is usually not known how 

these genetic variants, or variants being tagged, function to influence trait variability. 

Biological follow-up could focus on SNPs with interesting annotation or on genes with 

potentially relevant biological function. To prioritize genes within an associated region, 

typical first steps are to search 1) the literature for known associations with the trait or 

related phenotypes and for biological functions, 2) biological databases for relevant 

gene annotation, and 3) OMIM entries for candidate genes. GWAS SNPs are more 

likely than randomly chosen SNPs to have eQTL associations (Gamazon et al. 2010). 

Searching the annotations of eQTL-associated genes can provide additional biological 

evidence. The rapid expansion in the number of associated regions identified from 

GWAS (Manolio et al. 2009) makes this type of search increasingly challenging to 

perform manually. 

To assist in this task, we developed Snipper, a command-line bioinformatics utility. 

Snipper performs four primary functions to investigate genes potentially related to 

associated SNPs (either by proximity or by association with gene expression) and 

identify genes biologically-related to the trait of interest. For each user-provided SNP, 

Snipper 1) finds genes located nearby in the genome or whose expression is associated 

with the SNP; 2) downloads relevant information on each of these genes from public 

databases; 3) searches information on these genes with user-supplied search terms; 

and 4) collects and organizes the resulting information into a single report.  
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There are a number of tools available for candidate gene prioritization, but there are few 

that can research a large number of genes and compile the information in a single, 

organized report. Existing tools that partially address this task include GeneSniffer 

(Thornblad et al. 2007) and VarioWatch (formerly GenoWatch) (Chen et al. 2008), 

however, these tools are focused more on gene prioritization than exhaustive yet easy-

to-read compilation of information. Snipper also places a greater emphasis on text 

matches: searching all gene information, searching PubMed and OMIM for relevant 

matches to user-supplied terms, and highlighting relevant terms throughout the report, 

making reading and identifying interesting biological evidence easier. Snipper is a 

downloadable open-source tool, which allows users to integrate it into their own 

pipelines, and avoids upload of sensitive information such as SNP names to an external 

site. Finally, Snipper includes information on genes whose expression is associated with 

the user-provided SNPs, in addition to focusing on genes in the nearby genomic 

intervals.   

2.2 Methods 

2.2.1 Implementation 

Snipper is a command line-driven software utility written entirely in Python, with XML 

parsing capabilities provided by BeautifulSoup 

(http://www.crummy.com/software/BeautifulSoup/). Positions of SNPs and genes are 

downloaded from the UCSC FTP site and stored locally. Annotation information on 

genes is downloaded from NCBI using the E-Utilities API (Maglott et al. 2011) at each 

invocation of the program to ensure that returned data are up to date. The same API is 

used to download data from OMIM and PubMed. All information is stored locally in an 

object-oriented database in memory before being formatted for display. The HTML 

report is created using Sphinx (http://sphinx.pocoo.org), a module for Python used for 

creating formatted documentation. Typical runtime is ~6 seconds per gene on an Intel 

Xeon X5660 (2.8 Ghz) CPU, although runtime varies depending on the amount of 

information available for each gene. Snipper requires Python version 2.6 or later. 
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2.2.2 Databases and gene annotations 

We currently use NCBI databases as our primary resource for gene-related information. 

Gene annotations are retrieved from Entrez Gene, and include: full gene description, 

summary text regarding the gene’s function and cellular localization, phenotypes, KEGG 

pathways, Gene ontology (GO) terms, and GeneRIFs. We query the OMIM database for 

phenotypes related to each gene, and return the OMIM description and OMIM ID. We 

also query the PubMed data-base for articles linked to a gene, and display a user-

defined number of the most recent article citations. If a user provides search terms, we 

search for PubMed articles matching any one of the relevant terms and the gene, and 

display these articles as well. The user can optionally choose to perform a search for 

each term and gene, rather than performing a single search that matches any term. 

Genes with mRNA expression levels associated with user-provided SNPs are found by 

querying the SCAN database (Gamazon et al. 2010). We search the Michigan 

Molecular Interactions (MiMI) (Jayapandian et al. 2007) database for direct interactions 

between pairs of genes. For each interaction, we display the GO cellular 

component/process/function terms, the directionality of the interaction, the public 

databases in which the interaction was reported, whether the interaction was identified 

in vivo or in vitro, and the PubMed IDs for articles that cite this interaction. 

2.2.3 Usage 

The user provides a SNP or list of SNPs, for example the most significant trait-

associated SNP from each GWAS region. Snipper searches for genes located nearby 

or whose mRNA expression levels are associated with each SNP, and downloads 

information for each gene. For genes selected based on proximity to the SNP, the user 

can control how far from each SNP to search and/or the maximum number of genes to 

return. For genes selected based on association of expression with a given SNP, the 

user can control the p-value threshold used to select genes. The user may supply a list 

of search terms, in which case Snipper will search the information on each gene for 

matches with these terms. Snipper also searches the PubMed database for each 

combination of gene and search term, and provides a list of articles that match both. All 
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this information is collected together into an HTML formatted report. A full list of 

parameters can be found in the documentation online. 

2.2.4 HTML report 

Snipper creates a formatted HTML report containing the information pulled from the 

various databases listed previously. The report consists of 5 main sections (Figure 2.1). 

The first section lists user input and settings given to run Snipper (Figure 2.2). An 

expression QTL section lists each gene whose expression was associated with a SNP 

given by the user, and the relevant information on each association from the SCAN 

database (Figure 2.3) (Gamazon et al. 2010). The gene information section contains 

each gene and its data from Entrez Gene, as well as PubMed articles, and search terms 

that matched each gene (Figure 2.5, Figure 2.6.) The gene-gene interaction section lists 

direct interactions between genes in the MiMI database (Figure 2.4) (Jayapandian et al. 

2007). Finally, a search terms section lists each search term given by the user, and 

where they matched within each gene’s information (Figure 2.7). This allows the user to 

easily navigate to genes that were relevant to a particular search query, for example all 

of those genes which match “diabetes” or “insulin.”  

 

Figure 2.1. Snipper HTML report table of contents. The initial table of contents page lists each section of 
information, the date when the report was created, and references to the Snipper website and documentation. A 
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search bar on the left is also available for searching through the report after-the-fact (queries will not be sent to NCBI, 
OMIM, PubMed, etc.).  

 

Figure 2.2. User input and settings section.  All of the settings used to run Snipper are listed on this page 
(truncated to fit – additional parameters are listed further down the page.)  
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Figure 2.3. Expression QTLs from SCAN. Each gene whose expression is associated with a user-given SNP is 
shown here, along with the relevant data from SCAN: the tissue type/cell line, population, organism, and p-value for 
the association test.  

 

Figure 2.4. Gene-gene interactions section.  This section lists directed interactions between all genes (those both 
near SNPs and within regions), along with any accompanying metadata downloaded from MiMI, including the type of 
interaction, the database from which the interaction was obtained, and PubMed IDs for articles that either cite the 
interaction, or claim to have discovered it.  
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Figure 2.5. Gene information section. This section contains a table listing each gene found near the user-provided 
SNPs, or those genes and/or regions given by the user. Search terms that match the information for that gene are 
listed in the table. The number of PubMed articles is also listed for each gene. An example of an individual gene is 
given in Figure 2.6.  
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Figure 2.6. Example of a gene’s information section. Each gene is listed along with the user-provided SNPs that 
were near it, information retrieved from NCBI, OMIM, and PubMed such as the gene summary, OMIM report, Gene 
Ontology and KEGG pathways, Gene References Into Function (GeneRIFs), and recent PubMed citations. Search 
terms are highlighted in purple (e.g. “diabetes” within the NCBI summary shown above.) 

 

Figure 2.7. Search terms section. Search terms provided by the user before Snipper is executed are listed here, 
along with the location of where it matched within each gene’s information. The user can click one of the links and 
jump directly to where the term matched.  

15 
 



 

2.2.5 Snipper interface 

Snipper can be run either as a command-line program and using a graphical user 

interface. Figure 2.8 gives a synopsis of the multiple ways of running Snipper from the 

command-line. A full list of options is available in the program documentation 

(Supplementary Data 2.4.) Snipper also provides a GUI interface, which simplifies the 

operation of the program for users unfamiliar with command-line applications Figure 2.9. 

The interface is implemented using Python/Tk (http://wiki.python.org/moin/TkInter.) All 

of the options available to the command-line are also available from within the GUI.  

 

Figure 2.8. Synopsis of operating Snipper from the command-line.   
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Figure 2.9. Snipper’s graphical user interface.  

2.2.6 Example 

We ran Snipper on a list of 32 SNPs associated with type 2 diabetes (see Voight et al. 

2010, Table 3). We included “diabetes,” “insulin,” and “glucose” as search terms, and 

17 
 



 

extracted all genes within 250 kb of each SNP. A p-value threshold of 10-5 was used for 

considering a gene/SNP association from the eQTL database SCAN as significant. 

Figure 2.6 shows a truncated version of the “gene report,” a section of the report which 

contains a table listing all genes located near the SNPs, the search terms that matched 

information about this gene, and the number of PubMed articles found linked to this 

gene. The gene report also provides a list of each gene and its annotations and 

PubMed articles, with search terms highlighted throughout. A link to the full program 

output can be found in Supplementary Data (section 2.4.) 

2.3 Conclusion 

We have developed an easy to use command-line tool Snipper for efficient investigation 

of genes located near, or whose expression levels are associated with, SNPs identified 

by GWAS. Snipper quickly identifies these genes, downloads information from Entrez 

Gene, OMIM, PubMed, SCAN, and MiMI, and searches this information with user-

specified search terms. A comprehensive report on each gene is provided, as are 

summary tables to quickly identify genes with entries that match search terms. Through 

our use of online APIs for each database, the data are obtained at run-time and so 

guaranteed to be up-to-date each time a user runs Snipper. Finally, because it is 

command-line driven, Snipper can be easily incorporated into analysis pipelines or run 

in parallel for multiple projects. We also provide a graphical user interface, which 

simplifies execution for users unfamiliar with command-line applications. Snipper is 

open-source and available under the GNU General Public License v3.0. 

2.4 Supplementary Data 

Snipper program output can be found online at the following link:  

http://www.umich.edu/~welchr/snipper_supplemental/ 

Full program documentation (including a list of all available options) is available at the 

following link:  

http://csg.sph.umich.edu/boehnke/snipper/snipper_docs.pdf  
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Chapter 3 LocusZoom: regional visualization of genome-wide association 

scans 

3.1 Introduction 

Genome-wide association studies (GWAS) have identified hundreds of loci associated 

with complex human diseases and traits (Manolio et al. 2009). GWAS test for 

association with dichotomous or quantitative traits at millions of SNPs across the 

genome and can identify variants many hundreds of kilobases away from any known 

gene. The next challenge in human genetics will be to identify the causal variants and 

genes responsible for disease association at the many disease-associated loci identified 

from GWAS. An associated region may contain only a single strongly associated SNP, 

or more commonly, a set of SNPs with varying degrees of association due to local 

linkage disequilibrium (LD) patterns. When examining results from a GWAS, it is 

important to visually inspect regions showing association to determine the extent of the 

association signal and the position relative to nearby genes. Genes several hundred kb 

or more from an associated SNP may be functionally relevant (Loos et al. 2008). We 

have developed a web-based tool that provides graphical display of locus-specific 

association results and gives an overview of the extent of LD and the position relative to 

nearby genes and local recombination hotspots. 

3.2 Implementation 

3.2.1 Features and functionality 

The main panel of a LocusZoom plot shows association P-values on the -log10 scale on 

the vertical axis, and the chromosomal position along the horizontal axis (Fig. 1). The 

user can specify the region to display in one of three ways: (i) an index SNP and a 

window size, (ii) the chromosome together with start and stop positions or (iii) gene 

name and size of flanking region. We allow for the display of a ‘rug’ above the main 
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panel which gives a tick for any SNP in the results file, or for all SNPs from HapMap 

Phase II. The plots were designed to display ~1Mb windows of the genome, although 

for regions with several association signals or long-range LD patterns, plots extending 

further can be drawn. To identify SNPs that may be potentially causative, LocusZoom 

plots show not only the magnitude of association for each SNP, but also the pairwise LD 

pattern with the most strongly associated SNP or another user-specified SNP. Quick 

inspection can reveal the extent of the associated region and the location and number 

of SNPs in strong LD with the index SNP. In addition, a locus may show strongly 

associated variants that are weakly correlated, suggesting the presence of multiple 

independent association signals. Users may choose to display LD (r2 or D’) estimates 

from HapMap Phase II (CEU, YRI or JPT + CHB) or from the 1000 Genomes Project. 

Users of the standalone version of the software may also supply their own pre-

calculated LD, or provide genotype files in either MAP/PED or binary PLINK formats 

from which to calculate LD. LocusZoom caches the r2/D’ estimates to speed-up plot 

creation for future runs. LocusZoom is compatible with 1000 Genomes SNP naming 

format (chr:position) and will plot association results for novel SNPs identified by 

sequencing studies. We provide an option for the data point symbol to reflect genomic 

annotation (nonsense, non-synonymous, coding, UTR, splice variants, transcription 

factor binding sites and multi-species conservation), which is available for all SNPs in 

dbSNP or the 1000 Genomes Project (August 2009 release). The size of the data points 

can optionally reflect the square root of the sample size. The bottom panel of a 

LocusZoom plot shows the name and location of genes in the UCSC Genome Browser 

(Kent et al. 2002). Positions of exons are displayed, and the transcribed strand is 

indicated with an arrow. This allows the visual comparison of association results relative 

to coding regions. Gene names are automatically spaced relative to one another to 

avoid overlap. Currently used plotting tools include regional association plotter SNAP 

(Johnson et al. 2008) and LD-based viewers such as LD-Plus (Bush et al. 2010), 

CandiSNPer (Schmitt et al. 2010) and VALID (Jorgenson et al. 2009). LocusZoom 

provides additional features not currently available in any other single tool, such as: (i) 

the display of 1000 Genomes or novel SNPs from sequencing studies, (ii) functional 

annotation of SNPs, (iii) exon/intron distinction and automated gene spacing, (iv) ability 
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to plot regions larger than 500 kb, (v) no pre-selection of input files and (vi) web-based 

batch mode and availability of source code and databases for download and local 

installation of LocusZoom. 

 

Figure 3.1. Example LocusZoom plot. An example LocusZoom plot showing the HDL cholesterol-associated region 
near the MMAB gene (Kathiresan et al. 2009).  

3.2.2 Usage 

LocusZoom was written in R using the grid and lattice graphics packages and runs 

within a Python wrapper. SQLite tables with relevant data for recombination rate, SNP 

position, annotation and gene information can be accessed using Python’s built-in 

SQLite tools. A simple plot can be generated from the web form by uploading a file with 

SNP names and P-values, and specifying the region to be plotted and optional features 

using drop-down buttons. Typical run time for a single plot returned to the browser 

window is ~20 s, not including time required to upload a meta-analysis file, which varies 

according to the user’s internet upload speed and file size. To reduce upload time, 

users may choose to restrict data files to the region being plotted, or to compress the 

meta-analysis file using gzip. To generate a series of locus plots from the web form, 
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users can submit a specification file where custom specifications for each plot can be 

listed. When a specification file is used to draw many plots, a single PDF containing all 

generated plots is returned to the user by e-mail. Finally, users can download our 

scripts, which require R and Python, and associated databases in SQLite format to 

enable plot generation on their local Unix machine. Our databases are simple to create, 

and can be easily adapted to other organisms by following the instructions on our 

website. Full documentation of all features is available on the LocusZoom website 

(http://csg.sph.umich.edu/locuszoom/.) The LocusZoom webpage comes pre-loaded 

with genome-wide association results for HDL cholesterol, LDL cholesterol and 

triglycerides in ~20,000 individuals of European ancestry (Kathiresan et al. 2009) and a 

number of other large-scale meta-analyses (Table 3.1).  

Trait Consortium Trait Reference 

Lipids Total cholesterol 

HDL-C 

LDL-C 

Triglycerides 

(Teslovich et al. 2010) 

(Teslovich et al. 2010) 

(Teslovich et al. 2010) 

(Teslovich et al. 2010) 

GIANT BMI (Speliotes et al. 2010) 

Height (Lango Allen et al. 2010) 

Waist-hip ratio (Heid et al. 2010) 

MAGIC 2-hr Glucose (adjusted for BMI) (Saxena et al. 2010) 

Fasting glucose 

Fasting insulin 

HOMA-B 

HOMA-IR 

(Dupuis et al. 2010) 

(Dupuis et al. 2010) 

(Dupuis et al. 2010) 

(Dupuis et al. 2010) 

Hemoglobin A1(C) (Soranzo et al. 2010) 

Fasting proinsulin (Strawbridge et al. 2011) 

ICBP-GWAS Diastolic blood pressure 

Systolic blood pressure 

(Ehret et al. 2011) 

(Ehret et al. 2011) 
Table 3.1. Pre-loaded datasets.  Each dataset is a meta-analysis file provided by a consortium investigating a 
particular trait. Users can create plots using these datasets from the web.  
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3.3 Conclusion 

We have created a user-friendly tool to generate regional plots of association results in 

their genomic context. LocusZoom allows for quick visual inspection of the strength of 

association evidence, the extent of the association signal and LD, and the position of 

the associated SNPs relative to genes in the region. LocusZoom plots provide an option 

to size the data points relative to sample size and can display functional annotation. 

LocusZoom can be accessed from a simple web-based form with drop-down menus or 

by uploading a specification file to generate many plots at once. LocusZoom Python 

application, source code in R, and associated databases are available for download and 

we provide instruction for users to create custom database tables. It is anticipated that, 

in the future, additional publicly available result sets will be available for convenient 

viewing. 
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Chapter 4 Large-scale association study using the Metabochip array 

reveals new loci influencing glycemic traits 

4.1 Introduction 

The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) 

previously undertook meta-analyses of genome-wide association studies (GWAS) of 

glycemic traits in non-diabetic individuals, leading to the discovery of multiple robustly 

associated loci; 16 for fasting glucose concentrations (FG), two for fasting insulin 

concentrations (FI), and five for post-challenge glucose concentrations (2hGlu) 

(Prokopenko et al. 2009; Dupuis et al. 2010; Saxena et al. 2010). These and 

subsequent studies highlighted important biological pathways implicated in glucose and 

insulin regulation in non-diabetic children and adults (Ingelsson et al. 2010; Barker et al. 

2011). They also demonstrated that some, but not all, loci associated with differences in 

glycemic traits in non-diabetic individuals also affect the risk of type 2 diabetes (T2D) 

(Dupuis et al. 2010; Voight et al. 2010), and provided insights into the genetic 

architecture of each trait. Despite the success of these efforts, the identification of new 

loci was limited by de novo genotyping capacity and cost, such that only a limited 

number of promising loci from discovery analyses were taken forward to follow-up 

analyses (often those reaching a threshold of ~P<10-5 in discovery). Therefore, it is 

likely that many additional associations with common, low penetrance variants remain to 

be found among SNPs not previously selected for replication (Park et al. 2010; Yang et 

al. 2010a).   

The Illumina CardioMetabochip (Metabochip) is a custom Illumina iSELECT array of 

196,725 SNPs, developed to support cost-effective large-scale follow-up studies of 

putative association signals for a range cardiovascular and metabolic traits (~66,000 

SNPs) and to fine-map established trait-associated loci (~120,000 SNPs) (Figure 4.6) 

((Voight et al. 2012)). The ~66,000 follow-up SNPs were selected to enable genotyping 
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of the top 5,000 or 1,000 most significant association signals for each of 23 metabolic 

traits contributed by a range of consortia. As such, MAGIC contributed ~5,000 top 

ranking SNPs for FG, and ~1,000 each for FI and 2hGlu that had shown nominal 

association in discovery analyses (Pdiscovery<0.02) (Dupuis et al. 2010; Saxena et al. 

2010) as well as 16,202 SNPs to fine-map previously established loci.   

In the present study, we combined newly available samples with genotype data for 

these 66,000 follow-up SNPs with previous discovery meta-analyses to discover novel 

association signals with glycemic traits. This approach identified 38 glycemic 

associations not described in the previous discovery approaches in Europeans (Saxena 

et al. 2010): 20 for FG, 17 for FI and four for 2hGlu (in two loci, we observed 

associations with more than one trait). This takes the total number of loci associated 

with glycemic traits to 36 for FG, 19 for FI and 9 for 2hGlu explaining 4.8%, 1.2% and 

1.7% of the variance in these traits, respectively. Of these 53 non-overlapping loci, 33 

were also associated with T2D (P<0.05), which whilst supporting the previous assertion 

of an imperfect correlation between these traits, also implicates new T2D loci and 

increases the overlap between glycemic and T2D loci. 

4.2 Methods 

4.2.1 Study design 

The Illumina CardioMetabochip (Metabochip) is a custom Illumina iSELECT array of 

196,725 SNPs. It has been designed to support efficient large-scale follow-up of 

putative associations for glycemic (including fasting glucose (FG), fasting insulin (FI) 

and post-challenge glucose concentrations (2hGlu)) and other metabolic and 

cardiovascular traits (Figure 4.6) ((Voight et al. 2012)), and to enable the fine-mapping 

of established loci. Overall, there were 65,435 SNPs genotyped on the Metabochip for 

follow-up of previous associations including a total of 23 cardio-metabolic traits. Traits 

contributing SNPs to the Metabochip were prioritized into “primary” (including FG) and 

“secondary” (including FI and 2hGlu) contributing ~5k and ~1k SNPs, respectively, from 

the most significantly associated variants for each phenotype in the discovery meta-

analyses from each contributing consortium. This included 5,055 SNPs for follow-up of 
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FG, 1,046 for FI, and 1,038 for follow up of 2hGlu associations. In the present analysis 

we focused our analysis on this set of “follow-up” SNPs available on the Metabochip to 

establish variants amongst these SNP associated with glycemic traits. While we also 

included newly available studies genotyped on genome-wide platforms, we limited our 

primary analyses to only these ~66,000 SNPs. 

4.2.2 Studies 

In the present effort, collaborating studies within the Meta-Analysis of Glucose and 

Insulin related traits Consortium (MAGIC) provided results for the 66,000 “follow-up” 

SNPs genotyped on Metabochip on a maximum total of 133,010 (FG)/ 108,557(FI)/ 

42,854(2hGlu) individuals. As well as those newly genotyped on the Metabochip 

platform, in our overall meta-analysis we were able to include further studies which had 

genotyped or imputed the same SNPs on other platforms. The largest proportion of our 

entire sample was directly genotyped on the Metabochip and comprised 53,622 (FG)/ 

42,384 (FI)/ 27,602 (2hGlu) individuals from 26/21/12 studies, respectively. We were 

also able to recruit 11,690 (FG)/8,813 (FI) individuals from up to 4 additional GWA 

studies (Prevend, Ascot (FG-only), Prosper, and TRAILS) (Table ST1) not included in 

the original meta-analysis (Dupuis et al. 2010). From another MAGIC study of sex-

specific associations with glycemic traits (Prokopenko on behalf of the MAGIC authors, 

personal communication), we were able to recruit another 15/13 independent studies 

comprising up to 25,618/23,130 individuals for FG and FI, respectively. The above 

studies were combined in a single fixed-effects meta-analysis with those studies 

included in the 2 original GWAS (Dupuis et al. 2010; Saxena et al. 2010): 20 (FG)/ 19 

(FI)/ 9 (2hGlu) studies and 42,080 (FG)/34,230 (FI)/15,252 (2hGlu) individuals, as 

described previously (Dupuis et al. 2010; Saxena et al. 2010). The study and individual 

counts from the original GWAS excluded the family-based SardiNIA study where, 

initially, a large number of the individuals had imputed genotype data only. The entire 

sample was directly genotyped on Metabochip, so those data were included in place of 

the original GWAS. Some studies had genotyping data available from both Metabochip 

and genome-wide arrays but from entirely independent samples within the studies 

(Table ST1). Full study characteristics of all Metabochip studies are shown in Table 
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ST1, while data from discovery genome-wide studies and those from the sex-specific 

analyses are reported elsewhere (Dupuis et al. 2010; Saxena et al. 2010); Prokopenko 

on behalf of the MAGIC authors, personal communication). All participants of the main 

analysis were of European descent and mostly adults, although data from a total of 

7,872/7,164 adolescents were also included in the FG/FI meta-analyses (NFBC86, 

Leipzig-childhood_IFB, TRAILS and ALSPAC studies). All studies were approved by 

local research ethic committees and all participants gave informed consent. Results 

from the CLHNS study of Filipino women (N = 1,682/1,635 for FG/FI, respectively) 

genotyped on Metabochip were also available and were included in supplementary 

analyses to compare effect directions with European-descent studies alone. 

4.2.3 Phenotypes 

Analyses were undertaken for FG and FI measured in mmol/l and pmol/l, respectively. 

2hGlu was measured in mmol/l. Similar to the previous MAGIC discovery analysis 

(Dupuis et al. 2010; Saxena et al. 2010), individuals were excluded from the analysis if 

they had a physician diagnosis of diabetes, were on diabetes treatment (oral or insulin), 

or had a fasting plasma glucose equal to or greater than 7 mmol/l. Individual studies 

applied further sample exclusions, including pregnancy, non-fasting individuals and type 

1 diabetes, as detailed in Table ST1. Individuals from case control studies (Table ST1) 

were excluded if they had hospitalization or blood transfusion in the 2-3 months before 

phenotyping took place. 2hGlu measures were done 120 min after a glucose challenge 

during an oral glucose tolerance test (OGTT). Measures of FG and 2Glu made in whole 

blood were corrected to plasma level using the correction factor of 1.133. FI was 

measured in serum. Detailed descriptions of study-specific glycemic measurements are 

given in the Table ST1. 

4.2.4 Trait transformations and adjustment 

Analyses were performed for untransformed levels of FG, natural logarithm transformed 

FI and untransformed 2hGlu using a linear regression model. All analyses were 

adjusted for age (if applicable), study site (if applicable) and geographical covariates (if 
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applicable) to evaluate the association using an additive genetic model at each genetic 

SNP variant.  

4.2.4.1 BMI-adjusted analysis  

In the Fenland study (Table ST1), we investigated the correlation between BMI and 

natural logarithm-transformed FI, FG, and 2hGlu to establish the variation in each trait 

explained by BMI. Meta-analyses for each trait were also adjusted for body mass index 

(BMI). Metabochip and new GWA studies performed study-level analyses adjusted for 

BMI. Most studies in the original GWAS (except deCode, GEMs, KORAF4, TwinsUK 

studies) as well as from the studies analyzed in a sex-specific manner were included in 

BMI-adjusted meta-analysis. The original discovery 2hGlu meta-analysis adjusted for 

BMI (Saxena et al. 2010) was also included in these analyses. We also performed an 

analysis for 2hGlu adjusted for FG to investigate if additional variants would be 

identified with an effect on 2hGlu independent of FG and also to establish whether 

identified 2hGlu associations were driven by FG. 

4.2.5 Genotyping and quality control 

The Metabochip or other commercial genome-wide arrays were used by individual 

studies for genotyping. Details are presented in Table ST1, or are reported elsewhere 

(Dupuis et al. 2010; Saxena et al. 2010). The quality control criteria for both Metabochip 

and genome-wide arrays for filtering of poorly genotyped individuals or low quality SNPs 

prior to imputation included: (1) call rate<0.95; (2) sex-discrepancies; (3) ethnic outliers; 

(4) heterozygosity (Table ST1); (5) SNP minor allele frequency<0.01; (6) SNP Hardy-

Weinberg equilibrium P<10-4; (7) SNP effect estimate standard error (SE) =10; (8) 

SNPs minor allele count (MAC) < 10 (calculated as total number of observed alleles at 

each SNP multiplied by MAF). 

Studies with genome-wide arrays undertook imputation using the HapMap CEU 

reference panel using MACH and IMPUTE software (Table ST1). Parameters used in 

imputation and filters applied to imputed genotypes are described in Table ST1 or 

reported previously (Saxena et al. 2010). From a total of ~2.5M genome-wide directly 

genotyped or imputed autosomal SNPs, study-specific results for the ~66,000 
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Metabochip follow-up SNPs were considered for the present meta-analyses. SNPs with 

a meta-analysis result for more than a total 10,000 individuals were included in the 

analysis. 

4.2.6 Statistical analysis 

Analyses of previous discovery studies are reported elsewhere (Dupuis et al. 2010; 

Saxena et al. 2010), while those studies genotyped on the Metabochip are described in 

Table ST1. SNP effect estimates and their standard errors (for additive genetic model) 

were combined by inverse-variance weighted fixed effects meta-analysis using METAL 

(Willer et al. 2010) and GWAMA (Magi and Morris 2010). Two parallel meta-analyses 

for each trait by different analysts were compared for consistency. Individual cohort 

results were corrected for residual inflation of the test statistics using lambda of genomic 

control (GC) estimates. The GC values were estimated for each study using either test 

statistics from all SNPs for the GWA studies, while for those studies genotyped on the 

Metabochip, GC lambda estimates were derived from test statistics for 5,041 SNPs 

selected for follow-up of QT-interval associations, as we perceived these to have the 

lowest likelihood of common architecture of associations with glycemic traits. Individual 

study-level lambda GC estimates are shown in Table ST1. Overall QQ plots for the QT 

follow-up SNPs are shown in Figure 4.27 - Figure 4.30. 

4.2.7 Fasting glucose, fasting insulin, and 2-hr glucose associated signals selection 

strategy 

Meta-analysis results for each trait were considered as genome-wide significant if they 

achieved P<=5x10-8 threshold and were not in LD (r2<0.05) or within 500Kb of an 

established signal. The most significantly associated SNP (lowest P-value) in each 

region (500Kb) was selected as the lead SNP. Associated loci are referred to by the 

name of the nearest gene, unless a more biologically plausible gene was nearby, or a 

nearby gene was previously associated with another trait. In such cases, we maintain 

consistency with the previous naming, but list the nearest genes in Tables ST2 (b-e.) To 

establish the variance in each trait explained by these SNPS, in the Framingham Heart 

Study, we included all SNPs in a model adjusted for age, sex, BMI and cohort. 
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4.2.8 Fine-mapping of known glycemic trait loci 

To undertake preliminary fine-mapping analyses, we investigated the patterns of 

association at 17 known FG/FI loci (Dupuis et al. 2010) and 5 known 2hGlu loci (Saxena 

et al. 2010) using meta-analysis results from 13,644/1,309/1,249 SNPs genotyped on 

the Metabochip in 53,622, 42,384, and 27,602 individuals for FG, FI and 2hGlu, 

respectively. Only studies genotyped directly on the Metabochip were used for fine-

mapping purposes in order to have equal sample size and availability of all SNPs. 

Regional plots for each locus were created using the previous lead SNP (Dupuis et al. 

2010) or a suitable proxy (r2>0.8) as the index SNP if that marker was not present on 

Metabochip. The plots were generated on the LocusZoom web-based plotting software 

(Pruim et al. 2010) utilizing LD information from 1000Genomes (hg19/Nov2010/EUR 

data). Prior to generating the plots, all SNP names and positions from the Metabochip-

only meta-analysis files were aligned to build37 using the Lift Genome annotation tool 

on the UCSC website (http://genome.ucsc.edu/cgibin/ hgLiftOver) in order to be 

compatible with the 1000 Genomes SNP naming format (chr:position) and allow more 

thorough assessment of the pairwise LD patterns around the established SNPs. 

4.2.9 Associations of glycemic trait variants with related traits 

For those SNPs which we identified to be genome-wide significant, we also investigated 

their association with other metabolic and disease traits. We exchanged reciprocal data 

for such SNPs with the latest DIAGRAM Metabochip analyses ((Morris et al. 2012)), and 

checked associations of these SNPs in publicly available data from previous studies of 

lipid traits from the GLGC7 (Triglycerides, HDL- and LDL-cholesterol - 

http://www.sph.umich.edu/csg/abecasis/public/lipids2010/) as well as BMI and waist-hip 

ratio (WHR) from the GIANT consortium (Heid et al. 2010; Speliotes et al. 2010) 

(http://www.broadinstitute.org/collaboration/giant/index.php/Main_Page). From these 

data, we were able to establish the presence of any association and the direction of 

effect for these other traits aligned to our trait-raising alleles. We highlighted 

associations with other traits at P<0.05, and also performed FDR analyses. We 

performed FDR analyses for each trait separately (removing duplicate loci that were 

associated with more than one glycaemic trait) and identified those where q<0.05. 
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4.2.10 SNP/gene biology and functional annotation 

4.2.10.1 eQTL (ASAP Liver) 

Liver gene expression data from the Advanced Study of Aortic Pathology (ASAP) study 

has been described previously (Folkersen et al. 2010). In brief, liver biopsies were 

collected from patients at the Karolinska University Hospital, Stockholm, Sweden 

undergoing aortic valve surgery alone or combined with surgery for aortic aneurysm, 

starting from February 13, 2007. All subjects gave their informed consent and the study 

was approved by the ethics committee of Karolinska Institute, Stockholm, Sweden. After 

hybridisation of extracted RNA to Affymetrix ST 1.0 Exon arrays, data was RMA 

normalized and log-transformed. DNA was extracted from whole blood and genotyping 

was carried out using the Illumina 610w-Quad bead array platform. Imputation was 

carried out on SNPs with a call rate exceeding 95%, using the MACH algorithm. 

Imputation quality scores of RSQ < 0.3 were excluded from analysis. An additive 

genetic model was used to test for association between SNPs and gene expression. 

4.2.10.2 VEGAS 

To identify genes with multiple associated SNPs we performed gene-based analysis 

using VEGAS, described in detail previously (Liu et al. 2010). Briefly, on all available 

samples and among the ~66,000 follow-up SNPs, VEGAS pooled the information for all 

SNPs within each gene (± 50kb) to identify genes with higher evidence of association 

than expected by chance, while adjusting for gene size and the linkage disequilibrium 

structure of the SNPs, by simulation (maximum number of simulations used was 106). 

We identified genomic regions (separated by >1Mb) showing evidence of association 

and described the genes contained within those regions. While we often identified 

multiple genes within an associated region, it is probable that some of these are 

significant via linkage disequilibrium. Bonferroni correction was used to adjust for 

multiple testing, based on the number of independent tests (number of genes tested) 

(~9,300) and P-values < 5.0x10-6 were considered significant. While the number of 

genes represented was constrained by those SNPs submitted to the Metabochip, our 

analyses asked the question: of the genes represented on the Metabochip, all with a 
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slightly raised prior likelihood of association, which genes show the most evidence for 

association with glycemic traits? 

4.2.10.3 GRAIL (Gene Relationships Among Implicated Loci) 

We used the GRAIL (Raychaudhuri et al. 2009a) to evaluate whether genome-wide loci 

associated with glycemic traits were enriched for connectivity between genes 

representing particular pathways or molecular processes. As described in detail 

previously (Raychaudhuri et al. 2009a), to define the genes near each SNP, GRAIL 

finds the furthest neighboring SNPs in the 3’ and 5’ direction in LD (Hapmap CEU: r2 > 

0.5) and proceeds outwards in each direction to the nearest recombination hotspot14. 

All genes that overlap that interval are considered implicated by the SNP. If there are no 

genes in that region, the interval is extended by 250 kb in either direction. The method 

performs a text-based analysis looking at abstracts in PubMed prior to Dec 2006 (to 

avoid confounding from GWAS results arising after that date). We performed two 

analyses for each trait: first, we took all genome-wide signals for each trait as seed and 

query loci to investigate biological connectivity amongst those loci (FG=35, FI=16, 

2hGlu=9). For FI, we did not include FTO as the association with FI was entirely 

mediated by BMI. Secondly, we also investigated connectivity between these 

established signals (as seed regions) and those which did not reach genome-wide 

significance but were suggestively associated with each trait (P<0.0005) (as query 

regions) as described previously (Raychaudhuri et al. 2009b). For FI, we used BMI-

adjusted results to define the query regions. Query regions were defined by taking all 

SNPs more significant than P<0.0005, removing those associated at genome-wide 

levels of significance and pruning SNPs of r2>0.05 in each region using PLINK (Purcell 

et al. 2007). As GRAIL tests connectivity of regions, we also removed any duplicates 

where a region was represented by more than one SNP. For those SNPs not found by 

the software, we submitted the region as a 500Kb window centered at the location of 

the SNP. This approach identified 218, 155, and 100 query regions (representing 715, 

639 and 298 genes) for FG, FI (adjusted for BMI), and 2hGlu, respectively. The number 

of loci reaching Pgrail<0.01 was identified from these analyses and to establish the level 

of enrichment, we randomly sampled 1,000 random sets of matched numbers of SNPs 
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and calculated the proportion with as many or more reaching Pgrail<0.01 to derive a 

permutation based P-value (Ppermutation). 

4.2.10.4 Pathway analyses 

Pathway analysis was carried out for FG, FI and 2hGlu (uniform or adjusted for fasting 

glucose or adjusted for BMI) using data from previous discovery GWAS only (Dupuis et 

al. 2010) to avoid bias towards pathways represented on the Metabochip (Build 36, 

N>10,000 and MAF≥1% cutoff used). The software used for this analysis was 

MAGENTA 2.4 (July 2011, http://www.broadinstitute.org/mpg/magenta/). SNPs from the 

meta-analysis file were assigned to a gene if they mapped within 110kb upstream and 

40kb downstream of transcript boundaries. The smallest P-value for the set of SNPs 

assigned to the gene was adjusted for confounders, such as gene length, marker 

density, LD in a linear regression, creating a gene association score. If a top SNP was 

assigned to multiple genes, only the gene with the lowest score was kept to avoid 

positional clustering. The HLA region was removed due to high LD and gene density. 

Pathway terms from multiple databases (GO, PANTHER, Ingenuity, KEGG) was 

attached to each gene. The genes were ranked on their association score and a GSEA 

test was performed testing all pathway terms using a 5% and 75% cutoff. Initially, 

10,000 gene set permutations were performed for GSEA P-value estimation. This 

number was then increased with GSEA P-value<1x10-4, and up to 1,000,000 

permutations were performed. Results were sorted on FDR (5% cutoff) and FDR<0.05 

was considered to be significant. 

4.2.10.5 Analyses of directional consistency of associations between discovery and 

follow-up studies among SNPs not reaching genome-wide significance 

We investigated whether the Metabochip follow-up SNPs were likely to contain further 

“real” associations in addition to those SNPs which reached genome-wide significance. 

To do so, we meta-analyzed those studies involved in the original discovery analyses 

(Dupuis et al. 2010; Saxena et al. 2010) comprising 42,078 individuals for FG, 34,230 

for FI and 15,252 for 2hGlu, and also then separately meta-analyzed all studies newly 

available to follow up, comprising 85,710 individuals for FG, 69,240 for FI and 27,602 
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for 2hGlu. For each trait (FG, FI, FI-BMIadj, and 2hGlu), we then identified all SNPs 

which had a nominally significant association (P<0.05) in the follow-up studies alone 

and, for these SNPs, performed a two-sided binomial test of whether more SNPs than 

expected by chance (50%) had a consistent direction of effect with that observed in the 

discovery analyses. Before performing these analyses, SNPs were filtered by LD 

(r2<0.01) to identify independent variants, and all SNPs (and those in LD, r2=0.01) 

associated with glycemic traits (FG, FI, 2hGlu, HbA1c and proinsulin) at genome-wide 

levels of significance (including those SNPs identified in the present study) were 

excluded. These analyses were initially performed for all 66,000 SNPs, but we were 

then also able to compare across SNPs submitted to the Metabochip by different 

consortia and for SNPs submitted to follow up on particular traits amongst these 

consortia. The results of each of these tests were plotted overall, within SNPs from each 

consortium, and within SNPs submitted for follow-up of each trait in Figure 4.22- Figure 

4.25. The numbers of SNPs meeting these criteria are shown are Table ST7. We 

supplemented these results with FDR analyses and noted the q-value at P=0.05 in the 

follow-up 8 studies to identify the likelihood of true positives amongst these nominally 

significant SNPs (Table ST7). 

4.3 Results 

4.3.1 Approaches to identify loci associated with glycemic traits 

To follow-up loci showing evidence of association (Pdiscovery one<0.02) with glycemic 

traits in discovery GWAS, we investigated the 66,000 Metabochip follow-up SNPs for 

association with FG, FI and 2hGlu. We combined in meta-analyses data from up to 

133,010 (FG) /108,557 (FI) /42,854 (2hGlu) non-diabetic individuals of European 

ancestry, including individuals from the previous GWAS meta-analyses (Dupuis et al. 

2010; Saxena et al. 2010), individuals from new GWAS and individuals newly 

genotyped on the Metabochip array (Figure 4.1). Genome-wide association data for 

Filipino women were available to us (Table ST1), for which we report the effect 

directions relative to the overall effects in Tables ST2 (b-c.) All study characteristics are 

shown in Table ST1. We considered SNPs to represent novel association signals if they 

were genome-wide significant (P<5×10-8) and located more than 500Kb from, and not in 
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LD (Hapmap CEU: r2 < 0.05) with, any variant already known to be associated with the 

trait. Associated loci are referred to by the name of the nearest gene, unless a more 

biologically plausible gene was nearby, or a nearby gene was previously associated 

with another trait. In such cases, we maintain consistency with the previous naming, but 

list the nearest genes in Tables ST2 (b-e.) As BMI is a major risk factor for T2D and is 

correlated with glycemic traits, we also performed analyses adjusted for BMI.  

 

Figure 4.1. MAGIC Metabochip study design. The overall design for the follow-up of ~ 66,000 SNPs is shown 
above.  

Though not the main focus of this effort, given the increased variant density available on 

the Metabochip for previously established glycemic loci, we investigated whether these 

data would enable fine-mapping of the functional variants potentially underlying these 

signals (Dupuis et al. 2010; Saxena et al. 2010). In these analyses we included data 

from up to 53,622 individuals for FG, 42,384 for FI, and 27,602 for 2hGlu from studies 

with Metabochip genotypes only. However, given the lack of samples from different 
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ancestries and the absence of full conditional analysis, for the most part these analyses 

did not improve the resolution of association signals.  

Beyond individual SNP investigations for each glycemic trait, we also tested the 

hypothesis that gene-based analyses using VEGAS (Liu et al. 2010) would identify 

genes that harbor multiple association signals, which individually did not reach genome-

wide significance. Among the ~66,000 SNPs we used VEGAS to pool the information 

for all SNPs within each gene (± 50kb) to identify genes with more evidence of 

association than expected by chance (given the gene size and linkage disequilibrium 

structure) by simulation. Genes were considered to be significantly associated if they 

were significant after Bonferroni-correction for multiple testing (P<5x10-6). 

Below we provide details of these analyses for fasting glucose, fasting insulin and post-

challenge glucose levels. 

4.3.1.1 Fasting glucose 

In analyses of up to 133,010 individuals we identified 20 loci with genome-wide 

significant associations (P<5×10-8) (Table 4.1, Figure 4.7, Figure 4.11) and confirmed 

previously established loci (Table ST2a). Of these 20 loci, nine (in or near IBKAP, 

LOC728489, WARS, KL, TOP1, P2RX2, AMT, RREB1 and GLS2) had not previously 

been associated with other metabolic traits (Table 4.2). Among these, KL (Klotho) is of 

particular interest. In addition to being associated with FG (but not FI), the FG-raising 

allele is also associated with an increased risk of T2D (OR=1.08(1.04-1.11), P=1.1x10-5) 

(Figure 4.2). KL was first identified as a gene related to suppression of aging: its 

reduced expression was associated with reduced lifespan, as well as hypoglycemia 

(Kuro-o et al. 1997). Despite further animal studies supporting a role for KL in glucose 

metabolism (Ohnishi et al. 2011) and insulin sensitivity (Utsugi et al. 2000), human 

studies were generally small and inconclusive (Rhee et al. 2006; Paroni et al. 2012).   

We also identified new associations with FG in regions previously associated with other 

metabolic traits or disease outcomes including T2D6 (ARAP1, CDKN2B, GRB1015, 

CDKAL1, IGF2BP2 and ZBED3, which was identified in BMI-adjusted models) and 

2hGlu2 (GIPR) as well as confirming the recently identified signals for FG at FOXA216, 
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PPP1R3B, PCSK1 and PDX1 ((Manning et al. 2012)). FOXA2 is a forkhead 

transcription factor that regulates PDX1 expression, while PDX1 encodes a transcription 

factor critical to pancreatic development (Jonsson et al. 1994). PDX1 mutations have 

been linked to MODY4 (Stoffers et al. 1997a), pancreatic agenesis (Stoffers et al. 

1997b) and permanent neonatal diabetes (Nicolino et al. 2010); however, we did not 

observe significant association with T2D based on associations in DIAGRAM 

Metabochip analyses (Morris et al. 2012) (Figure 4.2). 
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Table 4.1. SNPs associated with fasting glucose, fasting insulin and 2-hour glucose at genome-wide 
significance in Europeans. Genome-wide loci for fasting glucose (FG), fasting insulin (FI), FI (adjusted for BMI) and 
2hGlu are shown along with results for the other traits aligned to the trait-raising allele for the primary trait. Non-
MAGIC SNPs (identified in other consortia and selected for the Metabochip to follow up on other non-MAGIC traits) 
are indicated in bold. Freq denotes the allele frequency of the primary trait-raising allele. Per-allele effect (standard 
error, SE) for FI represents differences in natural log–transformed levels of FI. N represents sample size. 
Heterogeneity was assessed using the I2 index (Higgins and Thompson 2002). The gene shown is the nearest gene 
to the lead SNP, except for those marked with an asterisk, for which the nearest gene is also listed in Table ST2b–e. 
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Figure 4.2. Associations between glycemic loci and T2D, HDL-cholesterol and triglycerides, BMI, and WHR. 
Loci associated with the above traits (P<0.05) are highlighted. Those with positively correlated effect distributions are 
colored yellow, and negative correlations are blue. Those which did not reach a q-value < 0.05 in FDR analyses are 
also marked.  

Only for rs2302593, near GIPR, did we observe that BMI-adjustment materially altered 

the magnitude and significance of FG effect estimate (BMI-adjusted: 

ß=0.010(SE=0.0023) mmol/L/allele, P=2.9x10-5; unadjusted: ß=0.014(0.0023) 

mmol/L/allele, P=9.3 x10-10), suggesting that its effect on FG was mediated in part by its 

association with BMI (Lyssenko et al. 2011) (the FG-raising allele was also associated 

with higher BMI) (Figure 4.2).   

Given the overlap between genetic loci for fasting glucose and other metabolic traits, we 

performed a systematic look-up of all glycemic loci and their associations with other 

metabolic traits using data available through other consortia (Heid et al. 2010; Speliotes 

et al. 2010; Teslovich et al. 2010). In the latest data from DIAGRAM Metabochip 

analyses ((Morris et al. 2012)), 22 (>60%) of the now 36 genome-wide significant FG 

loci showed association (P<0.05; FDR q<0.05) with T2D (Figure 4.2). In all cases, the 

glucose-raising allele was associated with increased risk of T2D, yet the FG effect size 

and T2D OR were only weakly correlated (Figure 4.3). FG loci also showed 

associations with other traits, although with inconsistent directionality (Figure 4.2).   

Gene-based analyses confirmed many of the loci identified in individual SNP analyses 

(Table ST3a) and identified another nine genomic regions (containing 14 genes) with 

significant association signals (P<5x10-6), including some with biological candidacy, 

such as the HKDC1 gene, encoding a putative hexokinase (Brandstatter et al. 2004; 

Irwin and Tan 2008). 

4.3.1.2 Fasting insulin 

In a combined sample size of 108,557 individuals, we identified 17 additional loci with 

genome-wide significant associations and confirmed both previously established 

associations (Dupuis et al. 2010). These newly identified loci include variants in or near 

HIP1, TET2, YSK4, PEPD and FAM13A1 genes (Table 4.1, Figure 4.8, Figure 4.12, 

Table 4.2), as well as SNPs near loci previously associated with other metabolic traits 
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including T2D (Voight et al. 2010) (TCF7L2, PPARG), BMI (Frayling et al. 2007) (FTO), 

waist-hip ratio (Heid et al. 2010) (WHR) (LYPLAL1, RSPO3, GRB14), triglycerides 

(Teslovich et al. 2010) (ANKRD55/MAP3K1) and adiponectin (Richards et al. 2009) 

(ARL15). We also confirmed the recent associations with FI for GRB14, PPP1R3B, 

LYPLAL1, IRS1, UHRF1BP1 and PDGFC ((Manning et al. 2012)). The 

ANKRD55/MAP3K1 association is of interest as MAP3K1 regulates expression of 

IRS129 and activation of the JNK pathway (Yujiri et al. 1998) and NF-kB (Meyer et al. 

1996; Lee et al. 1997), both centrally implicated in insulin resistance (Hirosumi et al. 

2002; Cai et al. 2005). Furthermore, data from DIAGRAM Metabochip analyses show 

that the FI-raising allele at this SNP is strongly associated with increased risk of T2D 

((Morris et al. 2012)), yet was also associated with lower WHR (adjusted for BMI) 

(Figure 4.2).  
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Figure 4.3. Per-allele beta-coefficients for fasting glucose concentration vs. odds ratios for T2D.   

In contrast to FG (Figure 4.19), in FI analyses adjusted for BMI we observed a 

systematic decrease in the standard errors of the SNP effect estimates (Figure 4.20), 

perhaps because BMI explains more of the variance in FI (R2=32.6%) than in FG 

(R2=8.6%) or 2hGlu (11.0%) (Data from the Fenland study). Therefore, adjusting for 

BMI removes more variance in FI thereby rendering genetic associations more readily 

detectable. This is supported by the 11 genome-wide significant loci detected by this 

approach (Table 4.1, Figure 4.9, Figure 4.13), of which only four overlapped with the 
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BMI-unadjusted analysis (Table 4.1). As expected, BMI-adjustment abolished FI 

associations at FTO (ß=-0.001(SE=0.002), P=0.71) (Table ST2c) suggesting that the 

association with FI is mediated entirely through the association with BMI.  

In total, 13 of the 19 loci associated with FI also showed associations with T2D (P<0.05; 

FDR q<0.05) (Figure 4.2), with the FI-raising allele associated with higher risk of T2D, 

except for TCF7L2 (Figure 4.4), a locus known to exert effects on insulin secretion and 

where the allele associated with lower FI is associated with higher FG (Table 4.1). 

Notably, the loci associated with fasting insulin showed a pattern of association with 

lipid traits consistent with insulin resistance not observed for either FG or 2hGlu (Figure 

4.2). Thirteen (~68%) of the 19 loci were associated with HDL-cholesterol (q<0.05): all 

FI-raising alleles were associated with lower HDL levels, 9 of which were also 

associated with higher triglycerides (q<0.05) (Figure 4.2). Further, the FI-raising alleles 

of four SNPs were associated with higher WHR (adjusted for BMI) (q<0.05) (Figure 4.2), 

another trait linked to insulin resistance while five SNPs were also associated with BMI, 

although with inconsistent direction (q<0.05) (Figure 4.2).  

In gene-based analyses, we focused on BMI-adjusted results to account for the 

variance in FI explained by BMI. Beyond those loci containing genome-wide significant 

SNPs we identified 7 distinct regions (containing 22 genes) to be associated with FI 

after Bonferroni-correction (P< 5x10-6). Amongst these genes, we identified many for 

which prior biological evidence suggests their role in pathways involved in insulin 

secretion or action (Table ST3b). While the lead SNP in PPARD was not genome-wide 

significant (P=3.9x10-6), the PPARD gene, a regulator of adipose, hepatic and skeletal 

muscle metabolism (Barish et al. 2006) reached the gene-based significance threshold 

(P<1x10-6). PPARD agonists have also been shown to induce insulin sensitizing effects 

in a murine model (Tanaka et al. 2003). In addition, we identified PTEN (Table ST3b), a 

gene previously suggested to affect glucose metabolism through regulation of insulin 

signaling (Butler et al. 2002), and in which a muscle-specific deletion protected mice 

from insulin resistance and diabetes resulting from high fat feeding (Wijesekara et al. 

2005). 

43 
 



 

 

Figure 4.4. Per-allele beta coefficients for fasting insulin concentration vs. odds ratios for T2D.  

4.3.1.3 2-h Glucose 

In a total sample size of 42,854 individuals, we identified four additional loci to be 

associated with 2hGlu (Table 4.1, Figure 4.10, Figure 4.14), including a signal near 

ERAP2 and three signals near loci previously associated with FG (Dupuis et al. 2010) 

(GCK), HDL-cholesterol (Teslovich et al. 2010) (PPP1R3B) and T2D (Voight et al. 2010) 

(IGF2BP2), as well as confirming the five previous associations (Saxena et al. 2010). To 

determine whether these associations reflected differences in the response to a glucose 
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challenge, or whether they were driven by effects on FG, we also performed analyses 

adjusted for FG. No additional loci were identified as genome-wide significant after 

adjustment for FG, although the GCK association with 2hGlu was severely attenuated 

after adjustment (ß=0.04(SE=0.016) mmol/L/allele; P=0.005, Vs. ß=0.1(0.016) 

mmol/L/allele; P=5.3x10-11 in the FG-unadjusted model) suggesting that the association 

with 2hGlu is driven, at least in part, by a primary association with FG (Table ST2e). 

The association of SNPs near GCK now with both FG and 2hGlu suggests a 

generalized raising of the glucose set point, consistent with inactivating mutations of 

GCK that cause MODY (Fajans et al. 2001). As for FG, when 2hGlu models were 

adjusted for BMI, no systematic differences were observed, although again the 

IGF2BP2 SNP rs7651090 reached genome-wide significance (Table 4.1).  

Eight of the 9 SNPs associated with 2hGlu at genome-wide levels of significance were 

also associated with T2D (q<0.05) (Figure 4.2), although the 2hGlu-raising alleles at 

PPP1R3B, GCKR and VPS13C/C2CD4A/B were associated with lower risk of T2D 

(Figure 4.5), consistent with their association with lower FG levels (Table 4.1, Table 

ST2a).  

In addition to those which were genome-wide significant in individual SNP analyses we 

identified 3 regions (containing 6 genes) showing association with 2hGlu in gene-based 

analyses. These included the HKDC1 gene also identified in gene-based analyses for 

FG, as well as an association signal at CRHR1 (P=2x10-6) (Table ST3c); mostly driven 

by the lead SNP in this gene (rs17762954), which approached genome-wide 

significance (P=7.4x10-7). CRHR1, together with GIPR, another gene with variants 

associated with 2hGlu, belongs to the family of class B GPCRs and is highly expressed 

in pancreatic ß-cells, where stimulation of the receptor potentiates insulin secretion in 

response to glucose (Schmid et al. 2011). 

Fasting Glucose 
 
IKBKAP (inhibitor of kappa light polypeptide gene enhancer in β-cells, kinase complex-associated protein): 
the protein encoded by this gene is a scaffold protein that binds IKKs and NF-kappa-B inducing kinase 
(NIK), assembling them into different active complexes. Splicing mutations in this gene lead to familial 
dysautonomia (Anderson et al. 2001). Also mapping to this region are C9orf4, C9orf5 and C9orf6, MIR32 
(microRNA 32, unknown function), as well as ACTL7A (actin-like 7A) and ACTL7B (actin-like 7B). 
 
WARS (tryptophanyl-tRNA synthetase) catalyzes the aminoacylation of tRNA(trp) with tryptophan. The 
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intronic SNP rs3783347 was associated with WARS expression in liver: the glucose-raising allele associated 
with lower mRNA expression (age- and sex-adjusted P =4.19x10-5) and is in perfect LD (r2=1, D’=1) with a 
3’UTR SNP in SLC25A47 (rs3736952) and in modest LD (r2=0.3, D’=1) with nonsynonymous Arg135Leu 
(qualified as tolerated by SIFT and probably damaging by polyphen). Nearby YY1 (YY1 transcription factor), 
codes for a zinc-finger transcription factor involved in regulating a broad set of promoters. It has been 
suggested that YY1-regulated transcription is linked to glucose metabolism via O-GlcNAcylation (Hiromura 
et al. 2003). 
 
KL (klotho): rs576674 lies ~36kb upstream of KL, which encodes a type-I membrane protein related to 
beta-glucosidases. Variation in KL has been associated with insulin regulation, insulin resistance 
phenotypes and cardiovascular disease in some studies (Rhee et al. 2006; Shimoyama et al. 2009; Oguro et 
al. 2010; Paroni et al. 2012) but KL variants were not associated 
with diabetes risk (Freathy et al. 2006). The various SNPS in these studies are all in weak LD with rs576674 
(r2<0.125). Variation in KL is also associated with bone metabolism and may play a role in associations of 
energy metabolism with bone metabolism (Mullin et al. 2005; Zarrabeitia et al. 2007). 
 
TOP1 (topoisomerase (DNA) I). rs6072275 is intronic in TOP1 and lies in a large region of high LD in 
Europeans, which includes the plausible biological candidate LPIN3 (lipin 3). In mice, a related homolog 
Lpin1 is associated with fatty liver dystrophy61, a phenotype similar to human lipodystrophy (loss of body 
fat, fatty liver, hypertriglyceridemia, and insulin resistance). Lpin1 mRNA was expressed at high levels in 
adipose tissue and induced during differentiation of preadipocytes, suggesting that lipin is required for 
normal adipose tissue development while LPIN2 has been suggested to be associated with T2D and 
glucose metabolism (Aulchenko et al. 2007). rs6072275 lies in the middle of a large CNV that extends from 
within the 3' end of TOP1 to the 5' end of PLCG1 (phospholipase C, gamma 1). 
 
P2RX2 (purinergic receptor P2X, ligand-gated ion channel, 2). rs10747083 lies in a small CNV about 150kb 
upstream of five protein-coding genes, including P2RX2, encoding one of a family of purinoceptors for ATP; 
GALNT9 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide Nacetylgalactosaminyltransferase 9 (GalNAc-
T9), encoding one of a member of the UDP-N-acetylalpha-D-galactosamine polypeptide N-
acetylgalactosaminyltransferase (GalNAc-T) family of enzymes and expressed specifically in the brain; 
FBRSL1 (fibrosin-like 1); PXMP2 (peroxisomal membrane protein 2, 22kDa); PGAM5 (phosphoglycerate 
mutase family member 5), and within 184 kb downstream, POLE (polymerase (DNA directed), epsilon) and 
LOC100130238 (hypothetical LOC100130238) a miscRNA. 
 
LOC728489. rs3829109 is in low LD with a well-established locus for inflammatory bowel disease. Two 
recent publications reported CARD9 SNP rs10781499 (r2=0.29) to be associated with ulcerative colitis 
(Anderson et al. 2011), and CARD9/SNAPC4 rs4077515 (r2=0.27) to be associated with Crohn's disease 
and ulcerative colitis (Franke et al. 2010; McGovern et al. 2010).Several genes are located in the region, but 
few with high plausibility for a role in glycemia. 
 
AMT encodes the mitochondrial aminomethyltransferase which is a critical component of the glycine 
cleavage system. Depending upon the AMT transcript, rs11715915 is located in 3’UTR or within coding 
regions, where it causes a synonymous amino acid change. This SNP is also located downstream of TCTA 
(T-cell leukemia translocation altered) which has no known metabolic function and upstream of RHOA (ras 
homolog family member A). RHOA is a signaling molecule involved actin cytoskeleton stability and 
reorganization (Tang et al. 2012) that binds and activates Rho kinase (ROCK), a regulator of insulin 
transcription (Nakamura et al. 2006) and action (Furukawa et al. 2005) that is differentially regulated in T2D 
(Chun et al. 2011) and hypothesized to play a role in glucose homeostasis (Furukawa et al. 2005). 
 
GLS2 encodes liver-expressed glutaminase 2, which is required for hydrolysis of glutamine. rs2657879 
causes a benign (polyphen) amino acid change (L581P) in the GLS2 protein. The GLS2 protein is highly 
expressed (human protein atlas) by both liver and pancreas and it has been demonstrated in liver tumours 
that alterations in the balance of GLS2:GLS1 (the kidney-specific homologue) activity are important for 
regulating glutamate metabolism (Yuneva et al. 2012). The other gene in this region SPRYD4 (SPRY 
domain containing 4) has no known function in metabolism. 
 
RREB1 (ras responsive element binding protein 1) encodes a zinc finger transcription factor, with 
rs17762454 lying in an intron in the gene. The protein product of RREB1 binds to RAS-responsive elements 
(RREs) of gene promoters, including the calcitonin gene promoter. The role of RREB1 in energy metabolism 
is not known. An uncorrelated SNP at this locus (rs675209) was associated with serum urate levels 
(P=1.0x10-9) in a GWAS of serum urate, gout and cardiovascular disease risk factors (Yang et al. 2010b). 
Another gene at this locus, SSR1 (signal sequence receptor, alpha) encodes a glycosylated endoplasmic 
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reticulum membrane receptor associated with protein translocation across the ER membrane. Reactome 
pathway analysis places this gene in a module with key roles in the synthesis and function of insulin, insulin-
like growth factors and ghrelin, making this gene a plausible biological candidate at this locus. (REACTOME: 
REACT_15380). A third gene at this locus, CAGE1 encodes cancer antigen 1. CAGE1 has an unknown role 
in metabolism. 
 
Fasting Insulin 
 
TET2 (formerly KIAA1546) encodes the tet oncogene family member 2, isoform b which catalyzes the 
conversion of methylcytosine to 5-hydroxymethylcytosine. The enzyme is involved in myelopoiesis, and 
defects in this gene have been associated with several myeloproliferative disorders (NCBI RefSeq). Perhaps 
more relevant to glycemic regulation is PPA2, which encodes the inorganic pyrophosphatase 2 isoform 1 
precursor. Its protein product is localized to the mitochondrion; it has high homology to members of the 
inorganic pyrophosphatase family, including the signature sequence essential for its catalytic activity (NCBI 
RefSeq). Pyrophosphatases catalyze the hydrolysis of pyrophosphate to inorganic phosphate. 
 
HIP1 encodes the huntingtin interacting protein 1, a membrane-associated protein that colocalizes with 
huntingtin. It is ubiquitously expressed with the highest level in brain. Loss of normal huntingtin-HIP1 
interaction in Huntington disease may contribute to a defect in membrane-cytoskeletal integrity in the brain. 
Of interest to insulin action, HIP1 is involved in clathrin-mediated endocytosis and trafficking. Mice 
transgenic for the mutated form of huntingtin develop diabetes (Hurlbert et al. 1999; Bjorkqvist et al. 2005); 
however, though Hip1/Hip1r double-knockout mice have severe vertebral defects, suffer from dwarfism and 
die in early adulthood, they do not show any fasting glucose abnormalities (Bradley et al. 2007). The lead 
SNP (rs1167800) is only 104 bp away from a nearby missense SNP (rs1167801), encoding a Q to H amino 
acid change; however, LD between them is low (r2=0.196). 
 
FAM13A (Family with sequence similarity 13, member A1) encodes a protein with unknown function. 
Previous GWAS for the study of lung function measures75 and chronic obstructive pulmonary disease (Cho 
et al. 2010) described variants in FAM13A1 that affect these traits. SPP1, encoding osteopontin, a secreted 
matrix glycoprotein and pro-inflammatory cytokine involved in cell-mediated immunity is within 1Mb. Mice 
exposed to high fat diet show increased circulating osteopontin and over-expression of Spp1 in the 
macrophages recruited into adipose tissue improved insulin sensitivity (Nomiyama et al. 2007), while SPP1 
was highly expressed in obese twins relative to their non-obese siblings (Pietilainen et al. 2008). Recent 
work linked osteopontin to beta cell function through the GIP pathway (Lyssenko et al. 2011). In carriers of 
the GIPR variant associated with impaired glucose and GIP-stimulated insulin secretion, osteopontin levels 
were lower compared to non-carriers. In addition, both GIP and osteopontin prevented cytokine-induced 
apoptosis and osteopontin-stimulated cell proliferation of functional beta cell mass. 
 
PEPD (Peptidase D) encodes a member of the peptidase family. The protein forms a homodimer that 
hydrolyzes dipeptides or tripeptides with C-terminal proline or hydroxyproline residues. The enzyme serves 
an important role in the recycling of proline, and may be rate limiting for collagen production. CEBPA gene 
(CCAAT/enhancer binding protein (C/EBP) alpha) is ~100kb downstream of the lead SNP, is a transcription 
factor expressed in adipose tissue regulates a number of genes involved in lipid and glucose metabolism 
genes and a SNP in low LD with our lead SNP was previously associated with triglyceride levels (Olofsson 
et al. 2008). The cells from CEBPA (-/-) mice show a complete absence of insulin-stimulated glucose 
transport, secondary to reduced gene expression and tyrosine phosphorylation for the insulin receptor and 
IRS1 (Wu et al. 1999). CEBPA also modulates expression of leptin by binding to the promoter of the gene 
(Hollenberg et al. 1997) and our lead SNP showed modest association with BMI in previous GIANT meta-
analyses (P=0.005). 
 
YSK4 (Sps1/Ste20-related kinase homolog) contains rs1530559 in an intron. This gene has no known 
function in human energy metabolism. Three other genes at this locus also have no known role in energy 
metabolism, including RAB3GAP1 (RAB3 GTPase activating protein subunit 1 (catalytic), encoding the 
catalytic subunit of a Rab GTPase activating protein. Mutations in this gene are associated with Warburg 
micro syndrome; CCNT2 (cyclin T2), belonging to the highly conserved cyclin family, whose members are 
characterized by a dramatic periodicity in protein abundance through the cell cycle; and ACMSD 
(aminocarboxymuconate semialdehyde decarboxylase), involved in the de novo synthesis pathway of NAD 
from tryptophan. ACMSD has been implicated in the pathogenesis of several neurodegenerative disorders. 
 
2h Glucose 
 
ERAP2 (Endoplasmic reticulum aminopeptidase 2) Aminopeptidases hydrolyze N-terminal amino acids of 
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proteins or peptide substrates. The lead SNP was strongly associated with ERAP2 expression in liver (P=1.1 
x10-55) in lymphoblastoid cell lines in individuals from the CEU (P=8x10-21) and YRI samples (P=2x10-15). 
Also near to this lead SNP is the LNPEP gene: Leucyl/cystinyl aminopeptidase, which is widely expressed 
and well characterised in muscle and fat cells. In response to insulin, LNPEP translocates to the cell surface 
and co-localises with GLUT482. Although the role it plays in insulin action is unknown, this translocation is 
impaired in individuals with T2D82. The PCSK1 gene is also within 500kb of the lead SNP, although on the 
other side of a recombination hotspot (Figure 4.14). 
 

Table 4.2. Genes nearest to loci associated with glycemic traits. Information regarding the most likely biological 
candidate genes near each associated locus for fasting glucose, fasting insulin, and 2-h glucose.  

4.3.2 Fine-mapping of established loci 

Higher SNP density around previously established loci did not generally yield stronger 

associations or more plausible functional variants (Table ST4). For fasting glucose, only 

for four of the 16 loci did we observe markedly more significant SNPs or larger effect 

size than the previous lead SNP: PROX1, GCK, ADRA2A and VPS13C/C2CD4A/B 

(Table ST4). Regional plots for these loci are shown in Figure 4.21. While the new lead 

SNP near ADRA2A was not markedly more significant than the previous lead, the effect 

size is almost double that of the previous lead SNP (Table ST4). However, this and 

other new lead SNPs were without more plausible functionality. The new lead SNP at 

VPS13C/C2CD4A/B, previously associated with proinsulin (Strawbridge et al. 2011), is 

far more significant and of larger effect size than the previous (ß=0.0273(SE=0.0035) 

mmol/L/allele; P=4.8x10-15 Vs. ß=0.0057(0.0036) mmol/L/allele; P=0.111; r2=0.27). For 

FI, another SNP downstream of IGF1 was found to be more significant than the 

previous lead and with a larger effect size, although with no known functionality (Table 

ST4; Figure 4.21). For 2hGlu, again, another SNP at VPS13C/C2CD4A/B was more 

significant than the previous lead (Table ST4; Figure 4.21) and had previously been 

associated with diabetes in Chinese individuals (Cui et al. 2011). 

4.3.3 Pathway analysis 

Next, we explored whether glycemic loci were enriched for connectivity between genes 

representing particular pathways or molecular processes. To do this, we used GRAIL 

software (Raychaudhuri et al. 2009a) and investigated both an excess of connectivity 

between the established loci (genome-wide significant) and then between established 

loci and those loci that did not reach genome-wide significance, but which showed a 

lower level of association (P<0.0005) (Methods 4.2.10.3). We aimed to establish 
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whether there were any biologically relevant genes amongst this longer list of 

suggestively-associated loci. This more liberal threshold yielded 218, 155, and 100 

regions for FG, FI and 2hGlu, respectively. To further assess whether our loci 

represented common biological pathways, we used MAGENTA to undertake gene-set 

enrichment analyses (Methods 4.2.10.4).  

 

Figure 4.5 Per-allele beta coefficients for 2-hr glucose concentration vs. odds ratios for T2D.  

We found that genes near the 36 FG-associated loci had a high degree of connectivity 

(Methods 4.2.10.3), with 8 genes demonstrating highly significant similarity to genes in 
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other loci at a Pgrail<0.01 level, connected by keywords such as “glucose”, “insulin”, 

“pancreatic”, and “diabetes” (Table ST5a and Figure 4.26), and more than expected by 

chance (Ppermutation=0.003). We observed less connectivity amongst the genome-wide 

significant FI loci than among those for FG, with no genes reaching Pgrail<0.01. The 

same was true for 2hGlu: only one out of nine genes reaching Pgrail<0.01 

(Ppermutation=0.07) (Table 5c).  

Among the list of 218 suggestively-associated FG loci (P<0.0005) we observed 13 

genes to be connected to those in the genome-wide significant loci at Pgrail<0.01, more 

than expected by chance (Ppermutation=0.003) (Table ST6a). These included genes such 

as GLP1R (P=3.3x10-7) (a glucagon receptor that mediates the GLP-1 incretin effect 

and stimulates insulin release), IRS2 (P=6.9x10-5; central to development and 

maintenance of ß- cell mass and function (Withers et al. 1998; Withers et al. 1999)) and 

the INS gene (P=2.5x10-6; the insulin gene encoding proinsulin). The presence of these 

and other genes support our conjecture that many of the SNPs that did not reach 

genome-wide significance are likely to represent “real” associations. Of the 155 

suggestively-associated loci for FI (adjusted for BMI), we observed seven to be 

connected to the genome-wide significant loci at Pgrail<0.01; more than expected by 

chance (Ppermutation=0.002), and these included INSR (Pgrail=1.5x10-4; encoding insulin 

receptor precursor), CD36 (Pgrail=0.001; previously implicated in insulin resistance46), 

GCG (Pgrail=0.008; glucagon gene), and HNF1A (Pgrail=0.005; mutations in which are 

associated with MODY3 (Yamagata et al. 1996)) (Table ST6b). Of the 100 suggestively-

associated loci for 2hGlu (P<0.0005), we found three to reach Pgrail<0.01 

(Ppermutation=0.014) and the gene highlighted as most biologically connected to the 

genome-wide significant loci was again HNF1A (Pgrail=3.4x10-4) (Table ST6c).  

Using MAGENTA, we identified four pathways that were enriched for FG associations: 

GOTERM pathways lens development in camera-type eye (P=0.004), PANTHER 

processes gut mesoderm development (P=0.009), other steroid Metabolism (P=0.02), 

and KEGG MODY pathway (P=0.03), although these were no longer significant after 

removing the lead genes (P>0.05), which were all known FG loci: PROX1 for eye and 

gut, G6PC2 and GCK for steroid and MODY pathways, respectively. 
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4.3.4 Directional consistency of associations between discovery and follow-up studies 

among SNPs not reaching genome-wide significance 

Given the wealth of biologically plausible genes in loci not reaching genome-wide 

significance (Tables ST6a-c) and the deviation of the observed distribution from the 

expected in QQ plots even after removing all established loci (Figure 4.15 - Figure 

4.18), we hypothesized that additional loci not reaching genome-wide significance were 

likely to represent “real” associations with small effects. To establish the presence of 

such “real” associations that did not reach genome-wide significance, we compared 

SNP associations in discovery studies (those included in the original meta-analyses for 

42,078 (FG)/34,230 (FI)/15,252 (2hGlu) individuals (Dupuis et al. 2010; Saxena et al. 

2010)) with those in “follow-up” studies (including newly available GWAS and studies 

genotyped on the Metabochip (consisting of 85,710 (FG)/69,240 (FI)/27,602 (2hGlu) 

individuals)). We identified all SNPs which had a nominally significant association 

(P<0.05) in the follow-up studies alone and, for these SNPs, performed a binomial test 

of whether more SNPs than expected by chance (50%) had a consistent direction of 

effect with that observed in the discovery analyses. We were also able to compare 

among SNPs submitted by different consortia to follow-up on associations with a range 

of traits (Figure 4.22 - Figure 4.25).  

For each trait, evaluation of the 66,000 Metabochip follow-up SNPs demonstrated a 

significant excess of SNPs showing directionally consistent associations (P<0.05) 

compared to that expected by chance (FG: Pbinomial=5.01x10-12; FI: Pbinomial=7.58x10-13; 

FI (adjusted for BMI): Pbinomial=9.76x10-9; 2hGlu: Pbinomial=2.37x10-6; Table ST7). FDR 

analyses suggested that a number of these nominal associations in the follow-up 

studies are true positives for FG and FI in particular (23%: q<0.77 at P=0.05; Table 

ST7). As expected, SNPs submitted to follow up on each respective trait showed a 

particular excess of consistent associations (FG: Pbinomial=1.30x10-4; FI: 

Pbinomial=2.69x10-4; FI (adjusted for BMI): Pbinomial P=4.71x10-5; 2hGlu: Pbinomial=7.67x10-

6; Table ST7; Figure 4.22 - Figure 4.25), and FDR analyses suggested that a higher 

proportion of these nominal associations were likely to be true positives than for SNPs 

following up on other traits (Table ST7). Interestingly, when we evaluated consistency of 
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association with FI (between discovery and follow-up) among SNPs submitted to the 

Metabochip by other consortia, SNPs submitted by GIANT (anthropometric traits) 

(Pbinomial=1.52x10-8) and by GLGC (lipid traits) (Pbinomial=1.15x10-6) also demonstrated a 

marked excess (Table ST7; Figure 4.23). From these consortia, SNPs submitted for 

follow-up of BMI (Pbinomial=4.66x10-6) and triglyceride associations (Pbinomial=6.17x10-12) 

showed particular enrichment of consistent directionality amongst nominally significant 

SNPs (Table ST7; Figure 4.23). As expected, when we performed the same test for FI 

adjusted for BMI, the observed enrichment among SNPs submitted by GIANT and 

GLGC was attenuated (Table ST7; Figure 4.24), although interestingly the SNPs 

submitted to follow up on associations with triglycerides in discovery analyses remained 

the most significant (P=3.18x10-7, Table ST7; Figure 4.24). Of the 3,353 SNPs 

submitted for follow-up of triglyceride associations, 158 SNPs showed nominal 

significance (P<0.05) in follow-up studies and consistent direction of association with FI 

(adjusted for BMI) in both discovery and follow-up (Table ST7). In 139 (88%) of these 

SNPs the FI-raising alleles were associated with higher levels of triglycerides. This 

finding is consistent with the positive correlations between FI and triglyceride 

associations observed amongst the genome-wide significant FI loci (Figure 4.2). 

4.4 Discussion 

In the current meta-analysis of ~66,000 Metabochip follow-up SNPs, in up to 133,010 

European individuals without diabetes we identified a large number of new loci that are 

associated with FG, FI and 2hGlu. In total, 53 loci influencing glycemic traits have now 

been validated. These loci explain 4.8%, 1.2% and 1.7% of the variance in each of 

these traits (FG, FI and 2hGlu, respectively). Of these 53 loci, 33 are also associated 

with increased T2D risk (q<0.05), extending the overlap between glycemic and T2D loci. 

Given the current DIAGRAM effective sample size of 106,953 individuals, we can 

exclude an effect on T2D of 1.04 with 80% power for alleles more frequent than 5%, 

effectively confirming that the overlap is incomplete and that many loci associated with 

glycemic traits have no discernible effect on T2D (Figure 4.2, Figure 4.3, Figure 4.4, 

Figure 4.5).  
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Previously, we had detected only two loci associated with FI, and hypothesized that this 

might be due to a different genetic architecture of this trait compared to FG, with 

potentially smaller effect sizes, lower frequency alleles or greater environmental 

influence on FI (Dupuis et al. 2010). In the current, much more extensive, follow-up 

meta-analysis totaling up to 108,557 individuals (compared to 62,264 individuals 

previously), we expanded the number of loci associated with this trait to 19. Of note was 

the effect of BMI-adjustment on our ability to detect additional loci (five non-overlapping 

with unadjusted results), demonstrating that BMI-adjustment removed a substantial 

proportion of the variance in FI, therefore facilitating the identification of genetic 

associations. We also noted that some of the loci influencing FI uncovered after BMI-

adjustment are likely to have been negatively confounded in previous efforts: at some 

loci the FI-raising allele was nominally associated with lower BMI (potentially via insulin 

resistance attenuating the anabolic effects of insulin), and given the positive correlation 

between BMI and FI, it is likely that this association had previously masked their effect 

on FI. FI loci showed directionally consistent association with lipid levels (HDL and 

triglycerides); that is, the FI raising allele was associated with lower HDL and higher 

triglyceride levels: a hall-mark combination observed in insulin resistant individuals. We 

also observed some overlap between FI loci and those associated with abdominal 

obesity (Figure 4.2). Jointly, these data suggest links of these FI loci to insulin 

resistance-related phenotypes. Indeed, some of the FI loci identified such as IRS1 and 

PPARG are classically known to exert effects on insulin action or sensitivity 

(Spiegelman 1998; White 1998). Additionally, SNPs nominated for the Metabochip to 

follow up on their association with triglycerides had directionally consistent associations 

with FI (in discovery and follow-up) more often than expected by chance (P=1.66x10-11). 

This remained true for their associations with FI after adjustment for BMI (P=1.28x10-8).  

There are now 36 established FG loci, many of which contain compelling biological 

candidate genes with plausible causality, including those encoding transcription factors 

with known roles in pancreas development (e.g. PDX1, FOXA2, PROX1, GLIS3) and 

genes involved in ß-cell function and insulin secretion pathways (SLC2A2, GCK, 

PCSK1). For 2hGlu, only nine loci have been established to date, which is likely 

reflecting the smaller sample size available and consequently reduced power.  
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Comparing the consistency of the direction of associations for glycemic traits between 

“discovery” and “follow-up” studies suggests that we are observing more directionally 

consistent associations than expected by chance (Figure 4.22 - Figure 4.25). This, 

combined with the excess of biologically plausible genes amongst the borderline loci 

(Table ST6a-c), suggests that beyond the genome-wide significant loci there is a more 

extensive list of loci still likely to contain “real” associations. Indeed some of these loci 

are implicated by gene-based analyses, which identify genes with compelling biological 

credentials. For FI, these analyses revealed additional loci with previously suggested 

links to insulin resistance: PPARD and PTEN, both of which were nominally associated 

in both stages (P<0.05). These results lend further support to the proposal that a long 

tail of common variants of small effect size are likely to account for a significant 

proportion of the variance of complex traits (Park et al. 2010; Yang et al. 2010a).  

Of note is the number of glycemic loci associated with other metabolic traits (q<0.05: 34 

of 53) and also at genome-wide levels of significance (P<5x10-8) (14 of 53) (Figure 4.2), 

potentially implicating pleiotropic effects. Further support for this notion comes from the 

analysis of loci nominated for the Metabochip by other consortia and their associations 

with glycemic traits (Figure 4.22 - Figure 4.25). Indeed, some of the loci associated with 

glycemic traits at genome-wide significance levels were not originally nominated to the 

Metabochip for follow-up by MAGIC (Table 4.1.) Metabochip data available across all 

contributing consortia will facilitate systematic exploration of these correlated 

phenotypes with more sophisticated statistical methods for joint analysis (Kim et al. 

2009; Kim and Xing 2009; Curtis et al. 2012), yielding greater insight into the underlying 

pathways and genetic networks they represent. As data from human genetic networks 

accrues, we will be better placed to test whether there is support for the notion of “hub” 

genes, that is, genes highly connected with others in the network and proposed by 

experiments in C.elegans to act as buffers for genetic variation and that could act as 

modifier genes for many different disorders (Lehner et al. 2006).  

Here, we present a large number of genome-wide significant loci influencing glycemic 

traits, many of which with a compelling biological basis for their association with 

glycemia, as well as a number of loci not previously implicated in glycemic regulation, 
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and for which fine-mapping and functional follow-up will expand and improve our 

understanding. Use of the Metabochip for deep follow-up has also suggested additional 

loci to be involved in glycemic regulation that, due to insufficient sample size and power, 

did not reach genome-wide significance. Consideration of such loci in future studies will 

better exploit data from GWAS and complimentary approaches and further improve our 

biological understanding of glycemic control and the etiology of diabetes.  

4.5 Supplementary Figures and Tables 

All supplemental tables are available online at:  

http://www.umich.edu/~welchr/magic_supplemental/supplemental_tables.xls 

 

Figure 4.6. Metabochip design. Consortia and the number of SNPs they submitted to be followed-up using the 
Metabochip is shown.  
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Figure 4.7. Manhattan plot of fasting glucose associations. Points shown in yellow mark the P-value for these 
SNPs for association with FG in the original discovery meta-analysis (Dupuis et al. 2010). Novel lead SNPs (+/- 
500kb) are highlighted red, and known loci in green. P-values were cropped at P<1x10-25. ZBED3, RREB1, and GLS2 
were genome-wide significant only after adjustment for BMI, but are also highlighted red above.  

 

Figure 4.8. Manhattan plot of fasting insulin associations. Novel lead SNPs (+/- 500kb) are highlighted red, and 
known loci in green. Points shown in yellow mark the P-value for these SNPs for association with FI in the original 
discovery meta-analysis (Dupuis et al. 2010). 
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Figure 4.9. Manhattan plot of fasting insulin (adjusted for BMI) associations. Novel lead SNPs (+/- 500kb) are 
highlighted red, and known loci in green. Points shown in yellow mark the P-value for these SNPs for association with 
FI in the original discovery meta-analysis (Dupuis et al. 2010). 

 

Figure 4.10. Manhattan plot of 2-h glucose associations.  Novel lead SNPs (+/- 500kb) are highlighted red, and 
known loci in green. Points shown in yellow mark the P-value for these SNPs for association with 2hGlu in the original 
discovery meta-analysis (Saxena et al. 2010).  
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Figure 4.11. Regional association plots for fasting glucose associated loci.  
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Figure 4.12. Regional association plots for fasting insulin associated loci.  
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Figure 4.13. Regional association plots for fasting insulin (adjusted for BMI) associated loci.  

77 
 



 

78 
 



 

 

Figure 4.14. Regional association plots for 2-h glucose associated loci.  
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Figure 4.15. QQ plot for fasting glucose. Black dots show all Metabochip follow-up SNPs, Blue triangles show 
observed associations after removal of previously established signals, while green squares shows observed 
associations after removal of all genome-wide significant SNPs. 
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Figure 4.16. QQ plot for fasting insulin.  See Figure 4.15 for legend.  
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Figure 4.17. QQ plot for fasting insulin adjusted for BMI. See Figure 4.15 for legend.  
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Figure 4.18. QQ plot for 2-h glucose. See Figure 4.15 for legend.  
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Figure 4.19. Comparison of the standard errors of FG effect estimates of all~66,000 SNPs between models 
unadjusted (uniform) and adjusted for BMI.  
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Figure 4.20. Comparison of the standard errors of FI effect estimates of all ~66,000 SNPs between models 
unadjusted (uniform) and adjusted for BMI. It can be observed that the standard errors are systematically smaller 
for BMI adjusted models. 
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Figure 4.21. Regional plot of fine-mapping data for FG at PROX1, GCK, ADRA2A, VPS13C/C2CD4A/B, and for 
FI at IGF1 as well as VPS13C/C2CD4A/B for 2hGlu. Previous lead SNPs are shown in purple, and it can be seen 
that a number of SNPs are more significant than that previously considered to be the lead. New lead SNPs are 
shown in Table ST4. 
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Figure 4.22. FG association directional consistency. SNP lists submitted by each consortium are detailed on the 
x-axis and on the y-axis -log10 p-values for the binomial tests of 1) consistent direction of FG association between 
the discovery and follow-up studies in blue, and 2) consistent direction and nominal significance (P< 0.05) in follow-
up studies alone in red.  

87 
 



 

 

Figure 4.23. FI association directional consistency.  SNP lists submitted by each consortium are detailed on the 
x-axis and on the y-axis -log10 p-values for the binomial tests of 1) consistent direction of FI association between the 
discovery and follow-up studies in blue, and 2) consistent direction and nominal significance (P< 0.05) in follow-up 
studies alone in red. 
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Figure 4.24. FI (BMI-adjusted) association directional consistency.  SNP lists submitted by each consortium are 
detailed on the x-axis and on the y-axis -log10 p-values for the binomial tests of 1) consistent direction of FI 
association between the discovery and follow-up studies in blue, and 2) consistent direction and nominal significance 
(P< 0.05) in follow-up studies alone in red. 
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Figure 4.25. 2hGlu signal enrichment. SNP lists submitted by each consortium are detailed on the x-axis and on 
the y-axis -log10 p-values for the binomial tests of 1) consistent direction of 2hGlu association between the discovery 
and follow-up studies in blue, and 2) consistent direction and nominal significance (P< 0.05) in follow-up studies 
alone in red.  
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Figure 4.26. GRAIL Connectivity plot for FG. Each genome-wide locus for FG is plotted and significant 
connections (P<0.05) based on pubmed abstracts (pre-2007) shown as red lines. 
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Figure 4.27. QQ plot for fasting glucose association with only QT interval SNPs.  
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Figure 4.28. QQ plot for fasting insulin association with only QT interval SNPs. 
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Figure 4.29. QQ plot for fasting insulin (adjusted for BMI) association with only QT interval SNPs.  
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Figure 4.30. QQ plot for 2-h glucose association with only QT interval SNPs.  
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Chapter 5 ChIP-Enrich: Gene set enrichment testing for ChIP-seq data 

5.1 Introduction 

Genome-wide high-throughput experiments, whether assessing differential gene 

expression, differential epigenetic marks, or transcription factor binding, often result in 

hundreds or thousands of genes of interest. A common approach to bridging the gap 

from individual genes to biological pathways is gene set enrichment testing, in which the 

genes identified as biologically interesting from an experiment are tested for statistically 

significant overlap with pre-defined biologically-related sets of genes (e.g., Gene 

Ontology (GO)) (Dennis et al. 2003; Curtis et al. 2005; Rivals et al. 2007).  Gene set 

enrichment testing was originally developed for microarray gene expression data, 

(Tavazoie et al. 1999) with the underlying assumption that, in the absence of a specific 

enrichment, each gene category would contain the same proportion of associated 

genes, i.e. that genes in any given GO term or other gene set are no more likely to be 

identified than other genes. Subsequently, gene set enrichment testing has been 

applied to a wide variety of whole genome experimental data including chromatin 

immunoprecipitation followed by deep sequencing (ChIP-seq) experiments. In ChIP-

seq, biologically interesting genes are defined as those genes with a “peak” in a region 

of the genome designated as part of their potential regulatory domain. We term this 

region from which we predict a gene could be regulated as the locus of the gene, and 

we term the length in base pairs of the locus as the locus length. 

ChIP-seq peaks may follow a number of potential models of spatial distribution across 

the human genome. Considering those peaks that represent specific (true) protein 

binding, a range of possible binding patterns could exist (Barski et al. 2007; Wang et al. 

2012). In one possible pattern, a protein specifically binds close to transcription start 

sites (TSSs); locus length does not influence the probability that a gene has a peak, as 

each gene has approximately the same length of regulatory space (Figure 5.2, top left). 

A second possible pattern is that a protein serves as an enhancer and binds distal to 
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the TSS. The probability of a peak being assigned to a gene might increase with locus 

length, as peaks could be assigned to neighboring genes that they do not regulate, but 

the exact relationship would depend on factors such as how genes are clustered in the 

genome and the average distance from the enhancer to the gene. In a third possible 

pattern, peaks observed in an experiment are false (e.g. experimental error, antibody 

with poor specificity), and we would expect these peaks might occur randomly 

throughout the genome, and thus the probability of a peak being assigned to a gene 

would be proportional to the locus length of the gene (Figure 5.2, bottom right). In 

addition, technical complexities in calling ChIP-seq peaks can result in unobserved 

(false negative) peaks. Sequence mappability varies across the human genome, and 

therefore peaks are more likely to be identified in highly mappable gene loci (Rozowsky 

et al. 2009; Cheung et al. 2011). Together, the different patterns of observed peaks and 

false negative peaks likely lead to a complex relationship between observable protein 

binding, locus length, mappability, and the enrichment of biologically-related gene sets.  

The most common statistical test employed for gene set enrichment is Fisher’s exact 

test, and many tools are based on  this or a closely related test [ConceptGen (Sartor et 

al. 2010), DAVID (Dennis et al. 2003), OntoTools (Draghici et al. 2007; Khatri et al. 

2007)]. Fisher’s exact test is used to find significant associations between two 

categorical variables: in this case, whether a gene is identified in an experiment, and 

whether a gene belongs to a pre-defined gene set. One assumption of Fisher’s exact 

test is that, in the absence of enrichment, genes in each gene set (e.g. GO term) are 

equally likely to have ≥1 peak. However, the locus length of genes vary by several 

orders of magnitude (and thus genes with longer locus length are more likely to be 

assigned a peak by chance). Furthermore, genes with longer (or shorter) locus length 

tend to belong to certain biological functions and processes (Ovcharenko et al. 2005) 

and thus Fisher's exact test will be biased when as a group, genes with longer locus 

length are more likely to be assigned a peak than genes with shorter locus lengths  

(Taher and Ovcharenko 2009).  

To address this bias, (Taher and Ovcharenko 2009) proposed a binomial test where 

successes are defined as the number of binding events (e.g. ChIP-seq peaks) within the 
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predicted regulatory domains (loci) of genes annotated to a GO term. To account for the 

relationship between probability of a binding event and locus length, they used the total 

length of the gene locus relative to the total genome length as the expected binomial 

probability. Their approach assumes that true binding sites are equally likely to occur 

anywhere in the genome, and they justify this assumption based on the fact that no 

comprehensive database is yet available containing all possible regulatory regions 

along the human, or other species’, genome. This is equivalent to assuming that the 

expected number of peaks assigned to a gene is proportional to locus length. Genomic 

Regions Enrichment of Annotation Tool (GREAT) (McLean et al. 2010) implements this 

basic binomial test. The binomial test can detect enrichment of a GO term from a large 

number of peaks in a single or a few genes, and to overcome this limitation McLean et 

al. (2010) suggest comparing the results of the binomial test with a hypergeometric test 

(one-sided Fisher’s exact) to detect gene set enrichment. 

The assumptions of Fisher’s exact test and the binomial approach represent two 

extremes that likely do not reflect the true nature of the relationship between locus 

length and the probability that a peak is assigned to a gene. Our goal was to develop a 

method (ChIP-Enrich) that empirically models this potentially complex relationship, 

rather than assuming either that peaks occur randomly across the genome or that each 

gene has an equal likelihood of being assigned at least one peak. We demonstrate both 

through simulation and permutations of experimental data that in the absence of 

enrichment, ChIP-Enrich exhibits the correct type 1 error rate. In contrast, Fisher’s exact 

test and the binomial approach both show an inflated type 1 error rate under certain 

scenarios of no true enrichment. We compare the behavior of these tests using publicly 

available ChIP-seq experimental datasets. ChIP-Enrich is applicable to other types of 

genome-wide experiments that generate lists of genomic regions (such as MeDIP-seq) 

as their output, and we describe an R package chipenrich for researchers to apply our 

method to such experiments.  
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5.2 Methods 

5.2.1 Definition of a gene locus 

We define a gene as the region between the furthest upstream transcription start site 

(TSS) and furthest downstream transcription end site (TES) for that gene. The positions 

of the TSSs and TESs for each gene are extracted from the UCSC refFlat table (human 

genome build hg19.) We removed small nuclear RNAs as they follow different 

regulatory mechanisms than other genes and often reside within another gene. We 

define a gene locus in two manners for analyses. For primary analyses in which we test 

for gene set enrichment, we define a gene locus as the region spanning the midpoints 

between the TSSs of adjacent genes (Figure 5.1.) We calculate the midpoint for each 

peak, and assign the peak to the gene locus that its midpoint overlaps. This procedure 

is equivalent to assigning each peak to the gene of the nearest TSS. We chose this 

model for assigning peaks to genes because our ChIP-seq peak datasets are for 

transcription factors, and therefore may be more likely to bind and exert an effect on 

nearby TSSs. We compare this model (assigning peaks to the nearest TSS) to an 

commonly used method (assigning peaks to the nearest gene) in Supplementary 

Results 5.6.5.  

To test whether GO terms are enriched when we consider only peaks near TSSs, we 

created an additional definition of a gene locus as the region within 1 kb of any of its 

TSSs. If TSSs from two adjacent genes are within 1kb of each other, we use the 

midpoint between the two TSSs as the boundary of the locus for each gene.  

5.2.2 Quality control for Gene Ontology categories 

We use a set of filters to create a quality set of Gene Ontology (GO) terms to use for 

enrichment testing. We extracted GO molecular functions, GO cellular components, and 

GO biological processes from Bioconductor species specific annotation packages and 

the GO.db R package. We first remove genes from each GO term that do not exist in 

our gene locus definitions, since these genes would never have a peak assigned to 

them and would therefore inflate the count of genes in a GO term without a peak. Each 

GO term is checked for duplicated Entrez gene IDs, and we retain one ID from each set 
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of duplicated IDs. We limit our categories to those with greater than 30 genes, to avoid 

the abundance of small GO terms which often lack the power to detect enrichment even 

when present.  

5.2.3 Mappability calculations 

We define base pair mappability Mi as the average read mappability of all possible 

reads of size K that encompass a specific base pair location, b.  Mappability files from 

the UCSC Genome Browser mappability track were used to calculate base pair 

mappability.  The mappability track provides values for theoretical read mappability, or 

the number of places in the genome that could be mapped by a read that begins with 

the base pair location b.  For example, a value of 1 indicates a Kmer read beginning at 

b is mappable to one area in the genome.  A value of 0.5 indicates a Kmer read 

beginning at b is mappable to two areas in the genome.  For our purposes, we are only 

interested in uniquely mappable reads; therefore, all reads with mappability less than 1 

were set to 0 to indicate non-unique mappability. Then, base pair mappability is 

calculated as: 

𝑀𝑖 =  �
1

2𝐾 − 1
� � 𝑀𝑟𝑒𝑎𝑑𝑗

𝑖+(𝐾−1)

𝑗=𝑖−𝐾+1

  

where Mi is the mappability of base pair i, and Mreadj is mappability (from UCSC’s 

mappability track) of read j where j is the start position of the K length read.  We 

calculated base pair mappability for reads of lengths 24, 36, 40, 50, 75, and 100 base 

pairs for Homo sapiens (build hg19) and for reads of lengths 36, 40, 50, 75, and 100 

base pairs for Mus musculus (build mm9). We define gene locus mappability as the 
average of all base pair mappability values for a gene locus.  

5.2.4 ChIP-Enrich method for gene set enrichment testing of ChIP-seq data 

We developed a logistic regression approach to simultaneously 1) adjust for the gene 

locus length and mappability, and 2) test for gene set enrichment. Our model is shown 

in Equation 5.1: 
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log
πi

1 − πi
= β0 + β1geneset + f(log10 (locus length ∗ mappability + 1)) Equation 5.1 

πi is defined as the probability of gene i being assigned a peak. The πi values are not 

observed directly; instead we observe only whether each gene was assigned one or 

more peaks. Only those genes annotated in GO and present within our locus definitions 

are considered. Our dependent variable is then a binary vector with 1 if the gene has 

one or more peaks assigned to it, and 0 otherwise. The parametric term geneset is also 

a binary vector, where 0 denotes that the gene does not belong in the set of genes 

being tested and 1 otherwise. We chose this coding as it results in a test of the 

enrichment of genes having one or more peaks within a set of genes. Alternate codings 

are possible, such as whether a gene had ≥2,3,4, or more peaks, although we do not 

explore this in our current work. The function f(log10 (locus length * mappability+1)) is a 

binomial smoothing spline term that takes into account both the locus length and the 

average mappability of each gene locus. The model is fit using a penalized likelihood 

maximization approach, where the smoothing penalty is the conventional squared 

second derivative penalty, and where the smoothing parameters are estimated using 

generalized cross-validation (Wood 2006; Wood 2011). We use the gam procedure of 

the R package mgcv to fit the model (Wood 2010). For each gene set, the model is fit 

and a p-value is computed by performing a Wald test on the geneset coefficient β1. P-

values are corrected for multiple testing using the false discovery rate approach 

(Benjamini and Hochberg 1995). We compared alternative choices of models in 

Supplementary Results 5.6.1. 

5.2.5 Fisher’s exact test for gene set enrichment testing of ChIP-seq data 

We use Fisher’s two-sided exact test to test for enrichment of genes with at least 1 

assigned peak within GO terms. We used the R procedure fisher.test to perform the 

test. We considered only genes that are both 1) annotated in GO, and 2) present in our 

locus definitions (i.e. a peak could be assigned to a gene) for analysis.  
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5.2.6 Implementation of a binomial test for enrichment of ChIP-seq peaks within gene 

sets 

We implemented a binomial test based on the test introduced by (Taher and 

Ovcharenko 2009) and previously implemented in GREAT (McLean et al. 2010). We 

use a one-sided binomial test for enrichment of peaks within the loci of genes annotated 

to a GO term defined by 3 parameters: 1) the count of peaks assigned to genes within a 

GO term, 2) the total number of peaks assigned to any GO term, and 3) the probability 

of observing a peak in a gene within a GO term, defined as the total length of the genes 

in the GO term divided by the sum of the lengths of the gene locus regions. The 

probability parameter represents the fraction of the genome covered by the gene loci 

within a GO term. We defined gene loci using the nearest TSS method (see Methods 

5.2.1). 

Our test differs in two ways from the (McLean et al. 2010) version. First, we remove 

genes from consideration that are not present within any GO term. This removes peaks 

assigned to genes that are un-annotated in GO, and therefore would artificially inflate 

the total number of peaks. This is relevant since genes annotated in GO are enriched 

for peaks relative to genes not annotated in any GO term for all eight transcription 

factors we studied (Supplementary Methods 5.5.6, Table 5.8.) Second, we use the sum 

of the gene locus regions as our total genome length, rather than the length of the non-

gapped genome. This removes the gene loci not present in any GO term from the 

calculation of the total genome length, which would artificially decrease the binomial 

probability and inflate the significance of the test. It also allows for a consistent genome 

length when considering gene locus definitions that do not encompass the entire 

genome, or for genome lengths representing the mappable or sequence-able genome, 

rather than the entire non-gapped genome length. We investigate the effect of 

overestimating genome length on the binomial test in Supplementary Results 5.6.2.  

5.2.7 Experimental ChIP-seq peak datasets  

We selected 8 publicly available ChIP-seq peak datasets from the literature, spanning a 

range of read lengths, total number of peaks, and binding distribution relative to 
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transcription start sites (Table 5.4, Figure 5.21). (Reddy et al. 2009; Heikkinen et al. 

2011; Lee et al. 2011; Mokry et al. 2012).  The dataset authors called peaks using a 

variety of calling methods (Cisgenome, MACS, and a custom Parzen window 

approach.) We converted datasets in hg18 coordinates to hg19 using the UCSC liftOver 

tool (Fujita et al. 2011).  

5.2.8 Characterization of the bias of Fisher’s exact test and the binomial test when no 

enrichment exists using simulated data 

We simulated ChIP-seq peaks under the null hypothesis of no association with any GO 

term. Instead of simulating peak locations, we randomly sampled genes to represent the 

count of peaks occurring within the locus of a gene. Genes were sampled by two 

methods: 1) randomly sampling genes with replacement, and 2) randomly sampling 

genes in proportion to their locus length (as defined in Methods 5.2.1), also with 

replacement. The first method simulates peaks occurring within genes with no 

dependence on their locus length (Fisher’s exact test assumption). The second method 

simulates peaks being assigned to genes with probability in proportion to locus length 

(binomial test assumption). We sample a total of 10,000 genes, and vary the 

percentage (0,10,25,50,75,100%) of the total 10,000 genes that are sampled by locus 

length. We tested a subset of our simulations for gene set enrichment (0, 25, 50 and 

75% peaks sampled by locus length). For the binomial test we use the number of times 

a gene is sampled as the count of peaks in the gene. For Fisher’s exact test and ChIP-

Enrich, a gene is labeled as having a peak if the count of peaks is ≥ 1. Each GO term is 

then tested for enrichment using either Fisher’s exact test, the binomial test, or ChIP-

Enrich. We repeat this process 1000 times for each test and percentage of peaks 

sampled by locus length, and calculate the median of the 1000 simulation p-values at 

each quantile of the 2565 GO term p-values.   

5.2.9 Permutations of experimental data and randomly generated GO terms for the 

comparison of ChIP-Enrich, Fisher’s exact test, and the binomial test 

We performed simulations to assess the behavior of each enrichment test under two 

null scenarios of no true enrichment. For both scenarios, we used experimental ChIP-
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seq datasets for E2F4 (a member of the E2F transcription factor family) and NR3C1 

(GR; glucocorticoid receptor). In the first scenario, we permute the count of peaks per 

gene among genes with similar locus length to simulate no true association between the 

number of peaks assigned to a gene, and whether the gene belongs to the GO term 

being tested. We sorted genes by their locus length and then divided them into bins of 

100. We then randomly permute the count of peaks for the genes within each bin. This 

permutation maintains the relationship between the locus length of a gene and its 

likelihood of receiving a peak, while removing any association between membership of 

a gene in a GO term and its count of peaks. After permuting the peaks within each bin 

of genes, we test GO terms for enrichment with each of the three tests.  For the second 

scenario, we created random gene sets of the same number and size distribution of 

GO, i.e., for each GO term we randomly sampled the same number of genes from all 

genes annotated in GO. We then tested the randomly generated GO terms for 

enrichment with each of three tests (Fisher’s exact test, ChIP-Enrich, and the binomial 

test), using the peaks from the E2F4 and GR experimental datasets.  

5.2.10 R package 

We implemented our method in the chipenrich package for the R statistical software 

environment and will be made available through Bioconductor (Gentleman et al. 2004). 

We provide our ChIP-Enrich test for gene set enrichment along with the two existing 

approaches: Fisher’s exact test, and the binomial test for count of peaks. In addition to 

Gene Ontology, we provide 15 additional annotation sources containing over 20,000 

total sets of genes. These sets of genes were previously collected into a database for 

the LRpath gene set enrichment testing tool (http://lrpath.ncibi.org) (Kim et al. 2012) and 

are now available as part of the chipenrich R package. We currently support both the 

human genome build hg19 and the mouse genome build mm9. For ease of use, users 

may either supply an R data frame or the path to a BED format file containing the peak 

locations as input. Runtime is typically 30 minutes to 2 hours (for testing all GO terms) 

depending on the dataset and hardware, and can be as low as 5-10 minutes for smaller 

sets of genes such as KEGG or Biocarta pathways. We offer a number of alternative 

locus definitions in ChIP-Enrich in addition to the nearest TSS locus definition: (1) gene 
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midpoints - a locus is bound by the midpoints between the adjacent gene loci, using the 

smallest and greatest base pair position of the gene transcript’s TSS and TES to define 

loci boundaries; (2) exons – peaks are assigned to gene exons; (3) 1kb – peaks within 

1kb up or downstream of a TSS are assigned to the gene; (4) 5kb – peaks within 5kb up 

or downstream of a TSS are assigned to the gene. Note that only peaks falling within 

the defined regions are used in locus definitions 2-4. Users may also generate 

diagnostic plots for their peak datasets (see the chipenrich  vignette.)  

5.3 Results 

5.3.1 Overview of the ChIP-Enrich approach 

Figure 5.1 illustrates the steps in ChIP-Enrich. We created gene locus definitions using 

boundaries (see methods) defined as 1) the midpoint between the closest TSSs of two 

adjacent genes, or 2) the region within 1 KB of the TSS. We assign peaks to genes 

based on the chosen locus definition, and use a logistic regression model to test for GO 

term enrichment. A binomial cubic smoothing spline is used to model the probability of a 

peak as a function of gene locus length and mappability), and to adjust for this 

relationship in our analysis of GO term enrichment. ChIP-Enrich calculates p-values and 

false discovery rates for enrichment (or depletion) of pre-defined biological gene sets 

from 15 different annotation databases previously described in the LRpath gene set 

enrichment testing software (Kim et al. 2012).  
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Figure 5.1. Overview of the ChIP-Enrich method. ChIP-seq peaks are first assigned to genes using a chosen gene 
locus definition. Peaks can be assigned to the gene with the nearest TSS, the 1kb region on either side of a TSS, or a 
number of other options (top panel.) If the user wishes to adjust for sequence mappability, we multiply the length of 
each gene locus by the average mappability across that locus. We then test each gene for enrichment using a logistic 
regression model, and adjust for the locus length of each gene using a binomial cubic smoothing spline term. The 
bottom left panel represents a visualization of the spline fit (orange) to experimental data after assigning peaks to 
genes. For visualization only, each point is a bin of 25 genes, plotted as the average proportion of genes assigned a 
peak within the bin against the average log10 locus length. The dark gray line represents the fit if Fisher’s exact test 
assumption held (in the absence of enrichment, all genes are equally likely to be assigned ≥1 peak). The light gray 
logistic-shaped curve represents the fit if the assumption of the binomial test held (expected number of peaks 
assigned to a gene is proportional to locus length.)  P-values and q-values for each gene set tested are calculated 
and reported to the user. 

5.3.2 Potential confounding from locus length and mappability 

Taher and Ovcharenko (2009) showed that locus length is related to GO term 

membership for loci defined as the gene and half the intergenic region between 

adjacent genes (Taher and Ovcharenko 2009). Using our locus definition of the 

midpoint between TSS (locus definition for all presented analysis (Methods 5.2.1), we 

similarly found that genes in GO terms related to nucleosome, protein-DNA complexes, 

and translation have short locus lengths (Table 5.5). In contrast, genes in GO terms 
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representing nervous system development, cell adhesion, and transcription tend to have 

long locus lengths (Table 5.6).  

The probability that a peak will be observed in a gene locus is also affected by the 

mappability of the DNA within the locus. If mappability varies randomly throughout the 

genome, then it is unlikely to affect enrichment testing results. However, if the 

mappability of loci varies by GO term membership, then mappability has the potential to 

bias enrichment testing results. To assess the association between mappability and GO 

term membership, we calculated mappability at each base pair across the hg19 version 

human genome for different sequence read lengths (see Methods 5.2.3.) Next, we 

calculated a mappability score for each gene defined as the average mappability across 

the gene’s locus length. As expected, the gene mappability scores show wide variability 

at lower read lengths and mappability increases as read lengths increase from 24 to 

100 bp (Figure 5.9. A). We found that genes with low mappability are significantly more 

likely to be present in sensory and xenobiotic response and oxygen related terms, 

whereas genes with high mappability are significantly more likely to be involved in the 

nervous system or development terms (at the 50-mer read length, q-value < 3.0 x 10-16) 

(Figure 5.9. B,C.). Several GO terms (e.g., central nervous system development) had 

longer locus lengths and higher mappability, increasing the possibility of confounding in 

gene enrichment tests.  

5.3.3 Comparison of ChIP-Enrich, Fisher’s exact test, and the binomial test under the 

null hypothesis of no enrichment using simulated data 

In the absence of GO term enrichment, Fisher’s exact test assumes that the probability 

of a peak is the same for every gene, which is satisfied when the probability of a gene 

having a peak is independent of its locus length. In contrast, the binomial test assumes 

that the probability of a peak occurring in a locus is proportional to the locus length. To 

examine the sensitivity of Fisher's exact test, the binomial test, and ChIP-Enrich to 

these assumptions, we simulated datasets of peaks containing a mixture of peaks 

sampled independently of locus length (Fisher’s exact test assumption) and peaks 

sampled in proportion to locus length (binomial test assumption.) Rather than simulate 

peak locations, we simulated the number of peaks per gene by sampling a total of 
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10,000 genes as a mixture of: 1) genes sampled at random with replacement 

(representing peaks assigned with equal probability to each gene), and 2) genes 

sampled randomly in proportion to their locus length with replacement (probability of 

peak assignment to a gene is proportional to locus length.) As the percentage of peaks 

sampled by locus length increases, the relationship between the probability of a gene 

having a peak and locus length changes from relatively flat (Figure 5.2, top left) to 

increasingly logistic shaped (Figure 5.2, bottom right).  

 

Figure 5.2. Probability of a gene having a peak given its locus length, as the percentage of peaks sampled by 
locus length increases. For visualization, each point is a bin of 25 genes, plotted as the average proportion of 
genes having a peak within the bin against the average log10 locus length. The dark grey horizontal line represents 
the model where peaks occur within genes with no relationship to their locus length. The light grey line represents the 
theoretical probability of a locus having ≥1 peak given its length and the total length of the genome. The orange line is 
a binomial smoothing spline fit to the underlying data (the 0/1 vector denoting whether a peak was assigned to a gene 
vs. the log10 locus length of each gene.)  

We tested each of our simulated datasets (genes sampled with replacement to 

represent peaks) for enriched GO terms using Fisher’s exact test, the binomial test, and 
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ChIP-Enrich (Methods 5.2.8) and plotted the sorted observed –log10(p-values) versus 

the expected –log10 p-values (Figure 5.3.) In the presence of no enrichment, every 

plotted line should follow the y=x line. To increase the stability of our results, we 

performed each simulation and enrichment test 1000 times and plotted the median p-

value for each quantile, i.e. the median of the most significant p-values, the median of 

the next most significant p-values, and so on.   

When the peaks have equal probability of occurring in each gene (random 0%) Fisher’s 

exact test shows a slight deflation of the most significant p-values as expected due to 

the discrete nature of the data (Upton 1992) (see also Supplementary Results 5.6.3.) 

With increasing proportions of peaks in proportion to locus length, Fisher’s exact test 

becomes increasingly anti-conservative: at 100% peaks sampled by locus length, the 

median p-values observed for the 0.5, 0.05 and 0.0001 quantiles (equivalent to the 

expected p-values at these values) were 0.21, 5.39x10-5, and 5.44x10-17. In contrast, 

the binomial test becomes increasingly anti-conservative for increasing proportions of 

peaks with equal probability in each gene, with the highest level of inflation observed 

when the probability of having a peak is not related to gene length (0% peaks sampled 

by locus length): the median p-values observed for the 0.5, 0.05 and 0.0001 quantiles 

were 0.68, 1.1x10-5, and 1.55x10-24. ChIP-Enrich shows no inflation from the expected 

distribution in any scenario but instead shows a similar slight deflation of p-values as 

observed for  Fisher’s exact test with 0% peaks sampled by locus length.   
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Test Assumptions QQ Plot 

Fisher’s 

Exact Test 

Assumes each gene has 

an equal probability of 

having a peak 

 

Binomial 

Assumes probability of a 

gene having a peak is 

proportional to locus 

length 

 

ChIP-

Enrich 

Empirically estimates 

probability of having a 

peak based on locus 

length 

  
Figure 5.3. Fisher’s Exact and the binomial test represent extreme assumptions for enrichment testing for 
ChIP-Seq data, while ChIP-Enrich empirically estimates the correct balance between these two extremes.  
Incorrect assumptions at either end leads to biased significance levels. Median p-values are shown for 1000 
simulations of Fisher’s exact test, ChIP-Enrich, and the binomial test with increasing percentages (0-100%, red to 
blue) of peaks sampled by locus length from a total of 10,000 peaks.  
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5.3.4 Observed relationship between probability of a peak and locus length in 

experimental data 

To explore the behavior of ChIP-Enrich  over experiments covering a broad range of 

binding distributions, we analyzed eight publicly available ChIP-seq datasets from the 

literature to analyze (Reddy et al. 2009; Heikkinen et al. 2011; Lee et al. 2011; Mokry et 

al. 2012) (Figure 5.21). Using four of these transcription factors that have a mid-range 

number of total peaks (GR, beta catenin, E2F4, TBP), we see a trend in the relationship 

between probability of a peak and locus length. This trend ranges from GR, which tends 

to bind distally to genes (77.9% of peaks occur > 50 kb from the TSS), to TBP, which 

tends to bind proximal to genes (63.3% of peak occur within 1kb of the TSS) (Figure 

5.4; top left and bottom right). Beta catenin and E2F4 represent binding distributions 

intermediate between these two more extreme datasets (Figure 5.4 top right and bottom 

left.) These binding distributions, along with the total number of peaks and other 

possible factors, lead to different relationships between the presence of a peak within a 

gene locus, and its observable locus length, and all four datasets exhibit a departure 

from both the assumption that all genes are equally likely to have a peak, and that the 

probability that a peak being assigned to a gene is directly proportional to its locus 

length. The relationship for GR closely resembles that of random peaks occurring 

throughout the genome for a wide range of locus lengths (log10 locus length between 4 

and 5, or ≈ 56% of all genes.) In contrast for TBP, we see the relationship is flatter, 

more closely resembling the assumption of Fisher’s exact test (Figure 5.4, horizontal 

line). The spline fit tends to flatten for datasets with small numbers of peaks and rises 

for datasets with larger numbers of peaks (Figure 5.21). From these transcription 

factors, we selected two datasets (E2F4, GR) that exhibit differences in binding relative 

to TSSs to illustrate our method and to examine how well ChIP-Enrich identifies the 

known functions of well-studied transcription factors.  
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Figure 5.4. Spline fit trend for four experimental datasets ordered by increasing proportion of peaks within 
1KB of the TSS (GR, Beta Catenin, E2F4, TBP.) As the proportion of peaks near the TSS increases, the spline fit 
begins to flatten, representing the scenario where genes are being assigned a peak with no relation to their locus 
length. Each of the datasets here demonstrate that the probability of a gene being assigned a peak is not a direct 
function of the locus length, nor is it equal over all genes. The E2F4 dataset is from (Lee et al. 2011), the GR dataset 
is from (Reddy et al. 2009), and both Beta Catenin and TBP are from (Mokry et al. 2012).  

112 
 



 

5.3.5 Comparison of ChIP-Enrich, Fishers exact test and the binomial test for 

experimental and permuted E2F4 and GR datasets   

Given our initial simulations (Results 5.3.3) and the observed patterns of the probability 

of a peak and locus length in the experimental datasets (Results 5.3.4), we 

hypothesized that, in the absence of gene set enrichment, Fisher’s exact test and the 

binomial test might also have anti-conservative results in these experimental datasets 

due to violations of the underlying assumptions of these tests. Using permutations of 

experimental datasets (E2F4, GR) and by simulating GO terms with random sets of 

genes drawn from all genes annotated in GO, we created two scenarios under which no 

true enrichment exists, and therefore no evidence for enrichment should be detected.  

In the first scenario, we binned genes according to their locus length, and then randomly 

shuffled the count of peaks assigned to genes within each bin. This procedure 

preserves the overall relationship in the dataset between peak count and locus length, 

as well as between locus length and GO term membership. In this scenario, there is still 

potential for confounding of GO term membership and peak count due to locus length, 

and also potential for violation of the assumption that the peak count is proportional to 

locus length.  

For the second scenario, we created gene sets of the same number of genes as each 

GO term by randomly sampling genes annotated in GO without replacement and tested 

the original E2F4 and GR datasets for GO enrichment (where count of peaks per gene, 

and the locus length of each gene, from the original dataset are preserved.) This 

procedure removes the relationship between the GO term and locus length, but 

preserves the relationship between a given gene and its peak count and locus length. In 

this scenario there is no potential for confounding due to locus length, but there is 

potential for violation of the assumption that the peak count is proportional to locus 

length.  

Figure 5.5 shows the expected –log10 p-values versus the –log10 p-values for the two 

scenarios above. For GR and E2F4, overall ChIP-Enrich shows the expected 

distribution of p-values, while being slightly conservative for the most extreme p-values 
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in scenario 1 (Figure 5.5, center column). In contrast, for GR and to a lesser extent for 

E2F2, Fisher’s exact test shows inflated –log10 p-values when randomly permuting 

peaks within bins of gene locus length (scenario 1) (Figure 5.5, left column), because of 

the confounding effect of locus length. For randomly generated gene sets (scenario 2), 

however, Fisher’s exact test shows the expected distribution of p-values (with a slight 

deflation relative to the x=y line). For E2F4 and GR, the binomial test shows inflation of 

–log10(p-values) under both scenarios, with less inflation for E2F4 in scenario 2 when 

the relationship between GO term and locus length is not preserved (Figure 5.6, right 

column). Using additional simulations (Supplementary Results 5.6.4), we observe that in 

both the E2F4 and GR datasets, random sets of genes with shorter than average locus 

length have an excess of peaks (Figure 5.16.). For E2F4 in particular, the binomial test 

detects these short sets of random genes as highly significant, and conversely all the 

longest sets of random genes have p-values = 1 (Figure 5.17.). 

 Fisher’s Exact Test ChIP-Enrich Binomial Test 

E2F4 

 

GR 

Figure 5.5. Fisher’s exact test and the binomial test show inflated p-value distributions while ChIP-Enrich 
shows the correct p-value distribution under two scenarios of no enrichment: permuting counts of peaks 
within bins of gene locus length, and randomly generated sets of genes. QQ plots are shown from permuting 
peak counts within locus length bins (red), and randomly generated sets of genes (orange.) Gray shading represent 
the 95% confidence interval. Both Fisher’s exact test and the binomial test show an inflated p-value distribution when 
permuting counts of peaks within gene locus length bins. The binomial test also shows an inflated p-value distribution 
when using randomly generated sets of genes instead of GO terms. ChIP-Enrich shows the expected distribution of 
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p-values, while possibly being slightly conservative for the most extreme p-values when permuting counts of peaks 
within locus length bins.  

We subsequently compared results from the two scenarios above to the results from the 

original datasets (Figure 5.6). For each test, the original dataset results were stronger 

(Figure 5.6, blue) than those observed in the permuted and simulated datasets (Figure 

5.6, red and orange) indicating that true biological enrichment is likely being detected by 

each test. In the original datasets, the binomial test showed substantially stronger 

signals than ChIP-Enrich or Fisher’s exact test in both the GR and E2F4 datasets, and 

Fisher’s exact test showed stronger signals than ChIP-Enrich in the GR datasets 

(Figure 5.6). However, since the significance of the results of Fisher's exact and the 

binomial test are inflated, the results cannot be interpreted directly.  

 Fisher’s Exact Test ChIP-Enrich Binomial Test 

E2F4 

  

GR 

Figure 5.6. Comparison of p-values from two null scenarios with experimental data p-values. Observed –log10 
p-values are from testing the actual dataset (E2F4 or GR) with no permutations and using true GO terms (blue), 
permuting peaks within locus length bins (red), and randomly generated sets of genes (orange.) Figure 5.5 shows a 
zoomed in figure of the red and orange data points. Gray shading represents the 95% confidence interval. Fisher’s 
exact test and the binomial test both exhibit an enrichment (blue) over either null scenario (orange, red) that likely 
represents true biological signal, though the observed –log10 p-values are inflated. ChIP-Enrich shows the expected 
p-value distribution under both null scenarios, albeit with a slight deflation for highly significant p-values. 
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5.3.6 Analysis of two ChIP-seq datasets (transcription factors E2F4 and GR) with 

ChIP-Enrich 

We investigated whether ChIP-Enrich was able to identify the known functional roles of 

E2F4 and GR. For E2F4, we found enrichment of multiple cell cycle terms, including “M 

phase of mitotic cell cycle,” “cell division,” and “cell cycle arrest” (Table 5.1.)  E2F4 and 

other E2F family of transcription factors are primarily known to be involved in cell cycle 

progression. E2F4 is known to act as both an activator and repressor of transcription, 

and binds to the promoter regions of genes known to function in a diverse range of 

functions, including DNA damage repair, cell cycle progression, and apoptosis (Gaubatz 

et al. 2000; Plesca et al. 2007).   

Rank GO ID GO Description 
# Genes with 

Peak P-value FDR 
1 GO:0044427 chromosomal part 324 1.07E-22 9.31E-22 
2 GO:0000279 M phase 335 3.32E-21 2.02E-19 
3 GO:0000087 M phase of mitotic cell cycle 256 1.33E-20 7.13E-19 
4 GO:0048285 organelle fission 256 1.70E-20 8.84E-19 
5 GO:0000280 nuclear division 249 3.25E-20 1.64E-18 
6 GO:0006974 response to DNA damage stimulus 342 2.77E-19 1.18E-17 
7 GO:0006281 DNA repair 243 4.31E-17 1.61E-15 
8 GO:0051325 Interphase 245 1.16E-16 4.17E-15 
9 GO:0051329 interphase of mitotic cell cycle 239 1.98E-16 7.00E-15 
10 GO:0016071 mRNA metabolic process 334 1.06E-15 3.60E-14 
11 GO:0051301 cell division 274 1.84E-15 6.13E-14 
12 GO:0005819 Spindle 147 2.02E-15 1.58E-14 
13 GO:0045786 negative regulation of cell cycle 271 1.52E-14 4.81E-13 
14 GO:0006260 DNA replication 183 3.54E-14 1.10E-12 
15 GO:0031012 extracellular matrix 132 4.65E-14 3.45E-13 
16 GO:0000228 nuclear chromosome 162 8.72E-14 6.16E-13 
17 GO:0007606 sensory perception of chemical 

stimulus 
34 1.58E-13 4.76E-12 

18 GO:0006397 mRNA processing 252 2.61E-13 7.73E-12 
19 GO:0007050 cell cycle arrest 227 7.45E-13 2.11E-11 
20 GO:0000775 chromosome, centromeric region 119 1.20E-12 7.94E-12 
Table 5.1. Top 20 GO terms identified from applying ChIP-Enrich to the E2F4 dataset.  Only GO terms with less 
than 500 genes are shown, as this removes large non-specific GO terms.  
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For the glucocorticoid receptor-alpha (GR), among the top 25 significant GO terms we 

found a cluster of terms related to glucocorticoid response, such as “response to 

corticosteroid stimulus,” and “response to glucocorticoid stimulus,” and another cluster 

relating to the regulation of lipids (Table 5.2). GR is known to be involved in the 

response to glucose, steroids, and the activation of lipolysis in adipose tissue (Xu et al. 

2009; Yu et al. 2010). A third cluster of GO terms represents functions relating to 

angiogenesis, such as “angiogenesis”, “blood vessel morphogenesis,” “vasculature 

development,” and “blood vessel development” (Table 5.2). Because GR is not 

annotated to angiogenesis or a closely related GO term, to examine this finding, we 

used the MEME software (Bailey et al. 2009) to de novo identify motifs overrepresented 

in the 460 peaks assigned to genes in the angiogenesis GO term relative to reference 

genome (detected at the Bonferroni-adjusted p < 0.05 level). The highest ranked motif 

from the MEME analysis had the consensus sequence 5’-AGAACAnnnTGTnCT-3’ 

(Figure 5.22), and was identified in 262 of 460 peaks in the angiogenesis GO term 

(Table 5.9). Results from the motif comparison tool Tomtom indicated that the best 

matched transcription factor binding site to this motif was the glucocorticoid receptor 

element (GRE) (P=4.43x10-07), to which GR is known to bind. The GRE motif also tends 

to occur near the middle of these peaks, whereas the second best matched motif occurs 

at random throughout the peaks as expected for a false positive result (Figure 5.23, 

Figure 5.24).  Eight of the peaks assigned to genes annotated to angiogenesis were 

assigned to either VEGF-A or VEGF-C, which are known to be key regulators of 

angiogenesis (Table 5.10). Five of these peaks contained a GRE and all five were 

>25kb from the TSS of the assigned gene.  
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Rank GO ID GO Description 

# Genes 
with 
Peak P-value FDR 

1 GO:0001525 angiogenesis 132 3.86E-08 1.13E-05 
2 GO:0048514 blood vessel morphogenesis 154 1.61E-07 3.35E-05 
3 GO:0006112 energy reserve metabolic process 88 2.86E-07 5.35E-05 
4 GO:0070161 anchoring junction 100 5.26E-07 3.85E-05 
5 GO:0001944 vasculature development 183 5.68E-07 8.84E-05 
6 GO:0042598 vesicular fraction 109 6.48E-07 3.85E-05 
7 GO:0001568 blood vessel development 173 6.55E-07 9.42E-05 
8 GO:0005792 microsome 105 8.27E-07 4.09E-05 
9 GO:0019904 protein domain specific binding 202 1.04E-06 1.37E-04 
10 GO:0005912 adherens junction 91 1.12E-06 4.73E-05 
11 GO:0032787 monocarboxylic acid metabolic process 153 2.32E-06 2.41E-04 
12 GO:0042493 response to drug 138 3.77E-06 3.29E-04 
13 GO:0051056 regulation of small GTPase mediated 

signal transduction 
177 3.87E-06 3.29E-04 

14 GO:0016323 basolateral plasma membrane 122 4.98E-06 1.48E-04 
15 GO:0071702 organic substance transport 209 5.65E-06 4.01E-04 
16 GO:0010876 lipid localization 98 5.83E-06 4.01E-04 
17 GO:0019216 regulation of lipid metabolic process 72 5.86E-06 4.01E-04 
18 GO:0051272 positive regulation of cellular component 

movement 
88 6.00E-06 4.01E-04 

19 GO:0008610 lipid biosynthetic process 177 6.95E-06 4.28E-04 
20 GO:0007264 small GTPase mediated signal 

transduction 
220 7.09E-06 4.28E-04 

21 GO:0007264 actin cytoskeleton 139 8.39E-06 2.08E-04 
22 GO:0031960 response to corticosteroid stimulus 67 1.49E-05 7.51E-04 
23 GO:0006690 icosanoid metabolic process 31 2.12E-05 9.84E-04 
24 GO:0051384 response to glucocorticoid stimulus 62 2.27E-05 9.86E-04 
25 GO:0043434 response to peptide hormone stimulus 154 2.43E-05 1.01E-03 
Table 5.2. Top 25 GO terms identified from applying ChIP-Enrich to the GR dataset. Only GO terms with less 
than 500 genes are shown, as this removes large non-specific GO terms. 

5.3.7 Distance of peak to TSS and GO term enrichment 

We investigated whether the same GO terms appeared enriched when we restricted our 

analysis to regions within 1 kb of the TSS (compared to analysis of all peaks) (Figure 

5.7). In the GR dataset, the majority of peaks are >10 kb from a TSS. Of the 188 GO 

terms that showed significant enrichment in an analysis of all GR peaks, 177 were not 

detected as significantly enriched based on analysis of GR peaks within 1 kb of a TSS 
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(using an FDR <.05 to detect GO terms that are significantly enriched.) Table 5.3 lists 

the top 20 most significant GO terms detected only with analysis of all peaks. All of 

these terms overlap with the top 25 GO terms overall, including “angiogenesis.” In 

contrast, only a single GO term, “basement membrane”, was significant for the 2 kb 

analysis but not for the all peaks analysis. Using only peaks near the TSS would miss 

GO terms of interest for GR, and likely for other transcription factors with similar 

patterns of binding. In contrast to GR, the majority of E2F4 peaks occur <1 kb of a TSS. 

Performing analysis with either all peaks, or only those peaks within 1 kb of a TSS, for 

E2F4 yields very similar results (Figure 5.8).  

GO ID GO Description P-value All FDR All 
P-value 

1KB FDR 1KB 
GO:0001525 angiogenesis 3.86E-08 1.13E-05 4.19E-02 5.43E-01 
GO:0048514 blood vessel morphogenesis 1.61E-07 3.35E-05 5.39E-03 1.89E-01 
GO:0006112 energy reserve metabolic process 2.86E-07 5.35E-05 5.55E-01 9.93E-01 
GO:0001944 vasculature development 5.68E-07 8.84E-05 3.10E-03 1.56E-01 
GO:0042598 vesicular fraction 6.48E-07 3.85E-05 2.24E-03 8.32E-02 
GO:0001568 blood vessel development 6.55E-07 9.42E-05 7.50E-03 2.34E-01 
GO:0005792 Microsome 8.27E-07 4.09E-05 3.45E-03 1.03E-01 
GO:0019904 protein domain specific binding 1.04E-06 1.37E-04 1.62E-01 9.64E-01 
GO:0042493 response to drug 3.77E-06 3.29E-04 7.07E-04 9.44E-02 
GO:0051056 regulation of small GTPase mediated 

signal transduction 
3.87E-06 3.29E-04 9.71E-01 1.00E+00 

GO:0071702 organic substance transport 5.65E-06 4.01E-04 1.12E-01 7.50E-01 
GO:0010876 lipid localization 5.83E-06 4.01E-04 6.04E-02 6.07E-01 
GO:0019216 regulation of lipid metabolic process 5.86E-06 4.01E-04 5.38E-01 9.93E-01 
GO:0051272 positive regulation of cellular 

component movement 
6.00E-06 4.01E-04 2.60E-02 4.64E-01 

GO:0008610 lipid biosynthetic process 6.95E-06 4.28E-04 7.04E-01 1.00E+00 
GO:0007264 small GTPase mediated signal 

transduction 
7.09E-06 4.28E-04 2.47E-01 8.86E-01 

GO:0015629 actin cytoskeleton 8.39E-06 2.08E-04 6.35E-01 9.81E-01 
GO:0031960 response to corticosteroid stimulus 1.49E-05 7.51E-04 4.21E-04 7.87E-02 
GO:0006690 icosanoid metabolic process 2.12E-05 9.84E-04 5.71E-02 6.04E-01 
GO:0051384 response to glucocorticoid stimulus 2.27E-05 9.86E-04 3.45E-03 1.61E-01 
Table 5.3. Significant GO terms when using all GR peaks that lose significance after restricting to peaks 
within 1 kb of the TSS. The top 20 GO terms with FDR < 0.05 using all peaks and FDR > 0.05 when using peaks 
near the TSS are listed.  
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Figure 5.7. Comparison of p-values for ChIP-Enrich using all peaks in the GR dataset and only those peaks 
within 1 kb of a TSS.  Each point represents a GO term, colored by whether it was significant at an FDR of 0.05 for 
either the case of using all peaks in the dataset (green), using only those peaks near the TSS (black), neither (blue), 
or both (red.) Only those GO terms with fewer than 500 genes are shown. FDR adjustment is performed separately 
for each GO branch.  

Angiogenesis 
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Figure 5.8. Comparison of p-values for ChIP-Enrich using all peaks in the E2F4 dataset and only those peaks 
within 1 kb of a TSS.  Each point represents a GO term, colored by whether it was significant at an FDR of 0.05 for 
either the case of using all peaks in the dataset (green), using only those peaks near the TSS (black), neither (blue), 
or both (red.) Only those GO terms with fewer than 500 genes are shown. FDR adjustment is performed separately 
for each GO branch.  

5.4 Discussion 

Biological interpretation of genome wide deep sequencing applications such as ChIP-

Seq, MeDIP-Seq, and others that result in a list of identified genomic regions, is 

complicated by technical false positives and false negatives, the high number of peaks 

often detected, uncertainties in association between regulatory regions and transcribed 

elements, and the possibility that a large percentage of bindings do not directly regulate 

any gene. We developed ChIP-Enrich, a gene set enrichment testing method for ChIP-

seq and other sequencing experiments, that eliminates the need to assume a specific 

relationship between the probability of a peak and gene locus length by modeling it 

based on the data. We show that two existing approaches, Fisher’s exact test and the 

binomial test, make assumptions regarding the relationship between the probability of 

observing a peak and the estimated locus (regulatory) length of a gene that are not 
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consistent with the patterns observed in experimental data. These assumptions can 

lead to inflated significance levels and an excess of false positive enrichment results. 

While both Fisher’s exact test and the binomial test result in a true enrichment signal 

beyond the level of bias for both GR and E2F4, this may not always hold true. For 

transcription factors with weaker signal, or for differential histone or DNA methylation 

studies, there may be a greater level of noise, and the bias in the Fisher’s exact and 

binomial tests may outweigh the true signal, resulting in the majority of significant 

findings being false positives. In contrast with these previous tests for enrichment 

testing with ChIP-Seq data, ChIP-Enrich uses a data-dependent approach to model the 

relationship between the probability of observing a peak and the estimated regulatory 

(locus) length of a gene. This approach to empirically modeling the relationship, rather 

than making incorrect assumptions regarding its form, should result in a test that has 

the expected type 1 error rate for other experimentally observed data.  

In addition to locus length, we also show that mappability plays a role as a potential 

confounder, by modifying the observable locus length in deep sequencing experiments, 

and like locus length, the mappability of genes is correlated with GO term membership. 

Our estimates of mappability represent a first order approximation of genomic regions 

that are capable of producing a peak when binding is present. Improved estimation of 

which genomic regions are mappable and able to be sequenced by commonly used 

technologies such as Illumina HiSeq-2000 will improve the estimation of the mappable 

locus length.  

The binomial test applied in GREAT (McLean et al. 2010) uses the total number of 

binding sites associated with a gene set rather than the number of genes with at least 1 

peak designated to that gene set. This assumes that a greater number of peaks 

indicates that a gene is more likely to be regulated. However, the strength of gene 

regulation is not necessarily proportional to the number of peaks binding near it (Rye et 

al. 2011). As demonstrated in our simulations (Supplementary Results 5.6.4) using 

randomly generated GO terms, a single gene with an unexpectedly high number of 

peaks can drive the enrichment results for multiple GO terms. Future research is 
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required to determine the best balance between use of the number of binding sites and 

the number of genes with binding sites, which is likely to be experiment-dependent.  

Using experimental ChIP-seq datasets, we found that ChIP-Enrich is able to identify GO 

terms related to the known biology of the transcription factors GR and E2F4. The 

glucocorticoid receptor-alpha (GR) acts as a ligand receptor for a class of steroid 

hormones known as glucocorticoids. Glucocorticoids are known to be involved in 

numerous biological processes, including the regulation of glucose synthesis in 

response to circadian rhythms, suppression of inflammation in response to stress, 

inhibition of glucose uptake, activation of lipolysis in adipose tissue, fetal development, 

angiogenesis, and many other processes (Geley et al. 1996; Dostert and Heinzel 2004). 

GR-alpha binds glucocorticoids in the cytoplasm, and then translocates to the nucleus 

to subsequently bind to glucocorticoid response elements (GREs). Binding of the GR 

complex can serve to either inhibit or activate the expression of genes. Reddy et al 

(2009) identified differentially expressed genes responsive to treatment by 

dexamethasone, which acts as a synthetic glucocorticoid that stimulates expression of 

GR-regulated genes. Through gene set enrichment analysis using DAVID (Dennis et al. 

2003), they uncovered many possible underlying pathways for response to 

glucocorticoids, including stress response, organ development, cell differentiation, 

hormone secretion, and apoptosis. Our gene set enrichment analysis using ChIP-Enrich 

on the GR dataset matched many of these known functions, showing that ChIP-Enrich 

is capable of capturing known biology with a ChIP-seq dataset exhibiting binding distal 

to TSSs.  

As demonstrated by our analysis of GR, functional binding may occur distally to genes. 

By including all peaks, we identified angiogenesis as a significant target pathway of GR. 

GR has been reported to play a role in angiogenesis (Dostert and Heinzel 2004; Small 

et al. 2005; Yano et al. 2006; Logie et al. 2010), even though it is not annotated to this 

function in Gene Ontology or other pathway databases. GR has also been linked to 

inhibition of angiogenesis through non-transcription factor activities (Leung et al. 2006), 

although the extent to which it directly regulates angiogenesis-related genes as a group 

is unknown. GR has recently been shown to mediate the inhibition of angiogenesis by 

123 
 



 

corticosterone and 11-dehydrocorticosterone in wild-type mice (Small et al. 2005). It 

was also reported to repress proliferin gene expression in mice as well; proliferin is an 

angiogenic hormone normally present during development of the placenta, but is also 

expressed in the skin, and in immortalized cell lines (Dostert and Heinzel 2004). 

Another study in ARPE-19 cells showed that fluocinolone (a corticosteroid) inhibits 

VEGF secretion by acting through GR, thereby inhibiting angiogenesis 

(Ayalasomayajula et al. 2009).  Logie et al. (2010) reported that glucocorticoids inhibit 

tube-like structure formation in human endothelial cells, and that this inhibition is 

mediated by GR. Here, we identified angiogenesis as a major target of regulation for 

GR, and identified the GRE motif de novo using only peaks assigned to angiogenesis-

related genes, and found that this motif occurred in the majority of peaks. Because 

binding associated with angiogenesis occurred distal to genes, this finding would have 

been missed if only looking at peaks proximal to transcription start sites.  

One way to use Fisher’s exact test for gene set enrichment testing on ChIP-seq data is 

to only consider peaks within a few kb of TSSs to remove the confounding effect of 

locus length. We showed through our analysis of the GR dataset that using only those 

peaks near the TSS would result in missing the enrichment of biologically relevant sets 

of genes. Limiting analyses to sites proximal to the TSS is also prone to error when the 

start site(s) is not definitively known, such as in cases where a gene has a different TSS 

across multiple tissue types, or alternative first exons.  

One primary limitation of existing methods, including our own, is the assumption that 

true binding is independent of gene locus length. In the event that a transcription factor 

specifically targeted long genes, existing methods including ChIP-Enrich would likely 

suffer reduced power to detect enrichment. Similar methods for gene set enrichment in 

RNA-seq data have the same limitation (Young et al. 2010). To our knowledge, no such 

evidence for transcription factors binding preferentially to short or long genes has been 

described. We also note that existing approaches are limited by the current state of the 

art for gene and transcript definitions, and by the functional annotation of genes and 

their membership in GO terms (or other sets of genes.) As these definitions improve, 

inference regarding the true biological function of a protein will also improve.  
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5.5 Supplementary Methods 

5.5.1 Additional simulations of the ChIP-Enrich type 1 error rate  

We performed additional simulations with ChIP-Enrich to demonstrate the discrete 

nature of the deflation in type 1 error, which is more readily apparent with a greater 

number of simulation iterations. Increasing the number of iterations also allows us to 

examine the type 1 error rate at smaller nominal levels of significance. Rather than 

simulate the type 1 error of ChIP-Enrich by performing enrichment testing of all GO 

terms, we instead chose a number of terms that are representative of the possible 

ranges for median locus length and number of genes in the GO term. In Figure 5.11 we 

plot the log10 number of genes against the log10 median length of genes in each GO 

term. Points circled in red represent the chosen GO terms for our simulations, selected 

to represent the extreme edges of the distribution. Category GO:0008610 was chosen 

because it lies at the median of both marginal distributions. Table 5.7 lists each chosen 

GO category. 

To assess the type 1 error rate of the ChIP-Enrich, we simulated data under the null 

assumption of peaks occurring randomly throughout the genome. We sampled genes 

according to their locus length with replacement to simulate peaks occurring randomly 

within genes across the genome. The simulation was performed by 1) randomly 

sampling 7500 genes (by their locus length, with replacement), where sampled genes 

are considered to have a peak, and 2) calculate the p-value using ChIP-Enrich to test 

for enrichment over 5 selected GO terms (Table 5.7, Figure 5.11.) We performed 1 

million iterations of this simulation and calculated the type 1 error rate for nominal 

significance levels 10-1 to 10-4 (Figure 5.12.) 

5.5.2 Testing for enriched GO terms with genes of longer (or shorter) than average 

locus length 

We used DAVID (Dennis et al. 2003) to test for enrichment of genes with longer and 

shorter locus lengths. The 500 genes with the longest locus lengths were input into 

DAVID as the test set gene list, and the background gene list was set to all of the genes 

in our gene list. The same process was repeated with the 500 genes that had the 
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shortest locus lengths. Results were limited to GO terms with <2,000 genes and 

FDR<0.05 in order to report more specific categories. 

5.5.3 Testing for enriched GO terms with genes having higher or lower than average 

mappability 

We used LRpath (Kim et al. 2012) to test for GO terms that were enriched with genes 

that had higher and lower than expected mappability values. LRpath normally takes a 

list of p-values as input, which are then log-transformed in the logistic regression model.  

In order to preserve mappability, values were exponentiated prior to input in the LRpath 

web application (lrpath.ncibi.org). Results were limited to GO terms with <2,000 genes 

and FDR<0.05 in order to report more specific categories.  

5.5.4 Comparing two alternative locus definitions for assigning peaks to genes: nearest 

TSS and nearest gene definitions 

An alternative locus definition for assigning peaks to genes is to assign peaks to the 

nearest gene, rather than the nearest TSS. We might consider this locus definition for 

proteins known to bind distal to TSSs, or for other types of data, such as regions of 

histone modifications or methylation, as these types of regions could be more likely to 

regulate the nearby gene, and not necessarily the gene with the closest TSS.  

To assign peaks to the nearest gene, we define a locus as the genomic region bounded 

on the upstream side by the midpoint between the gene’s most upstream TSS or TES 

and the closest TSS or TES of the next upstream gene, regardless of which strand the 

adjacent upstream gene is on. Likewise, the gene is bounded on the downstream side 

by the midpoint between the gene’s most downstream TES or TSS and the closest TSS 

or TES of the next downstream gene, regardless of which strand the adjacent 

downstream gene is on.  When genes physically overlap (excluding genes completely 

contained within another gene), the overlapping region is divided at the midpoint of the 

overlap. If a gene is completely overlapped by another, the nested gene is not assigned 

a locus, except when the nested gene is entirely within an intron of the outermost gene.   
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To compare how these two locus definitions could affect the enrichment results, we 

used ChIP-Enrich on all 8 ChIP-seq peak datasets (Methods 5.2.7) to test for 

enrichment of GO terms using both locus definitions of peak assignment, and plotted 

the –log10 p-values from the two locus definitions against each other (Figure 5.13).  

5.5.5 Comparing alternative models for testing gene set enrichment 

We tested each of the 8 ChIP-seq peak datasets (Methods 5.2.7) for GO term 

enrichment using a number of potential models. Our default choice of model was a 

binomial smoothing spline, fit with 10 knots, on the log10 mappable locus length. Using 

this model, we identified the top 15 GO terms from each dataset, and compared the –

log10 GO term enrichment p-values from alternative choices of models. We first 

considered binomial smoothing spline models, and varied the number of knots used in 

estimating the spline (2, 5, 10, and 25 knots.) Each of these models were fit on the log10 

mappable locus length. We also included a binomial smoothing spline model of 10 knots 

fitted on mappable locus length without log10 transformation. In addition to smoothing 

spline models, we considered three logistic regression models, which included all 1st, 

2nd, and 3rd order log10 mappable locus length terms, respectively.  

5.5.6 Tests for enrichment of peaks within Gene Ontology genes 

We wished to examine whether genes annotated in GO were enriched for peaks relative 

to those genes not annotated in GO. We used a two-sided Fisher’s exact test to test for 

association between whether a gene was annotated in GO, and whether it was 

assigned a peak. We also used a one-sided binomial test on whether the proportion of 

peaks in GO was greater than expected, where the probability parameter (the likelihood 

of a peak occurring in GO) was the sum of the locus lengths of genes in GO, divided by 

the total mappable genome length (≈ 2.7 x 109 bp) (Rozowsky et al. 2009). We applied 

both tests to all 8 ChIP-seq datasets separately across each branch of GO (cellular 

component, molecular function, and biological process) (Table 5.8.)  
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5.5.7 Effect of varying genome length on the binomial test  

We used the binomial test as originally described in (McLean et al. 2010) on the GR 

ChIP-Seq peak dataset and varied the genome length parameter across a range of 

values, starting with the approximate mappable genome length of 2.7 Gbp for hg19, and 

ending with the non-gapped genome length of 3.0 Gbp. The length of each gene is the 

length of the gene locus region defined in Methods 5.2.1.  

5.5.8 Simulations of random sets of genes of varying sizes 

We simulated 2500 sets of 50, 250, and 500 genes selected at random from the total 

set of Entrez genes for which we previously generated a gene locus region (see 

Methods 5.2.1). For each overall set of random gene sets, we tested two experimental 

ChIP-Seq datasets (E2F4, GR) with Fisher’s exact test, the binomial test, and ChIP-

Enrich. We generated quantile-quantile (QQ) plots for each test to determine if any bias 

was present in the p-value distribution.  

5.5.9 Motif search within peaks assigned to angiogenesis genes 

We used tools from the MEME Suite (Bailey et al. 2009) to identify known transcription 

factor motifs. Multiple Em for Motif Elicitation (MEME) conducted an unsupervised 

search for a common motif in the 460 peak regions from the GR dataset that were 

assigned to genes in the angiogenesis gene set.  We set MEME to search for the three 

most prevalent motifs with a maximum 15bp width anywhere in the input DNA regions 

and the reverse complement sequences of those regions, with all other settings on 

default. We used Tomtom (Gupta et al. 2007), a motif comparison tool that is part of the 

MEME suite, with the results from MEME to find the best matched motifs in JASPAR, a 

database that contains a curated set of transcription factor binding sites for eukaryotes 

that have been published and experimentally defined. 
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5.6 Supplementary Results 

5.6.1 Comparing binomial smoothing spline and logistic regression models 

We investigated logistic regression models including up to 3rd order log10 locus length 

terms as an alternative to the binomial smoothing spline approach by comparing model 

fits (Figure 5.18) and GO term enrichment p-values (Figure 5.20) for the top 15 GO 

terms using our default model (binomial smoothing spline, 10 knots, fit on log10 

mappable locus length) from each dataset. The model fits in many cases are similar, 

with deviations from each other occurring only within the tail regions (with the exception 

of CMYC, which shows a strong difference for the 1st order logistic regression.)  GO 

term enrichment p-values were similar when compared to binomial smoothing spline 

models (Figure 5.20) for most datasets, though in some cases the logistic regression 

models achieved higher –log10 p-values (1st order logistic regression for GR, TCF4, 2nd 

order logistic regression for GR and TCF4, and 3rd order logistic regression for VDR), 

and lower –log10 p-values in others (1st order logistic regression for VDR, E2F4.) 

Increasing the number of knots above 10 for the binomial smoothing spline models did 

not affect model fit (Figure 5.19) or inference (Figure 5.20), and resulted in high running 

times. Decreasing the number of knots below 5 resulted in more significant p-values for 

a small minority of GO terms (Figure 5.20). We compared the fit of the binomial 

smoothing spline model using mappable locus length and log10 mappable locus length, 

and while we observed some variation in spline fit compared to models fit on log10 

length (Figure 5.19), we did not see any change in –log10 p-values (Figure 5.20). 

Overall, we observed little effect on –log10 p-values from choice of smoothing spline or 

logistic regression models, number of knots for fitting the smoothing spline models, or 

log10 transformation of mappable locus length. Further testing on additional 

experimental or simulated datasets could provide a better understanding of the 

differences between these choices of models and fitting methods.   

5.6.2 Overestimating genome length causes inflation of the binomial test p-values 

The original binomial test (McLean et al. 2010) uses a genome length parameter when 

computing the probability of a peak occurring within a GO term. This genome length is 
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typically taken to be the total length of the non-gapped genome in GREAT (McLean et 

al. 2010). However, this total length is not accessible to next-generation sequencing 

technologies, but rather the subset that is mappable (reads may uniquely map to a site 

in the genome) and sequenceable (reads are capable of being generated from a site in 

the genome). Both of these properties will reduce the total length of the genome in 

which a ChIP-seq peak could be called. Therefore, we wished to examine the effect of 

overestimating the genome length on the binomial test. We applied the binomial test to 

test for enrichment amongst GO terms using the GR dataset with three genome length 

parameters: 2.7E9 (representing an estimate of the mappable genome (Rozowsky et al. 

2009)), 2.8E9 (an intermediate value), and 3.0E9 (representing the approximate length 

of the non-gapped hg19 genome.) From this, we can observe two important points: 1) in 

general, overestimating the genome length causes an inflation of the binomial test, and 

2) this effect is dependent on the total length of genes in a GO term, such that longer 

GO terms show the greatest shift in their p-values (Figure 5.14..) Our corrected binomial 

test (Methods 5.2.5) computes the genome length directly from the locus definitions, 

and therefore can account for the length of the mappable genome.  

5.6.3 Additional simulations of ChIP-Enrich type 1 error rate 

We performed additional simulations with ChIP-Enrich to demonstrate the discrete 

nature of the deflation, which is more readily apparent with a greater number of 

simulation iterations. We performed 1 million iterations of applying ChIP-Enrich to 5,000 

peaks simulated by randomly sampling genes in proportion to their length with 

replacement. We selected five GO terms to represent a range of total gene lengths and 

number of genes. ChIP-Enrich appears slightly conservative in general (Figure 5.12.), 

however since both Fisher’s exact test and ChIP-Enrich are tests on discrete data, the 

nominal type 1 error rate cannot always be achieved (Upton 1992).  

5.6.4 Comparison of ChIP-Enrich, Fisher’s exact test, and the binomial test using 

randomly generated gene sets with a constant number of genes 

A gene set enrichment test should not detect enrichment when the sets of genes being 

tested are selected at random. We performed simulations in which we generated 2500 
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randomly sampled sets of genes of size 50, 200, and 500, and tested these using 

Fisher’s exact test, the binomial test, and ChIP-Enrich on experimental ChIP-seq peak 

datasets. We generated QQ plots (Figure 5.15) for each combination of enrichment test 

and random gene set size, on two experimental datasets (E2F4 and GR). We see that 

with random gene sets, the binomial test detects an excess of significant gene sets. As 

we have shown, the binomial test makes a strong assumption regarding the distribution 

of the number of peaks that should occur within a set of genes, given the total length of 

all genes in the set. In experimental data with random sets of genes, this assumption 

does not always hold, as seen for the E2F4 and GR datasets where both datasets 

exhibit a larger number of peaks within gene sets of short total length than expected by 

chance (Figure 5.16.) In particular, the binomial test is biased towards detecting gene 

sets with shorter than average locus lengths as significant (Figure 5.17.) This can be 

caused by a single or few genes with an excess of peaks within the gene set. For 

example, we examined the random gene sets of size 200 that contained the gene with 

the most significant excess of peaks given its length, and noted that ≈48% (16/33) of 

these random gene sets were significant at an FDR < 0.05. It is also important to note 

that the binomial test does not take into account whether peaks in a gene set are 

clustered in a few genes or spread evenly across many genes, the locus lengths of 

those genes, and therefore the resulting p-value does not account for any extra-

variability in peaks among the genes in the gene set. In contrast to the binomial test, 

Fisher’s exact test does not detect significant associations, owing to the fact that the 

confounding effect of gene locus length on both membership in gene sets and the 

existence of a peak within a gene locus has been removed. ChIP-Enrich, much like 

Fisher’s exact test, performs correctly with random sets of genes and detects no excess 

of significantly associated gene sets. 

5.6.5 Assigning peaks to the nearest gene vs. the nearest TSS 

We explored how assigning peaks to the nearest gene might affect our enrichment 

results as compared to assigning peaks to the nearest TSS across each of the 8 ChIP-

seq peak datasets. For each dataset, we used ChIP-Enrich to test for GO term 

enrichment after assigning peaks under the two locus definitions (Supplementary 
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Methods 5.5.4). For those datasets where binding occurs proximal to the TSS (E2F4, 

TBP), the two locus definitions produce highly correlated p-values (Figure 5.13). In 

contrast, for datasets where binding occurs distal to the TSS (GR – VDR), the two locus 

definitions still remain correlated, though many GO terms greatly increase in 

significance (up to ≈10 orders of magnitude) under the nearest gene locus definition, 

suggesting for these transcription factors that regulation of a set of genes is not 

dependent entirely upon binding near their TSSs. We also see that some GO terms are 

more significant under the nearest TSS locus definition (cMyc – E2F4 datasets), 

perhaps because the traditional mechanism of gene regulation (binding near the TSS) is 

also present for these transcription factors. An example of both mechanisms exists in 

the literature for GR, where binding near the TSS activates transcription of target genes, 

and binding occurring distally to TSSs occurs in enhancer regions and results in 

repression of transcription (Reddy et al. 2009). Both locus definitions should likely be 

analyzed when performing analysis and it is possible that other definitions not 

considered here could improve inference in identifying enriched gene sets.  

5.7 Supplementary Figures and Tables 

 
B) GO Terms whose Genes’ Loci Have Higher Mappability C) GO Terms whose Genes’ Loci Have Lower Mappability 

GO Term # Genes P-value Q-value GO Term # Genes P-value Q-value 
Organ morphogenesis 642 2.6E-22 5.5E-19 Olfactory receptor activity 114 1.6E-11 7.0E-09 
Central nervous system 
development 454 2.9E-19 3.0E-16 

Sensory perception of 
smell 131 1.3E-09 6.3E-08 

Neurogenesis 634 1.4E-18 9.8E-16 Cellular defense response 60 3.0E-08 9.0E-07 

Neuron differentiation 534 2.7E-18 1.4E-15 
Sensory perception of 
chemical stimulus 167 3.7E-08 1.1E-06 

Cell development 786 5.5E-18 2.3E-15 Oxygen binding 44 7.7E-08 8.7E-06 

Generation of neurons 589 1.6E-17 5.6E-15 
Cellular response to 
xenobiotic stimulus 35 2.2E-07 5.1E-06 

Skeletal system development 272 2.6E-16 7.8E-14 
Xenobiotic metabolic 
process 35 2.2E-07 5.1E-06 

Regionalization 217 1.9E-15 4.9E-13 Electron carrier activity 156 4.9E-07 3.0E-05 
Figure 5.9. Gene loci mappability distributions and correlation with Gene Ontology terms.  Histograms show 
distribution of human (hg19) gene loci mappabilities for various sequencing read lengths (A). GO terms whose gene 
loci have significantly high (B) or low (C) mappability for 50-mer reads. GO biological processes and molecular 
functions were tested using the LRpath gene set enrichment program (Sartor et al. 2009). 

A) 
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Figure 5.10. Comparison of spline fit with and without mappability adjustment. Each row corresponds to one of 
the eight ChIP-seq datasets selected for analysis. The plots show the fit of a binomial smoothing spline for the 
relationship between existence of a peak and either the log10 gene locus length (right), or the log10 mappable gene 
locus length (left.)  
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Figure 5.11. Gene Ontology terms selected for type 1 error simulations. We plot the log10 number of genes 
against the log10 median length of genes in each GO term. Terms selected for type 1 error simulations are circled in 
red.  
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GO Term Number of Genes Length of Genes Key 

GO:0000786 Few Short 
 

GO:0002690 Few Median  

GO:0005623 Many Median  

GO:0008610 Median Median  

GO:0010463 Few Long  
 

Figure 5.12. Type 1 error rate of ChIP-Enrich under the null model of random peaks occurring across the 
genome. The type 1 error rate of ChIP-Enrich is plotted against nominal levels of significance. We performed 
simulations of random peaks across the genome (random genes sampled by their locus length) independently for 
each of the 5 GO terms listed above.  ChIP-Enrich appears to be conservative for GO terms with few genes of 
median locus length, and few genes of long locus length, though this is likely due to the fact that tests on discrete 
data cannot always meet the expected type 1 error rate and is further evidenced by the step-like nature of the curves 
shown above.  
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Figure 5.13. Comparison of alternative locus definitions for assigning peaks to genes: nearest gene and 
nearest TSS.  For each of the 8 ChIP-seq peak datasets, we used ChIP-Enrich to test for GO term enrichment using 
both the nearest gene and nearest TSS locus definitions. We plot above the –log10 p-values from using the nearest 
gene definition against the –log10 p-values using the nearest TSS definition. While the p-values are correlated 
between the two definitions in each dataset, we can see a substantial difference between the two methods for certain 
GO terms. Examining the results from both definitions, and potentially others that we have not explored here, could 
be useful for identifying sets of genes regulated by alternative mechanisms.  
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Figure 5.14. Binomial test p-values for Gene Ontology terms using a range of genome lengths. The –log10 p-
value from  the binomial test is plotted against the total length of the genes in each Gene Ontology term. Color 
represents the genome length value that was used for the binomial test. The binomial test here is the uncorrected 
version that uses a genome length constant when computing the probability of a peak occurring within a GO term.   
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Data ChIP-Enrich Fisher’s Exact Test Binomial Test 

GR 

   

E2F4 

   
Figure 5.15. QQ plots for p-values from each enrichment test under random sets of genes and experimental 
data. Points represent p-values for 2500 random gene sets of size 50 (blue), 200 (pink), and 500 (green.) Gray 
regions represent the 95% confidence interval for the expected p-value quantiles. Each row corresponds to the GR 
and E2F4 datasets, and each column shows the results for either ChIP-Enrich, Fisher’s exact test, or the binomial 
test. 
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Figure 5.16. Number of peaks assigned to genes within random sets of genes plotted against the total length 
of genes in each set. Blue represents actual data. Pink represents the expected number of peaks, given a binomial 
distribution and probability of a gene set having a peak as the total length of genes in the set divided by the length of 
the non-gapped genome. Red and dark green represent the 5 and 95% quantiles for the count of peaks given the 
binomial distribution, and bright green/orange represent the Bonferroni adjusted 5 and 95% quantiles for the number 
of gene sets (2500). 
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Figure 5.17. Binomial test p-values vs. log10 average length of genes. The binomial test was applied to the E2F4 
and GR datasets (rows), testing for enrichment with random sets of genes of size 50, 200, and 500 (columns.)   
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Figure 5.18. Comparing the binomial smoothing spline to logistic regression models.  Each figure shows a 
spline fit plot for each of the 8 ChIP-seq peak datasets. The orange curve represents the fit from our binomial 
smoothing spline. The green, blue, and purple curves represent fits from using a logistic regression model with 
progressively higher order terms (green – up to first order terms, blue – up to second order terms, and purple – up to 
third order terms.) All models are fit on log10 mappable locus length.  
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Figure 5.19. Binomial smoothing spline fits for potential models on experimental data. We plot a binomial 
smoothing spline fit to each of the 8 experimental datasets and vary the number of knots (2,5,10,25) used. We also 
include an additional alternative model where the spline is fit against linear scale mappable length (blue), rather than 
log10 mappable length.  
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Figure 5.20. Comparison of the number of knots, choice of model (logistic regression, binomial smoothing 
spline), and log10 transformation of locus length on p-values for the top 15 GO terms for each dataset.  We 
plot the –log10 p-values at knot values of 2, 5, 10, and 25 for the top 15 GO terms from each peak dataset, fit using 
the smoothing spline. ChIP-Enrich uses the model with 10 knots (green diamond.) All models are fit on log10 
mappable locus length, with the exception of one model with 10 knots (red triangle.) Also plotted are three logistic 
regression models, which include progressively higher order log10 mappable locus length terms.  
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Figure 5.21. All 8 experimental ChIP-seq peak datasets. Each dataset is listed along with its spline fit plot and a 
histogram of the distance from each peak to the nearest TSS. The first column lists the transcription factor, the total 
number of peaks in the dataset, the number of genes to which a peak was assigned, the percentage of all genes 
assigned a peak, and the publication which introduced the dataset, in order. The second column shows the spline fit 
plot for each dataset. The third column shows the distribution of distance from each peak to the nearest TSS. The 
E2F4 dataset was introduced in (Lee et al. 2011), the GR dataset in (Reddy et al. 2009), the VDR dataset in 
(Heikkinen et al. 2011), and the remaining datasets in (Mokry et al. 2012).  
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Figure 5.22. Most prevalent motif identified by MEME using the 460 peaks from the GR dataset assigned to 
genes in angiogenesis. The consensus sequence identified is 5’-AGAACAnnnTGTnCT-3’, which best matches the 
known GRE motif consensus sequence.  

  

Figure 5.23. MEME analysis shows GRE elements tend to occur near the middle of GR peaks assigned to 
angiogenesis genes. The histogram represents the distribution of the GRE motif position within each peak, where 
the position is defined as the fraction of the total peak length at which the motif begins.  
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Figure 5.24. The 2nd (after GRE) identified motif from GR peaks assigned to angiogenesis is distributed 
randomly across the peaks. The histogram represents the distribution of the position of the  2nd motif within each 
peak, where the position is defined as the fraction of the total peak length at which the motif begins.  
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Publication Protein 
Total number of 

peaks called Peak Caller Sequencer Aligner 
Read length 

(bp) 
Mokry et al. 
2012 TCF4 10,413 CisGenome SOLID SHRiMP 36 

Mokry et al. 
2012 TBP 8,672 CisGenome SOLID SHRiMP 50 

Mokry et al. 
2012 

Beta 
Catenin 10,324 CisGenome SOLID Maq 50 

Mokry et al. 
2012 E2A 18,579 CisGenome SOLID Maq 50 

Mokry et al. 
2012 cMyc 30,902 CisGenome SOLID Maq 50 

Reddy et al. 
2009 GR 15,838 MACS Illumina 

GA1 ELAND 25 

Heikkinen et 
al. 2011 VDR 2,341 MACS Illumina 

GAII Bowtie 36 

Lee et al. 
2011 E2F4 16,246 

Parzen 
Window 

Algorithm 
Shivaswamy 
et al. 2008 

Illumina 
GA1 ELAND 23-32 

Table 5.4. Experimental ChIP-seq peak datasets selected for analysis. Each row corresponds to a separate 
ChIP-seq experiment as originally performed by the authors of the publication listed in the first column. Peaks were 
called by the authors and made publicly available for download. 

 

Table 5.5. GO terms enriched with shorter genes using DAVID. The shortest 500 genes by locus length are 
tested with DAVID for enrichment in GO categories. 
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Table 5.6. GO terms enriched with longer genes using DAVID. The longest 500 genes by locus length are tested 
with DAVID for enrichment in GO categories. 

GO ID GO Category 
Median Length 

of Genes 
Number of 

Genes 
GO:0002690 positive regulation of leukocyte chemotaxis 65665 30 
GO:0008610 lipid biosynthetic process 67280 414 
GO:0010463 mesenchymal cell proliferation 263619 32 
GO:0000786 nucleosome 16390 61 
GO:0005623 cell 66970 14283 

Table 5.7. Gene Ontology terms selected for the simulation of type 1 error. Terms are shown graphically in 
Figure 5.11.  
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Fisher's Test 

 
Binomial Test 

Dataset Gene Ontology Branch Odds Ratio P-value 
 

PGO Pnon-GO P-value 
GR GO-BP 1.22 8.93E-09 

 
0.76 0.72 2.84E-36 

 
GO-MF 1.24 3.36E-09 

 
0.79 0.74 2.78E-58 

 
GO-CC 1.13 0.0021 

 
0.83 0.80 2.87E-21 

TCF4 GO-BP 1.34 1.76E-16 
 

0.77 0.72 2.55E-35 

 
GO-MF 1.42 1.46E-20 

 
0.80 0.74 8.43E-57 

 
GO-CC 1.36 2.10E-13 

 
0.85 0.80 1.46E-36 

Beta Catenin GO-BP 1.32 1.35E-14 
 

0.77 0.72 3.72E-28 

 
GO-MF 1.40 9.24E-19 

 
0.80 0.74 2.87E-42 

 
GO-CC 1.33 8.32E-12 

 
0.85 0.80 1.18E-36 

E2A GO-BP 1.28 2.81E-14 
 

0.76 0.72 5.92E-44 

 
GO-MF 1.34 4.89E-18 

 
0.79 0.74 4.83E-66 

 
GO-CC 1.36 6.52E-16 

 
0.85 0.80 3.78E-65 

VDR GO-BP 1.38 1.45E-07 
 

0.78 0.72 4.47E-12 

 
GO-MF 1.52 1.02E-10 

 
0.82 0.74 7.17E-20 

 
GO-CC 1.35 2.82E-05 

 
0.85 0.80 7.58E-09 

CMYC GO-BP 1.65 1.68E-50 
 

0.77 0.72 1.12E-102 

 
GO-MF 1.79 4.40E-63 

 
0.80 0.74 1.08E-161 

 
GO-CC 1.62 6.07E-37 

 
0.85 0.80 9.12E-102 

E2F4 GO-BP 1.48 3.99E-34 
 

0.77 0.72 2.29E-57 

 
GO-MF 1.50 3.37E-33 

 
0.80 0.74 7.20E-65 

 
GO-CC 1.41 1.05E-20 

 
0.84 0.80 2.28E-43 

TBP GO-BP 1.55 3.06E-35 
 

0.77 0.72 3.64E-24 

 
GO-MF 1.60 1.19E-37 

 
0.79 0.74 2.34E-25 

 
GO-CC 1.47 3.82E-21 

 
0.84 0.80 2.96E-16 

Table 5.8. Enrichment of peaks within genes annotated in GO. For each dataset and GO branch, we used 
Fisher’s exact test and a binomial test to look for enrichment of peaks. We list the odds ratios and two-sided p-values 
for Fisher’s exact test. For the binomial test, we list the proportion of all peaks in the dataset within genes in the GO 
branch (PGO), the proportion of all peaks occurring in the non-GO annotated genome (Pnon-GO), and the one-sided 
binomial test p-value.  
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Peak Midpoint 

Distance 
from 
Peak to 
TSS 

Peak 
Assigned 
to Gene 
ID 

Gene 
Symbol 

Position 
of 
Motif in 
Peak 

MEME 
Motif P-
value 

chr12:56241893 5158 4327 MMP19 238 1.11E-08 
chr6:12370319 79791 1906 EDN1 386 2.13E-08 
chr18:7955360 388047 5797 PTPRM 200 7.24E-08 
chr2:20683352 36518 388 RHOB 200 1.03E-07 
chr15:39720102 153177 7057 THBS1 144 1.03E-07 
chr17:15866805 18575 136 ADORA2B 192 1.46E-07 
chr15:90355621 2451 290 ANPEP 276 2.08E-07 
chr5:153918051 60227 9421 HAND1 212 2.08E-07 
chr12:92424587 115086 694 BTG1 256 2.08E-07 
chr19:8439370 10360 51129 ANGPTL4 369 2.81E-07 
chr4:177553014 160881 7424 VEGFC 123 2.81E-07 
chr14:54593886 170332 652 BMP4 103 2.81E-07 
chr8:27198448 15368 2185 PTK2B 328 3.77E-07 
chr5:170866525 19859 8817 FGF18 177 3.77E-07 
chr3:30671443 23450 7048 TGFBR2 182 3.77E-07 
chr6:91238761 58003 6885 MAP3K7 7 3.77E-07 
chr18:7414674 152639 5797 PTPRM 188 3.77E-07 
chr3:30304510 343483 7048 TGFBR2 184 3.77E-07 
chr9:33163157 4199 2683 B4GALT1 539 5.07E-07 
chr18:7585790 18477 5797 PTPRM 117 5.07E-07 
chr19:8433846 4836 51129 ANGPTL4 75 6.58E-07 
chr9:139519756 37622 51162 EGFL7 46 8.42E-07 
chr18:19859975 110560 2627 GATA6 119 8.42E-07 
chr1:59454597 204812 3725 JUN 146 8.42E-07 
chr18:19794875 45460 2627 GATA6 82 1.08E-06 
chr17:37260244 47658 57125 PLXDC1 193 1.08E-06 
chr12:92464269 75404 694 BTG1 648 1.08E-06 
chr18:19847789 98374 2627 GATA6 62 1.08E-06 
chr20:10975670 320976 182 JAG1 158 1.08E-06 
chr18:7921116 353803 5797 PTPRM 97 1.08E-06 
chr13:74002510 369369 688 KLF5 217 1.08E-06 
chr6:138194636 6056 7128 TNFAIP3 215 1.35E-06 
chr8:108626929 116675 284 ANGPT1 109 1.35E-06 
chr13:73763675 130534 688 KLF5 213 1.35E-06 
chr1:59395664 145879 3725 JUN 456 1.35E-06 
chr20:10879354 224660 182 JAG1 156 1.35E-06 
chr18:7871075 303762 5797 PTPRM 331 1.35E-06 
chr17:64256584 31028 350 APOH 166 1.69E-06 
chr17:15781667 66563 136 ADORA2B 131 1.69E-06 
chr14:54273966 147304 652 BMP4 279 1.69E-06 
chr17:64226839 1283 350 APOH 143 2.09E-06 
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chr2:96788196 6308 151 ADRA2B 390 2.09E-06 
chr2:96764792 17096 151 ADRA2B 129 2.09E-06 
chr20:872141 24819 51378 ANGPT4 179 2.09E-06 
chr7:22713106 53659 3569 IL6 98 2.09E-06 
chr3:78715827 352782 6091 ROBO1 214 2.09E-06 
chr20:11177107 522413 182 JAG1 132 2.09E-06 
chr15:89459311 2648 4240 MFGE8 79 2.56E-06 
chr1:95018039 10626 2152 F3 237 2.56E-06 
chr15:60678552 11633 302 ANXA2 172 2.56E-06 
chr6:32212294 20450 4855 NOTCH4 170 2.56E-06 
chr2:216325593 24802 2335 FN1 301 2.56E-06 
chr8:55295732 74762 64321 SOX17 199 2.56E-06 
chr3:30730775 82782 7048 TGFBR2 475 2.56E-06 
chr18:7877805 310492 5797 PTPRM 200 2.56E-06 
chr18:7941732 374419 5797 PTPRM 215 2.56E-06 
chr5:76353615 27406 55109 AGGF1 179 3.12E-06 
chr9:38040345 28865 6461 SHB 420 3.12E-06 
chr1:110835273 46671 64783 RBM15 275 3.12E-06 
chr6:132348915 76397 1490 CTGF 181 3.12E-06 
chr18:19855589 106174 2627 GATA6 111 3.12E-06 
chr9:33157034 10322 2683 B4GALT1 48 3.79E-06 
chr14:75442400 19933 5228 PGF 140 3.79E-06 
chr2:20725227 78393 388 RHOB 349 3.79E-06 
chr2:20739618 92784 388 RHOB 273 3.79E-06 
chr18:19624722 124693 2627 GATA6 218 3.79E-06 
chr13:73823071 189930 688 KLF5 217 3.79E-06 
chr7:100761707 8671 5054 SERPINE1 275 4.55E-06 
chr3:30638915 9078 7048 TGFBR2 106 4.55E-06 
chr17:1655957 9301 5176 SERPINF1 213 4.55E-06 
chr2:216282359 18432 2335 FN1 360 4.55E-06 
chr17:64225519 37 350 APOH 87 5.43E-06 
chr1:27868925 52247 10163 WASF2 236 5.43E-06 
chr8:27256345 73265 2185 PTK2B 287 5.43E-06 
chr12:92637977 98304 694 BTG1 207 5.43E-06 
chr4:86850602 823 83478 ARHGAP24 137 6.47E-06 
chr15:60667018 23167 302 ANXA2 257 6.47E-06 
chr18:57183770 180874 147372 CCBE1 171 6.47E-06 
chr2:224459150 8067 7857 SCG2 149 7.67E-06 
chr6:43781108 43163 7422 VEGFA 65 7.67E-06 
chr17:59588981 55175 9496 TBX4 102 7.67E-06 
chr6:68943559 402072 577 BAI3 75 7.67E-06 
chr3:129331709 6127 23129 PLXND1 398 9.02E-06 
chr18:7576805 9492 5797 PTPRM 169 9.02E-06 
chr7:100755644 14734 5054 SERPINE1 351 9.02E-06 
chr19:43002045 30616 634 CEACAM1 256 9.02E-06 
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chr10:94491276 41596 3087 HHEX 192 9.02E-06 
chr21:36184017 76970 861 RUNX1 261 9.02E-06 
chr15:33142813 132609 26585 GREM1 197 9.02E-06 
chr1:59398732 148947 3725 JUN 488 9.02E-06 
chr12:48213916 153 51564 HDAC7 1440 1.06E-05 
chr6:12324605 34077 1906 EDN1 234 1.06E-05 
chr4:56050664 58902 3791 KDR 114 1.06E-05 
chr2:224353736 113481 7857 SCG2 95 1.06E-05 
chr18:19600751 148664 2627 GATA6 145 1.06E-05 
chr4:75410066 179207 2069 EREG 144 1.06E-05 
chr19:6720814 152 718 C3 341 1.24E-05 
chr1:37945567 5449 80149 ZC3H12A 747 1.24E-05 
chr5:41194094 19573 729 C6 151 1.24E-05 
chr19:42968211 21075 284340 CXCL17 232 1.24E-05 
chr6:12314524 23996 1906 EDN1 720 1.24E-05 
chr1:27855255 38577 10163 WASF2 329 1.24E-05 
chr1:172715585 87401 356 FASLG 133 1.24E-05 
chr3:30443639 204354 7048 TGFBR2 143 1.24E-05 
chr13:74025639 392498 688 KLF5 161 1.24E-05 
chr8:27172984 3986 2185 PTK2B 266 1.44E-05 
chr20:30183872 9213 3397 ID1 671 1.44E-05 
chr17:46626828 24982 3213 HOXB3 151 1.44E-05 
chr15:60662859 27326 302 ANXA2 460 1.44E-05 
chr1:59290886 41101 3725 JUN 92 1.44E-05 
chr1:186547613 101946 5743 PTGS2 58 1.44E-05 
chr4:75410899 180040 2069 EREG 79 1.44E-05 
chr1:218794548 275873 7042 TGFB2 126 1.44E-05 
chr10:34038130 414297 8829 NRP1 35 1.44E-05 
chr12:54815103 2053 3678 ITGA5 395 1.68E-05 
chr2:158723995 7628 90 ACVR1 119 1.68E-05 
chr17:37261130 46772 57125 PLXDC1 79 1.68E-05 
chr10:33505710 118123 8829 NRP1 135 1.68E-05 
chr1:218819879 301204 7042 TGFB2 152 1.68E-05 
chr7:100769965 413 5054 SERPINE1 84 1.94E-05 
chr12:96590735 2529 2004 ELK3 191 1.94E-05 
chr2:228045124 15844 1285 COL4A3 186 1.94E-05 
chr1:59282097 32312 3725 JUN 240 1.94E-05 
chr2:20692065 45231 388 RHOB 554 1.94E-05 
chr3:30482535 165458 7048 TGFBR2 161 1.94E-05 
chr2:129342314 266143 9394 HS6ST1 6 1.94E-05 
chr8:108199658 310596 284 ANGPT1 164 1.94E-05 
chr8:98670565 14159 92140 MTDH 139 2.24E-05 
chr14:75406977 15490 5228 PGF 98 2.24E-05 
chr4:123764360 16498 2247 FGF2 165 2.24E-05 
chr1:22239980 23770 3339 HSPG2 155 2.24E-05 
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chr6:12348968 58440 1906 EDN1 182 2.24E-05 
chr5:153918675 60851 9421 HAND1 118 2.24E-05 
chr10:33483242 140591 8829 NRP1 318 2.24E-05 
chr3:41013132 227809 1499 CTNNB1 656 2.24E-05 
chr18:7876588 309275 5797 PTPRM 209 2.24E-05 
chr20:11210622 555928 182 JAG1 450 2.24E-05 
chr20:60930977 11391 3911 LAMA5 527 2.59E-05 
chr6:43709688 28257 7422 VEGFA 175 2.59E-05 
chr1:27848954 32276 10163 WASF2 120 2.59E-05 
chr4:74570479 35743 3576 IL8 257 2.59E-05 
chr1:172795577 167393 356 FASLG 196 2.59E-05 
chr13:110772934 186562 1282 COL4A1 301 2.59E-05 
chr3:78818200 250409 6091 ROBO1 176 2.59E-05 
chr3:30384017 263976 7048 TGFBR2 40 2.59E-05 
chr15:60685411 4774 302 ANXA2 36 2.97E-05 
chr14:75430342 7875 5228 PGF 120 2.97E-05 
chr1:95018997 11584 2152 F3 214 2.97E-05 
chr4:177699883 14012 7424 VEGFC 222 2.97E-05 
chr20:60925557 16811 3911 LAMA5 857 2.97E-05 
chr1:86073053 26610 3491 CYR61 334 2.97E-05 
chr2:20674986 28152 388 RHOB 178 2.97E-05 
chr11:111999669 35171 3606 IL18 145 2.97E-05 
chr1:86095002 48559 3491 CYR61 615 2.97E-05 
chr12:1671842 54379 81029 WNT5B 170 2.97E-05 
chr8:27271616 88536 2185 PTK2B 145 2.97E-05 
chr18:7754948 187635 5797 PTPRM 325 2.97E-05 
chr18:7797705 230392 5797 PTPRM 207 2.97E-05 
chr18:7946872 379559 5797 PTPRM 18 2.97E-05 
chr20:60944826 2458 3911 LAMA5 2184 3.41E-05 
chr20:30181464 11621 3397 ID1 797 3.41E-05 
chr21:36209035 51952 861 RUNX1 260 3.41E-05 
chr14:62105882 56236 3091 HIF1A 126 3.41E-05 
chr21:36338006 77019 861 RUNX1 49 3.41E-05 
chr5:153972859 115035 9421 HAND1 187 3.41E-05 
chr15:33132948 122744 26585 GREM1 254 3.41E-05 
chr6:138056122 132458 7128 TNFAIP3 116 3.41E-05 
chr10:89870305 247111 5728 PTEN 120 3.41E-05 
chr2:236742752 333900 2637 GBX2 91 3.41E-05 
chr20:39772144 5984 5335 PLCG1 210 3.90E-05 
chr6:12298077 7549 1906 EDN1 200 3.90E-05 
chr17:15867260 19030 136 ADORA2B 327 3.90E-05 
chr2:129136780 60609 9394 HS6ST1 216 3.90E-05 
chr8:55308363 62131 64321 SOX17 147 3.90E-05 
chr18:7914772 347459 5797 PTPRM 159 3.90E-05 
chr19:8420690 8320 51129 ANGPTL4 476 4.45E-05 
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chr8:108521339 11085 284 ANGPT1 146 4.45E-05 
chr8:108537896 27642 284 ANGPT1 142 4.45E-05 
chr22:30603141 39655 3976 LIF 268 4.45E-05 
chr12:92492953 46720 694 BTG1 48 4.45E-05 
chr2:46458015 66525 2034 EPAS1 266 4.45E-05 
chr5:153963550 105726 9421 HAND1 383 4.45E-05 
chr6:132384575 112057 1490 CTGF 203 4.45E-05 
chr15:39724405 148874 7057 THBS1 34 4.45E-05 
chr2:216587203 286412 2335 FN1 259 4.45E-05 
chr19:8427011 1999 51129 ANGPTL4 241 5.07E-05 
chr17:32579670 2625 6347 CCL2 359 5.07E-05 
chr20:30429894 3526 2307 FOXS1 129 5.07E-05 
chr1:155103904 3556 1942 EFNA1 191 5.07E-05 
chr13:73628969 4172 688 KLF5 197 5.07E-05 
chr17:45343703 12496 3690 ITGB3 142 5.07E-05 
chr9:139416078 24160 4851 NOTCH1 301 5.07E-05 
chr9:139414431 25807 4851 NOTCH1 484 5.07E-05 
chr20:10686828 32134 182 JAG1 94 5.07E-05 
chr6:138132719 55861 7128 TNFAIP3 145 5.07E-05 
chr2:46460183 64357 2034 EPAS1 114 5.07E-05 
chr13:73707859 74718 688 KLF5 94 5.07E-05 
chr3:40981030 259911 1499 CTNNB1 320 5.07E-05 
chr6:68891064 454567 577 BAI3 182 5.07E-05 
chr20:30196350 3265 3397 ID1 192 5.75E-05 
chr17:1669368 4110 5176 SERPINF1 115 5.75E-05 
chr19:47818776 5673 728 C5AR1 188 5.75E-05 
chr7:155653833 48866 6469 SHH 629 5.75E-05 
chr2:228132745 103465 1285 COL4A3 254 5.75E-05 
chr18:7756002 188689 5797 PTPRM 309 5.75E-05 
chr3:79061124 7485 6091 ROBO1 116 6.52E-05 
chr2:20638446 8388 388 RHOB 125 6.52E-05 
chrX:100120168 9166 27035 NOX1 63 6.52E-05 
chr1:22254198 9552 3339 HSPG2 20 6.52E-05 
chr14:62109181 52937 3091 HIF1A 159 6.52E-05 
chr6:132341552 69034 1490 CTGF 262 6.52E-05 
chr9:27183921 74775 7010 TEK 45 6.52E-05 
chr20:10942648 287954 182 JAG1 176 6.52E-05 
chr3:30327822 320171 7048 TGFBR2 59 6.52E-05 
chr19:6723404 2742 718 C3 58 7.38E-05 
chr6:12296591 6063 1906 EDN1 209 7.38E-05 
chr22:37484404 15289 164656 TMPRSS6 204 7.38E-05 
chr22:30608608 34188 3976 LIF 226 7.38E-05 
chr22:30601642 41154 3976 LIF 222 7.38E-05 
chr1:22221283 42467 3339 HSPG2 138 7.38E-05 
chr2:216363323 62532 2335 FN1 129 7.38E-05 
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chr1:59388131 138346 3725 JUN 161 7.38E-05 
chr6:132428195 155677 1490 CTGF 113 7.38E-05 
chr2:216483914 183123 2335 FN1 137 7.38E-05 
chr13:73899733 266592 688 KLF5 109 7.38E-05 
chr8:108208310 301944 284 ANGPT1 367 7.38E-05 
chr1:218829932 311257 7042 TGFB2 590 7.38E-05 
chr4:110842633 8594 1950 EGF 78 8.33E-05 
chr1:37950470 10352 80149 ZC3H12A 157 8.33E-05 
chr1:37927409 12709 80149 ZC3H12A 356 8.33E-05 
chr22:35760470 16589 3162 HMOX1 32 8.33E-05 
chr2:46542618 18078 2034 EPAS1 210 8.33E-05 
chr15:60672045 18140 302 ANXA2 551 8.33E-05 
chr19:42993225 39436 634 CEACAM1 22 8.33E-05 
chr2:20696246 49412 388 RHOB 130 8.33E-05 
chr15:60632711 57474 302 ANXA2 260 8.33E-05 
chr1:218670114 151439 7042 TGFB2 63 8.33E-05 
chr15:90358398 326 290 ANPEP 479 9.39E-05 
chr1:22257721 6029 3339 HSPG2 536 9.39E-05 
chr10:94457563 7883 3087 HHEX 89 9.39E-05 
chr12:92457604 82069 694 BTG1 283 9.39E-05 
chr2:224564419 97202 7857 SCG2 107 9.39E-05 
chr18:7761570 194257 5797 PTPRM 307 9.39E-05 
chr13:73833335 200194 688 KLF5 319 9.39E-05 
chr2:46265541 258999 2034 EPAS1 147 9.39E-05 
chr6:68942908 402723 577 BAI3 68 9.39E-05 
chr11:20390141 4455 10553 HTATIP2 86 0.000106 
chr22:35768101 8958 3162 HMOX1 28 0.000106 
chr15:75985967 19222 1464 CSPG4 140 0.000106 
chr6:43770479 32534 7422 VEGFA 140 0.000106 
chr22:30606527 36269 3976 LIF 209 0.000106 
chr9:101752048 45911 1306 COL15A1 205 0.000106 
chr1:27867021 50343 10163 WASF2 386 0.000106 
chr14:103655399 62736 7127 TNFAIP2 454 0.000106 
chr10:33546966 76867 8829 NRP1 188 0.000106 
chr15:33117136 106932 26585 GREM1 277 0.000106 
chr12:1609591 116630 81029 WNT5B 141 0.000106 
chr4:26147117 174214 3516 RBPJ 65 0.000106 
chr18:19571262 178153 2627 GATA6 119 0.000106 
chr8:108163843 346411 284 ANGPT1 306 0.000106 
chr18:7921465 354152 5797 PTPRM 46 0.000106 
chr18:7923290 355977 5797 PTPRM 166 0.000106 

Table 5.9. Peaks assigned to genes in the angiogenesis GO term with a significant match to the GRE motif. 
Each peak is listed as the midpoint of the peak in chromosome:position format. The peak is assigned to the gene with 
the closest TSS. MEME gives the starting position of the highest ranked motif (GRE) within each peak, and a p-value 
for how well the peak sequence matches the motif sequence. Peaks are sorted according to the p-value for 
motif/sequence matching. Only those peaks with MEME p-value < 0.05 / 460 (Bonferroni adjustment) are presented.  

159 
 



 

Gene GRE Motif Site MEME P-value 
Distance to TSS 

(bp) 
Vegf-c AGGACAAAATGTGCT 2.81E-07 31,087 
Vegf-a GGGACAGTGTGTACA 7.67E-06 28,257 
Vegf-a AGAACACTATGGACA 2.59E-05 32,534 
Vegf-c AGGACAGAAAGAAAT 2.97E-05 43,163 
Vegf-a GAGGCAGCATGTTCC 0.000106 160,881 
Vegf-c AGAGCAGACACTCCC 0.000118 157,073 
Vegf-a GGGCCAGACAGAACA 0.000497 14,012 
Vegf-c GGGCCAGCCACTGCA 0.00173 91,581 

Table 5.10. GRE motifs identified by MEME inside peaks assigned to VEGF-A and VEGF-C, known regulators 
of angiogenesis activity. Five of the eight peaks closely matched the GRE consensus sequence (5’-
AGAACAnnnTGTTCT-3’) with a Bonferroni-adjusted p-value < 0.05 (rows highlighted in red.) 
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Chapter 6 Conclusion 

Over the last few years, there has been an incredible expansion in the ability to 

interrogate the human genome. Genome-wide association studies have provided a 

comprehensive view of common SNPs and their association to hundreds of diseases 

and traits (Hindorff et al. 2009). With the expansion of efficient whole genome 

sequencing, there is now an even greater ability to assay both common and rare forms 

of variation, and in addition, the ability to investigate other interesting questions in 

genomics, such as the identification of genome-wide protein binding sites with ChIP-seq 

studies. These new technologies brought with them a number of interesting challenges.  

Through GWAS, we and others have discovered that many associated variants are 

located outside the coding region of genes (Hindorff et al. 2009), making interpretation 

difficult as to how they might function in a genomic context to increase susceptibility to 

disease, or influence a trait. Researching the genes within the regions near associated 

variants is an essential step in not only identifying those genes that may be functionally 

related to the disease/trait, but also in furthering our understanding of the potential 

mechanisms through which the genes may operate. Given the large number of 

associated variants known, and the even greater number of genes within their genomic 

regions, it is a challenging task to systematically evaluate and research each of them.  

Another challenge in GWAS is visualizing associated loci from GWAS and meta-

analysis. An effective visualization combines many features of the human genome, 

including linkage disequilibrium, recombination rates, and functional annotation, with 

GWAS or meta-analysis results into a format that can be quickly inspected for patterns 

or insights. Through LocusZoom we make data exploration available to a wide audience 

and promote creation of plots that are consistent across studies and easily interpretable 

to researchers. These visualizations also allow for the detection of interesting patterns 

from multiple data sources. As an example, an associated variant could be in LD with 
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other variants that have strong functional annotations and/or are located within multiple 

candidate genes. We can present this visually, reducing the need for a researcher to 

write queries or determine thresholds for LD. Actionable insights can also be gained 

from these visualizations. For example, often there are only a handful of genes are 

located within the recombination hotspots containing an associated variant, and an 

effective targeted sequencing strategy might be to focus attention on following up these 

genes first in follow-up efforts. Another scenario would be in identifying gaps of low SNP 

coverage near an association signal, potentially signaling the presence of a structural 

variant in the region. Many other patterns and insights likely exist in GWAS data, and 

future efforts at creating visualizations should prove to be interesting in ongoing studies.  

In addition to these challenges, individual GWAS often are underpowered to detect 

common associated SNPs with low effect sizes. Combining GWAS through meta-

analysis to increase power is an effective strategy to identify such SNPs (Zeggini et al. 

2008; Teslovich et al. 2010; Voight et al. 2010). Another approach to identifying 

additional associated SNPs is to increase the number of SNPs genotyped, either at the 

discovery stage, or the replication stage. With previous genotyping platforms however, it 

was not possible to genotype many SNPs in replication samples, limiting identification of 

genome-wide significant SNPs to at most 10-30 in total (De la Vega et al. 2005; Gabriel 

et al. 2009). Development of specialized genotyping arrays, such as the Metabochip 

and ImmunoChip (Voight et al. 2012), provided the ability to follow-up thousands of 

SNPs from previous meta-analysis studies.  

In chapter 2, I introduced software aimed at the challenge in GWAS of researching and 

understanding SNPs and their surrounding genomic regions in the context of a disease 

or trait. Snipper provides researchers the ability to quickly and exhaustively examine the 

genes at hundreds of associated loci. Since Snipper was designed to pull data directly 

from public databases, users will always receive up-to-date information for each gene. I 

provide a simple search method to collect the sizeable amount of information on each 

gene into a listing of where each search term matches, which allows a user to pinpoint 

the most interesting details regarding genes near their loci. I provide both a command-

line and graphical interface to Snipper, which allows a broader range of researchers to 
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use the program. Snipper is open source and freely available, and could easily be 

adapted to pull data from additional sources, such as tracks from the UCSC genome 

browser, Ensembl, tissue expression databases, or ENCODE (Kent et al. 2002; Fujita et 

al. 2011; Dunham et al. 2012; Flicek et al. 2012). Future work could also include 

developing a web interface to Snipper, where users could queue their lists of SNPs, and 

have their results emailed to them when the job completes.  

In chapter 3, I introduced LocusZoom, a software tool for visualization of genome-wide 

association scan results. LocusZoom collapses numerous features of the genome into a 

single figure that can aid in the interpretation of associated regions. These features 

include the association signal (p-values), linkage disequilibrium and recombination 

rates, the position of SNPs and their location relative to genes, and functional 

annotation. By providing both a web based interface, and command-line standalone 

software, users at all levels of expertise are able to use LocusZoom, as well as extend 

the software for their own usage. Researchers have since adapted LocusZoom (and its 

related databases) for their own purposes, for example: with organisms other than 

human such as mouse (personal communication, Dan Gatti, 2011), to plot associated 

variants from the GWAS catalog (http://www.genome.gov/gwastudies/) (personal 

communication, Adam Locke, 2012), and to calculate linkage disequilibrium from 

populations beyond those provided in 1000 Genomes and HapMap (personal 

communication, Serena Sanna, 2010). On the web portal for LocusZoom we hope to 

continue adding additional meta-analyses and GWAS for new traits and diseases as 

they become available. This provides the unique opportunity for researchers to 

investigate their SNPs in other studies that are related to their trait for possible 

pleiotropy. For future work, I am currently modifying the software to plot fine-mapping 

scan results, as this has become a popular analysis since the Metabochip and other 

specialized chips were developed. I also intend to continue improving on our latest 

feature to plot associated SNPs from the GWAS catalog and from WikiGWA, a 

database of SNP-trait associations.  

In chapter 4, I presented my work as part of the MAGIC consortium, where I meta-

analyzed both previous GWAS and studies genotyped with the Metabochip to identify 4 
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new loci associated with 2-hr glucose. In addition, our group efforts identified 20 new 

loci associated with fasting glucose, and 17 with fasting insulin. We have raised the total 

number of loci associated with glycemic traits to 53, which now account for 4.8%, 1.2%, 

and 1.7% of the variance in FG, FI, and 2hGlu, respectively. Given that these three 

traits, and the many genes and pathways behind them, are important in overall glucose 

homeostasis, we expect that some of the loci associated with them are also linked to 

T2D. We observed that 33 loci (out of 53) from the three traits were also associated with 

increased T2D risk (q < 0.05). It is possible that loci overlapping both glycemic traits and 

T2D risk represent the best targets for further functional follow-up in the aim of 

improving our understanding of T2D etiology.  

For 2-hr glucose we identified four new loci in addition to confirming the five previously 

known using a total sample size of 42,854 individuals. Three of the new association 

signals are near known loci for FG, HDL-cholesterol, and T2D, suggesting a potentially 

pleiotropic effect for some of these loci with other metabolic traits. From the total of 9 

SNPs associated with 2-hr glucose in our analyses, 8 were also associated with T2D. 

For three of these SNPs, the 2-hr glucose raising allele was associated with a 

decreased risk of T2D, and this association perhaps acts through a mechanism 

involving fasting glucose, as the 2-hr glucose raising allele for each showed an 

association with lower fasting glucose levels. Gene based analyses also identified an 

additional 3 regions having an association with 2-hr glucose, suggesting that perhaps 

with greater sample sizes, SNPs in these regions may reach genome-wide significance 

in single variant analyses.  

Further study of the loci from each of these traits is required to understand the 

mechanism through which they operate. Of particular interest to the study of T2D are 

the loci associated with both a glycemic trait and T2D. Fine-mapping studies currently 

being performed by MAGIC and DIAGRAM may help to narrow down the variants within 

each associated region, possibly providing more plausible functional variants for follow-

up. Our gene-based analyses showed that there likely also exist additional associations 

to be confirmed, although greater sample sizes will be required. This will become 

possible as more studies are genotyped. We can also expect that genotyping samples 
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of additional ancestries will yield new associations not detectable in European samples 

(Pulit et al. 2010).  

Genome sequencing for detecting rare genetic variants is a natural next step to 

genome-wide association studies. Sequencing has also proven useful in many aspects 

of genome biology, such as DNA methylation (MeDIP-seq), RNA expression (RNA-seq), 

open chromatin (DNAse-seq), and many others. In the final chapter of my dissertation, I 

focused on ChIP-seq studies, which ascertain the binding locations of a protein across 

the genome. While the biological functions of the protein in these studies are often not 

known, it is possible to infer them from the functions of the genes near regions where 

the protein binds. This inference can be performed by testing for an enrichment of ChIP-

seq peaks within sets of biologically related genes. In performing this testing, it is 

necessary to consider the potentially confounding effect of gene length, intergenic 

distance and other factors such as sequence mappability. These factors can increase 

the likelihood of observing a peak within long or highly mappable genes, which can lead 

to false detection of long or highly mappable sets of genes as enriched.  

ChIP-Enrich is a gene set enrichment test for ChIP-seq data that can account for the 

potentially confounding effect of gene locus length and mappability. I showed that the 

assumptions made by Fisher’s exact test (each gene has the same probability of 

observing ≥1 peak) and the binomial based test (probability of observing ≥1 peak is 

proportional to gene locus length) lead both tests to be highly anti-conservative. ChIP-

Enrich uses an empirical approach to model the relationship of the probability of 

observing ≥1 peak in a locus to the locus length (and mappability, and its type 1 error 

rate is close to the expected rate over a range of simulations and permutations of 

experimental data. I provided supporting evidence from the published literature that 

angiogenesis, a function previously un-annotated to glucocorticoid receptor (GR), 

represents a true enrichment result for GR. I identified the glucocorticoid response 

element (GRE) (a known motif for GR) de novo using MEME from those peaks 

assigned to angiogenesis genes, and also found that the large majority of angiogenesis 

genes had a peak containing the GRE. These two facts support the conclusion that GR 

regulates genes involved in angiogenesis. Since GR peaks occurred distally to 

165 
 



 

angiogenesis genes, this finding would not have been identified by only using peaks 

proximal to the transcription start site (TSS). I also demonstrated that limiting the 

analysis to peaks near the TSS in the GR dataset would result in missing many other 

biologically relevant GO terms.   

ChIP-Enrich represents an important step forward for gene set enrichment testing with 

ChIP-seq data. Still, there remain many interesting avenues for future research. ChIP-

Enrich considers loci with one or more peaks equally in the analysis. It remains an open 

question as to whether considering peak count per locus could yield different biological 

insights. ChIP-Enrich could potentially address this question by changing the outcome 

variable from the presence or absence of ≥1 peak, to the presence or absence of ≥ 2 

peaks, or to any chosen number of peaks. An interesting analysis would be to consider 

which gene sets show greater enrichment under different thresholds for the count of 

peaks, as this could hint at potentially novel biology (e.g. the peak binds singly to certain 

sets of genes, but multiply to others.) Using a Poisson regression model, as opposed to 

a logistic model, could offer an alternative approach to modeling counts of peaks. 

Another avenue of research is to consider the construction of more accurate gene locus 

definitions that better capture the true regulatory domain of the gene. Given the wide 

array of data currently being generated by ENCODE (Dunham et al. 2012), we expect 

an improved picture of gene regulatory domains to emerge, and this could improve our 

ability to detect true gene set enrichment and make accurate predictions about the 

function of DNA binding proteins. Finally, ChIP-Enrich is applicable to many similar 

types of data, such as MeDIP-seq, and applying the method to these datasets could 

result in interesting biological insights that have not yet been identified.  
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