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ABSTRACT

CRASH Simulation of Rayleigh-Taylor, Richtmyer-Meshkov, and Magnetic
Rayleigh-Taylor Instability

by
Jason Chuan-Chih Chou

Chair: R. Paul Drake

The research discussed in this thesis was motivated by the supernova Rayleigh-Taylor
(SNRT) experiments conducted in 2009. Originally designed as laboratory astro-
physics experiments relevant to the Rayleigh-Taylor Instability (RTI) at the He-H
interface during supernova explosion, these experiments exhibited unusual late-time
morphology development, characterized by the lack of mushroom caps and uniform
width of the spikes. In response, a “Magnetic Straitjacket” hypothesis was proposed to
explain the discrepancy, based on the Biermann Battery mechanism. In order to test
this hypothesis, we used the Center for Radiative Shock Hydrodynamics (CRASH)
code developed for a sufficiently similar problem and with the necessary capabilities.
We validated this alternative usage of the CRASH code with simulations of pure
hydrodynamic RTT and RMI and identified the suitable combinations of numerical
schemes and parameters. For the RTI, we compared the results of simulations to the
analytical solution for the early time behavior, examined the late-time morphology,
and tested the low-resolution limit for the RTT simulations using CRASH. For the

RMI, we modeled Collins and Jacobs’ experiment and compared the results of CRASH

x1



simulations to the experimental observations as well as to the simulation results of
several other code packages. Finally, we modeled the original SNRT experiments
with magnetohydrodynamics (MHD) and Biermann battery effect. Unfortunately,
the results were inconclusive due to insufficiently resolved simulations, limited by
the explicit time integration of the magnetic diffusion. Furthermore, pilot runs with
higher resolution indicated that simulations that fully resolve the gradients necessary
to calculate the Biermann battery effect may be susceptible to the development of
extraneous small-wavelength instabilities. Developments of implicit time integration
of the magnetic diffusion and possibly new numerical schemes are therefore necessary

for further progress, either with the CRASH code or other Eulerian code packages.
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CHAPTER I

Introduction

1.1 CFD and Laboratory Astrophysics

Riding on the exponential scaling of Moore’s Law, computation has risen rapidly
to prominence in scientific inquiry and is now widely referred to as the “third leg” of
science, in addition to theory and experiment. Computer simulation is now used to
explore virtually every time and spatial scale humans have contemplated, from lattice
quantum chromodynamics (QCD) [13], protein folding and dynamics [24], cellular
metabolism [14], Antarctic ice sheet evolution [44], global climate system [51], all the
way to the formation of the large-scale structure of the Universe [53].

Among the diverse applications of computation in science, Computational Fluid
Dynamics (CFD) is one of the oldest disciplines. In fact, the first attempt of CFD
predates the invention of modern programmable computer by decades and was carried
out by human computers [46]. The Courant-Friedrichs-Lewy (CFL) condition was
published in 1928 [8] and 3-dimensional calculations were first attempted in the 1960s,
but the high-resolution methods with flux limiters we use today were only made
possible in the 1970s by pioneers like Bram van Leer [3, 58, 30].

In general, systems considered by CFD are described by the Navier-Stokes equa-

tions. For systems in which viscosity is negligible, however, the conservation equations



can be simplified to the Euler equations:

dp

o TV () =0 (1.1a)
p(%+u-V>u+Vp:O (1.1b)
OF

E+V-(u(E+p)) =0, (1.1c)

where p is the density, p is the pressure, u is the velocity vector, and £ = pe + % pu? is
the total energy density per unit volume of the fluid. For completeness, we also need
an Equation of State (EOS) of the fluid in question to relate internal energy per unit
mass e to pressure: for example, p = p(7 — 1)e for ideal gas with adiabatic index ~.
Regardless of the particular EOS, however, the behavior of systems described by the
Euler equations does not depend on the time and spatial scale in the sense that they
are invariant under the transformation r — ar’, p — bp’, p — ¢p/, withu — \/gu’ and
t— a\/gt’ as the consequences. Experimentally, this means that we can study any
systems in the laboratory with appropriate scaling, as long as they are well-described
by the Euler equations. The same cannot be said when the viscosity necessitates the
full description by the Navier-Stokes equations, or when the magnetic field requires
the full magnetohydrodynamics (MHD) treatment [48].

Situations where such Euler similarity applies represent one of the best case sce-
narios for laboratory astrophysics, the discipline that studies astrophysical conditions
and dynamics by replicating them in the laboratory. Studies of the former demand
access to the same physical parameters found in astrophysical systems and include
examples such as measurement of the EOS of hydrogen/deuterium under the extreme
pressure of the interiors of Jupiter and Saturn [49], the opacity of the plasma in the
interior of the sun [1], and the rate of nuclear reaction in the main-sequence stars

[7]. Studies of the dynamics, on the other hand, require careful scaling of parame-



ters necessitated by the size of laboratory systems and include examples such as an
intergalactic plasma jet [16], layer mixing during a supernova explosion [11], and the
interactions between the resulting shock and interstellar clouds [29]. The experiments
relevant to this thesis replicate the mixing between the hydrogen layer and helium
layer during the supernova explosion of SN1987A, mainly due to Rayleigh-Taylor
Instability (RTT).

1.2 Hydrodynamic Instabilities and Supernovae

1.2.1 Rayleigh-Taylor Instability

RTT is an ubiquitous phenomenon, playing important roles both in our daily ex-
perience and under extreme conditions. The most intuitive, if somewhat restrictive
condition for RTI to occur is when two layers of fluid are set on top of each other
under constant gravity, with the heavy fluid with higher density ps on the top and
light fluid with density p; on the bottom. Notice that even though we know intu-
itively that such arrangement is implausible, nothing in the Euler equations precludes
it: as long as the lighter fluid provides sufficient hydraulic pressure, the heavy fluid
can be supported on the top. The problem rises when there is some perturbation in
the system, say the slightest variation in thickness of the heavy fluid. The light fluid
couldn’t compensate the additional weight of the the thicker part of the heavy fluid,
so it drops and grows even thicker. As the result, the arrangement quickly collapses
with positive feedback (Figure 1.1).

Since the effects of gravity and acceleration in the opposite direction are indis-
tinguishable, a more general condition for RTT is when light fluid is accelerated into
heavy fluid: for example, when the density gradient and pressure gradient are op-
posite to each other. This condition is more applicable in systems under extreme

pressure and temperature, where the effect of gravity is less relevant. A supernova



explosion, following gravitational collapse, is the most drastic example.

Core-collapse supernovae like SN1987A are produced by sufficiently massive stars
at their end of life. As the star burns through its lighter elements in nuclear reactions,
heavier elements accumulate in layers closer to the core, while the remaining hydro-
gen and helium form its outermost layers. This process cannot continue indefinitely,
however: the nucleus of iron is stable and cannot undergo any exothermic nuclear
reaction. Consequently, iron accumulates at the core, which does not provide energy
and pressure to counterbalance gravity any more. The core ultimately collapses upon
itself, and the rebound creates a powerful blast wave which propagates outwards —
an explosion in common language. As its defining feature, the shock front of the blast
wave is followed by a self-similar tail of decreasing pressure. An exploding supernova
therefore, with density gradient pointing inwards and pressure gradient pointing out-
wards, satisfies the condition for RTI (Figure 1.2). Motivated by observations of the
SN1987A remnant (Figure 1.3), the case for the role of RTI during supernovae is
further supported by computer simulation (Figure 1.4).

While RTT is mainly responsible for the initial layer mixing of supernovae, it is not
the only hydrodynamic instability at play. In particular, it’s preceded by Richtmyer-
Meshkov Instability (RMI), and followed by Kelvin-Helmholtz instability (KHI).

1.2.2 Richtmyer-Meshkov Instability

RMI occurs when a shockwave is refracted by an interface between two materials
(Figure 1.5). Since such an event applies an impulse, i.e. sudden acceleration, to the
interface, RMI can be intuitively considered as a variant of RTI, with a Dirac delta
function as the acceleration term. This “impulsive model”, proposed by Richtmyer
himself [47], turned out to be a very crude approximation and more recently refined
with nonlinear perturbation theory [60]. At the same time, the case with small per-

turbations in density, pressure and velocity has been solved with linearized Euler
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Figure 1.1: Illustration of RTI. The atmospheric pressure is more than enough to
support a 1m layer of water on the ceiling (A). But as long as the water
layer is not perfectly uniform and still (B), the thick part will grow thicker
and drop, while the air will float up against the part of the water layer
that is getting thinner and thinner (C). The extension of the heavy fluid
is called “spike” and the extension of the light fluid is called “bubble”.
Figure from [50].



Figure 1.2: Diagram of an exploding supernova. The inner layers are denser and
composed of elements with higher atomic number, and the shock front of
the blast wave is followed by a self-similar, subsonic tail with decreasing
pressure. The condition for RTT is therefore satisfied at the boundary
between layers. Figure from Carolyn C. Kuranz’s thesis, [36].

Figure 1.3: Remnant of SN1987A. Nicknamed “Cosmic Pearls”, the anisotropy is
clearly visible and explained by hydrodynamic instabilities. Photo taken
by Advanced Camera for Surveys on Hubble Telescope in December 2006.
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Figure 1.4: 2D simulation result of exploding supernova from [20], showing the density
distribution ¢ = 1500s after core bounce. The hydrogen bubbles are visible

at the outermost interface.

Figure 1.5: Comparison between experimental result and CRASH simulation for
RMI. The upper panel is a PLIF image taken by B.D. Collins & J.W.
Jacobs, 6 ms after the shock hit the air/SFg interface, in their experi-
ment using shock Mach number M=1.21 [6], and the lower panel is from
CRASH simulation.



equations both numerically [62] and analytically [17, 59], and the resulting discrep-
ancy with infinite relative error between the impulsive model and linearized solution
in the special case of reflected rarefaction wave has since cast doubt on the fundamen-
tal soundness of the impulsive model [59]. Other modern results from experiments,
numerical simulations, and theoretical models are similarly dogged with inconsisten-
cies, even for the simple case of sinusoidal perturbation activated by a planar shock
23, 9].

Since the self-similar, subsonic tail of the blast wave is preceded by the shock
front, the instability at the interface caused by blast wave can be more accurately
described as RMI followed by RTI. That said, RTI dominates the dynamics of the
interface at later time since its exponential growth rate overwhelms the quadratic

growth rate of RMI.

1.2.3 Kelvin-Helmholtz Instability

KHI occurs in flows with parallel velocity shear, with either homogeneous or het-
erogeneous fluid. It underlies familiar patterns of gas giants like Saturn and Jupiter,
where velocity shear naturally occurs due to the differential velocity from poles to
the equator in planetary rotation. Occasionally, clouds shaped by KHI, sometimes
referred to as “Kelvin-Helmholtz wave clouds” can be seen under favorable conditions
(Figure 1.6). At the late stage of RTT and RMI, the parallel velocity shear also rises
between developed bubbles and spikes, so KHI becomes relevant and generates the
familiar mushroom cap like the one in Figure 1.5.

KHI in the context of laboratory astrophysics constitutes the thesis work of Eric
C. Harding [21]. This thesis won’t discuss KHI in detail, however, since the major

motivation for this thesis work is the absence of KHI.



Figure 1.6: Kelvin-Helmholtz wave clouds over Monument, Colorado. Photo credit
Terry Robinson, from The Cloud Collector’s Reference.

1.3 Scaled Supernova Rayleigh-Taylor Instability

1.3.1 Supernova Rayleigh-Taylor (SNRT) Experiments

Based on the argument of Euler similarity [48, 26|, scaled experiments relevant to
the RTT during supernova have been performed since the late 1990s to explore a variety
of dynamics from simple RTT with planar interface [45, 27, 25], interface coupling [28],
RTI with spherical interface [11], to RTI with multimodal sinusoid perturbation [33,
35]. The most recent ones that replicate the RTT at the He-H interface in supernova
1987A were performed with the Omega Laser facility at Rochester in 2009, in which
the target consists of carbonized resorcinol formaldehyde (CRF) (essentially low-
density carbon) foam and polyimide (CyuH19O5N3), enclosed in a tube about 0.9 mm
in diameter. The lasers deposit about 4.5 x 10% J of energy in 1 ns on the polyimide
side, creating a blast wave which drives RMI and subsequently RTI at the interface
between materials, which are now ionized plasma (Figure 1.7).

In these experiments, the interface between materials is “seeded” in the sense
that well-defined 2D or 3D sinusoidal perturbations were machined onto the surface

of polyimide in contact with the CRF foam in order to have facilitated and defined



polyimide

Omega
laser beams

CRF foam
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Figure 1.7: Diagram of the scaled SNRT experiment at the Omega Laser facility in
2009. CHBr tracer strip, with density (1.42 g/cm?) close to that of poly-
imide (1.43 g/cm?) is used to assist diagnosis, since polyimide is almost
transparent to the x ray used in radiography. Figure from [34].
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Figure 1.8: Comparison between the radiograph from the SNRT experiment and the
simulation result from the FLASH code, courtesy of the FLASH Center
for Computational Science at University of Chicago. Notice that the
spikes in the experiment are of uniform width and lack the mushroom
cap typical of late-time RTI. Figure from [18].

initial growth of the instability. In the end, however, KHI does not follow RMI and
RTT for the ones with 3D sinusoidal perturbations as expected, and the spikes lack
the typical mushroom caps. Furthermore, subsequent computer simulation also failed
to reproduce such unusual morphology (Figure 1.8).

In response, a “Magnetic Straitjacket” hypothesis was proposed to explain the

discrepancy, based on Biermann Battery mechanism [18].
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1.3.2 Biermann Battery Mechanism, Magnetic Diffusion, and Magnetic

Convection

Assuming that the dynamics of the electrons is fast compared to the dynamics of

the fluid, ionized plasma without external magnetic field satisfies quasi-equilibrium:

E =-VP./en, (1.2)

where n, is the electron number density and e is the elementary charge. Applying

Faraday’s law

0B

2= - E 1.
oy V x (1.3)

and assuming ideal gas law P. = n.kgT. for free electrons, we get

%_]:’ = (kp/e)(VT. x VInn,) (14)

where kp is the Boltzman’s constant and 7, is the electron temperature. First pro-
posed by Ludwig Biermann in 1950 [2], this means that misaligned gradients of elec-
tron temperature and number density in ionized plasma can seed magnetic field where
it’s initially absent, and experimentally magnetic field due to Biermann battery has
been recently observed in a specifically designed RTT experiment during laser-ablation
by Manuel et al. [40]. In the context of the SNRT experiment, it was proposed that
longitudinal gradients along the bubble and spike in addition to the gradients across
the material interface may result in azimuthal magnetic field, whose magnetic pres-
sure (B?/2p0 in ST units, B?/87 in cgs units) keeps the spike in uniform width and
mushroom cap from forming (Figure 1.9).

In such an evolving system with magnetic field, however, we have to take other

terms into account. Firstly, the E field may not completely cancel out other forces

11
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Figure 1.9: Diagram of the “Magnetic Straitjacket” hypothesis. Based on results of
1D simulations, longitudinal gradients and gradients across the material
interface are proposed to produce azimuthal magnetic field, which acts
like rubber bands and restricts the growth of KHI. Figure from [18].

acting on the electrons given that plasma is not a perfect conductor, and the result-

ing current J obeys Ohm’s law E,csiqua = J/0, where o is the conductivity of the
plasma. Secondly, moving electrons in B field obey Lorentz force law. Although this
description is sufficient by itself, it is conceptually convenient to decompose the aver-
age velocity of the electrons into the current J/en. component and the bulk velocity

u of the plasma, and describe the force acting on the electrons due to the current J

and magnetic field B as the Hall effect. Consequently, in SI units

E = —VP,/en, + J/o — uxB +JxB/en, (1.5)
I —_ — I
Quasi-equilibrium with P.  Ohm’s law  Lorentz force Hall effect

In particular, the resistive term due to Ohm’s law results in diffusion of the magnetic
field. Under quasi-equilibrium assumption, we expect displacement current 60%—1;3 to

be insignificant, so Ampere’s law reads

SOJ:VXB//L(),

12



E=-VP./Jen.+V x B/pgoc —u x B+ (V x B) x B/pugen, (1.7)

Again with Faraday’s law,

OB
B -V x E

(1.8)
= —Vx(=VP./en.+V x B/puyoc —u x B+ (V x B) x B/ppen,)
The last term is taken into account in the Hall MHD framework but not the stan-
dard MHD. We can estimate its magnitude relative to the Lorentz force term by
replacing V with the inverse of the length scale of the system 1/L, and in our case
the component of the average velocity of the electrons attributed to the current is

negligible compared to the bulk velocity. Moreover, since magnetic field is divergence

free, V x (V x B) = V(V-BJ - V?B,

0B
— = (kp/e)(VT, x VInn,) — V’B/uo + V x (ux B) (1.9)
(725 L ] L 1 | I |

Biermann battery magnetic diffusion  magnetic convection

So the resistivity of the plasma gives us magnetic diffusion, with diffusion constant
n = 1/peo. The ratio of the magnitude of the magnetic convection term to the

magnitude of the magnetic diffusion term is the magnetic Reynolds’ number R,,

|V x (u x B)|
R, =
(V2B

(1.10)

which can be estimated by replacing V with 1/L and u with the typical velocity scale

of the system U:

R,, =UL/n (1.11)

If R,, < 1, the local magnetic field quickly diffuses away. Conversely if R,, > 1, the

13



local magnetic field persists within the flow of the plasma, as is the case for the exper-
iment by Manuel et al. Unfortunately in our system, R,, was estimated to be ~ 0.1
and dependent on the temperature, which is in turn dependent on resistive heating.
As the Biermann battery term and magnetic diffusion term jointly determine the
strength of the magnetic field, it is unclear whether the resulting magnetic pressure
would be significant enough to influence the overall dynamics of the SNRT problem.
Notice that although the SNRT experiments were intended to model the dynamics of
layer mixing during a supernova explosion, the potential complications of the B field
in the experiments do not necessarily apply to the dynamics of supernova. Indeed,
as an example of the breakdown of scale invariance, the gradients of the electron
temperature and number density are expected to be much smaller during the super-
nova layer mixing due to the vast spatial scale, so the resultant magnetic pressure is
not expected to be significant relative to the ram pressure pu? of the supersonic flow

[18, 48].

1.4 Summary of Chapters

The goal of my thesis is to model the SNRT problem through simulations to test
the Magnetic Straitjacket hypothesis. This introduction has stated the hypothesis we
would like to test in the context of CFD, laboratory astrophysics, and hydrodynamic
instabilities relevant to supernovae. In Chapter II, we introduce the CRASH code
package and numerical methods used in this thesis. In Chapter I1I, we present the
results of RTT simulations using CRASH. We have examined both the early-time and
late-time behavior, and tested the low resolution limit of CRASH RTT simulations.
The work for Chapter III was published in the journal High-Energy-Density Physics
[5]. In Chapter IV, we present the work of CRASH RMI simulations, in comparison
with the experimental data and the results of other code packages. With the code

tested for such instabilities, Chapter V shows the results of 2D/3D CRASH simu-
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Figure 1.10: Snapshot of the electron temperature T, at 7 ns, 2D CRASH simulation
for the SNRT problem. Although the direction of the gradient across
the material interface is as predicted, a longitudinal gradient within the
(blue) spike, anticipated from 1D simulations, is notably absent at this
time and on this scale of color mapping.



lations for the SNRT problem (Figure 1.10). We then draw the conclusions we can

make and point out some of the potential future directions in Chapter VI.
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CHAPTER II

CRASH Code Package and Numerical Methods

2.1 Background

The CRASH code was developed with the support of the Predictive Science Aca-
demic Alliance Program (PSAAP). Based on the Block-Adaptive Tree Solarwind Roe
Upwind Scheme (BATS-R-US) code [55], the CRASH code incorporates additional
capacities in order to model the radiative shock tube experiments performed at the
Omega Laser facility (Figure 2.1 and 2.2) [56]. The decision to use the CRASH code
for the SNRT problem was inspired by both its similarity to the originally intended
problem and my earlier involvement in the main CRASH program [22, 41]. We will
briefly describe the numerical methods and level set method used for this thesis and
additional capabilities used for Chapter V in the following sections, and refer the

readers to the bibliography for further details.

2.2 Numerical Methods

For this thesis, we only used CRASH’s implementation of the HLLE scheme [15]
and Godunov scheme [19] with an exact Riemann solver, both second order in space
and time. An explicit 2-stage Runge-Kutta scheme with Courant-Friedrichs-Lewy

(CFL) number 0.8 is used for time integration, and the flux is calculated with recon-
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Base experiment

Figure 2.1: Diagram of the radiative shock tube experiment. 10 laser beams with a
total energy of ~ 3.8 kJ irradiate a 20-pm-thick beryllium disk, and the
ablated Be in turn drives the primary shock through the shock tube filed
with Xe. The ablated Be loses significant energy due to thermal radiation,
which passes through the optically-thin pre-shock Xe, preheats the plastic
wall, and induces secondary wall shock. The plastic wall consists of the
same material as the disk used in the SNRT experiments, polyimide.

Figure from [57].

Shock Tube Wall

iy s =
- e

AN : o
KKinkWaII Shock
B

o DN RSP SRR
Primary ShQQ;..‘?‘. .
y I eyt

=

p /V‘\.Igil.'_Shock

M

-

Figure 2.2: Experimental observation of the radiative shock tube experiment. Both
the primary shock and wall shock are clearly visible. The gold grid is for
instrument calibration, and the kink results from the interactions between
the primary shock and the wall shock. Figure from [10].



structed linear slopes of the state variables within cells, using generalized monotonized
central limiter or generalized Korens limiter [31]. A flux limiter is required for these
Riemann solvers to extrapolate the state variable U from the left and right cell centers

to the cell face at i + 1/2 for these schemes as

7

1—
L
U-+1/2 - Uz + EAUZ,

1_
Uty = Uisr — QAU¢+17

where AUj is the limited slope in cell i. For the generalized monotonized central (mc)

limiter, AU; is given by

_ Uiy1 — Ui
AUZ = minmod |:/8(Uz+1 — UZ), ﬁ(UZ - Ui—1)7 ¥:|

2

The limited slopes in the left and right extrapolations are constructed asymmetrically

for the generalized Koren’s (mc3) limiter as

— 2U; 1 — U; — U;_
ALUi = minmod |:B(Uz+1 — UZ), /B(UvZ — Ui—l)) + 1:|

3

A 7 — U; — 2 i—
A"U; = minmod {5(Ui+1 —U;), B(U; = Ui—1), Uiss = Ui = 20 1}

3

In both cases, § is an adjustable parameter which controls the amount of numerical

dissipation with range 1.0 < g < 2.0.

2.3 Level Sets and Material Identification

For the simulations presented in this thesis, level set method is used to distinguish
the identity of the fluids. For example, two level set functions are set up such that
Initially dg. = 1 and dx. = —1 where the heavy fluid is present, and dg, = —1

and dx. = 1 where the light fluid is present for the RTI simulations. The level set
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functions d,,, are then advected along with the state variables according to the simple

advection equation [56]

— +V-(dyu) =4d,V-u

where m is one of the two arbitrary labels “Be” and “Xe”, conveniently chosen since
they are two of the elements used in the main CRASH program. Up to 5 different
fluids (therefore 5 level set functions) can be used simultaneously, as is the case for
the 2D SNRT simulations presented in Chapter V. The identity of the fluid in a cell
is then determined by its most positive level set function through the winner-take-all

algorithm. Consequently, a cell never contains two different fluids at the same time.

2.4 Radiation Transport

Radiation transport in CRASH is modeled as flux-limited gray or multi-group dif-
fusion [56]. For the multi-group diffusion, the total radiation energy density is divided

into radiation energy densities for intervals of photon frequencies, [vg_1/2, Vg41/2):

Vgt+1/2
E,= / E,dv (2.1)

Vg_1/2
where F, is the spectral energy density, ¢ = 1,...,G, and G denotes the num-
ber of groups. The groups are logarithmically distributed in frequency such that
In(vg41/2) — In(vy_1/2) is constant. The radiation energy density in each group then

evolves according to the diffusion equation
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advection
Yor1/2 Q(vE,
+ (w—l)v-u(Eg—/ (81/ )du)

Vg_1/2
L 1

compression
= |v ’ (DQVE9)|+ Iag(Bg - Eg)l ,
diffusion emission - absorption

Dg = C/(3,{/Rg)7

O'g = Clipg (22)

where 7, = 4/3 is the adiabatic index of the photon gas, ¢ is the speed of light, B,
is the energy flux of the blackbody radiation within the radiation group g, kg, and
kp, are the Rosseland mean opacity and Planck mean opacity for the radiation group
g, respectively. When only one radiation group is used with radiation energy density
E,. = fooo E,dv, the treatment above reduces to single group approximation, usually

referred to as gray radiation diffusion:

0E,
ot

+V-(EBu)+ (v, —1)ENV -u=V-(D,VE,) +0,(B—-E,) (2.3)

where B = aT? is the total energy flux of the blackbody radiation with Stefan-
Boltzmann constant a = %, given the electron temperature 7T..

As it is, the radiation diffusion flux F, = —D,V E, may exceed the free-streaming
limit cF, if the Rosseland mean opacity is sufficiently low. The square-root flux

limiter [42] is therefore employed in CRASH which modifies the diffusion constant D,

as

D, = (2.4)
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in order to keep the radiation diffusion from transporting energy faster than light.
The capacity of radiation transport is central to the main CRASH program. Al-
though radiation transport is not expected to be significant for the dynamics of the
instability for the SNRT problem, we found that the shock velocity is sensitive to
the presence of radiation transport, presumably due to the energy loss during laser
ablation. Consequently, the SNRT simulations presented in Chapter V employ multi-

group radiation transport.

2.5 Electron Heat Conduction

The implementation of electron heat conduction in CRASH is based on the clas-

sical Spitzer-Harm formula, where the heat flux due to the electrons is given by

F = —OVT,,

Ce = Xxpop (2.5)

where p is the mass density of the plasma, ¢, is the specific heat at constant pressure,

and Yy is the heat diffusion constant whose dimension is the expected length? time™.

In units typical for laboratory astrophysics [12],

x(em?s™) = 3.3 x 1073 _[ (V)P —
InAZ(Z +1)p(g cm—3)

(2.6)

where A is the average atomic mass, Z is the average ionization, and InA is the
Coulomb logarithm. This collisional model, however, gives unphysical result when
the scale of the temperature gradient 7./|VT.| is no longer much larger than the
mean free path of the electrons. At the free-streaming limit, the magnitude of the

electron heat flux is instead given by Frgs = n.kgTo.vm, vin = \/kpT./me, m. being
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the mass of the electron. The final form of the electron heat flux is therefore fux-

limited as follows [56], similar to the approach taken for the radiation transport:

B : [Frs
F = —min (C’e, VT, VT, (2.7)

where the flux limiter f is a tunable numerical parameter. f is typically set to be

0.06 for the main CRASH program and is unchanged for our SNRT simulations.

2.6 EOS and Opacity

Although the CRASH code is completed with internal EOS solvers and opacity
models for the materials used in the main CRASH program [52], the properties of the
plasma necessary for the simulation are not calculated on the fly for efficiency reason.
Instead, the values for these properties are tabulated beforehand, and the CRASH
code looks them up from the table in the course of simulation. The lookup arguments
for the EOS tables are the logarithms of electron temperature and atomic number
density (log T, log n,), whereas the lookup arguments for the specific Rosseland mean
opacity sg,/p and specific Planck mean opacity xp,/p for a given radiation group g
are the logarithms of mass density and electron temperature (log p,logT.) [56].

Another advantage of this tabular approach is the flexibility to use alternative
EOS and opacity models. In our case, the polyimide EOS table given by the CRASH
internal solver turned out to be ill-suited for the SNRT problem, since the average
ionization Z is not monotonic with respect to 7. when the atomic number density
is above ~ 10*” m™3 (Figure 2.3). Early attempts of SNRT simulations using the
CRASH EOS table for polyimide were consequently affected by oscillations in T,
since the electron temperature is not uniquely determined by the pressure and den-
sity (Figure 2.4). This issue is resolved after switching to the EOS table given by

PROPACEOS, whose Z is always monotonic with respect to T, (Figure 2.5).
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Figure 2.3: Average ionization Z of the polyimide plasma given by the CRASH in-
ternal EOS solver as a function of log T,.(eV) and logn,(m™2), one of the
EOS properties whose values are tabulated.

Figure 2.4: T, (keV) snapshot of the center spike at t = 5 ns, 2D SNRT simulation
using the CRASH EOS table for polyimide. The electron temperature 7,
of the polyimide plasma oscillates between the two possible solutions.
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Figure 2.5: Average ionization Z of the polyimide plasma given by PROPACEOS as
a function of log T, (eV) and log n,(m™3).



2.7 Laser Energy Deposition Library

Lastly but crucially, a laser package was added to the CRASH code, which mod-
els the transport and deposition of the laser energy. The former is approximated
by a ray-tracing algorithm based on geometric optics, while the later primarily oc-
curs through inverse Bremsstrahlung physically and is modeled exclusively as inverse
Bremsstrahlung along the trajectory of the rays [57]. We used this laser package
for the SNRT simulations after adopting it for our laser configuration and polyimide
average atomic mass A, = 9.80326205 (instead of 9.0121823 for the Beryllium used

in the main CRASH program).
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CHAPTER III

Rayleigh-Taylor Instability Simulations with
CRASH

3.1 Introduction

As the first step towards modeling the unusual morphology observed in SNRT
experiments [18], the results of RTI simulations with CRASH are reported in this
chapter. We performed simple hydrodynamics simulation on a fixed 2D Cartesian
grid as we examined three different regimes (linear early-time behavior, late-time
morphology, and low-resolution limit) of the physical and computational parameter
space and compared the effects of different solvers, numerical parameters, and grid

resolutions with respect to the analytical result and established expectations.

3.2 Linear Early-time Behavior

In the simplest case with discontinuous interface and a 2D single-mode perturba-
tion that is small in amplitude relative to the wavelength A, linear theory predicts

that the mixing zone width of the RTI grows exponentially as

width oc exp(~t),
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N = /Agk,A:pQ_pl

p2 + p1

where A is the Atwood number, ¢ is the gravitational acceleration, and k is the
wavenumber 27 /). For this study, we nominally set ps = 1000 kg/m3, p; = 500
kg/m? A =1/3 g =9806.65 m/s* and A = 0.0002 m.

The simulation is set in a 2D square box with length equal to A and gravity
pointing to the left. The boundary condition is periodic, except at the left and
right edges where reflective boundary condition is necessary to support and isolate
the fluids. The minimum pressure of the system is p,,i, = 10° Pa and the pressure
increases along the direction of gravity in order to maintain hydrostatic equilibrium.
Both light and heavy fluids are set to follow the ideal gas equation of state with
v = 5/3, but they are nonetheless labeled with different material indices such that
their motion can be tracked accurately with the level set method implemented in
CRASH. With the heavy fluid conveniently labeled as “Be”, the mixing zone width is
defined as the horizontal distance from the tip of the spike to the top of the bubble,
which are in turn defined as the leftmost extent of the heavy fluid (where dg, > 0) and
the rightmost extent of the light fluid (where dg. < 0). The instability is initialized

with velocity field

1 (z— Tinter face ?
uz(z,y) = cos(ky) X exp (—5 (Tte‘lf> ) X Uit

which perturbs the interface in a sinusoidal pattern but vanishes rapidly away from the
interface. Here e is the the base of the natural logarithm and u;,; is one thousandth

of the speed of sound at the right edge:

P2

Winit = 0.001c = 0.001 x

~ 0.0129 m/s

Since the behavior of the system without viscosity does not depend on the length

scale, we can simply express the mixing zone width as a fraction of the wavelength
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Figure 3.1: Mixing zone width vs. time, HLLE scheme, mc limiter, g = 2.0. Darker
color indicates higher resolution as number of cells per wavelength, which
ranges from 2° to 21°. The black line marks the linearized analytical result
with slope = 1.

and use the dimensionless time ¢ to plot the logarithm of the mixing zone width

over time. Figure 3.1 depicts the result for the HLLE scheme with § = 2.0, while

Figure 3.2 depicts the result for the Godunov scheme with 5 = 1.0 (mc limiter is

used for both cases). Lines with darker color indicate higher resolution as number of

cells per wavelength, and the black line marks the linearized analytical result, which
is simply a straight line with slope 1 in the semi-log plot with normalized units.
After the instability overcomes the numerical dissipation, its growth rate follows
the linearized analytical result. It deviates again later in time for high-resolution
runs, however, especially in the case of the Godunov scheme with the exact Riemann
solver. Examination of the level-set plots of the heavy fluid “Be” at the end of the
simulation with the highest resolution (Figure 3.3 and 3.4) reveals that this is due

to the spontaneous growth of smaller-wavelength instabilities, whose presence is un-
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Figure 3.2: Mixing zone width vs. time, Godunov scheme, mc limiter, § = 1.0 with
resolution from 27 to 2'°. The black line marks the linearized analytical
result with slope = 1.
avoidable, as the initial perturbation can’t be perfectly sinusoidal on a Cartesian grid,
and the numerical error will grow exponentially due to the very nature of the sys-
tem. Since small-wavelength instabilities grow faster in this regime without physical
viscosity, they corrupt the growth of the intended long-wavelength instability after
several natural time units. In the extreme case of Godunov scheme with 1024 cells
per wavelength, we can see that small-wavelength instabilities already developed a
complicated pattern of spikes and bubbles with fully developed mushroom caps, while

the long-wavelength instability is still in the linear regime.

3.3 Late-time Morphology

Although the early-time behavior has the advantage of having a linearized analyt-
ical result that can be used for reference, the late-time morphology is perhaps more

relevant for our purpose. For these runs, we used a moderate single-mode geome-
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Figure 3.3: Level-set plot at the end of the simulation (¢ = 6 natural time unit), HLLE
scheme, 1024 cells per wavelength. Smaller-wavelength instabilities out-
pace and corrupt the growth of the intended long-wavelength instability.
Gravity points to the left, and the spike grows along the upper and lower
edges of the grid.

Figure 3.4: Level-set plot at the end of the simulation (£ = 6 natural time unit), Go-
dunov scheme, 1024 cells per wavelength. Small-wavelength instabilities
are even more prominent in this case because the exact Riemann solver
has less numerical dissipation.



Res =128

Beta=1.0

Beta=15

Figure 3.5: Level-set morphology grid for the HLLE scheme. The resolution as num-
ber of cells per wavelength is fixed for each column, and the value of /3 is
fixed for each row.

try perturbation instead of a velocity perturbation: the interface is set up as a sine
wave with amplitude = \/2¢?, with the rest of the parameters the same. Figure 3.5
and 3.6 depict the result after 5 natural time units as two 3 x 3 morphology grids
for the HLLE scheme and Godunov scheme, respectively. The resolution as number
of cells per wavelength is fixed for each column and ranges from 32 to 128, and the
value of [ is fixed for each row and ranges from 1.0 to 2.0.

Figure 3.5 shows that the growth of the mushroom cap (Res = 32 with § = 1.5 ~
2.0, Res = 64 with § = 1.0), and in the extreme case the instability itself (Res = 32
with 5 = 1.0), can be impeded for the HLLE scheme. While mushroom caps can be
seen in all of the rest of the runs, only the two runs with the least numerical diffusion
(Res = 128 with = 1.5 ~ 2.0) show the roll up. The Godunov scheme (Figure 3.6)
has the opposite problem. The high-resolution and high-beta runs generate various
unphysical artifacts which we attribute to insufficient numerical viscosity. A dimple
at the top of the bubble is clearly visible in runs Res = 64 with f = 1.5 ~ 2.0, and

all of the runs with Res = 128 develop three layers of KHI. When the progress of
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Figure 3.6: Level-set morphology grid for the Godunov scheme. The resolution as
number of cells per wavelength is fixed for each column, and the value of
B is fixed for each row.

the instability growth is examined in detail, e.g., the Res = 128 with = 2.0 case in

Figure 3.7, we can see that this is simply another manifestation of the corruption due

to the extraneous small-scale features. In fact, even more features were generated by

the small-wavelength RTI and KHI, but several of them merged with each other, and

only three layers of KHI survived.

3.4 Low-resolution Limit

We varied the amplitude of the geometry perturbation from 0.025 to 0.2, 5 from
1.0 to 2.0, resolution as number of cells per wavelength = 8,16, and 24, Atwood
number /10 ~ /2, and tested both the HLLE scheme and Godunov scheme with both
mc and mec3 limiter. It turned out that the growth of the instability with the Godunov
scheme is robust against these variations of parameters, but the more diffusive HLLE
scheme requires the resolution to be > 16 for the instability to grow (Table 3.1).

Some of the exploratory simulation runs indicate that the growth of the instability

is more robust when the interface is perturbed by a small velocity field instead. This
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Figure 3.7: Detailed progress of the morphology evolution for the Godunov scheme,
with configuration corresponding to the lower-right corner of the mor-
phology grid (Res = 128 with § = 2.0). Snapshots were taken at
t=0,1,2,3,4,5 natural time units.



HLLE | Res=8 Res=16 Res=24
5=1.0
6=15
5 =2.0

Table 3.1: Results of CRASH RTTI simulations with HLLE scheme at low-resolution
limit

is not unexpected: the density gradient in geometry perturbation diffuses away with

time in HLLE scheme, but the velocity perturbation is protected by the conservation

of momentum and energy.

3.5 Conclusions

We found that CRASH is capable of reproducing reasonable behavior in RTT sim-
ulation, despite the fact that the original code base was neither designed nor tested
for such hydrodynamic instability. For the early-time behavior, the growth rate con-
verges to the analytical result, although the lack of physical viscosity model allows
high resolution runs to be complicated by the smaller-wavelength, secondary insta-
bilities. Similarly, CRASH generates expected late-time morphology for RTI, given
the appropriate choice of numerical scheme, resolution, and limiter beta. Finally, the
low-resolution limit for RTI growth in CRASH’s numerical schemes can provide a
lower bound for the required resolution in simulations where RTT is expected to play

an important role.
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CHAPTER IV

Richtmyer-Meshkov Instability Simulations with
CRASH And Cross-Code Comparison

4.1 Introduction

As the next step towards SNRT instability simulation [18], we used CRASH to
model the mach number M, = 1.21 case of Collins and Jacobs” RMI experiment
[6] and compared the result with those of other code packages including DAFNA
(hydrodynamic AMR code developed in Nuclear Research Center NEGEV see [39, 61]
for its applications) and HUM3D (code developed by University of Michigan professor
Eric Johnsen’s group). Collins and Jacobs’ result is chosen as the experiment to model
because it’s frequently used as the yardstick for RMI simulations with various code

packages and numerical methods [37, 32, 38] available for comparison.

4.2 Physical Parameters of The Experiment

Instead of the traditional method of setting up the interface between two fluids
with membrane for RMI experiment, Collins and Jacobs’ setup maintains the interface
by flow stagnation. The two fluids, SFg and air-acetone mixture, are sent from the
opposite ends of the shocktube and escape through slots at the designated location,

forming a interface at the stagnation point flow. The interface is then seeded with

36



(@) —

-«— Driver

. - - Diaphragm
Air + = phrag
acetone vapour

Pivot
-«+——— Pressure
transducers
Stepper motor /
Interface -
Slot
Test section —— =
SFg—=

= L
== -g— | CNSCS

Laser -+—— Mirror

37

(b)

Figure 4.1: Setup of Collins and Jacobs’ Experiment. The low-density air-acetone
mixture and high-density SFy are sent from the top and bottom of the
shocktube, respectively (a). The two fluids reach stagnation point flow at
the designated location and are allowed to escape, forming an interface
(b). Sinusoidal perturbation is then created at the interface by inducing
a standing wave with a stepper motor. Figure from [6].

a sinusoidal perturbation by vibrations created by a stepper motor (Figure 4.1). By

avoiding the use of a membrane in the setup, this experiment avoids its potential

complications in instability growth and diagnosis. A diaphragm from the air-acetone
side of the shocktube is then punctured to generate a shock, which initializes the RMI

when it reaches the perturbed interface at t = 0. The instability develops until ¢ ~ 6

ms, when the reflected expansion wave and incident shock reaccelerate the interface.

The system is modeled as a 2D rectangle shocktube with parameters summarized

in Table 4.1: wavelength (\), wavenumber (k), and single-mode sinusoidal pertur-




X (m) 0.0594 | Zonterface (m) | 0.03 | A 0.605
k (1/m) 105.77 | treshock (ms) | 6.6 P (Pascal) 95600
a (m) 0.00183 | ; shock (m/s) | 370.98 | My, (g/mol) | 34.76
Lz (m) 0.78 Ma 1.21 Mgrg (g/mol) | 146.05
Ly (m) 0.0594 | pair (kg/m?) | 1.351 | Yair 1.276
Tshoek (m) | 0.01 psre (kg/m?) | 5.494 | vsre 1.093

Table 4.1: Parameters of Collins and Jacobs’ experiment

bation amplitude (a, half of the peak-to-valley distance) of the perturbation at the
interface, length (Lz) and width (Ly) of the shocktube, initial position of the shock
(Tshock) and interface (Zinterface), time of the re-shock (fresnock) When the reflected
shock reaccelerates the interface relative to the start of RMI (¢ = 0), the velocity
(Ui shock) and Mach number (Ma) of the incident shock, the pre-shock densities of
air-acetone mixture (p,i-) and SFg (psre), pre-shock Atwood number (A), pre-shock
pressure (P), and average molecular weights of air-acetone mixture (M,;,) and SFg
(Mgpg). Air-acetone mixture and SFg are modeled as ideal gamma law gases with
Yair = 1.276 [37] and ysp¢ = 1.093. Note that not all simulations use all of these

parameters: for example, molecular weights are ignored in CRASH simulations.

4.3 Simulation Setup and Numerical Parameters

In simulations, the top of the shocktube x = 0 through which the shockwave is
sustained by the driver is modeled with inflow (non-reflective) boundary condition.
All the other boundaries of the 2D rectangle shocktube are modeled with reflective
(wall) boundary condition.

The CRASH simulations employed the HLLE scheme [15] and generalized Ko-
ren’s limiter [31] with § = 2.0, as described in Section 2.2. DAFNA simulations
employed the HLLC scheme [54], and HUM3D switches between a central scheme
and a shock-capturing scheme [43]. We performed the simulations across all three

code packages with three predetermined resolutions: 64, 128, and 256 cells per wave-
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length (PWL). For the CRASH simulations, the same level set method for the RTI
simulations (Sec. 2.2) is employed again to enable accurate tracking of the material
and measurement of the instability amplitude, defined as half of the vertical distance
between the uppermost extent of the SFg and lowermost extent of the air-acetone

mixture, in the experiment frame.

4.4 Results

Morphologies of the instability given by the CRASH simulations are plotted and
compared to the planar laser-induced fluorescence (PLIF) image from the experiment
at t = 6 ms in Figure 4.2, from which we can see that the instability amplitude and
morphology converge to the experimental result as we increase the resolution. Com-
pared to Figure 3.5, however, we can see that the results of the CRASH simulations of
the Jacobs experiment are more affected by numerical material diffusion even though
the post-shock dynamics are similar to those of the RTI morphology runs. Qualita-
tively, the morphologies given by the CRASH simulations of the Jacobs experiment
resemble those of the RTI morphology runs with the same numerical scheme and
£ but half of the resolution. Given that the numerical material diffusion is limited
by the sound speed and that it’s effect on the dynamics of the system is relative
to the wavelength, we can calculate the time scale of numerical diffusion’s effect on
the system 7 = A/c. For the CRASH RTI morphology runs, 7 ~ 27% (m) %p;;%
(m/s) ~ 10.95 ms and the morphologies of the instability are observed at ~ 0.045
7. For the CRASH simulations of the Jacobs experiment, however, post-shock sound
speed of the light fluid gives us 7 ~ 0.0594 (m) /4/7air " 2532 (m/s) ~ 0.1887 ms,
so the morphologies are observed at ~ 31.79 7. We can’t compare these two sets of
simulations quantitatively without further knowledge since the width of the diffused

interface doesn’t grow linearly with time, but the drastic difference in observation

time scaled by 7 explains the different extent of the effect due to numerical material
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Figure 4.2: From top to bottom: SFg level set plot of the instability at ¢ = 6 ms
given by the CRASH simulation with resolution = 64, 128, and 256 cells
per wavelength respectively. The position along the x-axis is in the unit
of meters due to internal normalization. The insets are the PLIF image
from the experiment [6] taken at ¢ = 6.006 ms for comparison.

diffusion.

In comparison, morphologies of the instability given by DAFNA are plotted and
compared to the experiment in Figure 4.3. We can see that the HLLC scheme used by
DAFNA is less affected by numerical material diffusion, but consequently with more
visible discretization error. The curl-up of the mushroom cap appears more irregular
than the experimental image, but no physical noise is present in the simulations.

Finally, instability amplitude over time given by CRASH, DAFNA, and HUM3D
is plotted and compared to the experiment in Figure 4.5. The results for RMI prior
to the re-shock seem to converge for all three code packages, although CRASH does
require higher resolution due to its higher numerical material diffusivity. Given the
spread of the experimental data points, the numerical results also seem to be consis-
tent with the experiment. No agreement is achieved for instability amplitude after
re-shock, however, due to the presence of 3D-turbulence in the experiment. The sim-

ulations have neither the necessary dimensionality nor the numerical model to handle
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Figure 4.3: From top to bottom: density plot of the instability at ¢ = 6 ms given
by the DAFNA simulation with resolution = 64, 128, and 256 cells per
wavelength respectively. The position along the x-axis is given by the unit
of centimeters due to internal normalization. The insets are the PLIF
image from the experiment [6] taken at ¢t = 6.006 ms for comparison.

the turbulence and its energy cascade, as illustrated by Figure 4.4.

Overall, CRASH proves able to accurately model the linear growth phase of RTI
and the experimentally observed RMI, given sufficient resolution. The necessary
resolution is determined by the effect of numerical material diffusion, which is in
turn determined by the speed of sound, size of the system, and the physical time of
observation given the same numerical scheme and similar instabilities like RTI and

RMI.
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Figure 4.4: Left: PLIF image from the experiment at ¢ = 9.021 ms [6] Right: SFg
level set plot at ¢ = 9 ms from the CRASH simulation with 256 cells per
wavelength. Turbulence is deposited by the reflected shock at t,csnock ~
6.6 ms, a process not properly modeled by the simulations.
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CHAPTER V

CRASH Simulations of Rayleigh-Taylor Instability

with Biermann Battery Effect

5.1 Introduction

Having shown that we can use CRASH to obtain reasonable results for both RTI
and RMI simulations, we are finally ready to use CRASH’s implementation of the
Biermann battery term and magnetic diffusion term for the full SNRT simulations.
We started with the relevant verification tests of the CRASH nightly test suite to
test the Biermann battery implementation’s behavior under semi-discontinuous initial
conditions, and then performed the 2D /3D simulations of the SNRT instability with
Biermann battery effect. We will conclude with a discussion of the discrepancy and

limitations of the code.

5.2 Biermann Battery and Magnetic Diffusion Term with

Continuous Setup

Both the Biermann battery term and the magnetic diffusion term due to resistivity
are covered in the CRASH nightly test suit. For the Biermann battery test, the

simulation domain is set up as a 2D 20 x 20 m box with periodic boundary condition
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such that the electron pressure varies sinusoidally in the y-direction between 0.9 ~ 1.1
Pa, and the density varies sinusoidally between 0.9 ~ 1.1 kg/m? in the x-direction.
The total pressure is kept constant at 2 Pa to keep the fluid stationary, and the
electron number density n. is artificially set to be proportional to the mass density
p with the ratio p/n. ~ 1.7960634 x 10722 kg. Consequently, the generated B, is
antisymmetric with respect to both the central x-axis and y-axis and can be solved
analytically with elementary functions. The test is set up with base grid resolutions
10 x 10, 20 x 20, and 40 x 40 cells for the whole simulation domain, but the 4 x
4 m square in the center is refined for one level (therefore contains 4 x 4, 8 x 8§,
and 16 x 16 cells instead, respectively) to make sure that the implementation doesn’t
break when adaptive mesh refinement (AMR) is on. All of these tests are run with
CRASH’s implementation of the HLLE scheme [15] and generalized Korens limiter
[31] with 8 = 1.5 as described in Section 2.2.

Figure 5.1 shows the B, calculated by the code and the error compared to the
analytical solution. Although some noise is produced at the boundary of grid refine-
ment, overall the calculated B, converged to the analytical solution. In particular,
first-order convergence is achieved for the maximum (L., distance) error and second-
order convergence is achieved for the L; distance between the calculated result and
the analytical result after the first time step (Figure 5.2). The result at the final
time step is more affected by the grid refinement boundary, but empirically the total
relative error (> |B. simulation — Bz.anatyticl/ Y |Bz.anaiytic]) converges with a rate that
is between first and second order (Figure 5.3).

For the resistivity test, the simulation domain is similarly set up as a 2D 10 x
10 m box with periodic boundary condition and one level of grid refinement in the
2 x 2 m center square. The density, electron pressure, and total pressure are set to
be constant at 1 kg/m3, 1 Pa, and 2 Pa, respectively. B, and B, are set to vary

sinusoidally in the y-direction (Figure 5.4) between 0.5 internal normalization unit,
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Figure 5.1: B, calculated with increasing resolution from top to bottom and the error
compared to the analytical solution for the Biermann battery test. The
magnetic field is in CRASH code’s internal normalization unit, which is
~ 0.00112 T here. Notice the noise at the refinement boundary.
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Figure 5.2: log-log graph of the point-wise relative error vs. grid resolution after the
first time step for the Biermann battery test.
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Figure 5.3: log-log graph of the total relative error (> |B. simulation
B. anaiytic|/ D |Bzanaiytic]) at the final time step for the Biermann
battery test.
or ~ 5.6 x 107* T. With origin set at the center, the phases of B, and B, are offset by
90° such that B, o cos(ky) and B, oc —sin(ky). The resistivity is set to be constant
such that the magnetic diffusion constant n = 1/upoc = 20 m?/s. In addition, the
fluid in this test is given an initial velocity in the x-direction u, = 1 m/s to test the
effect of advection and induction. This test also includes the effect of Joule heating,
and again runs with base grid resolutions 10 x 10, 20 x 20, and 40 x 40 cells with
the HLLE scheme [15] and generalized Korens limiter [31] with 8 = 1.5. Point-wise
second-order convergence is achieved for the L; distance from the analytical solution

after the first time step (Figure 5.5).

5.3 Biermann Battery Term with Semi-continuous Setup

The expression for the Biermann battery term

0B
i (kp/e)(VT, x Vinn,) (1.4)

breaks down in the presence of discontinuity, so quantitative validation isn’t possible
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Figure 5.4: B,, B, electron pressure P. due to Joule heating and the associated error
with increasing resolution from left to right for the resistivity test. The
noise at the refinement boundary vanishes as resolution increases.
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Figure 5.5: log-log graph of the point-wise relative error (L; distance) vs. grid reso-
lution after the first time step for the resistivity test.



for a semi-continuous setup. However, since effective discontinuity at the length scale
of typical grid resolution is ubiquitous for hydrodynamic and MHD simulations, we
would like to ensure reasonable behavior in such case.

2D cylindrical geometry is used for this test, with periodic boundary condition in
the axial direction and floating (outflow) boundary condition in the radial direction.
The length and radius of the 2D simulation domain are 100 m and 25 m, respectively.
The standard internal tabular EOS and opacity of Beryllium (Be) in the CRASH
code is used for all of the fluid in this test, and the center column of the simulation
domain (with radius r = 7.5 m) is set to have density varying sinusoidally between
2 ~ 4 g/cc in the x-direction (Figure 5.6). T, is set to be 80 eV when density is 3
g/cc, and varies to keep the pressure constant in the center column of the simulation
domain. The rest of the simulation domain is set to have density 0.2 g/cc and T, =
200 eV. Magnetic diffusion is turned off for this test, and the pressure jump between
them is not expected to be relevant at the tested time scale. This test runs with
resolutions 64 x 16, 128 x 32, 256 x 64, and 512 x 128 cells, with the standard
CRASH heat conduction and multigroup diffusion for radiation transport.

The exact magnitude of the %—]? is determined by the stencil of the implementation,
but as we can see from Figure 5.7 the initial growth rate approximately doubles as
we double the resolution as expected. Afterwards, the heat conduction model and

inherent diffusion of the HLLE scheme take over and reduces the cross gradients and

oB

5+ Overall, the implementation of the Biermann battery term is both robust and

accurate under applicable circumstances.

5.4 2D SNRT Simulation

With the relevant terms tested, we now turn to the original problem [34]. Due to
the constraint of CPU flops and the explicit time integration of the resistivity term

(explained in further detail in the next section), we focus mostly on a 2D version of
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max(B,) (T)

4
time (s) le—12

Figure 5.7: max(By) over time for the semi-discontinuous Biermann battery test with

doubling resolutions. Higher resolutions are indicated by darker blue.
the original experiment with cylindrical geometry. Most of the experimental setup
is accurately modeled, except the necessitated change of the perturbation geometry
from the original egg-crate pattern to a concentric, ripple-like pattern with the same
wavelength A = 71 pm and amplitude a = 2.5 pm. While the original Magnetic
Straitjacket hypothesis cannot be tested against the morphology evolution of the
concentric rings, we expect a spike placed in the center to evolve just like a single
finger in the original 3D experiment given the similarity of geometry, and set the
simulation up as such. In addition, the resulting gradients of 7, and n. should also
be applicable to the experimental condition.

The qualitative results are robust to variations, but we focus our analysis on the
simulation of a specific SNRT experiment, shot 55295 in year 2009. The total laser
energy of shot 55295 is 4.4704 KJ, and the laser beams have identical temporal power
profile which can be described as a symmetric trapezoid: the power of the laser rises
from zero to the maximum linearly from ¢ = 0 to ¢ = 0.1 ns, the maximum power is
sustained from ¢ = 0.1 ns to t = 0.9 ns, and the power falls from the maximum back

to zero linearly from ¢ = 0.9 ns to ¢t = 1.0 ns. The axes of the laser beams are placed
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of beams | angle

i
2 10.32°
2
3
3

31.71°
42.28°
50.55°

Table 5.1: Numbers of laser beams at each angle relative to the shock tube axis for
shot 55295 in year 2009

at an angle relative to the axis of the shock tube, and the numbers of beams at each

angle are summarized in Table 5.1. On the other hand, the azimuthal angles of the

laser beams are ignored in the simulation due to the inherent limitation of the 2D

cylindrical geometry.

The axes of the laser beams go through the origin, which is the center of the
surface of the polyimide disk facing outward. The power of each laser beam was
approximately equal in the experiment and is set to be equal in the simulation for
simplicity. The spatial irradiance profile of the laser beams is super-Gaussian of order
4.2, that is, the irradiance I of the beam at distance r from the axis is proportional

(r/rBeam)™® . Boqm can be considered to be the radius of the beams and is equal

to e”
to 410 pm in this case. CRF foam is modeled as low-density carbon, and polyimide
plasma is modeled as a mixture of four elements according to the chemical formula
CooH10O5N,y. The EOS table and opacity table are then generated by PROPACEOS
from PRISM Computational Sciences, Inc. and converted to the format used by
CRASH. The CHBr tracer strip is not modeled separately from the polyimide disk
since we do not expect it to affect the dynamics significantly [4]. Radiation transport
is modeled as multigroup diffusion, although we do not expect the shock to be sig-
nificantly radiative in this case. The size of each cell is 3.375 x 3.5 um for the base
grid. Right at the material interface after two levels of AMR, the size of the smallest
cells is 0.84375 x 0.875 pum.

Figure 5.8 shows the final state of the simulation 21 ns after the firing of the

laser, and Figure 5.9 zooms in on the density profile of the unstable region. At
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such late time, the most prominent magnetic field we observed is generated from
the near-vertical angle between the shock and the material interface near the tube
wall, although such effect may not be fully physical since this material interface along
the tube wall is effectively a contact discontinuity. Examination at early time shows
that the dominant magnetic field is generated along the shock front, especially when
the shock hits the perturbation (Figure 5.10). This pattern of B, can be explained
by considering the tangential gradients of T, and n. along the shock front. The
strength of the shock is approximately uniform near the axis of the shock tube due
to the shape of the laser beams. Therefore the gradients vanish and no magnetic
field is generated until the shock hits the perturbation. The small but significant
difference in shock strength due to the interface perturbation persists afterward and
continues to generate nonzero By, as we can see in Figure 5.11. In comparison, the
magnetic field generated along the material interface is much weaker in magnitude
since the T, gradient and n. gradient are mostly aligned and anti-parallel to each
other (Figure 5.11). The magnitude of the magnetic field at the location relevant to
the Magnetic StraightJacket hypothesis |B,| tops out ~ 1 T (Figure 5.12) at 7 ns,
but stays below 0.6 T most of the time for the rest of the simulation. Based on the T¢,
Ne, and Z we get from the simulation and Spitzer conductivity, the magnetic diffusion
constant 7 = 1/pg0o is estimated to be ~ 4 m?/s at 7 ns posteriorly. However, the
magnetic diffusion constant is fixed at 0.9076 m?/s throughout the simulation priorly
in order to maintain reasonable size of the time step, so the experimental condition
is likely to be more unfavorable towards sustaining magnetic field. However, the
resistivity and diffusion rate both decrease strongly as temperature increases, and
the resistive heating rate is of the same order as the diffusion rate. Unfortunately,
the calculations we were able to do proved unable to address the interplay between

diffusion and heating.
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Figure 5.9: Density (g/cm?) profile zoom-in on the instability at 21 ns. A mushroom
cap is present on the center spike but not as prominent as in the FLASH
simulation in Figure 1.8.

Figure 5.10: Electron temperature T, (keV), electron number density (m~3), and
magnetic field B, (Tesla) at 2.5 ns with material interface marked as
white contour. Strong magnetic field is generated where shock hits the

perturbation.

Figure 5.11: Electron temperature T, (keV), electron number density n. (m~?%), and
magnetic field B, (Tesla) at 7 ns. A stronger magnetic field is generated
along the rippled shock front than at the material interface. Note that
scale is adjusted and the redundant contour is taken out for n,.



Figure 5.12: Electron temperature T, (keV), electron number density n. (m~3), and
magnetic field B, (Tesla) at 7 ns along the material interface, with scale
adjusted for the magnetic field at the relevant location.

5.5 3D SNRT Simulation

Finally, we attempted a 3D version of the simulation. Due to the limitation of
the laser package and CPU time, we restricted the problem to 1/8 of the wavelength
of the center spike with reflective boundary condition in the y- and z-direction, and
used the laser heating data from the corresponding 2D simulation to initialize the
3D simulation. However, we encountered some stability issues and were therefore
forced to set an even higher magnetic diffusion constant at 2.269 m?/s. Since the
time integration of the magnetic diffusion is implemented explicitly, the time step
is limited at At ~ Ax?/ Dinagnetic-:  When we hit the scaling limit of the code with
one core handling one 6 x 6 x 6 block, we were only able to complete the simulation
with the resolution of 48 cells per wavelength within reasonable time. The result is
consistent with the 2D result, although we cannot draw further conclusions from it

(Figure 5.13).

5.6 Conclusion and Discussion

Given the strength of the magnetic field, we do not expect it to play a significant
role in the dynamics of the system for the 2D/3D SNRT simulations. Indeed, the
CRASH simulation without the Biermann battery effect results in indistinguishable

spike morphology (Figure 5.14) and quantitatively reproduces near-identical insta-
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1, it= 142431, time=

Figure 5.13: “Center spike” of the 3D SNRT simulation, as part of the conceptually
infinite sheet of spikes and bubbles at 20 ns: density (g/cm?®) p, electron
pressure p. (10% pascal), and magnetic field in the direction perpendic-
ular to the plane B, (Tesla). The x-position does’t correspond to the
x-position of the 2D simulation since a simple Galilean transformation
is applied to keep the instability in the simulation domain.

Figure 5.14: Density (g/cm?) profile zoom-in on the instability at 21 ns for the 2D
SNRT CRASH Simulation without the Biermann battery effect. The
morphology is indistinguishable from Figure 5.9.
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Growth rate of the instability for the 2D SNRT simulations, with and
without the Biermann battery effect. The growth rate is measured by
the relative horizontal velocity between the tip of the center spike and
the tip of the surrounding bubble.



bility growth rate (Figure 5.15). Therefore, it is tempting to rule out the Magnetic
Straightjacket hypothesis based on the result, especially given the underestimation
of the resistivity. Unfortunately, these Eulerian simulations turn out to be under-
resolved. Based on the 7., n., Z, and p we get from the simulation at 7 ns, the heat
diffusion constant is estimated to be x ~ 4 (cm? s7!) for the carbon foam bubble and
~ 0.76 (cm? s71) for the polyimide spike using Equation 2.6. Consequently, on the
timescale of 4 ~ 18 ns after the shock hit the interface, the temperature jump should
only diffuse across 1 ~ 2 um physically. Since Eulerian codes like CRASH numerically
require 4 ~ 5 cells to resolve such interface, the dimension of the cells at the interface
has to be < 0.2 um in order to fully resolve the temperature gradient. It takes at
least the same resolution to fully resolve the gradient of In n, due to its dependence on
temperature. Electron number density n. also depends on the identity of the mate-
rial, which is determined by the level set method without mixed cells in these CRASH
simulations. The identity of the material therefore does not require higher resolution
to resolve, but the level set method may have other complications like spurious oscil-
lations. If we assume that the gradients of electron temperature and number density
are inversely proportional to the size of the cell until the simulation is well-resolved,
the magnetic field could be 16 times as large, with corresponding magnetic pressure
that stays below 3.7 x 107 Pa most of the time but occasionally reaches 10® Pa. While
still small relative to the total pressure experienced by the spikes (~ 10! Pa), it may
nonetheless be sufficient to prevent the lateral development of KHI. In fact, magnetic
pressure that is ~ 1/2500 of the total pressure has been shown to be sufficient [18].
Realistic simulation with sufficient resolution, however, is certainly beyond the cur-
rent capacity of CRASH and available CPUs. The time step limit due to the explicit
time integration of the magnetic diffusion At ~ Az?/ Dinagnetic dictates that suffi-
cient resolution and physically realistic magnetic diffusion constant would require at

least a 64-fold increase of the count of total floating point operations, therefore more
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Figure 5.16: Electron temperature T, (keV) and electron number density n, (m~%)
at 7 ns from the 2D SNRT CRASH Simulation with one more level
of AMR but no Biermann battery effect. Secondary small-wavelength
instabilities are already prominent when the smallest cells are of the
dimension 0.421875 x 0.4375 pm.

than a year on 200 cores instead of 8 days on the available hardware. To complicate

the issue further, a pilot run with pure hydrodynamics and one more level of AMR

shows that HLLE scheme will generate secondary small-wavelength instabilities along
the interface, once the temperature gradient is fully resolved (Figure 5.16). If these
small-wavelength instabilities are not adequately suppressed by the magnetic field
lines normal to them, generated by the Biermann battery effect in the correspond-
ing high-resolution MHD run, we will not be able to simulate the evolution of the

morphologies of the SNRT instability realistically with the current numerical scheme,

even with sufficient computational resources.
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CHAPTER VI

Conclusions and Future Directions

In the previous chapters, we can see that CRASH is capable of modeling both
RTI and RMI, given the appropriate choice of numerical scheme, flux limiter, and
resolution. We have also tested its implementation of Biermann battery and magnetic
diffusion. Taken together, however, CRASH is not capable of simulating the SNRT
system with Biermann battery effect, with the physical realism necessary to support
or refute the Magnetic Straightjacket hypothesis conclusively.

Knowing what the code cannot do, however, is as important as knowing what the
code can do. The explicit time integration of the magnetic diffusion is a known lim-
itation for the time step size, and effort is underway to implement the implicit time
integration for the magnetic diffusion. The growth of secondary small-wavelength
instabilities, however, may prove to be a more fundamental challenge. Since the Bier-
mann battery term is proportional to the gradients in electron temperature T, and
logarithm of electron number density Inn., we need to fully resolve the interface. At
the same time, small-wavelength instabilities tend to grow in simulations with high
resolution and low numerical material diffusion, as we can see in the pilot runs of
Chapter V and Chapter III. Implementation of another numerical scheme or devel-
opment of a new numerical scheme may therefore be necessary to model the full SNRT

system with Biermann battery effect, as such multidimensional RT-unstable systems
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turn out to be a more difficult challenge for Eulerian codes than anticipated, once
coupled to a gradient-dependent term like Biermann battery. What we can say is that
we have uncovered additional criteria for such simulations, waiting future iterations

of CRASH or other code packages to fulfill.
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