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ABSTRACT

CRASH Simulation of Rayleigh-Taylor, Richtmyer-Meshkov, and Magnetic
Rayleigh-Taylor Instability

by

Jason Chuan-Chih Chou

Chair: R. Paul Drake

The research discussed in this thesis was motivated by the supernova Rayleigh-Taylor

(SNRT) experiments conducted in 2009. Originally designed as laboratory astro-

physics experiments relevant to the Rayleigh-Taylor Instability (RTI) at the He-H

interface during supernova explosion, these experiments exhibited unusual late-time

morphology development, characterized by the lack of mushroom caps and uniform

width of the spikes. In response, a “Magnetic Straitjacket” hypothesis was proposed to

explain the discrepancy, based on the Biermann Battery mechanism. In order to test

this hypothesis, we used the Center for Radiative Shock Hydrodynamics (CRASH)

code developed for a sufficiently similar problem and with the necessary capabilities.

We validated this alternative usage of the CRASH code with simulations of pure

hydrodynamic RTI and RMI and identified the suitable combinations of numerical

schemes and parameters. For the RTI, we compared the results of simulations to the

analytical solution for the early time behavior, examined the late-time morphology,

and tested the low-resolution limit for the RTI simulations using CRASH. For the

RMI, we modeled Collins and Jacobs’ experiment and compared the results of CRASH

xi



simulations to the experimental observations as well as to the simulation results of

several other code packages. Finally, we modeled the original SNRT experiments

with magnetohydrodynamics (MHD) and Biermann battery effect. Unfortunately,

the results were inconclusive due to insufficiently resolved simulations, limited by

the explicit time integration of the magnetic diffusion. Furthermore, pilot runs with

higher resolution indicated that simulations that fully resolve the gradients necessary

to calculate the Biermann battery effect may be susceptible to the development of

extraneous small-wavelength instabilities. Developments of implicit time integration

of the magnetic diffusion and possibly new numerical schemes are therefore necessary

for further progress, either with the CRASH code or other Eulerian code packages.
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CHAPTER I

Introduction

1.1 CFD and Laboratory Astrophysics

Riding on the exponential scaling of Moore’s Law, computation has risen rapidly

to prominence in scientific inquiry and is now widely referred to as the “third leg” of

science, in addition to theory and experiment. Computer simulation is now used to

explore virtually every time and spatial scale humans have contemplated, from lattice

quantum chromodynamics (QCD) [13], protein folding and dynamics [24], cellular

metabolism [14], Antarctic ice sheet evolution [44], global climate system [51], all the

way to the formation of the large-scale structure of the Universe [53].

Among the diverse applications of computation in science, Computational Fluid

Dynamics (CFD) is one of the oldest disciplines. In fact, the first attempt of CFD

predates the invention of modern programmable computer by decades and was carried

out by human computers [46]. The Courant-Friedrichs-Lewy (CFL) condition was

published in 1928 [8] and 3-dimensional calculations were first attempted in the 1960s,

but the high-resolution methods with flux limiters we use today were only made

possible in the 1970s by pioneers like Bram van Leer [3, 58, 30].

In general, systems considered by CFD are described by the Navier-Stokes equa-

tions. For systems in which viscosity is negligible, however, the conservation equations
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can be simplified to the Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0 (1.1a)

ρ

(
∂

∂t
+ u · ∇

)
u +∇p = 0 (1.1b)

∂E

∂t
+∇ · (u(E + p)) = 0, (1.1c)

where ρ is the density, p is the pressure, u is the velocity vector, and E = ρe+ 1
2
ρu2 is

the total energy density per unit volume of the fluid. For completeness, we also need

an Equation of State (EOS) of the fluid in question to relate internal energy per unit

mass e to pressure: for example, p = ρ(γ − 1)e for ideal gas with adiabatic index γ.

Regardless of the particular EOS, however, the behavior of systems described by the

Euler equations does not depend on the time and spatial scale in the sense that they

are invariant under the transformation r→ ar′, ρ→ bρ′, p→ cp′, with u→
√

c
b
u′ and

t → a
√

b
c
t′ as the consequences. Experimentally, this means that we can study any

systems in the laboratory with appropriate scaling, as long as they are well-described

by the Euler equations. The same cannot be said when the viscosity necessitates the

full description by the Navier-Stokes equations, or when the magnetic field requires

the full magnetohydrodynamics (MHD) treatment [48].

Situations where such Euler similarity applies represent one of the best case sce-

narios for laboratory astrophysics, the discipline that studies astrophysical conditions

and dynamics by replicating them in the laboratory. Studies of the former demand

access to the same physical parameters found in astrophysical systems and include

examples such as measurement of the EOS of hydrogen/deuterium under the extreme

pressure of the interiors of Jupiter and Saturn [49], the opacity of the plasma in the

interior of the sun [1], and the rate of nuclear reaction in the main-sequence stars

[7]. Studies of the dynamics, on the other hand, require careful scaling of parame-
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ters necessitated by the size of laboratory systems and include examples such as an

intergalactic plasma jet [16], layer mixing during a supernova explosion [11], and the

interactions between the resulting shock and interstellar clouds [29]. The experiments

relevant to this thesis replicate the mixing between the hydrogen layer and helium

layer during the supernova explosion of SN1987A, mainly due to Rayleigh-Taylor

Instability (RTI).

1.2 Hydrodynamic Instabilities and Supernovae

1.2.1 Rayleigh-Taylor Instability

RTI is an ubiquitous phenomenon, playing important roles both in our daily ex-

perience and under extreme conditions. The most intuitive, if somewhat restrictive

condition for RTI to occur is when two layers of fluid are set on top of each other

under constant gravity, with the heavy fluid with higher density ρ2 on the top and

light fluid with density ρ1 on the bottom. Notice that even though we know intu-

itively that such arrangement is implausible, nothing in the Euler equations precludes

it: as long as the lighter fluid provides sufficient hydraulic pressure, the heavy fluid

can be supported on the top. The problem rises when there is some perturbation in

the system, say the slightest variation in thickness of the heavy fluid. The light fluid

couldn’t compensate the additional weight of the the thicker part of the heavy fluid,

so it drops and grows even thicker. As the result, the arrangement quickly collapses

with positive feedback (Figure 1.1).

Since the effects of gravity and acceleration in the opposite direction are indis-

tinguishable, a more general condition for RTI is when light fluid is accelerated into

heavy fluid: for example, when the density gradient and pressure gradient are op-

posite to each other. This condition is more applicable in systems under extreme

pressure and temperature, where the effect of gravity is less relevant. A supernova

3



explosion, following gravitational collapse, is the most drastic example.

Core-collapse supernovae like SN1987A are produced by sufficiently massive stars

at their end of life. As the star burns through its lighter elements in nuclear reactions,

heavier elements accumulate in layers closer to the core, while the remaining hydro-

gen and helium form its outermost layers. This process cannot continue indefinitely,

however: the nucleus of iron is stable and cannot undergo any exothermic nuclear

reaction. Consequently, iron accumulates at the core, which does not provide energy

and pressure to counterbalance gravity any more. The core ultimately collapses upon

itself, and the rebound creates a powerful blast wave which propagates outwards —

an explosion in common language. As its defining feature, the shock front of the blast

wave is followed by a self-similar tail of decreasing pressure. An exploding supernova

therefore, with density gradient pointing inwards and pressure gradient pointing out-

wards, satisfies the condition for RTI (Figure 1.2). Motivated by observations of the

SN1987A remnant (Figure 1.3), the case for the role of RTI during supernovae is

further supported by computer simulation (Figure 1.4).

While RTI is mainly responsible for the initial layer mixing of supernovae, it is not

the only hydrodynamic instability at play. In particular, it’s preceded by Richtmyer-

Meshkov Instability (RMI), and followed by Kelvin-Helmholtz instability (KHI).

1.2.2 Richtmyer-Meshkov Instability

RMI occurs when a shockwave is refracted by an interface between two materials

(Figure 1.5). Since such an event applies an impulse, i.e. sudden acceleration, to the

interface, RMI can be intuitively considered as a variant of RTI, with a Dirac delta

function as the acceleration term. This “impulsive model”, proposed by Richtmyer

himself [47], turned out to be a very crude approximation and more recently refined

with nonlinear perturbation theory [60]. At the same time, the case with small per-

turbations in density, pressure and velocity has been solved with linearized Euler

4
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P_hysica 12D (1984) 3-18 
North-Holland, Amsterdam 

1.1. LIQUIDS 

AN OVERVIEW OF RAYL E I GH- TAYLOR INSTABILITY* 

D.H. SHARP 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable 
interface, and reviewing attempts to understand these phenomena quantitatively. 

1. Introduction 

The Rayleigh-Taylor instability is a fingering 
instability of  an interface between two fluids of  
different densities, which occurs when the light 
fluid is pushing the heavy fluid [1, 2]. The aim of  
this talk is to survey Rayleigh-Taylor instability, 
describing the phenomenology that occurs at a 
Taylor unstable interface, and reviewing attempts 
to understand these phenomena quantitatively. I 
will also emphasize some critical questions which 
require further study. 

2. Simplest explanation of the occurrence of 
Rayleigh-Taylor instability 

(A) 

(B) 

(c) 

~////////A ~ ~ ~ Y///////A 

This conference affords the pleasure of  learning 
about a great variety of  topics from speakers with 
the most diverse backgrounds. In view of  this 
diversity, I hope the experts will forgive me if I 
begin with the simplest possible description of  
Rayleigh-Taylor instability. 

Imagine the ceiling of  a room plastered uni- 
formly with water to a depth of  1 meter (fig. 1). The 
layer of  water will fall. However, it is not through 
lack of  support from the air that the water will fall. 
The pressure of  the atmosphere is equivalent to 
that of  a column of  water 10 meters thick, quite 
sufficient to hold the water against the ceiling. But 
in one respect the atmosphere fails as a supporting 

* Work supported by the U.S. Department of Energy. 

Fig. 1. (A) The pressure of the air is quite sufficient to support 
a perfectly uniform layer of water 1 meter thick against the 
ceiling. (B) But the air pressure can not constrain the air-water 
interface to flatness. Ripples or irregularities will inevitably be 
present at the interface. ((2) The irregularities grow, forming 
"bubbles" and "spikes." The water falls to the floor. 

medium. It fails to constrain the air-water inter- 
face to flatness. No matter how carefully the water 
layer was prepared to begin with, it will deviate 
from planarity by some small amount. Those 
portions of  the fluid which lie higher than the 
average experience more pressure than is needed 
for their support. They begin to rise, pushing aside 
water as they do so. A neighboring portion of  the 
fluid, where the surface hangs a little lower than 
average, will require more than average pressure 

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

Figure 1.1: Illustration of RTI. The atmospheric pressure is more than enough to
support a 1m layer of water on the ceiling (A). But as long as the water
layer is not perfectly uniform and still (B), the thick part will grow thicker
and drop, while the air will float up against the part of the water layer
that is getting thinner and thinner (C). The extension of the heavy fluid
is called “spike” and the extension of the light fluid is called “bubble”.
Figure from [50].
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Figure 1.4: A schematic of a blast wave in a supernova. The blast wave crosses a den-
sity drop at an interface creating a density gradient in the direction op-
posite the pressure gradient. This situation induces the Rayleigh-Taylor
instability.

seed instability growth.

1.1.4.2 Rayleigh-Taylor instability

The Rayleigh-Taylor instability is also a common process, occurring whenever

denser fluid is accelerated against less dense fluid, whether in a gravitational field or

otherwise. The Rayleigh-Taylor instability is believed to occur in core-collapse super-

nova explosions and in young supernova remnants as the stellar ejecta are decelerated

by the shocked circumstellar medium [11]. Rayleigh-Taylor growth is also evident in

the Crab Nebula, at the boundary of the pulsar-wind nebula, where hot gas from the

supernova explosion is accelerated into the surrounding interstellar medium creating a

finger-like structure [28]. The instability also has a profound effect in the climate, by

driving ocean circulation [10], and in Inertial Confinement Fusion (ICF) experiments

[48]. ICF experiments use low-density, laser heated plasma to accelerate a dense fuel

layer. Such a system is inherently Rayleigh-Taylor unstable; target imperfections or

8

Figure 1.2: Diagram of an exploding supernova. The inner layers are denser and
composed of elements with higher atomic number, and the shock front of
the blast wave is followed by a self-similar, subsonic tail with decreasing
pressure. The condition for RTI is therefore satisfied at the boundary
between layers. Figure from Carolyn C. Kuranz’s thesis, [36].

Figure 1.3: Remnant of SN1987A. Nicknamed “Cosmic Pearls”, the anisotropy is
clearly visible and explained by hydrodynamic instabilities. Photo taken
by Advanced Camera for Surveys on Hubble Telescope in December 2006.
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Figure 1.4: 2D simulation result of exploding supernova from [20], showing the density
distribution t = 1500s after core bounce. The hydrogen bubbles are visible
at the outermost interface.

!"#$%&'()&*+,-./0-123&2&4&5&0(&

56&7-88(&
9:;&

<=>&7-88(&
9:;&

=?5&7-88(&
9:;&

Figure 1.5: Comparison between experimental result and CRASH simulation for
RMI. The upper panel is a PLIF image taken by B.D. Collins & J.W.
Jacobs, 6 ms after the shock hit the air/SF6 interface, in their experi-
ment using shock Mach number M=1.21 [6], and the lower panel is from
CRASH simulation.



equations both numerically [62] and analytically [17, 59], and the resulting discrep-

ancy with infinite relative error between the impulsive model and linearized solution

in the special case of reflected rarefaction wave has since cast doubt on the fundamen-

tal soundness of the impulsive model [59]. Other modern results from experiments,

numerical simulations, and theoretical models are similarly dogged with inconsisten-

cies, even for the simple case of sinusoidal perturbation activated by a planar shock

[23, 9].

Since the self-similar, subsonic tail of the blast wave is preceded by the shock

front, the instability at the interface caused by blast wave can be more accurately

described as RMI followed by RTI. That said, RTI dominates the dynamics of the

interface at later time since its exponential growth rate overwhelms the quadratic

growth rate of RMI.

1.2.3 Kelvin-Helmholtz Instability

KHI occurs in flows with parallel velocity shear, with either homogeneous or het-

erogeneous fluid. It underlies familiar patterns of gas giants like Saturn and Jupiter,

where velocity shear naturally occurs due to the differential velocity from poles to

the equator in planetary rotation. Occasionally, clouds shaped by KHI, sometimes

referred to as “Kelvin-Helmholtz wave clouds” can be seen under favorable conditions

(Figure 1.6). At the late stage of RTI and RMI, the parallel velocity shear also rises

between developed bubbles and spikes, so KHI becomes relevant and generates the

familiar mushroom cap like the one in Figure 1.5.

KHI in the context of laboratory astrophysics constitutes the thesis work of Eric

C. Harding [21]. This thesis won’t discuss KHI in detail, however, since the major

motivation for this thesis work is the absence of KHI.

8



Figure 1.6: Kelvin-Helmholtz wave clouds over Monument, Colorado. Photo credit
Terry Robinson, from The Cloud Collector’s Reference.

1.3 Scaled Supernova Rayleigh-Taylor Instability

1.3.1 Supernova Rayleigh-Taylor (SNRT) Experiments

Based on the argument of Euler similarity [48, 26], scaled experiments relevant to

the RTI during supernova have been performed since the late 1990s to explore a variety

of dynamics from simple RTI with planar interface [45, 27, 25], interface coupling [28],

RTI with spherical interface [11], to RTI with multimodal sinusoid perturbation [33,

35]. The most recent ones that replicate the RTI at the He-H interface in supernova

1987A were performed with the Omega Laser facility at Rochester in 2009, in which

the target consists of carbonized resorcinol formaldehyde (CRF) (essentially low-

density carbon) foam and polyimide (C22H10O5N2), enclosed in a tube about 0.9 mm

in diameter. The lasers deposit about 4.5× 103 J of energy in 1 ns on the polyimide

side, creating a blast wave which drives RMI and subsequently RTI at the interface

between materials, which are now ionized plasma (Figure 1.7).

In these experiments, the interface between materials is “seeded” in the sense

that well-defined 2D or 3D sinusoidal perturbations were machined onto the surface

of polyimide in contact with the CRF foam in order to have facilitated and defined
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terest, is that about 10%–23% of the material in the spikes
has been pulled ahead, with some material extending all the
way to the forward shock. This previously unexamined pro-
cess has the potential to transport small amounts of material
over much greater distances than one would expect from
previously observed mechanisms. We also discuss several
other hypotheses regarding the origin of the unexpected
spike morphology and penetration.

The present experiment is designed to study the mixing
due to hydrodynamic instabilities, specifically the Rayleigh–
Taylor instability. This instability is quite common because it
occurs whenever a dense fluid is accelerated against a fluid
of less density. The acceleration can be due to gravity or fluid
pressure gradients, perhaps following an explosion. This in-
stability occurs in SN explosions when a blast wave moves
outward through several interfaces of decreasing density.

High-energy-density laser facilities can create con-
ditions and processes that are relevant to astrophysics,
specifically SNs. Previous astrophysics-related work on laser
facilities includes experiments on the Omega22,23 laser and
the National Ignition Facility24 studying astrophysical
jets.25–27 Also, Richtmyer–Meshkov experiments relevant to
core-collapse SN have been performed on the Omega laser.28

The present SN hydrodynamics experiments are extensions
of earlier experiments performed on the Nova laser29 and the
Omega laser.

The first documented SN hydrodynamics experiments
were performed by Kane et al. on the Nova laser. The ex-
perimental target was an 85 !m layer of Cu followed by a
500 !m layer of CH2. The initial conditions consisted of a
two-dimensional !2D", single-mode sinusoid on the interface
with a wavelength of 200 !m and an amplitude of 20 !m.
The Nova laser generated a 10–15 Mbar shock in the Cu,
which decayed into a blast wave prior to reaching the CH2
layer. The dynamics of these experiments were scaled so that
observed hydrodynamics resembled that of the He–H inter-
face of a core-collapse SN explosion model.

Subsequent SN hydrodynamics experiments, including
the experiments detailed in the present paper, were later per-
formed on the Omega laser. With the availability of increased
driving laser energy, this experiment was able to produce a
50 Mbar shock in a plastic ablator material. Advances in
target fabrication, specifically the production of high-quality
micromachined perturbation, and characterization !see

Appendix A for more detail" allowed initial Omega experi-
ments to explore the effects of coupled interfaces, multimode
initial conditions, and spherically divergent target geometry
on hydrodynamic mixing.17,30–32 Experiments with 2D,
single- and multimode initial conditions are further detailed
in Ref. 32. The 2D experiments were very similar to the
experiments in the present paper except that the initial con-
ditions were 2D instead of 3D and the density of the foam
material was slightly different. The paper of Kuranz et al.
also included results from 2D FLASH !Refs. 33 and 34" simu-
lations while a paper by Miles et al.35 discusses simulations
of these experiments with CALE.

The first experiments using 3D structure !orthogonal
sinusoidal modulations" at the unstable interface were re-
ported by Drake et al.31 The data showed spikes due to the
Rayleigh–Taylor instability protruding to the shock front, as
was also observed in the experiments reported here. This
depth of penetration was unexpected. It was initially thought
to be due to the deposition of vorticity by the shock front as
it crossed the tracer strip, which was depressed by 5 !m
relative to the surrounding material. This hypothesis was
tested with further 3D experiments that explored the effects
of additional long-wavelength modes36 in targets manufac-
tured to more stringent specifications and were more thor-
oughly characterized !see Appendix A". These experiments
and related 3D simulations showed that the increased spike
penetration was not caused by long-wavelength modes. Im-
provements in target precision, alignment precision, and di-
agnostic techniques37 led us to examine again the case of
orthogonal sinusoidal modulations at the interface in the
work reported here. The increased brightness and contrast of
the images, due to an improved diagnostic technique,37 allow
a much closer examination of the spike structure.

II. EXPERIMENT AND EXPERIMENTAL CONDITIONS

In this experiment the Omega laser is used to induce
hydrodynamic instabilities in an experimental target similar
to those in the blast-wave-driven, outer layers of SN explo-
sion models. An exploded view of the key target compo-

FIG. 1. !Color online" Target structure including !a" and exploded view of
the polyimide/CHBr disk and the CRF foam and indicating the position of
the laser beams and the CHBr tracer strip.

a) b)polyimide

CHBr
tracer strip

x-ray film

x-ray source

FIG. 2. !a" Rear surface of polyimide disk showing the placement of the
CHBr tracer strip and indicating the position of the x-ray source and x-ray
film; !b" a representation of the pattern on the surface of the polyimide/
CHBr disks, which had been stretched to show structure.

052709-2 Kuranz et al. Phys. Plasmas 17, 052709 !2010"
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Figure 1.7: Diagram of the scaled SNRT experiment at the Omega Laser facility in
2009. CHBr tracer strip, with density (1.42 g/cm3) close to that of poly-
imide (1.43 g/cm3) is used to assist diagnosis, since polyimide is almost
transparent to the x ray used in radiography. Figure from [34].

with an amplitude of 2.5 mm and wavelength of 71 mm was
machined into the rear surface of the plastic disk. Ten beams of the
laser irradiated the plastic disk for 1 ns with a total energy of
approximately 4.5 kJ, driving a strong shock from the plastic into
the foam and exciting Richtmyer–Meshkov and Rayleigh–Taylor
instabilities. The Rayleigh–Taylor modes dominate at late times. For
more detail on the experiment, see Kuranz et al. [11].

A radiograph from one of these experiments at 21 ns is shown
on the left side of Fig. 1. The simulation of the experiment per-
formedwith the FLASH code [14] is shown on the right side of Fig.1.
For comparison, a simulated radiograph from the numerical
calculation is shown in Fig. 2. Significant differences between the
experiment and the simulation are immediately apparent. In the
simulation, each spike is terminated by a well-defined mushroom
cap, typical of the classical Rayleigh–Taylor instability. There is no
sign of mushroom caps in the experimental data, although we
believe that the diagnostics are of sufficient quality to detect them
if they were present. In the experimental data, the spikes and
bubbles have approximately the same width, but in the simula-
tions, the bubbles are much wider than the spikes. Finally, in the
experiment, there are low-density extensions at the end of each
spike that extend almost all of the way to the shock front. These are
not seen in the simulation. The behavior seen in the simulation is
similar to that observed in other laboratory experiments suggesting
that the cause of the discrepancies may be some type of physics
present in the laser experiments that was not present in the other
laboratory experiments and that was not included in the simulation
code. One possibility, which will be explored in the next section, is
that magnetic fields strong enough to affect the dynamics of the
system are generated during the laser experiments. Other possi-
bilities are explored in [11].

3. The possible role of magnetic fields

Magnetic fields can be generated in plasmas by the Biermann
battery mechanism [15] when the gradients of the electron density
ne and theelectron temperatureTe arenotaligned.Here,ne is the free
electron density resulting from ionization. For the present problem,
the matter remains neutral on any realistic scale. An electric field is
produced to balance the electron pressure Pe according to

E ¼ " 1
ene

VPe;

where e is the electron charge. Then Faraday’s law gives

1
c
vB
vt

¼ "V# E;

where B is the magnetic field and c is the speed of light. Assuming
an ideal gas equation of state, these two equations can be combined
to give

vB
vt

¼ ckB
e
½VTe # V ln ne%;

where kB is Boltzman’s constant.
The temperature in the bubbles is significantly larger than in the

spikes, since the bubble density is much lower and the pressure is
roughly constant. Therefore, there is much more ionization in the
bubbles resulting in a larger electron density than in the spikes. The
electron temperature decreases in the direction of shock propaga-
tion, but the size of the gradient is much smaller than the gradient
between the spike and the bubble. In this case, the direction of the
number density gradient is dominated by the mass density
gradient, which increases toward the shock. The cross products of
these gradients produce an azimuthal magnetic field that wraps
around each spike and bubble (see Fig. 3). An order of magnitude
estimate for the rate of magnetic field generation can be obtained
by looking at the gradients of electron density and temperature in
a simple hydrodynamic calculation using the Hyades code [16]. For
the parameters relevant to our experiments, the magnetic field
should increase at a rate of w2 # 1014 G/s. At the final time of the
experiment, 20 ns, this would correspond to a field strength of
w5 MG, assuming that dissipation effects can be neglected. A field
of this strength would generate a magnetic pressure B2/8p of
w1012 dyn/cm2. This is comparable to the plasma pressure, which
can be approximated by rus2, where r is the density of the foam and
us is the speed of the shock.

For the conditions in our experiments, the magnetic Reynolds
number is almost certainly less than unity, so ignoring the effects of
field dissipation is not valid. The effects of dissipation do not lend
themselves to straightforward estimates, because the dissipative
plasma heating is of the same order as the magnetic diffusion, and
the magnetic diffusivity decreases strongly as plasma temperature
increases. It is possible that the maximum field strength in the
experiments is at least a factor of 10 lower than the estimate given
above. It is interesting to note that other laser experiments have
measured magnetic field strengths comparable to this [17].

If dissipation is important, the plasma will have b [ 1, where
b is the ratio of the gas pressure to themagnetic pressure. However,
even a relatively weak field may have a significant effect on the
morphology of the Rayleigh–Taylor instability. Fig. 4 shows the

Fig. 1. Comparison of a radiograph from a laser experiment of a three-dimensional single-mode blast-wave-drive Rayleigh–Taylor instability to a numerical simulation corre-
sponding to the same initial conditions.

B. Fryxell et al. / High Energy Density Physics 6 (2010) 162–165 163

Figure 1.8: Comparison between the radiograph from the SNRT experiment and the
simulation result from the FLASH code, courtesy of the FLASH Center
for Computational Science at University of Chicago. Notice that the
spikes in the experiment are of uniform width and lack the mushroom
cap typical of late-time RTI. Figure from [18].

initial growth of the instability. In the end, however, KHI does not follow RMI and

RTI for the ones with 3D sinusoidal perturbations as expected, and the spikes lack

the typical mushroom caps. Furthermore, subsequent computer simulation also failed

to reproduce such unusual morphology (Figure 1.8).

In response, a “Magnetic Straitjacket” hypothesis was proposed to explain the

discrepancy, based on Biermann Battery mechanism [18].
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1.3.2 Biermann Battery Mechanism, Magnetic Diffusion, and Magnetic

Convection

Assuming that the dynamics of the electrons is fast compared to the dynamics of

the fluid, ionized plasma without external magnetic field satisfies quasi-equilibrium:

E = −∇Pe/ene (1.2)

where ne is the electron number density and e is the elementary charge. Applying

Faraday’s law

∂B

∂t
= −∇× E (1.3)

and assuming ideal gas law Pe = nekBTe for free electrons, we get

∂B

∂t
= (kB/e)(∇Te ×∇ lnne) (1.4)

where kB is the Boltzman’s constant and Te is the electron temperature. First pro-

posed by Ludwig Biermann in 1950 [2], this means that misaligned gradients of elec-

tron temperature and number density in ionized plasma can seed magnetic field where

it’s initially absent, and experimentally magnetic field due to Biermann battery has

been recently observed in a specifically designed RTI experiment during laser-ablation

by Manuel et al. [40]. In the context of the SNRT experiment, it was proposed that

longitudinal gradients along the bubble and spike in addition to the gradients across

the material interface may result in azimuthal magnetic field, whose magnetic pres-

sure (B2/2µ0 in SI units, B2/8π in cgs units) keeps the spike in uniform width and

mushroom cap from forming (Figure 1.9).

In such an evolving system with magnetic field, however, we have to take other

terms into account. Firstly, the E field may not completely cancel out other forces
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results of two MHD simulations using the FLASH code for a two-
dimensional single-mode Rayleigh–Taylor instability with two
different field strengths. For the plot on the left, with b w 250 000,
the magnetic field has virtually no effect on the morphology of the
instability. However, when the field is increased by a factor of ten,
corresponding to b w 2500, the morphology is quite different. The
mushroom caps have been completely suppressed and the spikes
and bubbles are now of comparable width. These simulations do
not correspond exactly to the experimental conditions, since the
field is imposed at the beginning rather than generated self-
consistently and the seed perturbation is two-dimensional,
providing a different field geometry. Nevertheless, they clearly
show that adding a relatively weak magnetic field can result in
a morphology that looks much more like the experimental results.
For the three-dimensional case, in which the field wraps around
each spike and bubble, an even weaker field may be important due
to the hoop stress, which is absent in the two-dimensional case. It
may seem surprising at first that a field this weak could have such
a dramatic effect. However, the field only needs to resist the ram
pressure of the laterally expanding plasma. Since this motion is
extremely subsonic, b does not need to be of order unity for the
field to be significant.

4. Relation to supernovae

The next obvious question is whether magnetic fields might be
important in Type II supernova explosions. Order of magnitude
estimates indicate that the magnetic field generation rate is very

small due to the large distance (w1012 cm) over which the electron
density and temperature vary [12]. For a timescale of 2000 s, the
resulting magnetic field remains less than 1 G, giving a magnetic
pressure of about 0.1 dyn/cm2. The plasma pressure at the corre-
sponding time is approximately 1012 dyn/cm2. Since the flow
speeds during the explosion are highly supersonic, the ram
pressure in the supernova is also much larger than the magnetic
pressure. Although the magnetic field in the collapsed core of the
star may be significant and play a role in the explosion mechanism,
and magnetic fields may become important at much later times
after the gas pressure has dropped significantly, it is highly unlikely
that magnetic fields have a significant effect on any Rayleigh–Taylor
instabilities that may develop during the propagation of the blast
wave through the stellar envelope, except perhaps for modifying
the seed perturbations.

5. Conclusions

Laser experiments of blast-wave-driven Rayleigh–Taylor insta-
bilities show very different behavior than comparable gas dynamics
simulations. One possible explanation for this discrepancy is that
magnetic fields are generated in the laser experiments by the
Biermann battery mechanism. This effect has not yet been included
in the numerical simulations. Order of magnitude estimates indi-
cate that the field generation rate is large enough to be important.
However, it is as yet unclear whether the rate of dissipation is
sufficiently large to reduce the field strength to a negligible level. In
order to determine if magnetic fields can explain the observed
behavior, it will be necessary to perform fully consistent numerical
simulations with all the field generation and dissipation terms
included. Experiments to measure the field strength in Omega
Laser experiments are also planned for the near future.

Fig. 2. Simulated radiograph computed from the numerical simulation shown in Fig. 1.

Fig. 3. Schematic diagram showing the gradients of electron number density and
temperature in the bubbles and spikes of the instability and the corresponding
azimuthal magnetic field, which wraps around each bubble and spike.

Fig. 4. Density plots for idealized two-dimensional single-mode simulations
computed with the FLASH code for two magnetic field strengths. The field was
imposed as an initial condition rather than being generated during the development of
the instability. The plot on the left corresponds to a plasma b of 250 000, while the plot
on the right is for b w 2500. Even for a relatively weak magnetic field, the morphology
of the instability can be significantly affected.

B. Fryxell et al. / High Energy Density Physics 6 (2010) 162–165164

Figure 1.9: Diagram of the “Magnetic Straitjacket” hypothesis. Based on results of
1D simulations, longitudinal gradients and gradients across the material
interface are proposed to produce azimuthal magnetic field, which acts
like rubber bands and restricts the growth of KHI. Figure from [18].

acting on the electrons given that plasma is not a perfect conductor, and the result-

ing current J obeys Ohm’s law Eresidual = J/σ, where σ is the conductivity of the

plasma. Secondly, moving electrons in B field obey Lorentz force law. Although this

description is sufficient by itself, it is conceptually convenient to decompose the aver-

age velocity of the electrons into the current J/ene component and the bulk velocity

u of the plasma, and describe the force acting on the electrons due to the current J

and magnetic field B as the Hall effect. Consequently, in SI units

E = −∇Pe/ene
Quasi-equilibrium with Pe

+ J/σ

Ohm’s law

− u×B
Lorentz force

+ J×B/ene
Hall effect

(1.5)

In particular, the resistive term due to Ohm’s law results in diffusion of the magnetic

field. Under quasi-equilibrium assumption, we expect displacement current ε0
∂E
∂t

to

be insignificant, so Ampere’s law reads

∇×B = µ0J (1.6)

So J = ∇×B/µ0,
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E = −∇Pe/ene +∇×B/µ0σ − u×B + (∇×B)×B/µ0ene (1.7)

Again with Faraday’s law,

∂B
∂t

= −∇× E

= −∇× (−∇Pe/ene +∇×B/µ0σ − u×B + (∇×B)×B/µ0ene)
(1.8)

The last term is taken into account in the Hall MHD framework but not the stan-

dard MHD. We can estimate its magnitude relative to the Lorentz force term by

replacing ∇ with the inverse of the length scale of the system 1/L, and in our case

the component of the average velocity of the electrons attributed to the current is

negligible compared to the bulk velocity. Moreover, since magnetic field is divergence

free, ∇× (∇×B) = ∇(���
�: 0∇ ·B)−∇2B,

∂B

∂t
= (kB/e)(∇Te ×∇ lnne)

Biermann battery

− ∇2B/µ0σ

magnetic diffusion

+ ∇× (u×B)

magnetic convection

(1.9)

So the resistivity of the plasma gives us magnetic diffusion, with diffusion constant

η = 1/µ0σ. The ratio of the magnitude of the magnetic convection term to the

magnitude of the magnetic diffusion term is the magnetic Reynolds’ number Rm

Rm =
|∇ × (u×B)|
|η∇2B|

(1.10)

which can be estimated by replacing ∇ with 1/L and u with the typical velocity scale

of the system U :

Rm = UL/η (1.11)

If Rm � 1, the local magnetic field quickly diffuses away. Conversely if Rm � 1, the
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local magnetic field persists within the flow of the plasma, as is the case for the exper-

iment by Manuel et al. Unfortunately in our system, Rm was estimated to be ∼ 0.1

and dependent on the temperature, which is in turn dependent on resistive heating.

As the Biermann battery term and magnetic diffusion term jointly determine the

strength of the magnetic field, it is unclear whether the resulting magnetic pressure

would be significant enough to influence the overall dynamics of the SNRT problem.

Notice that although the SNRT experiments were intended to model the dynamics of

layer mixing during a supernova explosion, the potential complications of the B field

in the experiments do not necessarily apply to the dynamics of supernova. Indeed,

as an example of the breakdown of scale invariance, the gradients of the electron

temperature and number density are expected to be much smaller during the super-

nova layer mixing due to the vast spatial scale, so the resultant magnetic pressure is

not expected to be significant relative to the ram pressure ρu2 of the supersonic flow

[18, 48].

1.4 Summary of Chapters

The goal of my thesis is to model the SNRT problem through simulations to test

the Magnetic Straitjacket hypothesis. This introduction has stated the hypothesis we

would like to test in the context of CFD, laboratory astrophysics, and hydrodynamic

instabilities relevant to supernovae. In Chapter II, we introduce the CRASH code

package and numerical methods used in this thesis. In Chapter III, we present the

results of RTI simulations using CRASH. We have examined both the early-time and

late-time behavior, and tested the low resolution limit of CRASH RTI simulations.

The work for Chapter III was published in the journal High-Energy-Density Physics

[5]. In Chapter IV, we present the work of CRASH RMI simulations, in comparison

with the experimental data and the results of other code packages. With the code

tested for such instabilities, Chapter V shows the results of 2D/3D CRASH simu-
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Figure 1.10: Snapshot of the electron temperature Te at 7 ns, 2D CRASH simulation
for the SNRT problem. Although the direction of the gradient across
the material interface is as predicted, a longitudinal gradient within the
(blue) spike, anticipated from 1D simulations, is notably absent at this
time and on this scale of color mapping.



lations for the SNRT problem (Figure 1.10). We then draw the conclusions we can

make and point out some of the potential future directions in Chapter VI.
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CHAPTER II

CRASH Code Package and Numerical Methods

2.1 Background

The CRASH code was developed with the support of the Predictive Science Aca-

demic Alliance Program (PSAAP). Based on the Block-Adaptive Tree Solarwind Roe

Upwind Scheme (BATS-R-US) code [55], the CRASH code incorporates additional

capacities in order to model the radiative shock tube experiments performed at the

Omega Laser facility (Figure 2.1 and 2.2) [56]. The decision to use the CRASH code

for the SNRT problem was inspired by both its similarity to the originally intended

problem and my earlier involvement in the main CRASH program [22, 41]. We will

briefly describe the numerical methods and level set method used for this thesis and

additional capabilities used for Chapter V in the following sections, and refer the

readers to the bibliography for further details.

2.2 Numerical Methods

For this thesis, we only used CRASH’s implementation of the HLLE scheme [15]

and Godunov scheme [19] with an exact Riemann solver, both second order in space

and time. An explicit 2-stage Runge-Kutta scheme with Courant-Friedrichs-Lewy

(CFL) number 0.8 is used for time integration, and the flux is calculated with recon-
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Figure 2.1: Diagram of the radiative shock tube experiment. 10 laser beams with a
total energy of ∼ 3.8 kJ irradiate a 20-µm-thick beryllium disk, and the
ablated Be in turn drives the primary shock through the shock tube filed
with Xe. The ablated Be loses significant energy due to thermal radiation,
which passes through the optically-thin pre-shock Xe, preheats the plastic
wall, and induces secondary wall shock. The plastic wall consists of the
same material as the disk used in the SNRT experiments, polyimide.
Figure from [57].
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Figure 2.2: Experimental observation of the radiative shock tube experiment. Both
the primary shock and wall shock are clearly visible. The gold grid is for
instrument calibration, and the kink results from the interactions between
the primary shock and the wall shock. Figure from [10].



structed linear slopes of the state variables within cells, using generalized monotonized

central limiter or generalized Korens limiter [31]. A flux limiter is required for these

Riemann solvers to extrapolate the state variable U from the left and right cell centers

to the cell face at i+ 1/2 for these schemes as

UL
i+1/2 = Ui +

1

2
∆Ui,

UR
i+1/2 = Ui+1 −

1

2
∆Ui+1,

where ∆Ui is the limited slope in cell i. For the generalized monotonized central (mc)

limiter, ∆Ui is given by

∆Ui = minmod

[
β(Ui+1 − Ui), β(Ui − Ui−1),

Ui+1 − Ui−1

2

]
The limited slopes in the left and right extrapolations are constructed asymmetrically

for the generalized Koren’s (mc3) limiter as

∆
L
Ui = minmod

[
β(Ui+1 − Ui), β(Ui − Ui−1),

2Ui+1 − Ui − Ui−1

3

]

∆
R
Ui = minmod

[
β(Ui+1 − Ui), β(Ui − Ui−1),

Ui+1 − Ui − 2Ui−1

3

]
In both cases, β is an adjustable parameter which controls the amount of numerical

dissipation with range 1.0 ≤ β ≤ 2.0.

2.3 Level Sets and Material Identification

For the simulations presented in this thesis, level set method is used to distinguish

the identity of the fluids. For example, two level set functions are set up such that

Initially dBe = 1 and dXe = −1 where the heavy fluid is present, and dBe = −1

and dXe = 1 where the light fluid is present for the RTI simulations. The level set
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functions dm are then advected along with the state variables according to the simple

advection equation [56]

∂dm
∂t

+∇ · (dmu) = dm∇ · u

where m is one of the two arbitrary labels “Be” and “Xe”, conveniently chosen since

they are two of the elements used in the main CRASH program. Up to 5 different

fluids (therefore 5 level set functions) can be used simultaneously, as is the case for

the 2D SNRT simulations presented in Chapter V. The identity of the fluid in a cell

is then determined by its most positive level set function through the winner-take-all

algorithm. Consequently, a cell never contains two different fluids at the same time.

2.4 Radiation Transport

Radiation transport in CRASH is modeled as flux-limited gray or multi-group dif-

fusion [56]. For the multi-group diffusion, the total radiation energy density is divided

into radiation energy densities for intervals of photon frequencies, [νg−1/2, νg+1/2]:

Eg =

∫ νg+1/2

νg−1/2

Eνdν (2.1)

where Eν is the spectral energy density, g = 1, . . . , G, and G denotes the num-

ber of groups. The groups are logarithmically distributed in frequency such that

ln(νg+1/2) − ln(νg−1/2) is constant. The radiation energy density in each group then

evolves according to the diffusion equation
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∂Eg
∂t

+ ∇ · (Egu)

advection

+ (γr − 1)∇ · u(Eg −
∫ νg+1/2

νg−1/2

∂(νEν)

∂ν
dν)

compression

= ∇ · (Dg∇Eg)
diffusion

+ σg(Bg − Eg)
emission - absorption

,

Dg = c/(3κRg),

σg = cκPg (2.2)

where γr = 4/3 is the adiabatic index of the photon gas, c is the speed of light, Bg

is the energy flux of the blackbody radiation within the radiation group g, κRg and

κPg are the Rosseland mean opacity and Planck mean opacity for the radiation group

g, respectively. When only one radiation group is used with radiation energy density

Er =
∫∞

0
Eνdν, the treatment above reduces to single group approximation, usually

referred to as gray radiation diffusion:

∂Er
∂t

+∇ · (Eru) + (γr − 1)Er∇ · u = ∇ · (Dr∇Er) + σr(B − Er) (2.3)

where B = aT 4
e is the total energy flux of the blackbody radiation with Stefan-

Boltzmann constant a =
2π5k4B
15h3c2

, given the electron temperature Te.

As it is, the radiation diffusion flux Fg = −Dg∇Eg may exceed the free-streaming

limit cEg if the Rosseland mean opacity is sufficiently low. The square-root flux

limiter [42] is therefore employed in CRASH which modifies the diffusion constant Dg

as

Dg =
c√

(3κRg)2 + |∇Eg |2
E2

g

(2.4)
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in order to keep the radiation diffusion from transporting energy faster than light.

The capacity of radiation transport is central to the main CRASH program. Al-

though radiation transport is not expected to be significant for the dynamics of the

instability for the SNRT problem, we found that the shock velocity is sensitive to

the presence of radiation transport, presumably due to the energy loss during laser

ablation. Consequently, the SNRT simulations presented in Chapter V employ multi-

group radiation transport.

2.5 Electron Heat Conduction

The implementation of electron heat conduction in CRASH is based on the clas-

sical Spitzer-Harm formula, where the heat flux due to the electrons is given by

F = −Ce∇Te,

Ce = χρcp (2.5)

where ρ is the mass density of the plasma, cp is the specific heat at constant pressure,

and χ is the heat diffusion constant whose dimension is the expected length2 time−1.

In units typical for laboratory astrophysics [12],

χ(cm2s−1) = 3.3× 10−3 A[T (eV)]5/2

ln ΛZ̄(Z̄ + 1)ρ(g cm−3)
(2.6)

where A is the average atomic mass, Z̄ is the average ionization, and ln Λ is the

Coulomb logarithm. This collisional model, however, gives unphysical result when

the scale of the temperature gradient Te/|∇Te| is no longer much larger than the

mean free path of the electrons. At the free-streaming limit, the magnitude of the

electron heat flux is instead given by FFS = nekBTevth, vth =
√
kBTe/me, me being
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the mass of the electron. The final form of the electron heat flux is therefore flux-

limited as follows [56], similar to the approach taken for the radiation transport:

F = −min

(
Ce,

fFFS
|∇Te|

)
∇Te (2.7)

where the flux limiter f is a tunable numerical parameter. f is typically set to be

0.06 for the main CRASH program and is unchanged for our SNRT simulations.

2.6 EOS and Opacity

Although the CRASH code is completed with internal EOS solvers and opacity

models for the materials used in the main CRASH program [52], the properties of the

plasma necessary for the simulation are not calculated on the fly for efficiency reason.

Instead, the values for these properties are tabulated beforehand, and the CRASH

code looks them up from the table in the course of simulation. The lookup arguments

for the EOS tables are the logarithms of electron temperature and atomic number

density (log Te, log na), whereas the lookup arguments for the specific Rosseland mean

opacity κRg/ρ and specific Planck mean opacity κPg/ρ for a given radiation group g

are the logarithms of mass density and electron temperature (log ρ, log Te) [56].

Another advantage of this tabular approach is the flexibility to use alternative

EOS and opacity models. In our case, the polyimide EOS table given by the CRASH

internal solver turned out to be ill-suited for the SNRT problem, since the average

ionization Z̄ is not monotonic with respect to Te when the atomic number density

is above ∼ 1027 m−3 (Figure 2.3). Early attempts of SNRT simulations using the

CRASH EOS table for polyimide were consequently affected by oscillations in Te,

since the electron temperature is not uniquely determined by the pressure and den-

sity (Figure 2.4). This issue is resolved after switching to the EOS table given by

PROPACEOS, whose Z̄ is always monotonic with respect to Te (Figure 2.5).
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Figure 2.3: Average ionization Z̄ of the polyimide plasma given by the CRASH in-
ternal EOS solver as a function of log Te(eV) and log na(m

−3), one of the
EOS properties whose values are tabulated.

Figure 2.4: Te (keV) snapshot of the center spike at t = 5 ns, 2D SNRT simulation
using the CRASH EOS table for polyimide. The electron temperature Te
of the polyimide plasma oscillates between the two possible solutions.
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Figure 2.5: Average ionization Z̄ of the polyimide plasma given by PROPACEOS as
a function of log Te(eV) and log na(m

−3).



2.7 Laser Energy Deposition Library

Lastly but crucially, a laser package was added to the CRASH code, which mod-

els the transport and deposition of the laser energy. The former is approximated

by a ray-tracing algorithm based on geometric optics, while the later primarily oc-

curs through inverse Bremsstrahlung physically and is modeled exclusively as inverse

Bremsstrahlung along the trajectory of the rays [57]. We used this laser package

for the SNRT simulations after adopting it for our laser configuration and polyimide

average atomic mass Ar = 9.80326205 (instead of 9.0121823 for the Beryllium used

in the main CRASH program).
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CHAPTER III

Rayleigh-Taylor Instability Simulations with

CRASH

3.1 Introduction

As the first step towards modeling the unusual morphology observed in SNRT

experiments [18], the results of RTI simulations with CRASH are reported in this

chapter. We performed simple hydrodynamics simulation on a fixed 2D Cartesian

grid as we examined three different regimes (linear early-time behavior, late-time

morphology, and low-resolution limit) of the physical and computational parameter

space and compared the effects of different solvers, numerical parameters, and grid

resolutions with respect to the analytical result and established expectations.

3.2 Linear Early-time Behavior

In the simplest case with discontinuous interface and a 2D single-mode perturba-

tion that is small in amplitude relative to the wavelength λ, linear theory predicts

that the mixing zone width of the RTI grows exponentially as

width ∝ exp(γt),
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γ =
√
Agk,A =

ρ2 − ρ1

ρ2 + ρ1

where A is the Atwood number, g is the gravitational acceleration, and k is the

wavenumber 2π/λ. For this study, we nominally set ρ2 = 1000 kg/m3, ρ1 = 500

kg/m3, A = 1/3, g = 9806.65 m/s2, and λ = 0.0002 m.

The simulation is set in a 2D square box with length equal to λ and gravity

pointing to the left. The boundary condition is periodic, except at the left and

right edges where reflective boundary condition is necessary to support and isolate

the fluids. The minimum pressure of the system is pmin = 105 Pa and the pressure

increases along the direction of gravity in order to maintain hydrostatic equilibrium.

Both light and heavy fluids are set to follow the ideal gas equation of state with

γ = 5/3, but they are nonetheless labeled with different material indices such that

their motion can be tracked accurately with the level set method implemented in

CRASH. With the heavy fluid conveniently labeled as “Be”, the mixing zone width is

defined as the horizontal distance from the tip of the spike to the top of the bubble,

which are in turn defined as the leftmost extent of the heavy fluid (where dBe > 0) and

the rightmost extent of the light fluid (where dBe < 0). The instability is initialized

with velocity field

ux(x, y) = cos(ky)× exp

(
−1

2

(
x− xinterface

λ/2e4

)2
)
× uinit

which perturbs the interface in a sinusoidal pattern but vanishes rapidly away from the

interface. Here e is the the base of the natural logarithm and uinit is one thousandth

of the speed of sound at the right edge:

uinit = 0.001c = 0.001×
√

5

3

pmin
ρ2

∼ 0.0129 m/s

Since the behavior of the system without viscosity does not depend on the length

scale, we can simply express the mixing zone width as a fraction of the wavelength
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Figure 3.1: Mixing zone width vs. time, HLLE scheme, mc limiter, β = 2.0. Darker
color indicates higher resolution as number of cells per wavelength, which
ranges from 25 to 210. The black line marks the linearized analytical result
with slope = 1.

and use the dimensionless time γt to plot the logarithm of the mixing zone width

over time. Figure 3.1 depicts the result for the HLLE scheme with β = 2.0, while

Figure 3.2 depicts the result for the Godunov scheme with β = 1.0 (mc limiter is

used for both cases). Lines with darker color indicate higher resolution as number of

cells per wavelength, and the black line marks the linearized analytical result, which

is simply a straight line with slope 1 in the semi-log plot with normalized units.

After the instability overcomes the numerical dissipation, its growth rate follows

the linearized analytical result. It deviates again later in time for high-resolution

runs, however, especially in the case of the Godunov scheme with the exact Riemann

solver. Examination of the level-set plots of the heavy fluid “Be” at the end of the

simulation with the highest resolution (Figure 3.3 and 3.4) reveals that this is due

to the spontaneous growth of smaller-wavelength instabilities, whose presence is un-
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Figure 3.2: Mixing zone width vs. time, Godunov scheme, mc limiter, β = 1.0 with
resolution from 27 to 210. The black line marks the linearized analytical
result with slope = 1.

avoidable, as the initial perturbation can’t be perfectly sinusoidal on a Cartesian grid,

and the numerical error will grow exponentially due to the very nature of the sys-

tem. Since small-wavelength instabilities grow faster in this regime without physical

viscosity, they corrupt the growth of the intended long-wavelength instability after

several natural time units. In the extreme case of Godunov scheme with 1024 cells

per wavelength, we can see that small-wavelength instabilities already developed a

complicated pattern of spikes and bubbles with fully developed mushroom caps, while

the long-wavelength instability is still in the linear regime.

3.3 Late-time Morphology

Although the early-time behavior has the advantage of having a linearized analyt-

ical result that can be used for reference, the late-time morphology is perhaps more

relevant for our purpose. For these runs, we used a moderate single-mode geome-
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Figure 3.3: Level-set plot at the end of the simulation (t = 6 natural time unit), HLLE
scheme, 1024 cells per wavelength. Smaller-wavelength instabilities out-
pace and corrupt the growth of the intended long-wavelength instability.
Gravity points to the left, and the spike grows along the upper and lower
edges of the grid.

Figure 3.4: Level-set plot at the end of the simulation (t = 6 natural time unit), Go-
dunov scheme, 1024 cells per wavelength. Small-wavelength instabilities
are even more prominent in this case because the exact Riemann solver
has less numerical dissipation.



Figure 3.5: Level-set morphology grid for the HLLE scheme. The resolution as num-
ber of cells per wavelength is fixed for each column, and the value of β is
fixed for each row.

try perturbation instead of a velocity perturbation: the interface is set up as a sine

wave with amplitude = λ/2e4, with the rest of the parameters the same. Figure 3.5

and 3.6 depict the result after 5 natural time units as two 3 × 3 morphology grids

for the HLLE scheme and Godunov scheme, respectively. The resolution as number

of cells per wavelength is fixed for each column and ranges from 32 to 128, and the

value of β is fixed for each row and ranges from 1.0 to 2.0.

Figure 3.5 shows that the growth of the mushroom cap (Res = 32 with β = 1.5 ∼

2.0, Res = 64 with β = 1.0), and in the extreme case the instability itself (Res = 32

with β = 1.0), can be impeded for the HLLE scheme. While mushroom caps can be

seen in all of the rest of the runs, only the two runs with the least numerical diffusion

(Res = 128 with β = 1.5 ∼ 2.0) show the roll up. The Godunov scheme (Figure 3.6)

has the opposite problem. The high-resolution and high-beta runs generate various

unphysical artifacts which we attribute to insufficient numerical viscosity. A dimple

at the top of the bubble is clearly visible in runs Res = 64 with β = 1.5 ∼ 2.0, and

all of the runs with Res = 128 develop three layers of KHI. When the progress of
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Figure 3.6: Level-set morphology grid for the Godunov scheme. The resolution as
number of cells per wavelength is fixed for each column, and the value of
β is fixed for each row.

the instability growth is examined in detail, e.g., the Res = 128 with β = 2.0 case in

Figure 3.7, we can see that this is simply another manifestation of the corruption due

to the extraneous small-scale features. In fact, even more features were generated by

the small-wavelength RTI and KHI, but several of them merged with each other, and

only three layers of KHI survived.

3.4 Low-resolution Limit

We varied the amplitude of the geometry perturbation from 0.025 to 0.2, β from

1.0 to 2.0, resolution as number of cells per wavelength = 8, 16, and 24, Atwood

number 1/10 ∼ 1/2, and tested both the HLLE scheme and Godunov scheme with both

mc and mc3 limiter. It turned out that the growth of the instability with the Godunov

scheme is robust against these variations of parameters, but the more diffusive HLLE

scheme requires the resolution to be > 16 for the instability to grow (Table 3.1).

Some of the exploratory simulation runs indicate that the growth of the instability

is more robust when the interface is perturbed by a small velocity field instead. This
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Figure 3.7: Detailed progress of the morphology evolution for the Godunov scheme,
with configuration corresponding to the lower-right corner of the mor-
phology grid (Res = 128 with β = 2.0). Snapshots were taken at
t = 0, 1, 2, 3, 4, 5 natural time units.



HLLE Res=8 Res=16 Res=24
β = 1.0 No Growth No Growth Growth
β = 1.5 No Growth No Growth Growth
β = 2.0 No Growth No Growth Growth

Table 3.1: Results of CRASH RTI simulations with HLLE scheme at low-resolution
limit

is not unexpected: the density gradient in geometry perturbation diffuses away with

time in HLLE scheme, but the velocity perturbation is protected by the conservation

of momentum and energy.

3.5 Conclusions

We found that CRASH is capable of reproducing reasonable behavior in RTI sim-

ulation, despite the fact that the original code base was neither designed nor tested

for such hydrodynamic instability. For the early-time behavior, the growth rate con-

verges to the analytical result, although the lack of physical viscosity model allows

high resolution runs to be complicated by the smaller-wavelength, secondary insta-

bilities. Similarly, CRASH generates expected late-time morphology for RTI, given

the appropriate choice of numerical scheme, resolution, and limiter beta. Finally, the

low-resolution limit for RTI growth in CRASH’s numerical schemes can provide a

lower bound for the required resolution in simulations where RTI is expected to play

an important role.
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CHAPTER IV

Richtmyer-Meshkov Instability Simulations with

CRASH And Cross-Code Comparison

4.1 Introduction

As the next step towards SNRT instability simulation [18], we used CRASH to

model the mach number Ms = 1.21 case of Collins and Jacobs’ RMI experiment

[6] and compared the result with those of other code packages including DAFNA

(hydrodynamic AMR code developed in Nuclear Research Center NEGEV, see [39, 61]

for its applications) and HUM3D (code developed by University of Michigan professor

Eric Johnsen’s group). Collins and Jacobs’ result is chosen as the experiment to model

because it’s frequently used as the yardstick for RMI simulations with various code

packages and numerical methods [37, 32, 38] available for comparison.

4.2 Physical Parameters of The Experiment

Instead of the traditional method of setting up the interface between two fluids

with membrane for RMI experiment, Collins and Jacobs’ setup maintains the interface

by flow stagnation. The two fluids, SF6 and air-acetone mixture, are sent from the

opposite ends of the shocktube and escape through slots at the designated location,

forming a interface at the stagnation point flow. The interface is then seeded with
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116 B. D. Collins and J. W. Jacobs

Driver

Diaphragm

Pivot

Air +
acetone vapour

Stepper motor

Interface

Test section

SF6

Laser Mirror

Lenses

Slot

Pressure
transducers

Air

SF6

(a)

(b)

Figure 1. The shock tube and PLIF system. SF6 and an air–acetone mixture flow into the shock
tube from plenums located below and above the test section. The stagnation point flow at the slot
location creates the interface (b), which is given a sinusoidal perturbation by rocking the shock tube
using a stepper motor and crank mechanism. Pressure transducers located above the test section
sense the shock wave and trigger the laser pulse which produces a light sheet that illuminates the
air–acetone mixture.

2. Experimental setup
The experiments utilize a vertical shock tube (figure 1a) which is 4.3 m long and

has a 1 m long, 10.2 cm diameter driver, and a 3.3 m long driven section with a 8.9 cm
square cross-section. The driver is made of glass fibre wound round epoxy pipe, and
the upper portion of the driven section is made of extruded fibreglass square structural
tubing. Three walls of the test section are made of flat black anodized aluminium
while the fourth wall is transparent acrylic sheet to allow full optical access for flow
visualization.

An interface is formed in the shock tube test section (Jones & Jacobs 1997)
by introducing a relatively light gas (air) through a plenum located at the top of

Figure 4.1: Setup of Collins and Jacobs’ Experiment. The low-density air-acetone
mixture and high-density SF6 are sent from the top and bottom of the
shocktube, respectively (a). The two fluids reach stagnation point flow at
the designated location and are allowed to escape, forming an interface
(b). Sinusoidal perturbation is then created at the interface by inducing
a standing wave with a stepper motor. Figure from [6].

a sinusoidal perturbation by vibrations created by a stepper motor (Figure 4.1). By

avoiding the use of a membrane in the setup, this experiment avoids its potential

complications in instability growth and diagnosis. A diaphragm from the air-acetone

side of the shocktube is then punctured to generate a shock, which initializes the RMI

when it reaches the perturbed interface at t = 0. The instability develops until t ∼ 6

ms, when the reflected expansion wave and incident shock reaccelerate the interface.

The system is modeled as a 2D rectangle shocktube with parameters summarized

in Table 4.1: wavelength (λ), wavenumber (k), and single-mode sinusoidal pertur-
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λ (m) 0.0594 xinterface (m) 0.03 A 0.605
k (1/m) 105.77 treshock (ms) 6.6 P (Pascal) 95600
a (m) 0.00183 ui,shock (m/s) 370.98 Mair (g/mol) 34.76
Lx (m) 0.78 Ma 1.21 MSF6 (g/mol) 146.05
Ly (m) 0.0594 ρair (kg/m3) 1.351 γair 1.276
xshock (m) 0.01 ρSF6 (kg/m3) 5.494 γSF6 1.093

Table 4.1: Parameters of Collins and Jacobs’ experiment

bation amplitude (a, half of the peak-to-valley distance) of the perturbation at the

interface, length (Lx) and width (Ly) of the shocktube, initial position of the shock

(xshock) and interface (xinterface), time of the re-shock (treshock) when the reflected

shock reaccelerates the interface relative to the start of RMI (t = 0), the velocity

(ui,shock) and Mach number (Ma) of the incident shock, the pre-shock densities of

air-acetone mixture (ρair) and SF6 (ρSF6), pre-shock Atwood number (A), pre-shock

pressure (P ), and average molecular weights of air-acetone mixture (Mair) and SF6

(MSF6). Air-acetone mixture and SF6 are modeled as ideal gamma law gases with

γair = 1.276 [37] and γSF6 = 1.093. Note that not all simulations use all of these

parameters: for example, molecular weights are ignored in CRASH simulations.

4.3 Simulation Setup and Numerical Parameters

In simulations, the top of the shocktube x = 0 through which the shockwave is

sustained by the driver is modeled with inflow (non-reflective) boundary condition.

All the other boundaries of the 2D rectangle shocktube are modeled with reflective

(wall) boundary condition.

The CRASH simulations employed the HLLE scheme [15] and generalized Ko-

ren’s limiter [31] with β = 2.0, as described in Section 2.2. DAFNA simulations

employed the HLLC scheme [54], and HUM3D switches between a central scheme

and a shock-capturing scheme [43]. We performed the simulations across all three

code packages with three predetermined resolutions: 64, 128, and 256 cells per wave-
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length (PWL). For the CRASH simulations, the same level set method for the RTI

simulations (Sec. 2.2) is employed again to enable accurate tracking of the material

and measurement of the instability amplitude, defined as half of the vertical distance

between the uppermost extent of the SF6 and lowermost extent of the air-acetone

mixture, in the experiment frame.

4.4 Results

Morphologies of the instability given by the CRASH simulations are plotted and

compared to the planar laser-induced fluorescence (PLIF) image from the experiment

at t = 6 ms in Figure 4.2, from which we can see that the instability amplitude and

morphology converge to the experimental result as we increase the resolution. Com-

pared to Figure 3.5, however, we can see that the results of the CRASH simulations of

the Jacobs experiment are more affected by numerical material diffusion even though

the post-shock dynamics are similar to those of the RTI morphology runs. Qualita-

tively, the morphologies given by the CRASH simulations of the Jacobs experiment

resemble those of the RTI morphology runs with the same numerical scheme and

β but half of the resolution. Given that the numerical material diffusion is limited

by the sound speed and that it’s effect on the dynamics of the system is relative

to the wavelength, we can calculate the time scale of numerical diffusion’s effect on

the system τ = λ/c. For the CRASH RTI morphology runs, τ ∼ 2−4 (m) /
√

5
3
pmin

ρ1

(m/s) ∼ 10.95 ms and the morphologies of the instability are observed at ∼ 0.045

τ . For the CRASH simulations of the Jacobs experiment, however, post-shock sound

speed of the light fluid gives us τ ∼ 0.0594 (m) /
√
γair

145348.25
1.872

(m/s) ∼ 0.1887 ms,

so the morphologies are observed at ∼ 31.79 τ . We can’t compare these two sets of

simulations quantitatively without further knowledge since the width of the diffused

interface doesn’t grow linearly with time, but the drastic difference in observation

time scaled by τ explains the different extent of the effect due to numerical material
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Figure 4.2: From top to bottom: SF6 level set plot of the instability at t = 6 ms
given by the CRASH simulation with resolution = 64, 128, and 256 cells
per wavelength respectively. The position along the x-axis is in the unit
of meters due to internal normalization. The insets are the PLIF image
from the experiment [6] taken at t = 6.006 ms for comparison.

diffusion.

In comparison, morphologies of the instability given by DAFNA are plotted and

compared to the experiment in Figure 4.3. We can see that the HLLC scheme used by

DAFNA is less affected by numerical material diffusion, but consequently with more

visible discretization error. The curl-up of the mushroom cap appears more irregular

than the experimental image, but no physical noise is present in the simulations.

Finally, instability amplitude over time given by CRASH, DAFNA, and HUM3D

is plotted and compared to the experiment in Figure 4.5. The results for RMI prior

to the re-shock seem to converge for all three code packages, although CRASH does

require higher resolution due to its higher numerical material diffusivity. Given the

spread of the experimental data points, the numerical results also seem to be consis-

tent with the experiment. No agreement is achieved for instability amplitude after

re-shock, however, due to the presence of 3D-turbulence in the experiment. The sim-

ulations have neither the necessary dimensionality nor the numerical model to handle
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Figure 4.3: From top to bottom: density plot of the instability at t = 6 ms given
by the DAFNA simulation with resolution = 64, 128, and 256 cells per
wavelength respectively. The position along the x-axis is given by the unit
of centimeters due to internal normalization. The insets are the PLIF
image from the experiment [6] taken at t = 6.006 ms for comparison.

the turbulence and its energy cascade, as illustrated by Figure 4.4.

Overall, CRASH proves able to accurately model the linear growth phase of RTI

and the experimentally observed RMI, given sufficient resolution. The necessary

resolution is determined by the effect of numerical material diffusion, which is in

turn determined by the speed of sound, size of the system, and the physical time of

observation given the same numerical scheme and similar instabilities like RTI and

RMI.
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Figure 4.4: Left: PLIF image from the experiment at t = 9.021 ms [6] Right: SF6

level set plot at t = 9 ms from the CRASH simulation with 256 cells per
wavelength. Turbulence is deposited by the reflected shock at treshock ∼
6.6 ms, a process not properly modeled by the simulations.
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CHAPTER V

CRASH Simulations of Rayleigh-Taylor Instability

with Biermann Battery Effect

5.1 Introduction

Having shown that we can use CRASH to obtain reasonable results for both RTI

and RMI simulations, we are finally ready to use CRASH’s implementation of the

Biermann battery term and magnetic diffusion term for the full SNRT simulations.

We started with the relevant verification tests of the CRASH nightly test suite to

test the Biermann battery implementation’s behavior under semi-discontinuous initial

conditions, and then performed the 2D/3D simulations of the SNRT instability with

Biermann battery effect. We will conclude with a discussion of the discrepancy and

limitations of the code.

5.2 Biermann Battery and Magnetic Diffusion Term with

Continuous Setup

Both the Biermann battery term and the magnetic diffusion term due to resistivity

are covered in the CRASH nightly test suit. For the Biermann battery test, the

simulation domain is set up as a 2D 20 × 20 m box with periodic boundary condition
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such that the electron pressure varies sinusoidally in the y-direction between 0.9 ∼ 1.1

Pa, and the density varies sinusoidally between 0.9 ∼ 1.1 kg/m3 in the x-direction.

The total pressure is kept constant at 2 Pa to keep the fluid stationary, and the

electron number density ne is artificially set to be proportional to the mass density

ρ with the ratio ρ/ne ∼ 1.7960634 × 10−22 kg. Consequently, the generated Bz is

antisymmetric with respect to both the central x-axis and y-axis and can be solved

analytically with elementary functions. The test is set up with base grid resolutions

10 × 10, 20 × 20, and 40 × 40 cells for the whole simulation domain, but the 4 ×

4 m square in the center is refined for one level (therefore contains 4 × 4, 8 × 8,

and 16 × 16 cells instead, respectively) to make sure that the implementation doesn’t

break when adaptive mesh refinement (AMR) is on. All of these tests are run with

CRASH’s implementation of the HLLE scheme [15] and generalized Korens limiter

[31] with β = 1.5 as described in Section 2.2.

Figure 5.1 shows the Bz calculated by the code and the error compared to the

analytical solution. Although some noise is produced at the boundary of grid refine-

ment, overall the calculated Bz converged to the analytical solution. In particular,

first-order convergence is achieved for the maximum (L∞ distance) error and second-

order convergence is achieved for the L1 distance between the calculated result and

the analytical result after the first time step (Figure 5.2). The result at the final

time step is more affected by the grid refinement boundary, but empirically the total

relative error (
∑
|Bz,simulation−Bz,analytic|/

∑
|Bz,analytic|) converges with a rate that

is between first and second order (Figure 5.3).

For the resistivity test, the simulation domain is similarly set up as a 2D 10 ×

10 m box with periodic boundary condition and one level of grid refinement in the

2 × 2 m center square. The density, electron pressure, and total pressure are set to

be constant at 1 kg/m3, 1 Pa, and 2 Pa, respectively. Bx and Bz are set to vary

sinusoidally in the y-direction (Figure 5.4) between ±0.5 internal normalization unit,
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Figure 5.1: Bz calculated with increasing resolution from top to bottom and the error
compared to the analytical solution for the Biermann battery test. The
magnetic field is in CRASH code’s internal normalization unit, which is
∼ 0.00112 T here. Notice the noise at the refinement boundary.
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Figure 5.2: log-log graph of the point-wise relative error vs. grid resolution after the
first time step for the Biermann battery test.
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Figure 5.3: log-log graph of the total relative error (
∑
|Bz,simulation −

Bz,analytic|/
∑
|Bz,analytic|) at the final time step for the Biermann

battery test.

or ∼ 5.6×10−4 T. With origin set at the center, the phases of Bx and Bz are offset by

90◦ such that Bx ∝ cos(ky) and Bz ∝ − sin(ky). The resistivity is set to be constant

such that the magnetic diffusion constant η = 1/µ0σ = 20 m2/s. In addition, the

fluid in this test is given an initial velocity in the x-direction ux = 1 m/s to test the

effect of advection and induction. This test also includes the effect of Joule heating,

and again runs with base grid resolutions 10 × 10, 20 × 20, and 40 × 40 cells with

the HLLE scheme [15] and generalized Korens limiter [31] with β = 1.5. Point-wise

second-order convergence is achieved for the L1 distance from the analytical solution

after the first time step (Figure 5.5).

5.3 Biermann Battery Term with Semi-continuous Setup

The expression for the Biermann battery term

∂B

∂t
= (kB/e)(∇Te ×∇ lnne) (1.4)

breaks down in the presence of discontinuity, so quantitative validation isn’t possible
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Figure 5.4: Bx, Bz, electron pressure Pe due to Joule heating and the associated error
with increasing resolution from left to right for the resistivity test. The
noise at the refinement boundary vanishes as resolution increases.
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lution after the first time step for the resistivity test.



for a semi-continuous setup. However, since effective discontinuity at the length scale

of typical grid resolution is ubiquitous for hydrodynamic and MHD simulations, we

would like to ensure reasonable behavior in such case.

2D cylindrical geometry is used for this test, with periodic boundary condition in

the axial direction and floating (outflow) boundary condition in the radial direction.

The length and radius of the 2D simulation domain are 100 m and 25 m, respectively.

The standard internal tabular EOS and opacity of Beryllium (Be) in the CRASH

code is used for all of the fluid in this test, and the center column of the simulation

domain (with radius r = 7.5 m) is set to have density varying sinusoidally between

2 ∼ 4 g/cc in the x-direction (Figure 5.6). Te is set to be 80 eV when density is 3

g/cc, and varies to keep the pressure constant in the center column of the simulation

domain. The rest of the simulation domain is set to have density 0.2 g/cc and Te =

200 eV. Magnetic diffusion is turned off for this test, and the pressure jump between

them is not expected to be relevant at the tested time scale. This test runs with

resolutions 64 × 16, 128 × 32, 256 × 64, and 512 × 128 cells, with the standard

CRASH heat conduction and multigroup diffusion for radiation transport.

The exact magnitude of the ∂B
∂t

is determined by the stencil of the implementation,

but as we can see from Figure 5.7 the initial growth rate approximately doubles as

we double the resolution as expected. Afterwards, the heat conduction model and

inherent diffusion of the HLLE scheme take over and reduces the cross gradients and

∂B
∂t

. Overall, the implementation of the Biermann battery term is both robust and

accurate under applicable circumstances.

5.4 2D SNRT Simulation

With the relevant terms tested, we now turn to the original problem [34]. Due to

the constraint of CPU flops and the explicit time integration of the resistivity term

(explained in further detail in the next section), we focus mostly on a 2D version of
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Figure 5.7: max(Bφ) over time for the semi-discontinuous Biermann battery test with
doubling resolutions. Higher resolutions are indicated by darker blue.

the original experiment with cylindrical geometry. Most of the experimental setup

is accurately modeled, except the necessitated change of the perturbation geometry

from the original egg-crate pattern to a concentric, ripple-like pattern with the same

wavelength λ = 71 µm and amplitude a = 2.5 µm. While the original Magnetic

Straitjacket hypothesis cannot be tested against the morphology evolution of the

concentric rings, we expect a spike placed in the center to evolve just like a single

finger in the original 3D experiment given the similarity of geometry, and set the

simulation up as such. In addition, the resulting gradients of Te and ne should also

be applicable to the experimental condition.

The qualitative results are robust to variations, but we focus our analysis on the

simulation of a specific SNRT experiment, shot 55295 in year 2009. The total laser

energy of shot 55295 is 4.4704 KJ, and the laser beams have identical temporal power

profile which can be described as a symmetric trapezoid: the power of the laser rises

from zero to the maximum linearly from t = 0 to t = 0.1 ns, the maximum power is

sustained from t = 0.1 ns to t = 0.9 ns, and the power falls from the maximum back

to zero linearly from t = 0.9 ns to t = 1.0 ns. The axes of the laser beams are placed
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# of beams angle
2 10.32◦

2 31.71◦

3 42.28◦

3 50.55◦

Table 5.1: Numbers of laser beams at each angle relative to the shock tube axis for
shot 55295 in year 2009

at an angle relative to the axis of the shock tube, and the numbers of beams at each

angle are summarized in Table 5.1. On the other hand, the azimuthal angles of the

laser beams are ignored in the simulation due to the inherent limitation of the 2D

cylindrical geometry.

The axes of the laser beams go through the origin, which is the center of the

surface of the polyimide disk facing outward. The power of each laser beam was

approximately equal in the experiment and is set to be equal in the simulation for

simplicity. The spatial irradiance profile of the laser beams is super-Gaussian of order

4.2, that is, the irradiance I of the beam at distance r from the axis is proportional

to e−(r/rBeam)4.2 . rBeam can be considered to be the radius of the beams and is equal

to 410 µm in this case. CRF foam is modeled as low-density carbon, and polyimide

plasma is modeled as a mixture of four elements according to the chemical formula

C22H10O5N2. The EOS table and opacity table are then generated by PROPACEOS

from PRISM Computational Sciences, Inc. and converted to the format used by

CRASH. The CHBr tracer strip is not modeled separately from the polyimide disk

since we do not expect it to affect the dynamics significantly [4]. Radiation transport

is modeled as multigroup diffusion, although we do not expect the shock to be sig-

nificantly radiative in this case. The size of each cell is 3.375 × 3.5 µm for the base

grid. Right at the material interface after two levels of AMR, the size of the smallest

cells is 0.84375× 0.875 µm.

Figure 5.8 shows the final state of the simulation 21 ns after the firing of the

laser, and Figure 5.9 zooms in on the density profile of the unstable region. At
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such late time, the most prominent magnetic field we observed is generated from

the near-vertical angle between the shock and the material interface near the tube

wall, although such effect may not be fully physical since this material interface along

the tube wall is effectively a contact discontinuity. Examination at early time shows

that the dominant magnetic field is generated along the shock front, especially when

the shock hits the perturbation (Figure 5.10). This pattern of Bφ can be explained

by considering the tangential gradients of Te and ne along the shock front. The

strength of the shock is approximately uniform near the axis of the shock tube due

to the shape of the laser beams. Therefore the gradients vanish and no magnetic

field is generated until the shock hits the perturbation. The small but significant

difference in shock strength due to the interface perturbation persists afterward and

continues to generate nonzero Bφ, as we can see in Figure 5.11. In comparison, the

magnetic field generated along the material interface is much weaker in magnitude

since the Te gradient and ne gradient are mostly aligned and anti-parallel to each

other (Figure 5.11). The magnitude of the magnetic field at the location relevant to

the Magnetic StraightJacket hypothesis |Bφ| tops out ∼ 1 T (Figure 5.12) at 7 ns,

but stays below 0.6 T most of the time for the rest of the simulation. Based on the Te,

ne, and Z̄ we get from the simulation and Spitzer conductivity, the magnetic diffusion

constant η = 1/µ0σ is estimated to be ∼ 4 m2/s at 7 ns posteriorly. However, the

magnetic diffusion constant is fixed at 0.9076 m2/s throughout the simulation priorly

in order to maintain reasonable size of the time step, so the experimental condition

is likely to be more unfavorable towards sustaining magnetic field. However, the

resistivity and diffusion rate both decrease strongly as temperature increases, and

the resistive heating rate is of the same order as the diffusion rate. Unfortunately,

the calculations we were able to do proved unable to address the interplay between

diffusion and heating.
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Figure 5.9: Density (g/cm3) profile zoom-in on the instability at 21 ns. A mushroom
cap is present on the center spike but not as prominent as in the FLASH
simulation in Figure 1.8.

Figure 5.10: Electron temperature Te (keV), electron number density (m−3), and
magnetic field Bφ (Tesla) at 2.5 ns with material interface marked as
white contour. Strong magnetic field is generated where shock hits the
perturbation.

Figure 5.11: Electron temperature Te (keV), electron number density ne (m−3), and
magnetic field Bφ (Tesla) at 7 ns. A stronger magnetic field is generated
along the rippled shock front than at the material interface. Note that
scale is adjusted and the redundant contour is taken out for ne.



Figure 5.12: Electron temperature Te (keV), electron number density ne (m−3), and
magnetic field Bφ (Tesla) at 7 ns along the material interface, with scale
adjusted for the magnetic field at the relevant location.

5.5 3D SNRT Simulation

Finally, we attempted a 3D version of the simulation. Due to the limitation of

the laser package and CPU time, we restricted the problem to 1/8 of the wavelength

of the center spike with reflective boundary condition in the y- and z-direction, and

used the laser heating data from the corresponding 2D simulation to initialize the

3D simulation. However, we encountered some stability issues and were therefore

forced to set an even higher magnetic diffusion constant at 2.269 m2/s. Since the

time integration of the magnetic diffusion is implemented explicitly, the time step

is limited at ∆t ∼ ∆x2/Dmagnetic. When we hit the scaling limit of the code with

one core handling one 6× 6× 6 block, we were only able to complete the simulation

with the resolution of 48 cells per wavelength within reasonable time. The result is

consistent with the 2D result, although we cannot draw further conclusions from it

(Figure 5.13).

5.6 Conclusion and Discussion

Given the strength of the magnetic field, we do not expect it to play a significant

role in the dynamics of the system for the 2D/3D SNRT simulations. Indeed, the

CRASH simulation without the Biermann battery effect results in indistinguishable

spike morphology (Figure 5.14) and quantitatively reproduces near-identical insta-
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Figure 5.13: “Center spike” of the 3D SNRT simulation, as part of the conceptually
infinite sheet of spikes and bubbles at 20 ns: density (g/cm3) ρ, electron
pressure pe (109 pascal), and magnetic field in the direction perpendic-
ular to the plane Bz (Tesla). The x-position does’t correspond to the
x-position of the 2D simulation since a simple Galilean transformation
is applied to keep the instability in the simulation domain.

Figure 5.14: Density (g/cm3) profile zoom-in on the instability at 21 ns for the 2D
SNRT CRASH Simulation without the Biermann battery effect. The
morphology is indistinguishable from Figure 5.9.
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Figure 5.15: Growth rate of the instability for the 2D SNRT simulations, with and
without the Biermann battery effect. The growth rate is measured by
the relative horizontal velocity between the tip of the center spike and
the tip of the surrounding bubble.



bility growth rate (Figure 5.15). Therefore, it is tempting to rule out the Magnetic

Straightjacket hypothesis based on the result, especially given the underestimation

of the resistivity. Unfortunately, these Eulerian simulations turn out to be under-

resolved. Based on the Te, ne, Z̄, and ρ we get from the simulation at 7 ns, the heat

diffusion constant is estimated to be χ ∼ 4 (cm2 s−1) for the carbon foam bubble and

∼ 0.76 (cm2 s−1) for the polyimide spike using Equation 2.6. Consequently, on the

timescale of 4 ∼ 18 ns after the shock hit the interface, the temperature jump should

only diffuse across 1 ∼ 2 µm physically. Since Eulerian codes like CRASH numerically

require 4 ∼ 5 cells to resolve such interface, the dimension of the cells at the interface

has to be ≤ 0.2 µm in order to fully resolve the temperature gradient. It takes at

least the same resolution to fully resolve the gradient of lnne due to its dependence on

temperature. Electron number density ne also depends on the identity of the mate-

rial, which is determined by the level set method without mixed cells in these CRASH

simulations. The identity of the material therefore does not require higher resolution

to resolve, but the level set method may have other complications like spurious oscil-

lations. If we assume that the gradients of electron temperature and number density

are inversely proportional to the size of the cell until the simulation is well-resolved,

the magnetic field could be 16 times as large, with corresponding magnetic pressure

that stays below 3.7×107 Pa most of the time but occasionally reaches 108 Pa. While

still small relative to the total pressure experienced by the spikes (∼ 1011 Pa), it may

nonetheless be sufficient to prevent the lateral development of KHI. In fact, magnetic

pressure that is ∼ 1/2500 of the total pressure has been shown to be sufficient [18].

Realistic simulation with sufficient resolution, however, is certainly beyond the cur-

rent capacity of CRASH and available CPUs. The time step limit due to the explicit

time integration of the magnetic diffusion ∆t ∼ ∆x2/Dmagnetic dictates that suffi-

cient resolution and physically realistic magnetic diffusion constant would require at

least a 64-fold increase of the count of total floating point operations, therefore more
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Figure 5.16: Electron temperature Te (keV) and electron number density ne (m−3)
at 7 ns from the 2D SNRT CRASH Simulation with one more level
of AMR but no Biermann battery effect. Secondary small-wavelength
instabilities are already prominent when the smallest cells are of the
dimension 0.421875× 0.4375 µm.

than a year on 200 cores instead of 8 days on the available hardware. To complicate

the issue further, a pilot run with pure hydrodynamics and one more level of AMR

shows that HLLE scheme will generate secondary small-wavelength instabilities along

the interface, once the temperature gradient is fully resolved (Figure 5.16). If these

small-wavelength instabilities are not adequately suppressed by the magnetic field

lines normal to them, generated by the Biermann battery effect in the correspond-

ing high-resolution MHD run, we will not be able to simulate the evolution of the

morphologies of the SNRT instability realistically with the current numerical scheme,

even with sufficient computational resources.
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CHAPTER VI

Conclusions and Future Directions

In the previous chapters, we can see that CRASH is capable of modeling both

RTI and RMI, given the appropriate choice of numerical scheme, flux limiter, and

resolution. We have also tested its implementation of Biermann battery and magnetic

diffusion. Taken together, however, CRASH is not capable of simulating the SNRT

system with Biermann battery effect, with the physical realism necessary to support

or refute the Magnetic Straightjacket hypothesis conclusively.

Knowing what the code cannot do, however, is as important as knowing what the

code can do. The explicit time integration of the magnetic diffusion is a known lim-

itation for the time step size, and effort is underway to implement the implicit time

integration for the magnetic diffusion. The growth of secondary small-wavelength

instabilities, however, may prove to be a more fundamental challenge. Since the Bier-

mann battery term is proportional to the gradients in electron temperature Te and

logarithm of electron number density lnne, we need to fully resolve the interface. At

the same time, small-wavelength instabilities tend to grow in simulations with high

resolution and low numerical material diffusion, as we can see in the pilot runs of

Chapter V and Chapter III. Implementation of another numerical scheme or devel-

opment of a new numerical scheme may therefore be necessary to model the full SNRT

system with Biermann battery effect, as such multidimensional RT-unstable systems

63



turn out to be a more difficult challenge for Eulerian codes than anticipated, once

coupled to a gradient-dependent term like Biermann battery. What we can say is that

we have uncovered additional criteria for such simulations, waiting future iterations

of CRASH or other code packages to fulfill.
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